convert-hf-to-gguf.py 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import contextlib
  6. import json
  7. import os
  8. import re
  9. import sys
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from hashlib import sha256
  13. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
  14. import math
  15. import numpy as np
  16. import torch
  17. if TYPE_CHECKING:
  18. from torch import Tensor
  19. if 'NO_LOCAL_GGUF' not in os.environ:
  20. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  21. import gguf
  22. from convert import LlamaHfVocab
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: int
  37. is_big_endian: bool
  38. endianess: gguf.GGUFEndian
  39. use_temp_file: bool
  40. lazy: bool
  41. part_names: list[str]
  42. is_safetensors: bool
  43. hparams: dict[str, Any]
  44. block_count: int
  45. tensor_map: gguf.TensorNameMap
  46. tensor_names: set[str] | None
  47. fname_out: Path
  48. gguf_writer: gguf.GGUFWriter
  49. # subclasses should define this!
  50. model_arch: gguf.MODEL_ARCH
  51. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool):
  52. if type(self) is Model:
  53. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  54. self.dir_model = dir_model
  55. self.ftype = ftype
  56. self.is_big_endian = is_big_endian
  57. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  58. self.use_temp_file = use_temp_file
  59. self.lazy = not eager
  60. self.part_names = Model.get_model_part_names(self.dir_model, ".safetensors")
  61. self.is_safetensors = len(self.part_names) > 0
  62. if not self.is_safetensors:
  63. self.part_names = Model.get_model_part_names(self.dir_model, ".bin")
  64. self.hparams = Model.load_hparams(self.dir_model)
  65. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  66. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  67. self.tensor_names = None
  68. if self.ftype == gguf.LlamaFileType.GUESSED:
  69. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  70. _, first_tensor = next(self.get_tensors())
  71. if first_tensor.dtype == torch.float16:
  72. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  73. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  74. else:
  75. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  76. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  77. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  78. ftype_lw: str = ftype_up.lower()
  79. # allow templating the file name with the output ftype, useful with the "auto" ftype
  80. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  81. self.gguf_writer = gguf.GGUFWriter(self.fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  82. @classmethod
  83. def __init_subclass__(cls):
  84. # can't use an abstract property, because overriding it without type errors
  85. # would require using decorated functions instead of simply defining the property
  86. if "model_arch" not in cls.__dict__:
  87. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  88. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  89. key = next((k for k in keys if k in self.hparams), None)
  90. if key is not None:
  91. return self.hparams[key]
  92. if optional:
  93. return None
  94. raise KeyError(f"could not find any of: {keys}")
  95. def set_vocab(self):
  96. self._set_vocab_gpt2()
  97. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  98. tensor_names_from_parts: set[str] = set()
  99. if len(self.part_names) > 1:
  100. self.tensor_names = set()
  101. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  102. index_name += ".index.json"
  103. logger.info(f"gguf: loading model weight map from '{index_name}'")
  104. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  105. index: dict[str, Any] = json.load(f)
  106. weight_map = index.get("weight_map")
  107. if weight_map is None or not isinstance(weight_map, dict):
  108. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  109. self.tensor_names.update(weight_map.keys())
  110. else:
  111. self.tensor_names = tensor_names_from_parts
  112. for part_name in self.part_names:
  113. logger.info(f"gguf: loading model part '{part_name}'")
  114. ctx: ContextManager[Any]
  115. if self.is_safetensors:
  116. from safetensors import safe_open
  117. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  118. else:
  119. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  120. with ctx as model_part:
  121. tensor_names_from_parts.update(model_part.keys())
  122. for name in model_part.keys():
  123. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  124. if self.lazy:
  125. data = LazyTorchTensor.from_eager(data)
  126. yield name, data
  127. # only verify tensor name presence; it doesn't matter if they are not in the right files
  128. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  129. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  130. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  131. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  132. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  133. name: str = gguf.TENSOR_NAMES[key]
  134. if "{bid}" in name:
  135. assert bid is not None
  136. name = name.format(bid=bid)
  137. return name + suffix
  138. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  139. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  140. return False
  141. key_name: str = gguf.TENSOR_NAMES[key]
  142. if "{bid}" in key_name:
  143. if bid is None:
  144. return False
  145. key_name = key_name.format(bid=bid)
  146. else:
  147. if bid is not None:
  148. return False
  149. return name == (key_name + suffix)
  150. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  151. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  152. if new_name is None:
  153. raise ValueError(f"Can not map tensor {name!r}")
  154. return new_name
  155. def set_gguf_parameters(self):
  156. self.gguf_writer.add_name(self.dir_model.name)
  157. self.gguf_writer.add_block_count(self.block_count)
  158. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  159. self.gguf_writer.add_context_length(n_ctx)
  160. logger.info(f"gguf: context length = {n_ctx}")
  161. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  162. self.gguf_writer.add_embedding_length(n_embd)
  163. logger.info(f"gguf: embedding length = {n_embd}")
  164. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  165. self.gguf_writer.add_feed_forward_length(n_ff)
  166. logger.info(f"gguf: feed forward length = {n_ff}")
  167. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  168. self.gguf_writer.add_head_count(n_head)
  169. logger.info(f"gguf: head count = {n_head}")
  170. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  171. self.gguf_writer.add_head_count_kv(n_head_kv)
  172. logger.info(f"gguf: key-value head count = {n_head_kv}")
  173. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  174. self.gguf_writer.add_rope_freq_base(rope_theta)
  175. logger.info(f"gguf: rope theta = {rope_theta}")
  176. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  177. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  178. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  179. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  180. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  181. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  182. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  183. self.gguf_writer.add_expert_count(n_experts)
  184. logger.info(f"gguf: expert count = {n_experts}")
  185. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  186. self.gguf_writer.add_expert_used_count(n_experts_used)
  187. logger.info(f"gguf: experts used count = {n_experts_used}")
  188. self.gguf_writer.add_file_type(self.ftype)
  189. logger.info(f"gguf: file type = {self.ftype}")
  190. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  191. del bid # unused
  192. return [(self.map_tensor_name(name), data_torch)]
  193. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  194. del name, new_name, bid, n_dims # unused
  195. return False
  196. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  197. del name, new_name, bid, n_dims # unused
  198. return False
  199. def write_tensors(self):
  200. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  201. for name, data_torch in self.get_tensors():
  202. # we don't need these
  203. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  204. continue
  205. old_dtype = data_torch.dtype
  206. # convert any unsupported data types to float32
  207. if data_torch.dtype not in (torch.float16, torch.float32):
  208. data_torch = data_torch.to(torch.float32)
  209. # use the first number-like part of the tensor name as the block id
  210. bid = None
  211. for part in name.split("."):
  212. if part.isdecimal():
  213. bid = int(part)
  214. break
  215. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  216. data: np.ndarray = data # type hint
  217. n_dims = len(data.shape)
  218. data_dtype = data.dtype
  219. data_qtype: gguf.GGMLQuantizationType | None = None
  220. # when both are True, f32 should win
  221. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  222. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  223. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  224. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  225. extra_f32 = any(cond for cond in (
  226. extra_f32,
  227. n_dims == 1,
  228. new_name.endswith("_norm.weight"),
  229. ))
  230. # Some tensor types are always in float32
  231. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  232. gguf.MODEL_TENSOR.FFN_GATE_INP,
  233. gguf.MODEL_TENSOR.POS_EMBD,
  234. gguf.MODEL_TENSOR.TOKEN_TYPES,
  235. ))
  236. # if f16 desired, convert any float32 2-dim weight tensors to float16
  237. extra_f16 = any(cond for cond in (
  238. extra_f16,
  239. (name.endswith(".weight") and n_dims >= 2),
  240. ))
  241. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  242. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  243. data = gguf.quantize_bf16(data)
  244. assert data.dtype == np.int16
  245. data_qtype = gguf.GGMLQuantizationType.BF16
  246. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  247. data = gguf.quantize_q8_0(data)
  248. assert data.dtype == np.uint8
  249. data_qtype = gguf.GGMLQuantizationType.Q8_0
  250. else: # default to float16 for quantized tensors
  251. if data_dtype != np.float16:
  252. data = data.astype(np.float16)
  253. data_qtype = gguf.GGMLQuantizationType.F16
  254. if data_qtype is None: # by default, convert to float32
  255. if data_dtype != np.float32:
  256. data = data.astype(np.float32)
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  259. # reverse shape to make it similar to the internal ggml dimension order
  260. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  261. # n_dims is implicit in the shape
  262. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  263. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  264. def write(self):
  265. self.write_tensors()
  266. self.gguf_writer.write_header_to_file()
  267. self.gguf_writer.write_kv_data_to_file()
  268. self.gguf_writer.write_tensors_to_file(progress=True)
  269. self.gguf_writer.close()
  270. def write_vocab(self):
  271. self.gguf_writer.write_header_to_file()
  272. self.gguf_writer.write_kv_data_to_file()
  273. self.gguf_writer.close()
  274. @staticmethod
  275. def get_model_part_names(dir_model: Path, suffix: str) -> list[str]:
  276. part_names: list[str] = []
  277. for filename in os.listdir(dir_model):
  278. if filename.endswith(suffix):
  279. part_names.append(filename)
  280. part_names.sort()
  281. return part_names
  282. @staticmethod
  283. def load_hparams(dir_model: Path):
  284. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  285. return json.load(f)
  286. @classmethod
  287. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  288. assert names
  289. def func(modelcls: AnyModel) -> AnyModel:
  290. for name in names:
  291. cls._model_classes[name] = modelcls
  292. return modelcls
  293. return func
  294. @classmethod
  295. def from_model_architecture(cls, arch: str) -> type[Model]:
  296. try:
  297. return cls._model_classes[arch]
  298. except KeyError:
  299. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  300. # used for GPT-2 BPE and WordPiece vocabs
  301. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  302. tokens: list[str] = []
  303. toktypes: list[int] = []
  304. from transformers import AutoTokenizer
  305. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  306. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  307. assert max(tokenizer.vocab.values()) < vocab_size
  308. tokpre = self.get_vocab_base_pre(tokenizer)
  309. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  310. added_vocab = tokenizer.get_added_vocab()
  311. for i in range(vocab_size):
  312. if i not in reverse_vocab:
  313. tokens.append(f"[PAD{i}]")
  314. toktypes.append(gguf.TokenType.USER_DEFINED)
  315. elif reverse_vocab[i] in added_vocab:
  316. tokens.append(reverse_vocab[i])
  317. if tokenizer.added_tokens_decoder[i].special:
  318. toktypes.append(gguf.TokenType.CONTROL)
  319. else:
  320. toktypes.append(gguf.TokenType.USER_DEFINED)
  321. else:
  322. tokens.append(reverse_vocab[i])
  323. toktypes.append(gguf.TokenType.NORMAL)
  324. return tokens, toktypes, tokpre
  325. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  326. # do not modify it manually!
