ggml.c 743 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. typedef atomic_int atomic_flag;
  53. #define ATOMIC_FLAG_INIT 0
  54. static void atomic_store(atomic_int * ptr, LONG val) {
  55. InterlockedExchange(ptr, val);
  56. }
  57. static LONG atomic_load(atomic_int * ptr) {
  58. return InterlockedCompareExchange(ptr, 0, 0);
  59. }
  60. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  61. return InterlockedExchangeAdd(ptr, inc);
  62. }
  63. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  64. return atomic_fetch_add(ptr, -(dec));
  65. }
  66. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  67. return InterlockedExchange(ptr, 1);
  68. }
  69. static void atomic_flag_clear(atomic_flag * ptr) {
  70. InterlockedExchange(ptr, 0);
  71. }
  72. typedef HANDLE pthread_t;
  73. typedef DWORD thread_ret_t;
  74. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  75. (void) unused;
  76. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  77. if (handle == NULL)
  78. {
  79. return EAGAIN;
  80. }
  81. *out = handle;
  82. return 0;
  83. }
  84. static int pthread_join(pthread_t thread, void * unused) {
  85. (void) unused;
  86. int ret = (int) WaitForSingleObject(thread, INFINITE);
  87. CloseHandle(thread);
  88. return ret;
  89. }
  90. static int sched_yield (void) {
  91. Sleep (0);
  92. return 0;
  93. }
  94. #else
  95. #include <pthread.h>
  96. #include <stdatomic.h>
  97. typedef void * thread_ret_t;
  98. #include <sys/types.h>
  99. #include <sys/stat.h>
  100. #include <unistd.h>
  101. #endif
  102. typedef pthread_t ggml_thread_t;
  103. #ifdef GGML_USE_CPU_HBM
  104. #include <hbwmalloc.h>
  105. #endif
  106. #if defined(__APPLE__)
  107. #include <TargetConditionals.h>
  108. #endif
  109. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  110. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  111. #include <sys/wait.h>
  112. void ggml_print_backtrace(void) {
  113. /*
  114. #include <execinfo.h>
  115. #include <dlfcn.h>
  116. void * trace[100];
  117. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  118. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  119. */
  120. // backtrack_symbols does not show line numbers, use gdb instead
  121. char attach[32];
  122. snprintf(attach, sizeof(attach), "attach %d", getpid());
  123. int pid = fork();
  124. if (pid == 0) {
  125. execlp("gdb", "gdb", "--batch",
  126. "-ex", "set style enabled on",
  127. "-ex", attach,
  128. "-ex", "bt -frame-info source-and-location",
  129. "-ex", "detach",
  130. "-ex", "quit",
  131. (char *) NULL);
  132. } else {
  133. waitpid(pid, NULL, 0);
  134. }
  135. }
  136. #else
  137. void ggml_print_backtrace(void) {
  138. // platform not supported
  139. }
  140. #endif
  141. /*#define GGML_PERF*/
  142. #define GGML_DEBUG 0
  143. #define GGML_GELU_FP16
  144. #define GGML_GELU_QUICK_FP16
  145. #define GGML_SOFT_MAX_UNROLL 4
  146. #define GGML_VEC_DOT_UNROLL 2
  147. #define GGML_VEC_MAD_UNROLL 32
  148. //
  149. // logging
  150. //
  151. #if (GGML_DEBUG >= 1)
  152. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  153. #else
  154. #define GGML_PRINT_DEBUG(...)
  155. #endif
  156. #if (GGML_DEBUG >= 5)
  157. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  158. #else
  159. #define GGML_PRINT_DEBUG_5(...)
  160. #endif
  161. #if (GGML_DEBUG >= 10)
  162. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  163. #else
  164. #define GGML_PRINT_DEBUG_10(...)
  165. #endif
  166. #define GGML_PRINT(...) printf(__VA_ARGS__)
  167. //
  168. // end of logging block
  169. //
  170. #ifdef GGML_USE_ACCELERATE
  171. // uncomment to use vDSP for soft max computation
  172. // note: not sure if it is actually faster
  173. //#define GGML_SOFT_MAX_ACCELERATE
  174. #endif
  175. #if defined(_MSC_VER) || defined(__MINGW32__)
  176. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  177. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  178. #else
  179. inline static void * ggml_aligned_malloc(size_t size) {
  180. if (size == 0) {
  181. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  182. return NULL;
  183. }
  184. void * aligned_memory = NULL;
  185. #ifdef GGML_USE_CPU_HBM
  186. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  187. #elif GGML_USE_METAL
  188. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  189. #else
  190. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  191. #endif
  192. if (result != 0) {
  193. // Handle allocation failure
  194. const char *error_desc = "unknown allocation error";
  195. switch (result) {
  196. case EINVAL:
  197. error_desc = "invalid alignment value";
  198. break;
  199. case ENOMEM:
  200. error_desc = "insufficient memory";
  201. break;
  202. }
  203. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  204. GGML_ASSERT(false);
  205. return NULL;
  206. }
  207. return aligned_memory;
  208. }
  209. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  210. #ifdef GGML_USE_CPU_HBM
  211. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  212. #else
  213. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  214. #endif
  215. #endif
  216. inline static void * ggml_malloc(size_t size) {
  217. if (size == 0) {
  218. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  219. return NULL;
  220. }
  221. void * result = malloc(size);
  222. if (result == NULL) {
  223. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  224. GGML_ASSERT(false);
  225. }
  226. return result;
  227. }
  228. // calloc
  229. inline static void * ggml_calloc(size_t num, size_t size) {
  230. if (num == 0 || size == 0) {
  231. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  232. return NULL;
  233. }
  234. void * result = calloc(num, size);
  235. if (result == NULL) {
  236. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  237. GGML_ASSERT(false);
  238. }
  239. return result;
  240. }
  241. #define GGML_MALLOC(size) ggml_malloc(size)
  242. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  243. #define GGML_FREE(ptr) free(ptr)
  244. #define UNUSED GGML_UNUSED
  245. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  246. #if defined(GGML_USE_ACCELERATE)
  247. #include <Accelerate/Accelerate.h>
  248. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  249. #include "ggml-opencl.h"
  250. #endif
  251. #elif defined(GGML_USE_OPENBLAS)
  252. #if defined(GGML_BLAS_USE_MKL)
  253. #include <mkl.h>
  254. #else
  255. #include <cblas.h>
  256. #endif
  257. #elif defined(GGML_USE_CLBLAST)
  258. #include "ggml-opencl.h"
  259. #endif
  260. // floating point type used to accumulate sums
  261. typedef double ggml_float;
  262. #undef MIN
  263. #undef MAX
  264. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  265. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  266. //
  267. // global data
  268. //
  269. // precomputed gelu table for f16 (128 KB)
  270. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  271. // precomputed quick gelu table for f16 (128 KB)
  272. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  274. float ggml_table_f32_f16[1 << 16];
  275. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  276. switch (status) {
  277. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  278. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  279. case GGML_STATUS_SUCCESS: return "GGML status: success";
  280. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  281. }
  282. return "GGML status: unknown";
  283. }
  284. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  285. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  286. return GGML_FP16_TO_FP32(x);
  287. }
  288. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  289. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  290. return GGML_FP32_TO_FP16(x);
  291. }
  292. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  293. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  294. return GGML_BF16_TO_FP32(x); // it just left shifts
  295. }
  296. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  297. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  298. return GGML_FP32_TO_BF16(x);
  299. }
  300. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  301. for (int64_t i = 0; i < n; i++) {
  302. y[i] = GGML_FP16_TO_FP32(x[i]);
  303. }
  304. }
  305. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  306. int64_t i = 0;
  307. #if defined(__F16C__)
  308. for (; i + 7 < n; i += 8) {
  309. __m256 x_vec = _mm256_loadu_ps(x + i);
  310. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  311. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  312. }
  313. for(; i + 3 < n; i += 4) {
  314. __m128 x_vec = _mm_loadu_ps(x + i);
  315. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  316. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  317. }
  318. #endif
  319. for (; i < n; i++) {
  320. y[i] = GGML_FP32_TO_FP16(x[i]);
  321. }
  322. }
  323. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  324. int64_t i = 0;
  325. #if defined(__AVX512F__)
  326. for (; i + 16 <= n; i += 16) {
  327. _mm512_storeu_ps(y + i,
  328. _mm512_castsi512_ps(
  329. _mm512_slli_epi32(
  330. _mm512_cvtepu16_epi32(
  331. _mm256_loadu_si256(
  332. (const __m256i *)(x + i))),
  333. 16)));
  334. }
  335. #elif defined(__AVX2__)
  336. for (; i + 8 <= n; i += 8) {
  337. _mm256_storeu_ps(y + i,
  338. _mm256_castsi256_ps(
  339. _mm256_slli_epi32(
  340. _mm256_cvtepu16_epi32(
  341. _mm_loadu_si128(
  342. (const __m128i *)(x + i))),
  343. 16)));
  344. }
  345. #endif
  346. for (; i < n; i++) {
  347. y[i] = GGML_BF16_TO_FP32(x[i]);
  348. }
  349. }
  350. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  351. int i = 0;
  352. #if defined(__AVX512BF16__)
  353. for (; i + 32 <= n; i += 32) {
  354. _mm512_storeu_si512(
  355. (__m512i *)(y + i),
  356. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  357. _mm512_loadu_ps(x + i))));
  358. }
  359. #endif
  360. for (; i < n; i++) {
  361. y[i] = GGML_FP32_TO_BF16(x[i]);
  362. }
  363. }
  364. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  365. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  366. }
  367. //
  368. // timing
  369. //
  370. #if defined(_MSC_VER) || defined(__MINGW32__)
  371. static int64_t timer_freq, timer_start;
  372. void ggml_time_init(void) {
  373. LARGE_INTEGER t;
  374. QueryPerformanceFrequency(&t);
  375. timer_freq = t.QuadPart;
  376. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  377. // and the uptime is high enough.
  378. // We subtract the program start time to reduce the likelihood of that happening.
  379. QueryPerformanceCounter(&t);
  380. timer_start = t.QuadPart;
  381. }
  382. int64_t ggml_time_ms(void) {
  383. LARGE_INTEGER t;
  384. QueryPerformanceCounter(&t);
  385. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  386. }
  387. int64_t ggml_time_us(void) {
  388. LARGE_INTEGER t;
  389. QueryPerformanceCounter(&t);
  390. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  391. }
  392. #else
  393. void ggml_time_init(void) {}
  394. int64_t ggml_time_ms(void) {
  395. struct timespec ts;
  396. clock_gettime(CLOCK_MONOTONIC, &ts);
  397. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  398. }
  399. int64_t ggml_time_us(void) {
  400. struct timespec ts;
  401. clock_gettime(CLOCK_MONOTONIC, &ts);
  402. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  403. }
  404. #endif
  405. int64_t ggml_cycles(void) {
  406. return clock();
  407. }
  408. int64_t ggml_cycles_per_ms(void) {
  409. return CLOCKS_PER_SEC/1000;
  410. }
  411. #ifdef GGML_PERF
  412. #define ggml_perf_time_ms() ggml_time_ms()
  413. #define ggml_perf_time_us() ggml_time_us()
  414. #define ggml_perf_cycles() ggml_cycles()
  415. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  416. #else
  417. #define ggml_perf_time_ms() 0
  418. #define ggml_perf_time_us() 0
  419. #define ggml_perf_cycles() 0
  420. #define ggml_perf_cycles_per_ms() 0
  421. #endif
  422. //
  423. // cross-platform UTF-8 file paths
  424. //
  425. #ifdef _WIN32
  426. static wchar_t * ggml_mbstowcs(const char * mbs) {
  427. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  428. if (!wlen) {
  429. errno = EINVAL;
  430. return NULL;
  431. }
  432. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  433. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  434. if (!wlen) {
  435. GGML_FREE(wbuf);
  436. errno = EINVAL;
  437. return NULL;
  438. }
  439. return wbuf;
  440. }
  441. #endif
  442. FILE * ggml_fopen(const char * fname, const char * mode) {
  443. #ifdef _WIN32
  444. FILE * file = NULL;
  445. // convert fname (UTF-8)
  446. wchar_t * wfname = ggml_mbstowcs(fname);
  447. if (wfname) {
  448. // convert mode (ANSI)
  449. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  450. wchar_t * wmode_p = wmode;
  451. do {
  452. *wmode_p++ = (wchar_t)*mode;
  453. } while (*mode++);
  454. // open file
  455. file = _wfopen(wfname, wmode);
  456. GGML_FREE(wfname);
  457. GGML_FREE(wmode);
  458. }
  459. return file;
  460. #else
  461. return fopen(fname, mode);
  462. #endif
  463. }
  464. //
  465. // cache line
  466. //
  467. #if defined(__cpp_lib_hardware_interference_size)
  468. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  469. #else
  470. #if defined(__POWER9_VECTOR__)
  471. #define CACHE_LINE_SIZE 128
  472. #else
  473. #define CACHE_LINE_SIZE 64
  474. #endif
  475. #endif
  476. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  477. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  478. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  479. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  480. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  481. [GGML_TYPE_I8] = {
  482. .type_name = "i8",
  483. .blck_size = 1,
  484. .type_size = sizeof(int8_t),
  485. .is_quantized = false,
  486. },
  487. [GGML_TYPE_I16] = {
  488. .type_name = "i16",
  489. .blck_size = 1,
  490. .type_size = sizeof(int16_t),
  491. .is_quantized = false,
  492. },
  493. [GGML_TYPE_I32] = {
  494. .type_name = "i32",
  495. .blck_size = 1,
  496. .type_size = sizeof(int32_t),
  497. .is_quantized = false,
  498. },
  499. [GGML_TYPE_I64] = {
  500. .type_name = "i64",
  501. .blck_size = 1,
  502. .type_size = sizeof(int64_t),
  503. .is_quantized = false,
  504. },
  505. [GGML_TYPE_F64] = {
  506. .type_name = "f64",
  507. .blck_size = 1,
  508. .type_size = sizeof(double),
  509. .is_quantized = false,
  510. .nrows = 1,
  511. },
  512. [GGML_TYPE_F32] = {
  513. .type_name = "f32",
  514. .blck_size = 1,
  515. .type_size = sizeof(float),
  516. .is_quantized = false,
  517. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  518. .vec_dot_type = GGML_TYPE_F32,
  519. .nrows = 1,
  520. },
  521. [GGML_TYPE_F16] = {
  522. .type_name = "f16",
  523. .blck_size = 1,
  524. .type_size = sizeof(ggml_fp16_t),
  525. .is_quantized = false,
  526. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  527. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  528. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  529. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  530. .vec_dot_type = GGML_TYPE_F16,
  531. .nrows = 1,
  532. },
  533. [GGML_TYPE_Q4_0] = {
  534. .type_name = "q4_0",
  535. .blck_size = QK4_0,
  536. .type_size = sizeof(block_q4_0),
  537. .is_quantized = true,
  538. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  539. .from_float = quantize_row_q4_0,
  540. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  541. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  542. .vec_dot_type = GGML_TYPE_Q8_0,
  543. #if defined (__ARM_FEATURE_MATMUL_INT8)
  544. .nrows = 2,
  545. #else
  546. .nrows = 1,
  547. #endif
  548. },
  549. [GGML_TYPE_Q4_1] = {
  550. .type_name = "q4_1",
  551. .blck_size = QK4_1,
  552. .type_size = sizeof(block_q4_1),
  553. .is_quantized = true,
  554. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  555. .from_float = quantize_row_q4_1,
  556. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  557. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  558. .vec_dot_type = GGML_TYPE_Q8_1,
  559. #if defined (__ARM_FEATURE_MATMUL_INT8)
  560. .nrows = 2,
  561. #else
  562. .nrows = 1,
  563. #endif
  564. },
  565. [4] = { // GGML_TYPE_Q4_2
  566. .type_name = "DEPRECATED",
  567. .blck_size = 0,
  568. .type_size = 0,
  569. .is_quantized = false,
  570. .to_float = NULL,
  571. .from_float = NULL,
  572. .from_float_reference = NULL,
  573. .vec_dot = NULL,
  574. .vec_dot_type = GGML_TYPE_COUNT,
  575. .nrows = 1,
  576. },
  577. [5] = { // GGML_TYPE_Q4_3
  578. .type_name = "DEPRECATED",
  579. .blck_size = 0,
  580. .type_size = 0,
  581. .is_quantized = false,
  582. .to_float = NULL,
  583. .from_float = NULL,
  584. .from_float_reference = NULL,
  585. .vec_dot = NULL,
  586. .vec_dot_type = GGML_TYPE_COUNT,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_Q5_0] = {
  590. .type_name = "q5_0",
  591. .blck_size = QK5_0,
  592. .type_size = sizeof(block_q5_0),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  595. .from_float = quantize_row_q5_0,
  596. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  597. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  598. .vec_dot_type = GGML_TYPE_Q8_0,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_Q5_1] = {
  602. .type_name = "q5_1",
  603. .blck_size = QK5_1,
  604. .type_size = sizeof(block_q5_1),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  607. .from_float = quantize_row_q5_1,
  608. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  609. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  610. .vec_dot_type = GGML_TYPE_Q8_1,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_Q8_0] = {
  614. .type_name = "q8_0",
  615. .blck_size = QK8_0,
  616. .type_size = sizeof(block_q8_0),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  619. .from_float = quantize_row_q8_0,
  620. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  621. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  622. .vec_dot_type = GGML_TYPE_Q8_0,
  623. #if defined (__ARM_FEATURE_MATMUL_INT8)
  624. .nrows = 2,
  625. #else
  626. .nrows = 1,
  627. #endif
  628. },
  629. [GGML_TYPE_Q8_1] = {
  630. .type_name = "q8_1",
  631. .blck_size = QK8_1,
  632. .type_size = sizeof(block_q8_1),
  633. .is_quantized = true,
  634. .from_float = quantize_row_q8_1,
  635. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  636. .vec_dot_type = GGML_TYPE_Q8_1,
  637. .nrows = 1,
  638. },
  639. [GGML_TYPE_Q2_K] = {
  640. .type_name = "q2_K",
  641. .blck_size = QK_K,
  642. .type_size = sizeof(block_q2_K),
  643. .is_quantized = true,
  644. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  645. .from_float = quantize_row_q2_K,
  646. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  647. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  648. .vec_dot_type = GGML_TYPE_Q8_K,
  649. .nrows = 1,
  650. },
  651. [GGML_TYPE_Q3_K] = {
  652. .type_name = "q3_K",
  653. .blck_size = QK_K,
  654. .type_size = sizeof(block_q3_K),
  655. .is_quantized = true,
  656. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  657. .from_float = quantize_row_q3_K,
  658. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  659. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  660. .vec_dot_type = GGML_TYPE_Q8_K,
  661. .nrows = 1,
  662. },
  663. [GGML_TYPE_Q4_K] = {
  664. .type_name = "q4_K",
  665. .blck_size = QK_K,
  666. .type_size = sizeof(block_q4_K),
  667. .is_quantized = true,
  668. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  669. .from_float = quantize_row_q4_K,
  670. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  671. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  672. .vec_dot_type = GGML_TYPE_Q8_K,
  673. .nrows = 1,
  674. },
  675. [GGML_TYPE_Q5_K] = {
  676. .type_name = "q5_K",
  677. .blck_size = QK_K,
  678. .type_size = sizeof(block_q5_K),
  679. .is_quantized = true,
  680. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  681. .from_float = quantize_row_q5_K,
  682. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  683. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  684. .vec_dot_type = GGML_TYPE_Q8_K,
  685. .nrows = 1,
  686. },
  687. [GGML_TYPE_Q6_K] = {
  688. .type_name = "q6_K",
  689. .blck_size = QK_K,
  690. .type_size = sizeof(block_q6_K),
  691. .is_quantized = true,
  692. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  693. .from_float = quantize_row_q6_K,
  694. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  695. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  696. .vec_dot_type = GGML_TYPE_Q8_K,
  697. .nrows = 1,
  698. },
  699. [GGML_TYPE_IQ2_XXS] = {
  700. .type_name = "iq2_xxs",
  701. .blck_size = QK_K,
  702. .type_size = sizeof(block_iq2_xxs),
  703. .is_quantized = true,
  704. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  705. .from_float = NULL,
  706. .from_float_reference = NULL,
  707. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  708. .vec_dot_type = GGML_TYPE_Q8_K,
  709. .nrows = 1,
  710. },
  711. [GGML_TYPE_IQ2_XS] = {
  712. .type_name = "iq2_xs",
  713. .blck_size = QK_K,
  714. .type_size = sizeof(block_iq2_xs),
  715. .is_quantized = true,
  716. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  717. .from_float = NULL,
  718. .from_float_reference = NULL,
  719. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  720. .vec_dot_type = GGML_TYPE_Q8_K,
  721. .nrows = 1,
  722. },
  723. [GGML_TYPE_IQ3_XXS] = {
  724. .type_name = "iq3_xxs",
  725. .blck_size = QK_K,
  726. .type_size = sizeof(block_iq3_xxs),
  727. .is_quantized = true,
  728. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  729. .from_float = quantize_row_iq3_xxs,
  730. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  731. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  732. .vec_dot_type = GGML_TYPE_Q8_K,
  733. .nrows = 1,
  734. },
  735. [GGML_TYPE_IQ3_S] = {
  736. .type_name = "iq3_s",
  737. .blck_size = QK_K,
  738. .type_size = sizeof(block_iq3_s),
  739. .is_quantized = true,
  740. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  741. .from_float = quantize_row_iq3_s,
  742. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  743. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  744. .vec_dot_type = GGML_TYPE_Q8_K,
  745. .nrows = 1,
  746. },
  747. [GGML_TYPE_IQ2_S] = {
  748. .type_name = "iq2_s",
  749. .blck_size = QK_K,
  750. .type_size = sizeof(block_iq2_s),
  751. .is_quantized = true,
  752. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  753. .from_float = quantize_row_iq2_s,
  754. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  755. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  756. .vec_dot_type = GGML_TYPE_Q8_K,
  757. .nrows = 1,
  758. },
  759. [GGML_TYPE_IQ1_S] = {
  760. .type_name = "iq1_s",
  761. .blck_size = QK_K,
  762. .type_size = sizeof(block_iq1_s),
  763. .is_quantized = true,
  764. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  765. .from_float = NULL,
  766. .from_float_reference = NULL,
  767. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  768. .vec_dot_type = GGML_TYPE_Q8_K,
  769. .nrows = 1,
  770. },
  771. [GGML_TYPE_IQ1_M] = {
  772. .type_name = "iq1_m",
  773. .blck_size = QK_K,
  774. .type_size = sizeof(block_iq1_m),
  775. .is_quantized = true,
  776. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  777. .from_float = NULL,
  778. .from_float_reference = NULL,
  779. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  780. .vec_dot_type = GGML_TYPE_Q8_K,
  781. .nrows = 1,
  782. },
  783. [GGML_TYPE_IQ4_NL] = {
  784. .type_name = "iq4_nl",
  785. .blck_size = QK4_NL,
  786. .type_size = sizeof(block_iq4_nl),
  787. .is_quantized = true,
  788. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  789. .from_float = quantize_row_iq4_nl,
  790. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  791. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  792. .vec_dot_type = GGML_TYPE_Q8_0,
  793. .nrows = 1,
  794. },
  795. [GGML_TYPE_IQ4_XS] = {
  796. .type_name = "iq4_xs",
  797. .blck_size = QK_K,
  798. .type_size = sizeof(block_iq4_xs),
  799. .is_quantized = true,
  800. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  801. .from_float = quantize_row_iq4_xs,
  802. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  803. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  804. .vec_dot_type = GGML_TYPE_Q8_K,
  805. .nrows = 1,
  806. },
  807. [GGML_TYPE_Q8_K] = {
  808. .type_name = "q8_K",
  809. .blck_size = QK_K,
  810. .type_size = sizeof(block_q8_K),
  811. .is_quantized = true,
  812. .from_float = quantize_row_q8_K,
  813. },
  814. [GGML_TYPE_BF16] = {
  815. .type_name = "bf16",
  816. .blck_size = 1,
  817. .type_size = sizeof(ggml_bf16_t),
  818. .is_quantized = false,
  819. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  820. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  821. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  822. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  823. .vec_dot_type = GGML_TYPE_BF16,
  824. .nrows = 1,
  825. }
  826. };
  827. // For internal test use
  828. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  829. GGML_ASSERT(type < GGML_TYPE_COUNT);
  830. return type_traits[type];
  831. }
  832. //
  833. // simd mappings
  834. //
  835. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  836. // we then implement the fundamental computation operations below using only these macros
  837. // adding support for new architectures requires to define the corresponding SIMD macros
  838. //
  839. // GGML_F32_STEP / GGML_F16_STEP
  840. // number of elements to process in a single step
  841. //
  842. // GGML_F32_EPR / GGML_F16_EPR
  843. // number of elements to fit in a single register
  844. //
  845. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  846. #define GGML_SIMD
  847. // F32 NEON
  848. #define GGML_F32_STEP 16
  849. #define GGML_F32_EPR 4
  850. #define GGML_F32x4 float32x4_t
  851. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  852. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  853. #define GGML_F32x4_LOAD vld1q_f32
  854. #define GGML_F32x4_STORE vst1q_f32
  855. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  856. #define GGML_F32x4_ADD vaddq_f32
  857. #define GGML_F32x4_MUL vmulq_f32
  858. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  859. #define GGML_F32x4_REDUCE(res, x) \
  860. { \
  861. int offset = GGML_F32_ARR >> 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vaddq_f32(x[i], x[offset+i]); \
  864. } \
  865. offset >>= 1; \
  866. for (int i = 0; i < offset; ++i) { \
  867. x[i] = vaddq_f32(x[i], x[offset+i]); \
  868. } \
  869. offset >>= 1; \
  870. for (int i = 0; i < offset; ++i) { \
  871. x[i] = vaddq_f32(x[i], x[offset+i]); \
  872. } \
  873. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  874. }
  875. #define GGML_F32_VEC GGML_F32x4
  876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  884. // F16 NEON
  885. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  886. #define GGML_F16_STEP 32
  887. #define GGML_F16_EPR 8
  888. #define GGML_F16x8 float16x8_t
  889. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  890. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  891. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  892. #define GGML_F16x8_STORE vst1q_f16
  893. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  894. #define GGML_F16x8_ADD vaddq_f16
  895. #define GGML_F16x8_MUL vmulq_f16
  896. #define GGML_F16x8_REDUCE(res, x) \
  897. do { \
  898. int offset = GGML_F16_ARR >> 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = vaddq_f16(x[i], x[offset+i]); \
  901. } \
  902. offset >>= 1; \
  903. for (int i = 0; i < offset; ++i) { \
  904. x[i] = vaddq_f16(x[i], x[offset+i]); \
  905. } \
  906. offset >>= 1; \
  907. for (int i = 0; i < offset; ++i) { \
  908. x[i] = vaddq_f16(x[i], x[offset+i]); \
  909. } \
  910. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  911. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  912. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  913. } while (0)
  914. #define GGML_F16_VEC GGML_F16x8
  915. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  916. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  917. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  918. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  919. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  920. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  921. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  922. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  923. #else
  924. // if FP16 vector arithmetic is not supported, we use FP32 instead
  925. // and take advantage of the vcvt_ functions to convert to/from FP16
  926. #define GGML_F16_STEP 16
  927. #define GGML_F16_EPR 4
  928. #define GGML_F32Cx4 float32x4_t
  929. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  930. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  931. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  932. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  933. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  934. #define GGML_F32Cx4_ADD vaddq_f32
  935. #define GGML_F32Cx4_MUL vmulq_f32
  936. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  937. #define GGML_F16_VEC GGML_F32Cx4
  938. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  939. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  940. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  941. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  942. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  943. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  944. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  945. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  946. #endif
  947. #elif defined(__AVX512F__)
  948. #define GGML_SIMD
  949. // F32 AVX512
  950. #define GGML_F32_STEP 64
  951. #define GGML_F32_EPR 16
  952. #define GGML_F32x16 __m512
  953. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  954. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  955. #define GGML_F32x16_LOAD _mm512_loadu_ps
  956. #define GGML_F32x16_STORE _mm512_storeu_ps
  957. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  958. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  959. #define GGML_F32x16_ADD _mm512_add_ps
  960. #define GGML_F32x16_MUL _mm512_mul_ps
  961. #define GGML_F32x16_REDUCE(res, x) \
  962. do { \
  963. int offset = GGML_F32_ARR >> 1; \
  964. for (int i = 0; i < offset; ++i) { \
  965. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  966. } \
  967. offset >>= 1; \
  968. for (int i = 0; i < offset; ++i) { \
  969. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  970. } \
  971. offset >>= 1; \
  972. for (int i = 0; i < offset; ++i) { \
  973. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  974. } \
  975. res = _mm512_reduce_add_ps(x[0]); \
  976. } while (0)
  977. // TODO: is this optimal ?
  978. #define GGML_F32_VEC GGML_F32x16
  979. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  980. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  981. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  982. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  983. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  984. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  985. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  986. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  987. // F16 AVX512
  988. // F16 AVX
  989. #define GGML_F16_STEP 64
  990. #define GGML_F16_EPR 16
  991. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  992. #define GGML_F32Cx16 __m512
  993. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  994. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  995. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  996. // so F16C guard isn't required
  997. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  998. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  999. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1000. #define GGML_F32Cx16_ADD _mm512_add_ps
  1001. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1002. #define GGML_F32Cx16_REDUCE(res, x) \
  1003. do { \
  1004. int offset = GGML_F32_ARR >> 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. offset >>= 1; \
  1009. for (int i = 0; i < offset; ++i) { \
  1010. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1011. } \
  1012. offset >>= 1; \
  1013. for (int i = 0; i < offset; ++i) { \
  1014. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1015. } \
  1016. res = _mm512_reduce_add_ps(x[0]); \
  1017. } while (0)
  1018. #define GGML_F16_VEC GGML_F32Cx16
  1019. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1020. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1021. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1022. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1023. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1024. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1025. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1026. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1027. #elif defined(__AVX__)
  1028. #define GGML_SIMD
  1029. // F32 AVX
  1030. #define GGML_F32_STEP 32
  1031. #define GGML_F32_EPR 8
  1032. #define GGML_F32x8 __m256
  1033. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1034. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1035. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1036. #define GGML_F32x8_STORE _mm256_storeu_ps
  1037. #if defined(__FMA__)
  1038. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1039. #else
  1040. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1041. #endif
  1042. #define GGML_F32x8_ADD _mm256_add_ps
  1043. #define GGML_F32x8_MUL _mm256_mul_ps
  1044. #define GGML_F32x8_REDUCE(res, x) \
  1045. do { \
  1046. int offset = GGML_F32_ARR >> 1; \
  1047. for (int i = 0; i < offset; ++i) { \
  1048. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1049. } \
  1050. offset >>= 1; \
  1051. for (int i = 0; i < offset; ++i) { \
  1052. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1053. } \
  1054. offset >>= 1; \
  1055. for (int i = 0; i < offset; ++i) { \
  1056. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1057. } \
  1058. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1059. _mm256_extractf128_ps(x[0], 1)); \
  1060. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1061. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1062. } while (0)
  1063. // TODO: is this optimal ?
  1064. #define GGML_F32_VEC GGML_F32x8
  1065. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1066. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1067. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1068. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1069. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1070. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1071. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1072. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1073. // F16 AVX
  1074. #define GGML_F16_STEP 32
  1075. #define GGML_F16_EPR 8
  1076. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1077. #define GGML_F32Cx8 __m256
  1078. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1079. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1080. #if defined(__F16C__)
  1081. // the _mm256_cvt intrinsics require F16C
  1082. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1083. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1084. #else
  1085. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1086. float tmp[8];
  1087. for (int i = 0; i < 8; i++) {
  1088. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1089. }
  1090. return _mm256_loadu_ps(tmp);
  1091. }
  1092. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1093. float arr[8];
  1094. _mm256_storeu_ps(arr, y);
  1095. for (int i = 0; i < 8; i++)
  1096. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1097. }
  1098. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1099. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1100. #endif
  1101. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1102. #define GGML_F32Cx8_ADD _mm256_add_ps
  1103. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1104. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1105. #define GGML_F16_VEC GGML_F32Cx8
  1106. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1107. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1108. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1109. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1110. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1111. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1112. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1113. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1114. #elif defined(__POWER9_VECTOR__)
  1115. #define GGML_SIMD
  1116. // F32 POWER9
  1117. #define GGML_F32_STEP 32
  1118. #define GGML_F32_EPR 4
  1119. #define GGML_F32x4 vector float
  1120. #define GGML_F32x4_ZERO 0.0f
  1121. #define GGML_F32x4_SET1 vec_splats
  1122. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1123. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1124. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1125. #define GGML_F32x4_ADD vec_add
  1126. #define GGML_F32x4_MUL vec_mul
  1127. #define GGML_F32x4_REDUCE(res, x) \
  1128. { \
  1129. int offset = GGML_F32_ARR >> 1; \
  1130. for (int i = 0; i < offset; ++i) { \
  1131. x[i] = vec_add(x[i], x[offset+i]); \
  1132. } \
  1133. offset >>= 1; \
  1134. for (int i = 0; i < offset; ++i) { \
  1135. x[i] = vec_add(x[i], x[offset+i]); \
  1136. } \
  1137. offset >>= 1; \
  1138. for (int i = 0; i < offset; ++i) { \
  1139. x[i] = vec_add(x[i], x[offset+i]); \
  1140. } \
  1141. res = vec_extract(x[0], 0) + \
  1142. vec_extract(x[0], 1) + \
  1143. vec_extract(x[0], 2) + \
  1144. vec_extract(x[0], 3); \
  1145. }
  1146. #define GGML_F32_VEC GGML_F32x4
  1147. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1148. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1149. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1150. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1151. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1152. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1153. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1154. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1155. // F16 POWER9
  1156. #define GGML_F16_STEP GGML_F32_STEP
  1157. #define GGML_F16_EPR GGML_F32_EPR
  1158. #define GGML_F16_VEC GGML_F32x4
  1159. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1160. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1161. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1162. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1163. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1164. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1165. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1166. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1167. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1168. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1169. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1170. #define GGML_F16_VEC_STORE(p, r, i) \
  1171. if (i & 0x1) \
  1172. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1173. r[i - GGML_ENDIAN_BYTE(0)]), \
  1174. 0, p - GGML_F16_EPR)
  1175. #elif defined(__wasm_simd128__)
  1176. #define GGML_SIMD
  1177. // F32 WASM
  1178. #define GGML_F32_STEP 16
  1179. #define GGML_F32_EPR 4
  1180. #define GGML_F32x4 v128_t
  1181. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1182. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1183. #define GGML_F32x4_LOAD wasm_v128_load
  1184. #define GGML_F32x4_STORE wasm_v128_store
  1185. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1186. #define GGML_F32x4_ADD wasm_f32x4_add
  1187. #define GGML_F32x4_MUL wasm_f32x4_mul
  1188. #define GGML_F32x4_REDUCE(res, x) \
  1189. { \
  1190. int offset = GGML_F32_ARR >> 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1193. } \
  1194. offset >>= 1; \
  1195. for (int i = 0; i < offset; ++i) { \
  1196. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1197. } \
  1198. offset >>= 1; \
  1199. for (int i = 0; i < offset; ++i) { \
  1200. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1201. } \
  1202. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1203. wasm_f32x4_extract_lane(x[0], 1) + \
  1204. wasm_f32x4_extract_lane(x[0], 2) + \
  1205. wasm_f32x4_extract_lane(x[0], 3); \
  1206. }
  1207. #define GGML_F32_VEC GGML_F32x4
  1208. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1209. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1210. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1211. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1212. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1213. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1214. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1215. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1216. // F16 WASM
  1217. #define GGML_F16_STEP 16
  1218. #define GGML_F16_EPR 4
  1219. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1220. float tmp[4];
  1221. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1222. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1223. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1224. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1225. return wasm_v128_load(tmp);
  1226. }
  1227. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1228. float tmp[4];
  1229. wasm_v128_store(tmp, x);
  1230. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1231. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1232. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1233. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1234. }
  1235. #define GGML_F16x4 v128_t
  1236. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1237. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1238. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1239. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1240. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1241. #define GGML_F16x4_ADD wasm_f32x4_add
  1242. #define GGML_F16x4_MUL wasm_f32x4_mul
  1243. #define GGML_F16x4_REDUCE(res, x) \
  1244. { \
  1245. int offset = GGML_F16_ARR >> 1; \
  1246. for (int i = 0; i < offset; ++i) { \
  1247. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1248. } \
  1249. offset >>= 1; \
  1250. for (int i = 0; i < offset; ++i) { \
  1251. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1252. } \
  1253. offset >>= 1; \
  1254. for (int i = 0; i < offset; ++i) { \
  1255. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1256. } \
  1257. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1258. wasm_f32x4_extract_lane(x[0], 1) + \
  1259. wasm_f32x4_extract_lane(x[0], 2) + \
  1260. wasm_f32x4_extract_lane(x[0], 3); \
  1261. }
  1262. #define GGML_F16_VEC GGML_F16x4
  1263. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1264. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1265. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1266. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1267. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1268. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1269. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1270. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1271. #elif defined(__SSE3__)
  1272. #define GGML_SIMD
  1273. // F32 SSE
  1274. #define GGML_F32_STEP 32
  1275. #define GGML_F32_EPR 4
  1276. #define GGML_F32x4 __m128
  1277. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1278. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1279. #define GGML_F32x4_LOAD _mm_loadu_ps
  1280. #define GGML_F32x4_STORE _mm_storeu_ps
  1281. #if defined(__FMA__)
  1282. // TODO: Does this work?
  1283. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1284. #else
  1285. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1286. #endif
  1287. #define GGML_F32x4_ADD _mm_add_ps
  1288. #define GGML_F32x4_MUL _mm_mul_ps
  1289. #define GGML_F32x4_REDUCE(res, x) \
  1290. { \
  1291. int offset = GGML_F32_ARR >> 1; \
  1292. for (int i = 0; i < offset; ++i) { \
  1293. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1294. } \
  1295. offset >>= 1; \
  1296. for (int i = 0; i < offset; ++i) { \
  1297. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1298. } \
  1299. offset >>= 1; \
  1300. for (int i = 0; i < offset; ++i) { \
  1301. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1302. } \
  1303. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1304. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1305. }
  1306. // TODO: is this optimal ?
  1307. #define GGML_F32_VEC GGML_F32x4
  1308. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1309. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1310. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1311. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1312. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1313. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1314. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1315. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1316. // F16 SSE
  1317. #define GGML_F16_STEP 32
  1318. #define GGML_F16_EPR 4
  1319. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1320. float tmp[4];
  1321. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1322. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1323. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1324. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1325. return _mm_loadu_ps(tmp);
  1326. }
  1327. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1328. float arr[4];
  1329. _mm_storeu_ps(arr, y);
  1330. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1331. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1332. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1333. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1334. }
  1335. #define GGML_F32Cx4 __m128
  1336. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1337. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1338. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1339. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1340. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1341. #define GGML_F32Cx4_ADD _mm_add_ps
  1342. #define GGML_F32Cx4_MUL _mm_mul_ps
  1343. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1344. #define GGML_F16_VEC GGML_F32Cx4
  1345. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1346. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1347. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1348. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1349. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1350. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1351. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1352. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1353. #elif defined(__loongarch_asx)
  1354. #define GGML_SIMD
  1355. // F32 LASX
  1356. #define GGML_F32_STEP 32
  1357. #define GGML_F32_EPR 8
  1358. #define GGML_F32x8 __m256
  1359. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1360. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1361. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1362. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1363. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1364. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1365. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1366. #define GGML_F32x8_REDUCE(res, x) \
  1367. do { \
  1368. int offset = GGML_F32_ARR >> 1; \
  1369. for (int i = 0; i < offset; ++i) { \
  1370. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1371. } \
  1372. offset >>= 1; \
  1373. for (int i = 0; i < offset; ++i) { \
  1374. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1375. } \
  1376. offset >>= 1; \
  1377. for (int i = 0; i < offset; ++i) { \
  1378. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1379. } \
  1380. float *tmp_p = (float *)&x[0]; \
  1381. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1382. } while (0)
  1383. // TODO: is this optimal ?
  1384. #define GGML_F32_VEC GGML_F32x8
  1385. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1386. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1387. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1388. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1389. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1390. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1391. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1392. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1393. // F16 LASX
  1394. #define GGML_F16_STEP 32
  1395. #define GGML_F16_EPR 8
  1396. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1397. #define GGML_F32Cx8 __m256
  1398. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1399. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1400. static inline __m256 __lasx_f32cx8_load(ggml_fp16_t *x) {
  1401. float tmp[8];
  1402. for (int i = 0; i < 8; i++) {
  1403. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1404. }
  1405. return (__m256)__lasx_xvld(tmp, 0);
  1406. }
  1407. static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1408. float arr[8];
  1409. __lasx_xvst(y, arr, 0);
  1410. for (int i = 0; i < 8; i++)
  1411. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1412. }
  1413. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1414. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1415. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1416. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1417. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1418. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1419. #define GGML_F16_VEC GGML_F32Cx8
  1420. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1421. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1422. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1423. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1424. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1425. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1426. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1427. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1428. #elif defined(__loongarch_sx)
  1429. #define GGML_SIMD
  1430. // F32 LSX
  1431. #define GGML_F32_STEP 32
  1432. #define GGML_F32_EPR 4
  1433. #define GGML_F32x4 __m128
  1434. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1435. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1436. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1437. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1438. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1439. #define GGML_F32x4_ADD __lsx_vfadd_s
  1440. #define GGML_F32x4_MUL __lsx_vfmul_s
  1441. #define GGML_F32x4_REDUCE(res, x) \
  1442. { \
  1443. int offset = GGML_F32_ARR >> 1; \
  1444. for (int i = 0; i < offset; ++i) { \
  1445. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1446. } \
  1447. offset >>= 1; \
  1448. for (int i = 0; i < offset; ++i) { \
  1449. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1450. } \
  1451. offset >>= 1; \
  1452. for (int i = 0; i < offset; ++i) { \
  1453. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1454. } \
  1455. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1456. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1457. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1458. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1459. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1460. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1461. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1462. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1463. }
  1464. #define GGML_F32_VEC GGML_F32x4
  1465. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1466. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1467. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1468. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1469. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1470. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1471. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1472. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1473. // F16 LSX
  1474. #define GGML_F16_STEP 32
  1475. #define GGML_F16_EPR 4
  1476. static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
  1477. float tmp[4];
  1478. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1479. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1480. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1481. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1482. return __lsx_vld(tmp, 0);
  1483. }
  1484. static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1485. float arr[4];
  1486. __lsx_vst(y, arr, 0);
  1487. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1488. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1489. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1490. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1491. }
  1492. #define GGML_F32Cx4 __m128
  1493. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1494. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1495. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1496. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1497. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1498. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1499. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1500. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1501. #define GGML_F16_VEC GGML_F32Cx4
  1502. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1503. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1504. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1505. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1506. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1507. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1508. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1509. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1510. #endif
  1511. // GGML_F32_ARR / GGML_F16_ARR
  1512. // number of registers to use per step
  1513. #ifdef GGML_SIMD
  1514. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1515. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1516. #endif
  1517. //
  1518. // ggml context
  1519. //
  1520. struct ggml_context {
  1521. size_t mem_size;
  1522. void* mem_buffer;
  1523. bool mem_buffer_owned;
  1524. bool no_alloc;
  1525. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1526. int n_objects;
  1527. struct ggml_object* objects_begin;
  1528. struct ggml_object* objects_end;
  1529. struct ggml_scratch scratch;
  1530. struct ggml_scratch scratch_save;
  1531. };
  1532. struct ggml_context_container {
  1533. bool used;
  1534. struct ggml_context context;
  1535. };
  1536. struct ggml_compute_state_shared {
  1537. const struct ggml_cgraph* cgraph;
  1538. const struct ggml_cplan* cplan;
  1539. int64_t perf_node_start_cycles;
  1540. int64_t perf_node_start_time_us;
  1541. const int n_threads;
  1542. // synchronization primitives
  1543. atomic_int n_active; // num active threads
  1544. atomic_int node_n; // active graph node
  1545. atomic_int node_task; // active graph node task phase
  1546. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1547. void* abort_callback_data;
  1548. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1549. };
  1550. struct ggml_compute_state {
  1551. ggml_thread_t thrd;
  1552. int ith;
  1553. struct ggml_compute_state_shared* shared;
  1554. enum ggml_status ec;
  1555. };
  1556. //
  1557. // fundamental operations
  1558. //
  1559. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1560. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1561. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1563. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1564. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1565. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1566. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1567. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1568. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1569. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1570. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1571. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1572. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1573. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1574. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1575. assert(nrc == 1);
  1576. UNUSED(nrc);
  1577. UNUSED(bx);
  1578. UNUSED(by);
  1579. UNUSED(bs);
  1580. #if defined(GGML_SIMD)
  1581. float sumf = 0.0f;
  1582. const int np = (n & ~(GGML_F32_STEP - 1));
  1583. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1584. GGML_F32_VEC ax[GGML_F32_ARR];
  1585. GGML_F32_VEC ay[GGML_F32_ARR];
  1586. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1587. for (int j = 0; j < GGML_F32_ARR; j++) {
  1588. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1589. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1590. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1591. }
  1592. }
  1593. // reduce sum0..sum3 to sum0
  1594. GGML_F32_VEC_REDUCE(sumf, sum);
  1595. // leftovers
  1596. for (int i = np; i < n; ++i) {
  1597. sumf += x[i]*y[i];
  1598. }
  1599. #else
  1600. // scalar
  1601. ggml_float sumf = 0.0;
  1602. for (int i = 0; i < n; ++i) {
  1603. sumf += (ggml_float)(x[i]*y[i]);
  1604. }
  1605. #endif
  1606. *s = sumf;
  1607. }
  1608. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1609. assert(nrc == 1);
  1610. UNUSED(nrc);
  1611. UNUSED(bx);
  1612. UNUSED(by);
  1613. UNUSED(bs);
  1614. int i = 0;
  1615. ggml_float sumf = 0;
  1616. #if defined(__AVX512BF16__)
  1617. __m512 c1 = _mm512_setzero_ps();
  1618. __m512 c2 = _mm512_setzero_ps();
  1619. for (; i + 64 <= n; i += 64) {
  1620. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1621. m512bh(_mm512_loadu_si512((y + i))));
  1622. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1623. m512bh(_mm512_loadu_si512((y + i + 32))));
  1624. }
  1625. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1626. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1627. #elif defined(__AVX512F__)
  1628. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1629. __m512 c1 = _mm512_setzero_ps();
  1630. __m512 c2 = _mm512_setzero_ps();
  1631. for (; i + 32 <= n; i += 32) {
  1632. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1633. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1634. }
  1635. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1636. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1637. #undef LOAD
  1638. #elif defined(__AVX2__)
  1639. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1640. __m256 c1 = _mm256_setzero_ps();
  1641. __m256 c2 = _mm256_setzero_ps();
  1642. __m256 c3 = _mm256_setzero_ps();
  1643. __m256 c4 = _mm256_setzero_ps();
  1644. for (; i + 32 <= n; i += 32) {
  1645. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1646. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1647. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1648. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1649. }
  1650. __m128 g;
  1651. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1652. _mm256_add_ps(c2, c4));
  1653. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1654. _mm256_castps256_ps128(c1));
  1655. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1656. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1657. sumf += (ggml_float)_mm_cvtss_f32(g);
  1658. #undef LOAD
  1659. #endif
  1660. for (; i < n; ++i) {
  1661. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1662. GGML_BF16_TO_FP32(y[i]));
  1663. }
  1664. *s = sumf;
  1665. }
  1666. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1667. assert(nrc == 1);
  1668. UNUSED(nrc);
  1669. UNUSED(bx);
  1670. UNUSED(by);
  1671. UNUSED(bs);
  1672. ggml_float sumf = 0.0;
  1673. #if defined(GGML_SIMD)
  1674. const int np = (n & ~(GGML_F16_STEP - 1));
  1675. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1676. GGML_F16_VEC ax[GGML_F16_ARR];
  1677. GGML_F16_VEC ay[GGML_F16_ARR];
  1678. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1679. for (int j = 0; j < GGML_F16_ARR; j++) {
  1680. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1681. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1682. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1683. }
  1684. }
  1685. // reduce sum0..sum3 to sum0
  1686. GGML_F16_VEC_REDUCE(sumf, sum);
  1687. // leftovers
  1688. for (int i = np; i < n; ++i) {
  1689. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1690. }
  1691. #else
  1692. for (int i = 0; i < n; ++i) {
  1693. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1694. }
  1695. #endif
  1696. *s = sumf;
  1697. }
  1698. // compute GGML_VEC_DOT_UNROLL dot products at once
  1699. // xs - x row stride in bytes
  1700. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1701. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1702. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1703. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1704. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1705. }
  1706. #if defined(GGML_SIMD)
  1707. const int np = (n & ~(GGML_F16_STEP - 1));
  1708. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1709. GGML_F16_VEC ax[GGML_F16_ARR];
  1710. GGML_F16_VEC ay[GGML_F16_ARR];
  1711. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1712. for (int j = 0; j < GGML_F16_ARR; j++) {
  1713. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1714. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1715. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1716. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1717. }
  1718. }
  1719. }
  1720. // reduce sum0..sum3 to sum0
  1721. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1722. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1723. }
  1724. // leftovers
  1725. for (int i = np; i < n; ++i) {
  1726. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1727. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1728. }
  1729. }
  1730. #else
  1731. for (int i = 0; i < n; ++i) {
  1732. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1733. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1734. }
  1735. }
  1736. #endif
  1737. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1738. s[i] = sumf[i];
  1739. }
  1740. }
  1741. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1742. #if defined(GGML_SIMD)
  1743. const int np = (n & ~(GGML_F32_STEP - 1));
  1744. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1745. GGML_F32_VEC ax[GGML_F32_ARR];
  1746. GGML_F32_VEC ay[GGML_F32_ARR];
  1747. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1748. for (int j = 0; j < GGML_F32_ARR; j++) {
  1749. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1750. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1751. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1752. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1753. }
  1754. }
  1755. // leftovers
  1756. for (int i = np; i < n; ++i) {
  1757. y[i] += x[i]*v;
  1758. }
  1759. #else
  1760. // scalar
  1761. for (int i = 0; i < n; ++i) {
  1762. y[i] += x[i]*v;
  1763. }
  1764. #endif
  1765. }
  1766. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1767. #if defined(GGML_SIMD)
  1768. const int np = (n & ~(GGML_F16_STEP - 1));
  1769. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1770. GGML_F16_VEC ax[GGML_F16_ARR];
  1771. GGML_F16_VEC ay[GGML_F16_ARR];
  1772. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1773. for (int j = 0; j < GGML_F16_ARR; j++) {
  1774. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1775. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1776. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1777. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1778. }
  1779. }
  1780. // leftovers
  1781. for (int i = np; i < n; ++i) {
  1782. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1783. }
  1784. #else
  1785. // scalar
  1786. for (int i = 0; i < n; ++i) {
  1787. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1788. }
  1789. #endif
  1790. }
  1791. // xs and vs are byte strides of x and v
  1792. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1793. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1794. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1795. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1796. x[i] = (const float *) ((const char *) xv + i*xs);
  1797. v[i] = (const float *) ((const char *) vv + i*vs);
  1798. }
  1799. #if defined(GGML_SIMD)
  1800. const int np = (n & ~(GGML_F32_STEP - 1));
  1801. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1802. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1803. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1804. }
  1805. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1806. GGML_F32_VEC ay[GGML_F32_ARR];
  1807. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1808. for (int j = 0; j < GGML_F32_ARR; j++) {
  1809. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1810. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1811. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1812. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1813. }
  1814. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1815. }
  1816. }
  1817. // leftovers
  1818. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1819. for (int i = np; i < n; ++i) {
  1820. y[i] += x[k][i]*v[k][0];
  1821. }
  1822. }
  1823. #else
  1824. // scalar
  1825. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1826. for (int i = 0; i < n; ++i) {
  1827. y[i] += x[k][i]*v[k][0];
  1828. }
  1829. }
  1830. #endif
  1831. }
  1832. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1833. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1834. #if defined(GGML_USE_ACCELERATE)
  1835. vDSP_vsmul(y, 1, &v, y, 1, n);
  1836. #elif defined(GGML_SIMD)
  1837. const int np = (n & ~(GGML_F32_STEP - 1));
  1838. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1839. GGML_F32_VEC ay[GGML_F32_ARR];
  1840. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1841. for (int j = 0; j < GGML_F32_ARR; j++) {
  1842. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1843. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1844. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1845. }
  1846. }
  1847. // leftovers
  1848. for (int i = np; i < n; ++i) {
  1849. y[i] *= v;
  1850. }
  1851. #else
  1852. // scalar
  1853. for (int i = 0; i < n; ++i) {
  1854. y[i] *= v;
  1855. }
  1856. #endif
  1857. }
  1858. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1859. #if defined(GGML_SIMD)
  1860. const int np = (n & ~(GGML_F16_STEP - 1));
  1861. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1862. GGML_F16_VEC ay[GGML_F16_ARR];
  1863. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1864. for (int j = 0; j < GGML_F16_ARR; j++) {
  1865. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1866. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1867. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1868. }
  1869. }
  1870. // leftovers
  1871. for (int i = np; i < n; ++i) {
  1872. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1873. }
  1874. #else
  1875. // scalar
  1876. for (int i = 0; i < n; ++i) {
  1877. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1878. }
  1879. #endif
  1880. }
  1881. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1882. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1883. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1884. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1885. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1886. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1887. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1888. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1889. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1890. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1891. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1892. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1893. // TODO: optimize performance
  1894. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1895. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1896. static const float GELU_COEF_A = 0.044715f;
  1897. static const float GELU_QUICK_COEF = -1.702f;
  1898. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1899. inline static float ggml_gelu_f32(float x) {
  1900. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1901. }
  1902. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1903. const uint16_t * i16 = (const uint16_t *) x;
  1904. for (int i = 0; i < n; ++i) {
  1905. y[i] = ggml_table_gelu_f16[i16[i]];
  1906. }
  1907. }
  1908. #ifdef GGML_GELU_FP16
  1909. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1910. uint16_t t;
  1911. for (int i = 0; i < n; ++i) {
  1912. if (x[i] <= -10.0f) {
  1913. y[i] = 0.0f;
  1914. } else if (x[i] >= 10.0f) {
  1915. y[i] = x[i];
  1916. } else {
  1917. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1918. memcpy(&t, &fp16, sizeof(uint16_t));
  1919. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1920. }
  1921. }
  1922. }
  1923. #else
  1924. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1925. for (int i = 0; i < n; ++i) {
  1926. y[i] = ggml_gelu_f32(x[i]);
  1927. }
  1928. }
  1929. #endif
  1930. inline static float ggml_gelu_quick_f32(float x) {
  1931. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1932. }
  1933. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1934. // const uint16_t * i16 = (const uint16_t *) x;
  1935. // for (int i = 0; i < n; ++i) {
  1936. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1937. // }
  1938. //}
  1939. #ifdef GGML_GELU_QUICK_FP16
  1940. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1941. uint16_t t;
  1942. for (int i = 0; i < n; ++i) {
  1943. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1944. memcpy(&t, &fp16, sizeof(uint16_t));
  1945. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1946. }
  1947. }
  1948. #else
  1949. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1950. for (int i = 0; i < n; ++i) {
  1951. y[i] = ggml_gelu_quick_f32(x[i]);
  1952. }
  1953. }
  1954. #endif
  1955. // Sigmoid Linear Unit (SiLU) function
  1956. inline static float ggml_silu_f32(float x) {
  1957. return x/(1.0f + expf(-x));
  1958. }
  1959. #if defined(__ARM_NEON) && defined(__aarch64__)
  1960. // adapted from arm limited optimized routine
  1961. // the maximum error is 1.45358 plus 0.5 ulps
  1962. // numbers above 88.38 will flush to infinity
  1963. // numbers beneath -103.97 will flush to zero
  1964. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1965. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1966. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1967. const float32x4_t n = vsubq_f32(z, r);
  1968. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1969. vdupq_n_f32(0x1.7f7d1cp-20f));
  1970. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1971. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1972. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1973. const float32x4_t u = vmulq_f32(b, b);
  1974. const float32x4_t j = vfmaq_f32(
  1975. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1976. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1977. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1978. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1979. return vfmaq_f32(k, j, k);
  1980. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1981. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1982. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1983. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1984. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1985. }
  1986. // computes silu x/(1+exp(-x)) in single precision vector
  1987. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1988. const float32x4_t one = vdupq_n_f32(1.0f);
  1989. const float32x4_t zero = vdupq_n_f32(0.0f);
  1990. const float32x4_t neg_x = vsubq_f32(zero, x);
  1991. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1992. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1993. return vdivq_f32(x, one_plus_exp_neg_x);
  1994. }
  1995. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1996. // adapted from arm limited optimized routine
  1997. // the maximum error is 1.45358 plus 0.5 ulps
  1998. // numbers above 88.38 will flush to infinity
  1999. // numbers beneath -103.97 will flush to zero
  2000. inline static __m512 ggml_v_expf(__m512 x) {
  2001. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2002. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2003. const __m512 n = _mm512_sub_ps(z, r);
  2004. const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2005. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2006. const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
  2007. const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
  2008. const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
  2009. const __m512 u = _mm512_mul_ps(b, b);
  2010. const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2011. _mm512_set1_ps(0x1.573e2ep-5f)), u,
  2012. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2013. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2014. u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
  2015. if (_mm512_kortestz(c, c))
  2016. return _mm512_fmadd_ps(j, k, k);
  2017. const __m512i g = _mm512_and_si512(
  2018. _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
  2019. _mm512_set1_epi32(0x82000000u));
  2020. const __m512 s1 =
  2021. _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
  2022. const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
  2023. const __mmask16 d =
  2024. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2025. return _mm512_mask_blend_ps(
  2026. d, _mm512_mask_blend_ps(
  2027. c, _mm512_fmadd_ps(k, j, k),
  2028. _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
  2029. _mm512_mul_ps(s1, s1));
  2030. }
  2031. // computes silu x/(1+exp(-x)) in single precision vector
  2032. inline static __m512 ggml_v_silu(__m512 x) {
  2033. const __m512 one = _mm512_set1_ps(1);
  2034. const __m512 zero = _mm512_setzero_ps();
  2035. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2036. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2037. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2038. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2039. }
  2040. #elif defined(__AVX2__) && defined(__FMA__)
  2041. // adapted from arm limited optimized routine
  2042. // the maximum error is 1.45358 plus 0.5 ulps
  2043. // numbers above 88.38 will flush to infinity
  2044. // numbers beneath -103.97 will flush to zero
  2045. inline static __m256 ggml_v_expf(__m256 x) {
  2046. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2047. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2048. const __m256 n = _mm256_sub_ps(z, r);
  2049. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2050. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2051. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2052. const __m256 k = _mm256_castsi256_ps(
  2053. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2054. const __m256i c = _mm256_castps_si256(
  2055. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2056. _mm256_set1_ps(126), _CMP_GT_OQ));
  2057. const __m256 u = _mm256_mul_ps(b, b);
  2058. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2059. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2060. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2061. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2062. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2063. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2064. return _mm256_fmadd_ps(j, k, k);
  2065. const __m256i g = _mm256_and_si256(
  2066. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2067. _mm256_set1_epi32(0x82000000u));
  2068. const __m256 s1 =
  2069. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2070. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2071. const __m256i d = _mm256_castps_si256(
  2072. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2073. _mm256_set1_ps(192), _CMP_GT_OQ));
  2074. return _mm256_or_ps(
  2075. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2076. _mm256_andnot_ps(
  2077. _mm256_castsi256_ps(d),
  2078. _mm256_or_ps(
  2079. _mm256_and_ps(_mm256_castsi256_ps(c),
  2080. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2081. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2082. }
  2083. // computes silu x/(1+exp(-x)) in single precision vector
  2084. inline static __m256 ggml_v_silu(__m256 x) {
  2085. const __m256 one = _mm256_set1_ps(1);
  2086. const __m256 zero = _mm256_setzero_ps();
  2087. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2088. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2089. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2090. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2091. }
  2092. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2093. #if defined(__FMA__)
  2094. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2095. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2096. #else
  2097. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2098. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2099. #endif
  2100. // adapted from arm limited optimized routine
  2101. // the maximum error is 1.45358 plus 0.5 ulps
  2102. // numbers above 88.38 will flush to infinity
  2103. // numbers beneath -103.97 will flush to zero
  2104. inline static __m128 ggml_v_expf(__m128 x) {
  2105. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2106. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2107. const __m128 n = _mm_sub_ps(z, r);
  2108. const __m128 b =
  2109. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2110. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2111. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2112. const __m128i c =
  2113. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2114. const __m128 u = _mm_mul_ps(b, b);
  2115. const __m128 j =
  2116. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2117. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2118. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2119. if (!_mm_movemask_epi8(c))
  2120. return MADD128(j, k, k);
  2121. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2122. _mm_set1_epi32(0x82000000u));
  2123. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2124. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2125. const __m128i d =
  2126. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2127. return _mm_or_ps(
  2128. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2129. _mm_andnot_ps(_mm_castsi128_ps(d),
  2130. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2131. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2132. }
  2133. // computes silu x/(1+exp(-x)) in single precision vector
  2134. inline static __m128 ggml_v_silu(__m128 x) {
  2135. const __m128 one = _mm_set1_ps(1);
  2136. const __m128 zero = _mm_setzero_ps();
  2137. const __m128 neg_x = _mm_sub_ps(zero, x);
  2138. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2139. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2140. return _mm_div_ps(x, one_plus_exp_neg_x);
  2141. }
  2142. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2143. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2144. int i = 0;
  2145. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2146. for (; i + 15 < n; i += 16) {
  2147. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2148. }
  2149. #elif defined(__AVX2__) && defined(__FMA__)
  2150. for (; i + 7 < n; i += 8) {
  2151. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2152. }
  2153. #elif defined(__SSE2__)
  2154. for (; i + 3 < n; i += 4) {
  2155. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2156. }
  2157. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2158. for (; i + 3 < n; i += 4) {
  2159. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2160. }
  2161. #endif
  2162. for (; i < n; ++i) {
  2163. y[i] = ggml_silu_f32(x[i]);
  2164. }
  2165. }
  2166. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2167. int i = 0;
  2168. ggml_float sum = 0;
  2169. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2170. for (; i + 15 < n; i += 16) {
  2171. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2172. _mm512_set1_ps(max)));
  2173. _mm512_storeu_ps(y + i, val);
  2174. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2175. }
  2176. #elif defined(__AVX2__) && defined(__FMA__)
  2177. for (; i + 7 < n; i += 8) {
  2178. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2179. _mm256_set1_ps(max)));
  2180. _mm256_storeu_ps(y + i, val);
  2181. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2182. _mm256_castps256_ps128(val));
  2183. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2184. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2185. sum += (ggml_float)_mm_cvtss_f32(val2);
  2186. }
  2187. #elif defined(__SSE2__)
  2188. for (; i + 3 < n; i += 4) {
  2189. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2190. _mm_set1_ps(max)));
  2191. _mm_storeu_ps(y + i, val);
  2192. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2193. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2194. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2195. #else
  2196. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2197. val = _mm_add_ps(val, tmp);
  2198. tmp = _mm_movehl_ps(tmp, val);
  2199. val = _mm_add_ss(val, tmp);
  2200. #endif
  2201. sum += (ggml_float)_mm_cvtss_f32(val);
  2202. }
  2203. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2204. for (; i + 3 < n; i += 4) {
  2205. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2206. vdupq_n_f32(max)));
  2207. vst1q_f32(y + i, val);
  2208. sum += (ggml_float)vaddvq_f32(val);
  2209. }
  2210. #endif
  2211. for (; i < n; ++i) {
  2212. float val = expf(x[i] - max);
  2213. sum += (ggml_float)val;
  2214. y[i] = val;
  2215. }
  2216. return sum;
  2217. }
  2218. inline static float ggml_silu_backward_f32(float x, float dy) {
  2219. const float s = 1.0f/(1.0f + expf(-x));
  2220. return dy*s*(1.0f + x*(1.0f - s));
  2221. }
  2222. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2223. for (int i = 0; i < n; ++i) {
  2224. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2225. }
  2226. }
  2227. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2228. #ifndef GGML_USE_ACCELERATE
  2229. ggml_float sum = 0.0;
  2230. for (int i = 0; i < n; ++i) {
  2231. sum += (ggml_float)x[i];
  2232. }
  2233. *s = sum;
  2234. #else
  2235. vDSP_sve(x, 1, s, n);
  2236. #endif
  2237. }
  2238. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2239. ggml_float sum = 0.0;
  2240. for (int i = 0; i < n; ++i) {
  2241. sum += (ggml_float)x[i];
  2242. }
  2243. *s = sum;
  2244. }
  2245. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2246. float sum = 0.0f;
  2247. for (int i = 0; i < n; ++i) {
  2248. sum += GGML_FP16_TO_FP32(x[i]);
  2249. }
  2250. *s = sum;
  2251. }
  2252. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2253. float sum = 0.0f;
  2254. for (int i = 0; i < n; ++i) {
  2255. sum += GGML_BF16_TO_FP32(x[i]);
  2256. }
  2257. *s = sum;
  2258. }
  2259. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2260. #ifndef GGML_USE_ACCELERATE
  2261. float max = -INFINITY;
  2262. for (int i = 0; i < n; ++i) {
  2263. max = MAX(max, x[i]);
  2264. }
  2265. *s = max;
  2266. #else
  2267. vDSP_maxv(x, 1, s, n);
  2268. #endif
  2269. }
  2270. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2271. ggml_vec_norm_f32(n, s, x);
  2272. *s = 1.f/(*s);
  2273. }
  2274. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2275. float max = -INFINITY;
  2276. int idx = 0;
  2277. for (int i = 0; i < n; ++i) {
  2278. max = MAX(max, x[i]);
  2279. if (max == x[i]) { idx = i; }
  2280. }
  2281. *s = idx;
  2282. }
  2283. //
  2284. // data types
  2285. //
  2286. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2287. "NONE",
  2288. "DUP",
  2289. "ADD",
  2290. "ADD1",
  2291. "ACC",
  2292. "SUB",
  2293. "MUL",
  2294. "DIV",
  2295. "SQR",
  2296. "SQRT",
  2297. "LOG",
  2298. "SUM",
  2299. "SUM_ROWS",
  2300. "MEAN",
  2301. "ARGMAX",
  2302. "REPEAT",
  2303. "REPEAT_BACK",
  2304. "CONCAT",
  2305. "SILU_BACK",
  2306. "NORM",
  2307. "RMS_NORM",
  2308. "RMS_NORM_BACK",
  2309. "GROUP_NORM",
  2310. "MUL_MAT",
  2311. "MUL_MAT_ID",
  2312. "OUT_PROD",
  2313. "SCALE",
  2314. "SET",
  2315. "CPY",
  2316. "CONT",
  2317. "RESHAPE",
  2318. "VIEW",
  2319. "PERMUTE",
  2320. "TRANSPOSE",
  2321. "GET_ROWS",
  2322. "GET_ROWS_BACK",
  2323. "DIAG",
  2324. "DIAG_MASK_INF",
  2325. "DIAG_MASK_ZERO",
  2326. "SOFT_MAX",
  2327. "SOFT_MAX_BACK",
  2328. "ROPE",
  2329. "ROPE_BACK",
  2330. "CLAMP",
  2331. "CONV_TRANSPOSE_1D",
  2332. "IM2COL",
  2333. "CONV_TRANSPOSE_2D",
  2334. "POOL_1D",
  2335. "POOL_2D",
  2336. "UPSCALE",
  2337. "PAD",
  2338. "ARANGE",
  2339. "TIMESTEP_EMBEDDING",
  2340. "ARGSORT",
  2341. "LEAKY_RELU",
  2342. "FLASH_ATTN_EXT",
  2343. "FLASH_ATTN_BACK",
  2344. "SSM_CONV",
  2345. "SSM_SCAN",
  2346. "WIN_PART",
  2347. "WIN_UNPART",
  2348. "GET_REL_POS",
  2349. "ADD_REL_POS",
  2350. "UNARY",
  2351. "MAP_UNARY",
  2352. "MAP_BINARY",
  2353. "MAP_CUSTOM1_F32",
  2354. "MAP_CUSTOM2_F32",
  2355. "MAP_CUSTOM3_F32",
  2356. "MAP_CUSTOM1",
  2357. "MAP_CUSTOM2",
  2358. "MAP_CUSTOM3",
  2359. "CROSS_ENTROPY_LOSS",
  2360. "CROSS_ENTROPY_LOSS_BACK",
  2361. };
  2362. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2363. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2364. "none",
  2365. "x",
  2366. "x+y",
  2367. "x+y",
  2368. "view(x,nb,offset)+=y->x",
  2369. "x-y",
  2370. "x*y",
  2371. "x/y",
  2372. "x^2",
  2373. "√x",
  2374. "log(x)",
  2375. "Σx",
  2376. "Σx_k",
  2377. "Σx/n",
  2378. "argmax(x)",
  2379. "repeat(x)",
  2380. "repeat_back(x)",
  2381. "concat(x, y)",
  2382. "silu_back(x)",
  2383. "norm(x)",
  2384. "rms_norm(x)",
  2385. "rms_norm_back(x)",
  2386. "group_norm(x)",
  2387. "X*Y",
  2388. "X[i]*Y",
  2389. "X*Y",
  2390. "x*v",
  2391. "y-\\>view(x)",
  2392. "x-\\>y",
  2393. "cont(x)",
  2394. "reshape(x)",
  2395. "view(x)",
  2396. "permute(x)",
  2397. "transpose(x)",
  2398. "get_rows(x)",
  2399. "get_rows_back(x)",
  2400. "diag(x)",
  2401. "diag_mask_inf(x)",
  2402. "diag_mask_zero(x)",
  2403. "soft_max(x)",
  2404. "soft_max_back(x)",
  2405. "rope(x)",
  2406. "rope_back(x)",
  2407. "clamp(x)",
  2408. "conv_transpose_1d(x)",
  2409. "im2col(x)",
  2410. "conv_transpose_2d(x)",
  2411. "pool_1d(x)",
  2412. "pool_2d(x)",
  2413. "upscale(x)",
  2414. "pad(x)",
  2415. "arange(start, stop, step)",
  2416. "timestep_embedding(timesteps, dim, max_period)",
  2417. "argsort(x)",
  2418. "leaky_relu(x)",
  2419. "flash_attn_ext(x)",
  2420. "flash_attn_back(x)",
  2421. "ssm_conv(x)",
  2422. "ssm_scan(x)",
  2423. "win_part(x)",
  2424. "win_unpart(x)",
  2425. "get_rel_pos(x)",
  2426. "add_rel_pos(x)",
  2427. "unary(x)",
  2428. "f(x)",
  2429. "f(x,y)",
  2430. "custom_f32(x)",
  2431. "custom_f32(x,y)",
  2432. "custom_f32(x,y,z)",
  2433. "custom(x)",
  2434. "custom(x,y)",
  2435. "custom(x,y,z)",
  2436. "cross_entropy_loss(x,y)",
  2437. "cross_entropy_loss_back(x,y)",
  2438. };
  2439. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2440. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2441. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2442. "ABS",
  2443. "SGN",
  2444. "NEG",
  2445. "STEP",
  2446. "TANH",
  2447. "ELU",
  2448. "RELU",
  2449. "SIGMOID",
  2450. "GELU",
  2451. "GELU_QUICK",
  2452. "SILU",
  2453. "HARDSWISH",
  2454. "HARDSIGMOID",
  2455. };
  2456. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2457. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2458. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2459. // WARN:
  2460. // Mis-configuration can lead to problem that's hard to reason about:
  2461. // * At best it crash or talks nosense.