  327. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  328. # Marker: Start get_vocab_base_pre
  329. def get_vocab_base_pre(self, tokenizer) -> str:
  330. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  331. # is specific for the BPE pre-tokenizer used by the model
  332. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  333. # use in llama.cpp to implement the same pre-tokenizer
  334. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  335. chktok = tokenizer.encode(chktxt)
  336. chkhsh = sha256(str(chktok).encode()).hexdigest()
  337. logger.debug(f"chktok: {chktok}")
  338. logger.debug(f"chkhsh: {chkhsh}")
  339. res = None
  340. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  341. # or pull the latest version of the model from Huggingface
  342. # don't edit the hashes manually!
  343. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  344. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  345. res = "llama-bpe"
  346. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  347. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  348. res = "deepseek-llm"
  349. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  350. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  351. res = "deepseek-coder"
  352. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  353. # ref: https://huggingface.co/tiiuae/falcon-7b
  354. res = "falcon"
  355. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  356. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  357. res = "bert-bge"
  358. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  359. # ref: https://huggingface.co/mosaicml/mpt-7b
  360. res = "mpt"
  361. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  362. # ref: https://huggingface.co/bigcode/starcoder2-3b
  363. res = "starcoder"
  364. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  365. # ref: https://huggingface.co/openai-community/gpt2
  366. res = "gpt-2"
  367. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  368. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  369. res = "stablelm2"
  370. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  371. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  372. res = "refact"
  373. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  374. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  375. res = "command-r"
  376. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  377. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  378. res = "qwen2"
  379. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  380. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  381. res = "olmo"
  382. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  383. # ref: https://huggingface.co/databricks/dbrx-base
  384. res = "dbrx"
  385. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  386. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  387. res = "jina-v2-en"
  388. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  389. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  390. res = "jina-v2-es"
  391. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  392. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  393. res = "jina-v2-de"
  394. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  395. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  396. res = "smaug-bpe"
  397. if res is None:
  398. logger.warning("\n")
  399. logger.warning("**************************************************************************************")
  400. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  401. logger.warning("** There are 2 possible reasons for this:")
  402. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  403. logger.warning("** - the pre-tokenization config has changed upstream")
  404. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  405. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  406. logger.warning("**")
  407. logger.warning(f"** chkhsh: {chkhsh}")
  408. logger.warning("**************************************************************************************")
  409. logger.warning("\n")
  410. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  411. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  412. logger.debug(f"chkhsh: {chkhsh}")
  413. return res
  414. # Marker: End get_vocab_base_pre
  415. def _set_vocab_gpt2(self) -> None:
  416. tokens, toktypes, tokpre = self.get_vocab_base()
  417. self.gguf_writer.add_tokenizer_model("gpt2")
  418. self.gguf_writer.add_tokenizer_pre(tokpre)
  419. self.gguf_writer.add_token_list(tokens)
  420. self.gguf_writer.add_token_types(toktypes)
  421. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  422. special_vocab.add_to_gguf(self.gguf_writer)
  423. def _set_vocab_qwen(self):
  424. dir_model = self.dir_model
  425. hparams = self.hparams
  426. tokens: list[str] = []
  427. toktypes: list[int] = []
  428. from transformers import AutoTokenizer
  429. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  430. vocab_size = hparams["vocab_size"]
  431. assert max(tokenizer.get_vocab().values()) < vocab_size
  432. tokpre = self.get_vocab_base_pre(tokenizer)
  433. merges = []
  434. vocab = {}
  435. mergeable_ranks = tokenizer.mergeable_ranks
  436. for token, rank in mergeable_ranks.items():
  437. vocab[QwenModel.token_bytes_to_string(token)] = rank
  438. if len(token) == 1:
  439. continue
  440. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  441. assert len(merged) == 2
  442. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  443. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  444. added_vocab = tokenizer.special_tokens
  445. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  446. for i in range(vocab_size):
  447. if i not in reverse_vocab:
  448. tokens.append(f"[PAD{i}]")
  449. toktypes.append(gguf.TokenType.USER_DEFINED)
  450. elif reverse_vocab[i] in added_vocab:
  451. tokens.append(reverse_vocab[i])
  452. toktypes.append(gguf.TokenType.CONTROL)
  453. else:
  454. tokens.append(reverse_vocab[i])
  455. toktypes.append(gguf.TokenType.NORMAL)
  456. self.gguf_writer.add_tokenizer_model("gpt2")
  457. self.gguf_writer.add_tokenizer_pre(tokpre)
  458. self.gguf_writer.add_token_list(tokens)
  459. self.gguf_writer.add_token_types(toktypes)
  460. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  461. special_vocab.merges = merges
  462. # only add special tokens when they were not already loaded from config.json
  463. if len(special_vocab.special_token_ids) == 0:
  464. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  465. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  466. # this one is usually not in config.json anyway
  467. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  468. special_vocab.add_to_gguf(self.gguf_writer)
  469. def _set_vocab_sentencepiece(self):
  470. from sentencepiece import SentencePieceProcessor
  471. tokenizer_path = self.dir_model / 'tokenizer.model'
  472. tokens: list[bytes] = []
  473. scores: list[float] = []
  474. toktypes: list[int] = []
  475. if not tokenizer_path.is_file():
  476. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  477. tokenizer = SentencePieceProcessor()
  478. tokenizer.LoadFromFile(str(tokenizer_path))
  479. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  480. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  481. scores: list[float] = [-10000.0] * vocab_size
  482. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  483. for token_id in range(tokenizer.vocab_size()):
  484. piece = tokenizer.IdToPiece(token_id)
  485. text = piece.encode("utf-8")
  486. score = tokenizer.GetScore(token_id)
  487. toktype = SentencePieceTokenTypes.NORMAL
  488. if tokenizer.IsUnknown(token_id):
  489. toktype = SentencePieceTokenTypes.UNKNOWN
  490. elif tokenizer.IsControl(token_id):
  491. toktype = SentencePieceTokenTypes.CONTROL
  492. elif tokenizer.IsUnused(token_id):
  493. toktype = SentencePieceTokenTypes.UNUSED
  494. elif tokenizer.IsByte(token_id):
  495. toktype = SentencePieceTokenTypes.BYTE
  496. tokens[token_id] = text
  497. scores[token_id] = score
  498. toktypes[token_id] = toktype
  499. added_tokens_file = self.dir_model / 'added_tokens.json'
  500. if added_tokens_file.is_file():
  501. with open(added_tokens_file, "r", encoding="utf-8") as f:
  502. added_tokens_json = json.load(f)
  503. for key in added_tokens_json:
  504. token_id = added_tokens_json[key]
  505. if (token_id >= vocab_size):
  506. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  507. continue
  508. tokens[token_id] = key.encode("utf-8")
  509. scores[token_id] = -1000.0
  510. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  511. if vocab_size > len(tokens):
  512. pad_count = vocab_size - len(tokens)
  513. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  514. for i in range(1, pad_count + 1):
  515. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  516. scores.append(-1000.0)
  517. toktypes.append(SentencePieceTokenTypes.UNUSED)
  518. self.gguf_writer.add_tokenizer_model("llama")
  519. self.gguf_writer.add_tokenizer_pre("default")
  520. self.gguf_writer.add_token_list(tokens)
  521. self.gguf_writer.add_token_scores(scores)
  522. self.gguf_writer.add_token_types(toktypes)
  523. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  524. special_vocab.add_to_gguf(self.gguf_writer)
  525. def _set_vocab_llama_hf(self):
  526. vocab = LlamaHfVocab(self.dir_model)
  527. tokens = []
  528. scores = []
  529. toktypes = []
  530. for text, score, toktype in vocab.all_tokens():
  531. tokens.append(text)
  532. scores.append(score)
  533. toktypes.append(toktype)
  534. assert len(tokens) == vocab.vocab_size
  535. self.gguf_writer.add_tokenizer_model("llama")
  536. self.gguf_writer.add_tokenizer_pre("default")
  537. self.gguf_writer.add_token_list(tokens)
  538. self.gguf_writer.add_token_scores(scores)
  539. self.gguf_writer.add_token_types(toktypes)
  540. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  541. special_vocab.add_to_gguf(self.gguf_writer)
  542. @Model.register("GPTNeoXForCausalLM")
  543. class GPTNeoXModel(Model):
  544. model_arch = gguf.MODEL_ARCH.GPTNEOX
  545. def set_gguf_parameters(self):
  546. block_count = self.hparams["num_hidden_layers"]
  547. self.gguf_writer.add_name(self.dir_model.name)
  548. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  549. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  550. self.gguf_writer.add_block_count(block_count)
  551. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  552. self.gguf_writer.add_rope_dimension_count(
  553. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  554. )
  555. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  556. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  557. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  558. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  559. del bid # unused
  560. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  561. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  562. tensors: list[tuple[str, Tensor]] = []
  563. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  564. # Map bloom-style qkv_linear to gpt-style qkv_linear
  565. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  566. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  567. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  568. data_torch = torch.cat(
  569. (
  570. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  571. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  572. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  573. ),
  574. dim=0,
  575. )
  576. logger.info("re-format attention.linear_qkv.weight")
  577. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  578. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  579. data_torch = torch.cat(
  580. (
  581. qkv_bias[:, 0, :].reshape((n_embed,)),
  582. qkv_bias[:, 1, :].reshape((n_embed,)),
  583. qkv_bias[:, 2, :].reshape((n_embed,)),
  584. ),
  585. dim=0,
  586. )
  587. logger.info("re-format attention.linear_qkv.bias")
  588. tensors.append((self.map_tensor_name(name), data_torch))
  589. return tensors
  590. @Model.register("BloomForCausalLM")
  591. class BloomModel(Model):
  592. model_arch = gguf.MODEL_ARCH.BLOOM
  593. def set_gguf_parameters(self):
  594. self.gguf_writer.add_name("Bloom")
  595. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  596. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  597. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  598. self.gguf_writer.add_embedding_length(n_embed)
  599. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  600. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  601. self.gguf_writer.add_head_count(n_head)
  602. self.gguf_writer.add_head_count_kv(n_head)
  603. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  604. self.gguf_writer.add_file_type(self.ftype)
  605. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  606. del bid # unused
  607. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  608. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  609. name = re.sub(r'transformer\.', '', name)
  610. tensors: list[tuple[str, Tensor]] = []
  611. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  612. # Map bloom-style qkv_linear to gpt-style qkv_linear
  613. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  614. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  615. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  616. data_torch = torch.cat(
  617. (
  618. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  619. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  620. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  621. ),
  622. dim=0,
  623. )
  624. logger.info("re-format attention.linear_qkv.weight")
  625. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  626. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  627. data_torch = torch.cat(
  628. (
  629. qkv_bias[:, 0, :].reshape((n_embed,)),
  630. qkv_bias[:, 1, :].reshape((n_embed,)),
  631. qkv_bias[:, 2, :].reshape((n_embed,)),
  632. ),
  633. dim=0,
  634. )
  635. logger.info("re-format attention.linear_qkv.bias")
  636. tensors.append((self.map_tensor_name(name), data_torch))
  637. if name == "word_embeddings.weight":
  638. assert self.tensor_names is not None
  639. # TODO: tie them at runtime, don't duplicate in the model file
  640. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  641. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  642. return tensors
  643. @Model.register("MPTForCausalLM")
  644. class MPTModel(Model):
  645. model_arch = gguf.MODEL_ARCH.MPT
  646. def set_vocab(self):
  647. try:
  648. self._set_vocab_gpt2()
  649. except Exception:
  650. # Fallback for SEA-LION model
  651. self._set_vocab_sentencepiece()
  652. self.gguf_writer.add_add_bos_token(False)
  653. self.gguf_writer.add_pad_token_id(3)
  654. self.gguf_writer.add_eos_token_id(1)
  655. self.gguf_writer.add_unk_token_id(0)
  656. def set_gguf_parameters(self):
  657. block_count = self.hparams["n_layers"]
  658. self.gguf_writer.add_name(self.dir_model.name)
  659. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  660. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  661. self.gguf_writer.add_block_count(block_count)
  662. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  663. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  664. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  665. self.gguf_writer.add_head_count_kv(kv_n_heads)
  666. self.gguf_writer.add_layer_norm_eps(1e-5)
  667. if self.hparams["attn_config"]["clip_qkv"] is not None:
  668. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  669. if self.hparams["attn_config"]["alibi"]:
  670. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  671. else:
  672. self.gguf_writer.add_max_alibi_bias(0.0)
  673. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  674. del bid # unused
  675. if "scales" in name:
  676. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  677. new_name = new_name.replace("scales", "act.scales")
  678. else:
  679. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  680. return [(new_name, data_torch)]
  681. @Model.register("OrionForCausalLM")
  682. class OrionModel(Model):
  683. model_arch = gguf.MODEL_ARCH.ORION
  684. def set_vocab(self):
  685. self._set_vocab_sentencepiece()
  686. def set_gguf_parameters(self):
  687. block_count = self.hparams["num_hidden_layers"]
  688. head_count = self.hparams["num_attention_heads"]
  689. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  690. hf_repo = self.hparams.get("_name_or_path", "")
  691. ctx_length = 0
  692. if "max_sequence_length" in self.hparams:
  693. ctx_length = self.hparams["max_sequence_length"]
  694. elif "max_position_embeddings" in self.hparams:
  695. ctx_length = self.hparams["max_position_embeddings"]
  696. elif "model_max_length" in self.hparams:
  697. ctx_length = self.hparams["model_max_length"]
  698. else:
  699. raise ValueError("gguf: can not find ctx length parameter.")
  700. self.gguf_writer.add_file_type(self.ftype)
  701. self.gguf_writer.add_name(self.dir_model.name)
  702. self.gguf_writer.add_source_hf_repo(hf_repo)
  703. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  704. self.gguf_writer.add_context_length(ctx_length)
  705. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  706. self.gguf_writer.add_block_count(block_count)
  707. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  708. self.gguf_writer.add_head_count(head_count)
  709. self.gguf_writer.add_head_count_kv(head_count_kv)
  710. # note: config provides rms norm but it is actually layer norm
  711. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  712. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  713. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  714. class BaichuanModel(Model):
  715. model_arch = gguf.MODEL_ARCH.BAICHUAN
  716. def set_vocab(self):
  717. self._set_vocab_sentencepiece()
  718. def set_gguf_parameters(self):
  719. block_count = self.hparams["num_hidden_layers"]
  720. head_count = self.hparams["num_attention_heads"]
  721. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  722. hf_repo = self.hparams.get("_name_or_path", "")
  723. ctx_length = 0
  724. if "max_sequence_length" in self.hparams:
  725. ctx_length = self.hparams["max_sequence_length"]
  726. elif "max_position_embeddings" in self.hparams:
  727. ctx_length = self.hparams["max_position_embeddings"]
  728. elif "model_max_length" in self.hparams:
  729. ctx_length = self.hparams["model_max_length"]
  730. else:
  731. raise ValueError("gguf: can not find ctx length parameter.")
  732. self.gguf_writer.add_name(self.dir_model.name)
  733. self.gguf_writer.add_source_hf_repo(hf_repo)
  734. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  735. self.gguf_writer.add_context_length(ctx_length)
  736. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  737. self.gguf_writer.add_block_count(block_count)
  738. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  739. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  740. self.gguf_writer.add_head_count(head_count)
  741. self.gguf_writer.add_head_count_kv(head_count_kv)
  742. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  743. self.gguf_writer.add_file_type(self.ftype)
  744. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  745. if self.hparams["rope_scaling"].get("type") == "linear":
  746. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  747. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  748. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  749. head_count = self.hparams["num_attention_heads"]
  750. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  751. tensors: list[tuple[str, Tensor]] = []
  752. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  753. logger.info(f"Unpacking and permuting layer {bid}")
  754. tensors = [
  755. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  756. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  757. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  758. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  759. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  760. self._reverse_hf_part(data_torch, 2)),
  761. ]
  762. else:
  763. tensors = [(self.map_tensor_name(name), data_torch)]
  764. return tensors
  765. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  766. if n_kv_head is not None and n_head != n_kv_head:
  767. n_head //= n_kv_head
  768. return (
  769. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  770. .swapaxes(1, 2)
  771. .reshape(weights.shape)
  772. )
  773. def _reverse_hf_permute_part(
  774. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  775. ) -> Tensor:
  776. r = weights.shape[0] // 3
  777. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  778. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  779. r = weights.shape[0] // 3
  780. return weights[r * n_part:r * n_part + r, ...]
  781. @Model.register("XverseForCausalLM")
  782. class XverseModel(Model):
  783. model_arch = gguf.MODEL_ARCH.XVERSE
  784. def set_vocab(self):
  785. assert (self.dir_model / "tokenizer.json").is_file()
  786. dir_model = self.dir_model
  787. hparams = self.hparams
  788. tokens: list[bytes] = []
  789. toktypes: list[int] = []
  790. from transformers import AutoTokenizer
  791. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  792. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  793. assert max(tokenizer.vocab.values()) < vocab_size
  794. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  795. added_vocab = tokenizer.get_added_vocab()
  796. for token_id in range(vocab_size):
  797. token_text = reverse_vocab[token_id].encode('utf-8')
  798. # replace "\x00" to string with length > 0
  799. if token_text == b"\x00":
  800. toktype = gguf.TokenType.BYTE # special
  801. token_text = f"<{token_text}>".encode('utf-8')
  802. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  803. toktype = gguf.TokenType.BYTE # special
  804. elif reverse_vocab[token_id] in added_vocab:
  805. if tokenizer.added_tokens_decoder[token_id].special:
  806. toktype = gguf.TokenType.CONTROL
  807. else:
  808. toktype = gguf.TokenType.USER_DEFINED
  809. else:
  810. toktype = gguf.TokenType.NORMAL
  811. tokens.append(token_text)
  812. toktypes.append(toktype)
  813. self.gguf_writer.add_tokenizer_model("llama")
  814. self.gguf_writer.add_tokenizer_pre("default")
  815. self.gguf_writer.add_token_list(tokens)
  816. self.gguf_writer.add_token_types(toktypes)
  817. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  818. special_vocab.add_to_gguf(self.gguf_writer)
  819. def set_gguf_parameters(self):
  820. block_count = self.hparams["num_hidden_layers"]
  821. head_count = self.hparams["num_attention_heads"]
  822. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  823. hf_repo = self.hparams.get("_name_or_path", "")
  824. ctx_length = 0
  825. if "max_sequence_length" in self.hparams:
  826. ctx_length = self.hparams["max_sequence_length"]
  827. elif "max_position_embeddings" in self.hparams:
  828. ctx_length = self.hparams["max_position_embeddings"]
  829. elif "model_max_length" in self.hparams:
  830. ctx_length = self.hparams["model_max_length"]
  831. else:
  832. raise ValueError("gguf: can not find ctx length parameter.")
  833. self.gguf_writer.add_name(self.dir_model.name)
  834. self.gguf_writer.add_source_hf_repo(hf_repo)
  835. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  836. self.gguf_writer.add_context_length(ctx_length)
  837. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  838. self.gguf_writer.add_block_count(block_count)
  839. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  840. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  841. self.gguf_writer.add_head_count(head_count)
  842. self.gguf_writer.add_head_count_kv(head_count_kv)
  843. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  844. self.gguf_writer.add_file_type(self.ftype)
  845. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  846. if self.hparams["rope_scaling"].get("type") == "linear":
  847. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  848. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  849. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  850. del bid # unused
  851. head_count = self.hparams["num_attention_heads"]
  852. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  853. # HF models permute some of the tensors, so we need to undo that
  854. if name.endswith("q_proj.weight"):
  855. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  856. if name.endswith("k_proj.weight"):
  857. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  858. return [(self.map_tensor_name(name), data_torch)]
  859. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  860. if n_kv_head is not None and n_head != n_kv_head:
  861. n_head //= n_kv_head
  862. return (
  863. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  864. .swapaxes(1, 2)
  865. .reshape(weights.shape)
  866. )
  867. @Model.register("FalconForCausalLM", "RWForCausalLM")
  868. class FalconModel(Model):
  869. model_arch = gguf.MODEL_ARCH.FALCON
  870. def set_gguf_parameters(self):
  871. block_count = self.hparams.get("num_hidden_layers")
  872. if block_count is None:
  873. block_count = self.hparams["n_layer"] # old name
  874. n_head = self.hparams.get("num_attention_heads")
  875. if n_head is None:
  876. n_head = self.hparams["n_head"] # old name
  877. n_head_kv = self.hparams.get("num_kv_heads")
  878. if n_head_kv is None:
  879. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  880. self.gguf_writer.add_name("Falcon")
  881. self.gguf_writer.add_context_length(2048) # not in config.json
  882. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  883. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  884. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  885. self.gguf_writer.add_block_count(block_count)
  886. self.gguf_writer.add_head_count(n_head)
  887. self.gguf_writer.add_head_count_kv(n_head_kv)
  888. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  889. self.gguf_writer.add_file_type(self.ftype)
  890. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  891. del bid # unused
  892. # QKV tensor transform
  893. # The original query_key_value tensor contains n_head_kv "kv groups",
  894. # each consisting of n_head/n_head_kv query weights followed by one key
  895. # and one value weight (shared by all query heads in the kv group).