  2462. // * At worst it talks slightly difference but hard to perceive.
  2463. //
  2464. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2465. // Take care about compile options (e.g., GGML_USE_xxx).
  2466. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2467. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2468. static void ggml_setup_op_has_task_pass(void) {
  2469. { // INIT
  2470. bool * p = GGML_OP_HAS_INIT;
  2471. p[GGML_OP_ACC ] = true;
  2472. p[GGML_OP_MUL_MAT ] = true;
  2473. p[GGML_OP_MUL_MAT_ID ] = true;
  2474. p[GGML_OP_OUT_PROD ] = true;
  2475. p[GGML_OP_SET ] = true;
  2476. p[GGML_OP_GET_ROWS_BACK ] = true;
  2477. p[GGML_OP_DIAG_MASK_INF ] = true;
  2478. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2479. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2480. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2481. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2482. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2483. p[GGML_OP_ADD_REL_POS ] = true;
  2484. }
  2485. { // FINALIZE
  2486. bool * p = GGML_OP_HAS_FINALIZE;
  2487. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2488. }
  2489. }
  2490. //
  2491. // NUMA support
  2492. //
  2493. #define GGML_NUMA_MAX_NODES 8
  2494. #define GGML_NUMA_MAX_CPUS 512
  2495. struct ggml_numa_node {
  2496. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2497. uint32_t n_cpus;
  2498. };
  2499. struct ggml_numa_nodes {
  2500. enum ggml_numa_strategy numa_strategy;
  2501. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2502. uint32_t n_nodes;
  2503. uint32_t total_cpus; // hardware threads on system
  2504. uint32_t current_node; // node on which main process is execting
  2505. #if defined(__gnu_linux__)
  2506. cpu_set_t cpuset; // cpuset from numactl
  2507. #else
  2508. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2509. #endif
  2510. };
  2511. //
  2512. // ggml state
  2513. //
  2514. struct ggml_state {
  2515. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2516. struct ggml_numa_nodes numa;
  2517. };
  2518. // global state
  2519. static struct ggml_state g_state;
  2520. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2521. // barrier via spin lock
  2522. inline static void ggml_critical_section_start(void) {
  2523. while (atomic_flag_test_and_set(&g_state_critical)) {
  2524. // spin
  2525. sched_yield();
  2526. }
  2527. }
  2528. // TODO: make this somehow automatically executed
  2529. // some sort of "sentry" mechanism
  2530. inline static void ggml_critical_section_end(void) {
  2531. atomic_flag_clear(&g_state_critical);
  2532. }
  2533. #if defined(__gnu_linux__)
  2534. static cpu_set_t ggml_get_numa_affinity(void) {
  2535. cpu_set_t cpuset;
  2536. pthread_t thread;
  2537. thread = pthread_self();
  2538. CPU_ZERO(&cpuset);
  2539. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2540. return cpuset;
  2541. }
  2542. #else
  2543. static uint32_t ggml_get_numa_affinity(void) {
  2544. return 0; // no NUMA support
  2545. }
  2546. #endif
  2547. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2548. if (g_state.numa.n_nodes > 0) {
  2549. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2550. return;
  2551. }
  2552. #if defined(__gnu_linux__)
  2553. struct stat st;
  2554. char path[256];
  2555. int rv;
  2556. // set numa scheme
  2557. g_state.numa.numa_strategy = numa_flag;
  2558. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2559. g_state.numa.cpuset = ggml_get_numa_affinity();
  2560. // enumerate nodes
  2561. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2562. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2563. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2564. if (stat(path, &st) != 0) { break; }
  2565. ++g_state.numa.n_nodes;
  2566. }
  2567. // enumerate CPUs
  2568. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2569. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2570. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2571. if (stat(path, &st) != 0) { break; }
  2572. ++g_state.numa.total_cpus;
  2573. }
  2574. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2575. // figure out which node we're on
  2576. uint current_cpu;
  2577. int getcpu_ret = 0;
  2578. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2579. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2580. #else
  2581. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2582. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2583. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2584. # endif
  2585. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2586. #endif
  2587. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2588. g_state.numa.n_nodes = 0;
  2589. return;
  2590. }
  2591. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2592. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2593. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2594. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2595. node->n_cpus = 0;
  2596. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2597. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2598. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2599. if (stat(path, &st) == 0) {
  2600. node->cpus[node->n_cpus++] = c;
  2601. GGML_PRINT_DEBUG(" %u", c);
  2602. }
  2603. }
  2604. GGML_PRINT_DEBUG("\n");
  2605. }
  2606. if (ggml_is_numa()) {
  2607. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2608. if (fptr != NULL) {
  2609. char buf[42];
  2610. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2611. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2612. }
  2613. fclose(fptr);
  2614. }
  2615. }
  2616. #else
  2617. GGML_UNUSED(numa_flag);
  2618. // TODO
  2619. #endif
  2620. }
  2621. bool ggml_is_numa(void) {
  2622. return g_state.numa.n_nodes > 1;
  2623. }
  2624. ////////////////////////////////////////////////////////////////////////////////
  2625. void ggml_print_object(const struct ggml_object * obj) {
  2626. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2627. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2628. }
  2629. void ggml_print_objects(const struct ggml_context * ctx) {
  2630. struct ggml_object * obj = ctx->objects_begin;
  2631. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2632. while (obj != NULL) {
  2633. ggml_print_object(obj);
  2634. obj = obj->next;
  2635. }
  2636. GGML_PRINT("%s: --- end ---\n", __func__);
  2637. }
  2638. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2639. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2640. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2641. }
  2642. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2643. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2644. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2645. }
  2646. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2647. size_t nbytes;
  2648. size_t blck_size = ggml_blck_size(tensor->type);
  2649. if (blck_size == 1) {
  2650. nbytes = ggml_type_size(tensor->type);
  2651. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2652. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2653. }
  2654. }
  2655. else {
  2656. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2657. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2658. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2659. }
  2660. }
  2661. return nbytes;
  2662. }
  2663. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2664. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2665. }
  2666. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2667. return type_traits[type].blck_size;
  2668. }
  2669. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2670. return type_traits[type].type_size;
  2671. }
  2672. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2673. assert(ne % ggml_blck_size(type) == 0);
  2674. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2675. }
  2676. double ggml_type_sizef(enum ggml_type type) {
  2677. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2678. }
  2679. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2680. return type_traits[type].type_name;
  2681. }
  2682. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2683. return type_traits[type].is_quantized;
  2684. }
  2685. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2686. return GGML_OP_NAME[op];
  2687. }
  2688. const char * ggml_op_symbol(enum ggml_op op) {
  2689. return GGML_OP_SYMBOL[op];
  2690. }
  2691. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2692. return GGML_UNARY_OP_NAME[op];
  2693. }
  2694. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2695. if (t->op == GGML_OP_UNARY) {
  2696. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2697. return ggml_unary_op_name(uop);
  2698. }
  2699. else {
  2700. return ggml_op_name(t->op);
  2701. }
  2702. }
  2703. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2704. return ggml_type_size(tensor->type);
  2705. }
  2706. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2707. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2708. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2709. }
  2710. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2711. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2712. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2713. }
  2714. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2715. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2716. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2717. }
  2718. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2719. return tensor->ne[3] == 1;
  2720. }
  2721. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2722. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2723. if (tensor->ne[i] > 1) {
  2724. return i + 1;
  2725. }
  2726. }
  2727. return 1;
  2728. }
  2729. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2730. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2731. return (t0->ne[0] == t1->ne[0]) &&
  2732. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2733. (t1->ne[3]%t0->ne[3] == 0);
  2734. }
  2735. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2736. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2737. return (t0->ne[1] == t1->ne[1]) &&
  2738. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2739. (t1->ne[3]%t0->ne[3] == 0);
  2740. }
  2741. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2742. enum ggml_type wtype = GGML_TYPE_COUNT;
  2743. switch (ftype) {
  2744. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2745. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2746. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2747. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2748. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2749. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2750. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2751. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2752. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2753. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2754. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2755. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2756. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2757. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2758. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2759. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2760. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2761. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2762. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2763. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2764. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2765. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2766. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2767. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2768. }
  2769. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2770. return wtype;
  2771. }
  2772. size_t ggml_tensor_overhead(void) {
  2773. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2774. }
  2775. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2776. return tensor->nb[0] > tensor->nb[1];
  2777. }
  2778. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2779. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2780. return
  2781. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2782. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2783. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2784. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2785. }
  2786. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2787. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2788. return
  2789. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2790. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2791. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2792. }
  2793. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2794. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2795. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2796. }
  2797. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2798. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2799. return
  2800. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2801. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2802. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2803. }
  2804. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2805. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2806. if (tensor->ne[i] == 0) {
  2807. // empty if any dimension has no elements
  2808. return true;
  2809. }
  2810. }
  2811. return false;
  2812. }
  2813. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2814. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2815. return
  2816. (t0->ne[0] == t1->ne[0] ) &&
  2817. (t0->ne[1] == t1->ne[1] ) &&
  2818. (t0->ne[2] == t1->ne[2] ) &&
  2819. (t0->ne[3] == t1->ne[3] );
  2820. }
  2821. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2822. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2823. return
  2824. (t0->nb[0] == t1->nb[0] ) &&
  2825. (t0->nb[1] == t1->nb[1] ) &&
  2826. (t0->nb[2] == t1->nb[2] ) &&
  2827. (t0->nb[3] == t1->nb[3] );
  2828. }
  2829. // check if t1 can be represented as a repeatition of t0
  2830. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2831. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2832. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2833. (t1->ne[0]%t0->ne[0] == 0) &&
  2834. (t1->ne[1]%t0->ne[1] == 0) &&
  2835. (t1->ne[2]%t0->ne[2] == 0) &&
  2836. (t1->ne[3]%t0->ne[3] == 0);
  2837. }
  2838. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2839. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2840. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2841. }
  2842. static inline int ggml_up32(int n) {
  2843. return (n + 31) & ~31;
  2844. }
  2845. //static inline int ggml_up64(int n) {
  2846. // return (n + 63) & ~63;
  2847. //}
  2848. static inline int ggml_up(int n, int m) {
  2849. // assert m is a power of 2
  2850. GGML_ASSERT((m & (m - 1)) == 0);
  2851. return (n + m - 1) & ~(m - 1);
  2852. }
  2853. // assert that pointer is aligned to GGML_MEM_ALIGN
  2854. #define ggml_assert_aligned(ptr) \
  2855. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2856. ////////////////////////////////////////////////////////////////////////////////
  2857. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2858. // make this function thread safe
  2859. ggml_critical_section_start();
  2860. static bool is_first_call = true;
  2861. if (is_first_call) {
  2862. // initialize time system (required on Windows)
  2863. ggml_time_init();
  2864. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2865. {
  2866. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2867. for (int i = 0; i < (1 << 16); ++i) {
  2868. union {
  2869. uint16_t u16;
  2870. ggml_fp16_t fp16;
  2871. } u = {i};
  2872. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2873. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2874. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2875. }
  2876. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2877. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2878. }
  2879. // initialize g_state
  2880. {
  2881. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2882. g_state = (struct ggml_state) {
  2883. /*.contexts =*/ { { 0 } },
  2884. /*.numa =*/ {
  2885. .n_nodes = 0,
  2886. .total_cpus = 0,
  2887. },
  2888. };
  2889. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2890. g_state.contexts[i].used = false;
  2891. }
  2892. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2893. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2894. }
  2895. #if defined(GGML_USE_CLBLAST)
  2896. ggml_cl_init();
  2897. #endif
  2898. ggml_setup_op_has_task_pass();
  2899. is_first_call = false;
  2900. }
  2901. // find non-used context in g_state
  2902. struct ggml_context * ctx = NULL;
  2903. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2904. if (!g_state.contexts[i].used) {
  2905. g_state.contexts[i].used = true;
  2906. ctx = &g_state.contexts[i].context;
  2907. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2908. break;
  2909. }
  2910. }
  2911. if (ctx == NULL) {
  2912. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2913. ggml_critical_section_end();
  2914. return NULL;
  2915. }
  2916. // allow to call ggml_init with 0 size
  2917. if (params.mem_size == 0) {
  2918. params.mem_size = GGML_MEM_ALIGN;
  2919. }
  2920. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2921. *ctx = (struct ggml_context) {
  2922. /*.mem_size =*/ mem_size,
  2923. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2924. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2925. /*.no_alloc =*/ params.no_alloc,
  2926. /*.no_alloc_save =*/ params.no_alloc,
  2927. /*.n_objects =*/ 0,
  2928. /*.objects_begin =*/ NULL,
  2929. /*.objects_end =*/ NULL,
  2930. /*.scratch =*/ { 0, 0, NULL, },
  2931. /*.scratch_save =*/ { 0, 0, NULL, },
  2932. };
  2933. GGML_ASSERT(ctx->mem_buffer != NULL);
  2934. ggml_assert_aligned(ctx->mem_buffer);
  2935. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2936. ggml_critical_section_end();
  2937. return ctx;
  2938. }
  2939. void ggml_free(struct ggml_context * ctx) {
  2940. if (ctx == NULL) {
  2941. return;
  2942. }
  2943. // make this function thread safe
  2944. ggml_critical_section_start();
  2945. bool found = false;
  2946. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2947. if (&g_state.contexts[i].context == ctx) {
  2948. g_state.contexts[i].used = false;
  2949. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2950. __func__, i, ggml_used_mem(ctx));
  2951. if (ctx->mem_buffer_owned) {
  2952. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2953. }
  2954. found = true;
  2955. break;
  2956. }
  2957. }
  2958. if (!found) {
  2959. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2960. }
  2961. ggml_critical_section_end();
  2962. }
  2963. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2964. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2965. }
  2966. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2967. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2968. ctx->scratch = scratch;
  2969. return result;
  2970. }
  2971. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2972. return ctx->no_alloc;
  2973. }
  2974. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2975. ctx->no_alloc = no_alloc;
  2976. }
  2977. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2978. return ctx->mem_buffer;
  2979. }
  2980. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2981. return ctx->mem_size;
  2982. }
  2983. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2984. size_t max_size = 0;
  2985. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2986. size_t bytes = ggml_nbytes(tensor);
  2987. max_size = MAX(max_size, bytes);
  2988. }
  2989. return max_size;
  2990. }
  2991. // IMPORTANT:
  2992. // when creating "opt" tensors, always save and load the scratch buffer
  2993. // this is an error prone process, but it is necessary to support inplace
  2994. // operators when using scratch buffers
  2995. // TODO: implement a better way
  2996. static void ggml_scratch_save(struct ggml_context * ctx) {
  2997. // this is needed to allow opt tensors to store their data
  2998. // TODO: again, need to find a better way
  2999. ctx->no_alloc_save = ctx->no_alloc;
  3000. ctx->no_alloc = false;
  3001. ctx->scratch_save = ctx->scratch;
  3002. ctx->scratch.data = NULL;
  3003. }
  3004. static void ggml_scratch_load(struct ggml_context * ctx) {
  3005. ctx->no_alloc = ctx->no_alloc_save;
  3006. ctx->scratch = ctx->scratch_save;
  3007. }
  3008. ////////////////////////////////////////////////////////////////////////////////
  3009. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3010. // always insert objects at the end of the context's memory pool
  3011. struct ggml_object * obj_cur = ctx->objects_end;
  3012. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3013. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3014. const size_t cur_end = cur_offs + cur_size;
  3015. // align to GGML_MEM_ALIGN
  3016. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3017. char * const mem_buffer = ctx->mem_buffer;
  3018. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3019. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3020. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3021. __func__, cur_end + size_needed, ctx->mem_size);
  3022. assert(false);
  3023. return NULL;
  3024. }
  3025. *obj_new = (struct ggml_object) {
  3026. .offs = cur_end + GGML_OBJECT_SIZE,
  3027. .size = size_needed,
  3028. .next = NULL,
  3029. .type = type,
  3030. };
  3031. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3032. if (obj_cur != NULL) {
  3033. obj_cur->next = obj_new;
  3034. } else {
  3035. // this is the first object in this context
  3036. ctx->objects_begin = obj_new;
  3037. }
  3038. ctx->objects_end = obj_new;
  3039. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3040. return obj_new;
  3041. }
  3042. static struct ggml_tensor * ggml_new_tensor_impl(
  3043. struct ggml_context * ctx,
  3044. enum ggml_type type,
  3045. int n_dims,
  3046. const int64_t * ne,
  3047. struct ggml_tensor * view_src,
  3048. size_t view_offs) {
  3049. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3050. // find the base tensor and absolute offset
  3051. if (view_src != NULL && view_src->view_src != NULL) {
  3052. view_offs += view_src->view_offs;
  3053. view_src = view_src->view_src;
  3054. }
  3055. size_t data_size = ggml_row_size(type, ne[0]);
  3056. for (int i = 1; i < n_dims; i++) {
  3057. data_size *= ne[i];
  3058. }
  3059. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3060. void * data = view_src != NULL ? view_src->data : NULL;
  3061. if (data != NULL) {
  3062. data = (char *) data + view_offs;
  3063. }
  3064. size_t obj_alloc_size = 0;
  3065. if (view_src == NULL && !ctx->no_alloc) {
  3066. if (ctx->scratch.data != NULL) {
  3067. // allocate tensor data in the scratch buffer
  3068. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3069. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3070. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3071. assert(false);
  3072. return NULL;
  3073. }
  3074. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3075. ctx->scratch.offs += data_size;
  3076. } else {
  3077. // allocate tensor data in the context's memory pool
  3078. obj_alloc_size = data_size;
  3079. }
  3080. }
  3081. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3082. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3083. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3084. #ifdef __clang__
  3085. // temporary until ggml_tensor::backend is removed
  3086. #pragma clang diagnostic push
  3087. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3088. #endif
  3089. *result = (struct ggml_tensor) {
  3090. /*.type =*/ type,
  3091. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3092. /*.buffer =*/ NULL,
  3093. /*.ne =*/ { 1, 1, 1, 1 },
  3094. /*.nb =*/ { 0, 0, 0, 0 },
  3095. /*.op =*/ GGML_OP_NONE,
  3096. /*.op_params =*/ { 0 },
  3097. /*.flags =*/ 0,
  3098. /*.grad =*/ NULL,
  3099. /*.src =*/ { NULL },
  3100. /*.perf_runs =*/ 0,
  3101. /*.perf_cycles =*/ 0,
  3102. /*.perf_time_us =*/ 0,
  3103. /*.view_src =*/ view_src,
  3104. /*.view_offs =*/ view_offs,
  3105. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3106. /*.name =*/ { 0 },
  3107. /*.extra =*/ NULL,
  3108. /*.padding =*/ { 0 },
  3109. };
  3110. #ifdef __clang__
  3111. #pragma clang diagnostic pop
  3112. #endif
  3113. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3114. //ggml_assert_aligned(result->data);
  3115. for (int i = 0; i < n_dims; i++) {
  3116. result->ne[i] = ne[i];
  3117. }
  3118. result->nb[0] = ggml_type_size(type);
  3119. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3120. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3121. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3122. }
  3123. ctx->n_objects++;
  3124. return result;
  3125. }
  3126. struct ggml_tensor * ggml_new_tensor(
  3127. struct ggml_context * ctx,
  3128. enum ggml_type type,
  3129. int n_dims,
  3130. const int64_t * ne) {
  3131. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3132. }
  3133. struct ggml_tensor * ggml_new_tensor_1d(
  3134. struct ggml_context * ctx,
  3135. enum ggml_type type,
  3136. int64_t ne0) {
  3137. return ggml_new_tensor(ctx, type, 1, &ne0);
  3138. }
  3139. struct ggml_tensor * ggml_new_tensor_2d(
  3140. struct ggml_context * ctx,
  3141. enum ggml_type type,
  3142. int64_t ne0,
  3143. int64_t ne1) {
  3144. const int64_t ne[2] = { ne0, ne1 };
  3145. return ggml_new_tensor(ctx, type, 2, ne);
  3146. }
  3147. struct ggml_tensor * ggml_new_tensor_3d(
  3148. struct ggml_context * ctx,
  3149. enum ggml_type type,
  3150. int64_t ne0,
  3151. int64_t ne1,
  3152. int64_t ne2) {
  3153. const int64_t ne[3] = { ne0, ne1, ne2 };
  3154. return ggml_new_tensor(ctx, type, 3, ne);
  3155. }
  3156. struct ggml_tensor * ggml_new_tensor_4d(
  3157. struct ggml_context * ctx,
  3158. enum ggml_type type,
  3159. int64_t ne0,
  3160. int64_t ne1,
  3161. int64_t ne2,
  3162. int64_t ne3) {
  3163. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3164. return ggml_new_tensor(ctx, type, 4, ne);
  3165. }
  3166. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3167. ggml_scratch_save(ctx);
  3168. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3169. ggml_scratch_load(ctx);
  3170. ggml_set_i32(result, value);
  3171. return result;
  3172. }
  3173. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3174. ggml_scratch_save(ctx);
  3175. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3176. ggml_scratch_load(ctx);
  3177. ggml_set_f32(result, value);
  3178. return result;
  3179. }
  3180. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3181. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3182. }
  3183. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3184. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3185. assert(params_size <= GGML_MAX_OP_PARAMS);
  3186. memcpy(tensor->op_params, params, params_size);
  3187. }
  3188. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3189. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3190. return ((const int32_t *)(tensor->op_params))[i];
  3191. }
  3192. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3193. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3194. return ((const float *)(tensor->op_params))[i];
  3195. }
  3196. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3197. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3198. ((int32_t *)(tensor->op_params))[i] = value;
  3199. }
  3200. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3201. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3202. ((float *)(tensor->op_params))[i] = value;
  3203. }
  3204. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3205. memset(tensor->data, 0, ggml_nbytes(tensor));
  3206. return tensor;
  3207. }
  3208. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3209. const int n = ggml_nrows(tensor);
  3210. const int nc = tensor->ne[0];
  3211. const size_t n1 = tensor->nb[1];
  3212. char * const data = tensor->data;
  3213. switch (tensor->type) {
  3214. case GGML_TYPE_I8:
  3215. {
  3216. assert(tensor->nb[0] == sizeof(int8_t));
  3217. for (int i = 0; i < n; i++) {
  3218. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3219. }
  3220. } break;
  3221. case GGML_TYPE_I16:
  3222. {
  3223. assert(tensor->nb[0] == sizeof(int16_t));
  3224. for (int i = 0; i < n; i++) {
  3225. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3226. }
  3227. } break;
  3228. case GGML_TYPE_I32:
  3229. {
  3230. assert(tensor->nb[0] == sizeof(int32_t));
  3231. for (int i = 0; i < n; i++) {
  3232. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3233. }
  3234. } break;
  3235. case GGML_TYPE_F16:
  3236. {
  3237. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3238. for (int i = 0; i < n; i++) {
  3239. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3240. }
  3241. } break;
  3242. case GGML_TYPE_BF16:
  3243. {
  3244. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3245. for (int i = 0; i < n; i++) {
  3246. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3247. }
  3248. } break;
  3249. case GGML_TYPE_F32:
  3250. {
  3251. assert(tensor->nb[0] == sizeof(float));
  3252. for (int i = 0; i < n; i++) {
  3253. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3254. }
  3255. } break;
  3256. default:
  3257. {
  3258. GGML_ASSERT(false);
  3259. } break;
  3260. }
  3261. return tensor;
  3262. }
  3263. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3264. const int n = ggml_nrows(tensor);
  3265. const int nc = tensor->ne[0];
  3266. const size_t n1 = tensor->nb[1];
  3267. char * const data = tensor->data;
  3268. switch (tensor->type) {
  3269. case GGML_TYPE_I8:
  3270. {
  3271. assert(tensor->nb[0] == sizeof(int8_t));
  3272. for (int i = 0; i < n; i++) {
  3273. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3274. }
  3275. } break;
  3276. case GGML_TYPE_I16:
  3277. {
  3278. assert(tensor->nb[0] == sizeof(int16_t));
  3279. for (int i = 0; i < n; i++) {
  3280. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3281. }
  3282. } break;
  3283. case GGML_TYPE_I32:
  3284. {
  3285. assert(tensor->nb[0] == sizeof(int32_t));
  3286. for (int i = 0; i < n; i++) {
  3287. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3288. }
  3289. } break;
  3290. case GGML_TYPE_F16:
  3291. {
  3292. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3293. for (int i = 0; i < n; i++) {
  3294. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3295. }
  3296. } break;
  3297. case GGML_TYPE_BF16:
  3298. {
  3299. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3300. for (int i = 0; i < n; i++) {
  3301. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3302. }
  3303. } break;
  3304. case GGML_TYPE_F32:
  3305. {
  3306. assert(tensor->nb[0] == sizeof(float));
  3307. for (int i = 0; i < n; i++) {
  3308. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3309. }
  3310. } break;
  3311. default:
  3312. {
  3313. GGML_ASSERT(false);
  3314. } break;
  3315. }
  3316. return tensor;
  3317. }
  3318. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3319. const int64_t ne2 = tensor->ne[2];
  3320. const int64_t ne1 = tensor->ne[1];
  3321. const int64_t ne0 = tensor->ne[0];
  3322. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3323. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3324. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3325. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3326. if (i0) {
  3327. * i0 = i0_;
  3328. }
  3329. if (i1) {
  3330. * i1 = i1_;
  3331. }
  3332. if (i2) {
  3333. * i2 = i2_;
  3334. }
  3335. if (i3) {
  3336. * i3 = i3_;
  3337. }
  3338. }
  3339. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3340. if (!ggml_is_contiguous(tensor)) {
  3341. int64_t id[4] = { 0, 0, 0, 0 };
  3342. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3343. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3344. }
  3345. switch (tensor->type) {
  3346. case GGML_TYPE_I8:
  3347. {
  3348. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3349. return ((int8_t *)(tensor->data))[i];
  3350. }
  3351. case GGML_TYPE_I16:
  3352. {
  3353. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3354. return ((int16_t *)(tensor->data))[i];
  3355. }
  3356. case GGML_TYPE_I32:
  3357. {
  3358. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3359. return ((int32_t *)(tensor->data))[i];
  3360. }
  3361. case GGML_TYPE_F16:
  3362. {
  3363. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3364. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3365. }
  3366. case GGML_TYPE_BF16:
  3367. {
  3368. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3369. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3370. }
  3371. case GGML_TYPE_F32:
  3372. {
  3373. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3374. return ((float *)(tensor->data))[i];
  3375. }
  3376. default:
  3377. {
  3378. GGML_ASSERT(false);
  3379. }
  3380. }
  3381. return 0.0f;
  3382. }
  3383. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3384. if (!ggml_is_contiguous(tensor)) {
  3385. int64_t id[4] = { 0, 0, 0, 0 };
  3386. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3387. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3388. return;
  3389. }
  3390. switch (tensor->type) {
  3391. case GGML_TYPE_I8:
  3392. {
  3393. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3394. ((int8_t *)(tensor->data))[i] = value;
  3395. } break;
  3396. case GGML_TYPE_I16:
  3397. {
  3398. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3399. ((int16_t *)(tensor->data))[i] = value;
  3400. } break;
  3401. case GGML_TYPE_I32:
  3402. {
  3403. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3404. ((int32_t *)(tensor->data))[i] = value;
  3405. } break;
  3406. case GGML_TYPE_F16:
  3407. {
  3408. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3409. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3410. } break;
  3411. case GGML_TYPE_BF16:
  3412. {
  3413. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3414. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3415. } break;
  3416. case GGML_TYPE_F32:
  3417. {
  3418. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3419. ((float *)(tensor->data))[i] = value;
  3420. } break;
  3421. default:
  3422. {
  3423. GGML_ASSERT(false);
  3424. } break;
  3425. }
  3426. }
  3427. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3428. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3429. switch (tensor->type) {
  3430. case GGML_TYPE_I8:
  3431. return ((int8_t *) data)[0];
  3432. case GGML_TYPE_I16:
  3433. return ((int16_t *) data)[0];
  3434. case GGML_TYPE_I32:
  3435. return ((int32_t *) data)[0];
  3436. case GGML_TYPE_F16:
  3437. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3438. case GGML_TYPE_BF16:
  3439. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3440. case GGML_TYPE_F32:
  3441. return ((float *) data)[0];
  3442. default:
  3443. GGML_ASSERT(false);
  3444. }
  3445. return 0.0f;
  3446. }
  3447. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3448. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3449. switch (tensor->type) {
  3450. case GGML_TYPE_I8:
  3451. {
  3452. ((int8_t *)(data))[0] = value;
  3453. } break;
  3454. case GGML_TYPE_I16:
  3455. {
  3456. ((int16_t *)(data))[0] = value;
  3457. } break;
  3458. case GGML_TYPE_I32:
  3459. {
  3460. ((int32_t *)(data))[0] = value;
  3461. } break;
  3462. case GGML_TYPE_F16:
  3463. {
  3464. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3465. } break;
  3466. case GGML_TYPE_BF16:
  3467. {
  3468. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3469. } break;
  3470. case GGML_TYPE_F32:
  3471. {
  3472. ((float *)(data))[0] = value;
  3473. } break;
  3474. default:
  3475. {
  3476. GGML_ASSERT(false);
  3477. } break;
  3478. }
  3479. }
  3480. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3481. if (!ggml_is_contiguous(tensor)) {
  3482. int64_t id[4] = { 0, 0, 0, 0 };
  3483. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3484. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3485. }
  3486. switch (tensor->type) {
  3487. case GGML_TYPE_I8:
  3488. {
  3489. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3490. return ((int8_t *)(tensor->data))[i];
  3491. }
  3492. case GGML_TYPE_I16:
  3493. {
  3494. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3495. return ((int16_t *)(tensor->data))[i];
  3496. }
  3497. case GGML_TYPE_I32:
  3498. {
  3499. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3500. return ((int32_t *)(tensor->data))[i];
  3501. }
  3502. case GGML_TYPE_F16:
  3503. {
  3504. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3505. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3506. }
  3507. case GGML_TYPE_BF16:
  3508. {
  3509. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3510. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3511. }
  3512. case GGML_TYPE_F32:
  3513. {
  3514. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3515. return ((float *)(tensor->data))[i];
  3516. }
  3517. default:
  3518. {
  3519. GGML_ASSERT(false);
  3520. }
  3521. }
  3522. return 0.0f;
  3523. }
  3524. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3525. if (!ggml_is_contiguous(tensor)) {
  3526. int64_t id[4] = { 0, 0, 0, 0 };
  3527. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3528. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3529. return;
  3530. }
  3531. switch (tensor->type) {
  3532. case GGML_TYPE_I8:
  3533. {
  3534. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3535. ((int8_t *)(tensor->data))[i] = value;
  3536. } break;
  3537. case GGML_TYPE_I16:
  3538. {
  3539. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3540. ((int16_t *)(tensor->data))[i] = value;
  3541. } break;
  3542. case GGML_TYPE_I32:
  3543. {
  3544. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3545. ((int32_t *)(tensor->data))[i] = value;
  3546. } break;
  3547. case GGML_TYPE_F16:
  3548. {
  3549. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3550. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3551. } break;
  3552. case GGML_TYPE_BF16:
  3553. {
  3554. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3555. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3556. } break;
  3557. case GGML_TYPE_F32:
  3558. {
  3559. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3560. ((float *)(tensor->data))[i] = value;
  3561. } break;
  3562. default:
  3563. {
  3564. GGML_ASSERT(false);
  3565. } break;
  3566. }
  3567. }
  3568. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3569. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3570. switch (tensor->type) {
  3571. case GGML_TYPE_I8:
  3572. return ((int8_t *) data)[0];
  3573. case GGML_TYPE_I16:
  3574. return ((int16_t *) data)[0];
  3575. case GGML_TYPE_I32:
  3576. return ((int32_t *) data)[0];
  3577. case GGML_TYPE_F16:
  3578. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3579. case GGML_TYPE_BF16:
  3580. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3581. case GGML_TYPE_F32:
  3582. return ((float *) data)[0];
  3583. default:
  3584. GGML_ASSERT(false);
  3585. }
  3586. return 0.0f;
  3587. }
  3588. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3589. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3590. switch (tensor->type) {
  3591. case GGML_TYPE_I8:
  3592. {
  3593. ((int8_t *)(data))[0] = value;
  3594. } break;
  3595. case GGML_TYPE_I16:
  3596. {
  3597. ((int16_t *)(data))[0] = value;
  3598. } break;
  3599. case GGML_TYPE_I32:
  3600. {
  3601. ((int32_t *)(data))[0] = value;
  3602. } break;
  3603. case GGML_TYPE_F16:
  3604. {
  3605. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3606. } break;
  3607. case GGML_TYPE_BF16:
  3608. {
  3609. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3610. } break;
  3611. case GGML_TYPE_F32:
  3612. {
  3613. ((float *)(data))[0] = value;
  3614. } break;
  3615. default:
  3616. {
  3617. GGML_ASSERT(false);
  3618. } break;
  3619. }
  3620. }
  3621. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3622. return tensor->data;
  3623. }
  3624. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3625. assert(tensor->type == GGML_TYPE_F32);
  3626. return (float *)(tensor->data);
  3627. }
  3628. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3629. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3630. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3631. }
  3632. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3633. return tensor->name;
  3634. }
  3635. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3636. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3637. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3638. return tensor;
  3639. }
  3640. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3641. va_list args;
  3642. va_start(args, fmt);
  3643. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3644. va_end(args);
  3645. return tensor;
  3646. }
  3647. struct ggml_tensor * ggml_view_tensor(
  3648. struct ggml_context * ctx,
  3649. struct ggml_tensor * src) {
  3650. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3651. ggml_format_name(result, "%s (view)", src->name);
  3652. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3653. result->nb[i] = src->nb[i];
  3654. }
  3655. return result;
  3656. }
  3657. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3658. struct ggml_object * obj = ctx->objects_begin;
  3659. char * const mem_buffer = ctx->mem_buffer;
  3660. while (obj != NULL) {
  3661. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3662. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3663. }
  3664. obj = obj->next;
  3665. }
  3666. return NULL;
  3667. }
  3668. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3669. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3670. obj = obj->next;
  3671. char * const mem_buffer = ctx->mem_buffer;
  3672. while (obj != NULL) {
  3673. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3674. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3675. }
  3676. obj = obj->next;
  3677. }
  3678. return NULL;
  3679. }
  3680. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3681. struct ggml_object * obj = ctx->objects_begin;
  3682. char * const mem_buffer = ctx->mem_buffer;
  3683. while (obj != NULL) {
  3684. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3685. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3686. if (strcmp(cur->name, name) == 0) {
  3687. return cur;
  3688. }
  3689. }
  3690. obj = obj->next;
  3691. }
  3692. return NULL;
  3693. }
  3694. ////////////////////////////////////////////////////////////////////////////////
  3695. // ggml_dup
  3696. static struct ggml_tensor * ggml_dup_impl(
  3697. struct ggml_context * ctx,
  3698. struct ggml_tensor * a,
  3699. bool inplace) {
  3700. bool is_node = false;
  3701. if (!inplace && (a->grad)) {
  3702. is_node = true;
  3703. }
  3704. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3705. result->op = GGML_OP_DUP;
  3706. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3707. result->src[0] = a;
  3708. return result;
  3709. }
  3710. struct ggml_tensor * ggml_dup(
  3711. struct ggml_context * ctx,
  3712. struct ggml_tensor * a) {
  3713. return ggml_dup_impl(ctx, a, false);
  3714. }
  3715. struct ggml_tensor * ggml_dup_inplace(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a) {
  3718. return ggml_dup_impl(ctx, a, true);
  3719. }
  3720. // ggml_add
  3721. static struct ggml_tensor * ggml_add_impl(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a,
  3724. struct ggml_tensor * b,
  3725. bool inplace) {
  3726. GGML_ASSERT(ggml_can_repeat(b, a));
  3727. bool is_node = false;
  3728. if (!inplace && (a->grad || b->grad)) {
  3729. // TODO: support backward pass for broadcasting
  3730. GGML_ASSERT(ggml_are_same_shape(a, b));
  3731. is_node = true;
  3732. }
  3733. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3734. result->op = GGML_OP_ADD;
  3735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3736. result->src[0] = a;
  3737. result->src[1] = b;
  3738. return result;
  3739. }
  3740. struct ggml_tensor * ggml_add(
  3741. struct ggml_context * ctx,
  3742. struct ggml_tensor * a,
  3743. struct ggml_tensor * b) {
  3744. return ggml_add_impl(ctx, a, b, false);
  3745. }
  3746. struct ggml_tensor * ggml_add_inplace(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a,
  3749. struct ggml_tensor * b) {
  3750. return ggml_add_impl(ctx, a, b, true);
  3751. }
  3752. // ggml_add_cast
  3753. static struct ggml_tensor * ggml_add_cast_impl(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. struct ggml_tensor * b,
  3757. enum ggml_type type) {
  3758. // TODO: support less-strict constraint
  3759. // GGML_ASSERT(ggml_can_repeat(b, a));
  3760. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3761. // currently only supported for quantized input and f16
  3762. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3763. a->type == GGML_TYPE_F16 ||
  3764. a->type == GGML_TYPE_BF16);
  3765. bool is_node = false;
  3766. if (a->grad || b->grad) {
  3767. // TODO: support backward pass for broadcasting
  3768. GGML_ASSERT(ggml_are_same_shape(a, b));
  3769. is_node = true;
  3770. }
  3771. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3772. result->op = GGML_OP_ADD;
  3773. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3774. result->src[0] = a;
  3775. result->src[1] = b;
  3776. return result;
  3777. }
  3778. struct ggml_tensor * ggml_add_cast(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a,
  3781. struct ggml_tensor * b,
  3782. enum ggml_type type) {
  3783. return ggml_add_cast_impl(ctx, a, b, type);
  3784. }
  3785. // ggml_add1
  3786. static struct ggml_tensor * ggml_add1_impl(
  3787. struct ggml_context * ctx,
  3788. struct ggml_tensor * a,
  3789. struct ggml_tensor * b,
  3790. bool inplace) {
  3791. GGML_ASSERT(ggml_is_scalar(b));
  3792. GGML_ASSERT(ggml_is_padded_1d(a));
  3793. bool is_node = false;
  3794. if (a->grad || b->grad) {
  3795. is_node = true;
  3796. }
  3797. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3798. result->op = GGML_OP_ADD1;
  3799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3800. result->src[0] = a;
  3801. result->src[1] = b;
  3802. return result;
  3803. }
  3804. struct ggml_tensor * ggml_add1(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a,
  3807. struct ggml_tensor * b) {
  3808. return ggml_add1_impl(ctx, a, b, false);
  3809. }
  3810. struct ggml_tensor * ggml_add1_inplace(
  3811. struct ggml_context * ctx,
  3812. struct ggml_tensor * a,
  3813. struct ggml_tensor * b) {
  3814. return ggml_add1_impl(ctx, a, b, true);
  3815. }
  3816. // ggml_acc
  3817. static struct ggml_tensor * ggml_acc_impl(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a,
  3820. struct ggml_tensor * b,
  3821. size_t nb1,
  3822. size_t nb2,
  3823. size_t nb3,
  3824. size_t offset,
  3825. bool inplace) {
  3826. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3827. GGML_ASSERT(ggml_is_contiguous(a));
  3828. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3829. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3830. bool is_node = false;
  3831. if (!inplace && (a->grad || b->grad)) {
  3832. is_node = true;
  3833. }
  3834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3835. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3836. ggml_set_op_params(result, params, sizeof(params));
  3837. result->op = GGML_OP_ACC;
  3838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3839. result->src[0] = a;
  3840. result->src[1] = b;
  3841. return result;
  3842. }
  3843. struct ggml_tensor * ggml_acc(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. struct ggml_tensor * b,
  3847. size_t nb1,
  3848. size_t nb2,
  3849. size_t nb3,
  3850. size_t offset) {
  3851. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3852. }
  3853. struct ggml_tensor * ggml_acc_inplace(
  3854. struct ggml_context * ctx,
  3855. struct ggml_tensor * a,
  3856. struct ggml_tensor * b,
  3857. size_t nb1,
  3858. size_t nb2,
  3859. size_t nb3,
  3860. size_t offset) {
  3861. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3862. }
  3863. // ggml_sub
  3864. static struct ggml_tensor * ggml_sub_impl(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a,
  3867. struct ggml_tensor * b,
  3868. bool inplace) {
  3869. GGML_ASSERT(ggml_are_same_shape(a, b));
  3870. bool is_node = false;
  3871. if (!inplace && (a->grad || b->grad)) {
  3872. is_node = true;
  3873. }
  3874. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3875. result->op = GGML_OP_SUB;
  3876. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3877. result->src[0] = a;
  3878. result->src[1] = b;
  3879. return result;
  3880. }
  3881. struct ggml_tensor * ggml_sub(
  3882. struct ggml_context * ctx,
  3883. struct ggml_tensor * a,
  3884. struct ggml_tensor * b) {
  3885. return ggml_sub_impl(ctx, a, b, false);
  3886. }
  3887. struct ggml_tensor * ggml_sub_inplace(
  3888. struct ggml_context * ctx,
  3889. struct ggml_tensor * a,
  3890. struct ggml_tensor * b) {
  3891. return ggml_sub_impl(ctx, a, b, true);
  3892. }
  3893. // ggml_mul
  3894. static struct ggml_tensor * ggml_mul_impl(
  3895. struct ggml_context * ctx,
  3896. struct ggml_tensor * a,
  3897. struct ggml_tensor * b,
  3898. bool inplace) {
  3899. GGML_ASSERT(ggml_can_repeat(b, a));
  3900. bool is_node = false;
  3901. if (!inplace && (a->grad || b->grad)) {
  3902. // TODO: support backward pass for broadcasting
  3903. GGML_ASSERT(ggml_are_same_shape(a, b));
  3904. is_node = true;
  3905. }
  3906. if (inplace) {
  3907. GGML_ASSERT(!is_node);
  3908. }
  3909. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3910. result->op = GGML_OP_MUL;
  3911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3912. result->src[0] = a;
  3913. result->src[1] = b;
  3914. return result;
  3915. }
  3916. struct ggml_tensor * ggml_mul(
  3917. struct ggml_context * ctx,
  3918. struct ggml_tensor * a,
  3919. struct ggml_tensor * b) {
  3920. return ggml_mul_impl(ctx, a, b, false);
  3921. }
  3922. struct ggml_tensor * ggml_mul_inplace(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a,
  3925. struct ggml_tensor * b) {
  3926. return ggml_mul_impl(ctx, a, b, true);
  3927. }
  3928. // ggml_div
  3929. static struct ggml_tensor * ggml_div_impl(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. struct ggml_tensor * b,
  3933. bool inplace) {
  3934. GGML_ASSERT(ggml_can_repeat(b, a));
  3935. bool is_node = false;
  3936. if (!inplace && (a->grad || b->grad)) {
  3937. is_node = true;
  3938. }
  3939. if (inplace) {
  3940. GGML_ASSERT(!is_node);
  3941. }
  3942. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3943. result->op = GGML_OP_DIV;
  3944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3945. result->src[0] = a;
  3946. result->src[1] = b;
  3947. return result;
  3948. }
  3949. struct ggml_tensor * ggml_div(
  3950. struct ggml_context * ctx,
  3951. struct ggml_tensor * a,
  3952. struct ggml_tensor * b) {
  3953. return ggml_div_impl(ctx, a, b, false);
  3954. }
  3955. struct ggml_tensor * ggml_div_inplace(
  3956. struct ggml_context * ctx,
  3957. struct ggml_tensor * a,
  3958. struct ggml_tensor * b) {
  3959. return ggml_div_impl(ctx, a, b, true);
  3960. }
  3961. // ggml_sqr
  3962. static struct ggml_tensor * ggml_sqr_impl(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a,
  3965. bool inplace) {
  3966. bool is_node = false;
  3967. if (!inplace && (a->grad)) {
  3968. is_node = true;
  3969. }
  3970. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3971. result->op = GGML_OP_SQR;
  3972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3973. result->src[0] = a;
  3974. return result;
  3975. }
  3976. struct ggml_tensor * ggml_sqr(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a) {
  3979. return ggml_sqr_impl(ctx, a, false);
  3980. }
  3981. struct ggml_tensor * ggml_sqr_inplace(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a) {
  3984. return ggml_sqr_impl(ctx, a, true);
  3985. }
  3986. // ggml_sqrt
  3987. static struct ggml_tensor * ggml_sqrt_impl(
  3988. struct ggml_context * ctx,
  3989. struct ggml_tensor * a,
  3990. bool inplace) {
  3991. bool is_node = false;
  3992. if (!inplace && (a->grad)) {
  3993. is_node = true;
  3994. }
  3995. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3996. result->op = GGML_OP_SQRT;
  3997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3998. result->src[0] = a;
  3999. return result;
  4000. }
  4001. struct ggml_tensor * ggml_sqrt(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a) {
  4004. return ggml_sqrt_impl(ctx, a, false);
  4005. }
  4006. struct ggml_tensor * ggml_sqrt_inplace(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a) {
  4009. return ggml_sqrt_impl(ctx, a, true);
  4010. }
  4011. // ggml_log
  4012. static struct ggml_tensor * ggml_log_impl(
  4013. struct ggml_context * ctx,
  4014. struct ggml_tensor * a,
  4015. bool inplace) {
  4016. bool is_node = false;
  4017. if (!inplace && (a->grad)) {
  4018. is_node = true;
  4019. }
  4020. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4021. result->op = GGML_OP_LOG;
  4022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4023. result->src[0] = a;
  4024. return result;
  4025. }
  4026. struct ggml_tensor * ggml_log(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a) {
  4029. return ggml_log_impl(ctx, a, false);
  4030. }
  4031. struct ggml_tensor * ggml_log_inplace(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a) {
  4034. return ggml_log_impl(ctx, a, true);
  4035. }
  4036. // ggml_sum
  4037. struct ggml_tensor * ggml_sum(
  4038. struct ggml_context * ctx,
  4039. struct ggml_tensor * a) {
  4040. bool is_node = false;
  4041. if (a->grad) {
  4042. is_node = true;
  4043. }
  4044. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4045. result->op = GGML_OP_SUM;
  4046. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4047. result->src[0] = a;
  4048. return result;
  4049. }
  4050. // ggml_sum_rows
  4051. struct ggml_tensor * ggml_sum_rows(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a) {
  4054. bool is_node = false;
  4055. if (a->grad) {
  4056. is_node = true;
  4057. }
  4058. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4059. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4060. ne[i] = a->ne[i];
  4061. }
  4062. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4063. result->op = GGML_OP_SUM_ROWS;
  4064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4065. result->src[0] = a;
  4066. return result;
  4067. }
  4068. // ggml_mean
  4069. struct ggml_tensor * ggml_mean(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a) {
  4072. bool is_node = false;
  4073. if (a->grad) {
  4074. GGML_ASSERT(false); // TODO: implement
  4075. is_node = true;
  4076. }
  4077. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4078. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4079. result->op = GGML_OP_MEAN;
  4080. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4081. result->src[0] = a;
  4082. return result;
  4083. }
  4084. // ggml_argmax
  4085. struct ggml_tensor * ggml_argmax(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a) {
  4088. GGML_ASSERT(ggml_is_matrix(a));
  4089. bool is_node = false;
  4090. if (a->grad) {
  4091. GGML_ASSERT(false);
  4092. is_node = true;
  4093. }
  4094. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4095. result->op = GGML_OP_ARGMAX;
  4096. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4097. result->src[0] = a;
  4098. return result;
  4099. }
  4100. // ggml_repeat
  4101. struct ggml_tensor * ggml_repeat(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. struct ggml_tensor * b) {
  4105. GGML_ASSERT(ggml_can_repeat(a, b));
  4106. bool is_node = false;
  4107. if (a->grad) {
  4108. is_node = true;
  4109. }
  4110. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4111. result->op = GGML_OP_REPEAT;
  4112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4113. result->src[0] = a;
  4114. return result;
  4115. }
  4116. // ggml_repeat_back
  4117. struct ggml_tensor * ggml_repeat_back(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a,
  4120. struct ggml_tensor * b) {
  4121. GGML_ASSERT(ggml_can_repeat(b, a));
  4122. bool is_node = false;
  4123. if (a->grad) {
  4124. is_node = true;
  4125. }
  4126. if (ggml_are_same_shape(a, b) && !is_node) {
  4127. return a;
  4128. }
  4129. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4130. result->op = GGML_OP_REPEAT_BACK;
  4131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4132. result->src[0] = a;