  896. # This layout makes it a big pain to work with in GGML.
  897. # So we rearrange them here,, so that we have n_head query weights
  898. # followed by n_head_kv key weights followed by n_head_kv value weights,
  899. # in contiguous fashion.
  900. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  901. if "query_key_value" in name:
  902. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  903. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  904. head_dim = self.hparams["hidden_size"] // n_head
  905. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  906. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  907. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  908. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  909. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  910. return [(self.map_tensor_name(name), data_torch)]
  911. @Model.register("GPTBigCodeForCausalLM")
  912. class StarCoderModel(Model):
  913. model_arch = gguf.MODEL_ARCH.STARCODER
  914. def set_gguf_parameters(self):
  915. block_count = self.hparams["n_layer"]
  916. self.gguf_writer.add_name("StarCoder")
  917. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  918. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  919. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  920. self.gguf_writer.add_block_count(block_count)
  921. self.gguf_writer.add_head_count(self.hparams["n_head"])
  922. self.gguf_writer.add_head_count_kv(1)
  923. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  924. self.gguf_writer.add_file_type(self.ftype)
  925. @Model.register("GPTRefactForCausalLM")
  926. class RefactModel(Model):
  927. model_arch = gguf.MODEL_ARCH.REFACT
  928. def set_vocab(self):
  929. super().set_vocab()
  930. # TODO: how to determine special FIM tokens automatically?
  931. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  932. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  933. special_vocab._set_special_token("prefix", 1)
  934. special_vocab._set_special_token("suffix", 3)
  935. special_vocab._set_special_token("middle", 2)
  936. special_vocab._set_special_token("fsep", 4) # is this correct?
  937. special_vocab.add_to_gguf(self.gguf_writer)
  938. def set_gguf_parameters(self):
  939. hidden_dim = self.hparams["n_embd"]
  940. inner_dim = 4 * hidden_dim
  941. hidden_dim = int(2 * inner_dim / 3)
  942. multiple_of = 256
  943. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  944. block_count = self.hparams["n_layer"]
  945. self.gguf_writer.add_name("Refact")
  946. # refact uses Alibi. So this is from config.json which might be used by training.
  947. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  948. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  949. self.gguf_writer.add_feed_forward_length(ff_dim)
  950. self.gguf_writer.add_block_count(block_count)
  951. self.gguf_writer.add_head_count(self.hparams["n_head"])
  952. self.gguf_writer.add_head_count_kv(1)
  953. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  954. self.gguf_writer.add_file_type(self.ftype)
  955. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  956. hidden_dim = self.hparams["n_embd"]
  957. inner_dim = 4 * hidden_dim
  958. hidden_dim = int(2 * inner_dim / 3)
  959. multiple_of = 256
  960. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  961. n_head = self.hparams["n_head"]
  962. n_head_kv = 1
  963. head_dim = self.hparams["n_embd"] // n_head
  964. tensors: list[tuple[str, Tensor]] = []
  965. if bid is not None:
  966. if name == f"transformer.h.{bid}.attn.kv.weight":
  967. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  968. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  969. elif name == f"transformer.h.{bid}.attn.q.weight":
  970. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  971. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  972. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  973. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  974. if len(tensors) == 0:
  975. tensors.append((self.map_tensor_name(name), data_torch))
  976. return tensors
  977. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  978. class StableLMModel(Model):
  979. model_arch = gguf.MODEL_ARCH.STABLELM
  980. def set_vocab(self):
  981. if (self.dir_model / "tokenizer.json").is_file():
  982. self._set_vocab_gpt2()
  983. else:
  984. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  985. self._set_vocab_qwen()
  986. def set_gguf_parameters(self):
  987. hparams = self.hparams
  988. block_count = hparams["num_hidden_layers"]
  989. self.gguf_writer.add_name(self.dir_model.name)
  990. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  991. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  992. self.gguf_writer.add_block_count(block_count)
  993. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  994. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  995. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  996. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  997. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  998. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  999. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1000. self.gguf_writer.add_file_type(self.ftype)
  1001. _q_norms: list[dict[str, Tensor]] | None = None
  1002. _k_norms: list[dict[str, Tensor]] | None = None
  1003. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1004. n_head = self.hparams["num_attention_heads"]
  1005. n_kv_head = self.hparams["num_key_value_heads"]
  1006. if name.find("q_layernorm.norms") != -1:
  1007. assert bid is not None
  1008. if self._q_norms is None:
  1009. self._q_norms = [{} for _ in range(self.block_count)]
  1010. self._q_norms[bid][name] = data_torch
  1011. if len(self._q_norms[bid]) >= n_head:
  1012. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1013. else:
  1014. return []
  1015. if name.find("k_layernorm.norms") != -1:
  1016. assert bid is not None
  1017. if self._k_norms is None:
  1018. self._k_norms = [{} for _ in range(self.block_count)]
  1019. self._k_norms[bid][name] = data_torch
  1020. if len(self._k_norms[bid]) >= n_kv_head:
  1021. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1022. else:
  1023. return []
  1024. return [(self.map_tensor_name(name), data_torch)]
  1025. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1026. datas: list[Tensor] = []
  1027. # extract the norms in order
  1028. for xid in range(n_head):
  1029. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1030. datas.append(norms[ename])
  1031. del norms[ename]
  1032. data_torch = torch.stack(datas, dim=0)
  1033. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1034. new_name = self.map_tensor_name(merged_name)
  1035. return [(new_name, data_torch)]
  1036. def write_tensors(self):
  1037. super().write_tensors()
  1038. if self._q_norms is not None or self._k_norms is not None:
  1039. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1040. norms = (
  1041. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1042. ) + (
  1043. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1044. )
  1045. if len(norms) > 0:
  1046. raise ValueError(f"Unprocessed norms: {norms}")
  1047. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1048. class LlamaModel(Model):
  1049. model_arch = gguf.MODEL_ARCH.LLAMA
  1050. def set_vocab(self):
  1051. try:
  1052. self. _set_vocab_sentencepiece()
  1053. except FileNotFoundError:
  1054. try:
  1055. self._set_vocab_llama_hf()
  1056. except (FileNotFoundError, TypeError):
  1057. # Llama 3
  1058. self._set_vocab_gpt2()
  1059. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1060. if self.hparams.get("vocab_size", 32000) == 32016:
  1061. special_vocab = gguf.SpecialVocab(
  1062. self.dir_model, load_merges=False,
  1063. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1064. )
  1065. special_vocab._set_special_token("prefix", 32007)
  1066. special_vocab._set_special_token("suffix", 32008)
  1067. special_vocab._set_special_token("middle", 32009)
  1068. special_vocab._set_special_token("eot", 32010)
  1069. special_vocab.add_to_gguf(self.gguf_writer)
  1070. def set_gguf_parameters(self):
  1071. super().set_gguf_parameters()
  1072. hparams = self.hparams
  1073. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1074. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1075. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1076. if self.hparams["rope_scaling"].get("type") == "linear":
  1077. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1078. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1079. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1080. if tokenizer_config_file.is_file():
  1081. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1082. tokenizer_config_json = json.load(f)
  1083. if "add_prefix_space" in tokenizer_config_json:
  1084. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1085. # Apply to granite small models only
  1086. if self.hparams.get("vocab_size", 32000) == 49152:
  1087. self.gguf_writer.add_add_bos_token(False)
  1088. @staticmethod
  1089. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1090. if n_head_kv is not None and n_head != n_head_kv:
  1091. n_head = n_head_kv
  1092. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1093. .swapaxes(1, 2)
  1094. .reshape(weights.shape))
  1095. _experts: list[dict[str, Tensor]] | None = None
  1096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1097. n_head = self.hparams["num_attention_heads"]
  1098. n_kv_head = self.hparams.get("num_key_value_heads")
  1099. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1100. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1101. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1102. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1103. # process the experts separately
  1104. if name.find("block_sparse_moe.experts") != -1:
  1105. n_experts = self.hparams["num_local_experts"]
  1106. assert bid is not None
  1107. if self._experts is None:
  1108. self._experts = [{} for _ in range(self.block_count)]
  1109. self._experts[bid][name] = data_torch
  1110. if len(self._experts[bid]) >= n_experts * 3:
  1111. tensors: list[tuple[str, Tensor]] = []
  1112. # merge the experts into a single 3d tensor
  1113. for wid in ["w1", "w2", "w3"]:
  1114. datas: list[Tensor] = []
  1115. for xid in range(n_experts):
  1116. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1117. datas.append(self._experts[bid][ename])
  1118. del self._experts[bid][ename]
  1119. data_torch = torch.stack(datas, dim=0)
  1120. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1121. new_name = self.map_tensor_name(merged_name)
  1122. tensors.append((new_name, data_torch))
  1123. return tensors
  1124. else:
  1125. return []
  1126. return [(self.map_tensor_name(name), data_torch)]
  1127. def write_tensors(self):
  1128. super().write_tensors()
  1129. if self._experts is not None:
  1130. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1131. experts = [k for d in self._experts for k in d.keys()]
  1132. if len(experts) > 0:
  1133. raise ValueError(f"Unprocessed experts: {experts}")
  1134. @Model.register("GrokForCausalLM")
  1135. class GrokModel(Model):
  1136. model_arch = gguf.MODEL_ARCH.GROK
  1137. def set_vocab(self):
  1138. self._set_vocab_sentencepiece()
  1139. def __init__(self, *args, **kwargs):
  1140. super().__init__(*args, **kwargs)
  1141. def set_gguf_parameters(self):
  1142. super().set_gguf_parameters()
  1143. self.gguf_writer.add_name("Grok")
  1144. _experts: list[dict[str, Tensor]] | None = None
  1145. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1146. # process the experts separately
  1147. if name.find(".moe.") != -1:
  1148. n_experts = self.hparams["num_local_experts"]
  1149. assert bid is not None
  1150. if self._experts is None:
  1151. self._experts = [{} for _ in range(self.block_count)]
  1152. self._experts[bid][name] = data_torch
  1153. if len(self._experts[bid]) >= n_experts * 3:
  1154. tensors: list[tuple[str, Tensor]] = []
  1155. # merge the experts into a single 3d tensor
  1156. for wid in ["linear", "linear_1", "linear_v"]:
  1157. datas: list[Tensor] = []
  1158. for xid in range(n_experts):
  1159. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1160. datas.append(self._experts[bid][ename])
  1161. del self._experts[bid][ename]
  1162. data_torch = torch.stack(datas, dim=0)
  1163. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1164. new_name = self.map_tensor_name(merged_name)
  1165. tensors.append((new_name, data_torch))
  1166. return tensors
  1167. else:
  1168. return []
  1169. return [(self.map_tensor_name(name), data_torch)]
  1170. @Model.register("DbrxForCausalLM")
  1171. class DbrxModel(Model):
  1172. model_arch = gguf.MODEL_ARCH.DBRX
  1173. def set_gguf_parameters(self):
  1174. ffn_config = self.hparams["ffn_config"]
  1175. attn_config = self.hparams["attn_config"]
  1176. self.gguf_writer.add_name(self.hparams["model_type"])
  1177. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1178. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1179. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1180. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1181. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1182. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1183. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1184. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1185. self.gguf_writer.add_file_type(self.ftype)
  1186. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1187. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1188. self.gguf_writer.add_layer_norm_eps(1e-5)
  1189. self.gguf_writer.add_file_type(self.ftype)
  1190. logger.info(f"gguf: file type = {self.ftype}")
  1191. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1192. del bid # unused
  1193. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1194. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1195. n_embd = self.hparams["d_model"]
  1196. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1197. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1198. # But llama.cpp moe graph works differently
  1199. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1200. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1201. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1202. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1203. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1204. experts = False
  1205. for exp_tensor_name in exp_tensor_names.keys():
  1206. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1207. experts = True
  1208. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1209. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1210. data_torch = data_torch.permute(*permute_tensor)
  1211. break
  1212. # map tensor names
  1213. # In MoE models the ffn tensors are typically most of the model weights,
  1214. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1215. # Every other model has the weight names ending in .weight,
  1216. # let's assume that is the convention which is not the case for dbrx:
  1217. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1218. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1219. return [(new_name, data_torch)]
  1220. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1221. del name, new_name, bid # unused
  1222. return n_dims > 1
  1223. @Model.register("MiniCPMForCausalLM")
  1224. class MiniCPMModel(Model):
  1225. model_arch = gguf.MODEL_ARCH.MINICPM
  1226. def set_gguf_parameters(self):
  1227. block_count = self.hparams["num_hidden_layers"]
  1228. self.gguf_writer.add_name("MiniCPM")
  1229. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1230. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1231. self.gguf_writer.add_block_count(block_count)
  1232. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1233. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1234. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1235. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1236. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1237. self.gguf_writer.add_file_type(self.ftype)
  1238. def set_vocab(self):
  1239. self._set_vocab_llama_hf()
  1240. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1241. if n_kv_head is not None and n_head != n_kv_head:
  1242. n_head //= n_kv_head
  1243. return (
  1244. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1245. .swapaxes(1, 2)
  1246. .reshape(weights.shape)
  1247. )
  1248. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1249. del bid # unused
  1250. n_head = self.hparams["num_attention_heads"]
  1251. n_kv_head = self.hparams.get("num_key_value_heads")
  1252. # HF models permute some of the tensors, so we need to undo that
  1253. if name.endswith(("q_proj.weight")):
  1254. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1255. if name.endswith(("k_proj.weight")):
  1256. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1257. return [(self.map_tensor_name(name), data_torch)]
  1258. @Model.register("QWenLMHeadModel")
  1259. class QwenModel(Model):
  1260. model_arch = gguf.MODEL_ARCH.QWEN
  1261. @staticmethod
  1262. def token_bytes_to_string(b):
  1263. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1264. byte_encoder = bytes_to_unicode()
  1265. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1266. @staticmethod
  1267. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1268. parts = [bytes([b]) for b in token]
  1269. while True:
  1270. min_idx = None
  1271. min_rank = None
  1272. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1273. rank = mergeable_ranks.get(pair[0] + pair[1])
  1274. if rank is not None and (min_rank is None or rank < min_rank):
  1275. min_idx = i
  1276. min_rank = rank
  1277. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1278. break
  1279. assert min_idx is not None
  1280. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1281. return parts
  1282. def set_vocab(self):
  1283. self._set_vocab_qwen()
  1284. def set_gguf_parameters(self):
  1285. self.gguf_writer.add_name("Qwen")
  1286. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1287. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1288. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1289. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1290. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1291. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1292. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1293. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1294. self.gguf_writer.add_file_type(self.ftype)
  1295. @Model.register("Qwen2ForCausalLM")
  1296. class Qwen2Model(Model):
  1297. model_arch = gguf.MODEL_ARCH.QWEN2
  1298. def set_vocab(self):
  1299. try:
  1300. self._set_vocab_sentencepiece()
  1301. except FileNotFoundError:
  1302. self._set_vocab_gpt2()
  1303. @Model.register("Qwen2MoeForCausalLM")
  1304. class Qwen2MoeModel(Model):
  1305. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1306. def set_gguf_parameters(self):
  1307. super().set_gguf_parameters()
  1308. if (n_experts := self.hparams.get("num_experts")) is not None:
  1309. self.gguf_writer.add_expert_count(n_experts)
  1310. _experts: list[dict[str, Tensor]] | None = None
  1311. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1312. # process the experts separately
  1313. if name.find("experts") != -1:
  1314. n_experts = self.hparams["num_experts"]
  1315. assert bid is not None
  1316. if self._experts is None:
  1317. self._experts = [{} for _ in range(self.block_count)]
  1318. self._experts[bid][name] = data_torch
  1319. if len(self._experts[bid]) >= n_experts * 3:
  1320. tensors: list[tuple[str, Tensor]] = []
  1321. # merge the experts into a single 3d tensor
  1322. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1323. datas: list[Tensor] = []
  1324. for xid in range(n_experts):
  1325. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1326. datas.append(self._experts[bid][ename])
  1327. del self._experts[bid][ename]
  1328. data_torch = torch.stack(datas, dim=0)
  1329. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1330. new_name = self.map_tensor_name(merged_name)
  1331. tensors.append((new_name, data_torch))
  1332. return tensors
  1333. else:
  1334. return []
  1335. return [(self.map_tensor_name(name), data_torch)]
  1336. def write_tensors(self):
  1337. super().write_tensors()
  1338. if self._experts is not None:
  1339. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1340. experts = [k for d in self._experts for k in d.keys()]
  1341. if len(experts) > 0:
  1342. raise ValueError(f"Unprocessed experts: {experts}")
  1343. @Model.register("GPT2LMHeadModel")
  1344. class GPT2Model(Model):
  1345. model_arch = gguf.MODEL_ARCH.GPT2
  1346. def set_gguf_parameters(self):
  1347. self.gguf_writer.add_name(self.dir_model.name)
  1348. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1349. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1350. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1351. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1352. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1353. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1354. self.gguf_writer.add_file_type(self.ftype)
  1355. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1356. del bid # unused
  1357. tensors: list[tuple[str, Tensor]] = []
  1358. # we don't need these
  1359. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1360. return tensors
  1361. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1362. data_torch = data_torch.transpose(1, 0)
  1363. new_name = self.map_tensor_name(name)
  1364. tensors.append((new_name, data_torch))
  1365. # note: GPT2 output is tied to (same as) wte in original model
  1366. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1367. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1368. return tensors
  1369. @Model.register("PhiForCausalLM")
  1370. class Phi2Model(Model):
  1371. model_arch = gguf.MODEL_ARCH.PHI2
  1372. def set_gguf_parameters(self):
  1373. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1374. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1375. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1376. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1377. self.gguf_writer.add_name("Phi2")
  1378. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1379. self.gguf_writer.add_embedding_length(n_embd)
  1380. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1381. self.gguf_writer.add_block_count(block_count)
  1382. self.gguf_writer.add_head_count(n_head)
  1383. self.gguf_writer.add_head_count_kv(n_head)
  1384. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1385. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1386. self.gguf_writer.add_file_type(self.ftype)
  1387. self.gguf_writer.add_add_bos_token(False)
  1388. @Model.register("Phi3ForCausalLM")
  1389. class Phi3MiniModel(Model):
  1390. model_arch = gguf.MODEL_ARCH.PHI3
  1391. def set_vocab(self):
  1392. from sentencepiece import SentencePieceProcessor
  1393. tokenizer_path = self.dir_model / 'tokenizer.model'
  1394. if not tokenizer_path.is_file():
  1395. raise ValueError(f'Error: Missing {tokenizer_path}')
  1396. tokenizer = SentencePieceProcessor()
  1397. tokenizer.LoadFromFile(str(tokenizer_path))
  1398. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1399. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1400. scores: list[float] = [-10000.0] * vocab_size
  1401. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1402. for token_id in range(tokenizer.vocab_size()):
  1403. piece = tokenizer.IdToPiece(token_id)
  1404. text = piece.encode("utf-8")
  1405. score = tokenizer.GetScore(token_id)
  1406. toktype = SentencePieceTokenTypes.NORMAL
  1407. if tokenizer.IsUnknown(token_id):
  1408. toktype = SentencePieceTokenTypes.UNKNOWN
  1409. elif tokenizer.IsControl(token_id):
  1410. toktype = SentencePieceTokenTypes.CONTROL
  1411. elif tokenizer.IsUnused(token_id):
  1412. toktype = SentencePieceTokenTypes.UNUSED
  1413. elif tokenizer.IsByte(token_id):
  1414. toktype = SentencePieceTokenTypes.BYTE
  1415. tokens[token_id] = text
  1416. scores[token_id] = score
  1417. toktypes[token_id] = toktype
  1418. added_tokens_file = self.dir_model / 'added_tokens.json'
  1419. if added_tokens_file.is_file():
  1420. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1421. added_tokens_json = json.load(f)
  1422. for key in added_tokens_json:
  1423. token_id = added_tokens_json[key]
  1424. if (token_id >= vocab_size):
  1425. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1426. continue
  1427. tokens[token_id] = key.encode("utf-8")
  1428. scores[token_id] = -1000.0
  1429. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1430. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1431. if tokenizer_config_file.is_file():