  4133. return result;
  4134. }
  4135. // ggml_concat
  4136. struct ggml_tensor * ggml_concat(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a,
  4139. struct ggml_tensor * b,
  4140. int dim) {
  4141. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4142. int64_t ne[GGML_MAX_DIMS];
  4143. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4144. if (d == dim) {
  4145. ne[d] = a->ne[d] + b->ne[d];
  4146. continue;
  4147. }
  4148. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4149. ne[d] = a->ne[d];
  4150. }
  4151. bool is_node = false;
  4152. if (a->grad || b->grad) {
  4153. is_node = true;
  4154. }
  4155. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4156. ggml_set_op_params_i32(result, 0, dim);
  4157. result->op = GGML_OP_CONCAT;
  4158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4159. result->src[0] = a;
  4160. result->src[1] = b;
  4161. return result;
  4162. }
  4163. // ggml_abs
  4164. struct ggml_tensor * ggml_abs(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a) {
  4167. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4168. }
  4169. struct ggml_tensor * ggml_abs_inplace(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a) {
  4172. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4173. }
  4174. // ggml_sgn
  4175. struct ggml_tensor * ggml_sgn(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a) {
  4178. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4179. }
  4180. struct ggml_tensor * ggml_sgn_inplace(
  4181. struct ggml_context * ctx,
  4182. struct ggml_tensor * a) {
  4183. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4184. }
  4185. // ggml_neg
  4186. struct ggml_tensor * ggml_neg(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a) {
  4189. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4190. }
  4191. struct ggml_tensor * ggml_neg_inplace(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a) {
  4194. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4195. }
  4196. // ggml_step
  4197. struct ggml_tensor * ggml_step(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a) {
  4200. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4201. }
  4202. struct ggml_tensor * ggml_step_inplace(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a) {
  4205. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4206. }
  4207. // ggml_tanh
  4208. struct ggml_tensor * ggml_tanh(
  4209. struct ggml_context * ctx,
  4210. struct ggml_tensor * a) {
  4211. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4212. }
  4213. struct ggml_tensor * ggml_tanh_inplace(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a) {
  4216. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4217. }
  4218. // ggml_elu
  4219. struct ggml_tensor * ggml_elu(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a) {
  4222. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4223. }
  4224. struct ggml_tensor * ggml_elu_inplace(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a) {
  4227. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4228. }
  4229. // ggml_relu
  4230. struct ggml_tensor * ggml_relu(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a) {
  4233. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4234. }
  4235. struct ggml_tensor * ggml_relu_inplace(
  4236. struct ggml_context * ctx,
  4237. struct ggml_tensor * a) {
  4238. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4239. }
  4240. // ggml_leaky_relu
  4241. struct ggml_tensor * ggml_leaky_relu(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4244. bool is_node = false;
  4245. if (!inplace && (a->grad)) {
  4246. is_node = true;
  4247. }
  4248. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4249. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4250. result->op = GGML_OP_LEAKY_RELU;
  4251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4252. result->src[0] = a;
  4253. return result;
  4254. }
  4255. // ggml_sigmoid
  4256. struct ggml_tensor * ggml_sigmoid(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a) {
  4259. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4260. }
  4261. struct ggml_tensor * ggml_sigmoid_inplace(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a) {
  4264. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4265. }
  4266. // ggml_gelu
  4267. struct ggml_tensor * ggml_gelu(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a) {
  4270. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4271. }
  4272. struct ggml_tensor * ggml_gelu_inplace(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a) {
  4275. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4276. }
  4277. // ggml_gelu_quick
  4278. struct ggml_tensor * ggml_gelu_quick(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a) {
  4281. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4282. }
  4283. struct ggml_tensor * ggml_gelu_quick_inplace(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a) {
  4286. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4287. }
  4288. // ggml_silu
  4289. struct ggml_tensor * ggml_silu(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a) {
  4292. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4293. }
  4294. struct ggml_tensor * ggml_silu_inplace(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a) {
  4297. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4298. }
  4299. // ggml_silu_back
  4300. struct ggml_tensor * ggml_silu_back(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a,
  4303. struct ggml_tensor * b) {
  4304. bool is_node = false;
  4305. if (a->grad || b->grad) {
  4306. // TODO: implement backward
  4307. is_node = true;
  4308. }
  4309. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4310. result->op = GGML_OP_SILU_BACK;
  4311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4312. result->src[0] = a;
  4313. result->src[1] = b;
  4314. return result;
  4315. }
  4316. // ggml hardswish
  4317. struct ggml_tensor * ggml_hardswish(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a) {
  4320. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4321. }
  4322. // ggml hardsigmoid
  4323. struct ggml_tensor * ggml_hardsigmoid(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a) {
  4326. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4327. }
  4328. // ggml_norm
  4329. static struct ggml_tensor * ggml_norm_impl(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. float eps,
  4333. bool inplace) {
  4334. bool is_node = false;
  4335. if (!inplace && (a->grad)) {
  4336. GGML_ASSERT(false); // TODO: implement backward
  4337. is_node = true;
  4338. }
  4339. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4340. ggml_set_op_params(result, &eps, sizeof(eps));
  4341. result->op = GGML_OP_NORM;
  4342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4343. result->src[0] = a;
  4344. return result;
  4345. }
  4346. struct ggml_tensor * ggml_norm(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a,
  4349. float eps) {
  4350. return ggml_norm_impl(ctx, a, eps, false);
  4351. }
  4352. struct ggml_tensor * ggml_norm_inplace(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a,
  4355. float eps) {
  4356. return ggml_norm_impl(ctx, a, eps, true);
  4357. }
  4358. // ggml_rms_norm
  4359. static struct ggml_tensor * ggml_rms_norm_impl(
  4360. struct ggml_context * ctx,
  4361. struct ggml_tensor * a,
  4362. float eps,
  4363. bool inplace) {
  4364. bool is_node = false;
  4365. if (!inplace && (a->grad)) {
  4366. is_node = true;
  4367. }
  4368. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4369. ggml_set_op_params(result, &eps, sizeof(eps));
  4370. result->op = GGML_OP_RMS_NORM;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src[0] = a;
  4373. return result;
  4374. }
  4375. struct ggml_tensor * ggml_rms_norm(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. float eps) {
  4379. return ggml_rms_norm_impl(ctx, a, eps, false);
  4380. }
  4381. struct ggml_tensor * ggml_rms_norm_inplace(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a,
  4384. float eps) {
  4385. return ggml_rms_norm_impl(ctx, a, eps, true);
  4386. }
  4387. // ggml_rms_norm_back
  4388. struct ggml_tensor * ggml_rms_norm_back(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. struct ggml_tensor * b,
  4392. float eps) {
  4393. bool is_node = false;
  4394. if (a->grad) {
  4395. // TODO: implement backward
  4396. is_node = true;
  4397. }
  4398. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4399. ggml_set_op_params(result, &eps, sizeof(eps));
  4400. result->op = GGML_OP_RMS_NORM_BACK;
  4401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4402. result->src[0] = a;
  4403. result->src[1] = b;
  4404. return result;
  4405. }
  4406. // ggml_group_norm
  4407. static struct ggml_tensor * ggml_group_norm_impl(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a,
  4410. int n_groups,
  4411. bool inplace) {
  4412. bool is_node = false;
  4413. if (!inplace && (a->grad)) {
  4414. GGML_ASSERT(false); // TODO: implement backward
  4415. is_node = true;
  4416. }
  4417. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4418. result->op_params[0] = n_groups;
  4419. result->op = GGML_OP_GROUP_NORM;
  4420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4421. result->src[0] = a;
  4422. return result;
  4423. }
  4424. struct ggml_tensor * ggml_group_norm(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a,
  4427. int n_groups) {
  4428. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4429. }
  4430. struct ggml_tensor * ggml_group_norm_inplace(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. int n_groups) {
  4434. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4435. }
  4436. // ggml_mul_mat
  4437. struct ggml_tensor * ggml_mul_mat(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a,
  4440. struct ggml_tensor * b) {
  4441. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4442. GGML_ASSERT(!ggml_is_transposed(a));
  4443. bool is_node = false;
  4444. if (a->grad || b->grad) {
  4445. is_node = true;
  4446. }
  4447. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4448. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4449. result->op = GGML_OP_MUL_MAT;
  4450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4451. result->src[0] = a;
  4452. result->src[1] = b;
  4453. return result;
  4454. }
  4455. void ggml_mul_mat_set_prec(
  4456. struct ggml_tensor * a,
  4457. enum ggml_prec prec) {
  4458. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4459. const int32_t prec_i32 = (int32_t) prec;
  4460. ggml_set_op_params_i32(a, 0, prec_i32);
  4461. }
  4462. // ggml_mul_mat_id
  4463. /*
  4464. c = ggml_mul_mat_id(ctx, as, b, ids);
  4465. as -> [cols, rows, n_expert]
  4466. ids -> [n_experts_used, n_tokens] (i32)
  4467. b -> [cols, n_expert_used, n_tokens]
  4468. c -> [cols, n_expert_used, n_tokens]
  4469. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4470. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4471. */
  4472. struct ggml_tensor * ggml_mul_mat_id(
  4473. struct ggml_context * ctx,
  4474. struct ggml_tensor * as,
  4475. struct ggml_tensor * b,
  4476. struct ggml_tensor * ids) {
  4477. GGML_ASSERT(!ggml_is_transposed(as));
  4478. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4479. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4480. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4481. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4482. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4483. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4484. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4485. bool is_node = false;
  4486. if (as->grad || b->grad) {
  4487. is_node = true;
  4488. }
  4489. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4490. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4491. result->op = GGML_OP_MUL_MAT_ID;
  4492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4493. result->src[0] = as;
  4494. result->src[1] = b;
  4495. result->src[2] = ids;
  4496. return result;
  4497. }
  4498. // ggml_out_prod
  4499. struct ggml_tensor * ggml_out_prod(
  4500. struct ggml_context * ctx,
  4501. struct ggml_tensor * a,
  4502. struct ggml_tensor * b) {
  4503. GGML_ASSERT(ggml_can_out_prod(a, b));
  4504. GGML_ASSERT(!ggml_is_transposed(a));
  4505. bool is_node = false;
  4506. if (a->grad || b->grad) {
  4507. is_node = true;
  4508. }
  4509. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4510. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4511. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4512. result->op = GGML_OP_OUT_PROD;
  4513. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4514. result->src[0] = a;
  4515. result->src[1] = b;
  4516. return result;
  4517. }
  4518. // ggml_scale
  4519. static struct ggml_tensor * ggml_scale_impl(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. float s,
  4523. bool inplace) {
  4524. GGML_ASSERT(ggml_is_padded_1d(a));
  4525. bool is_node = false;
  4526. if (a->grad) {
  4527. is_node = true;
  4528. }
  4529. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4530. ggml_set_op_params(result, &s, sizeof(s));
  4531. result->op = GGML_OP_SCALE;
  4532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4533. result->src[0] = a;
  4534. return result;
  4535. }
  4536. struct ggml_tensor * ggml_scale(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. float s) {
  4540. return ggml_scale_impl(ctx, a, s, false);
  4541. }
  4542. struct ggml_tensor * ggml_scale_inplace(
  4543. struct ggml_context * ctx,
  4544. struct ggml_tensor * a,
  4545. float s) {
  4546. return ggml_scale_impl(ctx, a, s, true);
  4547. }
  4548. // ggml_set
  4549. static struct ggml_tensor * ggml_set_impl(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a,
  4552. struct ggml_tensor * b,
  4553. size_t nb1,
  4554. size_t nb2,
  4555. size_t nb3,
  4556. size_t offset,
  4557. bool inplace) {
  4558. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4559. bool is_node = false;
  4560. if (a->grad || b->grad) {
  4561. is_node = true;
  4562. }
  4563. // make a view of the destination
  4564. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4565. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4566. ggml_set_op_params(result, params, sizeof(params));
  4567. result->op = GGML_OP_SET;
  4568. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4569. result->src[0] = a;
  4570. result->src[1] = b;
  4571. return result;
  4572. }
  4573. struct ggml_tensor * ggml_set(
  4574. struct ggml_context * ctx,
  4575. struct ggml_tensor * a,
  4576. struct ggml_tensor * b,
  4577. size_t nb1,
  4578. size_t nb2,
  4579. size_t nb3,
  4580. size_t offset) {
  4581. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4582. }
  4583. struct ggml_tensor * ggml_set_inplace(
  4584. struct ggml_context * ctx,
  4585. struct ggml_tensor * a,
  4586. struct ggml_tensor * b,
  4587. size_t nb1,
  4588. size_t nb2,
  4589. size_t nb3,
  4590. size_t offset) {
  4591. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4592. }
  4593. struct ggml_tensor * ggml_set_1d(
  4594. struct ggml_context * ctx,
  4595. struct ggml_tensor * a,
  4596. struct ggml_tensor * b,
  4597. size_t offset) {
  4598. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4599. }
  4600. struct ggml_tensor * ggml_set_1d_inplace(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a,
  4603. struct ggml_tensor * b,
  4604. size_t offset) {
  4605. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4606. }
  4607. struct ggml_tensor * ggml_set_2d(
  4608. struct ggml_context * ctx,
  4609. struct ggml_tensor * a,
  4610. struct ggml_tensor * b,
  4611. size_t nb1,
  4612. size_t offset) {
  4613. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4614. }
  4615. struct ggml_tensor * ggml_set_2d_inplace(
  4616. struct ggml_context * ctx,
  4617. struct ggml_tensor * a,
  4618. struct ggml_tensor * b,
  4619. size_t nb1,
  4620. size_t offset) {
  4621. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4622. }
  4623. // ggml_cpy
  4624. static struct ggml_tensor * ggml_cpy_impl(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. struct ggml_tensor * b) {
  4628. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4629. bool is_node = false;
  4630. if (a->grad || b->grad) {
  4631. // inplace is false and either one have a grad
  4632. is_node = true;
  4633. }
  4634. // make a view of the destination
  4635. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4636. if (strlen(b->name) > 0) {
  4637. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4638. } else {
  4639. ggml_format_name(result, "%s (copy)", a->name);
  4640. }
  4641. result->op = GGML_OP_CPY;
  4642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4643. result->src[0] = a;
  4644. result->src[1] = b;
  4645. return result;
  4646. }
  4647. struct ggml_tensor * ggml_cpy(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * a,
  4650. struct ggml_tensor * b) {
  4651. return ggml_cpy_impl(ctx, a, b);
  4652. }
  4653. struct ggml_tensor * ggml_cast(
  4654. struct ggml_context * ctx,
  4655. struct ggml_tensor * a,
  4656. enum ggml_type type) {
  4657. bool is_node = false;
  4658. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4659. ggml_format_name(result, "%s (copy)", a->name);
  4660. result->op = GGML_OP_CPY;
  4661. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4662. result->src[0] = a;
  4663. result->src[1] = result;
  4664. return result;
  4665. }
  4666. // ggml_cont
  4667. static struct ggml_tensor * ggml_cont_impl(
  4668. struct ggml_context * ctx,
  4669. struct ggml_tensor * a) {
  4670. bool is_node = false;
  4671. if (a->grad) {
  4672. is_node = true;
  4673. }
  4674. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4675. ggml_format_name(result, "%s (cont)", a->name);
  4676. result->op = GGML_OP_CONT;
  4677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4678. result->src[0] = a;
  4679. return result;
  4680. }
  4681. struct ggml_tensor * ggml_cont(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a) {
  4684. return ggml_cont_impl(ctx, a);
  4685. }
  4686. // make contiguous, with new shape
  4687. GGML_API struct ggml_tensor * ggml_cont_1d(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a,
  4690. int64_t ne0) {
  4691. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4692. }
  4693. GGML_API struct ggml_tensor * ggml_cont_2d(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. int64_t ne0,
  4697. int64_t ne1) {
  4698. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4699. }
  4700. GGML_API struct ggml_tensor * ggml_cont_3d(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a,
  4703. int64_t ne0,
  4704. int64_t ne1,
  4705. int64_t ne2) {
  4706. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4707. }
  4708. struct ggml_tensor * ggml_cont_4d(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. int64_t ne0,
  4712. int64_t ne1,
  4713. int64_t ne2,
  4714. int64_t ne3) {
  4715. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4716. bool is_node = false;
  4717. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4718. ggml_format_name(result, "%s (cont)", a->name);
  4719. result->op = GGML_OP_CONT;
  4720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4721. result->src[0] = a;
  4722. return result;
  4723. }
  4724. // ggml_reshape
  4725. struct ggml_tensor * ggml_reshape(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a,
  4728. struct ggml_tensor * b) {
  4729. GGML_ASSERT(ggml_is_contiguous(a));
  4730. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4731. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4732. bool is_node = false;
  4733. if (a->grad) {
  4734. is_node = true;
  4735. }
  4736. if (b->grad) {
  4737. // gradient propagation is not supported
  4738. //GGML_ASSERT(false);
  4739. }
  4740. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4741. ggml_format_name(result, "%s (reshaped)", a->name);
  4742. result->op = GGML_OP_RESHAPE;
  4743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4744. result->src[0] = a;
  4745. return result;
  4746. }
  4747. struct ggml_tensor * ggml_reshape_1d(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a,
  4750. int64_t ne0) {
  4751. GGML_ASSERT(ggml_is_contiguous(a));
  4752. GGML_ASSERT(ggml_nelements(a) == ne0);
  4753. bool is_node = false;
  4754. if (a->grad) {
  4755. is_node = true;
  4756. }
  4757. const int64_t ne[1] = { ne0 };
  4758. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4759. ggml_format_name(result, "%s (reshaped)", a->name);
  4760. result->op = GGML_OP_RESHAPE;
  4761. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4762. result->src[0] = a;
  4763. return result;
  4764. }
  4765. struct ggml_tensor * ggml_reshape_2d(
  4766. struct ggml_context * ctx,
  4767. struct ggml_tensor * a,
  4768. int64_t ne0,
  4769. int64_t ne1) {
  4770. GGML_ASSERT(ggml_is_contiguous(a));
  4771. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4772. bool is_node = false;
  4773. if (a->grad) {
  4774. is_node = true;
  4775. }
  4776. const int64_t ne[2] = { ne0, ne1 };
  4777. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4778. ggml_format_name(result, "%s (reshaped)", a->name);
  4779. result->op = GGML_OP_RESHAPE;
  4780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4781. result->src[0] = a;
  4782. return result;
  4783. }
  4784. struct ggml_tensor * ggml_reshape_3d(
  4785. struct ggml_context * ctx,
  4786. struct ggml_tensor * a,
  4787. int64_t ne0,
  4788. int64_t ne1,
  4789. int64_t ne2) {
  4790. GGML_ASSERT(ggml_is_contiguous(a));
  4791. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4792. bool is_node = false;
  4793. if (a->grad) {
  4794. is_node = true;
  4795. }
  4796. const int64_t ne[3] = { ne0, ne1, ne2 };
  4797. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4798. ggml_format_name(result, "%s (reshaped)", a->name);
  4799. result->op = GGML_OP_RESHAPE;
  4800. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4801. result->src[0] = a;
  4802. return result;
  4803. }
  4804. struct ggml_tensor * ggml_reshape_4d(
  4805. struct ggml_context * ctx,
  4806. struct ggml_tensor * a,
  4807. int64_t ne0,
  4808. int64_t ne1,
  4809. int64_t ne2,
  4810. int64_t ne3) {
  4811. GGML_ASSERT(ggml_is_contiguous(a));
  4812. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4813. bool is_node = false;
  4814. if (a->grad) {
  4815. is_node = true;
  4816. }
  4817. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4818. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4819. ggml_format_name(result, "%s (reshaped)", a->name);
  4820. result->op = GGML_OP_RESHAPE;
  4821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4822. result->src[0] = a;
  4823. return result;
  4824. }
  4825. static struct ggml_tensor * ggml_view_impl(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. int n_dims,
  4829. const int64_t * ne,
  4830. size_t offset) {
  4831. bool is_node = false;
  4832. if (a->grad) {
  4833. is_node = true;
  4834. }
  4835. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4836. ggml_format_name(result, "%s (view)", a->name);
  4837. ggml_set_op_params(result, &offset, sizeof(offset));
  4838. result->op = GGML_OP_VIEW;
  4839. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4840. result->src[0] = a;
  4841. return result;
  4842. }
  4843. // ggml_view_1d
  4844. struct ggml_tensor * ggml_view_1d(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. int64_t ne0,
  4848. size_t offset) {
  4849. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4850. return result;
  4851. }
  4852. // ggml_view_2d
  4853. struct ggml_tensor * ggml_view_2d(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. int64_t ne0,
  4857. int64_t ne1,
  4858. size_t nb1,
  4859. size_t offset) {
  4860. const int64_t ne[2] = { ne0, ne1 };
  4861. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4862. result->nb[1] = nb1;
  4863. result->nb[2] = result->nb[1]*ne1;
  4864. result->nb[3] = result->nb[2];
  4865. return result;
  4866. }
  4867. // ggml_view_3d
  4868. struct ggml_tensor * ggml_view_3d(
  4869. struct ggml_context * ctx,
  4870. struct ggml_tensor * a,
  4871. int64_t ne0,
  4872. int64_t ne1,
  4873. int64_t ne2,
  4874. size_t nb1,
  4875. size_t nb2,
  4876. size_t offset) {
  4877. const int64_t ne[3] = { ne0, ne1, ne2 };
  4878. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4879. result->nb[1] = nb1;
  4880. result->nb[2] = nb2;
  4881. result->nb[3] = result->nb[2]*ne2;
  4882. return result;
  4883. }
  4884. // ggml_view_4d
  4885. struct ggml_tensor * ggml_view_4d(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a,
  4888. int64_t ne0,
  4889. int64_t ne1,
  4890. int64_t ne2,
  4891. int64_t ne3,
  4892. size_t nb1,
  4893. size_t nb2,
  4894. size_t nb3,
  4895. size_t offset) {
  4896. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4897. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4898. result->nb[1] = nb1;
  4899. result->nb[2] = nb2;
  4900. result->nb[3] = nb3;
  4901. return result;
  4902. }
  4903. // ggml_permute
  4904. struct ggml_tensor * ggml_permute(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. int axis0,
  4908. int axis1,
  4909. int axis2,
  4910. int axis3) {
  4911. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4912. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4913. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4914. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4915. GGML_ASSERT(axis0 != axis1);
  4916. GGML_ASSERT(axis0 != axis2);
  4917. GGML_ASSERT(axis0 != axis3);
  4918. GGML_ASSERT(axis1 != axis2);
  4919. GGML_ASSERT(axis1 != axis3);
  4920. GGML_ASSERT(axis2 != axis3);
  4921. bool is_node = false;
  4922. if (a->grad) {
  4923. is_node = true;
  4924. }
  4925. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4926. ggml_format_name(result, "%s (permuted)", a->name);
  4927. int ne[GGML_MAX_DIMS];
  4928. int nb[GGML_MAX_DIMS];
  4929. ne[axis0] = a->ne[0];
  4930. ne[axis1] = a->ne[1];
  4931. ne[axis2] = a->ne[2];
  4932. ne[axis3] = a->ne[3];
  4933. nb[axis0] = a->nb[0];
  4934. nb[axis1] = a->nb[1];
  4935. nb[axis2] = a->nb[2];
  4936. nb[axis3] = a->nb[3];
  4937. result->ne[0] = ne[0];
  4938. result->ne[1] = ne[1];
  4939. result->ne[2] = ne[2];
  4940. result->ne[3] = ne[3];
  4941. result->nb[0] = nb[0];
  4942. result->nb[1] = nb[1];
  4943. result->nb[2] = nb[2];
  4944. result->nb[3] = nb[3];
  4945. result->op = GGML_OP_PERMUTE;
  4946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4947. result->src[0] = a;
  4948. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4949. ggml_set_op_params(result, params, sizeof(params));
  4950. return result;
  4951. }
  4952. // ggml_transpose
  4953. struct ggml_tensor * ggml_transpose(
  4954. struct ggml_context * ctx,
  4955. struct ggml_tensor * a) {
  4956. bool is_node = false;
  4957. if (a->grad) {
  4958. is_node = true;
  4959. }
  4960. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4961. ggml_format_name(result, "%s (transposed)", a->name);
  4962. result->ne[0] = a->ne[1];
  4963. result->ne[1] = a->ne[0];
  4964. result->nb[0] = a->nb[1];
  4965. result->nb[1] = a->nb[0];
  4966. result->op = GGML_OP_TRANSPOSE;
  4967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4968. result->src[0] = a;
  4969. return result;
  4970. }
  4971. // ggml_get_rows
  4972. struct ggml_tensor * ggml_get_rows(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. struct ggml_tensor * b) {
  4976. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4977. GGML_ASSERT(b->ne[3] == 1);
  4978. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4979. bool is_node = false;
  4980. if (a->grad || b->grad) {
  4981. is_node = true;
  4982. }
  4983. // TODO: implement non F32 return
  4984. enum ggml_type type = GGML_TYPE_F32;
  4985. if (a->type == GGML_TYPE_I32) {
  4986. type = a->type;
  4987. }
  4988. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4989. result->op = GGML_OP_GET_ROWS;
  4990. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4991. result->src[0] = a;
  4992. result->src[1] = b;
  4993. return result;
  4994. }
  4995. // ggml_get_rows_back
  4996. struct ggml_tensor * ggml_get_rows_back(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a,
  4999. struct ggml_tensor * b,
  5000. struct ggml_tensor * c) {
  5001. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5002. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5003. bool is_node = false;
  5004. if (a->grad || b->grad) {
  5005. is_node = true;
  5006. }
  5007. // TODO: implement non F32 return
  5008. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5009. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5010. result->op = GGML_OP_GET_ROWS_BACK;
  5011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5012. result->src[0] = a;
  5013. result->src[1] = b;
  5014. return result;
  5015. }
  5016. // ggml_diag
  5017. struct ggml_tensor * ggml_diag(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a) {
  5020. GGML_ASSERT(a->ne[1] == 1);
  5021. bool is_node = false;
  5022. if (a->grad) {
  5023. is_node = true;
  5024. }
  5025. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5026. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5027. result->op = GGML_OP_DIAG;
  5028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5029. result->src[0] = a;
  5030. return result;
  5031. }
  5032. // ggml_diag_mask_inf
  5033. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5034. struct ggml_context * ctx,
  5035. struct ggml_tensor * a,
  5036. int n_past,
  5037. bool inplace) {
  5038. bool is_node = false;
  5039. if (a->grad) {
  5040. is_node = true;
  5041. }
  5042. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5043. int32_t params[] = { n_past };
  5044. ggml_set_op_params(result, params, sizeof(params));
  5045. result->op = GGML_OP_DIAG_MASK_INF;
  5046. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5047. result->src[0] = a;
  5048. return result;
  5049. }
  5050. struct ggml_tensor * ggml_diag_mask_inf(
  5051. struct ggml_context * ctx,
  5052. struct ggml_tensor * a,
  5053. int n_past) {
  5054. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5055. }
  5056. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5057. struct ggml_context * ctx,
  5058. struct ggml_tensor * a,
  5059. int n_past) {
  5060. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5061. }
  5062. // ggml_diag_mask_zero
  5063. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5064. struct ggml_context * ctx,
  5065. struct ggml_tensor * a,
  5066. int n_past,
  5067. bool inplace) {
  5068. bool is_node = false;
  5069. if (a->grad) {
  5070. is_node = true;
  5071. }
  5072. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5073. int32_t params[] = { n_past };
  5074. ggml_set_op_params(result, params, sizeof(params));
  5075. result->op = GGML_OP_DIAG_MASK_ZERO;
  5076. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5077. result->src[0] = a;
  5078. return result;
  5079. }
  5080. struct ggml_tensor * ggml_diag_mask_zero(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. int n_past) {
  5084. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5085. }
  5086. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5087. struct ggml_context * ctx,
  5088. struct ggml_tensor * a,
  5089. int n_past) {
  5090. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5091. }
  5092. // ggml_soft_max
  5093. static struct ggml_tensor * ggml_soft_max_impl(
  5094. struct ggml_context * ctx,
  5095. struct ggml_tensor * a,
  5096. struct ggml_tensor * mask,
  5097. float scale,
  5098. float max_bias,
  5099. bool inplace) {
  5100. GGML_ASSERT(ggml_is_contiguous(a));
  5101. if (mask) {
  5102. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5103. GGML_ASSERT(ggml_is_contiguous(mask));
  5104. GGML_ASSERT(ggml_is_matrix(mask));
  5105. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5106. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5107. }
  5108. if (max_bias > 0.0f) {
  5109. GGML_ASSERT(mask);
  5110. }
  5111. bool is_node = false;
  5112. if (a->grad) {
  5113. is_node = true;
  5114. }
  5115. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5116. float params[] = { scale, max_bias };
  5117. ggml_set_op_params(result, params, sizeof(params));
  5118. result->op = GGML_OP_SOFT_MAX;
  5119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5120. result->src[0] = a;
  5121. result->src[1] = mask;
  5122. return result;
  5123. }
  5124. struct ggml_tensor * ggml_soft_max(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a) {
  5127. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5128. }
  5129. struct ggml_tensor * ggml_soft_max_inplace(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a) {
  5132. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5133. }
  5134. struct ggml_tensor * ggml_soft_max_ext(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a,
  5137. struct ggml_tensor * mask,
  5138. float scale,
  5139. float max_bias) {
  5140. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5141. }
  5142. // ggml_soft_max_back
  5143. static struct ggml_tensor * ggml_soft_max_back_impl(
  5144. struct ggml_context * ctx,
  5145. struct ggml_tensor * a,
  5146. struct ggml_tensor * b,
  5147. bool inplace) {
  5148. bool is_node = false;
  5149. if (a->grad || b->grad) {
  5150. is_node = true; // TODO : implement backward pass
  5151. }
  5152. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5153. result->op = GGML_OP_SOFT_MAX_BACK;
  5154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5155. result->src[0] = a;
  5156. result->src[1] = b;
  5157. return result;
  5158. }
  5159. struct ggml_tensor * ggml_soft_max_back(
  5160. struct ggml_context * ctx,
  5161. struct ggml_tensor * a,
  5162. struct ggml_tensor * b) {
  5163. return ggml_soft_max_back_impl(ctx, a, b, false);
  5164. }
  5165. struct ggml_tensor * ggml_soft_max_back_inplace(
  5166. struct ggml_context * ctx,
  5167. struct ggml_tensor * a,
  5168. struct ggml_tensor * b) {
  5169. return ggml_soft_max_back_impl(ctx, a, b, true);
  5170. }
  5171. // ggml_rope
  5172. static struct ggml_tensor * ggml_rope_impl(
  5173. struct ggml_context * ctx,
  5174. struct ggml_tensor * a,
  5175. struct ggml_tensor * b,
  5176. struct ggml_tensor * c,
  5177. int n_dims,
  5178. int mode,
  5179. int n_ctx,
  5180. int n_orig_ctx,
  5181. float freq_base,
  5182. float freq_scale,
  5183. float ext_factor,
  5184. float attn_factor,
  5185. float beta_fast,
  5186. float beta_slow,
  5187. float xpos_base,
  5188. bool xpos_down,
  5189. bool inplace) {
  5190. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5191. GGML_ASSERT(ggml_is_vector(b));
  5192. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5193. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5194. if (c) {
  5195. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5196. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5197. }
  5198. bool is_node = false;
  5199. if (a->grad) {
  5200. is_node = true;
  5201. }
  5202. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5203. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5204. memcpy(params + 5, &freq_base, sizeof(float));
  5205. memcpy(params + 6, &freq_scale, sizeof(float));
  5206. memcpy(params + 7, &ext_factor, sizeof(float));
  5207. memcpy(params + 8, &attn_factor, sizeof(float));
  5208. memcpy(params + 9, &beta_fast, sizeof(float));
  5209. memcpy(params + 10, &beta_slow, sizeof(float));
  5210. memcpy(params + 11, &xpos_base, sizeof(float));
  5211. memcpy(params + 12, &xpos_down, sizeof(bool));
  5212. ggml_set_op_params(result, params, sizeof(params));
  5213. result->op = GGML_OP_ROPE;
  5214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5215. result->src[0] = a;
  5216. result->src[1] = b;
  5217. result->src[2] = c;
  5218. return result;
  5219. }
  5220. struct ggml_tensor * ggml_rope(
  5221. struct ggml_context * ctx,
  5222. struct ggml_tensor * a,
  5223. struct ggml_tensor * b,
  5224. int n_dims,
  5225. int mode,
  5226. int n_ctx) {
  5227. return ggml_rope_impl(
  5228. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5229. );
  5230. }
  5231. struct ggml_tensor * ggml_rope_inplace(
  5232. struct ggml_context * ctx,
  5233. struct ggml_tensor * a,
  5234. struct ggml_tensor * b,
  5235. int n_dims,
  5236. int mode,
  5237. int n_ctx) {
  5238. return ggml_rope_impl(
  5239. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5240. );
  5241. }
  5242. struct ggml_tensor * ggml_rope_ext(
  5243. struct ggml_context * ctx,
  5244. struct ggml_tensor * a,
  5245. struct ggml_tensor * b,
  5246. struct ggml_tensor * c,
  5247. int n_dims,
  5248. int mode,
  5249. int n_ctx,
  5250. int n_orig_ctx,
  5251. float freq_base,
  5252. float freq_scale,
  5253. float ext_factor,
  5254. float attn_factor,
  5255. float beta_fast,
  5256. float beta_slow) {
  5257. return ggml_rope_impl(
  5258. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5259. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5260. );
  5261. }
  5262. struct ggml_tensor * ggml_rope_ext_inplace(
  5263. struct ggml_context * ctx,
  5264. struct ggml_tensor * a,
  5265. struct ggml_tensor * b,
  5266. struct ggml_tensor * c,
  5267. int n_dims,
  5268. int mode,
  5269. int n_ctx,
  5270. int n_orig_ctx,
  5271. float freq_base,
  5272. float freq_scale,
  5273. float ext_factor,
  5274. float attn_factor,
  5275. float beta_fast,
  5276. float beta_slow) {
  5277. return ggml_rope_impl(
  5278. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5279. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5280. );
  5281. }
  5282. struct ggml_tensor * ggml_rope_custom(
  5283. struct ggml_context * ctx,
  5284. struct ggml_tensor * a,
  5285. struct ggml_tensor * b,
  5286. int n_dims,
  5287. int mode,
  5288. int n_ctx,
  5289. int n_orig_ctx,
  5290. float freq_base,
  5291. float freq_scale,
  5292. float ext_factor,
  5293. float attn_factor,
  5294. float beta_fast,
  5295. float beta_slow) {
  5296. return ggml_rope_impl(
  5297. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5298. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5299. );
  5300. }
  5301. struct ggml_tensor * ggml_rope_custom_inplace(
  5302. struct ggml_context * ctx,
  5303. struct ggml_tensor * a,
  5304. struct ggml_tensor * b,
  5305. int n_dims,
  5306. int mode,
  5307. int n_ctx,
  5308. int n_orig_ctx,
  5309. float freq_base,
  5310. float freq_scale,
  5311. float ext_factor,
  5312. float attn_factor,
  5313. float beta_fast,
  5314. float beta_slow) {
  5315. return ggml_rope_impl(
  5316. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5317. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5318. );
  5319. }
  5320. struct ggml_tensor * ggml_rope_xpos_inplace(
  5321. struct ggml_context * ctx,
  5322. struct ggml_tensor * a,
  5323. struct ggml_tensor * b,
  5324. int n_dims,
  5325. float base,
  5326. bool down) {
  5327. return ggml_rope_impl(ctx, a, b, NULL, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  5328. }
  5329. // ggml_rope_back
  5330. struct ggml_tensor * ggml_rope_back(
  5331. struct ggml_context * ctx,
  5332. struct ggml_tensor * a,
  5333. struct ggml_tensor * b,
  5334. struct ggml_tensor * c,
  5335. int n_dims,
  5336. int mode,
  5337. int n_ctx,
  5338. int n_orig_ctx,
  5339. float freq_base,
  5340. float freq_scale,
  5341. float ext_factor,
  5342. float attn_factor,
  5343. float beta_fast,
  5344. float beta_slow,
  5345. float xpos_base,
  5346. bool xpos_down) {
  5347. GGML_ASSERT(ggml_is_vector(b));
  5348. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5349. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5350. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5351. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5352. bool is_node = false;
  5353. if (a->grad) {
  5354. is_node = false; // TODO: implement backward
  5355. }
  5356. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5357. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5358. memcpy(params + 5, &freq_base, sizeof(float));
  5359. memcpy(params + 6, &freq_scale, sizeof(float));
  5360. memcpy(params + 7, &ext_factor, sizeof(float));
  5361. memcpy(params + 8, &attn_factor, sizeof(float));
  5362. memcpy(params + 9, &beta_fast, sizeof(float));
  5363. memcpy(params + 10, &beta_slow, sizeof(float));
  5364. memcpy(params + 11, &xpos_base, sizeof(float));
  5365. memcpy(params + 12, &xpos_down, sizeof(bool));
  5366. ggml_set_op_params(result, params, sizeof(params));
  5367. result->op = GGML_OP_ROPE_BACK;
  5368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5369. result->src[0] = a;
  5370. result->src[1] = b;
  5371. return result;
  5372. }
  5373. // ggml_clamp
  5374. struct ggml_tensor * ggml_clamp(
  5375. struct ggml_context * ctx,
  5376. struct ggml_tensor * a,
  5377. float min,
  5378. float max) {
  5379. bool is_node = false;
  5380. if (a->grad) {
  5381. GGML_ASSERT(false); // TODO: implement backward
  5382. is_node = true;
  5383. }
  5384. // TODO: when implement backward, fix this:
  5385. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5386. float params[] = { min, max };
  5387. ggml_set_op_params(result, params, sizeof(params));
  5388. result->op = GGML_OP_CLAMP;
  5389. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5390. result->src[0] = a;
  5391. return result;
  5392. }
  5393. // ggml_conv_1d
  5394. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5395. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5396. }
  5397. GGML_API struct ggml_tensor * ggml_conv_1d(
  5398. struct ggml_context * ctx,
  5399. struct ggml_tensor * a,
  5400. struct ggml_tensor * b,
  5401. int s0,
  5402. int p0,
  5403. int d0) {
  5404. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5405. struct ggml_tensor * result =
  5406. ggml_mul_mat(ctx,
  5407. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5408. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5409. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5410. return result;
  5411. }
  5412. // ggml_conv_1d_ph
  5413. struct ggml_tensor* ggml_conv_1d_ph(
  5414. struct ggml_context * ctx,
  5415. struct ggml_tensor * a,
  5416. struct ggml_tensor * b,
  5417. int s,
  5418. int d) {
  5419. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5420. }
  5421. // ggml_conv_transpose_1d
  5422. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5423. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5424. }
  5425. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5426. struct ggml_context * ctx,
  5427. struct ggml_tensor * a,
  5428. struct ggml_tensor * b,
  5429. int s0,
  5430. int p0,
  5431. int d0) {
  5432. GGML_ASSERT(ggml_is_matrix(b));
  5433. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5434. GGML_ASSERT(a->ne[3] == 1);
  5435. GGML_ASSERT(p0 == 0);
  5436. GGML_ASSERT(d0 == 1);
  5437. bool is_node = false;
  5438. if (a->grad || b->grad) {
  5439. GGML_ASSERT(false); // TODO: implement backward
  5440. is_node = true;
  5441. }
  5442. const int64_t ne[4] = {
  5443. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5444. a->ne[1], b->ne[2], 1,
  5445. };
  5446. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5447. int32_t params[] = { s0, p0, d0 };
  5448. ggml_set_op_params(result, params, sizeof(params));
  5449. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5451. result->src[0] = a;
  5452. result->src[1] = b;
  5453. return result;
  5454. }
  5455. // ggml_conv_depthwise
  5456. struct ggml_tensor * ggml_conv_depthwise_2d(
  5457. struct ggml_context * ctx,
  5458. struct ggml_tensor * a,
  5459. struct ggml_tensor * b,
  5460. int s0,
  5461. int s1,
  5462. int p0,
  5463. int p1,
  5464. int d0,
  5465. int d1) {
  5466. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5467. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5468. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5469. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5470. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5471. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5472. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5473. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5474. return result;
  5475. }
  5476. // ggml_conv_2d
  5477. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5478. // a: [OC,IC, KH, KW]
  5479. // b: [N, IC, IH, IW]
  5480. // result: [N, OH, OW, IC*KH*KW]
  5481. struct ggml_tensor * ggml_im2col(
  5482. struct ggml_context * ctx,
  5483. struct ggml_tensor * a,
  5484. struct ggml_tensor * b,
  5485. int s0,
  5486. int s1,
  5487. int p0,
  5488. int p1,
  5489. int d0,
  5490. int d1,
  5491. bool is_2D,
  5492. enum ggml_type dst_type) {
  5493. if(is_2D) {
  5494. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5495. } else {
  5496. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5497. }
  5498. bool is_node = false;
  5499. if (a->grad || b->grad) {
  5500. GGML_ASSERT(false); // TODO: implement backward
  5501. is_node = true;
  5502. }
  5503. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5504. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5505. const int64_t ne[4] = {
  5506. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5507. OW,
  5508. is_2D ? OH : b->ne[2],
  5509. is_2D ? b->ne[3] : 1,
  5510. };
  5511. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5512. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5513. ggml_set_op_params(result, params, sizeof(params));
  5514. result->op = GGML_OP_IM2COL;
  5515. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5516. result->src[0] = a;
  5517. result->src[1] = b;
  5518. return result;
  5519. }
  5520. // a: [OC,IC, KH, KW]
  5521. // b: [N, IC, IH, IW]
  5522. // result: [N, OC, OH, OW]
  5523. struct ggml_tensor * ggml_conv_2d(
  5524. struct ggml_context * ctx,
  5525. struct ggml_tensor * a,
  5526. struct ggml_tensor * b,
  5527. int s0,
  5528. int s1,
  5529. int p0,
  5530. int p1,
  5531. int d0,
  5532. int d1) {
  5533. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5534. struct ggml_tensor * result =
  5535. ggml_mul_mat(ctx,
  5536. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5537. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5538. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5539. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5540. return result;
  5541. }
  5542. // ggml_conv_2d_sk_p0
  5543. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5544. struct ggml_context * ctx,
  5545. struct ggml_tensor * a,
  5546. struct ggml_tensor * b) {
  5547. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5548. }
  5549. // ggml_conv_2d_s1_ph
  5550. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5551. struct ggml_context * ctx,
  5552. struct ggml_tensor * a,
  5553. struct ggml_tensor * b) {
  5554. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5555. }
  5556. // ggml_conv_transpose_2d_p0
  5557. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5558. return (ins - 1) * s - 2 * p + ks;
  5559. }
  5560. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5561. struct ggml_context * ctx,
  5562. struct ggml_tensor * a,
  5563. struct ggml_tensor * b,
  5564. int stride) {
  5565. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5566. bool is_node = false;
  5567. if (a->grad || b->grad) {
  5568. GGML_ASSERT(false); // TODO: implement backward
  5569. is_node = true;
  5570. }
  5571. const int64_t ne[4] = {
  5572. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5573. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5574. a->ne[2], b->ne[3],
  5575. };
  5576. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5577. ggml_set_op_params_i32(result, 0, stride);
  5578. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5579. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5580. result->src[0] = a;
  5581. result->src[1] = b;
  5582. return result;
  5583. }
  5584. // ggml_pool_*
  5585. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5586. return (ins + 2 * p - ks) / s + 1;
  5587. }
  5588. // ggml_pool_1d
  5589. struct ggml_tensor * ggml_pool_1d(
  5590. struct ggml_context * ctx,
  5591. struct ggml_tensor * a,
  5592. enum ggml_op_pool op,
  5593. int k0,
  5594. int s0,
  5595. int p0) {
  5596. bool is_node = false;
  5597. if (a->grad) {
  5598. GGML_ASSERT(false); // TODO: implement backward
  5599. is_node = true;
  5600. }
  5601. const int64_t ne[4] = {
  5602. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5603. a->ne[1],
  5604. a->ne[2],
  5605. a->ne[3],
  5606. };
  5607. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5608. int32_t params[] = { op, k0, s0, p0 };
  5609. ggml_set_op_params(result, params, sizeof(params));
  5610. result->op = GGML_OP_POOL_1D;
  5611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5612. result->src[0] = a;
  5613. return result;
  5614. }
  5615. // ggml_pool_2d
  5616. struct ggml_tensor * ggml_pool_2d(
  5617. struct ggml_context * ctx,
  5618. struct ggml_tensor * a,
  5619. enum ggml_op_pool op,
  5620. int k0,
  5621. int k1,
  5622. int s0,
  5623. int s1,
  5624. float p0,
  5625. float p1) {
  5626. bool is_node = false;
  5627. if (a->grad) {
  5628. GGML_ASSERT(false); // TODO: implement backward
  5629. is_node = true;
  5630. }
  5631. struct ggml_tensor * result;
  5632. const int64_t ne[3] = {
  5633. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5634. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5635. a->ne[2],
  5636. };
  5637. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5638. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5639. ggml_set_op_params(result, params, sizeof(params));
  5640. result->op = GGML_OP_POOL_2D;
  5641. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5642. result->src[0] = a;
  5643. return result;
  5644. }
  5645. // ggml_upscale
  5646. static struct ggml_tensor * ggml_upscale_impl(
  5647. struct ggml_context * ctx,
  5648. struct ggml_tensor * a,
  5649. int ne0,
  5650. int ne1,
  5651. int ne2,
  5652. int ne3) {
  5653. bool is_node = false;
  5654. if (a->grad) {
  5655. GGML_ASSERT(false); // TODO: implement backward
  5656. is_node = true;
  5657. }
  5658. GGML_ASSERT(a->ne[0] <= ne0);
  5659. GGML_ASSERT(a->ne[1] <= ne1);
  5660. GGML_ASSERT(a->ne[2] <= ne2);
  5661. GGML_ASSERT(a->ne[3] <= ne3);
  5662. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5663. ne0,
  5664. ne1,
  5665. ne2,
  5666. ne3
  5667. );
  5668. result->op = GGML_OP_UPSCALE;
  5669. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5670. result->src[0] = a;
  5671. return result;
  5672. }
  5673. struct ggml_tensor * ggml_upscale(
  5674. struct ggml_context * ctx,
  5675. struct ggml_tensor * a,
  5676. int scale_factor) {
  5677. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5678. }
  5679. struct ggml_tensor * ggml_upscale_ext(
  5680. struct ggml_context * ctx,
  5681. struct ggml_tensor * a,
  5682. int ne0,
  5683. int ne1,
  5684. int ne2,
  5685. int ne3) {
  5686. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5687. }
  5688. // ggml_pad
  5689. struct ggml_tensor * ggml_pad(
  5690. struct ggml_context * ctx,
  5691. struct ggml_tensor * a,
  5692. int p0, int p1, int p2, int p3) {
  5693. bool is_node = false;
  5694. if (a->grad) {
  5695. GGML_ASSERT(false); // TODO: implement backward
  5696. is_node = true;
  5697. }
  5698. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5699. a->ne[0] + p0,
  5700. a->ne[1] + p1,
  5701. a->ne[2] + p2,
  5702. a->ne[3] + p3);
  5703. result->op = GGML_OP_PAD;
  5704. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5705. result->src[0] = a;
  5706. return result;
  5707. }
  5708. // ggml_arange
  5709. struct ggml_tensor * ggml_arange(
  5710. struct ggml_context * ctx,
  5711. float start,
  5712. float stop,
  5713. float step) {
  5714. GGML_ASSERT(stop > start);
  5715. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5716. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5717. result->op = GGML_OP_ARANGE;
  5718. ggml_set_op_params_f32(result, 0, start);
  5719. ggml_set_op_params_f32(result, 1, stop);
  5720. ggml_set_op_params_f32(result, 2, step);
  5721. return result;
  5722. }
  5723. // ggml_timestep_embedding
  5724. struct ggml_tensor * ggml_timestep_embedding(
  5725. struct ggml_context * ctx,
  5726. struct ggml_tensor * timesteps,
  5727. int dim,
  5728. int max_period) {
  5729. bool is_node = false;
  5730. if (timesteps->grad) {
  5731. GGML_ASSERT(false); // TODO: implement backward
  5732. is_node = true;
  5733. }
  5734. int actual_dim = dim;
  5735. if (dim % 2 != 0) {
  5736. actual_dim = dim + 1;
  5737. }
  5738. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5739. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5740. ggml_set_op_params_i32(result, 0, dim);
  5741. ggml_set_op_params_i32(result, 1, max_period);
  5742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5743. result->src[0] = timesteps;
  5744. return result;
  5745. }
  5746. // ggml_argsort
  5747. struct ggml_tensor * ggml_argsort(
  5748. struct ggml_context * ctx,
  5749. struct ggml_tensor * a,
  5750. enum ggml_sort_order order) {
  5751. bool is_node = false;
  5752. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5753. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5754. result->op = GGML_OP_ARGSORT;
  5755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5756. result->src[0] = a;
  5757. return result;
  5758. }
  5759. // ggml_top_k
  5760. struct ggml_tensor * ggml_top_k(
  5761. struct ggml_context * ctx,
  5762. struct ggml_tensor * a,
  5763. int k) {
  5764. GGML_ASSERT(a->ne[0] >= k);
  5765. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5766. result = ggml_view_4d(ctx, result,
  5767. k, result->ne[1], result->ne[2], result->ne[3],
  5768. result->nb[1], result->nb[2], result->nb[3],
  5769. 0);
  5770. return result;
  5771. }
  5772. // ggml_flash_attn_ext
  5773. struct ggml_tensor * ggml_flash_attn_ext(
  5774. struct ggml_context * ctx,
  5775. struct ggml_tensor * q,
  5776. struct ggml_tensor * k,
  5777. struct ggml_tensor * v,
  5778. struct ggml_tensor * mask,
  5779. float scale,
  5780. float max_bias) {
  5781. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5782. // TODO: check if vT can be multiplied by (k*qT)
  5783. if (mask) {
  5784. GGML_ASSERT(ggml_is_contiguous(mask));
  5785. GGML_ASSERT(mask->ne[2] == 1);
  5786. GGML_ASSERT(mask->ne[3] == 1);
  5787. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5788. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5789. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5790. }
  5791. if (max_bias > 0.0f) {
  5792. GGML_ASSERT(mask);
  5793. }
  5794. bool is_node = false;
  5795. if (q->grad || k->grad || v->grad) {
  5796. is_node = true;
  5797. }
  5798. // permute(0, 2, 1, 3)
  5799. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5800. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5801. float params[] = { scale, max_bias };
  5802. ggml_set_op_params(result, params, sizeof(params));
  5803. result->op = GGML_OP_FLASH_ATTN_EXT;
  5804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5805. result->src[0] = q;
  5806. result->src[1] = k;
  5807. result->src[2] = v;
  5808. result->src[3] = mask;
  5809. return result;
  5810. }
  5811. void ggml_flash_attn_ext_set_prec(
  5812. struct ggml_tensor * a,
  5813. enum ggml_prec prec) {
  5814. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5815. const int32_t prec_i32 = (int32_t) prec;
  5816. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5817. }
  5818. // ggml_flash_attn_back
  5819. struct ggml_tensor * ggml_flash_attn_back(
  5820. struct ggml_context * ctx,
  5821. struct ggml_tensor * q,
  5822. struct ggml_tensor * k,
  5823. struct ggml_tensor * v,
  5824. struct ggml_tensor * d,
  5825. bool masked) {
  5826. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5827. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5828. // TODO: check if vT can be multiplied by (k*qT)
  5829. // d shape [D,N,ne2,ne3]
  5830. // q shape [D,N,ne2,ne3]
  5831. // k shape [D,M,kvne2,ne3]
  5832. // v shape [M,D,kvne2,ne3]
  5833. const int64_t D = q->ne[0];
  5834. const int64_t N = q->ne[1];
  5835. const int64_t M = k->ne[1];
  5836. const int64_t ne2 = q->ne[2];
  5837. const int64_t ne3 = q->ne[3];
  5838. const int64_t kvne2 = k->ne[2];
  5839. GGML_ASSERT(k->ne[0] == D);
  5840. GGML_ASSERT(v->ne[0] == M);
  5841. GGML_ASSERT(v->ne[1] == D);
  5842. GGML_ASSERT(d->ne[0] == D);
  5843. GGML_ASSERT(d->ne[1] == N);
  5844. GGML_ASSERT(k->ne[2] == kvne2);
  5845. GGML_ASSERT(k->ne[3] == ne3);
  5846. GGML_ASSERT(v->ne[2] == kvne2);
  5847. GGML_ASSERT(v->ne[3] == ne3);
  5848. GGML_ASSERT(d->ne[2] == ne2);
  5849. GGML_ASSERT(d->ne[3] == ne3);
  5850. GGML_ASSERT(ne2 % kvne2 == 0);
  5851. bool is_node = false;
  5852. if (q->grad || k->grad || v->grad) {
  5853. // when using this operation (in backwards pass) these grads are set.
  5854. // we don't want to create (big) grad of our result, so is_node is false.
  5855. is_node = false;
  5856. }
  5857. // store gradients of q, k and v as continuous tensors concatenated in result.
  5858. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5859. const int64_t elem_q = ggml_nelements(q);
  5860. const int64_t elem_k = ggml_nelements(k);
  5861. const int64_t elem_v = ggml_nelements(v);
  5862. enum ggml_type result_type = GGML_TYPE_F32;
  5863. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5864. const size_t tsize = ggml_type_size(result_type);
  5865. const size_t offs_q = 0;
  5866. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5867. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5868. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5869. const size_t nelements = (end + tsize - 1)/tsize;
  5870. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5871. int32_t masked_i = masked ? 1 : 0;
  5872. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5873. result->op = GGML_OP_FLASH_ATTN_BACK;
  5874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5875. result->src[0] = q;
  5876. result->src[1] = k;
  5877. result->src[2] = v;
  5878. result->src[3] = d;
  5879. return result;
  5880. }
  5881. // ggml_ssm_conv
  5882. struct ggml_tensor * ggml_ssm_conv(
  5883. struct ggml_context * ctx,
  5884. struct ggml_tensor * s,
  5885. struct ggml_tensor * x,
  5886. struct ggml_tensor * c,
  5887. struct ggml_tensor * sq) {
  5888. GGML_ASSERT(ggml_is_3d(s));
  5889. GGML_ASSERT(ggml_is_matrix(x));
  5890. GGML_ASSERT(ggml_is_matrix(c));
  5891. GGML_ASSERT(ggml_is_matrix(sq));
  5892. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5893. const int64_t d_conv = c->ne[0];
  5894. const int64_t d_inner = c->ne[1];
  5895. const int64_t n_tokens = x->ne[1];
  5896. const int64_t n_kv = s->ne[2];
  5897. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5898. GGML_ASSERT( s->ne[1] == d_inner);
  5899. GGML_ASSERT( x->ne[0] == d_inner);
  5900. GGML_ASSERT(sq->ne[0] == n_kv);
  5901. GGML_ASSERT(sq->ne[1] == n_tokens);
  5902. bool is_node = false;
  5903. if (s->grad || x->grad || c->grad || sq->grad) {
  5904. GGML_ASSERT(false); // TODO: implement
  5905. is_node = true;
  5906. }
  5907. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5908. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5909. result->op = GGML_OP_SSM_CONV;
  5910. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5911. result->src[0] = s;
  5912. result->src[1] = x;
  5913. result->src[2] = c;
  5914. result->src[3] = sq;
  5915. return result;
  5916. }
  5917. // ggml_ssm_scan
  5918. struct ggml_tensor * ggml_ssm_scan(
  5919. struct ggml_context * ctx,
  5920. struct ggml_tensor * s,
  5921. struct ggml_tensor * x,
  5922. struct ggml_tensor * dt,
  5923. struct ggml_tensor * A,
  5924. struct ggml_tensor * B,
  5925. struct ggml_tensor * C,
  5926. struct ggml_tensor * sq) {
  5927. GGML_ASSERT(ggml_is_contiguous(s));
  5928. GGML_ASSERT(ggml_is_contiguous(x));
  5929. GGML_ASSERT(ggml_is_contiguous(dt));
  5930. GGML_ASSERT(ggml_is_contiguous(A));
  5931. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5932. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5933. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5934. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5935. {
  5936. const int64_t d_state = s->ne[0];
  5937. const int64_t d_inner = s->ne[1];
  5938. const int64_t n_tokens = x->ne[1];
  5939. GGML_ASSERT(x->ne[0] == d_inner);
  5940. GGML_ASSERT(A->ne[0] == d_state);
  5941. GGML_ASSERT(A->ne[1] == d_inner);
  5942. GGML_ASSERT(B->ne[0] == d_state);
  5943. GGML_ASSERT(B->ne[1] == n_tokens);
  5944. GGML_ASSERT(C->ne[0] == d_state);
  5945. GGML_ASSERT(C->ne[1] == n_tokens);
  5946. }
  5947. bool is_node = false;
  5948. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5949. GGML_ASSERT(false); // TODO: implement
  5950. is_node = true;
  5951. }
  5952. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5953. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5954. result->op = GGML_OP_SSM_SCAN;
  5955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5956. result->src[0] = s;
  5957. result->src[1] = x;
  5958. result->src[2] = dt;
  5959. result->src[3] = A;
  5960. result->src[4] = B;
  5961. result->src[5] = C;
  5962. result->src[6] = sq;
  5963. return result;
  5964. }
  5965. // ggml_win_part
  5966. struct ggml_tensor * ggml_win_part(
  5967. struct ggml_context * ctx,
  5968. struct ggml_tensor * a,
  5969. int w) {
  5970. GGML_ASSERT(a->ne[3] == 1);
  5971. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5972. bool is_node = false;
  5973. if (a->grad) {
  5974. GGML_ASSERT(false); // TODO: implement backward
  5975. is_node = true;
  5976. }
  5977. // padding
  5978. const int px = (w - a->ne[1]%w)%w;
  5979. const int py = (w - a->ne[2]%w)%w;
  5980. const int npx = (px + a->ne[1])/w;
  5981. const int npy = (py + a->ne[2])/w;
  5982. const int np = npx*npy;
  5983. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5984. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5985. int32_t params[] = { npx, npy, w };
  5986. ggml_set_op_params(result, params, sizeof(params));
  5987. result->op = GGML_OP_WIN_PART;
  5988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5989. result->src[0] = a;
  5990. return result;
  5991. }
  5992. // ggml_win_unpart
  5993. struct ggml_tensor * ggml_win_unpart(
  5994. struct ggml_context * ctx,
  5995. struct ggml_tensor * a,
  5996. int w0,
  5997. int h0,
  5998. int w) {
  5999. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6000. bool is_node = false;
  6001. if (a->grad) {
  6002. GGML_ASSERT(false); // TODO: implement backward
  6003. is_node = true;
  6004. }
  6005. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6006. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6007. int32_t params[] = { w };
  6008. ggml_set_op_params(result, params, sizeof(params));
  6009. result->op = GGML_OP_WIN_UNPART;
  6010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6011. result->src[0] = a;
  6012. return result;
  6013. }
  6014. // ggml_get_rel_pos
  6015. struct ggml_tensor * ggml_get_rel_pos(
  6016. struct ggml_context * ctx,
  6017. struct ggml_tensor * a,
  6018. int qh,
  6019. int kh) {
  6020. GGML_ASSERT(qh == kh);
  6021. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6022. bool is_node = false;
  6023. if (a->grad) {
  6024. GGML_ASSERT(false); // TODO: implement backward
  6025. is_node = true;
  6026. }
  6027. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6028. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6029. result->op = GGML_OP_GET_REL_POS;
  6030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6031. result->src[0] = a;
  6032. return result;
  6033. }
  6034. // ggml_add_rel_pos
  6035. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6036. struct ggml_context * ctx,
  6037. struct ggml_tensor * a,
  6038. struct ggml_tensor * pw,
  6039. struct ggml_tensor * ph,
  6040. bool inplace) {
  6041. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6042. GGML_ASSERT(ggml_is_contiguous(a));
  6043. GGML_ASSERT(ggml_is_contiguous(pw));
  6044. GGML_ASSERT(ggml_is_contiguous(ph));
  6045. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6046. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6047. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6048. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6049. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6050. bool is_node = false;
  6051. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6052. is_node = true;
  6053. }
  6054. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6055. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6056. result->op = GGML_OP_ADD_REL_POS;
  6057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6058. result->src[0] = a;
  6059. result->src[1] = pw;
  6060. result->src[2] = ph;
  6061. return result;
  6062. }
  6063. struct ggml_tensor * ggml_add_rel_pos(
  6064. struct ggml_context * ctx,
  6065. struct ggml_tensor * a,
  6066. struct ggml_tensor * pw,
  6067. struct ggml_tensor * ph) {
  6068. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6069. }
  6070. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6071. struct ggml_context * ctx,
  6072. struct ggml_tensor * a,
  6073. struct ggml_tensor * pw,
  6074. struct ggml_tensor * ph) {
  6075. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6076. }
  6077. // gmml_unary
  6078. static struct ggml_tensor * ggml_unary_impl(
  6079. struct ggml_context * ctx,
  6080. struct ggml_tensor * a,
  6081. enum ggml_unary_op op,
  6082. bool inplace) {
  6083. bool is_node = false;
  6084. if (!inplace && (a->grad)) {
  6085. is_node = true;
  6086. }
  6087. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6088. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6089. result->op = GGML_OP_UNARY;
  6090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6091. result->src[0] = a;
  6092. return result;
  6093. }
  6094. struct ggml_tensor * ggml_unary(
  6095. struct ggml_context * ctx,
  6096. struct ggml_tensor * a,
  6097. enum ggml_unary_op op) {
  6098. return ggml_unary_impl(ctx, a, op, false);
  6099. }
  6100. struct ggml_tensor * ggml_unary_inplace(
  6101. struct ggml_context * ctx,
  6102. struct ggml_tensor * a,
  6103. enum ggml_unary_op op) {
  6104. return ggml_unary_impl(ctx, a, op, true);
  6105. }
  6106. // ggml_map_unary
  6107. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6108. struct ggml_context * ctx,
  6109. struct ggml_tensor * a,
  6110. const ggml_unary_op_f32_t fun,
  6111. bool inplace) {
  6112. bool is_node = false;
  6113. if (!inplace && a->grad) {
  6114. is_node = true;
  6115. }
  6116. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6117. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6118. result->op = GGML_OP_MAP_UNARY;
  6119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6120. result->src[0] = a;
  6121. return result;
  6122. }
  6123. struct ggml_tensor * ggml_map_unary_f32(
  6124. struct ggml_context * ctx,
  6125. struct ggml_tensor * a,
  6126. const ggml_unary_op_f32_t fun) {
  6127. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6128. }
  6129. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6130. struct ggml_context * ctx,
  6131. struct ggml_tensor * a,
  6132. const ggml_unary_op_f32_t fun) {
  6133. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6134. }
  6135. // ggml_map_binary
  6136. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6137. struct ggml_context * ctx,
  6138. struct ggml_tensor * a,
  6139. struct ggml_tensor * b,
  6140. const ggml_binary_op_f32_t fun,
  6141. bool inplace) {
  6142. GGML_ASSERT(ggml_are_same_shape(a, b));
  6143. bool is_node = false;
  6144. if (!inplace && (a->grad || b->grad)) {
  6145. is_node = true;
  6146. }
  6147. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6148. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6149. result->op = GGML_OP_MAP_BINARY;
  6150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6151. result->src[0] = a;
  6152. result->src[1] = b;
  6153. return result;
  6154. }
  6155. struct ggml_tensor * ggml_map_binary_f32(
  6156. struct ggml_context * ctx,
  6157. struct ggml_tensor * a,
  6158. struct ggml_tensor * b,
  6159. const ggml_binary_op_f32_t fun) {
  6160. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6161. }
  6162. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6163. struct ggml_context * ctx,
  6164. struct ggml_tensor * a,
  6165. struct ggml_tensor * b,
  6166. const ggml_binary_op_f32_t fun) {
  6167. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6168. }
  6169. // ggml_map_custom1_f32
  6170. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6171. struct ggml_context * ctx,
  6172. struct ggml_tensor * a,
  6173. const ggml_custom1_op_f32_t fun,
  6174. bool inplace) {
  6175. bool is_node = false;
  6176. if (!inplace && a->grad) {
  6177. is_node = true;
  6178. }
  6179. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6180. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6181. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6183. result->src[0] = a;
  6184. return result;
  6185. }
  6186. struct ggml_tensor * ggml_map_custom1_f32(
  6187. struct ggml_context * ctx,
  6188. struct ggml_tensor * a,
  6189. const ggml_custom1_op_f32_t fun) {
  6190. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6191. }
  6192. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6193. struct ggml_context * ctx,
  6194. struct ggml_tensor * a,
  6195. const ggml_custom1_op_f32_t fun) {
  6196. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6197. }
  6198. // ggml_map_custom2_f32
  6199. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6200. struct ggml_context * ctx,
  6201. struct ggml_tensor * a,
  6202. struct ggml_tensor * b,
  6203. const ggml_custom2_op_f32_t fun,
  6204. bool inplace) {
  6205. bool is_node = false;
  6206. if (!inplace && (a->grad || b->grad)) {
  6207. is_node = true;
  6208. }
  6209. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6210. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6211. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6213. result->src[0] = a;
  6214. result->src[1] = b;
  6215. return result;
  6216. }
  6217. struct ggml_tensor * ggml_map_custom2_f32(
  6218. struct ggml_context * ctx,
  6219. struct ggml_tensor * a,
  6220. struct ggml_tensor * b,
  6221. const ggml_custom2_op_f32_t fun) {
  6222. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6223. }
  6224. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6225. struct ggml_context * ctx,
  6226. struct ggml_tensor * a,
  6227. struct ggml_tensor * b,
  6228. const ggml_custom2_op_f32_t fun) {
  6229. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6230. }
  6231. // ggml_map_custom3_f32
  6232. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6233. struct ggml_context * ctx,
  6234. struct ggml_tensor * a,
  6235. struct ggml_tensor * b,
  6236. struct ggml_tensor * c,
  6237. const ggml_custom3_op_f32_t fun,
  6238. bool inplace) {
  6239. bool is_node = false;
  6240. if (!inplace && (a->grad || b->grad || c->grad)) {
  6241. is_node = true;
  6242. }
  6243. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6244. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6245. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6247. result->src[0] = a;
  6248. result->src[1] = b;
  6249. result->src[2] = c;
  6250. return result;
  6251. }
  6252. struct ggml_tensor * ggml_map_custom3_f32(
  6253. struct ggml_context * ctx,
  6254. struct ggml_tensor * a,
  6255. struct ggml_tensor * b,
  6256. struct ggml_tensor * c,
  6257. const ggml_custom3_op_f32_t fun) {
  6258. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6259. }
  6260. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6261. struct ggml_context * ctx,
  6262. struct ggml_tensor * a,
  6263. struct ggml_tensor * b,
  6264. struct ggml_tensor * c,
  6265. const ggml_custom3_op_f32_t fun) {
  6266. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6267. }
  6268. // ggml_map_custom1
  6269. struct ggml_map_custom1_op_params {
  6270. ggml_custom1_op_t fun;
  6271. int n_tasks;
  6272. void * userdata;
  6273. };
  6274. static struct ggml_tensor * ggml_map_custom1_impl(
  6275. struct ggml_context * ctx,
  6276. struct ggml_tensor * a,
  6277. const ggml_custom1_op_t fun,
  6278. int n_tasks,
  6279. void * userdata,
  6280. bool inplace) {
  6281. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6282. bool is_node = false;
  6283. if (!inplace && a->grad) {
  6284. is_node = true;
  6285. }
  6286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6287. struct ggml_map_custom1_op_params params = {
  6288. /*.fun =*/ fun,
  6289. /*.n_tasks =*/ n_tasks,
  6290. /*.userdata =*/ userdata
  6291. };
  6292. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6293. result->op = GGML_OP_MAP_CUSTOM1;
  6294. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6295. result->src[0] = a;
  6296. return result;
  6297. }
  6298. struct ggml_tensor * ggml_map_custom1(
  6299. struct ggml_context * ctx,
  6300. struct ggml_tensor * a,
  6301. const ggml_custom1_op_t fun,
  6302. int n_tasks,
  6303. void * userdata) {
  6304. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6305. }
  6306. struct ggml_tensor * ggml_map_custom1_inplace(
  6307. struct ggml_context * ctx,
  6308. struct ggml_tensor * a,
  6309. const ggml_custom1_op_t fun,
  6310. int n_tasks,
  6311. void * userdata) {
  6312. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6313. }
  6314. // ggml_map_custom2
  6315. struct ggml_map_custom2_op_params {
  6316. ggml_custom2_op_t fun;
  6317. int n_tasks;
  6318. void * userdata;
  6319. };
  6320. static struct ggml_tensor * ggml_map_custom2_impl(
  6321. struct ggml_context * ctx,
  6322. struct ggml_tensor * a,
  6323. struct ggml_tensor * b,
  6324. const ggml_custom2_op_t fun,
  6325. int n_tasks,
  6326. void * userdata,
  6327. bool inplace) {
  6328. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6329. bool is_node = false;
  6330. if (!inplace && (a->grad || b->grad)) {
  6331. is_node = true;
  6332. }
  6333. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6334. struct ggml_map_custom2_op_params params = {
  6335. /*.fun =*/ fun,
  6336. /*.n_tasks =*/ n_tasks,
  6337. /*.userdata =*/ userdata
  6338. };
  6339. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6340. result->op = GGML_OP_MAP_CUSTOM2;
  6341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6342. result->src[0] = a;
  6343. result->src[1] = b;
  6344. return result;
  6345. }
  6346. struct ggml_tensor * ggml_map_custom2(
  6347. struct ggml_context * ctx,
  6348. struct ggml_tensor * a,
  6349. struct ggml_tensor * b,
  6350. const ggml_custom2_op_t fun,
  6351. int n_tasks,
  6352. void * userdata) {
  6353. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6354. }
  6355. struct ggml_tensor * ggml_map_custom2_inplace(
  6356. struct ggml_context * ctx,
  6357. struct ggml_tensor * a,
  6358. struct ggml_tensor * b,
  6359. const ggml_custom2_op_t fun,
  6360. int n_tasks,
  6361. void * userdata) {
  6362. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6363. }
  6364. // ggml_map_custom3
  6365. struct ggml_map_custom3_op_params {
  6366. ggml_custom3_op_t fun;
  6367. int n_tasks;
  6368. void * userdata;
  6369. };
  6370. static struct ggml_tensor * ggml_map_custom3_impl(
  6371. struct ggml_context * ctx,
  6372. struct ggml_tensor * a,
  6373. struct ggml_tensor * b,
  6374. struct ggml_tensor * c,
  6375. const ggml_custom3_op_t fun,
  6376. int n_tasks,
  6377. void * userdata,
  6378. bool inplace) {
  6379. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6380. bool is_node = false;
  6381. if (!inplace && (a->grad || b->grad || c->grad)) {
  6382. is_node = true;
  6383. }
  6384. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6385. struct ggml_map_custom3_op_params params = {
  6386. /*.fun =*/ fun,
  6387. /*.n_tasks =*/ n_tasks,
  6388. /*.userdata =*/ userdata
  6389. };
  6390. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6391. result->op = GGML_OP_MAP_CUSTOM3;
  6392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6393. result->src[0] = a;
  6394. result->src[1] = b;
  6395. result->src[2] = c;
  6396. return result;
  6397. }
  6398. struct ggml_tensor * ggml_map_custom3(
  6399. struct ggml_context * ctx,
  6400. struct ggml_tensor * a,
  6401. struct ggml_tensor * b,
  6402. struct ggml_tensor * c,
  6403. const ggml_custom3_op_t fun,
  6404. int n_tasks,
  6405. void * userdata) {
  6406. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6407. }
  6408. struct ggml_tensor * ggml_map_custom3_inplace(
  6409. struct ggml_context * ctx,
  6410. struct ggml_tensor * a,
  6411. struct ggml_tensor * b,
  6412. struct ggml_tensor * c,
  6413. const ggml_custom3_op_t fun,
  6414. int n_tasks,
  6415. void * userdata) {
  6416. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6417. }
  6418. // ggml_cross_entropy_loss
  6419. struct ggml_tensor * ggml_cross_entropy_loss(
  6420. struct ggml_context * ctx,
  6421. struct ggml_tensor * a,
  6422. struct ggml_tensor * b) {
  6423. GGML_ASSERT(ggml_are_same_shape(a, b));
  6424. bool is_node = false;
  6425. if (a->grad || b->grad) {
  6426. is_node = true;
  6427. }
  6428. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6429. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6431. result->src[0] = a;
  6432. result->src[1] = b;
  6433. return result;
  6434. }
  6435. // ggml_cross_entropy_loss_back
  6436. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6437. struct ggml_context * ctx,
  6438. struct ggml_tensor * a,
  6439. struct ggml_tensor * b,
  6440. struct ggml_tensor * c) {
  6441. GGML_ASSERT(ggml_are_same_shape(a, b));
  6442. GGML_ASSERT(ggml_is_scalar(c));
  6443. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6444. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6445. result->grad = NULL;
  6446. result->src[0] = a;
  6447. result->src[1] = b;
  6448. result->src[2] = c;
  6449. return result;
  6450. }
  6451. ////////////////////////////////////////////////////////////////////////////////
  6452. void ggml_set_param(
  6453. struct ggml_context * ctx,
  6454. struct ggml_tensor * tensor) {
  6455. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6456. GGML_ASSERT(tensor->grad == NULL);
  6457. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6458. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6459. }
  6460. // ggml_compute_forward_dup
  6461. static void ggml_compute_forward_dup_same_cont(
  6462. const struct ggml_compute_params * params,
  6463. struct ggml_tensor * dst) {
  6464. const struct ggml_tensor * src0 = dst->src[0];
  6465. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6466. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6467. GGML_ASSERT(src0->type == dst->type);
  6468. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6469. return;
  6470. }
  6471. const size_t nb00 = src0->nb[0];
  6472. const size_t nb0 = dst->nb[0];
  6473. const int ith = params->ith; // thread index
  6474. const int nth = params->nth; // number of threads
  6475. // parallelize by elements
  6476. const int ne = ggml_nelements(dst);
  6477. const int dr = (ne + nth - 1) / nth;
  6478. const int ie0 = dr * ith;
  6479. const int ie1 = MIN(ie0 + dr, ne);
  6480. if (ie0 < ie1) {
  6481. memcpy(
  6482. ((char *) dst->data + ie0*nb0),
  6483. ((char *) src0->data + ie0*nb00),
  6484. (ie1 - ie0) * ggml_type_size(src0->type));
  6485. }
  6486. }
  6487. static void ggml_compute_forward_dup_f16(
  6488. const struct ggml_compute_params * params,
  6489. struct ggml_tensor * dst) {
  6490. const struct ggml_tensor * src0 = dst->src[0];
  6491. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6492. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6493. return;
  6494. }
  6495. GGML_TENSOR_UNARY_OP_LOCALS
  6496. const int ith = params->ith; // thread index
  6497. const int nth = params->nth; // number of threads
  6498. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6499. ggml_compute_forward_dup_same_cont(params, dst);
  6500. return;
  6501. }
  6502. // parallelize by rows
  6503. const int nr = ne01;
  6504. // number of rows per thread
  6505. const int dr = (nr + nth - 1) / nth;
  6506. // row range for this thread
  6507. const int ir0 = dr * ith;
  6508. const int ir1 = MIN(ir0 + dr, nr);
  6509. if (src0->type == dst->type &&
  6510. ne00 == ne0 &&
  6511. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6512. // copy by rows
  6513. const size_t rs = ne00*nb00;
  6514. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6515. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6516. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6517. memcpy(
  6518. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6519. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6520. rs);
  6521. }
  6522. }
  6523. }
  6524. return;
  6525. }
  6526. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6527. if (ggml_is_contiguous(dst)) {
  6528. if (nb00 == sizeof(ggml_fp16_t)) {
  6529. if (dst->type == GGML_TYPE_F16) {
  6530. size_t id = 0;
  6531. const size_t rs = ne00 * nb00;
  6532. char * dst_ptr = (char *) dst->data;
  6533. for (int i03 = 0; i03 < ne03; i03++) {
  6534. for (int i02 = 0; i02 < ne02; i02++) {
  6535. id += rs * ir0;
  6536. for (int i01 = ir0; i01 < ir1; i01++) {
  6537. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6538. memcpy(dst_ptr + id, src0_ptr, rs);
  6539. id += rs;
  6540. }
  6541. id += rs * (ne01 - ir1);
  6542. }
  6543. }
  6544. } else if (dst->type == GGML_TYPE_F32) {
  6545. size_t id = 0;
  6546. float * dst_ptr = (float *) dst->data;
  6547. for (int i03 = 0; i03 < ne03; i03++) {
  6548. for (int i02 = 0; i02 < ne02; i02++) {
  6549. id += ne00 * ir0;
  6550. for (int i01 = ir0; i01 < ir1; i01++) {
  6551. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6552. for (int i00 = 0; i00 < ne00; i00++) {
  6553. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6554. id++;
  6555. }
  6556. }
  6557. id += ne00 * (ne01 - ir1);
  6558. }
  6559. }
  6560. } else if (type_traits[dst->type].from_float) {
  6561. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6562. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6563. size_t id = 0;
  6564. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6565. char * dst_ptr = (char *) dst->data;
  6566. for (int i03 = 0; i03 < ne03; i03++) {
  6567. for (int i02 = 0; i02 < ne02; i02++) {
  6568. id += rs * ir0;
  6569. for (int i01 = ir0; i01 < ir1; i01++) {
  6570. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6571. for (int i00 = 0; i00 < ne00; i00++) {
  6572. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6573. }
  6574. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6575. id += rs;
  6576. }
  6577. id += rs * (ne01 - ir1);
  6578. }
  6579. }
  6580. } else {
  6581. GGML_ASSERT(false); // TODO: implement
  6582. }
  6583. } else {
  6584. //printf("%s: this is not optimal - fix me\n", __func__);
  6585. if (dst->type == GGML_TYPE_F32) {
  6586. size_t id = 0;
  6587. float * dst_ptr = (float *) dst->data;
  6588. for (int i03 = 0; i03 < ne03; i03++) {
  6589. for (int i02 = 0; i02 < ne02; i02++) {
  6590. id += ne00 * ir0;
  6591. for (int i01 = ir0; i01 < ir1; i01++) {
  6592. for (int i00 = 0; i00 < ne00; i00++) {
  6593. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6594. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6595. id++;
  6596. }
  6597. }
  6598. id += ne00 * (ne01 - ir1);
  6599. }
  6600. }
  6601. } else if (dst->type == GGML_TYPE_F16) {
  6602. size_t id = 0;
  6603. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6604. for (int i03 = 0; i03 < ne03; i03++) {
  6605. for (int i02 = 0; i02 < ne02; i02++) {
  6606. id += ne00 * ir0;
  6607. for (int i01 = ir0; i01 < ir1; i01++) {
  6608. for (int i00 = 0; i00 < ne00; i00++) {
  6609. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6610. dst_ptr[id] = *src0_ptr;
  6611. id++;
  6612. }
  6613. }
  6614. id += ne00 * (ne01 - ir1);
  6615. }
  6616. }
  6617. } else {
  6618. GGML_ASSERT(false); // TODO: implement
  6619. }
  6620. }
  6621. return;
  6622. }
  6623. // dst counters
  6624. int64_t i10 = 0;
  6625. int64_t i11 = 0;
  6626. int64_t i12 = 0;
  6627. int64_t i13 = 0;
  6628. if (dst->type == GGML_TYPE_F16) {
  6629. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6630. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6631. i10 += ne00 * ir0;
  6632. while (i10 >= ne0) {
  6633. i10 -= ne0;
  6634. if (++i11 == ne1) {
  6635. i11 = 0;
  6636. if (++i12 == ne2) {
  6637. i12 = 0;
  6638. if (++i13 == ne3) {
  6639. i13 = 0;
  6640. }
  6641. }
  6642. }
  6643. }
  6644. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6645. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6646. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6647. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6648. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6649. if (++i10 == ne00) {
  6650. i10 = 0;
  6651. if (++i11 == ne01) {
  6652. i11 = 0;
  6653. if (++i12 == ne02) {
  6654. i12 = 0;
  6655. if (++i13 == ne03) {
  6656. i13 = 0;
  6657. }
  6658. }
  6659. }
  6660. }
  6661. }
  6662. }
  6663. i10 += ne00 * (ne01 - ir1);
  6664. while (i10 >= ne0) {
  6665. i10 -= ne0;
  6666. if (++i11 == ne1) {
  6667. i11 = 0;
  6668. if (++i12 == ne2) {
  6669. i12 = 0;
  6670. if (++i13 == ne3) {
  6671. i13 = 0;
  6672. }
  6673. }
  6674. }
  6675. }
  6676. }
  6677. }
  6678. } else if (dst->type == GGML_TYPE_F32) {
  6679. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6680. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6681. i10 += ne00 * ir0;
  6682. while (i10 >= ne0) {
  6683. i10 -= ne0;
  6684. if (++i11 == ne1) {
  6685. i11 = 0;
  6686. if (++i12 == ne2) {
  6687. i12 = 0;
  6688. if (++i13 == ne3) {
  6689. i13 = 0;
  6690. }
  6691. }
  6692. }
  6693. }
  6694. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6695. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6696. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6697. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6698. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6699. if (++i10 == ne0) {
  6700. i10 = 0;
  6701. if (++i11 == ne1) {
  6702. i11 = 0;
  6703. if (++i12 == ne2) {
  6704. i12 = 0;
  6705. if (++i13 == ne3) {
  6706. i13 = 0;
  6707. }
  6708. }
  6709. }
  6710. }
  6711. }
  6712. }
  6713. i10 += ne00 * (ne01 - ir1);
  6714. while (i10 >= ne0) {
  6715. i10 -= ne0;
  6716. if (++i11 == ne1) {
  6717. i11 = 0;
  6718. if (++i12 == ne2) {
  6719. i12 = 0;
  6720. if (++i13 == ne3) {
  6721. i13 = 0;
  6722. }
  6723. }
  6724. }
  6725. }
  6726. }
  6727. }
  6728. } else {
  6729. GGML_ASSERT(false); // TODO: implement
  6730. }
  6731. }
  6732. static void ggml_compute_forward_dup_bf16(
  6733. const struct ggml_compute_params * params,
  6734. struct ggml_tensor * dst) {
  6735. const struct ggml_tensor * src0 = dst->src[0];
  6736. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6737. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6738. return;
  6739. }
  6740. GGML_TENSOR_UNARY_OP_LOCALS
  6741. const int ith = params->ith; // thread index
  6742. const int nth = params->nth; // number of threads
  6743. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6744. ggml_compute_forward_dup_same_cont(params, dst);
  6745. return;
  6746. }
  6747. // parallelize by rows
  6748. const int nr = ne01;
  6749. // number of rows per thread
  6750. const int dr = (nr + nth - 1) / nth;
  6751. // row range for this thread
  6752. const int ir0 = dr * ith;
  6753. const int ir1 = MIN(ir0 + dr, nr);
  6754. if (src0->type == dst->type &&
  6755. ne00 == ne0 &&
  6756. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6757. // copy by rows
  6758. const size_t rs = ne00*nb00;
  6759. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6760. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6761. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6762. memcpy(
  6763. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6764. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6765. rs);
  6766. }
  6767. }
  6768. }
  6769. return;
  6770. }
  6771. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6772. if (ggml_is_contiguous(dst)) {
  6773. if (nb00 == sizeof(ggml_bf16_t)) {
  6774. if (dst->type == GGML_TYPE_BF16) {
  6775. size_t id = 0;
  6776. const size_t rs = ne00 * nb00;
  6777. char * dst_ptr = (char *) dst->data;
  6778. for (int i03 = 0; i03 < ne03; i03++) {
  6779. for (int i02 = 0; i02 < ne02; i02++) {
  6780. id += rs * ir0;
  6781. for (int i01 = ir0; i01 < ir1; i01++) {
  6782. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6783. memcpy(dst_ptr + id, src0_ptr, rs);
  6784. id += rs;
  6785. }
  6786. id += rs * (ne01 - ir1);
  6787. }
  6788. }
  6789. } else if (dst->type == GGML_TYPE_F16) {
  6790. size_t id = 0;
  6791. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6792. for (int i03 = 0; i03 < ne03; i03++) {
  6793. for (int i02 = 0; i02 < ne02; i02++) {
  6794. id += ne00 * ir0;
  6795. for (int i01 = ir0; i01 < ir1; i01++) {
  6796. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6797. for (int i00 = 0; i00 < ne00; i00++) {
  6798. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6799. id++;
  6800. }
  6801. }
  6802. id += ne00 * (ne01 - ir1);
  6803. }
  6804. }
  6805. } else if (dst->type == GGML_TYPE_F32) {
  6806. size_t id = 0;
  6807. float * dst_ptr = (float *) dst->data;
  6808. for (int i03 = 0; i03 < ne03; i03++) {
  6809. for (int i02 = 0; i02 < ne02; i02++) {
  6810. id += ne00 * ir0;
  6811. for (int i01 = ir0; i01 < ir1; i01++) {
  6812. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6813. for (int i00 = 0; i00 < ne00; i00++) {
  6814. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6815. id++;
  6816. }
  6817. }
  6818. id += ne00 * (ne01 - ir1);
  6819. }
  6820. }
  6821. } else if (type_traits[dst->type].from_float) {
  6822. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6823. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6824. size_t id = 0;
  6825. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6826. char * dst_ptr = (char *) dst->data;
  6827. for (int i03 = 0; i03 < ne03; i03++) {
  6828. for (int i02 = 0; i02 < ne02; i02++) {
  6829. id += rs * ir0;
  6830. for (int i01 = ir0; i01 < ir1; i01++) {
  6831. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6832. for (int i00 = 0; i00 < ne00; i00++) {
  6833. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6834. }
  6835. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6836. id += rs;
  6837. }
  6838. id += rs * (ne01 - ir1);
  6839. }
  6840. }
  6841. } else {
  6842. GGML_ASSERT(false); // TODO: implement
  6843. }
  6844. } else {
  6845. //printf("%s: this is not optimal - fix me\n", __func__);
  6846. if (dst->type == GGML_TYPE_F32) {
  6847. size_t id = 0;
  6848. float * dst_ptr = (float *) dst->data;
  6849. for (int i03 = 0; i03 < ne03; i03++) {
  6850. for (int i02 = 0; i02 < ne02; i02++) {
  6851. id += ne00 * ir0;
  6852. for (int i01 = ir0; i01 < ir1; i01++) {
  6853. for (int i00 = 0; i00 < ne00; i00++) {
  6854. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6855. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6856. id++;
  6857. }
  6858. }
  6859. id += ne00 * (ne01 - ir1);
  6860. }
  6861. }
  6862. } else if (dst->type == GGML_TYPE_BF16) {
  6863. size_t id = 0;
  6864. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6865. for (int i03 = 0; i03 < ne03; i03++) {
  6866. for (int i02 = 0; i02 < ne02; i02++) {
  6867. id += ne00 * ir0;
  6868. for (int i01 = ir0; i01 < ir1; i01++) {
  6869. for (int i00 = 0; i00 < ne00; i00++) {
  6870. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6871. dst_ptr[id] = *src0_ptr;
  6872. id++;
  6873. }
  6874. }
  6875. id += ne00 * (ne01 - ir1);
  6876. }
  6877. }
  6878. } else if (dst->type == GGML_TYPE_F16) {
  6879. size_t id = 0;
  6880. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6881. for (int i03 = 0; i03 < ne03; i03++) {
  6882. for (int i02 = 0; i02 < ne02; i02++) {
  6883. id += ne00 * ir0;
  6884. for (int i01 = ir0; i01 < ir1; i01++) {
  6885. for (int i00 = 0; i00 < ne00; i00++) {
  6886. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6887. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6888. id++;
  6889. }
  6890. }
  6891. id += ne00 * (ne01 - ir1);
  6892. }
  6893. }
  6894. } else {
  6895. GGML_ASSERT(false); // TODO: implement
  6896. }
  6897. }
  6898. return;
  6899. }
  6900. // dst counters
  6901. int64_t i10 = 0;
  6902. int64_t i11 = 0;
  6903. int64_t i12 = 0;
  6904. int64_t i13 = 0;
  6905. if (dst->type == GGML_TYPE_BF16) {
  6906. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6907. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6908. i10 += ne00 * ir0;
  6909. while (i10 >= ne0) {
  6910. i10 -= ne0;
  6911. if (++i11 == ne1) {
  6912. i11 = 0;
  6913. if (++i12 == ne2) {
  6914. i12 = 0;
  6915. if (++i13 == ne3) {
  6916. i13 = 0;
  6917. }
  6918. }
  6919. }
  6920. }
  6921. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6922. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6923. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6924. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6925. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6926. if (++i10 == ne00) {
  6927. i10 = 0;
  6928. if (++i11 == ne01) {
  6929. i11 = 0;
  6930. if (++i12 == ne02) {
  6931. i12 = 0;
  6932. if (++i13 == ne03) {
  6933. i13 = 0;
  6934. }
  6935. }
  6936. }
  6937. }
  6938. }
  6939. }
  6940. i10 += ne00 * (ne01 - ir1);
  6941. while (i10 >= ne0) {
  6942. i10 -= ne0;
  6943. if (++i11 == ne1) {
  6944. i11 = 0;
  6945. if (++i12 == ne2) {
  6946. i12 = 0;
  6947. if (++i13 == ne3) {
  6948. i13 = 0;
  6949. }
  6950. }
  6951. }
  6952. }
  6953. }
  6954. }
  6955. } else if (dst->type == GGML_TYPE_F16) {
  6956. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6957. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6958. i10 += ne00 * ir0;
  6959. while (i10 >= ne0) {
  6960. i10 -= ne0;
  6961. if (++i11 == ne1) {
  6962. i11 = 0;
  6963. if (++i12 == ne2) {
  6964. i12 = 0;
  6965. if (++i13 == ne3) {
  6966. i13 = 0;
  6967. }
  6968. }
  6969. }
  6970. }
  6971. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6972. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6973. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6974. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6975. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6976. if (++i10 == ne0) {
  6977. i10 = 0;
  6978. if (++i11 == ne1) {
  6979. i11 = 0;
  6980. if (++i12 == ne2) {
  6981. i12 = 0;
  6982. if (++i13 == ne3) {
  6983. i13 = 0;
  6984. }
  6985. }
  6986. }
  6987. }
  6988. }
  6989. }
  6990. i10 += ne00 * (ne01 - ir1);
  6991. while (i10 >= ne0) {
  6992. i10 -= ne0;
  6993. if (++i11 == ne1) {
  6994. i11 = 0;
  6995. if (++i12 == ne2) {
  6996. i12 = 0;
  6997. if (++i13 == ne3) {
  6998. i13 = 0;
  6999. }
  7000. }
  7001. }
  7002. }
  7003. }
  7004. }
  7005. } else if (dst->type == GGML_TYPE_F32) {
  7006. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7007. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7008. i10 += ne00 * ir0;
  7009. while (i10 >= ne0) {
  7010. i10 -= ne0;
  7011. if (++i11 == ne1) {
  7012. i11 = 0;
  7013. if (++i12 == ne2) {
  7014. i12 = 0;
  7015. if (++i13 == ne3) {
  7016. i13 = 0;
  7017. }
  7018. }
  7019. }
  7020. }
  7021. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7022. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7023. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7024. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7025. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7026. if (++i10 == ne0) {
  7027. i10 = 0;
  7028. if (++i11 == ne1) {
  7029. i11 = 0;
  7030. if (++i12 == ne2) {
  7031. i12 = 0;
  7032. if (++i13 == ne3) {
  7033. i13 = 0;
  7034. }
  7035. }
  7036. }
  7037. }
  7038. }
  7039. }
  7040. i10 += ne00 * (ne01 - ir1);
  7041. while (i10 >= ne0) {
  7042. i10 -= ne0;
  7043. if (++i11 == ne1) {
  7044. i11 = 0;
  7045. if (++i12 == ne2) {
  7046. i12 = 0;
  7047. if (++i13 == ne3) {
  7048. i13 = 0;
  7049. }
  7050. }
  7051. }
  7052. }
  7053. }
  7054. }
  7055. } else {
  7056. GGML_ASSERT(false); // TODO: implement
  7057. }
  7058. }
  7059. static void ggml_compute_forward_dup_f32(
  7060. const struct ggml_compute_params * params,
  7061. struct ggml_tensor * dst) {
  7062. const struct ggml_tensor * src0 = dst->src[0];
  7063. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7064. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7065. return;
  7066. }
  7067. GGML_TENSOR_UNARY_OP_LOCALS
  7068. const int ith = params->ith; // thread index
  7069. const int nth = params->nth; // number of threads
  7070. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7071. ggml_compute_forward_dup_same_cont(params, dst);
  7072. return;
  7073. }
  7074. // parallelize by rows
  7075. const int nr = ne01;
  7076. // number of rows per thread
  7077. const int dr = (nr + nth - 1) / nth;
  7078. // row range for this thread
  7079. const int ir0 = dr * ith;
  7080. const int ir1 = MIN(ir0 + dr, nr);
  7081. if (src0->type == dst->type &&
  7082. ne00 == ne0 &&
  7083. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7084. // copy by rows
  7085. const size_t rs = ne00*nb00;
  7086. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7087. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7088. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7089. memcpy(
  7090. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7091. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7092. rs);
  7093. }
  7094. }
  7095. }
  7096. return;
  7097. }
  7098. if (ggml_is_contiguous(dst)) {
  7099. // TODO: simplify
  7100. if (nb00 == sizeof(float)) {
  7101. if (dst->type == GGML_TYPE_F32) {
  7102. size_t id = 0;
  7103. const size_t rs = ne00 * nb00;
  7104. char * dst_ptr = (char *) dst->data;
  7105. for (int i03 = 0; i03 < ne03; i03++) {
  7106. for (int i02 = 0; i02 < ne02; i02++) {
  7107. id += rs * ir0;
  7108. for (int i01 = ir0; i01 < ir1; i01++) {
  7109. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7110. memcpy(dst_ptr + id, src0_ptr, rs);
  7111. id += rs;
  7112. }
  7113. id += rs * (ne01 - ir1);
  7114. }
  7115. }
  7116. } else if (type_traits[dst->type].from_float) {
  7117. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7118. size_t id = 0;
  7119. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7120. char * dst_ptr = (char *) dst->data;
  7121. for (int i03 = 0; i03 < ne03; i03++) {
  7122. for (int i02 = 0; i02 < ne02; i02++) {
  7123. id += rs * ir0;
  7124. for (int i01 = ir0; i01 < ir1; i01++) {
  7125. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7126. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7127. id += rs;
  7128. }
  7129. id += rs * (ne01 - ir1);
  7130. }
  7131. }
  7132. } else {
  7133. GGML_ASSERT(false); // TODO: implement
  7134. }
  7135. } else {
  7136. //printf("%s: this is not optimal - fix me\n", __func__);
  7137. if (dst->type == GGML_TYPE_F32) {
  7138. size_t id = 0;
  7139. float * dst_ptr = (float *) dst->data;
  7140. for (int i03 = 0; i03 < ne03; i03++) {
  7141. for (int i02 = 0; i02 < ne02; i02++) {
  7142. id += ne00 * ir0;
  7143. for (int i01 = ir0; i01 < ir1; i01++) {
  7144. for (int i00 = 0; i00 < ne00; i00++) {
  7145. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7146. dst_ptr[id] = *src0_ptr;
  7147. id++;
  7148. }
  7149. }
  7150. id += ne00 * (ne01 - ir1);
  7151. }
  7152. }
  7153. } else if (dst->type == GGML_TYPE_F16) {
  7154. size_t id = 0;
  7155. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7156. for (int i03 = 0; i03 < ne03; i03++) {
  7157. for (int i02 = 0; i02 < ne02; i02++) {
  7158. id += ne00 * ir0;
  7159. for (int i01 = ir0; i01 < ir1; i01++) {
  7160. for (int i00 = 0; i00 < ne00; i00++) {
  7161. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7162. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7163. id++;
  7164. }
  7165. }
  7166. id += ne00 * (ne01 - ir1);
  7167. }
  7168. }
  7169. } else if (dst->type == GGML_TYPE_BF16) {
  7170. size_t id = 0;
  7171. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7172. for (int i03 = 0; i03 < ne03; i03++) {
  7173. for (int i02 = 0; i02 < ne02; i02++) {
  7174. id += ne00 * ir0;
  7175. for (int i01 = ir0; i01 < ir1; i01++) {
  7176. for (int i00 = 0; i00 < ne00; i00++) {
  7177. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7178. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7179. id++;
  7180. }
  7181. }
  7182. id += ne00 * (ne01 - ir1);
  7183. }
  7184. }
  7185. } else {
  7186. GGML_ASSERT(false); // TODO: implement
  7187. }
  7188. }
  7189. return;
  7190. }
  7191. // dst counters
  7192. int64_t i10 = 0;
  7193. int64_t i11 = 0;
  7194. int64_t i12 = 0;
  7195. int64_t i13 = 0;
  7196. if (dst->type == GGML_TYPE_F32) {
  7197. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7198. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7199. i10 += ne00 * ir0;
  7200. while (i10 >= ne0) {
  7201. i10 -= ne0;
  7202. if (++i11 == ne1) {
  7203. i11 = 0;
  7204. if (++i12 == ne2) {
  7205. i12 = 0;
  7206. if (++i13 == ne3) {
  7207. i13 = 0;
  7208. }
  7209. }
  7210. }
  7211. }
  7212. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7213. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7214. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7215. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7216. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7217. if (++i10 == ne0) {
  7218. i10 = 0;
  7219. if (++i11 == ne1) {
  7220. i11 = 0;
  7221. if (++i12 == ne2) {
  7222. i12 = 0;
  7223. if (++i13 == ne3) {
  7224. i13 = 0;
  7225. }
  7226. }
  7227. }
  7228. }
  7229. }
  7230. }
  7231. i10 += ne00 * (ne01 - ir1);
  7232. while (i10 >= ne0) {
  7233. i10 -= ne0;
  7234. if (++i11 == ne1) {
  7235. i11 = 0;
  7236. if (++i12 == ne2) {
  7237. i12 = 0;
  7238. if (++i13 == ne3) {
  7239. i13 = 0;
  7240. }
  7241. }
  7242. }
  7243. }
  7244. }
  7245. }
  7246. } else if (dst->type == GGML_TYPE_F16) {
  7247. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7248. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7249. i10 += ne00 * ir0;
  7250. while (i10 >= ne0) {
  7251. i10 -= ne0;
  7252. if (++i11 == ne1) {
  7253. i11 = 0;
  7254. if (++i12 == ne2) {
  7255. i12 = 0;
  7256. if (++i13 == ne3) {
  7257. i13 = 0;
  7258. }
  7259. }
  7260. }
  7261. }
  7262. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7263. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7264. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7265. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7266. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7267. if (++i10 == ne0) {
  7268. i10 = 0;
  7269. if (++i11 == ne1) {
  7270. i11 = 0;
  7271. if (++i12 == ne2) {
  7272. i12 = 0;
  7273. if (++i13 == ne3) {
  7274. i13 = 0;
  7275. }
  7276. }
  7277. }
  7278. }
  7279. }
  7280. }
  7281. i10 += ne00 * (ne01 - ir1);
  7282. while (i10 >= ne0) {
  7283. i10 -= ne0;
  7284. if (++i11 == ne1) {
  7285. i11 = 0;
  7286. if (++i12 == ne2) {
  7287. i12 = 0;
  7288. if (++i13 == ne3) {
  7289. i13 = 0;
  7290. }
  7291. }
  7292. }
  7293. }
  7294. }
  7295. }
  7296. } else if (dst->type == GGML_TYPE_BF16) {
  7297. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7298. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7299. i10 += ne00 * ir0;
  7300. while (i10 >= ne0) {
  7301. i10 -= ne0;
  7302. if (++i11 == ne1) {
  7303. i11 = 0;
  7304. if (++i12 == ne2) {
  7305. i12 = 0;
  7306. if (++i13 == ne3) {
  7307. i13 = 0;
  7308. }
  7309. }
  7310. }
  7311. }
  7312. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7313. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7314. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7315. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7316. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7317. if (++i10 == ne0) {
  7318. i10 = 0;
  7319. if (++i11 == ne1) {
  7320. i11 = 0;
  7321. if (++i12 == ne2) {
  7322. i12 = 0;
  7323. if (++i13 == ne3) {
  7324. i13 = 0;
  7325. }
  7326. }
  7327. }
  7328. }
  7329. }
  7330. }
  7331. i10 += ne00 * (ne01 - ir1);
  7332. while (i10 >= ne0) {
  7333. i10 -= ne0;
  7334. if (++i11 == ne1) {
  7335. i11 = 0;
  7336. if (++i12 == ne2) {
  7337. i12 = 0;
  7338. if (++i13 == ne3) {
  7339. i13 = 0;
  7340. }
  7341. }
  7342. }
  7343. }
  7344. }
  7345. }
  7346. } else {
  7347. GGML_ASSERT(false); // TODO: implement
  7348. }
  7349. }
  7350. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7351. static void ggml_compute_forward_dup_bytes(
  7352. const struct ggml_compute_params * params,
  7353. struct ggml_tensor * dst) {
  7354. const struct ggml_tensor * src0 = dst->src[0];
  7355. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7356. GGML_ASSERT(src0->type == dst->type);
  7357. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7358. return;
  7359. }
  7360. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7361. ggml_compute_forward_dup_same_cont(params, dst);
  7362. return;
  7363. }
  7364. GGML_TENSOR_UNARY_OP_LOCALS;
  7365. const size_t type_size = ggml_type_size(src0->type);
  7366. const int ith = params->ith; // thread index
  7367. const int nth = params->nth; // number of threads
  7368. // parallelize by rows
  7369. const int nr = ne01;
  7370. // number of rows per thread
  7371. const int dr = (nr + nth - 1) / nth;
  7372. // row range for this thread
  7373. const int ir0 = dr * ith;
  7374. const int ir1 = MIN(ir0 + dr, nr);
  7375. if (src0->type == dst->type &&
  7376. ne00 == ne0 &&
  7377. nb00 == type_size && nb0 == type_size) {
  7378. // copy by rows
  7379. const size_t rs = ne00 * type_size;
  7380. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7381. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7382. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7383. memcpy(
  7384. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7385. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7386. rs);
  7387. }
  7388. }
  7389. }
  7390. return;
  7391. }
  7392. if (ggml_is_contiguous(dst)) {
  7393. size_t id = 0;
  7394. char * dst_ptr = (char *) dst->data;
  7395. const size_t rs = ne00 * type_size;
  7396. if (nb00 == type_size) {
  7397. // src0 is contigous on first dimension, copy by rows
  7398. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7399. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7400. id += rs * ir0;
  7401. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7402. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7403. memcpy(dst_ptr + id, src0_ptr, rs);
  7404. id += rs;
  7405. }
  7406. id += rs * (ne01 - ir1);
  7407. }
  7408. }
  7409. } else {
  7410. //printf("%s: this is not optimal - fix me\n", __func__);
  7411. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7412. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7413. id += rs * ir0;
  7414. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7415. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7416. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7417. memcpy(dst_ptr + id, src0_ptr, type_size);
  7418. id += type_size;
  7419. }
  7420. }
  7421. id += rs * (ne01 - ir1);
  7422. }
  7423. }
  7424. }
  7425. return;
  7426. }
  7427. // dst counters
  7428. int64_t i10 = 0;
  7429. int64_t i11 = 0;
  7430. int64_t i12 = 0;
  7431. int64_t i13 = 0;
  7432. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7433. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7434. i10 += ne00 * ir0;
  7435. while (i10 >= ne0) {
  7436. i10 -= ne0;
  7437. if (++i11 == ne1) {
  7438. i11 = 0;
  7439. if (++i12 == ne2) {
  7440. i12 = 0;
  7441. if (++i13 == ne3) {
  7442. i13 = 0;
  7443. }
  7444. }
  7445. }
  7446. }
  7447. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7448. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7449. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7450. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7451. memcpy(dst_ptr, src0_ptr, type_size);
  7452. if (++i10 == ne0) {
  7453. i10 = 0;
  7454. if (++i11 == ne1) {
  7455. i11 = 0;
  7456. if (++i12 == ne2) {
  7457. i12 = 0;
  7458. if (++i13 == ne3) {
  7459. i13 = 0;
  7460. }
  7461. }
  7462. }
  7463. }
  7464. }
  7465. }
  7466. i10 += ne00 * (ne01 - ir1);
  7467. while (i10 >= ne0) {
  7468. i10 -= ne0;
  7469. if (++i11 == ne1) {
  7470. i11 = 0;
  7471. if (++i12 == ne2) {
  7472. i12 = 0;
  7473. if (++i13 == ne3) {
  7474. i13 = 0;
  7475. }
  7476. }
  7477. }
  7478. }
  7479. }
  7480. }
  7481. }
  7482. static void ggml_compute_forward_dup(
  7483. const struct ggml_compute_params * params,
  7484. struct ggml_tensor * dst) {
  7485. const struct ggml_tensor * src0 = dst->src[0];
  7486. if (src0->type == dst->type) {
  7487. ggml_compute_forward_dup_bytes(params, dst);
  7488. return;
  7489. }
  7490. switch (src0->type) {
  7491. case GGML_TYPE_F16:
  7492. {
  7493. ggml_compute_forward_dup_f16(params, dst);
  7494. } break;
  7495. case GGML_TYPE_BF16:
  7496. {
  7497. ggml_compute_forward_dup_bf16(params, dst);
  7498. } break;
  7499. case GGML_TYPE_F32:
  7500. {
  7501. ggml_compute_forward_dup_f32(params, dst);
  7502. } break;
  7503. default:
  7504. {
  7505. GGML_ASSERT(false);
  7506. } break;
  7507. }
  7508. }
  7509. // ggml_compute_forward_add
  7510. static void ggml_compute_forward_add_f32(
  7511. const struct ggml_compute_params * params,
  7512. struct ggml_tensor * dst) {
  7513. const struct ggml_tensor * src0 = dst->src[0];
  7514. const struct ggml_tensor * src1 = dst->src[1];
  7515. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7516. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7517. return;
  7518. }
  7519. const int ith = params->ith;
  7520. const int nth = params->nth;
  7521. #ifdef GGML_USE_CLBLAST
  7522. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7523. // TODO: OpenCL kernel support full broadcast
  7524. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7525. if (ith == 0) {
  7526. ggml_cl_add(src0, src1, dst);
  7527. }
  7528. return;
  7529. }
  7530. #endif
  7531. const int nr = ggml_nrows(src0);
  7532. GGML_TENSOR_BINARY_OP_LOCALS
  7533. GGML_ASSERT( nb0 == sizeof(float));
  7534. GGML_ASSERT(nb00 == sizeof(float));
  7535. // rows per thread
  7536. const int dr = (nr + nth - 1)/nth;
  7537. // row range for this thread
  7538. const int ir0 = dr*ith;
  7539. const int ir1 = MIN(ir0 + dr, nr);
  7540. if (nb10 == sizeof(float)) {
  7541. for (int ir = ir0; ir < ir1; ++ir) {
  7542. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7543. const int64_t i03 = ir/(ne02*ne01);
  7544. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7545. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7546. const int64_t i13 = i03 % ne13;
  7547. const int64_t i12 = i02 % ne12;
  7548. const int64_t i11 = i01 % ne11;
  7549. const int64_t nr0 = ne00 / ne10;