  1432. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1433. tokenizer_config_json = json.load(f)
  1434. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1435. for token_id, foken_data in added_tokens_decoder.items():
  1436. token_id = int(token_id)
  1437. token = foken_data["content"].encode("utf-8")
  1438. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1439. assert tokens[token_id] == token
  1440. tokens[token_id] = token
  1441. scores[token_id] = -1000.0
  1442. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1443. if foken_data.get("special"):
  1444. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1445. tokenizer_file = self.dir_model / 'tokenizer.json'
  1446. if tokenizer_file.is_file():
  1447. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1448. tokenizer_json = json.load(f)
  1449. added_tokens = tokenizer_json.get("added_tokens", [])
  1450. for foken_data in added_tokens:
  1451. token_id = int(foken_data["id"])
  1452. token = foken_data["content"].encode("utf-8")
  1453. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1454. assert tokens[token_id] == token
  1455. tokens[token_id] = token
  1456. scores[token_id] = -1000.0
  1457. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1458. if foken_data.get("special"):
  1459. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1460. self.gguf_writer.add_tokenizer_model("llama")
  1461. self.gguf_writer.add_tokenizer_pre("default")
  1462. self.gguf_writer.add_token_list(tokens)
  1463. self.gguf_writer.add_token_scores(scores)
  1464. self.gguf_writer.add_token_types(toktypes)
  1465. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1466. special_vocab.add_to_gguf(self.gguf_writer)
  1467. def set_gguf_parameters(self):
  1468. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1469. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1470. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1471. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1472. rms_eps = self.find_hparam(["rms_norm_eps"])
  1473. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1474. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1475. rope_dims = n_embd // n_head
  1476. self.gguf_writer.add_name("Phi3")
  1477. self.gguf_writer.add_context_length(max_pos_embds)
  1478. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1479. self.gguf_writer.add_embedding_length(n_embd)
  1480. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1481. self.gguf_writer.add_block_count(block_count)
  1482. self.gguf_writer.add_head_count(n_head)
  1483. self.gguf_writer.add_head_count_kv(n_head_kv)
  1484. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1485. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1486. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1487. self.gguf_writer.add_file_type(self.ftype)
  1488. # write rope scaling for long context (128k) model
  1489. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1490. if (rope_scaling is None):
  1491. return
  1492. scale = max_pos_embds / orig_max_pos_embds
  1493. rope_scaling_type = rope_scaling.get('type', '').lower()
  1494. if len(rope_scaling_type) == 0:
  1495. raise KeyError('Missing the required key rope_scaling.type')
  1496. if rope_scaling_type == 'su':
  1497. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1498. elif rope_scaling_type == 'yarn':
  1499. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1500. else:
  1501. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1502. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1503. long_factors = rope_scaling.get('long_factor', None)
  1504. short_factors = rope_scaling.get('short_factor', None)
  1505. if long_factors is None or short_factors is None:
  1506. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1507. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1508. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1509. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1510. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1511. @Model.register("PlamoForCausalLM")
  1512. class PlamoModel(Model):
  1513. model_arch = gguf.MODEL_ARCH.PLAMO
  1514. def set_vocab(self):
  1515. self._set_vocab_sentencepiece()
  1516. def set_gguf_parameters(self):
  1517. hparams = self.hparams
  1518. block_count = hparams["num_hidden_layers"]
  1519. self.gguf_writer.add_name("PLaMo")
  1520. self.gguf_writer.add_context_length(4096) # not in config.json
  1521. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1522. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1523. self.gguf_writer.add_block_count(block_count)
  1524. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1525. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1526. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1527. self.gguf_writer.add_file_type(self.ftype)
  1528. def shuffle_attn_q_weight(self, data_torch):
  1529. assert data_torch.size() == (5120, 5120)
  1530. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1531. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1532. data_torch = torch.reshape(data_torch, (5120, 5120))
  1533. return data_torch
  1534. def shuffle_attn_output_weight(self, data_torch):
  1535. assert data_torch.size() == (5120, 5120)
  1536. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1537. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1538. data_torch = torch.reshape(data_torch, (5120, 5120))
  1539. return data_torch
  1540. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1541. del bid # unused
  1542. new_name = self.map_tensor_name(name)
  1543. # shuffle for broadcasting of gqa in ggml_mul_mat
  1544. if new_name.endswith("attn_q.weight"):
  1545. data_torch = self.shuffle_attn_q_weight(data_torch)
  1546. elif new_name.endswith("attn_output.weight"):
  1547. data_torch = self.shuffle_attn_output_weight(data_torch)
  1548. return [(new_name, data_torch)]
  1549. @Model.register("CodeShellForCausalLM")
  1550. class CodeShellModel(Model):
  1551. model_arch = gguf.MODEL_ARCH.CODESHELL
  1552. def set_gguf_parameters(self):
  1553. block_count = self.hparams["n_layer"]
  1554. self.gguf_writer.add_name("CodeShell")
  1555. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1556. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1557. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1558. self.gguf_writer.add_block_count(block_count)
  1559. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1560. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1561. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1562. self.gguf_writer.add_file_type(self.ftype)
  1563. self.gguf_writer.add_rope_freq_base(10000.0)
  1564. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1565. self.gguf_writer.add_rope_scaling_factor(1.0)
  1566. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1567. del bid # unused
  1568. new_name = self.map_tensor_name(name)
  1569. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1570. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1571. assert self.tensor_names is not None
  1572. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1573. # copy tok_embd.weight to output.weight
  1574. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1575. return tensors
  1576. @Model.register("InternLM2ForCausalLM")
  1577. class InternLM2Model(Model):
  1578. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1579. def set_vocab(self):
  1580. # (TODO): Is there a better way?
  1581. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1582. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1583. # recognized as an empty string in C++.
  1584. from sentencepiece import SentencePieceProcessor
  1585. from sentencepiece import sentencepiece_model_pb2 as model
  1586. tokenizer_path = self.dir_model / 'tokenizer.model'
  1587. tokens: list[bytes] = []
  1588. scores: list[float] = []
  1589. toktypes: list[int] = []
  1590. if not tokenizer_path.is_file():
  1591. logger.error(f'Error: Missing {tokenizer_path}')
  1592. sys.exit(1)
  1593. sentencepiece_model = model.ModelProto()
  1594. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1595. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1596. tokenizer = SentencePieceProcessor()
  1597. tokenizer.LoadFromFile(str(tokenizer_path))
  1598. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1599. for token_id in range(vocab_size):
  1600. piece = tokenizer.IdToPiece(token_id)
  1601. text = piece.encode("utf-8")
  1602. score = tokenizer.GetScore(token_id)
  1603. if text == b"\x00":
  1604. # (TODO): fixme
  1605. # Hack here and replace the \x00 characters.
  1606. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1607. text = "🐉".encode("utf-8")
  1608. toktype = SentencePieceTokenTypes.NORMAL
  1609. if tokenizer.IsUnknown(token_id):
  1610. toktype = SentencePieceTokenTypes.UNKNOWN
  1611. elif tokenizer.IsControl(token_id):
  1612. toktype = SentencePieceTokenTypes.CONTROL
  1613. elif tokenizer.IsUnused(token_id):
  1614. toktype = SentencePieceTokenTypes.UNUSED
  1615. elif tokenizer.IsByte(token_id):
  1616. toktype = SentencePieceTokenTypes.BYTE
  1617. tokens.append(text)
  1618. scores.append(score)
  1619. toktypes.append(toktype)
  1620. added_tokens_file = self.dir_model / 'added_tokens.json'
  1621. if added_tokens_file.is_file():
  1622. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1623. added_tokens_json = json.load(f)
  1624. for key in added_tokens_json:
  1625. tokens.append(key.encode("utf-8"))
  1626. scores.append(-1000.0)
  1627. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1628. self.gguf_writer.add_tokenizer_model("llama")
  1629. self.gguf_writer.add_tokenizer_pre("default")
  1630. self.gguf_writer.add_token_list(tokens)
  1631. self.gguf_writer.add_token_scores(scores)
  1632. self.gguf_writer.add_token_types(toktypes)
  1633. self.gguf_writer.add_add_space_prefix(add_prefix)
  1634. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1635. old_eos = special_vocab.special_token_ids["eos"]
  1636. if "chat" in os.path.basename(self.dir_model.absolute()):
  1637. # For the chat model, we replace the eos with '<|im_end|>'.
  1638. # TODO: this is a hack, should be fixed
  1639. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1640. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1641. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1642. in chat mode so that the conversation can end normally.")
  1643. special_vocab.add_to_gguf(self.gguf_writer)
  1644. def _try_get_sft_eos(self, tokenizer):
  1645. unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
  1646. im_end_list = tokenizer.Encode('<|im_end|>')
  1647. eos_token = None
  1648. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1649. if len(unused_145_list) == 1:
  1650. eos_token = unused_145_list[0]
  1651. if len(im_end_list) == 1:
  1652. eos_token = im_end_list[0]
  1653. assert eos_token
  1654. return eos_token
  1655. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1656. if n_head_kv is not None and n_head != n_head_kv:
  1657. n_head = n_head_kv
  1658. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1659. .swapaxes(1, 2)
  1660. .reshape(weights.shape))
  1661. def set_gguf_parameters(self):
  1662. self.gguf_writer.add_name("InternLM2")
  1663. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1664. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1665. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1666. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1667. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1668. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1669. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1670. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1671. self.gguf_writer.add_file_type(self.ftype)
  1672. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1673. num_heads = self.hparams["num_attention_heads"]
  1674. num_kv_heads = self.hparams["num_key_value_heads"]
  1675. hidden_size = self.hparams["hidden_size"]
  1676. q_per_kv = num_heads // num_kv_heads
  1677. head_dim = hidden_size // num_heads
  1678. num_groups = num_heads // q_per_kv
  1679. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1680. if re.match(qkv_pattern, name):
  1681. bid = re.findall(qkv_pattern, name)[0]
  1682. qkv = data_torch
  1683. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1684. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1685. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1686. # The model weights of q and k equire additional reshape.