  7550. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7551. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7552. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7553. for (int64_t r = 0; r < nr0; ++r) {
  7554. #ifdef GGML_USE_ACCELERATE
  7555. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7556. #else
  7557. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7558. #endif
  7559. }
  7560. }
  7561. } else {
  7562. // src1 is not contiguous
  7563. for (int ir = ir0; ir < ir1; ++ir) {
  7564. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7565. const int64_t i03 = ir/(ne02*ne01);
  7566. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7567. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7568. const int64_t i13 = i03 % ne13;
  7569. const int64_t i12 = i02 % ne12;
  7570. const int64_t i11 = i01 % ne11;
  7571. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7572. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7573. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7574. const int64_t i10 = i0 % ne10;
  7575. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7576. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7577. }
  7578. }
  7579. }
  7580. }
  7581. static void ggml_compute_forward_add_f16_f32(
  7582. const struct ggml_compute_params * params,
  7583. struct ggml_tensor * dst) {
  7584. const struct ggml_tensor * src0 = dst->src[0];
  7585. const struct ggml_tensor * src1 = dst->src[1];
  7586. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7587. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7588. return;
  7589. }
  7590. const int ith = params->ith;
  7591. const int nth = params->nth;
  7592. const int nr = ggml_nrows(src0);
  7593. GGML_TENSOR_BINARY_OP_LOCALS
  7594. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7595. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7596. if (dst->type == GGML_TYPE_F32) {
  7597. GGML_ASSERT( nb0 == sizeof(float));
  7598. }
  7599. else {
  7600. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7601. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7602. }
  7603. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7604. // rows per thread
  7605. const int dr = (nr + nth - 1)/nth;
  7606. // row range for this thread
  7607. const int ir0 = dr*ith;
  7608. const int ir1 = MIN(ir0 + dr, nr);
  7609. if (nb10 == sizeof(float)) {
  7610. if (dst->type == GGML_TYPE_F16) {
  7611. for (int ir = ir0; ir < ir1; ++ir) {
  7612. // src0, src1 and dst are same shape => same indices
  7613. const int i3 = ir/(ne2*ne1);
  7614. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7615. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7616. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7617. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7618. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7619. for (int i = 0; i < ne0; i++) {
  7620. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7621. }
  7622. }
  7623. } else {
  7624. for (int ir = ir0; ir < ir1; ++ir) {
  7625. // src0, src1 and dst are same shape => same indices
  7626. const int i3 = ir/(ne2*ne1);
  7627. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7628. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7629. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7630. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7631. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7632. for (int i = 0; i < ne0; i++) {
  7633. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7634. }
  7635. }
  7636. }
  7637. }
  7638. else {
  7639. // src1 is not contiguous
  7640. GGML_ASSERT(false);
  7641. }
  7642. }
  7643. static void ggml_compute_forward_add_bf16_f32(
  7644. const struct ggml_compute_params * params,
  7645. struct ggml_tensor * dst) {
  7646. const struct ggml_tensor * src0 = dst->src[0];
  7647. const struct ggml_tensor * src1 = dst->src[1];
  7648. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7649. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7650. return;
  7651. }
  7652. const int ith = params->ith;
  7653. const int nth = params->nth;
  7654. const int nr = ggml_nrows(src0);
  7655. GGML_TENSOR_BINARY_OP_LOCALS
  7656. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7657. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7658. if (dst->type == GGML_TYPE_F32) {
  7659. GGML_ASSERT( nb0 == sizeof(float));
  7660. }
  7661. else {
  7662. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7663. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7664. }
  7665. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7666. // rows per thread
  7667. const int dr = (nr + nth - 1)/nth;
  7668. // row range for this thread
  7669. const int ir0 = dr*ith;
  7670. const int ir1 = MIN(ir0 + dr, nr);
  7671. if (nb10 == sizeof(float)) {
  7672. if (dst->type == GGML_TYPE_BF16) {
  7673. for (int ir = ir0; ir < ir1; ++ir) {
  7674. // src0, src1 and dst are same shape => same indices
  7675. const int i3 = ir/(ne2*ne1);
  7676. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7677. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7678. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7679. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7680. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7681. for (int i = 0; i < ne0; i++) {
  7682. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7683. }
  7684. }
  7685. } else {
  7686. for (int ir = ir0; ir < ir1; ++ir) {
  7687. // src0, src1 and dst are same shape => same indices
  7688. const int i3 = ir/(ne2*ne1);
  7689. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7690. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7691. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7692. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7693. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7694. for (int i = 0; i < ne0; i++) {
  7695. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7696. }
  7697. }
  7698. }
  7699. }
  7700. else {
  7701. // src1 is not contiguous
  7702. GGML_ASSERT(false);
  7703. }
  7704. }
  7705. static void ggml_compute_forward_add_f16_f16(
  7706. const struct ggml_compute_params * params,
  7707. struct ggml_tensor * dst) {
  7708. const struct ggml_tensor * src0 = dst->src[0];
  7709. const struct ggml_tensor * src1 = dst->src[1];
  7710. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7711. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7712. return;
  7713. }
  7714. const int ith = params->ith;
  7715. const int nth = params->nth;
  7716. const int nr = ggml_nrows(src0);
  7717. GGML_TENSOR_BINARY_OP_LOCALS
  7718. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7719. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7720. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7721. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7722. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7723. // rows per thread
  7724. const int dr = (nr + nth - 1)/nth;
  7725. // row range for this thread
  7726. const int ir0 = dr*ith;
  7727. const int ir1 = MIN(ir0 + dr, nr);
  7728. if (nb10 == sizeof(ggml_fp16_t)) {
  7729. for (int ir = ir0; ir < ir1; ++ir) {
  7730. // src0, src1 and dst are same shape => same indices
  7731. const int i3 = ir/(ne2*ne1);
  7732. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7733. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7734. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7735. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7736. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7737. for (int i = 0; i < ne0; i++) {
  7738. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7739. }
  7740. }
  7741. }
  7742. else {
  7743. // src1 is not contiguous
  7744. GGML_ASSERT(false);
  7745. }
  7746. }
  7747. static void ggml_compute_forward_add_bf16_bf16(
  7748. const struct ggml_compute_params * params,
  7749. struct ggml_tensor * dst) {
  7750. const struct ggml_tensor * src0 = dst->src[0];
  7751. const struct ggml_tensor * src1 = dst->src[1];
  7752. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7753. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7754. return;
  7755. }
  7756. const int ith = params->ith;
  7757. const int nth = params->nth;
  7758. const int nr = ggml_nrows(src0);
  7759. GGML_TENSOR_BINARY_OP_LOCALS
  7760. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7761. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7762. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7763. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7764. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7765. // rows per thread
  7766. const int dr = (nr + nth - 1)/nth;
  7767. // row range for this thread
  7768. const int ir0 = dr*ith;
  7769. const int ir1 = MIN(ir0 + dr, nr);
  7770. if (nb10 == sizeof(ggml_bf16_t)) {
  7771. for (int ir = ir0; ir < ir1; ++ir) {
  7772. // src0, src1 and dst are same shape => same indices
  7773. const int i3 = ir/(ne2*ne1);
  7774. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7775. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7776. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7777. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7778. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7779. for (int i = 0; i < ne0; i++) {
  7780. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7781. }
  7782. }
  7783. }
  7784. else {
  7785. // src1 is not contiguous
  7786. GGML_ASSERT(false);
  7787. }
  7788. }
  7789. static void ggml_compute_forward_add_q_f32(
  7790. const struct ggml_compute_params * params,
  7791. struct ggml_tensor * dst) {
  7792. const struct ggml_tensor * src0 = dst->src[0];
  7793. const struct ggml_tensor * src1 = dst->src[1];
  7794. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7795. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7796. return;
  7797. }
  7798. const int nr = ggml_nrows(src0);
  7799. GGML_TENSOR_BINARY_OP_LOCALS
  7800. const int ith = params->ith;
  7801. const int nth = params->nth;
  7802. const enum ggml_type type = src0->type;
  7803. const enum ggml_type dtype = dst->type;
  7804. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7805. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7806. // we don't support permuted src0 or src1
  7807. GGML_ASSERT(nb00 == ggml_type_size(type));
  7808. GGML_ASSERT(nb10 == sizeof(float));
  7809. // dst cannot be transposed or permuted
  7810. GGML_ASSERT(nb0 <= nb1);
  7811. GGML_ASSERT(nb1 <= nb2);
  7812. GGML_ASSERT(nb2 <= nb3);
  7813. GGML_ASSERT(ggml_is_quantized(src0->type));
  7814. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7815. // rows per thread
  7816. const int dr = (nr + nth - 1)/nth;
  7817. // row range for this thread
  7818. const int ir0 = dr*ith;
  7819. const int ir1 = MIN(ir0 + dr, nr);
  7820. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7821. for (int ir = ir0; ir < ir1; ++ir) {
  7822. // src0 indices
  7823. const int i03 = ir/(ne02*ne01);
  7824. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7825. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7826. // src1 and dst are same shape as src0 => same indices
  7827. const int i13 = i03;
  7828. const int i12 = i02;
  7829. const int i11 = i01;
  7830. const int i3 = i03;
  7831. const int i2 = i02;
  7832. const int i1 = i01;
  7833. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7834. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7835. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7836. assert(ne00 % 32 == 0);
  7837. // unquantize row from src0 to temp buffer
  7838. dequantize_row_q(src0_row, wdata, ne00);
  7839. // add src1
  7840. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7841. // quantize row to dst
  7842. if (quantize_row_q != NULL) {
  7843. quantize_row_q(wdata, dst_row, ne00);
  7844. } else {
  7845. memcpy(dst_row, wdata, ne0*nb0);
  7846. }
  7847. }
  7848. }
  7849. static void ggml_compute_forward_add(
  7850. const struct ggml_compute_params * params,
  7851. struct ggml_tensor * dst) {
  7852. const struct ggml_tensor * src0 = dst->src[0];
  7853. const struct ggml_tensor * src1 = dst->src[1];
  7854. switch (src0->type) {
  7855. case GGML_TYPE_F32:
  7856. {
  7857. if (src1->type == GGML_TYPE_F32) {
  7858. ggml_compute_forward_add_f32(params, dst);
  7859. }
  7860. else {
  7861. GGML_ASSERT(false);
  7862. }
  7863. } break;
  7864. case GGML_TYPE_F16:
  7865. {
  7866. if (src1->type == GGML_TYPE_F16) {
  7867. ggml_compute_forward_add_f16_f16(params, dst);
  7868. }
  7869. else if (src1->type == GGML_TYPE_F32) {
  7870. ggml_compute_forward_add_f16_f32(params, dst);
  7871. }
  7872. else {
  7873. GGML_ASSERT(false);
  7874. }
  7875. } break;
  7876. case GGML_TYPE_BF16:
  7877. {
  7878. if (src1->type == GGML_TYPE_BF16) {
  7879. ggml_compute_forward_add_bf16_bf16(params, dst);
  7880. }
  7881. else if (src1->type == GGML_TYPE_F32) {
  7882. ggml_compute_forward_add_bf16_f32(params, dst);
  7883. }
  7884. else {
  7885. GGML_ASSERT(false);
  7886. }
  7887. } break;
  7888. case GGML_TYPE_Q4_0:
  7889. case GGML_TYPE_Q4_1:
  7890. case GGML_TYPE_Q5_0:
  7891. case GGML_TYPE_Q5_1:
  7892. case GGML_TYPE_Q8_0:
  7893. case GGML_TYPE_Q2_K:
  7894. case GGML_TYPE_Q3_K:
  7895. case GGML_TYPE_Q4_K:
  7896. case GGML_TYPE_Q5_K:
  7897. case GGML_TYPE_Q6_K:
  7898. case GGML_TYPE_IQ2_XXS:
  7899. case GGML_TYPE_IQ2_XS:
  7900. case GGML_TYPE_IQ3_XXS:
  7901. case GGML_TYPE_IQ1_S:
  7902. case GGML_TYPE_IQ1_M:
  7903. case GGML_TYPE_IQ4_NL:
  7904. case GGML_TYPE_IQ4_XS:
  7905. case GGML_TYPE_IQ3_S:
  7906. case GGML_TYPE_IQ2_S:
  7907. {
  7908. ggml_compute_forward_add_q_f32(params, dst);
  7909. } break;
  7910. default:
  7911. {
  7912. GGML_ASSERT(false);
  7913. } break;
  7914. }
  7915. }
  7916. // ggml_compute_forward_add1
  7917. static void ggml_compute_forward_add1_f32(
  7918. const struct ggml_compute_params * params,
  7919. struct ggml_tensor * dst) {
  7920. const struct ggml_tensor * src0 = dst->src[0];
  7921. const struct ggml_tensor * src1 = dst->src[1];
  7922. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7923. GGML_ASSERT(ggml_is_scalar(src1));
  7924. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7925. return;
  7926. }
  7927. const int ith = params->ith;
  7928. const int nth = params->nth;
  7929. const int nr = ggml_nrows(src0);
  7930. GGML_TENSOR_UNARY_OP_LOCALS
  7931. GGML_ASSERT( nb0 == sizeof(float));
  7932. GGML_ASSERT(nb00 == sizeof(float));
  7933. // rows per thread
  7934. const int dr = (nr + nth - 1)/nth;
  7935. // row range for this thread
  7936. const int ir0 = dr*ith;
  7937. const int ir1 = MIN(ir0 + dr, nr);
  7938. for (int ir = ir0; ir < ir1; ++ir) {
  7939. // src0 and dst are same shape => same indices
  7940. const int i3 = ir/(ne2*ne1);
  7941. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7942. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7943. #ifdef GGML_USE_ACCELERATE
  7944. UNUSED(ggml_vec_add1_f32);
  7945. vDSP_vadd(
  7946. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7947. (float *) ((char *) src1->data), 0,
  7948. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7949. ne0);
  7950. #else
  7951. ggml_vec_add1_f32(ne0,
  7952. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7953. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7954. *(float *) src1->data);
  7955. #endif
  7956. }
  7957. }
  7958. static void ggml_compute_forward_add1_f16_f32(
  7959. const struct ggml_compute_params * params,
  7960. struct ggml_tensor * dst) {
  7961. const struct ggml_tensor * src0 = dst->src[0];
  7962. const struct ggml_tensor * src1 = dst->src[1];
  7963. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7964. GGML_ASSERT(ggml_is_scalar(src1));
  7965. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7966. return;
  7967. }
  7968. // scalar to add
  7969. const float v = *(float *) src1->data;
  7970. const int ith = params->ith;
  7971. const int nth = params->nth;
  7972. const int nr = ggml_nrows(src0);
  7973. GGML_TENSOR_UNARY_OP_LOCALS
  7974. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7975. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7976. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7977. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7978. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7979. // rows per thread
  7980. const int dr = (nr + nth - 1)/nth;
  7981. // row range for this thread
  7982. const int ir0 = dr*ith;
  7983. const int ir1 = MIN(ir0 + dr, nr);
  7984. for (int ir = ir0; ir < ir1; ++ir) {
  7985. // src0 and dst are same shape => same indices
  7986. const int i3 = ir/(ne2*ne1);
  7987. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7988. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7989. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7990. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7991. for (int i = 0; i < ne0; i++) {
  7992. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7993. }
  7994. }
  7995. }
  7996. static void ggml_compute_forward_add1_f16_f16(
  7997. const struct ggml_compute_params * params,
  7998. struct ggml_tensor * dst) {
  7999. const struct ggml_tensor * src0 = dst->src[0];
  8000. const struct ggml_tensor * src1 = dst->src[1];
  8001. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8002. GGML_ASSERT(ggml_is_scalar(src1));
  8003. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8004. return;
  8005. }
  8006. // scalar to add
  8007. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8008. const int ith = params->ith;
  8009. const int nth = params->nth;
  8010. const int nr = ggml_nrows(src0);
  8011. GGML_TENSOR_UNARY_OP_LOCALS
  8012. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8013. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8014. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8015. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8016. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8017. // rows per thread
  8018. const int dr = (nr + nth - 1)/nth;
  8019. // row range for this thread
  8020. const int ir0 = dr*ith;
  8021. const int ir1 = MIN(ir0 + dr, nr);
  8022. for (int ir = ir0; ir < ir1; ++ir) {
  8023. // src0 and dst are same shape => same indices
  8024. const int i3 = ir/(ne2*ne1);
  8025. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8026. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8027. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8028. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8029. for (int i = 0; i < ne0; i++) {
  8030. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8031. }
  8032. }
  8033. }
  8034. static void ggml_compute_forward_add1_q_f32(
  8035. const struct ggml_compute_params * params,
  8036. struct ggml_tensor * dst) {
  8037. const struct ggml_tensor * src0 = dst->src[0];
  8038. const struct ggml_tensor * src1 = dst->src[1];
  8039. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8040. GGML_ASSERT(ggml_is_scalar(src1));
  8041. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8042. return;
  8043. }
  8044. // scalar to add
  8045. const float v = *(float *) src1->data;
  8046. const int ith = params->ith;
  8047. const int nth = params->nth;
  8048. const int nr = ggml_nrows(src0);
  8049. GGML_TENSOR_UNARY_OP_LOCALS
  8050. const enum ggml_type type = src0->type;
  8051. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8052. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8053. // we don't support permuted src0
  8054. GGML_ASSERT(nb00 == ggml_type_size(type));
  8055. // dst cannot be transposed or permuted
  8056. GGML_ASSERT(nb0 <= nb1);
  8057. GGML_ASSERT(nb1 <= nb2);
  8058. GGML_ASSERT(nb2 <= nb3);
  8059. GGML_ASSERT(ggml_is_quantized(src0->type));
  8060. GGML_ASSERT(dst->type == src0->type);
  8061. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8062. // rows per thread
  8063. const int dr = (nr + nth - 1)/nth;
  8064. // row range for this thread
  8065. const int ir0 = dr*ith;
  8066. const int ir1 = MIN(ir0 + dr, nr);
  8067. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8068. for (int ir = ir0; ir < ir1; ++ir) {
  8069. // src0 and dst are same shape => same indices
  8070. const int i3 = ir/(ne2*ne1);
  8071. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8072. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8073. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8074. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8075. assert(ne0 % 32 == 0);
  8076. // unquantize row from src0 to temp buffer
  8077. dequantize_row_q(src0_row, wdata, ne0);
  8078. // add src1
  8079. ggml_vec_acc1_f32(ne0, wdata, v);
  8080. // quantize row to dst
  8081. quantize_row_q(wdata, dst_row, ne0);
  8082. }
  8083. }
  8084. static void ggml_compute_forward_add1_bf16_f32(
  8085. const struct ggml_compute_params * params,
  8086. struct ggml_tensor * dst) {
  8087. const struct ggml_tensor * src0 = dst->src[0];
  8088. const struct ggml_tensor * src1 = dst->src[1];
  8089. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8090. GGML_ASSERT(ggml_is_scalar(src1));
  8091. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8092. return;
  8093. }
  8094. // scalar to add
  8095. const float v = *(float *) src1->data;
  8096. const int ith = params->ith;
  8097. const int nth = params->nth;
  8098. const int nr = ggml_nrows(src0);
  8099. GGML_TENSOR_UNARY_OP_LOCALS
  8100. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8101. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8102. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8103. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8104. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8105. // rows per thread
  8106. const int dr = (nr + nth - 1)/nth;
  8107. // row range for this thread
  8108. const int ir0 = dr*ith;
  8109. const int ir1 = MIN(ir0 + dr, nr);
  8110. for (int ir = ir0; ir < ir1; ++ir) {
  8111. // src0 and dst are same shape => same indices
  8112. const int i3 = ir/(ne2*ne1);
  8113. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8114. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8115. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8116. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8117. for (int i = 0; i < ne0; i++) {
  8118. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8119. }
  8120. }
  8121. }
  8122. static void ggml_compute_forward_add1_bf16_bf16(
  8123. const struct ggml_compute_params * params,
  8124. struct ggml_tensor * dst) {
  8125. const struct ggml_tensor * src0 = dst->src[0];
  8126. const struct ggml_tensor * src1 = dst->src[1];
  8127. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8128. GGML_ASSERT(ggml_is_scalar(src1));
  8129. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8130. return;
  8131. }
  8132. // scalar to add
  8133. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8134. const int ith = params->ith;
  8135. const int nth = params->nth;
  8136. const int nr = ggml_nrows(src0);
  8137. GGML_TENSOR_UNARY_OP_LOCALS
  8138. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8139. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8140. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8141. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8142. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8143. // rows per thread
  8144. const int dr = (nr + nth - 1)/nth;
  8145. // row range for this thread
  8146. const int ir0 = dr*ith;
  8147. const int ir1 = MIN(ir0 + dr, nr);
  8148. for (int ir = ir0; ir < ir1; ++ir) {
  8149. // src0 and dst are same shape => same indices
  8150. const int i3 = ir/(ne2*ne1);
  8151. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8152. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8153. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8154. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8155. for (int i = 0; i < ne0; i++) {
  8156. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8157. }
  8158. }
  8159. }
  8160. static void ggml_compute_forward_add1(
  8161. const struct ggml_compute_params * params,
  8162. struct ggml_tensor * dst) {
  8163. const struct ggml_tensor * src0 = dst->src[0];
  8164. const struct ggml_tensor * src1 = dst->src[1];
  8165. switch (src0->type) {
  8166. case GGML_TYPE_F32:
  8167. {
  8168. ggml_compute_forward_add1_f32(params, dst);
  8169. } break;
  8170. case GGML_TYPE_F16:
  8171. {
  8172. if (src1->type == GGML_TYPE_F16) {
  8173. ggml_compute_forward_add1_f16_f16(params, dst);
  8174. }
  8175. else if (src1->type == GGML_TYPE_F32) {
  8176. ggml_compute_forward_add1_f16_f32(params, dst);
  8177. }
  8178. else {
  8179. GGML_ASSERT(false);
  8180. }
  8181. } break;
  8182. case GGML_TYPE_BF16:
  8183. {
  8184. if (src1->type == GGML_TYPE_BF16) {
  8185. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8186. }
  8187. else if (src1->type == GGML_TYPE_F32) {
  8188. ggml_compute_forward_add1_bf16_f32(params, dst);
  8189. }
  8190. else {
  8191. GGML_ASSERT(false);
  8192. }
  8193. } break;
  8194. case GGML_TYPE_Q4_0:
  8195. case GGML_TYPE_Q4_1:
  8196. case GGML_TYPE_Q5_0:
  8197. case GGML_TYPE_Q5_1:
  8198. case GGML_TYPE_Q8_0:
  8199. case GGML_TYPE_Q8_1:
  8200. case GGML_TYPE_Q2_K:
  8201. case GGML_TYPE_Q3_K:
  8202. case GGML_TYPE_Q4_K:
  8203. case GGML_TYPE_Q5_K:
  8204. case GGML_TYPE_Q6_K:
  8205. case GGML_TYPE_IQ2_XXS:
  8206. case GGML_TYPE_IQ2_XS:
  8207. case GGML_TYPE_IQ3_XXS:
  8208. case GGML_TYPE_IQ1_S:
  8209. case GGML_TYPE_IQ1_M:
  8210. case GGML_TYPE_IQ4_NL:
  8211. case GGML_TYPE_IQ4_XS:
  8212. case GGML_TYPE_IQ3_S:
  8213. case GGML_TYPE_IQ2_S:
  8214. {
  8215. ggml_compute_forward_add1_q_f32(params, dst);
  8216. } break;
  8217. default:
  8218. {
  8219. GGML_ASSERT(false);
  8220. } break;
  8221. }
  8222. }
  8223. // ggml_compute_forward_acc
  8224. static void ggml_compute_forward_acc_f32(
  8225. const struct ggml_compute_params * params,
  8226. struct ggml_tensor * dst) {
  8227. const struct ggml_tensor * src0 = dst->src[0];
  8228. const struct ggml_tensor * src1 = dst->src[1];
  8229. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8230. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8231. // view src0 and dst with these strides and data offset inbytes during acc
  8232. // nb0 is implicitly element_size because src0 and dst are contiguous
  8233. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8234. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8235. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8236. size_t offset = ((int32_t *) dst->op_params)[3];
  8237. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8238. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8239. if (params->ith != 0) {
  8240. return;
  8241. }
  8242. // memcpy needs to be synchronized across threads to avoid race conditions.
  8243. // => do it in INIT phase
  8244. memcpy(
  8245. ((char *) dst->data),
  8246. ((char *) src0->data),
  8247. ggml_nbytes(dst));
  8248. }
  8249. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8250. return;
  8251. }
  8252. const int ith = params->ith;
  8253. const int nth = params->nth;
  8254. const int nr = ggml_nrows(src1);
  8255. const int nc = src1->ne[0];
  8256. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8257. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8258. // src0 and dst as viewed during acc
  8259. const size_t nb0 = ggml_element_size(src0);
  8260. const size_t nb00 = nb0;
  8261. const size_t nb01 = nb1;
  8262. const size_t nb02 = nb2;
  8263. const size_t nb03 = nb3;
  8264. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8265. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8266. GGML_ASSERT(nb10 == sizeof(float));
  8267. // rows per thread
  8268. const int dr = (nr + nth - 1)/nth;
  8269. // row range for this thread
  8270. const int ir0 = dr*ith;
  8271. const int ir1 = MIN(ir0 + dr, nr);
  8272. for (int ir = ir0; ir < ir1; ++ir) {
  8273. // src0 and dst are viewed with shape of src1 and offset
  8274. // => same indices
  8275. const int i3 = ir/(ne12*ne11);
  8276. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8277. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8278. #ifdef GGML_USE_ACCELERATE
  8279. vDSP_vadd(
  8280. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8281. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8282. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8283. #else
  8284. ggml_vec_add_f32(nc,
  8285. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8286. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8287. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8288. #endif
  8289. }
  8290. }
  8291. static void ggml_compute_forward_acc(
  8292. const struct ggml_compute_params * params,
  8293. struct ggml_tensor * dst) {
  8294. const struct ggml_tensor * src0 = dst->src[0];
  8295. switch (src0->type) {
  8296. case GGML_TYPE_F32:
  8297. {
  8298. ggml_compute_forward_acc_f32(params, dst);
  8299. } break;
  8300. case GGML_TYPE_F16:
  8301. case GGML_TYPE_BF16:
  8302. case GGML_TYPE_Q4_0:
  8303. case GGML_TYPE_Q4_1:
  8304. case GGML_TYPE_Q5_0:
  8305. case GGML_TYPE_Q5_1:
  8306. case GGML_TYPE_Q8_0:
  8307. case GGML_TYPE_Q8_1:
  8308. case GGML_TYPE_Q2_K:
  8309. case GGML_TYPE_Q3_K:
  8310. case GGML_TYPE_Q4_K:
  8311. case GGML_TYPE_Q5_K:
  8312. case GGML_TYPE_Q6_K:
  8313. case GGML_TYPE_IQ2_XXS:
  8314. case GGML_TYPE_IQ2_XS:
  8315. case GGML_TYPE_IQ3_XXS:
  8316. case GGML_TYPE_IQ1_S:
  8317. case GGML_TYPE_IQ1_M:
  8318. case GGML_TYPE_IQ4_NL:
  8319. case GGML_TYPE_IQ4_XS:
  8320. case GGML_TYPE_IQ3_S:
  8321. case GGML_TYPE_IQ2_S:
  8322. default:
  8323. {
  8324. GGML_ASSERT(false);
  8325. } break;
  8326. }
  8327. }
  8328. // ggml_compute_forward_sub
  8329. static void ggml_compute_forward_sub_f32(
  8330. const struct ggml_compute_params * params,
  8331. struct ggml_tensor * dst) {
  8332. const struct ggml_tensor * src0 = dst->src[0];
  8333. const struct ggml_tensor * src1 = dst->src[1];
  8334. assert(params->ith == 0);
  8335. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8336. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8337. return;
  8338. }
  8339. const int nr = ggml_nrows(src0);
  8340. GGML_TENSOR_BINARY_OP_LOCALS
  8341. GGML_ASSERT( nb0 == sizeof(float));
  8342. GGML_ASSERT(nb00 == sizeof(float));
  8343. if (nb10 == sizeof(float)) {
  8344. for (int ir = 0; ir < nr; ++ir) {
  8345. // src0, src1 and dst are same shape => same indices
  8346. const int i3 = ir/(ne2*ne1);
  8347. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8348. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8349. #ifdef GGML_USE_ACCELERATE
  8350. vDSP_vsub(
  8351. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8352. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8353. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8354. ne0);
  8355. #else
  8356. ggml_vec_sub_f32(ne0,
  8357. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8358. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8359. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8360. #endif
  8361. // }
  8362. // }
  8363. }
  8364. } else {
  8365. // src1 is not contiguous
  8366. for (int ir = 0; ir < nr; ++ir) {
  8367. // src0, src1 and dst are same shape => same indices
  8368. const int i3 = ir/(ne2*ne1);
  8369. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8370. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8371. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8372. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8373. for (int i0 = 0; i0 < ne0; i0++) {
  8374. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8375. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8376. }
  8377. }
  8378. }
  8379. }
  8380. static void ggml_compute_forward_sub(
  8381. const struct ggml_compute_params * params,
  8382. struct ggml_tensor * dst) {
  8383. const struct ggml_tensor * src0 = dst->src[0];
  8384. switch (src0->type) {
  8385. case GGML_TYPE_F32:
  8386. {
  8387. ggml_compute_forward_sub_f32(params, dst);
  8388. } break;
  8389. default:
  8390. {
  8391. GGML_ASSERT(false);
  8392. } break;
  8393. }
  8394. }
  8395. // ggml_compute_forward_mul
  8396. static void ggml_compute_forward_mul_f32(
  8397. const struct ggml_compute_params * params,
  8398. struct ggml_tensor * dst) {
  8399. const struct ggml_tensor * src0 = dst->src[0];
  8400. const struct ggml_tensor * src1 = dst->src[1];
  8401. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8402. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8403. return;
  8404. }
  8405. const int ith = params->ith;
  8406. const int nth = params->nth;
  8407. #if defined(GGML_USE_CLBLAST)
  8408. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8409. // TODO: OpenCL kernel support full broadcast
  8410. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8411. if (ith == 0) {
  8412. ggml_cl_mul(src0, src1, dst);
  8413. }
  8414. return;
  8415. }
  8416. #endif
  8417. const int64_t nr = ggml_nrows(src0);
  8418. GGML_TENSOR_BINARY_OP_LOCALS
  8419. GGML_ASSERT( nb0 == sizeof(float));
  8420. GGML_ASSERT(nb00 == sizeof(float));
  8421. if (nb10 == sizeof(float)) {
  8422. for (int64_t ir = ith; ir < nr; ir += nth) {
  8423. // src0 and dst are same shape => same indices
  8424. const int64_t i03 = ir/(ne02*ne01);
  8425. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8426. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8427. const int64_t i13 = i03 % ne13;
  8428. const int64_t i12 = i02 % ne12;
  8429. const int64_t i11 = i01 % ne11;
  8430. const int64_t nr0 = ne00 / ne10;
  8431. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8432. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8433. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8434. for (int64_t r = 0 ; r < nr0; ++r) {
  8435. #ifdef GGML_USE_ACCELERATE
  8436. UNUSED(ggml_vec_mul_f32);
  8437. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8438. #else
  8439. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8440. #endif
  8441. }
  8442. }
  8443. } else {
  8444. // src1 is not contiguous
  8445. for (int64_t ir = ith; ir < nr; ir += nth) {
  8446. // src0 and dst are same shape => same indices
  8447. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8448. const int64_t i03 = ir/(ne02*ne01);
  8449. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8450. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8451. const int64_t i13 = i03 % ne13;
  8452. const int64_t i12 = i02 % ne12;
  8453. const int64_t i11 = i01 % ne11;
  8454. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8455. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8456. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8457. const int64_t i10 = i0 % ne10;
  8458. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8459. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8460. }
  8461. }
  8462. }
  8463. }
  8464. static void ggml_compute_forward_mul(
  8465. const struct ggml_compute_params * params,
  8466. struct ggml_tensor * dst) {
  8467. const struct ggml_tensor * src0 = dst->src[0];
  8468. const struct ggml_tensor * src1 = dst->src[1];
  8469. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8470. switch (src0->type) {
  8471. case GGML_TYPE_F32:
  8472. {
  8473. ggml_compute_forward_mul_f32(params, dst);
  8474. } break;
  8475. default:
  8476. {
  8477. GGML_ASSERT(false);
  8478. } break;
  8479. }
  8480. }
  8481. // ggml_compute_forward_div
  8482. static void ggml_compute_forward_div_f32(
  8483. const struct ggml_compute_params * params,
  8484. struct ggml_tensor * dst) {
  8485. const struct ggml_tensor * src0 = dst->src[0];
  8486. const struct ggml_tensor * src1 = dst->src[1];
  8487. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8488. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8489. return;
  8490. }
  8491. const int ith = params->ith;
  8492. const int nth = params->nth;
  8493. const int64_t nr = ggml_nrows(src0);
  8494. GGML_TENSOR_BINARY_OP_LOCALS
  8495. GGML_ASSERT( nb0 == sizeof(float));
  8496. GGML_ASSERT(nb00 == sizeof(float));
  8497. if (nb10 == sizeof(float)) {
  8498. for (int64_t ir = ith; ir < nr; ir += nth) {
  8499. // src0 and dst are same shape => same indices
  8500. const int64_t i03 = ir/(ne02*ne01);
  8501. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8502. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8503. const int64_t i13 = i03 % ne13;
  8504. const int64_t i12 = i02 % ne12;
  8505. const int64_t i11 = i01 % ne11;
  8506. const int64_t nr0 = ne00 / ne10;
  8507. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8508. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8509. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8510. for (int64_t r = 0; r < nr0; ++r) {
  8511. #ifdef GGML_USE_ACCELERATE
  8512. UNUSED(ggml_vec_div_f32);
  8513. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8514. #else
  8515. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8516. #endif
  8517. }
  8518. }
  8519. } else {
  8520. // src1 is not contiguous
  8521. for (int64_t ir = ith; ir < nr; ir += nth) {
  8522. // src0 and dst are same shape => same indices
  8523. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8524. const int64_t i03 = ir/(ne02*ne01);
  8525. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8526. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8527. const int64_t i13 = i03 % ne13;
  8528. const int64_t i12 = i02 % ne12;
  8529. const int64_t i11 = i01 % ne11;
  8530. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8531. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8532. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8533. const int64_t i10 = i0 % ne10;
  8534. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8535. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8536. }
  8537. }
  8538. }
  8539. }
  8540. static void ggml_compute_forward_div(
  8541. const struct ggml_compute_params * params,
  8542. struct ggml_tensor * dst) {
  8543. const struct ggml_tensor * src0 = dst->src[0];
  8544. switch (src0->type) {
  8545. case GGML_TYPE_F32:
  8546. {
  8547. ggml_compute_forward_div_f32(params, dst);
  8548. } break;
  8549. default:
  8550. {
  8551. GGML_ASSERT(false);
  8552. } break;
  8553. }
  8554. }
  8555. // ggml_compute_forward_sqr
  8556. static void ggml_compute_forward_sqr_f32(
  8557. const struct ggml_compute_params * params,
  8558. struct ggml_tensor * dst) {
  8559. const struct ggml_tensor * src0 = dst->src[0];
  8560. assert(params->ith == 0);
  8561. assert(ggml_are_same_shape(src0, dst));
  8562. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8563. return;
  8564. }
  8565. const int n = ggml_nrows(src0);
  8566. const int nc = src0->ne[0];
  8567. assert( dst->nb[0] == sizeof(float));
  8568. assert(src0->nb[0] == sizeof(float));
  8569. for (int i = 0; i < n; i++) {
  8570. ggml_vec_sqr_f32(nc,
  8571. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8572. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8573. }
  8574. }
  8575. static void ggml_compute_forward_sqr(
  8576. const struct ggml_compute_params * params,
  8577. struct ggml_tensor * dst) {
  8578. const struct ggml_tensor * src0 = dst->src[0];
  8579. switch (src0->type) {
  8580. case GGML_TYPE_F32:
  8581. {
  8582. ggml_compute_forward_sqr_f32(params, dst);
  8583. } break;
  8584. default:
  8585. {
  8586. GGML_ASSERT(false);
  8587. } break;
  8588. }
  8589. }
  8590. // ggml_compute_forward_sqrt
  8591. static void ggml_compute_forward_sqrt_f32(
  8592. const struct ggml_compute_params * params,
  8593. struct ggml_tensor * dst) {
  8594. const struct ggml_tensor * src0 = dst->src[0];
  8595. assert(params->ith == 0);
  8596. assert(ggml_are_same_shape(src0, dst));
  8597. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8598. return;
  8599. }
  8600. const int n = ggml_nrows(src0);
  8601. const int nc = src0->ne[0];
  8602. assert( dst->nb[0] == sizeof(float));
  8603. assert(src0->nb[0] == sizeof(float));
  8604. for (int i = 0; i < n; i++) {
  8605. ggml_vec_sqrt_f32(nc,
  8606. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8607. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8608. }
  8609. }
  8610. static void ggml_compute_forward_sqrt(
  8611. const struct ggml_compute_params * params,
  8612. struct ggml_tensor * dst) {
  8613. const struct ggml_tensor * src0 = dst->src[0];
  8614. switch (src0->type) {
  8615. case GGML_TYPE_F32:
  8616. {
  8617. ggml_compute_forward_sqrt_f32(params, dst);
  8618. } break;
  8619. default:
  8620. {
  8621. GGML_ASSERT(false);
  8622. } break;
  8623. }
  8624. }
  8625. // ggml_compute_forward_log
  8626. static void ggml_compute_forward_log_f32(
  8627. const struct ggml_compute_params * params,
  8628. struct ggml_tensor * dst) {
  8629. const struct ggml_tensor * src0 = dst->src[0];
  8630. GGML_ASSERT(params->ith == 0);
  8631. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8632. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8633. return;
  8634. }
  8635. const int n = ggml_nrows(src0);
  8636. const int nc = src0->ne[0];
  8637. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8638. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8639. for (int i = 0; i < n; i++) {
  8640. ggml_vec_log_f32(nc,
  8641. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8642. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8643. }
  8644. }
  8645. static void ggml_compute_forward_log(
  8646. const struct ggml_compute_params * params,
  8647. struct ggml_tensor * dst) {
  8648. const struct ggml_tensor * src0 = dst->src[0];
  8649. switch (src0->type) {
  8650. case GGML_TYPE_F32:
  8651. {
  8652. ggml_compute_forward_log_f32(params, dst);
  8653. } break;
  8654. default:
  8655. {
  8656. GGML_ASSERT(false);
  8657. } break;
  8658. }
  8659. }
  8660. // ggml_compute_forward_sum
  8661. static void ggml_compute_forward_sum_f32(
  8662. const struct ggml_compute_params * params,
  8663. struct ggml_tensor * dst) {
  8664. const struct ggml_tensor * src0 = dst->src[0];
  8665. assert(params->ith == 0);
  8666. assert(ggml_is_scalar(dst));
  8667. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8668. return;
  8669. }
  8670. assert(ggml_is_scalar(dst));
  8671. assert(src0->nb[0] == sizeof(float));
  8672. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8673. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8674. ggml_float sum = 0;
  8675. ggml_float row_sum = 0;
  8676. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8677. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8678. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8679. ggml_vec_sum_f32_ggf(ne00,
  8680. &row_sum,
  8681. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8682. sum += row_sum;
  8683. }
  8684. }
  8685. }
  8686. ((float *) dst->data)[0] = sum;
  8687. }
  8688. static void ggml_compute_forward_sum_f16(
  8689. const struct ggml_compute_params * params,
  8690. struct ggml_tensor * dst) {
  8691. const struct ggml_tensor * src0 = dst->src[0];
  8692. assert(params->ith == 0);
  8693. assert(ggml_is_scalar(dst));
  8694. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8695. return;
  8696. }
  8697. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8698. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8699. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8700. float sum = 0;
  8701. float row_sum = 0;
  8702. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8703. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8704. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8705. ggml_vec_sum_f16_ggf(ne00,
  8706. &row_sum,
  8707. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8708. sum += row_sum;
  8709. }
  8710. }
  8711. }
  8712. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8713. }
  8714. static void ggml_compute_forward_sum_bf16(
  8715. const struct ggml_compute_params * params,
  8716. struct ggml_tensor * dst) {
  8717. const struct ggml_tensor * src0 = dst->src[0];
  8718. assert(params->ith == 0);
  8719. assert(ggml_is_scalar(dst));
  8720. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8721. return;
  8722. }
  8723. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8724. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8725. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8726. float sum = 0;
  8727. float row_sum = 0;
  8728. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8729. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8730. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8731. ggml_vec_sum_bf16_ggf(ne00,
  8732. &row_sum,
  8733. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8734. sum += row_sum;
  8735. }
  8736. }
  8737. }
  8738. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8739. }
  8740. static void ggml_compute_forward_sum(
  8741. const struct ggml_compute_params * params,
  8742. struct ggml_tensor * dst) {
  8743. const struct ggml_tensor * src0 = dst->src[0];
  8744. switch (src0->type) {
  8745. case GGML_TYPE_F32:
  8746. {
  8747. ggml_compute_forward_sum_f32(params, dst);
  8748. } break;
  8749. case GGML_TYPE_F16:
  8750. {
  8751. ggml_compute_forward_sum_f16(params, dst);
  8752. } break;
  8753. case GGML_TYPE_BF16:
  8754. {
  8755. ggml_compute_forward_sum_bf16(params, dst);
  8756. } break;
  8757. default:
  8758. {
  8759. GGML_ASSERT(false);
  8760. } break;
  8761. }
  8762. }
  8763. // ggml_compute_forward_sum_rows
  8764. static void ggml_compute_forward_sum_rows_f32(
  8765. const struct ggml_compute_params * params,
  8766. struct ggml_tensor * dst) {
  8767. const struct ggml_tensor * src0 = dst->src[0];
  8768. GGML_ASSERT(params->ith == 0);
  8769. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8770. return;
  8771. }
  8772. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8773. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8774. GGML_TENSOR_UNARY_OP_LOCALS
  8775. GGML_ASSERT(ne0 == 1);
  8776. GGML_ASSERT(ne1 == ne01);
  8777. GGML_ASSERT(ne2 == ne02);
  8778. GGML_ASSERT(ne3 == ne03);
  8779. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8780. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8781. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8782. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8783. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8784. float row_sum = 0;
  8785. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8786. dst_row[0] = row_sum;
  8787. }
  8788. }
  8789. }
  8790. }
  8791. static void ggml_compute_forward_sum_rows(
  8792. const struct ggml_compute_params * params,
  8793. struct ggml_tensor * dst) {
  8794. const struct ggml_tensor * src0 = dst->src[0];
  8795. switch (src0->type) {
  8796. case GGML_TYPE_F32:
  8797. {
  8798. ggml_compute_forward_sum_rows_f32(params, dst);
  8799. } break;
  8800. default:
  8801. {
  8802. GGML_ASSERT(false);
  8803. } break;
  8804. }
  8805. }
  8806. // ggml_compute_forward_mean
  8807. static void ggml_compute_forward_mean_f32(
  8808. const struct ggml_compute_params * params,
  8809. struct ggml_tensor * dst) {
  8810. const struct ggml_tensor * src0 = dst->src[0];
  8811. assert(params->ith == 0);
  8812. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8813. return;
  8814. }
  8815. assert(src0->nb[0] == sizeof(float));
  8816. GGML_TENSOR_UNARY_OP_LOCALS
  8817. assert(ne0 == 1);
  8818. assert(ne1 == ne01);
  8819. assert(ne2 == ne02);
  8820. assert(ne3 == ne03);
  8821. UNUSED(ne0);
  8822. UNUSED(ne1);
  8823. UNUSED(ne2);
  8824. UNUSED(ne3);
  8825. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8826. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8827. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8828. ggml_vec_sum_f32(ne00,
  8829. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8830. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8831. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8832. }
  8833. }
  8834. }
  8835. }
  8836. static void ggml_compute_forward_mean(
  8837. const struct ggml_compute_params * params,
  8838. struct ggml_tensor * dst) {
  8839. const struct ggml_tensor * src0 = dst->src[0];
  8840. switch (src0->type) {
  8841. case GGML_TYPE_F32:
  8842. {
  8843. ggml_compute_forward_mean_f32(params, dst);
  8844. } break;
  8845. default:
  8846. {
  8847. GGML_ASSERT(false);
  8848. } break;
  8849. }
  8850. }
  8851. // ggml_compute_forward_argmax
  8852. static void ggml_compute_forward_argmax_f32(
  8853. const struct ggml_compute_params * params,
  8854. struct ggml_tensor * dst) {
  8855. const struct ggml_tensor * src0 = dst->src[0];
  8856. assert(params->ith == 0);
  8857. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8858. return;
  8859. }
  8860. assert(src0->nb[0] == sizeof(float));
  8861. assert(dst->nb[0] == sizeof(float));
  8862. const int64_t ne00 = src0->ne[0];
  8863. const int64_t ne01 = src0->ne[1];
  8864. const size_t nb01 = src0->nb[1];
  8865. const size_t nb0 = dst->nb[0];
  8866. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8867. float * src = (float *) ((char *) src0->data + i1*nb01);
  8868. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8869. int v = 0;
  8870. ggml_vec_argmax_f32(ne00, &v, src);
  8871. dst_[0] = v;
  8872. }
  8873. }
  8874. static void ggml_compute_forward_argmax(
  8875. const struct ggml_compute_params * params,
  8876. struct ggml_tensor * dst) {
  8877. const struct ggml_tensor * src0 = dst->src[0];
  8878. switch (src0->type) {
  8879. case GGML_TYPE_F32:
  8880. {
  8881. ggml_compute_forward_argmax_f32(params, dst);
  8882. } break;
  8883. default:
  8884. {
  8885. GGML_ASSERT(false);
  8886. } break;
  8887. }
  8888. }
  8889. // ggml_compute_forward_repeat
  8890. static void ggml_compute_forward_repeat_f32(
  8891. const struct ggml_compute_params * params,
  8892. struct ggml_tensor * dst) {
  8893. const struct ggml_tensor * src0 = dst->src[0];
  8894. GGML_ASSERT(params->ith == 0);
  8895. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8896. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8897. return;
  8898. }
  8899. GGML_TENSOR_UNARY_OP_LOCALS
  8900. // guaranteed to be an integer due to the check in ggml_can_repeat
  8901. const int nr0 = (int)(ne0/ne00);
  8902. const int nr1 = (int)(ne1/ne01);
  8903. const int nr2 = (int)(ne2/ne02);
  8904. const int nr3 = (int)(ne3/ne03);
  8905. // TODO: support for transposed / permuted tensors
  8906. GGML_ASSERT(nb0 == sizeof(float));
  8907. GGML_ASSERT(nb00 == sizeof(float));
  8908. // TODO: maybe this is not optimal?
  8909. for (int i3 = 0; i3 < nr3; i3++) {
  8910. for (int k3 = 0; k3 < ne03; k3++) {
  8911. for (int i2 = 0; i2 < nr2; i2++) {
  8912. for (int k2 = 0; k2 < ne02; k2++) {
  8913. for (int i1 = 0; i1 < nr1; i1++) {
  8914. for (int k1 = 0; k1 < ne01; k1++) {
  8915. for (int i0 = 0; i0 < nr0; i0++) {
  8916. ggml_vec_cpy_f32(ne00,
  8917. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8918. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8919. }
  8920. }
  8921. }
  8922. }
  8923. }
  8924. }
  8925. }
  8926. }
  8927. static void ggml_compute_forward_repeat_f16(
  8928. const struct ggml_compute_params * params,
  8929. struct ggml_tensor * dst) {
  8930. const struct ggml_tensor * src0 = dst->src[0];
  8931. GGML_ASSERT(params->ith == 0);
  8932. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8933. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8934. return;
  8935. }
  8936. GGML_TENSOR_UNARY_OP_LOCALS
  8937. // guaranteed to be an integer due to the check in ggml_can_repeat
  8938. const int nr0 = (int)(ne0/ne00);
  8939. const int nr1 = (int)(ne1/ne01);
  8940. const int nr2 = (int)(ne2/ne02);
  8941. const int nr3 = (int)(ne3/ne03);
  8942. // TODO: support for transposed / permuted tensors
  8943. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8944. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8945. // TODO: maybe this is not optimal?
  8946. for (int i3 = 0; i3 < nr3; i3++) {
  8947. for (int k3 = 0; k3 < ne03; k3++) {
  8948. for (int i2 = 0; i2 < nr2; i2++) {
  8949. for (int k2 = 0; k2 < ne02; k2++) {
  8950. for (int i1 = 0; i1 < nr1; i1++) {
  8951. for (int k1 = 0; k1 < ne01; k1++) {
  8952. for (int i0 = 0; i0 < nr0; i0++) {
  8953. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8954. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8955. // ggml_vec_cpy_f16(ne00, y, x)
  8956. for (int i = 0; i < ne00; ++i) {
  8957. y[i] = x[i];
  8958. }
  8959. }
  8960. }
  8961. }
  8962. }
  8963. }
  8964. }
  8965. }
  8966. }
  8967. static void ggml_compute_forward_repeat(
  8968. const struct ggml_compute_params * params,
  8969. struct ggml_tensor * dst) {
  8970. const struct ggml_tensor * src0 = dst->src[0];
  8971. switch (src0->type) {
  8972. case GGML_TYPE_F16:
  8973. case GGML_TYPE_BF16:
  8974. case GGML_TYPE_I16:
  8975. {
  8976. ggml_compute_forward_repeat_f16(params, dst);
  8977. } break;
  8978. case GGML_TYPE_F32:
  8979. case GGML_TYPE_I32:
  8980. {
  8981. ggml_compute_forward_repeat_f32(params, dst);
  8982. } break;
  8983. default:
  8984. {
  8985. GGML_ASSERT(false);
  8986. } break;
  8987. }
  8988. }
  8989. // ggml_compute_forward_repeat_back
  8990. static void ggml_compute_forward_repeat_back_f32(
  8991. const struct ggml_compute_params * params,
  8992. struct ggml_tensor * dst) {
  8993. const struct ggml_tensor * src0 = dst->src[0];
  8994. GGML_ASSERT(params->ith == 0);
  8995. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8996. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8997. return;
  8998. }
  8999. GGML_TENSOR_UNARY_OP_LOCALS
  9000. // guaranteed to be an integer due to the check in ggml_can_repeat
  9001. const int nr0 = (int)(ne00/ne0);
  9002. const int nr1 = (int)(ne01/ne1);
  9003. const int nr2 = (int)(ne02/ne2);
  9004. const int nr3 = (int)(ne03/ne3);
  9005. // TODO: support for transposed / permuted tensors
  9006. GGML_ASSERT(nb0 == sizeof(float));
  9007. GGML_ASSERT(nb00 == sizeof(float));
  9008. if (ggml_is_contiguous(dst)) {
  9009. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9010. } else {
  9011. for (int k3 = 0; k3 < ne3; k3++) {
  9012. for (int k2 = 0; k2 < ne2; k2++) {
  9013. for (int k1 = 0; k1 < ne1; k1++) {
  9014. ggml_vec_set_f32(ne0,
  9015. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9016. 0);
  9017. }
  9018. }
  9019. }
  9020. }
  9021. // TODO: maybe this is not optimal?
  9022. for (int i3 = 0; i3 < nr3; i3++) {
  9023. for (int k3 = 0; k3 < ne3; k3++) {
  9024. for (int i2 = 0; i2 < nr2; i2++) {
  9025. for (int k2 = 0; k2 < ne2; k2++) {
  9026. for (int i1 = 0; i1 < nr1; i1++) {
  9027. for (int k1 = 0; k1 < ne1; k1++) {
  9028. for (int i0 = 0; i0 < nr0; i0++) {
  9029. ggml_vec_acc_f32(ne0,
  9030. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9031. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9032. }
  9033. }
  9034. }
  9035. }
  9036. }
  9037. }
  9038. }
  9039. }
  9040. static void ggml_compute_forward_repeat_back(
  9041. const struct ggml_compute_params * params,
  9042. struct ggml_tensor * dst) {
  9043. const struct ggml_tensor * src0 = dst->src[0];
  9044. switch (src0->type) {
  9045. case GGML_TYPE_F32:
  9046. {
  9047. ggml_compute_forward_repeat_back_f32(params, dst);
  9048. } break;
  9049. default:
  9050. {
  9051. GGML_ASSERT(false);
  9052. } break;
  9053. }
  9054. }
  9055. // ggml_compute_forward_concat
  9056. static void ggml_compute_forward_concat_f32(
  9057. const struct ggml_compute_params * params,
  9058. struct ggml_tensor * dst) {
  9059. const struct ggml_tensor * src0 = dst->src[0];
  9060. const struct ggml_tensor * src1 = dst->src[1];
  9061. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9062. return;
  9063. }
  9064. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9065. const int ith = params->ith;
  9066. const int nth = params->nth;
  9067. GGML_TENSOR_BINARY_OP_LOCALS
  9068. // TODO: support for transposed / permuted tensors
  9069. GGML_ASSERT(nb0 == sizeof(float));
  9070. GGML_ASSERT(nb00 == sizeof(float));
  9071. GGML_ASSERT(nb10 == sizeof(float));
  9072. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9073. GGML_ASSERT(dim >= 0 && dim < 4);
  9074. int64_t o[4] = {0, 0, 0, 0};
  9075. o[dim] = src0->ne[dim];
  9076. const float * x;
  9077. // TODO: smarter multi-theading
  9078. for (int i3 = 0; i3 < ne3; i3++) {
  9079. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9080. for (int i1 = 0; i1 < ne1; i1++) {
  9081. for (int i0 = 0; i0 < ne0; i0++) {
  9082. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9083. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9084. } else {
  9085. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9086. }
  9087. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9088. *y = *x;
  9089. }
  9090. }
  9091. }
  9092. }
  9093. }
  9094. static void ggml_compute_forward_concat(
  9095. const struct ggml_compute_params * params,
  9096. struct ggml_tensor * dst) {
  9097. const struct ggml_tensor * src0 = dst->src[0];
  9098. switch (src0->type) {
  9099. case GGML_TYPE_F32:
  9100. case GGML_TYPE_I32:
  9101. {
  9102. ggml_compute_forward_concat_f32(params, dst);
  9103. } break;
  9104. default:
  9105. {
  9106. GGML_ASSERT(false);
  9107. } break;
  9108. }
  9109. }
  9110. // ggml_compute_forward_abs
  9111. static void ggml_compute_forward_abs_f32(
  9112. const struct ggml_compute_params * params,
  9113. struct ggml_tensor * dst) {
  9114. const struct ggml_tensor * src0 = dst->src[0];
  9115. assert(params->ith == 0);
  9116. assert(ggml_are_same_shape(src0, dst));
  9117. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9118. return;
  9119. }
  9120. const int n = ggml_nrows(src0);
  9121. const int nc = src0->ne[0];
  9122. assert(dst->nb[0] == sizeof(float));
  9123. assert(src0->nb[0] == sizeof(float));
  9124. for (int i = 0; i < n; i++) {
  9125. ggml_vec_abs_f32(nc,
  9126. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9127. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9128. }
  9129. }
  9130. static void ggml_compute_forward_abs(
  9131. const struct ggml_compute_params * params,
  9132. struct ggml_tensor * dst) {
  9133. const struct ggml_tensor * src0 = dst->src[0];
  9134. switch (src0->type) {
  9135. case GGML_TYPE_F32:
  9136. {
  9137. ggml_compute_forward_abs_f32(params, dst);
  9138. } break;
  9139. default:
  9140. {
  9141. GGML_ASSERT(false);
  9142. } break;
  9143. }
  9144. }
  9145. // ggml_compute_forward_sgn
  9146. static void ggml_compute_forward_sgn_f32(
  9147. const struct ggml_compute_params * params,
  9148. struct ggml_tensor * dst) {
  9149. const struct ggml_tensor * src0 = dst->src[0];
  9150. assert(params->ith == 0);
  9151. assert(ggml_are_same_shape(src0, dst));
  9152. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9153. return;
  9154. }
  9155. const int n = ggml_nrows(src0);
  9156. const int nc = src0->ne[0];
  9157. assert(dst->nb[0] == sizeof(float));
  9158. assert(src0->nb[0] == sizeof(float));
  9159. for (int i = 0; i < n; i++) {
  9160. ggml_vec_sgn_f32(nc,
  9161. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9162. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9163. }
  9164. }
  9165. static void ggml_compute_forward_sgn(
  9166. const struct ggml_compute_params * params,
  9167. struct ggml_tensor * dst) {
  9168. const struct ggml_tensor * src0 = dst->src[0];
  9169. switch (src0->type) {
  9170. case GGML_TYPE_F32:
  9171. {
  9172. ggml_compute_forward_sgn_f32(params, dst);
  9173. } break;
  9174. default:
  9175. {
  9176. GGML_ASSERT(false);
  9177. } break;
  9178. }
  9179. }
  9180. // ggml_compute_forward_neg
  9181. static void ggml_compute_forward_neg_f32(
  9182. const struct ggml_compute_params * params,
  9183. struct ggml_tensor * dst) {
  9184. const struct ggml_tensor * src0 = dst->src[0];
  9185. assert(params->ith == 0);
  9186. assert(ggml_are_same_shape(src0, dst));
  9187. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9188. return;
  9189. }
  9190. const int n = ggml_nrows(src0);
  9191. const int nc = src0->ne[0];
  9192. assert(dst->nb[0] == sizeof(float));
  9193. assert(src0->nb[0] == sizeof(float));
  9194. for (int i = 0; i < n; i++) {
  9195. ggml_vec_neg_f32(nc,
  9196. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9197. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9198. }
  9199. }
  9200. static void ggml_compute_forward_neg(
  9201. const struct ggml_compute_params * params,
  9202. struct ggml_tensor * dst) {
  9203. const struct ggml_tensor * src0 = dst->src[0];
  9204. switch (src0->type) {
  9205. case GGML_TYPE_F32:
  9206. {
  9207. ggml_compute_forward_neg_f32(params, dst);
  9208. } break;
  9209. default:
  9210. {
  9211. GGML_ASSERT(false);
  9212. } break;
  9213. }
  9214. }
  9215. // ggml_compute_forward_step
  9216. static void ggml_compute_forward_step_f32(
  9217. const struct ggml_compute_params * params,
  9218. struct ggml_tensor * dst) {
  9219. const struct ggml_tensor * src0 = dst->src[0];
  9220. assert(params->ith == 0);
  9221. assert(ggml_are_same_shape(src0, dst));
  9222. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9223. return;
  9224. }
  9225. const int n = ggml_nrows(src0);
  9226. const int nc = src0->ne[0];
  9227. assert(dst->nb[0] == sizeof(float));
  9228. assert(src0->nb[0] == sizeof(float));
  9229. for (int i = 0; i < n; i++) {
  9230. ggml_vec_step_f32(nc,
  9231. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9232. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9233. }
  9234. }
  9235. static void ggml_compute_forward_step(
  9236. const struct ggml_compute_params * params,
  9237. struct ggml_tensor * dst) {
  9238. const struct ggml_tensor * src0 = dst->src[0];
  9239. switch (src0->type) {
  9240. case GGML_TYPE_F32:
  9241. {
  9242. ggml_compute_forward_step_f32(params, dst);
  9243. } break;
  9244. default:
  9245. {
  9246. GGML_ASSERT(false);
  9247. } break;
  9248. }
  9249. }
  9250. // ggml_compute_forward_tanh
  9251. static void ggml_compute_forward_tanh_f32(
  9252. const struct ggml_compute_params * params,
  9253. struct ggml_tensor * dst) {
  9254. const struct ggml_tensor * src0 = dst->src[0];
  9255. assert(params->ith == 0);
  9256. assert(ggml_are_same_shape(src0, dst));
  9257. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9258. return;
  9259. }
  9260. const int n = ggml_nrows(src0);
  9261. const int nc = src0->ne[0];
  9262. assert(dst->nb[0] == sizeof(float));
  9263. assert(src0->nb[0] == sizeof(float));
  9264. for (int i = 0; i < n; i++) {
  9265. ggml_vec_tanh_f32(nc,
  9266. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9267. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9268. }
  9269. }
  9270. static void ggml_compute_forward_tanh(
  9271. const struct ggml_compute_params * params,
  9272. struct ggml_tensor * dst) {
  9273. const struct ggml_tensor * src0 = dst->src[0];
  9274. switch (src0->type) {
  9275. case GGML_TYPE_F32:
  9276. {
  9277. ggml_compute_forward_tanh_f32(params, dst);
  9278. } break;
  9279. default:
  9280. {
  9281. GGML_ASSERT(false);
  9282. } break;
  9283. }
  9284. }
  9285. // ggml_compute_forward_elu
  9286. static void ggml_compute_forward_elu_f32(
  9287. const struct ggml_compute_params * params,
  9288. struct ggml_tensor * dst) {
  9289. const struct ggml_tensor * src0 = dst->src[0];
  9290. assert(params->ith == 0);
  9291. assert(ggml_are_same_shape(src0, dst));
  9292. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9293. return;
  9294. }
  9295. const int n = ggml_nrows(src0);
  9296. const int nc = src0->ne[0];
  9297. assert(dst->nb[0] == sizeof(float));
  9298. assert(src0->nb[0] == sizeof(float));
  9299. for (int i = 0; i < n; i++) {
  9300. ggml_vec_elu_f32(nc,
  9301. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9302. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9303. }
  9304. }
  9305. static void ggml_compute_forward_elu(
  9306. const struct ggml_compute_params * params,
  9307. struct ggml_tensor * dst) {
  9308. const struct ggml_tensor * src0 = dst->src[0];
  9309. switch (src0->type) {
  9310. case GGML_TYPE_F32:
  9311. {
  9312. ggml_compute_forward_elu_f32(params, dst);
  9313. } break;
  9314. default:
  9315. {
  9316. GGML_ASSERT(false);
  9317. } break;
  9318. }
  9319. }
  9320. // ggml_compute_forward_relu
  9321. static void ggml_compute_forward_relu_f32(
  9322. const struct ggml_compute_params * params,
  9323. struct ggml_tensor * dst) {
  9324. const struct ggml_tensor * src0 = dst->src[0];
  9325. assert(params->ith == 0);
  9326. assert(ggml_are_same_shape(src0, dst));
  9327. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9328. return;
  9329. }
  9330. const int n = ggml_nrows(src0);
  9331. const int nc = src0->ne[0];
  9332. assert(dst->nb[0] == sizeof(float));
  9333. assert(src0->nb[0] == sizeof(float));
  9334. for (int i = 0; i < n; i++) {
  9335. ggml_vec_relu_f32(nc,
  9336. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9337. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9338. }
  9339. }
  9340. static void ggml_compute_forward_relu(
  9341. const struct ggml_compute_params * params,
  9342. struct ggml_tensor * dst) {
  9343. const struct ggml_tensor * src0 = dst->src[0];
  9344. switch (src0->type) {
  9345. case GGML_TYPE_F32:
  9346. {
  9347. ggml_compute_forward_relu_f32(params, dst);
  9348. } break;
  9349. default:
  9350. {
  9351. GGML_ASSERT(false);
  9352. } break;
  9353. }
  9354. }
  9355. // ggml_compute_forward_sigmoid
  9356. static void ggml_compute_forward_sigmoid_f32(
  9357. const struct ggml_compute_params * params,
  9358. struct ggml_tensor * dst) {
  9359. const struct ggml_tensor * src0 = dst->src[0];
  9360. assert(params->ith == 0);
  9361. assert(ggml_are_same_shape(src0, dst));
  9362. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9363. return;
  9364. }
  9365. const int n = ggml_nrows(src0);
  9366. const int nc = src0->ne[0];
  9367. assert(dst->nb[0] == sizeof(float));
  9368. assert(src0->nb[0] == sizeof(float));
  9369. for (int i = 0; i < n; i++) {
  9370. ggml_vec_sigmoid_f32(nc,
  9371. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9372. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9373. }
  9374. }
  9375. static void ggml_compute_forward_sigmoid(
  9376. const struct ggml_compute_params * params,
  9377. struct ggml_tensor * dst) {
  9378. const struct ggml_tensor * src0 = dst->src[0];
  9379. switch (src0->type) {
  9380. case GGML_TYPE_F32:
  9381. {
  9382. ggml_compute_forward_sigmoid_f32(params, dst);
  9383. } break;
  9384. default:
  9385. {
  9386. GGML_ASSERT(false);
  9387. } break;
  9388. }
  9389. }
  9390. // ggml_compute_forward_gelu
  9391. static void ggml_compute_forward_gelu_f32(
  9392. const struct ggml_compute_params * params,
  9393. struct ggml_tensor * dst) {
  9394. const struct ggml_tensor * src0 = dst->src[0];
  9395. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9396. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9397. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9398. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9399. return;
  9400. }
  9401. const int ith = params->ith;
  9402. const int nth = params->nth;
  9403. const int nc = src0->ne[0];
  9404. const int nr = ggml_nrows(src0);
  9405. // rows per thread
  9406. const int dr = (nr + nth - 1)/nth;
  9407. // row range for this thread
  9408. const int ir0 = dr*ith;
  9409. const int ir1 = MIN(ir0 + dr, nr);
  9410. for (int i1 = ir0; i1 < ir1; i1++) {
  9411. ggml_vec_gelu_f32(nc,
  9412. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9413. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9414. #ifndef NDEBUG
  9415. for (int k = 0; k < nc; k++) {
  9416. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9417. UNUSED(x);
  9418. assert(!isnan(x));
  9419. assert(!isinf(x));
  9420. }
  9421. #endif
  9422. }
  9423. }
  9424. static void ggml_compute_forward_gelu(
  9425. const struct ggml_compute_params * params,
  9426. struct ggml_tensor * dst) {
  9427. const struct ggml_tensor * src0 = dst->src[0];
  9428. switch (src0->type) {
  9429. case GGML_TYPE_F32:
  9430. {
  9431. ggml_compute_forward_gelu_f32(params, dst);
  9432. } break;
  9433. default:
  9434. {
  9435. GGML_ASSERT(false);
  9436. } break;
  9437. }
  9438. }
  9439. // ggml_compute_forward_gelu_quick
  9440. static void ggml_compute_forward_gelu_quick_f32(
  9441. const struct ggml_compute_params * params,
  9442. struct ggml_tensor * dst) {
  9443. const struct ggml_tensor * src0 = dst->src[0];
  9444. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9445. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9446. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9447. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9448. return;
  9449. }
  9450. const int ith = params->ith;
  9451. const int nth = params->nth;
  9452. const int nc = src0->ne[0];
  9453. const int nr = ggml_nrows(src0);
  9454. // rows per thread
  9455. const int dr = (nr + nth - 1)/nth;
  9456. // row range for this thread
  9457. const int ir0 = dr*ith;
  9458. const int ir1 = MIN(ir0 + dr, nr);
  9459. for (int i1 = ir0; i1 < ir1; i1++) {
  9460. ggml_vec_gelu_quick_f32(nc,
  9461. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9462. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9463. #ifndef NDEBUG
  9464. for (int k = 0; k < nc; k++) {
  9465. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9466. UNUSED(x);
  9467. assert(!isnan(x));
  9468. assert(!isinf(x));
  9469. }
  9470. #endif
  9471. }
  9472. }
  9473. static void ggml_compute_forward_gelu_quick(
  9474. const struct ggml_compute_params * params,
  9475. struct ggml_tensor * dst) {
  9476. const struct ggml_tensor * src0 = dst->src[0];
  9477. switch (src0->type) {
  9478. case GGML_TYPE_F32:
  9479. {
  9480. ggml_compute_forward_gelu_quick_f32(params, dst);
  9481. } break;
  9482. default:
  9483. {
  9484. GGML_ASSERT(false);
  9485. } break;
  9486. }
  9487. }
  9488. // ggml_compute_forward_silu
  9489. static void ggml_compute_forward_silu_f32(
  9490. const struct ggml_compute_params * params,
  9491. struct ggml_tensor * dst) {
  9492. const struct ggml_tensor * src0 = dst->src[0];
  9493. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9494. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9495. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9496. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9497. return;
  9498. }
  9499. const int ith = params->ith;
  9500. const int nth = params->nth;
  9501. const int nc = src0->ne[0];
  9502. const int nr = ggml_nrows(src0);
  9503. // rows per thread
  9504. const int dr = (nr + nth - 1)/nth;
  9505. // row range for this thread
  9506. const int ir0 = dr*ith;
  9507. const int ir1 = MIN(ir0 + dr, nr);
  9508. for (int i1 = ir0; i1 < ir1; i1++) {
  9509. ggml_vec_silu_f32(nc,
  9510. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9511. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9512. #ifndef NDEBUG
  9513. for (int k = 0; k < nc; k++) {
  9514. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9515. UNUSED(x);
  9516. assert(!isnan(x));
  9517. assert(!isinf(x));
  9518. }
  9519. #endif
  9520. }
  9521. }
  9522. static void ggml_compute_forward_silu(
  9523. const struct ggml_compute_params * params,
  9524. struct ggml_tensor * dst) {
  9525. const struct ggml_tensor * src0 = dst->src[0];
  9526. switch (src0->type) {
  9527. case GGML_TYPE_F32:
  9528. {
  9529. ggml_compute_forward_silu_f32(params, dst);
  9530. } break;
  9531. default:
  9532. {
  9533. GGML_ASSERT(false);
  9534. } break;
  9535. }
  9536. }
  9537. // ggml_compute_forward_leaky_relu
  9538. static void ggml_compute_forward_leaky_relu_f32(
  9539. const struct ggml_compute_params * params,
  9540. struct ggml_tensor * dst) {
  9541. const struct ggml_tensor * src0 = dst->src[0];
  9542. assert(params->ith == 0);
  9543. assert(ggml_are_same_shape(src0, dst));
  9544. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9545. return;
  9546. }
  9547. const int n = ggml_nrows(src0);
  9548. const int nc = src0->ne[0];
  9549. float negative_slope;
  9550. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9551. assert(dst->nb[0] == sizeof(float));
  9552. assert(src0->nb[0] == sizeof(float));
  9553. for (int i = 0; i < n; i++) {
  9554. ggml_vec_leaky_relu_f32(nc,
  9555. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9556. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9557. }
  9558. }
  9559. static void ggml_compute_forward_leaky_relu(
  9560. const struct ggml_compute_params * params,
  9561. struct ggml_tensor * dst) {
  9562. const struct ggml_tensor * src0 = dst->src[0];
  9563. switch (src0->type) {
  9564. case GGML_TYPE_F32:
  9565. {
  9566. ggml_compute_forward_leaky_relu_f32(params, dst);
  9567. } break;
  9568. default:
  9569. {
  9570. GGML_ASSERT(false);
  9571. } break;
  9572. }
  9573. }
  9574. // ggml_compute_forward_silu_back
  9575. static void ggml_compute_forward_silu_back_f32(
  9576. const struct ggml_compute_params * params,
  9577. struct ggml_tensor * dst) {
  9578. const struct ggml_tensor * src0 = dst->src[0];
  9579. const struct ggml_tensor * grad = dst->src[1];
  9580. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9581. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9582. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9583. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9584. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9585. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9586. return;
  9587. }
  9588. const int ith = params->ith;
  9589. const int nth = params->nth;
  9590. const int nc = src0->ne[0];
  9591. const int nr = ggml_nrows(src0);
  9592. // rows per thread
  9593. const int dr = (nr + nth - 1)/nth;
  9594. // row range for this thread
  9595. const int ir0 = dr*ith;
  9596. const int ir1 = MIN(ir0 + dr, nr);
  9597. for (int i1 = ir0; i1 < ir1; i1++) {
  9598. ggml_vec_silu_backward_f32(nc,
  9599. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9600. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9601. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9602. #ifndef NDEBUG
  9603. for (int k = 0; k < nc; k++) {
  9604. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9605. UNUSED(x);
  9606. assert(!isnan(x));
  9607. assert(!isinf(x));
  9608. }
  9609. #endif
  9610. }
  9611. }
  9612. static void ggml_compute_forward_silu_back(
  9613. const struct ggml_compute_params * params,
  9614. struct ggml_tensor * dst) {
  9615. const struct ggml_tensor * src0 = dst->src[0];
  9616. switch (src0->type) {
  9617. case GGML_TYPE_F32:
  9618. {
  9619. ggml_compute_forward_silu_back_f32(params, dst);
  9620. } break;
  9621. default:
  9622. {
  9623. GGML_ASSERT(false);
  9624. } break;
  9625. }
  9626. }
  9627. static void ggml_compute_forward_hardswish_f32(
  9628. const struct ggml_compute_params * params,
  9629. struct ggml_tensor * dst) {
  9630. const struct ggml_tensor * src0 = dst->src[0];
  9631. assert(params->ith == 0);
  9632. assert(ggml_are_same_shape(src0, dst));
  9633. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9634. return;
  9635. }
  9636. const int n = ggml_nrows(src0);
  9637. const int nc = src0->ne[0];
  9638. assert(dst->nb[0] == sizeof(float));
  9639. assert(src0->nb[0] == sizeof(float));
  9640. for (int i = 0; i < n; i++) {
  9641. ggml_vec_hardswish_f32(nc,
  9642. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9643. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9644. }
  9645. }
  9646. static void ggml_compute_forward_hardswish(
  9647. const struct ggml_compute_params * params,
  9648. struct ggml_tensor * dst) {
  9649. const struct ggml_tensor * src0 = dst->src[0];
  9650. switch (src0->type) {
  9651. case GGML_TYPE_F32:
  9652. {
  9653. ggml_compute_forward_hardswish_f32(params, dst);
  9654. } break;
  9655. default:
  9656. {
  9657. GGML_ASSERT(false);
  9658. } break;
  9659. }
  9660. }
  9661. static void ggml_compute_forward_hardsigmoid_f32(
  9662. const struct ggml_compute_params * params,
  9663. struct ggml_tensor * dst) {
  9664. const struct ggml_tensor * src0 = dst->src[0];
  9665. assert(params->ith == 0);
  9666. assert(ggml_are_same_shape(src0, dst));
  9667. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9668. return;
  9669. }
  9670. const int n = ggml_nrows(src0);
  9671. const int nc = src0->ne[0];
  9672. assert(dst->nb[0] == sizeof(float));
  9673. assert(src0->nb[0] == sizeof(float));
  9674. for (int i = 0; i < n; i++) {
  9675. ggml_vec_hardsigmoid_f32(nc,
  9676. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9677. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9678. }
  9679. }
  9680. static void ggml_compute_forward_hardsigmoid(
  9681. const struct ggml_compute_params * params,
  9682. struct ggml_tensor * dst) {
  9683. const struct ggml_tensor * src0 = dst->src[0];
  9684. switch (src0->type) {
  9685. case GGML_TYPE_F32:
  9686. {
  9687. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9688. } break;
  9689. default:
  9690. {
  9691. GGML_ASSERT(false);
  9692. } break;
  9693. }
  9694. }
  9695. // ggml_compute_forward_norm
  9696. static void ggml_compute_forward_norm_f32(
  9697. const struct ggml_compute_params * params,
  9698. struct ggml_tensor * dst) {
  9699. const struct ggml_tensor * src0 = dst->src[0];
  9700. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9701. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9702. return;
  9703. }
  9704. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9705. const int ith = params->ith;
  9706. const int nth = params->nth;
  9707. GGML_TENSOR_UNARY_OP_LOCALS
  9708. float eps;
  9709. memcpy(&eps, dst->op_params, sizeof(float));
  9710. GGML_ASSERT(eps > 0.0f);
  9711. // TODO: optimize
  9712. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9713. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9714. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9715. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9716. ggml_float sum = 0.0;
  9717. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9718. sum += (ggml_float)x[i00];
  9719. }
  9720. float mean = sum/ne00;
  9721. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9722. ggml_float sum2 = 0.0;
  9723. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9724. float v = x[i00] - mean;
  9725. y[i00] = v;
  9726. sum2 += (ggml_float)(v*v);
  9727. }
  9728. float variance = sum2/ne00;
  9729. const float scale = 1.0f/sqrtf(variance + eps);
  9730. ggml_vec_scale_f32(ne00, y, scale);
  9731. }
  9732. }
  9733. }
  9734. }
  9735. static void ggml_compute_forward_norm(
  9736. const struct ggml_compute_params * params,
  9737. struct ggml_tensor * dst) {
  9738. const struct ggml_tensor * src0 = dst->src[0];
  9739. switch (src0->type) {
  9740. case GGML_TYPE_F32:
  9741. {
  9742. ggml_compute_forward_norm_f32(params, dst);
  9743. } break;
  9744. default:
  9745. {
  9746. GGML_ASSERT(false);
  9747. } break;
  9748. }
  9749. }
  9750. // ggml_compute_forward_group_rms_norm
  9751. static void ggml_compute_forward_rms_norm_f32(
  9752. const struct ggml_compute_params * params,
  9753. struct ggml_tensor * dst) {
  9754. const struct ggml_tensor * src0 = dst->src[0];
  9755. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9756. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9757. return;
  9758. }
  9759. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9760. const int ith = params->ith;
  9761. const int nth = params->nth;
  9762. GGML_TENSOR_UNARY_OP_LOCALS
  9763. float eps;
  9764. memcpy(&eps, dst->op_params, sizeof(float));
  9765. GGML_ASSERT(eps > 0.0f);
  9766. // TODO: optimize
  9767. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9768. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9769. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9770. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9771. ggml_float sum = 0.0;
  9772. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9773. sum += (ggml_float)(x[i00] * x[i00]);
  9774. }
  9775. const float mean = sum/ne00;
  9776. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9777. memcpy(y, x, ne00 * sizeof(float));
  9778. // for (int i00 = 0; i00 < ne00; i00++) {
  9779. // y[i00] = x[i00];
  9780. // }
  9781. const float scale = 1.0f/sqrtf(mean + eps);
  9782. ggml_vec_scale_f32(ne00, y, scale);
  9783. }
  9784. }
  9785. }
  9786. }
  9787. static void ggml_compute_forward_rms_norm(
  9788. const struct ggml_compute_params * params,
  9789. struct ggml_tensor * dst) {
  9790. const struct ggml_tensor * src0 = dst->src[0];
  9791. switch (src0->type) {
  9792. case GGML_TYPE_F32:
  9793. {
  9794. ggml_compute_forward_rms_norm_f32(params, dst);
  9795. } break;
  9796. default:
  9797. {
  9798. GGML_ASSERT(false);
  9799. } break;
  9800. }
  9801. }
  9802. static void ggml_compute_forward_rms_norm_back_f32(
  9803. const struct ggml_compute_params * params,
  9804. struct ggml_tensor * dst) {
  9805. const struct ggml_tensor * src0 = dst->src[0];
  9806. const struct ggml_tensor * src1 = dst->src[1];
  9807. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9808. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9809. return;
  9810. }
  9811. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9812. const int ith = params->ith;
  9813. const int nth = params->nth;
  9814. GGML_TENSOR_BINARY_OP_LOCALS
  9815. float eps;
  9816. memcpy(&eps, dst->op_params, sizeof(float));
  9817. // TODO: optimize
  9818. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9819. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9820. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9821. // src1 is same shape as src0 => same indices
  9822. const int64_t i11 = i01;
  9823. const int64_t i12 = i02;
  9824. const int64_t i13 = i03;
  9825. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9826. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9827. ggml_float sum_xx = 0.0;
  9828. ggml_float sum_xdz = 0.0;
  9829. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9830. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9831. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9832. }
  9833. //const float mean = (float)(sum_xx)/ne00;
  9834. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9835. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9836. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9837. // we could cache rms from forward pass to improve performance.
  9838. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9839. //const float rms = sqrtf(mean_eps);
  9840. const float rrms = 1.0f / sqrtf(mean_eps);
  9841. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9842. {
  9843. // z = rms_norm(x)
  9844. //
  9845. // rms_norm(src0) =
  9846. // scale(
  9847. // src0,
  9848. // div(
  9849. // 1,
  9850. // sqrt(
  9851. // add(
  9852. // scale(
  9853. // sum(
  9854. // sqr(
  9855. // src0)),
  9856. // (1.0/N)),
  9857. // eps))));
  9858. // postorder:
  9859. // ## op args grad
  9860. // 00 param src0 grad[#00]
  9861. // 01 const 1
  9862. // 02 sqr (#00) grad[#02]
  9863. // 03 sum (#02) grad[#03]
  9864. // 04 const 1/N
  9865. // 05 scale (#03, #04) grad[#05]
  9866. // 06 const eps
  9867. // 07 add (#05, #06) grad[#07]
  9868. // 08 sqrt (#07) grad[#08]
  9869. // 09 div (#01,#08) grad[#09]
  9870. // 10 scale (#00,#09) grad[#10]
  9871. //
  9872. // backward pass, given grad[#10]
  9873. // #10: scale
  9874. // grad[#00] += scale(grad[#10],#09)
  9875. // grad[#09] += sum(mul(grad[#10],#00))
  9876. // #09: div
  9877. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9878. // #08: sqrt
  9879. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9880. // #07: add
  9881. // grad[#05] += grad[#07]
  9882. // #05: scale
  9883. // grad[#03] += scale(grad[#05],#04)
  9884. // #03: sum
  9885. // grad[#02] += repeat(grad[#03], #02)
  9886. // #02:
  9887. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9888. //
  9889. // substitute and simplify:
  9890. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9891. // grad[#02] = repeat(grad[#03], #02)
  9892. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9893. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9894. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9895. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9896. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9897. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9898. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9899. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9900. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9901. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9902. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9903. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9904. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9905. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9906. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9907. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9908. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9909. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9910. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9911. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9912. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9913. // a = b*c + d*e
  9914. // a = b*c*f/f + d*e*f/f
  9915. // a = (b*c*f + d*e*f)*(1/f)
  9916. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9917. // a = (b + d*e/c)*c
  9918. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9919. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9920. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9921. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9922. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9923. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9924. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9925. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9926. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9927. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9928. }
  9929. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9930. // post-order:
  9931. // dx := x
  9932. // dx := scale(dx,-mean_xdz/mean_eps)
  9933. // dx := add(dx, dz)
  9934. // dx := scale(dx, rrms)
  9935. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9936. ggml_vec_cpy_f32 (ne00, dx, x);
  9937. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9938. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9939. ggml_vec_acc_f32 (ne00, dx, dz);
  9940. ggml_vec_scale_f32(ne00, dx, rrms);
  9941. }
  9942. }
  9943. }
  9944. }
  9945. static void ggml_compute_forward_rms_norm_back(
  9946. const struct ggml_compute_params * params,
  9947. struct ggml_tensor * dst) {
  9948. const struct ggml_tensor * src0 = dst->src[0];
  9949. switch (src0->type) {
  9950. case GGML_TYPE_F32:
  9951. {
  9952. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9953. } break;
  9954. default:
  9955. {
  9956. GGML_ASSERT(false);
  9957. } break;
  9958. }
  9959. }
  9960. // ggml_compute_forward_group_norm
  9961. static void ggml_compute_forward_group_norm_f32(
  9962. const struct ggml_compute_params * params,
  9963. struct ggml_tensor * dst) {
  9964. const struct ggml_tensor * src0 = dst->src[0];
  9965. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9966. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9967. return;
  9968. }
  9969. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9970. const int ith = params->ith;
  9971. const int nth = params->nth;
  9972. GGML_TENSOR_UNARY_OP_LOCALS
  9973. const float eps = 1e-6f; // TODO: make this a parameter
  9974. // TODO: optimize
  9975. int n_channels = src0->ne[2];
  9976. int n_groups = dst->op_params[0];
  9977. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9978. for (int i = ith; i < n_groups; i += nth) {
  9979. int start = i * n_channels_per_group;
  9980. int end = start + n_channels_per_group;
  9981. if (end > n_channels) {
  9982. end = n_channels;
  9983. }
  9984. int step = end - start;
  9985. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9986. ggml_float sum = 0.0;
  9987. for (int64_t i02 = start; i02 < end; i02++) {
  9988. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9989. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9990. ggml_float sumr = 0.0;
  9991. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9992. sumr += (ggml_float)x[i00];
  9993. }
  9994. sum += sumr;
  9995. }
  9996. }
  9997. const float mean = sum / (ne00 * ne01 * step);
  9998. ggml_float sum2 = 0.0;
  9999. for (int64_t i02 = start; i02 < end; i02++) {
  10000. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10001. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10002. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10003. ggml_float sumr = 0.0;
  10004. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10005. float v = x[i00] - mean;
  10006. y[i00] = v;
  10007. sumr += (ggml_float)(v * v);
  10008. }
  10009. sum2 += sumr;
  10010. }
  10011. }
  10012. const float variance = sum2 / (ne00 * ne01 * step);
  10013. const float scale = 1.0f / sqrtf(variance + eps);
  10014. for (int64_t i02 = start; i02 < end; i02++) {
  10015. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10016. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10017. ggml_vec_scale_f32(ne00, y, scale);
  10018. }
  10019. }
  10020. }
  10021. }
  10022. }
  10023. static void ggml_compute_forward_group_norm(
  10024. const struct ggml_compute_params * params,
  10025. struct ggml_tensor * dst) {
  10026. const struct ggml_tensor * src0 = dst->src[0];
  10027. switch (src0->type) {
  10028. case GGML_TYPE_F32:
  10029. {
  10030. ggml_compute_forward_group_norm_f32(params, dst);
  10031. } break;
  10032. default:
  10033. {
  10034. GGML_ASSERT(false);
  10035. } break;
  10036. }
  10037. }
  10038. // ggml_compute_forward_mul_mat
  10039. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10040. // helper function to determine if it is better to use BLAS or not
  10041. // for large matrices, BLAS is faster
  10042. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10043. const struct ggml_tensor * src0 = dst->src[0];
  10044. const struct ggml_tensor * src1 = dst->src[1];
  10045. //const int64_t ne00 = src0->ne[0];
  10046. //const int64_t ne01 = src0->ne[1];
  10047. const int64_t ne10 = src1->ne[0];
  10048. const int64_t ne0 = dst->ne[0];
  10049. const int64_t ne1 = dst->ne[1];
  10050. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10051. // all the experts for each batch element and the processing would become incredibly slow
  10052. // TODO: find the optimal values for these
  10053. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10054. ggml_is_contiguous(src0) &&
  10055. ggml_is_contiguous(src1) &&
  10056. //src0->type == GGML_TYPE_F32 &&
  10057. src1->type == GGML_TYPE_F32 &&
  10058. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10059. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10060. return true;
  10061. }
  10062. return false;
  10063. }
  10064. #endif
  10065. static void ggml_compute_forward_mul_mat_one_chunk(
  10066. const struct ggml_compute_params * params,
  10067. struct ggml_tensor * dst,
  10068. const int64_t num_rows_per_vec_dot,
  10069. const int64_t ir0_start,
  10070. const int64_t ir0_end,
  10071. const int64_t ir1_start,
  10072. const int64_t ir1_end) {
  10073. const struct ggml_tensor * src0 = dst->src[0];
  10074. const struct ggml_tensor * src1 = dst->src[1];
  10075. GGML_TENSOR_BINARY_OP_LOCALS
  10076. const enum ggml_type type = src0->type;
  10077. const bool src1_cont = ggml_is_contiguous(src1);
  10078. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10079. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10080. // broadcast factors
  10081. const int64_t r2 = ne12 / ne02;
  10082. const int64_t r3 = ne13 / ne03;
  10083. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10084. // threads with no work simply yield (not sure if it helps)
  10085. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10086. return;
  10087. }
  10088. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10089. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10090. assert(ne12 % ne02 == 0);
  10091. assert(ne13 % ne03 == 0);
  10092. // block-tiling attempt
  10093. const int64_t blck_0 = 16;
  10094. const int64_t blck_1 = 16;
  10095. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10096. // attempt to reduce false-sharing (does not seem to make a difference)
  10097. // 16 * 2, accounting for mmla kernels
  10098. float tmp[32];
  10099. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10100. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10101. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10102. const int64_t i13 = (ir1 / (ne12 * ne1));
  10103. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10104. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10105. // broadcast src0 into src1
  10106. const int64_t i03 = i13 / r3;
  10107. const int64_t i02 = i12 / r2;
  10108. const int64_t i1 = i11;
  10109. const int64_t i2 = i12;
  10110. const int64_t i3 = i13;
  10111. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10112. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10113. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10114. // the original src1 data pointer, so we should index using the indices directly
  10115. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10116. const char * src1_col = (const char*)wdata +
  10117. (src1_cont || src1->type != vec_dot_type
  10118. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10119. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10120. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10121. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10122. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10123. //}
  10124. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10125. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10126. }
  10127. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10128. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10129. }
  10130. }
  10131. }
  10132. }
  10133. }
  10134. static void ggml_compute_forward_mul_mat(
  10135. const struct ggml_compute_params * params,
  10136. struct ggml_tensor * dst,
  10137. struct ggml_compute_state * state) {
  10138. const struct ggml_tensor * src0 = dst->src[0];
  10139. const struct ggml_tensor * src1 = dst->src[1];
  10140. int64_t t0 = ggml_perf_time_us();
  10141. UNUSED(t0);
  10142. GGML_TENSOR_BINARY_OP_LOCALS
  10143. const int ith = params->ith;
  10144. const int nth = params->nth;
  10145. const enum ggml_type type = src0->type;
  10146. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10147. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10148. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10149. GGML_ASSERT(ne0 == ne01);
  10150. GGML_ASSERT(ne1 == ne11);
  10151. GGML_ASSERT(ne2 == ne12);
  10152. GGML_ASSERT(ne3 == ne13);
  10153. // we don't support permuted src0 or src1
  10154. GGML_ASSERT(nb00 == ggml_type_size(type));
  10155. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10156. // dst cannot be transposed or permuted
  10157. GGML_ASSERT(nb0 == sizeof(float));
  10158. GGML_ASSERT(nb0 <= nb1);
  10159. GGML_ASSERT(nb1 <= nb2);
  10160. GGML_ASSERT(nb2 <= nb3);
  10161. // broadcast factors
  10162. const int64_t r2 = ne12 / ne02;
  10163. const int64_t r3 = ne13 / ne03;
  10164. UNUSED(r2);
  10165. UNUSED(r3);
  10166. // nb01 >= nb00 - src0 is not transposed
  10167. // compute by src0 rows
  10168. #if defined(GGML_USE_CLBLAST)
  10169. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10170. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10171. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10172. }
  10173. return;
  10174. }
  10175. #endif
  10176. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10177. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10178. const int64_t ne_plane = ne01*ne00;
  10179. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10180. UNUSED(desired_wsize);
  10181. if (params->type == GGML_TASK_TYPE_INIT) {
  10182. if (type != GGML_TYPE_F32) {
  10183. assert(params->wsize >= desired_wsize);
  10184. // parallelize by src0 rows
  10185. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10186. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10187. // broadcast src0 into src1 across 2nd,3rd dimension
  10188. const int64_t i03 = i13/r3;
  10189. const int64_t i02 = i12/r2;
  10190. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10191. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10192. ggml_to_float_t const to_float = type_traits[type].to_float;
  10193. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10194. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10195. }
  10196. }
  10197. }
  10198. }
  10199. return;
  10200. }
  10201. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10202. return;
  10203. }
  10204. // perform sgemm, parallelization controlled by blas lib
  10205. if (ith != 0) {
  10206. return;
  10207. }
  10208. //const int64_t tgemm0 = ggml_perf_time_us();
  10209. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10210. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10211. const int64_t i03 = i13/r3;
  10212. const int64_t i02 = i12/r2;
  10213. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10214. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10215. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10216. if (type != GGML_TYPE_F32) {
  10217. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10218. }
  10219. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10220. ne1, ne01, ne10,
  10221. 1.0f, y, ne10,
  10222. x, ne00,
  10223. 0.0f, d, ne01);
  10224. }
  10225. }
  10226. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10227. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10228. return;
  10229. }
  10230. #endif
  10231. #if GGML_USE_LLAMAFILE
  10232. const bool src1_cont = ggml_is_contiguous(src1);
  10233. if (src1_cont) {
  10234. for (int64_t i13 = 0; i13 < ne13; i13++)
  10235. for (int64_t i12 = 0; i12 < ne12; i12++)
  10236. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10237. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10238. nb01/ggml_type_size(src0->type),
  10239. (const char *)src1->data + i12*nb12 + i13*nb13,
  10240. nb11/ggml_type_size(src1->type),
  10241. (char *)dst->data + i12*nb2 + i13*nb3,
  10242. nb1/ggml_type_size(dst->type),
  10243. ith, nth,
  10244. params->type,
  10245. src0->type,
  10246. src1->type,
  10247. dst->type))
  10248. goto UseGgmlGemm1;
  10249. return;
  10250. }
  10251. UseGgmlGemm1:;
  10252. #endif
  10253. if (params->type == GGML_TASK_TYPE_INIT) {
  10254. if (ith != 0) {
  10255. return;
  10256. }
  10257. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10258. atomic_store(&state->shared->current_chunk, nth);
  10259. if (src1->type != vec_dot_type) {
  10260. char * wdata = params->wdata;
  10261. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10262. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10263. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10264. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10265. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10266. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10267. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10268. wdata += row_size;
  10269. }
  10270. }
  10271. }
  10272. }
  10273. return;
  10274. }
  10275. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10276. return;
  10277. }
  10278. #if GGML_USE_LLAMAFILE
  10279. if (src1->type != vec_dot_type) {
  10280. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10281. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10282. for (int64_t i13 = 0; i13 < ne13; i13++)
  10283. for (int64_t i12 = 0; i12 < ne12; i12++)
  10284. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10285. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10286. nb01/ggml_type_size(src0->type),
  10287. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10288. row_size/ggml_type_size(vec_dot_type),
  10289. (char *)dst->data + i12*nb2 + i13*nb3,
  10290. nb1/ggml_type_size(dst->type),
  10291. ith, nth,
  10292. params->type,
  10293. src0->type,
  10294. vec_dot_type,
  10295. dst->type))
  10296. goto UseGgmlGemm2;
  10297. return;
  10298. }
  10299. UseGgmlGemm2:;
  10300. #endif
  10301. #ifdef GGML_PERF
  10302. int chunks_executed = 0;
  10303. UNUSED(chunks_executed);
  10304. #endif
  10305. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10306. const int64_t nr0 = ne0;
  10307. // This is the size of the rest of the dimensions of the result
  10308. const int64_t nr1 = ne1 * ne2 * ne3;
  10309. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10310. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10311. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10312. // this check can be removed once they are extended to support odd numbered rows/cols too
  10313. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10314. num_rows_per_vec_dot = 1;
  10315. }
  10316. // Now select a reasonable chunk size.
  10317. int chunk_size = 16;
  10318. // We need to step up the size if it's small
  10319. if (nr0 == 1 || nr1 == 1) {
  10320. chunk_size = 64;
  10321. }
  10322. // distribute the work across the inner or outer loop based on which one is larger
  10323. // The number of chunks in the 0/1 dim.
  10324. // CEIL(nr0/chunk_size)
  10325. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10326. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10327. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10328. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10329. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10330. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10331. // distribute the thread work across the inner or outer loop based on which one is larger
  10332. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10333. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10334. }
  10335. // The number of elements in each chunk
  10336. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10337. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10338. //if (ith == 0)
  10339. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10340. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10341. int current_chunk = ith;
  10342. while (current_chunk < nchunk0 * nchunk1) {
  10343. const int64_t ith0 = current_chunk % nchunk0;
  10344. const int64_t ith1 = current_chunk / nchunk0;
  10345. const int64_t ir0_start = dr0 * ith0;
  10346. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10347. const int64_t ir1_start = dr1 * ith1;
  10348. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10349. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10350. #ifdef GGML_PERF
  10351. chunks_executed++;
  10352. #endif
  10353. if (nth >= nchunk0 * nchunk1) {
  10354. break;
  10355. }
  10356. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10357. }
  10358. #ifdef GGML_PERF
  10359. // These numbers are useful when trying to measure how well the threading scheduling works.
  10360. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10361. //float time = (ggml_perf_time_us() - t0);
  10362. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10363. #endif
  10364. }
  10365. // ggml_compute_forward_mul_mat_id
  10366. static void ggml_compute_forward_mul_mat_id(
  10367. const struct ggml_compute_params * params,
  10368. struct ggml_tensor * dst) {
  10369. const struct ggml_tensor * src0 = dst->src[0];
  10370. const struct ggml_tensor * src1 = dst->src[1];
  10371. const struct ggml_tensor * ids = dst->src[2];
  10372. GGML_TENSOR_BINARY_OP_LOCALS
  10373. const int ith = params->ith;
  10374. const int nth = params->nth;
  10375. const enum ggml_type type = src0->type;
  10376. const bool src1_cont = ggml_is_contiguous(src1);
  10377. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10378. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10379. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10380. // we don't support permuted src0 or src1
  10381. GGML_ASSERT(nb00 == ggml_type_size(type));
  10382. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10383. // dst cannot be transposed or permuted
  10384. GGML_ASSERT(nb0 == sizeof(float));
  10385. GGML_ASSERT(nb0 <= nb1);
  10386. GGML_ASSERT(nb1 <= nb2);
  10387. GGML_ASSERT(nb2 <= nb3);
  10388. // row groups
  10389. const int n_ids = ids->ne[0]; // n_expert_used
  10390. const int n_as = ne02; // n_expert
  10391. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10392. (char *) params->wdata :
  10393. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10394. struct mmid_row_mapping {
  10395. int32_t i1;
  10396. int32_t i2;
  10397. };
  10398. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10399. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10400. if (params->type == GGML_TASK_TYPE_INIT) {
  10401. if (ith != 0) {
  10402. return;
  10403. }
  10404. char * wdata = params->wdata;
  10405. if (src1->type != vec_dot_type) {
  10406. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10407. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10408. assert(src1->type == GGML_TYPE_F32);
  10409. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10410. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10411. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10412. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10413. wdata += row_size;
  10414. }
  10415. }
  10416. }
  10417. }
  10418. // initialize matrix_row_counts
  10419. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10420. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10421. // group rows by src0 matrix
  10422. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10423. for (int id = 0; id < n_ids; ++id) {
  10424. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10425. assert(i02 >= 0 && i02 < n_as);
  10426. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10427. matrix_row_counts[i02] += 1;
  10428. }
  10429. }
  10430. return;
  10431. }
  10432. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10433. return;
  10434. }
  10435. // compute each matrix multiplication in sequence
  10436. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10437. const int64_t cne1 = matrix_row_counts[cur_a];
  10438. if (cne1 == 0) {
  10439. continue;
  10440. }
  10441. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10442. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10443. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10444. const int64_t nr0 = ne01; // src0 rows
  10445. const int64_t nr1 = cne1; // src1 rows
  10446. // distribute the thread work across the inner or outer loop based on which one is larger
  10447. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10448. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10449. const int64_t ith0 = ith % nth0;
  10450. const int64_t ith1 = ith / nth0;
  10451. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10452. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10453. const int64_t ir010 = dr0*ith0;
  10454. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10455. const int64_t ir110 = dr1*ith1;
  10456. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10457. // threads with no work simply yield (not sure if it helps)
  10458. //if (ir010 >= ir011 || ir110 >= ir111) {
  10459. // sched_yield();
  10460. // continue;
  10461. //}
  10462. // block-tiling attempt
  10463. const int64_t blck_0 = 16;
  10464. const int64_t blck_1 = 16;
  10465. // attempt to reduce false-sharing (does not seem to make a difference)
  10466. float tmp[16];
  10467. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10468. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10469. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10470. const int64_t _i12 = ir1; // logical row index for this expert
  10471. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10472. const int id = row_mapping.i1; // selected expert index
  10473. const int64_t i11 = id % ne11;
  10474. const int64_t i12 = row_mapping.i2; // row index in src1
  10475. const int64_t i1 = id; // selected expert index
  10476. const int64_t i2 = i12; // row
  10477. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10478. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10479. // the original src1 data pointer, so we should index using the indices directly
  10480. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10481. const char * src1_col = (const char *) wdata +
  10482. (src1_cont || src1->type != vec_dot_type
  10483. ? (i11 + i12*ne11)*row_size
  10484. : (i11*nb11 + i12*nb12));
  10485. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10486. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10487. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10488. //}
  10489. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10490. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10491. }
  10492. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10493. }
  10494. }
  10495. }
  10496. }
  10497. #undef MMID_MATRIX_ROW
  10498. }
  10499. // ggml_compute_forward_out_prod
  10500. static void ggml_compute_forward_out_prod_f32(
  10501. const struct ggml_compute_params * params,
  10502. struct ggml_tensor * dst) {
  10503. const struct ggml_tensor * src0 = dst->src[0];
  10504. const struct ggml_tensor * src1 = dst->src[1];
  10505. // int64_t t0 = ggml_perf_time_us();
  10506. // UNUSED(t0);
  10507. GGML_TENSOR_BINARY_OP_LOCALS
  10508. const int ith = params->ith;
  10509. const int nth = params->nth;
  10510. GGML_ASSERT(ne0 == ne00);
  10511. GGML_ASSERT(ne1 == ne10);
  10512. GGML_ASSERT(ne2 == ne02);
  10513. GGML_ASSERT(ne02 == ne12);
  10514. GGML_ASSERT(ne3 == ne13);
  10515. GGML_ASSERT(ne03 == ne13);
  10516. // we don't support permuted src0 or src1
  10517. GGML_ASSERT(nb00 == sizeof(float));
  10518. // dst cannot be transposed or permuted
  10519. GGML_ASSERT(nb0 == sizeof(float));
  10520. // GGML_ASSERT(nb0 <= nb1);
  10521. // GGML_ASSERT(nb1 <= nb2);
  10522. // GGML_ASSERT(nb2 <= nb3);
  10523. // nb01 >= nb00 - src0 is not transposed
  10524. // compute by src0 rows
  10525. // TODO: #if defined(GGML_USE_CLBLAST)
  10526. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10527. bool use_blas = ggml_is_matrix(src0) &&
  10528. ggml_is_matrix(src1) &&
  10529. ggml_is_contiguous(src0) &&
  10530. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10531. #endif
  10532. if (params->type == GGML_TASK_TYPE_INIT) {
  10533. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10534. if (use_blas) {
  10535. return;
  10536. }
  10537. #endif
  10538. if (ith != 0) {
  10539. return;
  10540. }
  10541. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10542. return;
  10543. }
  10544. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10545. return;
  10546. }
  10547. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10548. if (use_blas) {
  10549. if (params->ith != 0) { // All threads other than the first do no work.
  10550. return;
  10551. }
  10552. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10553. // src0: (k,n)
  10554. // src1: (k,m)
  10555. // dst: (m,n)
  10556. //
  10557. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10558. // Also expressed as (major,minor)
  10559. // a: (m,k): so src1 transposed
  10560. // b: (k,n): so src0
  10561. // c: (m,n)
  10562. //
  10563. // However, if ggml_is_transposed(src1) is true, then
  10564. // src1->data already contains a transposed version, so sgemm mustn't
  10565. // transpose it further.
  10566. int n = src0->ne[0];
  10567. int k = src0->ne[1];
  10568. int m = src1->ne[0];
  10569. int transposeA, lda;
  10570. if (!ggml_is_transposed(src1)) {
  10571. transposeA = CblasTrans;
  10572. lda = m;
  10573. } else {
  10574. transposeA = CblasNoTrans;
  10575. lda = k;
  10576. }
  10577. float * a = (float *) ((char *) src1->data);
  10578. float * b = (float *) ((char *) src0->data);
  10579. float * c = (float *) ((char *) dst->data);
  10580. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10581. return;
  10582. }
  10583. #endif
  10584. // dst[:,:,:,:] = 0
  10585. // for i2,i3:
  10586. // for i1:
  10587. // for i01:
  10588. // for i0:
  10589. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10590. // parallelize by last three dimensions
  10591. // total rows in dst
  10592. const int64_t nr = ne1*ne2*ne3;
  10593. // rows per thread
  10594. const int64_t dr = (nr + nth - 1)/nth;
  10595. // row range for this thread
  10596. const int64_t ir0 = dr*ith;
  10597. const int64_t ir1 = MIN(ir0 + dr, nr);
  10598. // block-tiling attempt
  10599. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10600. const int64_t blck_1 = 16;
  10601. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10602. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10603. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10604. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10605. for (int64_t ir = bir; ir < bir1; ++ir) {
  10606. // dst indices
  10607. const int64_t i3 = ir/(ne2*ne1);
  10608. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10609. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10610. const int64_t i02 = i2;
  10611. const int64_t i03 = i3;
  10612. //const int64_t i10 = i1;
  10613. const int64_t i12 = i2;
  10614. const int64_t i13 = i3;
  10615. #if GGML_VEC_MAD_UNROLL > 2
  10616. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10617. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10618. const int64_t i11 = i01;
  10619. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10620. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10621. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10622. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10623. }
  10624. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10625. const int64_t i11 = i01;
  10626. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10627. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10628. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10629. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10630. }
  10631. #else
  10632. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10633. const int64_t i11 = i01;
  10634. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10635. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10636. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10637. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10638. }
  10639. #endif
  10640. }
  10641. }
  10642. }
  10643. //int64_t t1 = ggml_perf_time_us();
  10644. //static int64_t acc = 0;
  10645. //acc += t1 - t0;
  10646. //if (t1 - t0 > 10) {
  10647. // printf("\n");
  10648. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10649. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10650. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10651. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10652. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10653. //}
  10654. }
  10655. static void ggml_compute_forward_out_prod_q_f32(
  10656. const struct ggml_compute_params * params,
  10657. struct ggml_tensor * dst) {
  10658. const struct ggml_tensor * src0 = dst->src[0];
  10659. const struct ggml_tensor * src1 = dst->src[1];
  10660. // int64_t t0 = ggml_perf_time_us();
  10661. // UNUSED(t0);
  10662. GGML_TENSOR_BINARY_OP_LOCALS;
  10663. const int ith = params->ith;
  10664. const int nth = params->nth;
  10665. const enum ggml_type type = src0->type;
  10666. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10667. GGML_ASSERT(ne02 == ne12);
  10668. GGML_ASSERT(ne03 == ne13);
  10669. GGML_ASSERT(ne2 == ne12);
  10670. GGML_ASSERT(ne3 == ne13);
  10671. // we don't support permuted src0 dim0
  10672. GGML_ASSERT(nb00 == ggml_type_size(type));
  10673. // dst dim0 cannot be transposed or permuted
  10674. GGML_ASSERT(nb0 == sizeof(float));
  10675. // GGML_ASSERT(nb0 <= nb1);
  10676. // GGML_ASSERT(nb1 <= nb2);
  10677. // GGML_ASSERT(nb2 <= nb3);
  10678. GGML_ASSERT(ne0 == ne00);
  10679. GGML_ASSERT(ne1 == ne10);
  10680. GGML_ASSERT(ne2 == ne02);
  10681. GGML_ASSERT(ne3 == ne03);
  10682. // nb01 >= nb00 - src0 is not transposed
  10683. // compute by src0 rows
  10684. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10685. if (params->type == GGML_TASK_TYPE_INIT) {
  10686. if (ith != 0) {
  10687. return;
  10688. }
  10689. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10690. return;
  10691. }
  10692. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10693. return;
  10694. }
  10695. // parallelize by last three dimensions
  10696. // total rows in dst
  10697. const int64_t nr = ne1*ne2*ne3;
  10698. // rows per thread
  10699. const int64_t dr = (nr + nth - 1)/nth;
  10700. // row range for this thread
  10701. const int64_t ir0 = dr*ith;
  10702. const int64_t ir1 = MIN(ir0 + dr, nr);
  10703. // dst[:,:,:,:] = 0
  10704. // for i2,i3:
  10705. // for i1:
  10706. // for i01:
  10707. // for i0:
  10708. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10709. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10710. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10711. // dst indices
  10712. const int64_t i3 = ir/(ne2*ne1);
  10713. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10714. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10715. const int64_t i02 = i2;
  10716. const int64_t i03 = i3;
  10717. //const int64_t i10 = i1;
  10718. const int64_t i12 = i2;
  10719. const int64_t i13 = i3;
  10720. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10721. const int64_t i11 = i01;
  10722. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10723. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10724. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10725. dequantize_row_q(s0, wdata, ne0);
  10726. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10727. }
  10728. }
  10729. //int64_t t1 = ggml_perf_time_us();
  10730. //static int64_t acc = 0;
  10731. //acc += t1 - t0;
  10732. //if (t1 - t0 > 10) {
  10733. // printf("\n");
  10734. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10735. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10736. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10737. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10738. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10739. //}
  10740. }
  10741. static void ggml_compute_forward_out_prod(
  10742. const struct ggml_compute_params * params,
  10743. struct ggml_tensor * dst) {
  10744. const struct ggml_tensor * src0 = dst->src[0];
  10745. switch (src0->type) {
  10746. case GGML_TYPE_Q4_0:
  10747. case GGML_TYPE_Q4_1:
  10748. case GGML_TYPE_Q5_0:
  10749. case GGML_TYPE_Q5_1:
  10750. case GGML_TYPE_Q8_0:
  10751. case GGML_TYPE_Q2_K:
  10752. case GGML_TYPE_Q3_K:
  10753. case GGML_TYPE_Q4_K:
  10754. case GGML_TYPE_Q5_K:
  10755. case GGML_TYPE_Q6_K:
  10756. case GGML_TYPE_IQ2_XXS:
  10757. case GGML_TYPE_IQ2_XS:
  10758. case GGML_TYPE_IQ3_XXS:
  10759. case GGML_TYPE_IQ1_S:
  10760. case GGML_TYPE_IQ1_M:
  10761. case GGML_TYPE_IQ4_NL:
  10762. case GGML_TYPE_IQ4_XS:
  10763. case GGML_TYPE_IQ3_S:
  10764. case GGML_TYPE_IQ2_S:
  10765. {
  10766. ggml_compute_forward_out_prod_q_f32(params, dst);
  10767. } break;
  10768. case GGML_TYPE_F16:
  10769. {
  10770. GGML_ASSERT(false); // todo
  10771. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10772. } break;
  10773. case GGML_TYPE_F32:
  10774. {
  10775. ggml_compute_forward_out_prod_f32(params, dst);
  10776. } break;
  10777. default:
  10778. {
  10779. GGML_ASSERT(false);
  10780. } break;
  10781. }
  10782. }
  10783. // ggml_compute_forward_scale
  10784. static void ggml_compute_forward_scale_f32(
  10785. const struct ggml_compute_params * params,
  10786. struct ggml_tensor * dst) {
  10787. const struct ggml_tensor * src0 = dst->src[0];
  10788. GGML_ASSERT(ggml_is_contiguous(src0));
  10789. GGML_ASSERT(ggml_is_contiguous(dst));
  10790. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10791. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10792. return;
  10793. }
  10794. // scale factor
  10795. float v;
  10796. memcpy(&v, dst->op_params, sizeof(float));
  10797. const int ith = params->ith;
  10798. const int nth = params->nth;
  10799. const int nc = src0->ne[0];
  10800. const int nr = ggml_nrows(src0);
  10801. // rows per thread
  10802. const int dr = (nr + nth - 1)/nth;
  10803. // row range for this thread
  10804. const int ir0 = dr*ith;
  10805. const int ir1 = MIN(ir0 + dr, nr);
  10806. const size_t nb01 = src0->nb[1];
  10807. const size_t nb1 = dst->nb[1];
  10808. for (int i1 = ir0; i1 < ir1; i1++) {
  10809. if (dst->data != src0->data) {
  10810. // src0 is same shape as dst => same indices
  10811. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10812. }
  10813. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10814. }
  10815. }
  10816. static void ggml_compute_forward_scale(
  10817. const struct ggml_compute_params * params,
  10818. struct ggml_tensor * dst) {
  10819. const struct ggml_tensor * src0 = dst->src[0];
  10820. switch (src0->type) {
  10821. case GGML_TYPE_F32:
  10822. {
  10823. ggml_compute_forward_scale_f32(params, dst);
  10824. } break;
  10825. default:
  10826. {
  10827. GGML_ASSERT(false);
  10828. } break;
  10829. }
  10830. }
  10831. // ggml_compute_forward_set
  10832. static void ggml_compute_forward_set_f32(
  10833. const struct ggml_compute_params * params,
  10834. struct ggml_tensor * dst) {
  10835. const struct ggml_tensor * src0 = dst->src[0];
  10836. const struct ggml_tensor * src1 = dst->src[1];
  10837. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10838. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10839. // view src0 and dst with these strides and data offset inbytes during set
  10840. // nb0 is implicitly element_size because src0 and dst are contiguous
  10841. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10842. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10843. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10844. size_t offset = ((int32_t *) dst->op_params)[3];
  10845. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10846. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10847. if (params->ith != 0) {
  10848. return;
  10849. }
  10850. // memcpy needs to be synchronized across threads to avoid race conditions.