  1687. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1688. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1689. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1690. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1691. # v = rearrange(v, " o g n i -> o (g n i)").T
  1692. v = v.reshape((v.shape[0], -1)).T
  1693. return [
  1694. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1695. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1696. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1697. ]
  1698. else:
  1699. return [(self.map_tensor_name(name), data_torch)]
  1700. @Model.register("BertModel", "CamembertModel")
  1701. class BertModel(Model):
  1702. model_arch = gguf.MODEL_ARCH.BERT
  1703. def __init__(self, *args, **kwargs):
  1704. super().__init__(*args, **kwargs)
  1705. self.vocab_size = None
  1706. def set_gguf_parameters(self):
  1707. super().set_gguf_parameters()
  1708. self.gguf_writer.add_causal_attention(False)
  1709. # get pooling path
  1710. pooling_path = None
  1711. module_path = self.dir_model / "modules.json"
  1712. if module_path.is_file():
  1713. with open(module_path, encoding="utf-8") as f:
  1714. modules = json.load(f)
  1715. for mod in modules:
  1716. if mod["type"] == "sentence_transformers.models.Pooling":
  1717. pooling_path = mod["path"]
  1718. break
  1719. # get pooling type
  1720. if pooling_path is not None:
  1721. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1722. pooling = json.load(f)
  1723. if pooling["pooling_mode_mean_tokens"]:
  1724. pooling_type = gguf.PoolingType.MEAN
  1725. elif pooling["pooling_mode_cls_token"]:
  1726. pooling_type = gguf.PoolingType.CLS
  1727. else:
  1728. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1729. self.gguf_writer.add_pooling_type(pooling_type)
  1730. def set_vocab(self):
  1731. tokens, toktypes, tokpre = self.get_vocab_base()
  1732. self.vocab_size = len(tokens)
  1733. # we need this to validate the size of the token_type embeddings
  1734. # though currently we are passing all zeros to the token_type embeddings
  1735. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1736. # convert to phantom space vocab
  1737. def phantom(tok):
  1738. if tok.startswith("[") and tok.endswith("]"):
  1739. return tok
  1740. if tok.startswith("##"):
  1741. return tok[2:]
  1742. return "\u2581" + tok
  1743. tokens = list(map(phantom, tokens))
  1744. # add vocab to gguf
  1745. self.gguf_writer.add_tokenizer_model("bert")
  1746. self.gguf_writer.add_tokenizer_pre(tokpre)
  1747. self.gguf_writer.add_token_list(tokens)
  1748. self.gguf_writer.add_token_types(toktypes)
  1749. # handle special tokens
  1750. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1751. special_vocab.add_to_gguf(self.gguf_writer)
  1752. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1753. del bid # unused
  1754. # we are only using BERT for embeddings so we don't need the pooling layer
  1755. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1756. return [] # we don't need these
  1757. return [(self.map_tensor_name(name), data_torch)]
  1758. @Model.register("NomicBertModel")
  1759. class NomicBertModel(BertModel):
  1760. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1761. def __init__(self, *args, **kwargs):
  1762. super().__init__(*args, **kwargs)
  1763. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1764. self.hparams["n_ctx"] = 2048
  1765. # SwigLU activation
  1766. assert self.hparams["activation_function"] == "swiglu"
  1767. # this doesn't do anything in the HF version
  1768. assert self.hparams["causal"] is False
  1769. # no bias tensors
  1770. assert self.hparams["qkv_proj_bias"] is False
  1771. assert self.hparams["mlp_fc1_bias"] is False
  1772. assert self.hparams["mlp_fc2_bias"] is False
  1773. # norm at end of layer
  1774. assert self.hparams["prenorm"] is False
  1775. # standard RoPE
  1776. assert self.hparams["rotary_emb_fraction"] == 1.0
  1777. assert self.hparams["rotary_emb_interleaved"] is False
  1778. assert self.hparams["rotary_emb_scale_base"] is None
  1779. def set_gguf_parameters(self):
  1780. super().set_gguf_parameters()
  1781. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1782. @Model.register("GemmaForCausalLM")
  1783. class GemmaModel(Model):
  1784. model_arch = gguf.MODEL_ARCH.GEMMA
  1785. def set_vocab(self):
  1786. self._set_vocab_sentencepiece()
  1787. # TODO: these special tokens should be exported only for the CodeGemma family
  1788. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1789. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1790. special_vocab._set_special_token("prefix", 67)
  1791. special_vocab._set_special_token("suffix", 69)
  1792. special_vocab._set_special_token("middle", 68)
  1793. special_vocab._set_special_token("fsep", 70)
  1794. special_vocab._set_special_token("eot", 107)
  1795. special_vocab.add_to_gguf(self.gguf_writer)
  1796. def set_gguf_parameters(self):
  1797. hparams = self.hparams
  1798. block_count = hparams["num_hidden_layers"]
  1799. self.gguf_writer.add_name(self.dir_model.name)
  1800. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1801. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1802. self.gguf_writer.add_block_count(block_count)
  1803. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1804. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1805. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1806. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1807. self.gguf_writer.add_key_length(hparams["head_dim"])
  1808. self.gguf_writer.add_value_length(hparams["head_dim"])
  1809. self.gguf_writer.add_file_type(self.ftype)
  1810. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1811. del bid # unused
  1812. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1813. # To prevent errors, skip loading lm_head.weight.
  1814. if name == "lm_head.weight":
  1815. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1816. return []
  1817. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1818. if name.endswith("norm.weight"):
  1819. data_torch = data_torch + 1
  1820. return [(self.map_tensor_name(name), data_torch)]
  1821. @Model.register("Starcoder2ForCausalLM")
  1822. class StarCoder2Model(Model):
  1823. model_arch = gguf.MODEL_ARCH.STARCODER2
  1824. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1825. class MambaModel(Model):
  1826. model_arch = gguf.MODEL_ARCH.MAMBA
  1827. def set_vocab(self):
  1828. vocab_size = self.hparams["vocab_size"]
  1829. # Round vocab size to next multiple of 8
  1830. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1831. # pad using ceiling division
  1832. # ref: https://stackoverflow.com/a/17511341/22827863
  1833. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1834. self.hparams["vocab_size"] = vocab_size
  1835. if (self.dir_model / "tokenizer.json").is_file():
  1836. self._set_vocab_gpt2()
  1837. elif (self.dir_model / "tokenizer.model").is_file():
  1838. self._set_vocab_sentencepiece()
  1839. else:
  1840. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1841. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1842. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1843. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1844. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1845. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
  1846. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1847. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
  1848. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1849. assert field
  1850. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1851. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1852. assert field
  1853. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1854. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1855. assert field
  1856. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1857. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1858. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
  1859. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1860. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
  1861. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1862. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
  1863. field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
  1864. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
  1865. def set_gguf_parameters(self):
  1866. d_model = self.find_hparam(["hidden_size", "d_model"])
  1867. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1868. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1869. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1870. # ceiling division
  1871. # ref: https://stackoverflow.com/a/17511341/22827863
  1872. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1873. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1874. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1875. # Fail early for models which don't have a block expansion factor of 2
  1876. assert d_inner == 2 * d_model
  1877. self.gguf_writer.add_name(self.dir_model.name)
  1878. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1879. self.gguf_writer.add_embedding_length(d_model)
  1880. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1881. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1882. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1883. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1884. self.gguf_writer.add_ssm_inner_size(d_inner)
  1885. self.gguf_writer.add_ssm_state_size(d_state)
  1886. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1887. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1888. self.gguf_writer.add_file_type(self.ftype)
  1889. _tok_embd = None
  1890. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1891. del bid # unused
  1892. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  1893. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  1894. new_name = self.map_tensor_name(name)
  1895. if name.endswith(".A_log"):
  1896. logger.debug("A_log --> A ==> " + new_name)
  1897. data_torch = -torch.exp(data_torch)
  1898. # assuming token_embd.weight is seen before output.weight
  1899. if self._tok_embd is not None and new_name == output_name:
  1900. if torch.equal(self._tok_embd, data_torch):
  1901. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1902. return []
  1903. elif new_name == tok_embd_name:
  1904. self._tok_embd = data_torch
  1905. return [(new_name, data_torch)]
  1906. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1907. del n_dims # unused
  1908. return bid is not None and new_name in (
  1909. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  1910. gguf.MODEL_TENSOR.SSM_CONV1D,
  1911. gguf.MODEL_TENSOR.SSM_X,
  1912. gguf.MODEL_TENSOR.SSM_DT,
  1913. gguf.MODEL_TENSOR.SSM_A,
  1914. gguf.MODEL_TENSOR.SSM_D,
  1915. ]
  1916. )
  1917. @Model.register("CohereForCausalLM")
  1918. class CommandR2Model(Model):
  1919. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1920. def __init__(self, *args, **kwargs):
  1921. super().__init__(*args, **kwargs)
  1922. # max_position_embeddings = 8192 in config.json but model was actually
  1923. # trained on 128k context length
  1924. # aya-23 models don't have model_max_length specified
  1925. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  1926. def set_gguf_parameters(self):
  1927. super().set_gguf_parameters()
  1928. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1929. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1930. @Model.register("OlmoForCausalLM")
  1931. @Model.register("OLMoForCausalLM")
  1932. class OlmoModel(Model):
  1933. model_arch = gguf.MODEL_ARCH.OLMO
  1934. def set_gguf_parameters(self):
  1935. super().set_gguf_parameters()
  1936. self.gguf_writer.add_layer_norm_eps(1e-5)
  1937. clip_qkv = self.hparams.get("clip_qkv")
  1938. if clip_qkv is not None:
  1939. self.gguf_writer.add_clamp_kqv(clip_qkv)
  1940. # Same as super class, but permuting q_proj, k_proj
  1941. # Copied from: LlamaModel
  1942. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1943. del bid # unused
  1944. n_head = self.hparams["num_attention_heads"]
  1945. n_kv_head = self.hparams.get("num_key_value_heads")
  1946. if name.endswith("q_proj.weight"):
  1947. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1948. if name.endswith("k_proj.weight"):
  1949. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1950. return [(self.map_tensor_name(name), data_torch)]
  1951. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  1952. class JinaBertV2Model(BertModel):
  1953. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  1954. def __init__(self, *args, **kwargs):
  1955. super().__init__(*args, **kwargs)
  1956. self.intermediate_size = self.hparams["intermediate_size"]
  1957. def get_tensors(self):
  1958. for name, data in super().get_tensors():
  1959. if 'gated_layers' in name:
  1960. d1 = data[:self.intermediate_size, :]
  1961. name1 = name.replace('gated_layers', 'gated_layers_w')
  1962. d2 = data[self.intermediate_size:, :]
  1963. name2 = name.replace('gated_layers', 'gated_layers_v')
  1964. yield name1, d1
  1965. yield name2, d2
  1966. continue
  1967. yield name, data
  1968. def set_vocab(self, *args, **kwargs):
  1969. tokenizer_class = 'BertTokenizer'
  1970. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  1971. tokenizer_class = json.load(f)['tokenizer_class']
  1972. if tokenizer_class == 'BertTokenizer':
  1973. super().set_vocab()
  1974. elif tokenizer_class == 'RobertaTokenizer':
  1975. self._set_vocab_gpt2()
  1976. self.gguf_writer.add_token_type_count(2)
  1977. else:
  1978. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  1979. self.gguf_writer.add_add_bos_token(True)
  1980. self.gguf_writer.add_add_eos_token(True)
  1981. @Model.register("ArcticForCausalLM")
  1982. class ArcticModel(Model):
  1983. model_arch = gguf.MODEL_ARCH.ARCTIC
  1984. def set_vocab(self):
  1985. # The reason for using a custom implementation here is that the
  1986. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  1987. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  1988. from sentencepiece import SentencePieceProcessor
  1989. tokenizer_path = self.dir_model / 'tokenizer.model'
  1990. if not tokenizer_path.is_file():
  1991. logger.error(f'Error: Missing {tokenizer_path}')
  1992. sys.exit(1)
  1993. # Read the whole vocabulary from the tokenizer.model file
  1994. tokenizer = SentencePieceProcessor()
  1995. tokenizer.LoadFromFile(str(tokenizer_path))
  1996. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1997. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1998. scores: list[float] = [-10000.0] * vocab_size
  1999. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  2000. for token_id in range(tokenizer.vocab_size()):
  2001. piece = tokenizer.IdToPiece(token_id)
  2002. text = piece.encode("utf-8")
  2003. score = tokenizer.GetScore(token_id)
  2004. toktype = SentencePieceTokenTypes.NORMAL
  2005. if tokenizer.IsUnknown(token_id):
  2006. toktype = SentencePieceTokenTypes.UNKNOWN
  2007. elif tokenizer.IsControl(token_id):
  2008. toktype = SentencePieceTokenTypes.CONTROL
  2009. elif tokenizer.IsUnused(token_id):
  2010. toktype = SentencePieceTokenTypes.UNUSED
  2011. elif tokenizer.IsByte(token_id):
  2012. toktype = SentencePieceTokenTypes.BYTE
  2013. tokens[token_id] = text
  2014. scores[token_id] = score
  2015. toktypes[token_id] = toktype
  2016. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2017. # of information about added/redefined tokens and modify them accordingly.