  10851. // => do it in INIT phase
  10852. memcpy(
  10853. ((char *) dst->data),
  10854. ((char *) src0->data),
  10855. ggml_nbytes(dst));
  10856. }
  10857. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10858. return;
  10859. }
  10860. const int ith = params->ith;
  10861. const int nth = params->nth;
  10862. const int nr = ggml_nrows(src1);
  10863. const int nc = src1->ne[0];
  10864. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10865. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10866. // src0 and dst as viewed during set
  10867. const size_t nb0 = ggml_element_size(src0);
  10868. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10869. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10870. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10871. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10872. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10873. GGML_ASSERT(nb10 == sizeof(float));
  10874. // rows per thread
  10875. const int dr = (nr + nth - 1)/nth;
  10876. // row range for this thread
  10877. const int ir0 = dr*ith;
  10878. const int ir1 = MIN(ir0 + dr, nr);
  10879. for (int ir = ir0; ir < ir1; ++ir) {
  10880. // src0 and dst are viewed with shape of src1 and offset
  10881. // => same indices
  10882. const int i3 = ir/(ne12*ne11);
  10883. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10884. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10885. ggml_vec_cpy_f32(nc,
  10886. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10887. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10888. }
  10889. }
  10890. static void ggml_compute_forward_set(
  10891. const struct ggml_compute_params * params,
  10892. struct ggml_tensor * dst) {
  10893. const struct ggml_tensor * src0 = dst->src[0];
  10894. switch (src0->type) {
  10895. case GGML_TYPE_F32:
  10896. {
  10897. ggml_compute_forward_set_f32(params, dst);
  10898. } break;
  10899. case GGML_TYPE_F16:
  10900. case GGML_TYPE_BF16:
  10901. case GGML_TYPE_Q4_0:
  10902. case GGML_TYPE_Q4_1:
  10903. case GGML_TYPE_Q5_0:
  10904. case GGML_TYPE_Q5_1:
  10905. case GGML_TYPE_Q8_0:
  10906. case GGML_TYPE_Q8_1:
  10907. case GGML_TYPE_Q2_K:
  10908. case GGML_TYPE_Q3_K:
  10909. case GGML_TYPE_Q4_K:
  10910. case GGML_TYPE_Q5_K:
  10911. case GGML_TYPE_Q6_K:
  10912. case GGML_TYPE_IQ2_XXS:
  10913. case GGML_TYPE_IQ2_XS:
  10914. case GGML_TYPE_IQ3_XXS:
  10915. case GGML_TYPE_IQ1_S:
  10916. case GGML_TYPE_IQ1_M:
  10917. case GGML_TYPE_IQ4_NL:
  10918. case GGML_TYPE_IQ4_XS:
  10919. case GGML_TYPE_IQ3_S:
  10920. case GGML_TYPE_IQ2_S:
  10921. default:
  10922. {
  10923. GGML_ASSERT(false);
  10924. } break;
  10925. }
  10926. }
  10927. // ggml_compute_forward_cpy
  10928. static void ggml_compute_forward_cpy(
  10929. const struct ggml_compute_params * params,
  10930. struct ggml_tensor * dst) {
  10931. ggml_compute_forward_dup(params, dst);
  10932. }
  10933. // ggml_compute_forward_cont
  10934. static void ggml_compute_forward_cont(
  10935. const struct ggml_compute_params * params,
  10936. struct ggml_tensor * dst) {
  10937. ggml_compute_forward_dup(params, dst);
  10938. }
  10939. // ggml_compute_forward_reshape
  10940. static void ggml_compute_forward_reshape(
  10941. const struct ggml_compute_params * params,
  10942. struct ggml_tensor * dst) {
  10943. // NOP
  10944. UNUSED(params);
  10945. UNUSED(dst);
  10946. }
  10947. // ggml_compute_forward_view
  10948. static void ggml_compute_forward_view(
  10949. const struct ggml_compute_params * params,
  10950. const struct ggml_tensor * dst) {
  10951. // NOP
  10952. UNUSED(params);
  10953. UNUSED(dst);
  10954. }
  10955. // ggml_compute_forward_permute
  10956. static void ggml_compute_forward_permute(
  10957. const struct ggml_compute_params * params,
  10958. const struct ggml_tensor * dst) {
  10959. // NOP
  10960. UNUSED(params);
  10961. UNUSED(dst);
  10962. }
  10963. // ggml_compute_forward_transpose
  10964. static void ggml_compute_forward_transpose(
  10965. const struct ggml_compute_params * params,
  10966. const struct ggml_tensor * dst) {
  10967. // NOP
  10968. UNUSED(params);
  10969. UNUSED(dst);
  10970. }
  10971. // ggml_compute_forward_get_rows
  10972. static void ggml_compute_forward_get_rows_q(
  10973. const struct ggml_compute_params * params,
  10974. struct ggml_tensor * dst) {
  10975. const struct ggml_tensor * src0 = dst->src[0];
  10976. const struct ggml_tensor * src1 = dst->src[1];
  10977. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10978. return;
  10979. }
  10980. GGML_TENSOR_BINARY_OP_LOCALS
  10981. const int64_t nc = ne00;
  10982. const int64_t nr = ggml_nelements(src1);
  10983. const enum ggml_type type = src0->type;
  10984. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10985. assert(ne0 == nc);
  10986. assert(ne02 == ne11);
  10987. assert(nb00 == ggml_type_size(type));
  10988. assert(ggml_nrows(dst) == nr);
  10989. const int ith = params->ith;
  10990. const int nth = params->nth;
  10991. // rows per thread
  10992. const int dr = (nr + nth - 1)/nth;
  10993. // row range for this thread
  10994. const int ir0 = dr*ith;
  10995. const int ir1 = MIN(ir0 + dr, nr);
  10996. for (int64_t i = ir0; i < ir1; ++i) {
  10997. const int64_t i12 = i/(ne11*ne10);
  10998. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10999. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11000. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11001. dequantize_row_q(
  11002. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11003. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11004. }
  11005. }
  11006. static void ggml_compute_forward_get_rows_f16(
  11007. const struct ggml_compute_params * params,
  11008. struct ggml_tensor * dst) {
  11009. const struct ggml_tensor * src0 = dst->src[0];
  11010. const struct ggml_tensor * src1 = dst->src[1];
  11011. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11012. return;
  11013. }
  11014. GGML_TENSOR_BINARY_OP_LOCALS
  11015. const int64_t nc = ne00;
  11016. const int64_t nr = ggml_nelements(src1);
  11017. assert(ne0 == nc);
  11018. assert(ne02 == ne11);
  11019. assert(nb00 == sizeof(ggml_fp16_t));
  11020. assert(ggml_nrows(dst) == nr);
  11021. const int ith = params->ith;
  11022. const int nth = params->nth;
  11023. // rows per thread
  11024. const int dr = (nr + nth - 1)/nth;
  11025. // row range for this thread
  11026. const int ir0 = dr*ith;
  11027. const int ir1 = MIN(ir0 + dr, nr);
  11028. for (int64_t i = ir0; i < ir1; ++i) {
  11029. const int64_t i12 = i/(ne11*ne10);
  11030. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11031. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11032. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11033. ggml_fp16_to_fp32_row(
  11034. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11035. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11036. }
  11037. }
  11038. static void ggml_compute_forward_get_rows_bf16(
  11039. const struct ggml_compute_params * params,
  11040. struct ggml_tensor * dst) {
  11041. const struct ggml_tensor * src0 = dst->src[0];
  11042. const struct ggml_tensor * src1 = dst->src[1];
  11043. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11044. return;
  11045. }
  11046. GGML_TENSOR_BINARY_OP_LOCALS
  11047. const int64_t nc = ne00;
  11048. const int64_t nr = ggml_nelements(src1);
  11049. assert(ne0 == nc);
  11050. assert(ne02 == ne11);
  11051. assert(nb00 == sizeof(ggml_bf16_t));
  11052. assert(ggml_nrows(dst) == nr);
  11053. const int ith = params->ith;
  11054. const int nth = params->nth;
  11055. // rows per thread
  11056. const int dr = (nr + nth - 1)/nth;
  11057. // row range for this thread
  11058. const int ir0 = dr*ith;
  11059. const int ir1 = MIN(ir0 + dr, nr);
  11060. for (int64_t i = ir0; i < ir1; ++i) {
  11061. const int64_t i12 = i/(ne11*ne10);
  11062. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11063. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11064. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11065. ggml_bf16_to_fp32_row(
  11066. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11067. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11068. }
  11069. }
  11070. static void ggml_compute_forward_get_rows_f32(
  11071. const struct ggml_compute_params * params,
  11072. struct ggml_tensor * dst) {
  11073. const struct ggml_tensor * src0 = dst->src[0];
  11074. const struct ggml_tensor * src1 = dst->src[1];
  11075. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11076. return;
  11077. }
  11078. GGML_TENSOR_BINARY_OP_LOCALS
  11079. const int64_t nc = ne00;
  11080. const int64_t nr = ggml_nelements(src1);
  11081. assert(ne0 == nc);
  11082. assert(ne02 == ne11);
  11083. assert(nb00 == sizeof(float));
  11084. assert(ggml_nrows(dst) == nr);
  11085. const int ith = params->ith;
  11086. const int nth = params->nth;
  11087. // rows per thread
  11088. const int dr = (nr + nth - 1)/nth;
  11089. // row range for this thread
  11090. const int ir0 = dr*ith;
  11091. const int ir1 = MIN(ir0 + dr, nr);
  11092. for (int64_t i = ir0; i < ir1; ++i) {
  11093. const int64_t i12 = i/(ne11*ne10);
  11094. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11095. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11096. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11097. ggml_vec_cpy_f32(nc,
  11098. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11099. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11100. }
  11101. }
  11102. static void ggml_compute_forward_get_rows(
  11103. const struct ggml_compute_params * params,
  11104. struct ggml_tensor * dst) {
  11105. const struct ggml_tensor * src0 = dst->src[0];
  11106. switch (src0->type) {
  11107. case GGML_TYPE_Q4_0:
  11108. case GGML_TYPE_Q4_1:
  11109. case GGML_TYPE_Q5_0:
  11110. case GGML_TYPE_Q5_1:
  11111. case GGML_TYPE_Q8_0:
  11112. case GGML_TYPE_Q8_1:
  11113. case GGML_TYPE_Q2_K:
  11114. case GGML_TYPE_Q3_K:
  11115. case GGML_TYPE_Q4_K:
  11116. case GGML_TYPE_Q5_K:
  11117. case GGML_TYPE_Q6_K:
  11118. case GGML_TYPE_IQ2_XXS:
  11119. case GGML_TYPE_IQ2_XS:
  11120. case GGML_TYPE_IQ3_XXS:
  11121. case GGML_TYPE_IQ1_S:
  11122. case GGML_TYPE_IQ1_M:
  11123. case GGML_TYPE_IQ4_NL:
  11124. case GGML_TYPE_IQ4_XS:
  11125. case GGML_TYPE_IQ3_S:
  11126. case GGML_TYPE_IQ2_S:
  11127. {
  11128. ggml_compute_forward_get_rows_q(params, dst);
  11129. } break;
  11130. case GGML_TYPE_F16:
  11131. {
  11132. ggml_compute_forward_get_rows_f16(params, dst);
  11133. } break;
  11134. case GGML_TYPE_BF16:
  11135. {
  11136. ggml_compute_forward_get_rows_bf16(params, dst);
  11137. } break;
  11138. case GGML_TYPE_F32:
  11139. case GGML_TYPE_I32:
  11140. {
  11141. ggml_compute_forward_get_rows_f32(params, dst);
  11142. } break;
  11143. default:
  11144. {
  11145. GGML_ASSERT(false);
  11146. } break;
  11147. }
  11148. //static bool first = true;
  11149. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11150. //if (first) {
  11151. // first = false;
  11152. //} else {
  11153. // for (int k = 0; k < dst->ne[1]; ++k) {
  11154. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11155. // for (int i = 0; i < 16; ++i) {
  11156. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11157. // }
  11158. // printf("\n");
  11159. // }
  11160. // printf("\n");
  11161. // }
  11162. // printf("\n");
  11163. // exit(0);
  11164. //}
  11165. }
  11166. // ggml_compute_forward_get_rows_back
  11167. static void ggml_compute_forward_get_rows_back_f32_f16(
  11168. const struct ggml_compute_params * params,
  11169. struct ggml_tensor * dst) {
  11170. const struct ggml_tensor * src0 = dst->src[0];
  11171. const struct ggml_tensor * src1 = dst->src[1];
  11172. GGML_ASSERT(params->ith == 0);
  11173. GGML_ASSERT(ggml_is_contiguous(dst));
  11174. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11175. if (params->type == GGML_TASK_TYPE_INIT) {
  11176. if (params->ith != 0) {
  11177. return;
  11178. }
  11179. memset(dst->data, 0, ggml_nbytes(dst));
  11180. }
  11181. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11182. return;
  11183. }
  11184. const int nc = src0->ne[0];
  11185. const int nr = ggml_nelements(src1);
  11186. GGML_ASSERT( dst->ne[0] == nc);
  11187. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11188. for (int i = 0; i < nr; ++i) {
  11189. const int r = ((int32_t *) src1->data)[i];
  11190. for (int j = 0; j < nc; ++j) {
  11191. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11192. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11193. }
  11194. }
  11195. }
  11196. static void ggml_compute_forward_get_rows_back_f32(
  11197. const struct ggml_compute_params * params,
  11198. struct ggml_tensor * dst) {
  11199. const struct ggml_tensor * src0 = dst->src[0];
  11200. const struct ggml_tensor * src1 = dst->src[1];
  11201. GGML_ASSERT(params->ith == 0);
  11202. GGML_ASSERT(ggml_is_contiguous(dst));
  11203. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11204. if (params->type == GGML_TASK_TYPE_INIT) {
  11205. if (params->ith != 0) {
  11206. return;
  11207. }
  11208. memset(dst->data, 0, ggml_nbytes(dst));
  11209. }
  11210. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11211. return;
  11212. }
  11213. const int nc = src0->ne[0];
  11214. const int nr = ggml_nelements(src1);
  11215. GGML_ASSERT( dst->ne[0] == nc);
  11216. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11217. for (int i = 0; i < nr; ++i) {
  11218. const int r = ((int32_t *) src1->data)[i];
  11219. ggml_vec_add_f32(nc,
  11220. (float *) ((char *) dst->data + r*dst->nb[1]),
  11221. (float *) ((char *) dst->data + r*dst->nb[1]),
  11222. (float *) ((char *) src0->data + i*src0->nb[1]));
  11223. }
  11224. }
  11225. static void ggml_compute_forward_get_rows_back(
  11226. const struct ggml_compute_params * params,
  11227. struct ggml_tensor * dst) {
  11228. const struct ggml_tensor * src0 = dst->src[0];
  11229. switch (src0->type) {
  11230. case GGML_TYPE_F16:
  11231. {
  11232. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11233. } break;
  11234. case GGML_TYPE_F32:
  11235. {
  11236. ggml_compute_forward_get_rows_back_f32(params, dst);
  11237. } break;
  11238. default:
  11239. {
  11240. GGML_ASSERT(false);
  11241. } break;
  11242. }
  11243. //static bool first = true;
  11244. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11245. //if (first) {
  11246. // first = false;
  11247. //} else {
  11248. // for (int k = 0; k < dst->ne[1]; ++k) {
  11249. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11250. // for (int i = 0; i < 16; ++i) {
  11251. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11252. // }
  11253. // printf("\n");
  11254. // }
  11255. // printf("\n");
  11256. // }
  11257. // printf("\n");
  11258. // exit(0);
  11259. //}
  11260. }
  11261. // ggml_compute_forward_diag
  11262. static void ggml_compute_forward_diag_f32(
  11263. const struct ggml_compute_params * params,
  11264. struct ggml_tensor * dst) {
  11265. const struct ggml_tensor * src0 = dst->src[0];
  11266. GGML_ASSERT(params->ith == 0);
  11267. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11268. return;
  11269. }
  11270. // TODO: handle transposed/permuted matrices
  11271. GGML_TENSOR_UNARY_OP_LOCALS
  11272. GGML_ASSERT(ne00 == ne0);
  11273. GGML_ASSERT(ne00 == ne1);
  11274. GGML_ASSERT(ne01 == 1);
  11275. GGML_ASSERT(ne02 == ne2);
  11276. GGML_ASSERT(ne03 == ne3);
  11277. GGML_ASSERT(nb00 == sizeof(float));
  11278. GGML_ASSERT(nb0 == sizeof(float));
  11279. for (int i3 = 0; i3 < ne3; i3++) {
  11280. for (int i2 = 0; i2 < ne2; i2++) {
  11281. for (int i1 = 0; i1 < ne1; i1++) {
  11282. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11283. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11284. for (int i0 = 0; i0 < i1; i0++) {
  11285. d[i0] = 0;
  11286. }
  11287. d[i1] = s[i1];
  11288. for (int i0 = i1+1; i0 < ne0; i0++) {
  11289. d[i0] = 0;
  11290. }
  11291. }
  11292. }
  11293. }
  11294. }
  11295. static void ggml_compute_forward_diag(
  11296. const struct ggml_compute_params * params,
  11297. struct ggml_tensor * dst) {
  11298. const struct ggml_tensor * src0 = dst->src[0];
  11299. switch (src0->type) {
  11300. case GGML_TYPE_F32:
  11301. {
  11302. ggml_compute_forward_diag_f32(params, dst);
  11303. } break;
  11304. default:
  11305. {
  11306. GGML_ASSERT(false);
  11307. } break;
  11308. }
  11309. }
  11310. // ggml_compute_forward_diag_mask_inf
  11311. static void ggml_compute_forward_diag_mask_f32(
  11312. const struct ggml_compute_params * params,
  11313. struct ggml_tensor * dst,
  11314. const float value) {
  11315. const struct ggml_tensor * src0 = dst->src[0];
  11316. const int ith = params->ith;
  11317. const int nth = params->nth;
  11318. const int n_past = ((int32_t *) dst->op_params)[0];
  11319. const bool inplace = src0->data == dst->data;
  11320. GGML_ASSERT(n_past >= 0);
  11321. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11322. if (ith != 0) {
  11323. return;
  11324. }
  11325. // memcpy needs to be synchronized across threads to avoid race conditions.
  11326. // => do it in INIT phase
  11327. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11328. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11329. memcpy(
  11330. ((char *) dst->data),
  11331. ((char *) src0->data),
  11332. ggml_nbytes(dst));
  11333. }
  11334. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11335. return;
  11336. }
  11337. // TODO: handle transposed/permuted matrices
  11338. const int n = ggml_nrows(src0);
  11339. const int nc = src0->ne[0];
  11340. const int nr = src0->ne[1];
  11341. const int nz = n/nr;
  11342. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11343. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11344. for (int k = 0; k < nz; k++) {
  11345. for (int j = ith; j < nr; j += nth) {
  11346. for (int i = n_past; i < nc; i++) {
  11347. if (i > n_past + j) {
  11348. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11349. }
  11350. }
  11351. }
  11352. }
  11353. }
  11354. static void ggml_compute_forward_diag_mask_inf(
  11355. const struct ggml_compute_params * params,
  11356. struct ggml_tensor * dst) {
  11357. const struct ggml_tensor * src0 = dst->src[0];
  11358. switch (src0->type) {
  11359. case GGML_TYPE_F32:
  11360. {
  11361. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11362. } break;
  11363. default:
  11364. {
  11365. GGML_ASSERT(false);
  11366. } break;
  11367. }
  11368. }
  11369. static void ggml_compute_forward_diag_mask_zero(
  11370. const struct ggml_compute_params * params,
  11371. struct ggml_tensor * dst) {
  11372. const struct ggml_tensor * src0 = dst->src[0];
  11373. switch (src0->type) {
  11374. case GGML_TYPE_F32:
  11375. {
  11376. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11377. } break;
  11378. default:
  11379. {
  11380. GGML_ASSERT(false);
  11381. } break;
  11382. }
  11383. }
  11384. // ggml_compute_forward_soft_max
  11385. static void ggml_compute_forward_soft_max_f32(
  11386. const struct ggml_compute_params * params,
  11387. struct ggml_tensor * dst) {
  11388. const struct ggml_tensor * src0 = dst->src[0];
  11389. const struct ggml_tensor * src1 = dst->src[1];
  11390. assert(ggml_is_contiguous(dst));
  11391. assert(ggml_are_same_shape(src0, dst));
  11392. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11393. return;
  11394. }
  11395. float scale = 1.0f;
  11396. float max_bias = 0.0f;
  11397. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11398. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11399. // TODO: handle transposed/permuted matrices
  11400. const int ith = params->ith;
  11401. const int nth = params->nth;
  11402. GGML_TENSOR_UNARY_OP_LOCALS
  11403. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11404. // TODO: is this supposed to be ceil instead of floor?
  11405. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11406. const uint32_t n_head = ne02;
  11407. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11408. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11409. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11410. const int nc = src0->ne[0];
  11411. const int nr = ggml_nrows(src0);
  11412. // rows per thread
  11413. const int dr = (nr + nth - 1)/nth;
  11414. // row range for this thread
  11415. const int ir0 = dr*ith;
  11416. const int ir1 = MIN(ir0 + dr, nr);
  11417. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11418. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11419. for (int i1 = ir0; i1 < ir1; i1++) {
  11420. // ALiBi
  11421. const uint32_t h = (i1/ne01)%ne02; // head
  11422. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11423. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11424. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11425. // broadcast the mask across rows
  11426. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11427. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11428. ggml_vec_cpy_f32 (nc, wp, sp);
  11429. ggml_vec_scale_f32(nc, wp, scale);
  11430. if (mp_f32) {
  11431. if (use_f16) {
  11432. for (int i = 0; i < nc; ++i) {
  11433. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11434. }
  11435. } else {
  11436. for (int i = 0; i < nc; ++i) {
  11437. wp[i] += slope*mp_f32[i];
  11438. }
  11439. }
  11440. }
  11441. #ifndef NDEBUG
  11442. for (int i = 0; i < nc; ++i) {
  11443. //printf("p[%d] = %f\n", i, p[i]);
  11444. assert(!isnan(wp[i]));
  11445. }
  11446. #endif
  11447. float max = -INFINITY;
  11448. ggml_vec_max_f32(nc, &max, wp);
  11449. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11450. assert(sum > 0.0);
  11451. sum = 1.0/sum;
  11452. ggml_vec_scale_f32(nc, dp, sum);
  11453. #ifndef NDEBUG
  11454. for (int i = 0; i < nc; ++i) {
  11455. assert(!isnan(dp[i]));
  11456. assert(!isinf(dp[i]));
  11457. }
  11458. #endif
  11459. }
  11460. }
  11461. static void ggml_compute_forward_soft_max(
  11462. const struct ggml_compute_params * params,
  11463. struct ggml_tensor * dst) {
  11464. const struct ggml_tensor * src0 = dst->src[0];
  11465. switch (src0->type) {
  11466. case GGML_TYPE_F32:
  11467. {
  11468. ggml_compute_forward_soft_max_f32(params, dst);
  11469. } break;
  11470. default:
  11471. {
  11472. GGML_ASSERT(false);
  11473. } break;
  11474. }
  11475. }
  11476. // ggml_compute_forward_soft_max_back
  11477. static void ggml_compute_forward_soft_max_back_f32(
  11478. const struct ggml_compute_params * params,
  11479. struct ggml_tensor * dst) {
  11480. const struct ggml_tensor * src0 = dst->src[0];
  11481. const struct ggml_tensor * src1 = dst->src[1];
  11482. GGML_ASSERT(ggml_is_contiguous(src0));
  11483. GGML_ASSERT(ggml_is_contiguous(src1));
  11484. GGML_ASSERT(ggml_is_contiguous(dst));
  11485. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11486. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11487. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11488. return;
  11489. }
  11490. // TODO: handle transposed/permuted matrices
  11491. const int ith = params->ith;
  11492. const int nth = params->nth;
  11493. const int nc = src0->ne[0];
  11494. const int nr = ggml_nrows(src0);
  11495. // rows per thread
  11496. const int dr = (nr + nth - 1)/nth;
  11497. // row range for this thread
  11498. const int ir0 = dr*ith;
  11499. const int ir1 = MIN(ir0 + dr, nr);
  11500. for (int i1 = ir0; i1 < ir1; i1++) {
  11501. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11502. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11503. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11504. #ifndef NDEBUG
  11505. for (int i = 0; i < nc; ++i) {
  11506. //printf("p[%d] = %f\n", i, p[i]);
  11507. assert(!isnan(dy[i]));
  11508. assert(!isnan(y[i]));
  11509. }
  11510. #endif
  11511. // Jii = yi - yi*yi
  11512. // Jij = -yi*yj
  11513. // J = diag(y)-y.T*y
  11514. // dx = J * dy
  11515. // dxk = sum_i(Jki * dyi)
  11516. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11517. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11518. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11519. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11520. // dxk = -yk * dot(y, dy) + yk*dyk
  11521. // dxk = yk * (- dot(y, dy) + dyk)
  11522. // dxk = yk * (dyk - dot(y, dy))
  11523. //
  11524. // post-order:
  11525. // dot_y_dy := dot(y, dy)
  11526. // dx := dy
  11527. // dx := dx - dot_y_dy
  11528. // dx := dx * y
  11529. // linear runtime, no additional memory
  11530. float dot_y_dy = 0;
  11531. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11532. ggml_vec_cpy_f32 (nc, dx, dy);
  11533. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11534. ggml_vec_mul_f32 (nc, dx, dx, y);
  11535. #ifndef NDEBUG
  11536. for (int i = 0; i < nc; ++i) {
  11537. assert(!isnan(dx[i]));
  11538. assert(!isinf(dx[i]));
  11539. }
  11540. #endif
  11541. }
  11542. }
  11543. static void ggml_compute_forward_soft_max_back(
  11544. const struct ggml_compute_params * params,
  11545. struct ggml_tensor * dst) {
  11546. const struct ggml_tensor * src0 = dst->src[0];
  11547. switch (src0->type) {
  11548. case GGML_TYPE_F32:
  11549. {
  11550. ggml_compute_forward_soft_max_back_f32(params, dst);
  11551. } break;
  11552. default:
  11553. {
  11554. GGML_ASSERT(false);
  11555. } break;
  11556. }
  11557. }
  11558. // ggml_compute_forward_clamp
  11559. static void ggml_compute_forward_clamp_f32(
  11560. const struct ggml_compute_params * params,
  11561. struct ggml_tensor * dst) {
  11562. const struct ggml_tensor * src0 = dst->src[0];
  11563. assert(params->ith == 0);
  11564. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11565. return;
  11566. }
  11567. float min;
  11568. float max;
  11569. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11570. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11571. const int ith = params->ith;
  11572. const int nth = params->nth;
  11573. const int n = ggml_nrows(src0);
  11574. const int nc = src0->ne[0];
  11575. const size_t nb00 = src0->nb[0];
  11576. const size_t nb01 = src0->nb[1];
  11577. const size_t nb0 = dst->nb[0];
  11578. const size_t nb1 = dst->nb[1];
  11579. GGML_ASSERT( nb0 == sizeof(float));
  11580. GGML_ASSERT(nb00 == sizeof(float));
  11581. for (int j = ith; j < n; j += nth) {
  11582. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11583. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11584. for (int i = 0; i < nc; i++) {
  11585. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11586. }
  11587. }
  11588. }
  11589. static void ggml_compute_forward_clamp(
  11590. const struct ggml_compute_params * params,
  11591. struct ggml_tensor * dst) {
  11592. const struct ggml_tensor * src0 = dst->src[0];
  11593. switch (src0->type) {
  11594. case GGML_TYPE_F32:
  11595. {
  11596. ggml_compute_forward_clamp_f32(params, dst);
  11597. } break;
  11598. case GGML_TYPE_F16:
  11599. case GGML_TYPE_BF16:
  11600. case GGML_TYPE_Q4_0:
  11601. case GGML_TYPE_Q4_1:
  11602. case GGML_TYPE_Q5_0:
  11603. case GGML_TYPE_Q5_1:
  11604. case GGML_TYPE_Q8_0:
  11605. case GGML_TYPE_Q8_1:
  11606. case GGML_TYPE_Q2_K:
  11607. case GGML_TYPE_Q3_K:
  11608. case GGML_TYPE_Q4_K:
  11609. case GGML_TYPE_Q5_K:
  11610. case GGML_TYPE_Q6_K:
  11611. case GGML_TYPE_IQ2_XXS:
  11612. case GGML_TYPE_IQ2_XS:
  11613. case GGML_TYPE_IQ3_XXS:
  11614. case GGML_TYPE_IQ1_S:
  11615. case GGML_TYPE_IQ1_M:
  11616. case GGML_TYPE_IQ4_NL:
  11617. case GGML_TYPE_IQ4_XS:
  11618. case GGML_TYPE_IQ3_S:
  11619. case GGML_TYPE_IQ2_S:
  11620. case GGML_TYPE_Q8_K:
  11621. case GGML_TYPE_I8:
  11622. case GGML_TYPE_I16:
  11623. case GGML_TYPE_I32:
  11624. case GGML_TYPE_I64:
  11625. case GGML_TYPE_F64:
  11626. case GGML_TYPE_COUNT:
  11627. {
  11628. GGML_ASSERT(false);
  11629. } break;
  11630. }
  11631. }
  11632. // ggml_compute_forward_rope
  11633. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11634. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11635. return 1 - MIN(1, MAX(0, y));
  11636. }
  11637. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11638. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11639. static void rope_yarn(
  11640. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11641. float * cos_theta, float * sin_theta
  11642. ) {
  11643. // Get n-d rotational scaling corrected for extrapolation
  11644. float theta_interp = freq_scale * theta_extrap;
  11645. float theta = theta_interp;
  11646. if (ext_factor != 0.0f) {
  11647. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11648. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11649. // Get n-d magnitude scaling corrected for interpolation
  11650. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11651. }
  11652. *cos_theta = cosf(theta) * mscale;
  11653. *sin_theta = sinf(theta) * mscale;
  11654. }
  11655. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11656. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11657. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11658. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11659. }
  11660. static void ggml_rope_cache_init(
  11661. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11662. float * cache, float sin_sign, float theta_scale
  11663. ) {
  11664. float theta = theta_base;
  11665. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11666. rope_yarn(
  11667. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11668. );
  11669. cache[i0 + 1] *= sin_sign;
  11670. theta *= theta_scale;
  11671. }
  11672. }
  11673. GGML_CALL void ggml_rope_yarn_corr_dims(
  11674. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11675. ) {
  11676. // start and end correction dims
  11677. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11678. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11679. dims[0] = MAX(0, start);
  11680. dims[1] = MIN(n_dims - 1, end);
  11681. }
  11682. static void ggml_compute_forward_rope_f32(
  11683. const struct ggml_compute_params * params,
  11684. struct ggml_tensor * dst,
  11685. const bool forward) {
  11686. const struct ggml_tensor * src0 = dst->src[0];
  11687. const struct ggml_tensor * src1 = dst->src[1];
  11688. const struct ggml_tensor * src2 = dst->src[2];
  11689. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11690. return;
  11691. }
  11692. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11693. // these two only relevant for xPos RoPE:
  11694. float xpos_base;
  11695. bool xpos_down;
  11696. //const int n_past = ((int32_t *) dst->op_params)[0];
  11697. const int n_dims = ((int32_t *) dst->op_params)[1];
  11698. const int mode = ((int32_t *) dst->op_params)[2];
  11699. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11700. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11701. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11702. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11703. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11704. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11705. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11706. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11707. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11708. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11709. GGML_TENSOR_UNARY_OP_LOCALS
  11710. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11711. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11712. GGML_ASSERT(nb00 == sizeof(float));
  11713. const int ith = params->ith;
  11714. const int nth = params->nth;
  11715. const int nr = ggml_nrows(dst);
  11716. GGML_ASSERT(n_dims <= ne0);
  11717. GGML_ASSERT(n_dims % 2 == 0);
  11718. // rows per thread
  11719. const int dr = (nr + nth - 1)/nth;
  11720. // row range for this thread
  11721. const int ir0 = dr*ith;
  11722. const int ir1 = MIN(ir0 + dr, nr);
  11723. // row index used to determine which thread to use
  11724. int ir = 0;
  11725. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11726. const float inv_ndims = -1.f/n_dims;
  11727. float corr_dims[2];
  11728. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11729. const bool is_neox = mode & 2;
  11730. const bool is_glm = mode & 4;
  11731. const float * freq_factors = NULL;
  11732. if (is_neox) {
  11733. if (src2 != NULL) {
  11734. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11735. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11736. freq_factors = (const float *) src2->data;
  11737. }
  11738. } else {
  11739. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11740. }
  11741. // backward process uses inverse rotation by cos and sin.
  11742. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11743. // this essentially just switches the sign of sin.
  11744. const float sin_sign = forward ? 1.0f : -1.0f;
  11745. const int32_t * pos = (const int32_t *) src1->data;
  11746. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11747. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11748. const int64_t p = pos[i2];
  11749. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11750. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11751. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11752. }
  11753. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11754. if (ir++ < ir0) continue;
  11755. if (ir > ir1) break;
  11756. float theta_base = (float)p;
  11757. if (is_glm) {
  11758. theta_base = MIN(p, n_ctx - 2);
  11759. float block_theta = MAX(p - (n_ctx - 2), 0);
  11760. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11761. const float cos_theta = cosf(theta_base);
  11762. const float sin_theta = sinf(theta_base) * sin_sign;
  11763. const float cos_block_theta = cosf(block_theta);
  11764. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11765. theta_base *= theta_scale;
  11766. block_theta *= theta_scale;
  11767. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11768. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11769. const float x0 = src[0];
  11770. const float x1 = src[n_dims/2];
  11771. const float x2 = src[n_dims];
  11772. const float x3 = src[n_dims/2*3];
  11773. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11774. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11775. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11776. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11777. }
  11778. } else if (!is_neox) {
  11779. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11780. const float cos_theta = cache[i0 + 0];
  11781. const float sin_theta = cache[i0 + 1];
  11782. // zeta scaling for xPos only:
  11783. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11784. if (xpos_down) zeta = 1.0f / zeta;
  11785. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11786. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11787. const float x0 = src[0];
  11788. const float x1 = src[1];
  11789. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11790. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11791. }
  11792. } else {
  11793. // TODO: this might be wrong for ne0 != n_dims - need double check
  11794. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11795. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11796. theta_base *= freq_scale;
  11797. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11798. if (ic < n_dims) {
  11799. const int64_t ib = 0;
  11800. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11801. float cur_rot = inv_ndims * ic - ib;
  11802. float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
  11803. float cos_theta, sin_theta;
  11804. rope_yarn(
  11805. theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11806. &cos_theta, &sin_theta
  11807. );
  11808. sin_theta *= sin_sign;
  11809. theta_base *= theta_scale;
  11810. const int64_t i0 = ib*n_dims + ic/2;
  11811. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11812. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11813. const float x0 = src[0];
  11814. const float x1 = src[n_dims/2];
  11815. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11816. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11817. } else {
  11818. const int64_t i0 = ic;
  11819. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11820. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11821. dst_data[0] = src[0];
  11822. dst_data[1] = src[1];
  11823. }
  11824. }
  11825. }
  11826. }
  11827. }
  11828. }
  11829. }
  11830. // TODO: deduplicate f16/f32 code
  11831. static void ggml_compute_forward_rope_f16(
  11832. const struct ggml_compute_params * params,
  11833. struct ggml_tensor * dst,
  11834. const bool forward) {
  11835. const struct ggml_tensor * src0 = dst->src[0];
  11836. const struct ggml_tensor * src1 = dst->src[1];
  11837. const struct ggml_tensor * src2 = dst->src[2];
  11838. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11839. return;
  11840. }
  11841. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11842. //const int n_past = ((int32_t *) dst->op_params)[0];
  11843. const int n_dims = ((int32_t *) dst->op_params)[1];
  11844. const int mode = ((int32_t *) dst->op_params)[2];
  11845. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11846. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11847. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11848. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11849. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11850. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11851. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11852. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11853. GGML_TENSOR_UNARY_OP_LOCALS
  11854. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11855. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11856. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11857. const int ith = params->ith;
  11858. const int nth = params->nth;
  11859. const int nr = ggml_nrows(dst);
  11860. GGML_ASSERT(n_dims <= ne0);
  11861. GGML_ASSERT(n_dims % 2 == 0);
  11862. // rows per thread
  11863. const int dr = (nr + nth - 1)/nth;
  11864. // row range for this thread
  11865. const int ir0 = dr*ith;
  11866. const int ir1 = MIN(ir0 + dr, nr);
  11867. // row index used to determine which thread to use
  11868. int ir = 0;
  11869. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11870. const float inv_ndims = -1.f/n_dims;
  11871. float corr_dims[2];
  11872. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11873. const bool is_neox = mode & 2;
  11874. const bool is_glm = mode & 4;
  11875. const float * freq_factors = NULL;
  11876. if (is_neox) {
  11877. if (src2 != NULL) {
  11878. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11879. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11880. freq_factors = (const float *) src2->data;
  11881. }
  11882. } else {
  11883. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11884. }
  11885. // backward process uses inverse rotation by cos and sin.
  11886. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11887. // this essentially just switches the sign of sin.
  11888. const float sin_sign = forward ? 1.0f : -1.0f;
  11889. const int32_t * pos = (const int32_t *) src1->data;
  11890. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11891. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11892. const int64_t p = pos[i2];
  11893. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11894. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11895. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11896. }
  11897. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11898. if (ir++ < ir0) continue;
  11899. if (ir > ir1) break;
  11900. float theta_base = (float)p;
  11901. if (is_glm) {
  11902. theta_base = MIN(p, n_ctx - 2);
  11903. float block_theta = MAX(p - (n_ctx - 2), 0);
  11904. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11905. const float cos_theta = cosf(theta_base);
  11906. const float sin_theta = sinf(theta_base) * sin_sign;
  11907. const float cos_block_theta = cosf(block_theta);
  11908. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11909. theta_base *= theta_scale;
  11910. block_theta *= theta_scale;
  11911. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11912. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11913. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11914. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11915. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11916. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11917. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11918. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11919. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11920. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11921. }
  11922. } else if (!is_neox) {
  11923. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11924. const float cos_theta = cache[i0 + 0];
  11925. const float sin_theta = cache[i0 + 1];
  11926. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11927. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11928. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11929. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11930. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11931. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11932. }
  11933. } else {
  11934. // TODO: this might be wrong for ne0 != n_dims - need double check
  11935. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11936. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11937. theta_base *= freq_scale;
  11938. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11939. if (ic < n_dims) {
  11940. const int64_t ib = 0;
  11941. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11942. float cur_rot = inv_ndims * ic - ib;
  11943. float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
  11944. float cos_theta, sin_theta;
  11945. rope_yarn(
  11946. theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11947. &cos_theta, &sin_theta
  11948. );
  11949. sin_theta *= sin_sign;
  11950. theta_base *= theta_scale;
  11951. const int64_t i0 = ib*n_dims + ic/2;
  11952. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11953. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11954. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11955. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11956. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11957. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11958. } else {
  11959. const int64_t i0 = ic;
  11960. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11961. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11962. dst_data[0] = src[0];
  11963. dst_data[1] = src[1];
  11964. }
  11965. }
  11966. }
  11967. }
  11968. }
  11969. }
  11970. }
  11971. static void ggml_compute_forward_rope(
  11972. const struct ggml_compute_params * params,
  11973. struct ggml_tensor * dst) {
  11974. const struct ggml_tensor * src0 = dst->src[0];
  11975. switch (src0->type) {
  11976. case GGML_TYPE_F16:
  11977. {
  11978. ggml_compute_forward_rope_f16(params, dst, true);
  11979. } break;
  11980. case GGML_TYPE_F32:
  11981. {
  11982. ggml_compute_forward_rope_f32(params, dst, true);
  11983. } break;
  11984. default:
  11985. {
  11986. GGML_ASSERT(false);
  11987. } break;
  11988. }
  11989. }
  11990. // ggml_compute_forward_rope_back
  11991. static void ggml_compute_forward_rope_back(
  11992. const struct ggml_compute_params * params,
  11993. struct ggml_tensor * dst) {
  11994. const struct ggml_tensor * src0 = dst->src[0];
  11995. switch (src0->type) {
  11996. case GGML_TYPE_F16:
  11997. {
  11998. ggml_compute_forward_rope_f16(params, dst, false);
  11999. } break;
  12000. case GGML_TYPE_F32:
  12001. {
  12002. ggml_compute_forward_rope_f32(params, dst, false);
  12003. } break;
  12004. default:
  12005. {
  12006. GGML_ASSERT(false);
  12007. } break;
  12008. }
  12009. }
  12010. // ggml_compute_forward_conv_transpose_1d
  12011. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  12012. const struct ggml_compute_params * params,
  12013. struct ggml_tensor * dst) {
  12014. const struct ggml_tensor * src0 = dst->src[0];
  12015. const struct ggml_tensor * src1 = dst->src[1];
  12016. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12017. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12018. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12019. int64_t t0 = ggml_perf_time_us();
  12020. UNUSED(t0);
  12021. GGML_TENSOR_BINARY_OP_LOCALS
  12022. const int ith = params->ith;
  12023. const int nth = params->nth;
  12024. const int nk = ne00*ne01*ne02;
  12025. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12026. GGML_ASSERT(nb10 == sizeof(float));
  12027. if (params->type == GGML_TASK_TYPE_INIT) {
  12028. if (ith != 0) {
  12029. return;
  12030. }
  12031. memset(params->wdata, 0, params->wsize);
  12032. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12033. {
  12034. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12035. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12036. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12037. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12038. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12039. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12040. dst_data[i00*ne02 + i02] = src[i00];
  12041. }
  12042. }
  12043. }
  12044. }
  12045. // permute source data (src1) from (L x Cin) to (Cin x L)
  12046. {
  12047. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12048. ggml_fp16_t * dst_data = wdata;
  12049. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12050. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12051. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12052. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12053. }
  12054. }
  12055. }
  12056. // need to zero dst since we are accumulating into it
  12057. memset(dst->data, 0, ggml_nbytes(dst));
  12058. return;
  12059. }
  12060. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12061. return;
  12062. }
  12063. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12064. // total rows in dst
  12065. const int nr = ne1;
  12066. // rows per thread
  12067. const int dr = (nr + nth - 1)/nth;
  12068. // row range for this thread
  12069. const int ir0 = dr*ith;
  12070. const int ir1 = MIN(ir0 + dr, nr);
  12071. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12072. ggml_fp16_t * const wdata_src = wdata + nk;
  12073. for (int i1 = ir0; i1 < ir1; i1++) {
  12074. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12075. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12076. for (int i10 = 0; i10 < ne10; i10++) {
  12077. const int i1n = i10*ne11;
  12078. for (int i00 = 0; i00 < ne00; i00++) {
  12079. float v = 0;
  12080. ggml_vec_dot_f16(ne02, &v, 0,
  12081. (ggml_fp16_t *) wdata_src + i1n, 0,
  12082. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12083. dst_data[i10*s0 + i00] += v;
  12084. }
  12085. }
  12086. }
  12087. }
  12088. static void ggml_compute_forward_conv_transpose_1d_f32(
  12089. const struct ggml_compute_params * params,
  12090. struct ggml_tensor * dst) {
  12091. const struct ggml_tensor * src0 = dst->src[0];
  12092. const struct ggml_tensor * src1 = dst->src[1];
  12093. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12094. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12095. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12096. int64_t t0 = ggml_perf_time_us();
  12097. UNUSED(t0);
  12098. GGML_TENSOR_BINARY_OP_LOCALS
  12099. const int ith = params->ith;
  12100. const int nth = params->nth;
  12101. const int nk = ne00*ne01*ne02;
  12102. GGML_ASSERT(nb00 == sizeof(float));
  12103. GGML_ASSERT(nb10 == sizeof(float));
  12104. if (params->type == GGML_TASK_TYPE_INIT) {
  12105. if (ith != 0) {
  12106. return;
  12107. }
  12108. memset(params->wdata, 0, params->wsize);
  12109. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12110. {
  12111. float * const wdata = (float *) params->wdata + 0;
  12112. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12113. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12114. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12115. float * dst_data = wdata + i01*ne00*ne02;
  12116. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12117. dst_data[i00*ne02 + i02] = src[i00];
  12118. }
  12119. }
  12120. }
  12121. }
  12122. // prepare source data (src1)
  12123. {
  12124. float * const wdata = (float *) params->wdata + nk;
  12125. float * dst_data = wdata;
  12126. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12127. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12128. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12129. dst_data[i10*ne11 + i11] = src[i10];
  12130. }
  12131. }
  12132. }
  12133. // need to zero dst since we are accumulating into it
  12134. memset(dst->data, 0, ggml_nbytes(dst));
  12135. return;
  12136. }
  12137. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12138. return;
  12139. }
  12140. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12141. // total rows in dst
  12142. const int nr = ne1;
  12143. // rows per thread
  12144. const int dr = (nr + nth - 1)/nth;
  12145. // row range for this thread
  12146. const int ir0 = dr*ith;
  12147. const int ir1 = MIN(ir0 + dr, nr);
  12148. float * const wdata = (float *) params->wdata + 0;
  12149. float * const wdata_src = wdata + nk;
  12150. for (int i1 = ir0; i1 < ir1; i1++) {
  12151. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12152. float * wdata_kernel = wdata + i1*ne02*ne00;
  12153. for (int i10 = 0; i10 < ne10; i10++) {
  12154. const int i1n = i10*ne11;
  12155. for (int i00 = 0; i00 < ne00; i00++) {
  12156. float v = 0;
  12157. ggml_vec_dot_f32(ne02, &v, 0,
  12158. wdata_src + i1n, 0,
  12159. wdata_kernel + i00*ne02, 0, 1);
  12160. dst_data[i10*s0 + i00] += v;
  12161. }
  12162. }
  12163. }
  12164. }
  12165. static void ggml_compute_forward_conv_transpose_1d(
  12166. const struct ggml_compute_params * params,
  12167. struct ggml_tensor * dst) {
  12168. const struct ggml_tensor * src0 = dst->src[0];
  12169. switch (src0->type) {
  12170. case GGML_TYPE_F16:
  12171. {
  12172. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12173. } break;
  12174. case GGML_TYPE_F32:
  12175. {
  12176. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12177. } break;
  12178. default:
  12179. {
  12180. GGML_ASSERT(false);
  12181. } break;
  12182. }
  12183. }
  12184. // src0: kernel [OC, IC, KH, KW]
  12185. // src1: image [N, IC, IH, IW]
  12186. // dst: result [N, OH, OW, IC*KH*KW]
  12187. static void ggml_compute_forward_im2col_f32(
  12188. const struct ggml_compute_params * params,
  12189. struct ggml_tensor * dst) {
  12190. const struct ggml_tensor * src0 = dst->src[0];
  12191. const struct ggml_tensor * src1 = dst->src[1];
  12192. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12193. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12194. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12195. int64_t t0 = ggml_perf_time_us();
  12196. UNUSED(t0);
  12197. GGML_TENSOR_BINARY_OP_LOCALS;
  12198. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12199. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12200. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12201. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12202. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12203. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12204. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12205. const int ith = params->ith;
  12206. const int nth = params->nth;
  12207. const int64_t N = is_2D ? ne13 : ne12;
  12208. const int64_t IC = is_2D ? ne12 : ne11;
  12209. const int64_t IH = is_2D ? ne11 : 1;
  12210. const int64_t IW = ne10;
  12211. const int64_t KH = is_2D ? ne01 : 1;
  12212. const int64_t KW = ne00;
  12213. const int64_t OH = is_2D ? ne2 : 1;
  12214. const int64_t OW = ne1;
  12215. int ofs0 = is_2D ? nb13 : nb12;
  12216. int ofs1 = is_2D ? nb12 : nb11;
  12217. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12218. GGML_ASSERT(nb10 == sizeof(float));
  12219. if (params->type == GGML_TASK_TYPE_INIT) {
  12220. return;
  12221. }
  12222. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12223. return;
  12224. }
  12225. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12226. {
  12227. float * const wdata = (float *) dst->data;
  12228. for (int64_t in = 0; in < N; in++) {
  12229. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12230. for (int64_t iow = 0; iow < OW; iow++) {
  12231. for (int64_t iic = ith; iic < IC; iic += nth) {
  12232. // micro kernel
  12233. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12234. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12235. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12236. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12237. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12238. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12239. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12240. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12241. } else {
  12242. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12243. }
  12244. }
  12245. }
  12246. }
  12247. }
  12248. }
  12249. }
  12250. }
  12251. }
  12252. // src0: kernel [OC, IC, KH, KW]
  12253. // src1: image [N, IC, IH, IW]
  12254. // dst: result [N, OH, OW, IC*KH*KW]
  12255. static void ggml_compute_forward_im2col_f16(
  12256. const struct ggml_compute_params * params,
  12257. struct ggml_tensor * dst) {
  12258. const struct ggml_tensor * src0 = dst->src[0];
  12259. const struct ggml_tensor * src1 = dst->src[1];
  12260. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12261. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12262. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12263. int64_t t0 = ggml_perf_time_us();
  12264. UNUSED(t0);
  12265. GGML_TENSOR_BINARY_OP_LOCALS;
  12266. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12267. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12268. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12269. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12270. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12271. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12272. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12273. const int ith = params->ith;
  12274. const int nth = params->nth;
  12275. const int64_t N = is_2D ? ne13 : ne12;
  12276. const int64_t IC = is_2D ? ne12 : ne11;
  12277. const int64_t IH = is_2D ? ne11 : 1;
  12278. const int64_t IW = ne10;
  12279. const int64_t KH = is_2D ? ne01 : 1;
  12280. const int64_t KW = ne00;
  12281. const int64_t OH = is_2D ? ne2 : 1;
  12282. const int64_t OW = ne1;
  12283. int ofs0 = is_2D ? nb13 : nb12;
  12284. int ofs1 = is_2D ? nb12 : nb11;
  12285. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12286. GGML_ASSERT(nb10 == sizeof(float));
  12287. if (params->type == GGML_TASK_TYPE_INIT) {
  12288. return;
  12289. }
  12290. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12291. return;
  12292. }
  12293. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12294. {
  12295. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12296. for (int64_t in = 0; in < N; in++) {
  12297. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12298. for (int64_t iow = 0; iow < OW; iow++) {
  12299. for (int64_t iic = ith; iic < IC; iic += nth) {
  12300. // micro kernel
  12301. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12302. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12303. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12304. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12305. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12306. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12307. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12308. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12309. } else {
  12310. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12311. }
  12312. }
  12313. }
  12314. }
  12315. }
  12316. }
  12317. }
  12318. }
  12319. }
  12320. static void ggml_compute_forward_im2col(
  12321. const struct ggml_compute_params * params,
  12322. struct ggml_tensor * dst) {
  12323. switch (dst->type) {
  12324. case GGML_TYPE_F16:
  12325. {
  12326. ggml_compute_forward_im2col_f16(params, dst);
  12327. } break;
  12328. case GGML_TYPE_F32:
  12329. {
  12330. ggml_compute_forward_im2col_f32(params, dst);
  12331. } break;
  12332. default:
  12333. {
  12334. GGML_ASSERT(false);
  12335. } break;
  12336. }
  12337. }
  12338. // ggml_compute_forward_conv_transpose_2d
  12339. static void ggml_compute_forward_conv_transpose_2d(
  12340. const struct ggml_compute_params * params,
  12341. struct ggml_tensor * dst) {
  12342. const struct ggml_tensor * src0 = dst->src[0];
  12343. const struct ggml_tensor * src1 = dst->src[1];
  12344. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12345. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12346. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12347. int64_t t0 = ggml_perf_time_us();
  12348. UNUSED(t0);
  12349. GGML_TENSOR_BINARY_OP_LOCALS
  12350. const int ith = params->ith;
  12351. const int nth = params->nth;
  12352. const int nk = ne00*ne01*ne02*ne03;
  12353. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12354. GGML_ASSERT(nb10 == sizeof(float));
  12355. if (params->type == GGML_TASK_TYPE_INIT) {
  12356. if (ith != 0) {
  12357. return;
  12358. }
  12359. memset(params->wdata, 0, params->wsize);
  12360. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12361. {
  12362. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12363. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12364. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12365. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12366. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12367. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12368. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12369. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12370. }
  12371. }
  12372. }
  12373. }
  12374. }
  12375. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12376. {
  12377. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12378. for (int i12 = 0; i12 < ne12; i12++) {
  12379. for (int i11 = 0; i11 < ne11; i11++) {
  12380. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12381. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12382. for (int i10 = 0; i10 < ne10; i10++) {
  12383. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12384. }
  12385. }
  12386. }
  12387. }
  12388. memset(dst->data, 0, ggml_nbytes(dst));
  12389. return;
  12390. }
  12391. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12392. return;
  12393. }
  12394. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12395. // total patches in dst
  12396. const int np = ne2;
  12397. // patches per thread
  12398. const int dp = (np + nth - 1)/nth;
  12399. // patch range for this thread
  12400. const int ip0 = dp*ith;
  12401. const int ip1 = MIN(ip0 + dp, np);
  12402. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12403. ggml_fp16_t * const wdata_src = wdata + nk;
  12404. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12405. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12406. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12407. for (int i11 = 0; i11 < ne11; i11++) {
  12408. for (int i10 = 0; i10 < ne10; i10++) {
  12409. const int i1n = i11*ne10*ne12 + i10*ne12;
  12410. for (int i01 = 0; i01 < ne01; i01++) {
  12411. for (int i00 = 0; i00 < ne00; i00++) {
  12412. float v = 0;
  12413. ggml_vec_dot_f16(ne03, &v, 0,
  12414. wdata_src + i1n, 0,
  12415. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12416. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12417. }
  12418. }
  12419. }
  12420. }
  12421. }
  12422. }
  12423. // ggml_compute_forward_pool_1d_sk_p0
  12424. static void ggml_compute_forward_pool_1d_sk_p0(
  12425. const struct ggml_compute_params * params,
  12426. const enum ggml_op_pool op,
  12427. const int k,
  12428. struct ggml_tensor * dst) {
  12429. const struct ggml_tensor * src = dst->src[0];
  12430. assert(src->type == GGML_TYPE_F32);
  12431. assert(params->ith == 0);
  12432. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12433. return;
  12434. }
  12435. const char * cdata = (const char *)src->data;
  12436. const char * const data_end = cdata + ggml_nbytes(src);
  12437. float * drow = (float *)dst->data;
  12438. const int64_t rs = dst->ne[0];
  12439. while (cdata < data_end) {
  12440. const float * const srow = (const float *)cdata;
  12441. int j = 0;
  12442. for (int64_t i = 0; i < rs; ++i) {
  12443. switch (op) {
  12444. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12445. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12446. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12447. }
  12448. for (int ki = 0; ki < k; ++ki) {
  12449. switch (op) {
  12450. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12451. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12452. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12453. }
  12454. ++j;
  12455. }
  12456. switch (op) {
  12457. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12458. case GGML_OP_POOL_MAX: break;
  12459. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12460. }
  12461. }
  12462. cdata += src->nb[1];
  12463. drow += rs;
  12464. }
  12465. }
  12466. // ggml_compute_forward_pool_1d
  12467. static void ggml_compute_forward_pool_1d(
  12468. const struct ggml_compute_params * params,
  12469. struct ggml_tensor * dst) {
  12470. const int32_t * opts = (const int32_t *)dst->op_params;
  12471. enum ggml_op_pool op = opts[0];
  12472. const int k0 = opts[1];
  12473. const int s0 = opts[2];
  12474. const int p0 = opts[3];
  12475. GGML_ASSERT(p0 == 0); // padding not supported
  12476. GGML_ASSERT(k0 == s0); // only s = k supported
  12477. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12478. }
  12479. // ggml_compute_forward_pool_2d
  12480. static void ggml_compute_forward_pool_2d(
  12481. const struct ggml_compute_params * params,
  12482. struct ggml_tensor * dst) {
  12483. const struct ggml_tensor * src = dst->src[0];
  12484. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12485. GGML_ASSERT(params->ith == 0);
  12486. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12487. return;
  12488. }
  12489. const int32_t * opts = (const int32_t *)dst->op_params;
  12490. enum ggml_op_pool op = opts[0];
  12491. const int k0 = opts[1];
  12492. const int k1 = opts[2];
  12493. const int s0 = opts[3];
  12494. const int s1 = opts[4];
  12495. const int p0 = opts[5];
  12496. const int p1 = opts[6];
  12497. const char * cdata = (const char*)src->data;
  12498. const char * const data_end = cdata + ggml_nbytes(src);
  12499. const int64_t px = dst->ne[0];
  12500. const int64_t py = dst->ne[1];
  12501. const int64_t pa = px * py;
  12502. float * dplane = (float *)dst->data;
  12503. const int ka = k0 * k1;
  12504. const int offset0 = -p0;
  12505. const int offset1 = -p1;
  12506. while (cdata < data_end) {
  12507. for (int oy = 0; oy < py; ++oy) {
  12508. float * const drow = dplane + oy * px;
  12509. for (int ox = 0; ox < px; ++ox) {
  12510. float * const out = drow + ox;
  12511. switch (op) {
  12512. case GGML_OP_POOL_AVG: *out = 0; break;
  12513. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12514. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12515. }
  12516. const int ix = offset0 + ox * s0;
  12517. const int iy = offset1 + oy * s1;
  12518. for (int ky = 0; ky < k1; ++ky) {
  12519. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12520. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12521. for (int kx = 0; kx < k0; ++kx) {
  12522. int j = ix + kx;
  12523. if (j < 0 || j >= src->ne[0]) continue;
  12524. switch (op) {
  12525. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12526. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12527. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12528. }
  12529. }
  12530. }
  12531. switch (op) {
  12532. case GGML_OP_POOL_AVG: *out /= ka; break;
  12533. case GGML_OP_POOL_MAX: break;
  12534. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12535. }
  12536. }
  12537. }
  12538. cdata += src->nb[2];
  12539. dplane += pa;
  12540. }
  12541. }
  12542. // ggml_compute_forward_upscale
  12543. static void ggml_compute_forward_upscale_f32(
  12544. const struct ggml_compute_params * params,
  12545. struct ggml_tensor * dst) {
  12546. const struct ggml_tensor * src0 = dst->src[0];
  12547. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12548. return;
  12549. }
  12550. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12551. const int ith = params->ith;
  12552. const int nth = params->nth;
  12553. GGML_TENSOR_UNARY_OP_LOCALS
  12554. const float sf0 = (float)ne0/src0->ne[0];
  12555. const float sf1 = (float)ne1/src0->ne[1];
  12556. const float sf2 = (float)ne2/src0->ne[2];
  12557. const float sf3 = (float)ne3/src0->ne[3];
  12558. // TODO: optimize
  12559. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12560. const int64_t i03 = i3 / sf3;
  12561. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12562. const int64_t i02 = i2 / sf2;
  12563. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12564. const int64_t i01 = i1 / sf1;
  12565. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12566. const int64_t i00 = i0 / sf0;
  12567. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12568. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12569. *y = *x;
  12570. }
  12571. }
  12572. }
  12573. }
  12574. }
  12575. static void ggml_compute_forward_upscale(
  12576. const struct ggml_compute_params * params,
  12577. struct ggml_tensor * dst) {
  12578. const struct ggml_tensor * src0 = dst->src[0];
  12579. switch (src0->type) {
  12580. case GGML_TYPE_F32:
  12581. {
  12582. ggml_compute_forward_upscale_f32(params, dst);
  12583. } break;
  12584. default:
  12585. {
  12586. GGML_ASSERT(false);
  12587. } break;
  12588. }
  12589. }
  12590. // ggml_compute_forward_pad
  12591. static void ggml_compute_forward_pad_f32(
  12592. const struct ggml_compute_params * params,
  12593. struct ggml_tensor * dst) {
  12594. const struct ggml_tensor * src0 = dst->src[0];
  12595. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12596. return;
  12597. }
  12598. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12599. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12600. const int ith = params->ith;
  12601. const int nth = params->nth;
  12602. GGML_TENSOR_UNARY_OP_LOCALS
  12603. float * dst_ptr = (float *) dst->data;
  12604. // TODO: optimize
  12605. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12606. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12607. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12608. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12609. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12610. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12611. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12612. dst_ptr[dst_idx] = *src_ptr;
  12613. } else {
  12614. dst_ptr[dst_idx] = 0;
  12615. }
  12616. }
  12617. }
  12618. }
  12619. }
  12620. }
  12621. static void ggml_compute_forward_pad(
  12622. const struct ggml_compute_params * params,
  12623. struct ggml_tensor * dst) {
  12624. const struct ggml_tensor * src0 = dst->src[0];
  12625. switch (src0->type) {
  12626. case GGML_TYPE_F32:
  12627. {
  12628. ggml_compute_forward_pad_f32(params, dst);
  12629. } break;
  12630. default:
  12631. {
  12632. GGML_ASSERT(false);
  12633. } break;
  12634. }
  12635. }
  12636. // ggml_compute_forward_arange
  12637. static void ggml_compute_forward_arange_f32(
  12638. const struct ggml_compute_params * params,
  12639. struct ggml_tensor * dst) {
  12640. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12641. return;
  12642. }
  12643. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12644. const int ith = params->ith;
  12645. const int nth = params->nth;
  12646. const float start = ggml_get_op_params_f32(dst, 0);
  12647. const float stop = ggml_get_op_params_f32(dst, 1);
  12648. const float step = ggml_get_op_params_f32(dst, 2);
  12649. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12650. GGML_ASSERT(ggml_nelements(dst) == steps);
  12651. for (int64_t i = ith; i < steps; i+= nth) {
  12652. float value = start + step * i;
  12653. ((float *)dst->data)[i] = value;
  12654. }
  12655. }
  12656. static void ggml_compute_forward_arange(
  12657. const struct ggml_compute_params * params,
  12658. struct ggml_tensor * dst) {
  12659. switch (dst->type) {
  12660. case GGML_TYPE_F32:
  12661. {
  12662. ggml_compute_forward_arange_f32(params, dst);
  12663. } break;
  12664. default:
  12665. {
  12666. GGML_ASSERT(false);
  12667. } break;
  12668. }
  12669. }
  12670. static void ggml_compute_forward_timestep_embedding_f32(
  12671. const struct ggml_compute_params * params,
  12672. struct ggml_tensor * dst) {
  12673. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12674. return;
  12675. }
  12676. const struct ggml_tensor * src0 = dst->src[0];
  12677. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12678. const int ith = params->ith;
  12679. const int nth = params->nth;
  12680. GGML_TENSOR_UNARY_OP_LOCALS
  12681. const int dim = ggml_get_op_params_i32(dst, 0);
  12682. const int max_period = ggml_get_op_params_i32(dst, 1);
  12683. int half = dim / 2;
  12684. for (int64_t i = 0; i < ne00; i++) {
  12685. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12686. for (int64_t j = ith; j < half; j += nth) {
  12687. float timestep = ((float *)src0->data)[i];
  12688. float freq = (float)expf(-logf(max_period) * j / half);
  12689. float arg = timestep * freq;
  12690. embed_data[j] = cosf(arg);
  12691. embed_data[j + half] = sinf(arg);
  12692. }
  12693. if (dim % 2 != 0 && ith == 0) {
  12694. embed_data[dim] = 0.f;
  12695. }
  12696. }
  12697. }
  12698. static void ggml_compute_forward_timestep_embedding(
  12699. const struct ggml_compute_params * params,
  12700. struct ggml_tensor * dst) {
  12701. const struct ggml_tensor * src0 = dst->src[0];
  12702. switch (src0->type) {
  12703. case GGML_TYPE_F32:
  12704. {
  12705. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12706. } break;
  12707. default:
  12708. {
  12709. GGML_ASSERT(false);
  12710. } break;
  12711. }
  12712. }
  12713. // ggml_compute_forward_argsort
  12714. static void ggml_compute_forward_argsort_f32(
  12715. const struct ggml_compute_params * params,
  12716. struct ggml_tensor * dst) {
  12717. const struct ggml_tensor * src0 = dst->src[0];
  12718. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12719. return;
  12720. }
  12721. GGML_TENSOR_UNARY_OP_LOCALS
  12722. GGML_ASSERT(nb0 == sizeof(float));
  12723. const int ith = params->ith;
  12724. const int nth = params->nth;
  12725. const int64_t nr = ggml_nrows(src0);
  12726. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12727. for (int64_t i = ith; i < nr; i += nth) {
  12728. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12729. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12730. for (int64_t j = 0; j < ne0; j++) {
  12731. dst_data[j] = j;
  12732. }
  12733. // C doesn't have a functional sort, so we do a bubble sort instead
  12734. for (int64_t j = 0; j < ne0; j++) {
  12735. for (int64_t k = j + 1; k < ne0; k++) {
  12736. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12737. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12738. int32_t tmp = dst_data[j];
  12739. dst_data[j] = dst_data[k];
  12740. dst_data[k] = tmp;
  12741. }
  12742. }
  12743. }
  12744. }
  12745. }
  12746. static void ggml_compute_forward_argsort(
  12747. const struct ggml_compute_params * params,
  12748. struct ggml_tensor * dst) {
  12749. const struct ggml_tensor * src0 = dst->src[0];
  12750. switch (src0->type) {
  12751. case GGML_TYPE_F32:
  12752. {
  12753. ggml_compute_forward_argsort_f32(params, dst);
  12754. } break;
  12755. default:
  12756. {
  12757. GGML_ASSERT(false);
  12758. } break;
  12759. }
  12760. }
  12761. // ggml_compute_forward_flash_attn_ext
  12762. static void ggml_compute_forward_flash_attn_ext_f16(
  12763. const struct ggml_compute_params * params,
  12764. const struct ggml_tensor * q,
  12765. const struct ggml_tensor * k,
  12766. const struct ggml_tensor * v,
  12767. const struct ggml_tensor * mask,
  12768. struct ggml_tensor * dst) {
  12769. int64_t t0 = ggml_perf_time_us();
  12770. UNUSED(t0);
  12771. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12772. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12773. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12774. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12775. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12776. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12777. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12778. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12779. const int ith = params->ith;
  12780. const int nth = params->nth;
  12781. const int64_t D = neq0;
  12782. const int64_t N = neq1;
  12783. GGML_ASSERT(ne0 == D);
  12784. GGML_ASSERT(ne2 == N);
  12785. // input tensor rows must be contiguous
  12786. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12787. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12788. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12789. GGML_ASSERT(neq0 == D);
  12790. GGML_ASSERT(nek0 == D);
  12791. GGML_ASSERT(nev0 == D);
  12792. GGML_ASSERT(neq1 == N);
  12793. GGML_ASSERT(nev0 == D);
  12794. // dst cannot be transposed or permuted
  12795. GGML_ASSERT(nb0 == sizeof(float));
  12796. GGML_ASSERT(nb0 <= nb1);
  12797. GGML_ASSERT(nb1 <= nb2);
  12798. GGML_ASSERT(nb2 <= nb3);
  12799. // broadcast factors
  12800. const int64_t rk2 = neq2/nek2;
  12801. const int64_t rk3 = neq3/nek3;
  12802. const int64_t rv2 = neq2/nev2;
  12803. const int64_t rv3 = neq3/nev3;
  12804. if (params->type == GGML_TASK_TYPE_INIT) {
  12805. return;
  12806. }
  12807. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12808. return;
  12809. }
  12810. // parallelize by q rows using ggml_vec_dot_f32
  12811. // total rows in q
  12812. const int nr = neq1*neq2*neq3;
  12813. // rows per thread
  12814. const int dr = (nr + nth - 1)/nth;
  12815. // row range for this thread
  12816. const int ir0 = dr*ith;
  12817. const int ir1 = MIN(ir0 + dr, nr);
  12818. float scale = 1.0f;
  12819. float max_bias = 0.0f;
  12820. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12821. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12822. const uint32_t n_head = neq2;
  12823. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12824. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12825. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12826. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12827. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12828. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12829. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12830. // loop over n_batch and n_head
  12831. for (int ir = ir0; ir < ir1; ++ir) {
  12832. // q indices
  12833. const int iq3 = ir/(neq2*neq1);
  12834. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12835. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12836. const uint32_t h = iq2; // head index
  12837. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12838. float S = 0.0f; // sum
  12839. float M = -INFINITY; // maximum KQ value
  12840. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12841. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12842. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12843. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12844. if (v->type == GGML_TYPE_F16) {
  12845. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12846. } else {
  12847. memset(VKQ32, 0, D*sizeof(float));
  12848. }
  12849. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12850. // k indices
  12851. const int ik3 = iq3 / rk3;
  12852. const int ik2 = iq2 / rk2;
  12853. // v indices
  12854. const int iv3 = iq3 / rv3;
  12855. const int iv2 = iq2 / rv2;
  12856. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12857. q_to_vec_dot(pq, Q_q, D);
  12858. // online softmax / attention
  12859. // loop over n_kv and n_head_kv
  12860. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12861. for (int64_t ic = 0; ic < nek1; ++ic) {
  12862. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12863. if (mv == -INFINITY) {
  12864. continue;
  12865. }
  12866. float s; // KQ value
  12867. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12868. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12869. s = s*scale + mv; // scale KQ value and apply mask
  12870. const float Mold = M;
  12871. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12872. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12873. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12874. if (v->type== GGML_TYPE_F16) {
  12875. if (s > M) {
  12876. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12877. M = s;
  12878. ms = expf(Mold - M);
  12879. // V = V*expf(Mold - M)
  12880. ggml_vec_scale_f16(D, VKQ16, ms);
  12881. } else {
  12882. // no new maximum, ms == 1.0f, vs != 1.0f
  12883. vs = expf(s - M);
  12884. }
  12885. // V += v*expf(s - M)
  12886. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12887. } else {
  12888. if (s > M) {
  12889. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12890. M = s;
  12891. ms = expf(Mold - M);
  12892. // V = V*expf(Mold - M)
  12893. ggml_vec_scale_f32(D, VKQ32, ms);
  12894. } else {
  12895. // no new maximum, ms == 1.0f, vs != 1.0f
  12896. vs = expf(s - M);
  12897. }
  12898. v_to_float(v_data, V32, D);
  12899. // V += v*expf(s - M)
  12900. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12901. }
  12902. S = S*ms + vs; // scale and increment sum with partial sum
  12903. }
  12904. if (v->type == GGML_TYPE_F16) {
  12905. for (int64_t d = 0; d < D; ++d) {
  12906. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12907. }
  12908. }
  12909. // V /= S
  12910. const float S_inv = 1.0f/S;
  12911. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12912. // dst indices
  12913. const int i1 = iq1;
  12914. const int i2 = iq2;
  12915. const int i3 = iq3;
  12916. // original
  12917. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12918. // permute(0, 2, 1, 3)
  12919. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12920. }
  12921. }
  12922. static void ggml_compute_forward_flash_attn_ext(
  12923. const struct ggml_compute_params * params,
  12924. const struct ggml_tensor * q,
  12925. const struct ggml_tensor * k,
  12926. const struct ggml_tensor * v,
  12927. const struct ggml_tensor * mask,
  12928. struct ggml_tensor * dst) {
  12929. switch (dst->op_params[2]) {
  12930. case GGML_PREC_DEFAULT:
  12931. case GGML_PREC_F32:
  12932. {
  12933. // uses F32 accumulators
  12934. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12935. } break;
  12936. default:
  12937. {
  12938. GGML_ASSERT(false);
  12939. } break;
  12940. }
  12941. }
  12942. // ggml_compute_forward_flash_attn_back
  12943. static void ggml_compute_forward_flash_attn_back_f32(
  12944. const struct ggml_compute_params * params,
  12945. const bool masked,
  12946. struct ggml_tensor * dst) {
  12947. const struct ggml_tensor * q = dst->src[0];
  12948. const struct ggml_tensor * k = dst->src[1];
  12949. const struct ggml_tensor * v = dst->src[2];
  12950. const struct ggml_tensor * d = dst->src[3];
  12951. int64_t t0 = ggml_perf_time_us();
  12952. UNUSED(t0);
  12953. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12954. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12955. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12956. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12957. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12958. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12959. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12960. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12961. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12962. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12963. const int ith = params->ith;
  12964. const int nth = params->nth;
  12965. const int64_t D = neq0;
  12966. const int64_t N = neq1;
  12967. const int64_t P = nek1 - N;
  12968. const int64_t M = P + N;
  12969. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12970. const int mxDM = MAX(D, Mup);
  12971. // GGML_ASSERT(ne0 == D);
  12972. // GGML_ASSERT(ne1 == N);
  12973. GGML_ASSERT(P >= 0);
  12974. GGML_ASSERT(nbq0 == sizeof(float));
  12975. GGML_ASSERT(nbk0 == sizeof(float));
  12976. GGML_ASSERT(nbv0 == sizeof(float));
  12977. GGML_ASSERT(neq0 == D);
  12978. GGML_ASSERT(nek0 == D);
  12979. GGML_ASSERT(nev1 == D);
  12980. GGML_ASSERT(ned0 == D);
  12981. GGML_ASSERT(neq1 == N);
  12982. GGML_ASSERT(nek1 == N + P);
  12983. GGML_ASSERT(nev1 == D);
  12984. GGML_ASSERT(ned1 == N);
  12985. // dst cannot be transposed or permuted
  12986. GGML_ASSERT(nb0 == sizeof(float));
  12987. GGML_ASSERT(nb0 <= nb1);
  12988. GGML_ASSERT(nb1 <= nb2);
  12989. GGML_ASSERT(nb2 <= nb3);
  12990. if (params->type == GGML_TASK_TYPE_INIT) {
  12991. if (ith == 0) {
  12992. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12993. }
  12994. return;
  12995. }
  12996. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12997. return;
  12998. }
  12999. const int64_t elem_q = ggml_nelements(q);
  13000. const int64_t elem_k = ggml_nelements(k);
  13001. enum ggml_type result_type = dst->type;
  13002. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13003. const size_t tsize = ggml_type_size(result_type);
  13004. const size_t offs_q = 0;
  13005. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13006. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13007. void * grad_q = (char *) dst->data;
  13008. void * grad_k = (char *) dst->data + offs_k;
  13009. void * grad_v = (char *) dst->data + offs_v;
  13010. const size_t nbgq1 = nb0*neq0;
  13011. const size_t nbgq2 = nb0*neq0*neq1;
  13012. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13013. const size_t nbgk1 = nb0*nek0;
  13014. const size_t nbgk2 = nb0*nek0*nek1;
  13015. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13016. const size_t nbgv1 = nb0*nev0;
  13017. const size_t nbgv2 = nb0*nev0*nev1;
  13018. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13019. // parallelize by k rows using ggml_vec_dot_f32
  13020. // total rows in k
  13021. const int nr = nek2*nek3;
  13022. // rows per thread
  13023. const int dr = (nr + nth - 1)/nth;
  13024. // row range for this thread
  13025. const int ir0 = dr*ith;
  13026. const int ir1 = MIN(ir0 + dr, nr);
  13027. const float scale = 1.0f/sqrtf(D);
  13028. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13029. // how often k2 (and v2) is repeated in q2
  13030. int nrep = neq2/nek2;
  13031. for (int ir = ir0; ir < ir1; ++ir) {
  13032. // q indices
  13033. const int ik3 = ir/(nek2);
  13034. const int ik2 = ir - ik3*nek2;
  13035. const int iq3 = ik3;
  13036. const int id3 = ik3;
  13037. const int iv3 = ik3;
  13038. const int iv2 = ik2;
  13039. for (int irep = 0; irep < nrep; ++irep) {
  13040. const int iq2 = ik2 + irep*nek2;
  13041. const int id2 = iq2;
  13042. // (ik2 + irep*nek2) % nek2 == ik2
  13043. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13044. const int id1 = iq1;
  13045. // not sure about CACHE_LINE_SIZE_F32..