  2018. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2019. if tokenizer_config_file.is_file():
  2020. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2021. tokenizer_config_json = json.load(f)
  2022. if "added_tokens_decoder" in tokenizer_config_json:
  2023. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2024. for token_id, token_json in added_tokens_decoder.items():
  2025. token_id = int(token_id)
  2026. if (token_id >= vocab_size):
  2027. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2028. continue
  2029. token_content = token_json["content"]
  2030. token_type = SentencePieceTokenTypes.USER_DEFINED
  2031. token_score = -10000.0
  2032. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2033. # Set the score to 0.0 as in the original tokenizer.model
  2034. if ("special" in token_json) and token_json["special"]:
  2035. if token_content == tokenizer_config_json["unk_token"]:
  2036. token_type = SentencePieceTokenTypes.UNKNOWN
  2037. else:
  2038. token_type = SentencePieceTokenTypes.CONTROL
  2039. token_score = 0.0
  2040. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2041. tokens[token_id] = token_content.encode("utf-8")
  2042. toktypes[token_id] = token_type
  2043. scores[token_id] = token_score
  2044. self.gguf_writer.add_tokenizer_model("llama")
  2045. self.gguf_writer.add_tokenizer_pre("default")
  2046. self.gguf_writer.add_token_list(tokens)
  2047. self.gguf_writer.add_token_scores(scores)
  2048. self.gguf_writer.add_token_types(toktypes)
  2049. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2050. special_vocab.add_to_gguf(self.gguf_writer)
  2051. def set_gguf_parameters(self):
  2052. super().set_gguf_parameters()
  2053. hparams = self.hparams
  2054. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2055. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2056. _experts: list[dict[str, Tensor]] | None = None
  2057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2058. n_head = self.hparams["num_attention_heads"]
  2059. n_kv_head = self.hparams.get("num_key_value_heads")
  2060. if name.endswith("q_proj.weight"):
  2061. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2062. if name.endswith("k_proj.weight"):
  2063. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2064. # process the experts separately
  2065. if name.find("block_sparse_moe.experts") != -1:
  2066. n_experts = self.hparams["num_local_experts"]
  2067. assert bid is not None
  2068. if self._experts is None:
  2069. self._experts = [{} for _ in range(self.block_count)]
  2070. self._experts[bid][name] = data_torch
  2071. if len(self._experts[bid]) >= n_experts * 3:
  2072. tensors: list[tuple[str, Tensor]] = []
  2073. # merge the experts into a single 3d tensor
  2074. for wid in ["w1", "w2", "w3"]:
  2075. datas: list[Tensor] = []
  2076. for xid in range(n_experts):
  2077. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2078. datas.append(self._experts[bid][ename])
  2079. del self._experts[bid][ename]
  2080. data_torch = torch.stack(datas, dim=0)
  2081. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2082. new_name = self.map_tensor_name(merged_name)
  2083. tensors.append((new_name, data_torch))
  2084. return tensors
  2085. else:
  2086. return []
  2087. return [(self.map_tensor_name(name), data_torch)]
  2088. def write_tensors(self):
  2089. super().write_tensors()
  2090. if self._experts is not None:
  2091. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2092. experts = [k for d in self._experts for k in d.keys()]
  2093. if len(experts) > 0:
  2094. raise ValueError(f"Unprocessed experts: {experts}")
  2095. @Model.register("DeepseekV2ForCausalLM")
  2096. class DeepseekV2Model(Model):
  2097. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2098. def set_vocab(self):
  2099. self._set_vocab_gpt2()
  2100. def set_gguf_parameters(self):
  2101. super().set_gguf_parameters()
  2102. hparams = self.hparams
  2103. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2104. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2105. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2106. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2107. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2108. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2109. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2110. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2111. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2112. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2113. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2114. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2115. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2116. if self.hparams["rope_scaling"].get("type") == "yarn":
  2117. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2118. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2119. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2120. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2121. _experts: list[dict[str, Tensor]] | None = None
  2122. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2123. # process the experts separately
  2124. if name.find("mlp.experts") != -1:
  2125. n_experts = self.hparams["n_routed_experts"]
  2126. assert bid is not None
  2127. if self._experts is None:
  2128. self._experts = [{} for _ in range(self.block_count)]
  2129. self._experts[bid][name] = data_torch
  2130. if len(self._experts[bid]) >= n_experts * 3:
  2131. tensors: list[tuple[str, Tensor]] = []
  2132. # merge the experts into a single 3d tensor
  2133. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2134. datas: list[Tensor] = []
  2135. for xid in range(n_experts):
  2136. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2137. datas.append(self._experts[bid][ename])
  2138. del self._experts[bid][ename]
  2139. data_torch = torch.stack(datas, dim=0)
  2140. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2141. new_name = self.map_tensor_name(merged_name)
  2142. tensors.append((new_name, data_torch))
  2143. return tensors
  2144. else:
  2145. return []
  2146. return [(self.map_tensor_name(name), data_torch)]
  2147. def write_tensors(self):
  2148. super().write_tensors()
  2149. if self._experts is not None:
  2150. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2151. experts = [k for d in self._experts for k in d.keys()]
  2152. if len(experts) > 0:
  2153. raise ValueError(f"Unprocessed experts: {experts}")
  2154. ###### CONVERSION LOGIC ######
  2155. # tree of lazy tensors
  2156. class LazyTorchTensor(gguf.LazyBase):
  2157. _tensor_type = torch.Tensor
  2158. # to keep the type-checker happy
  2159. dtype: torch.dtype
  2160. shape: torch.Size
  2161. # only used when converting a torch.Tensor to a np.ndarray
  2162. _dtype_map: dict[torch.dtype, type] = {
  2163. torch.float16: np.float16,
  2164. torch.float32: np.float32,
  2165. }
  2166. def numpy(self) -> gguf.LazyNumpyTensor:
  2167. dtype = self._dtype_map[self.dtype]
  2168. return gguf.LazyNumpyTensor(
  2169. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2170. lazy=self._lazy,
  2171. args=(self,),
  2172. func=(lambda s: s[0].numpy())
  2173. )
  2174. @classmethod
  2175. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
  2176. return torch.empty(size=shape, dtype=dtype, device="meta")
  2177. @classmethod
  2178. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2179. del types # unused
  2180. if kwargs is None:
  2181. kwargs = {}
  2182. if func is torch.Tensor.numpy:
  2183. return args[0].numpy()
  2184. return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
  2185. def parse_args() -> argparse.Namespace:
  2186. parser = argparse.ArgumentParser(
  2187. description="Convert a huggingface model to a GGML compatible file")
  2188. parser.add_argument(
  2189. "--vocab-only", action="store_true",
  2190. help="extract only the vocab",
  2191. )
  2192. parser.add_argument(
  2193. "--awq-path", type=Path, default=None,
  2194. help="Path to scale awq cache file",
  2195. )
  2196. parser.add_argument(
  2197. "--outfile", type=Path,
  2198. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2199. )
  2200. parser.add_argument(
  2201. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2202. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2203. )
  2204. parser.add_argument(
  2205. "--bigendian", action="store_true",
  2206. help="model is executed on big endian machine",
  2207. )
  2208. parser.add_argument(
  2209. "model", type=Path,
  2210. help="directory containing model file",
  2211. )
  2212. parser.add_argument(
  2213. "--use-temp-file", action="store_true",
  2214. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2215. )
  2216. parser.add_argument(
  2217. "--no-lazy", action="store_true",
  2218. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2219. )
  2220. parser.add_argument(
  2221. "--model-name", type=str, default=None,
  2222. help="name of the model",
  2223. )
  2224. parser.add_argument(
  2225. "--verbose", action="store_true",
  2226. help="increase output verbosity",
  2227. )
  2228. return parser.parse_args()
  2229. def main() -> None:
  2230. args = parse_args()
  2231. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2232. dir_model = args.model
  2233. if args.awq_path:
  2234. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2235. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2236. tmp_model_path = args.model / "weighted_model"
  2237. dir_model = tmp_model_path
  2238. if tmp_model_path.is_dir():
  2239. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2240. else:
  2241. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2242. logger.info("Saving new weighted model ...")
  2243. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2244. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2245. if not dir_model.is_dir():
  2246. logger.error(f'Error: {args.model} is not a directory')
  2247. sys.exit(1)
  2248. ftype_map: dict[str, gguf.LlamaFileType] = {
  2249. "f32": gguf.LlamaFileType.ALL_F32,
  2250. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2251. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2252. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2253. "auto": gguf.LlamaFileType.GUESSED,
  2254. }
  2255. if args.outfile is not None:
  2256. fname_out = args.outfile
  2257. else:
  2258. # output in the same directory as the model by default
  2259. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2260. logger.info(f"Loading model: {dir_model.name}")
  2261. hparams = Model.load_hparams(dir_model)
  2262. with torch.inference_mode():
  2263. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2264. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy)
  2265. logger.info("Set model parameters")
  2266. model_instance.set_gguf_parameters()
  2267. logger.info("Set model tokenizer")
  2268. model_instance.set_vocab()
  2269. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2270. if args.vocab_only:
  2271. logger.info(f"Exporting model vocab to '{model_instance.fname_out}'")
  2272. model_instance.write_vocab()
  2273. else:
  2274. logger.info(f"Exporting model to '{model_instance.fname_out}'")
  2275. model_instance.write()
  2276. logger.info(f"Model successfully exported to '{model_instance.fname_out}'")
  2277. if __name__ == '__main__':
  2278. main()