  13046. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13047. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13048. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13049. for (int i = M; i < Mup; ++i) {
  13050. S[i] = -INFINITY;
  13051. }
  13052. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13053. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13054. // k indices
  13055. const int ik1 = ic;
  13056. // S indices
  13057. const int i1 = ik1;
  13058. ggml_vec_dot_f32(neq0,
  13059. S + i1, 0,
  13060. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13061. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13062. }
  13063. // scale
  13064. ggml_vec_scale_f32(masked_begin, S, scale);
  13065. for (int64_t i = masked_begin; i < M; i++) {
  13066. S[i] = -INFINITY;
  13067. }
  13068. // softmax
  13069. // exclude known -INF S[..] values from max and loop
  13070. // dont forget to set their SM values to zero
  13071. {
  13072. float max = -INFINITY;
  13073. ggml_vec_max_f32(masked_begin, &max, S);
  13074. ggml_float sum = 0.0;
  13075. {
  13076. #ifdef GGML_SOFT_MAX_ACCELERATE
  13077. max = -max;
  13078. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13079. vvexpf(SM, SM, &Mup);
  13080. ggml_vec_sum_f32(Mup, &sum, SM);
  13081. #else
  13082. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13083. #endif
  13084. }
  13085. assert(sum > 0.0);
  13086. sum = 1.0/sum;
  13087. ggml_vec_scale_f32(masked_begin, SM, sum);
  13088. }
  13089. // step-by-step explanation
  13090. {
  13091. // forward-process shape grads from backward process
  13092. // parallel_for ik2,ik3:
  13093. // for irep:
  13094. // iq2 = ik2 + irep*nek2
  13095. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13096. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13097. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13098. // for iq1:
  13099. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13100. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13101. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13102. // S0 = -Inf [D,1,1,1]
  13103. // ~S1[i] = dot(kcur[:D,i], qcur)
  13104. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13105. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13106. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13107. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13108. // ~S5[i] = dot(vcur[:,i], S4)
  13109. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13110. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13111. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13112. // dst backward-/ grad[dst] = d
  13113. //
  13114. // output gradients with their dependencies:
  13115. //
  13116. // grad[kcur] = grad[S1].T @ qcur
  13117. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13118. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13119. // grad[S4] = grad[S5] @ vcur
  13120. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13121. // grad[qcur] = grad[S1] @ kcur
  13122. // grad[vcur] = grad[S5].T @ S4
  13123. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13124. //
  13125. // in post-order:
  13126. //
  13127. // S1 = qcur @ kcur.T
  13128. // S2 = S1 * scale
  13129. // S3 = diag_mask_inf(S2, P)
  13130. // S4 = softmax(S3)
  13131. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13132. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13133. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13134. // grad[qcur] = grad[S1] @ kcur
  13135. // grad[kcur] = grad[S1].T @ qcur
  13136. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13137. //
  13138. // using less variables (SM=S4):
  13139. //
  13140. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13141. // SM = softmax(S)
  13142. // S = d[:D,iq1,iq2,iq3] @ vcur
  13143. // dot_SM_gradSM = dot(SM, S)
  13144. // S = SM * (S - dot(SM, S))
  13145. // S = diag_mask_zero(S, P) * scale
  13146. //
  13147. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13148. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13149. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13150. }
  13151. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13152. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13153. // for ic:
  13154. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13155. // exclude known future zero S[..] values from operation
  13156. ggml_vec_set_f32(masked_begin, S, 0);
  13157. for (int64_t ic = 0; ic < D; ++ic) {
  13158. ggml_vec_mad_f32(masked_begin,
  13159. S,
  13160. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13161. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13162. }
  13163. // S = SM * (S - dot(SM, S))
  13164. float dot_SM_gradSM = 0;
  13165. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13166. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13167. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13168. // S = diag_mask_zero(S, P) * scale
  13169. // already done by above ggml_vec_set_f32
  13170. // exclude known zero S[..] values from operation
  13171. ggml_vec_scale_f32(masked_begin, S, scale);
  13172. // S shape [M,1]
  13173. // SM shape [M,1]
  13174. // kcur shape [D,M]
  13175. // qcur shape [D,1]
  13176. // vcur shape [M,D]
  13177. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13178. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13179. // for ic:
  13180. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13181. // exclude known zero S[..] values from loop
  13182. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13183. ggml_vec_mad_f32(D,
  13184. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13185. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13186. S[ic]);
  13187. }
  13188. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13189. // for ic:
  13190. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13191. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13192. // exclude known zero S[..] values from loop
  13193. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13194. ggml_vec_mad_f32(D,
  13195. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13196. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13197. S[ic]);
  13198. }
  13199. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13200. // for ic:
  13201. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13202. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13203. // exclude known zero SM[..] values from mad
  13204. for (int64_t ic = 0; ic < D; ++ic) {
  13205. ggml_vec_mad_f32(masked_begin,
  13206. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13207. SM,
  13208. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13209. }
  13210. }
  13211. }
  13212. }
  13213. }
  13214. static void ggml_compute_forward_flash_attn_back(
  13215. const struct ggml_compute_params * params,
  13216. const bool masked,
  13217. struct ggml_tensor * dst) {
  13218. const struct ggml_tensor * q = dst->src[0];
  13219. switch (q->type) {
  13220. case GGML_TYPE_F32:
  13221. {
  13222. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13223. } break;
  13224. default:
  13225. {
  13226. GGML_ASSERT(false);
  13227. } break;
  13228. }
  13229. }
  13230. // ggml_compute_forward_ssm_conv
  13231. static void ggml_compute_forward_ssm_conv_f32(
  13232. const struct ggml_compute_params * params,
  13233. struct ggml_tensor * dst) {
  13234. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13235. return;
  13236. }
  13237. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13238. const struct ggml_tensor * src1 = dst->src[1]; // x
  13239. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13240. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13241. const int ith = params->ith;
  13242. const int nth = params->nth;
  13243. const int nc = src2->ne[0]; // d_conv
  13244. const int nr = src0->ne[1]; // d_inner
  13245. const int n_t = src1->ne[1]; // n_tokens
  13246. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13247. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13248. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13249. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13250. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13251. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13252. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13253. // for use with the destination state offset between sequences
  13254. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13255. // rows per thread
  13256. const int dr = (nr + nth - 1)/nth;
  13257. // row range for this thread
  13258. const int ir0 = dr*ith;
  13259. const int ir1 = MIN(ir0 + dr, nr);
  13260. const int ir = ir1 - ir0;
  13261. if (n_kv > 1) {
  13262. // multiple sequences means it's hard to know when it's the first time a state is read,
  13263. // so copy them all over to the destination, just to be sure.
  13264. for (int i3 = 0; i3 < n_kv; ++i3) {
  13265. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13266. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13267. // can't use memcpy because of d_conv vs d_conv - 1
  13268. for (int i1 = 0; i1 < ir; ++i1) {
  13269. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13270. // copy s0 to last (d_conv - 1) columns of s
  13271. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13272. }
  13273. }
  13274. }
  13275. }
  13276. for (int i2 = 0; i2 < n_t; ++i2) {
  13277. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13278. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13279. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13280. float * s0; // {d_conv - 1, d_inner, n_kv}
  13281. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13282. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13283. int ne0s0;
  13284. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13285. // avoid needing to copy the state for the first token
  13286. if (i2 == 0) {
  13287. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13288. ne0s0 = src0->ne[0];
  13289. } else {
  13290. // the source is the last (d_conv - 1) columns of the destination
  13291. s0 = s + 1;
  13292. ne0s0 = nc;
  13293. }
  13294. // d_inner
  13295. for (int i1 = 0; i1 < ir; ++i1) {
  13296. // shift state left
  13297. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13298. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13299. }
  13300. // insert x on the last column
  13301. s[(nc - 1) + i1*nc] = x0[i1];
  13302. }
  13303. // handle copies when there are multiple output states
  13304. for (int i3 = 1; i3 < n_kv; ++i3) {
  13305. int32_t seq = sq[i3];
  13306. if (0 <= seq && seq < n_kv) {
  13307. float * s1 = s + (seq - sq[0])*nc*nr;
  13308. memcpy(s1, s, nc*ir*sizeof(float));
  13309. } else {
  13310. // stop at negative or too big seq_ids
  13311. break;
  13312. }
  13313. }
  13314. // it seems a little faster when this is separate from the state shift
  13315. for (int i1 = 0; i1 < ir; ++i1) {
  13316. // rowwise dot product
  13317. float sumf = 0.0f;
  13318. for (int i0 = 0; i0 < nc; ++i0) {
  13319. int i = i0 + i1*nc;
  13320. sumf += s[i] * c[i];
  13321. }
  13322. x[i1] = sumf;
  13323. }
  13324. }
  13325. }
  13326. static void ggml_compute_forward_ssm_conv(
  13327. const struct ggml_compute_params * params,
  13328. struct ggml_tensor * dst) {
  13329. switch (dst->src[0]->type) {
  13330. case GGML_TYPE_F32:
  13331. {
  13332. ggml_compute_forward_ssm_conv_f32(params, dst);
  13333. } break;
  13334. default:
  13335. {
  13336. GGML_ASSERT(false);
  13337. } break;
  13338. }
  13339. }
  13340. // ggml_compute_forward_ssm_scan
  13341. static void ggml_compute_forward_ssm_scan_f32(
  13342. const struct ggml_compute_params * params,
  13343. struct ggml_tensor * dst) {
  13344. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13345. return;
  13346. }
  13347. const struct ggml_tensor * src0 = dst->src[0]; // s
  13348. const struct ggml_tensor * src1 = dst->src[1]; // x
  13349. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13350. const struct ggml_tensor * src3 = dst->src[3]; // A
  13351. const struct ggml_tensor * src4 = dst->src[4]; // B
  13352. const struct ggml_tensor * src5 = dst->src[5]; // C
  13353. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13354. const int ith = params->ith;
  13355. const int nth = params->nth;
  13356. const int64_t nc = src0->ne[0]; // d_state
  13357. const int64_t nr = src0->ne[1]; // d_inner
  13358. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13359. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13360. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13361. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13362. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13363. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13364. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13365. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13366. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13367. // required for the dot product between s and C, and when copying the states
  13368. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13369. // required for per-sequence offsets for states
  13370. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13371. // required to get correct offset for state destination (i.e. src1->nb[2])
  13372. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13373. // rows per thread
  13374. const int dr = (nr + nth - 1)/nth;
  13375. // row range for this thread
  13376. const int ir0 = dr*ith;
  13377. const int ir1 = MIN(ir0 + dr, nr);
  13378. const int ir = ir1 - ir0;
  13379. if (n_kv > 1) {
  13380. // it's hard to know if the source states have already been copied
  13381. // when there are multiple, so copy them already.
  13382. for (int i3 = 0; i3 < n_kv; ++i3) {
  13383. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13384. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13385. memcpy(s, s0, nc*ir*sizeof(float));
  13386. }
  13387. }
  13388. for (int i2 = 0; i2 < n_t; ++i2) {
  13389. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13390. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13391. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13392. float * s0;
  13393. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13394. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13395. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13396. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13397. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13398. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13399. // avoid needing to copy the state for the first token
  13400. if (i2 == 0) {
  13401. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13402. } else {
  13403. // otherwise the source is the same as the destination
  13404. s0 = s;
  13405. }
  13406. // d_inner
  13407. for (int i1 = 0; i1 < ir; ++i1) {
  13408. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13409. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13410. float x_dt = x[i1] * dt_soft_plus;
  13411. float sumf = 0.0f;
  13412. // d_state
  13413. for (int i0 = 0; i0 < nc; ++i0) {
  13414. int i = i0 + i1*nc;
  13415. // state = prev_state * dA + dB * x
  13416. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13417. // y = rowwise_dotprod(state, C)
  13418. sumf += state * C[i0];
  13419. s[i] = state;
  13420. }
  13421. y[i1] = sumf;
  13422. }
  13423. // handle copies when there are multiple output states
  13424. for (int i3 = 1; i3 < n_kv; ++i3) {
  13425. int32_t seq = sq[i3];
  13426. if (0 <= seq && seq < n_kv) {
  13427. float * s1 = s + (seq - sq[0])*nc*nr;
  13428. memcpy(s1, s, nc*ir*sizeof(float));
  13429. } else {
  13430. // stop at negative or too big seq_ids
  13431. break;
  13432. }
  13433. }
  13434. }
  13435. }
  13436. static void ggml_compute_forward_ssm_scan(
  13437. const struct ggml_compute_params * params,
  13438. struct ggml_tensor * dst) {
  13439. switch (dst->src[0]->type) {
  13440. case GGML_TYPE_F32:
  13441. {
  13442. ggml_compute_forward_ssm_scan_f32(params, dst);
  13443. } break;
  13444. default:
  13445. {
  13446. GGML_ASSERT(false);
  13447. } break;
  13448. }
  13449. }
  13450. // ggml_compute_forward_win_part
  13451. static void ggml_compute_forward_win_part_f32(
  13452. const struct ggml_compute_params * params,
  13453. struct ggml_tensor * dst) {
  13454. const struct ggml_tensor * src0 = dst->src[0];
  13455. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13456. return;
  13457. }
  13458. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13459. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13460. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13461. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13462. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13463. assert(ne00 == ne0);
  13464. assert(ne3 == nep0*nep1);
  13465. // TODO: optimize / multi-thread
  13466. for (int py = 0; py < nep1; ++py) {
  13467. for (int px = 0; px < nep0; ++px) {
  13468. const int64_t i3 = py*nep0 + px;
  13469. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13470. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13471. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13472. const int64_t i02 = py*w + i2;
  13473. const int64_t i01 = px*w + i1;
  13474. const int64_t i00 = i0;
  13475. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13476. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13477. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13478. ((float *) dst->data)[i] = 0.0f;
  13479. } else {
  13480. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13481. }
  13482. }
  13483. }
  13484. }
  13485. }
  13486. }
  13487. }
  13488. static void ggml_compute_forward_win_part(
  13489. const struct ggml_compute_params * params,
  13490. struct ggml_tensor * dst) {
  13491. const struct ggml_tensor * src0 = dst->src[0];
  13492. switch (src0->type) {
  13493. case GGML_TYPE_F32:
  13494. {
  13495. ggml_compute_forward_win_part_f32(params, dst);
  13496. } break;
  13497. default:
  13498. {
  13499. GGML_ASSERT(false);
  13500. } break;
  13501. }
  13502. }
  13503. // ggml_compute_forward_win_unpart
  13504. static void ggml_compute_forward_win_unpart_f32(
  13505. const struct ggml_compute_params * params,
  13506. struct ggml_tensor * dst) {
  13507. const struct ggml_tensor * src0 = dst->src[0];
  13508. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13509. return;
  13510. }
  13511. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13512. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13513. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13514. // padding
  13515. const int px = (w - ne1%w)%w;
  13516. //const int py = (w - ne2%w)%w;
  13517. const int npx = (px + ne1)/w;
  13518. //const int npy = (py + ne2)/w;
  13519. assert(ne0 == ne00);
  13520. // TODO: optimize / multi-thread
  13521. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13522. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13523. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13524. const int ip2 = i2/w;
  13525. const int ip1 = i1/w;
  13526. const int64_t i02 = i2%w;
  13527. const int64_t i01 = i1%w;
  13528. const int64_t i00 = i0;
  13529. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13530. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13531. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13532. }
  13533. }
  13534. }
  13535. }
  13536. static void ggml_compute_forward_win_unpart(
  13537. const struct ggml_compute_params * params,
  13538. struct ggml_tensor * dst) {
  13539. const struct ggml_tensor * src0 = dst->src[0];
  13540. switch (src0->type) {
  13541. case GGML_TYPE_F32:
  13542. {
  13543. ggml_compute_forward_win_unpart_f32(params, dst);
  13544. } break;
  13545. default:
  13546. {
  13547. GGML_ASSERT(false);
  13548. } break;
  13549. }
  13550. }
  13551. //gmml_compute_forward_unary
  13552. static void ggml_compute_forward_unary(
  13553. const struct ggml_compute_params * params,
  13554. struct ggml_tensor * dst) {
  13555. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13556. switch (op) {
  13557. case GGML_UNARY_OP_ABS:
  13558. {
  13559. ggml_compute_forward_abs(params, dst);
  13560. } break;
  13561. case GGML_UNARY_OP_SGN:
  13562. {
  13563. ggml_compute_forward_sgn(params, dst);
  13564. } break;
  13565. case GGML_UNARY_OP_NEG:
  13566. {
  13567. ggml_compute_forward_neg(params, dst);
  13568. } break;
  13569. case GGML_UNARY_OP_STEP:
  13570. {
  13571. ggml_compute_forward_step(params, dst);
  13572. } break;
  13573. case GGML_UNARY_OP_TANH:
  13574. {
  13575. ggml_compute_forward_tanh(params, dst);
  13576. } break;
  13577. case GGML_UNARY_OP_ELU:
  13578. {
  13579. ggml_compute_forward_elu(params, dst);
  13580. } break;
  13581. case GGML_UNARY_OP_RELU:
  13582. {
  13583. ggml_compute_forward_relu(params, dst);
  13584. } break;
  13585. case GGML_UNARY_OP_SIGMOID:
  13586. {
  13587. ggml_compute_forward_sigmoid(params, dst);
  13588. } break;
  13589. case GGML_UNARY_OP_GELU:
  13590. {
  13591. ggml_compute_forward_gelu(params, dst);
  13592. } break;
  13593. case GGML_UNARY_OP_GELU_QUICK:
  13594. {
  13595. ggml_compute_forward_gelu_quick(params, dst);
  13596. } break;
  13597. case GGML_UNARY_OP_SILU:
  13598. {
  13599. ggml_compute_forward_silu(params, dst);
  13600. } break;
  13601. case GGML_UNARY_OP_HARDSWISH:
  13602. {
  13603. ggml_compute_forward_hardswish(params, dst);
  13604. } break;
  13605. case GGML_UNARY_OP_HARDSIGMOID:
  13606. {
  13607. ggml_compute_forward_hardsigmoid(params, dst);
  13608. } break;
  13609. default:
  13610. {
  13611. GGML_ASSERT(false);
  13612. } break;
  13613. }
  13614. }
  13615. // ggml_compute_forward_get_rel_pos
  13616. static void ggml_compute_forward_get_rel_pos_f16(
  13617. const struct ggml_compute_params * params,
  13618. struct ggml_tensor * dst) {
  13619. const struct ggml_tensor * src0 = dst->src[0];
  13620. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13621. return;
  13622. }
  13623. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13624. GGML_TENSOR_UNARY_OP_LOCALS
  13625. const int64_t w = ne1;
  13626. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13627. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13628. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13629. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13630. const int64_t pos = (w - i1 - 1) + i2;
  13631. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13632. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13633. }
  13634. }
  13635. }
  13636. }
  13637. static void ggml_compute_forward_get_rel_pos(
  13638. const struct ggml_compute_params * params,
  13639. struct ggml_tensor * dst) {
  13640. const struct ggml_tensor * src0 = dst->src[0];
  13641. switch (src0->type) {
  13642. case GGML_TYPE_F16:
  13643. case GGML_TYPE_BF16:
  13644. {
  13645. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13646. } break;
  13647. default:
  13648. {
  13649. GGML_ASSERT(false);
  13650. } break;
  13651. }
  13652. }
  13653. // ggml_compute_forward_add_rel_pos
  13654. static void ggml_compute_forward_add_rel_pos_f32(
  13655. const struct ggml_compute_params * params,
  13656. struct ggml_tensor * dst) {
  13657. const struct ggml_tensor * src0 = dst->src[0];
  13658. const struct ggml_tensor * src1 = dst->src[1];
  13659. const struct ggml_tensor * src2 = dst->src[2];
  13660. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13661. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13662. if (params->ith != 0) {
  13663. return;
  13664. }
  13665. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13666. return;
  13667. }
  13668. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13669. return;
  13670. }
  13671. int64_t t0 = ggml_perf_time_us();
  13672. UNUSED(t0);
  13673. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13674. float * src1_data = (float *) src1->data;
  13675. float * src2_data = (float *) src2->data;
  13676. float * dst_data = (float *) dst->data;
  13677. const int64_t ne10 = src1->ne[0];
  13678. const int64_t ne11 = src1->ne[1];
  13679. const int64_t ne12 = src1->ne[2];
  13680. const int64_t ne13 = src1->ne[3];
  13681. const int ith = params->ith;
  13682. const int nth = params->nth;
  13683. // total patches in dst
  13684. const int np = ne13;
  13685. // patches per thread
  13686. const int dp = (np + nth - 1)/nth;
  13687. // patch range for this thread
  13688. const int ip0 = dp*ith;
  13689. const int ip1 = MIN(ip0 + dp, np);
  13690. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13691. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13692. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13693. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13694. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13695. const int64_t jp0 = jp1 + i10;
  13696. const float src1_e = src1_data[jp0];
  13697. const float src2_e = src2_data[jp0];
  13698. const int64_t jdh = jp0 * ne10;
  13699. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13700. for (int64_t j = 0; j < ne10; ++j) {
  13701. dst_data[jdh + j ] += src2_e;
  13702. dst_data[jdw + j*ne10] += src1_e;
  13703. }
  13704. }
  13705. }
  13706. }
  13707. }
  13708. }
  13709. static void ggml_compute_forward_add_rel_pos(
  13710. const struct ggml_compute_params * params,
  13711. struct ggml_tensor * dst) {
  13712. const struct ggml_tensor * src0 = dst->src[0];
  13713. switch (src0->type) {
  13714. case GGML_TYPE_F32:
  13715. {
  13716. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13717. } break;
  13718. default:
  13719. {
  13720. GGML_ASSERT(false);
  13721. } break;
  13722. }
  13723. }
  13724. // ggml_compute_forward_map_unary
  13725. static void ggml_compute_forward_map_unary_f32(
  13726. const struct ggml_compute_params * params,
  13727. struct ggml_tensor * dst,
  13728. const ggml_unary_op_f32_t fun) {
  13729. const struct ggml_tensor * src0 = dst->src[0];
  13730. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13731. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13732. return;
  13733. }
  13734. const int n = ggml_nrows(src0);
  13735. const int nc = src0->ne[0];
  13736. assert( dst->nb[0] == sizeof(float));
  13737. assert(src0->nb[0] == sizeof(float));
  13738. for (int i = 0; i < n; i++) {
  13739. fun(nc,
  13740. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13741. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13742. }
  13743. }
  13744. static void ggml_compute_forward_map_unary(
  13745. const struct ggml_compute_params * params,
  13746. struct ggml_tensor * dst,
  13747. const ggml_unary_op_f32_t fun) {
  13748. const struct ggml_tensor * src0 = dst->src[0];
  13749. switch (src0->type) {
  13750. case GGML_TYPE_F32:
  13751. {
  13752. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13753. } break;
  13754. default:
  13755. {
  13756. GGML_ASSERT(false);
  13757. } break;
  13758. }
  13759. }
  13760. // ggml_compute_forward_map_binary
  13761. static void ggml_compute_forward_map_binary_f32(
  13762. const struct ggml_compute_params * params,
  13763. struct ggml_tensor * dst,
  13764. const ggml_binary_op_f32_t fun) {
  13765. const struct ggml_tensor * src0 = dst->src[0];
  13766. const struct ggml_tensor * src1 = dst->src[1];
  13767. assert(params->ith == 0);
  13768. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13769. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13770. return;
  13771. }
  13772. const int n = ggml_nrows(src0);
  13773. const int nc = src0->ne[0];
  13774. assert( dst->nb[0] == sizeof(float));
  13775. assert(src0->nb[0] == sizeof(float));
  13776. assert(src1->nb[0] == sizeof(float));
  13777. for (int i = 0; i < n; i++) {
  13778. fun(nc,
  13779. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13780. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13781. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13782. }
  13783. }
  13784. static void ggml_compute_forward_map_binary(
  13785. const struct ggml_compute_params * params,
  13786. struct ggml_tensor * dst,
  13787. const ggml_binary_op_f32_t fun) {
  13788. const struct ggml_tensor * src0 = dst->src[0];
  13789. switch (src0->type) {
  13790. case GGML_TYPE_F32:
  13791. {
  13792. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13793. } break;
  13794. default:
  13795. {
  13796. GGML_ASSERT(false);
  13797. } break;
  13798. }
  13799. }
  13800. // ggml_compute_forward_map_custom1
  13801. static void ggml_compute_forward_map_custom1_f32(
  13802. const struct ggml_compute_params * params,
  13803. struct ggml_tensor * dst,
  13804. const ggml_custom1_op_f32_t fun) {
  13805. const struct ggml_tensor * a = dst->src[0];
  13806. assert(params->ith == 0);
  13807. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13808. return;
  13809. }
  13810. fun(dst, a);
  13811. }
  13812. // ggml_compute_forward_map_custom2
  13813. static void ggml_compute_forward_map_custom2_f32(
  13814. const struct ggml_compute_params * params,
  13815. struct ggml_tensor * dst,
  13816. const ggml_custom2_op_f32_t fun) {
  13817. const struct ggml_tensor * a = dst->src[0];
  13818. const struct ggml_tensor * b = dst->src[1];
  13819. assert(params->ith == 0);
  13820. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13821. return;
  13822. }
  13823. fun(dst, a, b);
  13824. }
  13825. // ggml_compute_forward_map_custom3
  13826. static void ggml_compute_forward_map_custom3_f32(
  13827. const struct ggml_compute_params * params,
  13828. struct ggml_tensor * dst,
  13829. const ggml_custom3_op_f32_t fun) {
  13830. const struct ggml_tensor * a = dst->src[0];
  13831. const struct ggml_tensor * b = dst->src[1];
  13832. const struct ggml_tensor * c = dst->src[1];
  13833. assert(params->ith == 0);
  13834. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13835. return;
  13836. }
  13837. fun(dst, a, b, c);
  13838. }
  13839. // ggml_compute_forward_map_custom1
  13840. static void ggml_compute_forward_map_custom1(
  13841. const struct ggml_compute_params * params,
  13842. struct ggml_tensor * dst) {
  13843. const struct ggml_tensor * a = dst->src[0];
  13844. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13845. return;
  13846. }
  13847. struct ggml_map_custom1_op_params p;
  13848. memcpy(&p, dst->op_params, sizeof(p));
  13849. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13850. }
  13851. // ggml_compute_forward_map_custom2
  13852. static void ggml_compute_forward_map_custom2(
  13853. const struct ggml_compute_params * params,
  13854. struct ggml_tensor * dst) {
  13855. const struct ggml_tensor * a = dst->src[0];
  13856. const struct ggml_tensor * b = dst->src[1];
  13857. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13858. return;
  13859. }
  13860. struct ggml_map_custom2_op_params p;
  13861. memcpy(&p, dst->op_params, sizeof(p));
  13862. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13863. }
  13864. // ggml_compute_forward_map_custom3
  13865. static void ggml_compute_forward_map_custom3(
  13866. const struct ggml_compute_params * params,
  13867. struct ggml_tensor * dst) {
  13868. const struct ggml_tensor * a = dst->src[0];
  13869. const struct ggml_tensor * b = dst->src[1];
  13870. const struct ggml_tensor * c = dst->src[2];
  13871. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13872. return;
  13873. }
  13874. struct ggml_map_custom3_op_params p;
  13875. memcpy(&p, dst->op_params, sizeof(p));
  13876. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13877. }
  13878. // ggml_compute_forward_cross_entropy_loss
  13879. static void ggml_compute_forward_cross_entropy_loss_f32(
  13880. const struct ggml_compute_params * params,
  13881. struct ggml_tensor * dst) {
  13882. const struct ggml_tensor * src0 = dst->src[0];
  13883. const struct ggml_tensor * src1 = dst->src[1];
  13884. GGML_ASSERT(ggml_is_contiguous(src0));
  13885. GGML_ASSERT(ggml_is_contiguous(src1));
  13886. GGML_ASSERT(ggml_is_scalar(dst));
  13887. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13888. const int ith = params->ith;
  13889. const int nth = params->nth;
  13890. float * sums = (float *) params->wdata;
  13891. // TODO: handle transposed/permuted matrices
  13892. const int nc = src0->ne[0];
  13893. const int nr = ggml_nrows(src0);
  13894. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13895. if (params->type == GGML_TASK_TYPE_INIT) {
  13896. if (ith == 0) {
  13897. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13898. }
  13899. return;
  13900. }
  13901. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13902. if (ith == 0) {
  13903. float * dp = (float *) dst->data;
  13904. ggml_vec_sum_f32(nth, dp, sums);
  13905. dp[0] *= -1.0f / (float) nr;
  13906. }
  13907. return;
  13908. }
  13909. const double eps = 1e-9;
  13910. // rows per thread
  13911. const int dr = (nr + nth - 1)/nth;
  13912. // row range for this thread
  13913. const int ir0 = dr*ith;
  13914. const int ir1 = MIN(ir0 + dr, nr);
  13915. for (int i1 = ir0; i1 < ir1; i1++) {
  13916. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13917. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13918. float * st = ((float *) params->wdata) + nth + ith*nc;
  13919. #ifndef NDEBUG
  13920. for (int i = 0; i < nc; ++i) {
  13921. //printf("p[%d] = %f\n", i, p[i]);
  13922. assert(!isnan(s0[i]));
  13923. assert(!isnan(s1[i]));
  13924. }
  13925. #endif
  13926. // soft_max
  13927. float max = -INFINITY;
  13928. ggml_vec_max_f32(nc, &max, s0);
  13929. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13930. assert(sum > 0.0);
  13931. sum = (1.0 - eps) / sum;
  13932. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13933. ggml_vec_scale_f32(nc, st, sum);
  13934. ggml_vec_add1_f32(nc, st, st, eps);
  13935. ggml_vec_log_f32(nc, st, st);
  13936. ggml_vec_mul_f32(nc, st, st, s1);
  13937. float st_sum = 0;
  13938. ggml_vec_sum_f32(nc, &st_sum, st);
  13939. sums[ith] += st_sum;
  13940. #ifndef NDEBUG
  13941. for (int i = 0; i < nc; ++i) {
  13942. assert(!isnan(st[i]));
  13943. assert(!isinf(st[i]));
  13944. }
  13945. #endif
  13946. }
  13947. }
  13948. static void ggml_compute_forward_cross_entropy_loss(
  13949. const struct ggml_compute_params * params,
  13950. struct ggml_tensor * dst) {
  13951. const struct ggml_tensor * src0 = dst->src[0];
  13952. switch (src0->type) {
  13953. case GGML_TYPE_F32:
  13954. {
  13955. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13956. } break;
  13957. default:
  13958. {
  13959. GGML_ASSERT(false);
  13960. } break;
  13961. }
  13962. }
  13963. // ggml_compute_forward_cross_entropy_loss_back
  13964. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13965. const struct ggml_compute_params * params,
  13966. struct ggml_tensor * dst) {
  13967. const struct ggml_tensor * src0 = dst->src[0];
  13968. const struct ggml_tensor * src1 = dst->src[1];
  13969. const struct ggml_tensor * opt0 = dst->src[2];
  13970. GGML_ASSERT(ggml_is_contiguous(dst));
  13971. GGML_ASSERT(ggml_is_contiguous(src0));
  13972. GGML_ASSERT(ggml_is_contiguous(src1));
  13973. GGML_ASSERT(ggml_is_contiguous(opt0));
  13974. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13975. const int64_t ith = params->ith;
  13976. const int64_t nth = params->nth;
  13977. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13978. return;
  13979. }
  13980. const double eps = 1e-9;
  13981. // TODO: handle transposed/permuted matrices
  13982. const int64_t nc = src0->ne[0];
  13983. const int64_t nr = ggml_nrows(src0);
  13984. // rows per thread
  13985. const int64_t dr = (nr + nth - 1)/nth;
  13986. // row range for this thread
  13987. const int64_t ir0 = dr*ith;
  13988. const int64_t ir1 = MIN(ir0 + dr, nr);
  13989. float * d = (float *) opt0->data;
  13990. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13991. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13992. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13993. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13994. #ifndef NDEBUG
  13995. for (int i = 0; i < nc; ++i) {
  13996. //printf("p[%d] = %f\n", i, p[i]);
  13997. assert(!isnan(s0[i]));
  13998. assert(!isnan(s1[i]));
  13999. }
  14000. #endif
  14001. // soft_max
  14002. float max = -INFINITY;
  14003. ggml_vec_max_f32(nc, &max, s0);
  14004. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14005. assert(sum > 0.0);
  14006. sum = (1.0 - eps) / sum;
  14007. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14008. ggml_vec_scale_f32(nc, ds0, sum);
  14009. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14010. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14011. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14012. #ifndef NDEBUG
  14013. for (int i = 0; i < nc; ++i) {
  14014. assert(!isnan(ds0[i]));
  14015. assert(!isinf(ds0[i]));
  14016. }
  14017. #endif
  14018. }
  14019. }
  14020. static void ggml_compute_forward_cross_entropy_loss_back(
  14021. const struct ggml_compute_params * params,
  14022. struct ggml_tensor * dst) {
  14023. const struct ggml_tensor * src0 = dst->src[0];
  14024. switch (src0->type) {
  14025. case GGML_TYPE_F32:
  14026. {
  14027. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14028. } break;
  14029. default:
  14030. {
  14031. GGML_ASSERT(false);
  14032. } break;
  14033. }
  14034. }
  14035. /////////////////////////////////
  14036. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14037. GGML_ASSERT(params);
  14038. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14039. return;
  14040. }
  14041. switch (tensor->op) {
  14042. case GGML_OP_DUP:
  14043. {
  14044. ggml_compute_forward_dup(params, tensor);
  14045. } break;
  14046. case GGML_OP_ADD:
  14047. {
  14048. ggml_compute_forward_add(params, tensor);
  14049. } break;
  14050. case GGML_OP_ADD1:
  14051. {
  14052. ggml_compute_forward_add1(params, tensor);
  14053. } break;
  14054. case GGML_OP_ACC:
  14055. {
  14056. ggml_compute_forward_acc(params, tensor);
  14057. } break;
  14058. case GGML_OP_SUB:
  14059. {
  14060. ggml_compute_forward_sub(params, tensor);
  14061. } break;
  14062. case GGML_OP_MUL:
  14063. {
  14064. ggml_compute_forward_mul(params, tensor);
  14065. } break;
  14066. case GGML_OP_DIV:
  14067. {
  14068. ggml_compute_forward_div(params, tensor);
  14069. } break;
  14070. case GGML_OP_SQR:
  14071. {
  14072. ggml_compute_forward_sqr(params, tensor);
  14073. } break;
  14074. case GGML_OP_SQRT:
  14075. {
  14076. ggml_compute_forward_sqrt(params, tensor);
  14077. } break;
  14078. case GGML_OP_LOG:
  14079. {
  14080. ggml_compute_forward_log(params, tensor);
  14081. } break;
  14082. case GGML_OP_SUM:
  14083. {
  14084. ggml_compute_forward_sum(params, tensor);
  14085. } break;
  14086. case GGML_OP_SUM_ROWS:
  14087. {
  14088. ggml_compute_forward_sum_rows(params, tensor);
  14089. } break;
  14090. case GGML_OP_MEAN:
  14091. {
  14092. ggml_compute_forward_mean(params, tensor);
  14093. } break;
  14094. case GGML_OP_ARGMAX:
  14095. {
  14096. ggml_compute_forward_argmax(params, tensor);
  14097. } break;
  14098. case GGML_OP_REPEAT:
  14099. {
  14100. ggml_compute_forward_repeat(params, tensor);
  14101. } break;
  14102. case GGML_OP_REPEAT_BACK:
  14103. {
  14104. ggml_compute_forward_repeat_back(params, tensor);
  14105. } break;
  14106. case GGML_OP_CONCAT:
  14107. {
  14108. ggml_compute_forward_concat(params, tensor);
  14109. } break;
  14110. case GGML_OP_SILU_BACK:
  14111. {
  14112. ggml_compute_forward_silu_back(params, tensor);
  14113. } break;
  14114. case GGML_OP_NORM:
  14115. {
  14116. ggml_compute_forward_norm(params, tensor);
  14117. } break;
  14118. case GGML_OP_RMS_NORM:
  14119. {
  14120. ggml_compute_forward_rms_norm(params, tensor);
  14121. } break;
  14122. case GGML_OP_RMS_NORM_BACK:
  14123. {
  14124. ggml_compute_forward_rms_norm_back(params, tensor);
  14125. } break;
  14126. case GGML_OP_GROUP_NORM:
  14127. {
  14128. ggml_compute_forward_group_norm(params, tensor);
  14129. } break;
  14130. case GGML_OP_MUL_MAT:
  14131. {
  14132. ggml_compute_forward_mul_mat(params, tensor, state);
  14133. } break;
  14134. case GGML_OP_MUL_MAT_ID:
  14135. {
  14136. ggml_compute_forward_mul_mat_id(params, tensor);
  14137. } break;
  14138. case GGML_OP_OUT_PROD:
  14139. {
  14140. ggml_compute_forward_out_prod(params, tensor);
  14141. } break;
  14142. case GGML_OP_SCALE:
  14143. {
  14144. ggml_compute_forward_scale(params, tensor);
  14145. } break;
  14146. case GGML_OP_SET:
  14147. {
  14148. ggml_compute_forward_set(params, tensor);
  14149. } break;
  14150. case GGML_OP_CPY:
  14151. {
  14152. ggml_compute_forward_cpy(params, tensor);
  14153. } break;
  14154. case GGML_OP_CONT:
  14155. {
  14156. ggml_compute_forward_cont(params, tensor);
  14157. } break;
  14158. case GGML_OP_RESHAPE:
  14159. {
  14160. ggml_compute_forward_reshape(params, tensor);
  14161. } break;
  14162. case GGML_OP_VIEW:
  14163. {
  14164. ggml_compute_forward_view(params, tensor);
  14165. } break;
  14166. case GGML_OP_PERMUTE:
  14167. {
  14168. ggml_compute_forward_permute(params, tensor);
  14169. } break;
  14170. case GGML_OP_TRANSPOSE:
  14171. {
  14172. ggml_compute_forward_transpose(params, tensor);
  14173. } break;
  14174. case GGML_OP_GET_ROWS:
  14175. {
  14176. ggml_compute_forward_get_rows(params, tensor);
  14177. } break;
  14178. case GGML_OP_GET_ROWS_BACK:
  14179. {
  14180. ggml_compute_forward_get_rows_back(params, tensor);
  14181. } break;
  14182. case GGML_OP_DIAG:
  14183. {
  14184. ggml_compute_forward_diag(params, tensor);
  14185. } break;
  14186. case GGML_OP_DIAG_MASK_INF:
  14187. {
  14188. ggml_compute_forward_diag_mask_inf(params, tensor);
  14189. } break;
  14190. case GGML_OP_DIAG_MASK_ZERO:
  14191. {
  14192. ggml_compute_forward_diag_mask_zero(params, tensor);
  14193. } break;
  14194. case GGML_OP_SOFT_MAX:
  14195. {
  14196. ggml_compute_forward_soft_max(params, tensor);
  14197. } break;
  14198. case GGML_OP_SOFT_MAX_BACK:
  14199. {
  14200. ggml_compute_forward_soft_max_back(params, tensor);
  14201. } break;
  14202. case GGML_OP_ROPE:
  14203. {
  14204. ggml_compute_forward_rope(params, tensor);
  14205. } break;
  14206. case GGML_OP_ROPE_BACK:
  14207. {
  14208. ggml_compute_forward_rope_back(params, tensor);
  14209. } break;
  14210. case GGML_OP_CLAMP:
  14211. {
  14212. ggml_compute_forward_clamp(params, tensor);
  14213. } break;
  14214. case GGML_OP_CONV_TRANSPOSE_1D:
  14215. {
  14216. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14217. } break;
  14218. case GGML_OP_IM2COL:
  14219. {
  14220. ggml_compute_forward_im2col(params, tensor);
  14221. } break;
  14222. case GGML_OP_CONV_TRANSPOSE_2D:
  14223. {
  14224. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14225. } break;
  14226. case GGML_OP_POOL_1D:
  14227. {
  14228. ggml_compute_forward_pool_1d(params, tensor);
  14229. } break;
  14230. case GGML_OP_POOL_2D:
  14231. {
  14232. ggml_compute_forward_pool_2d(params, tensor);
  14233. } break;
  14234. case GGML_OP_UPSCALE:
  14235. {
  14236. ggml_compute_forward_upscale(params, tensor);
  14237. } break;
  14238. case GGML_OP_PAD:
  14239. {
  14240. ggml_compute_forward_pad(params, tensor);
  14241. } break;
  14242. case GGML_OP_ARANGE:
  14243. {
  14244. ggml_compute_forward_arange(params, tensor);
  14245. } break;
  14246. case GGML_OP_TIMESTEP_EMBEDDING:
  14247. {
  14248. ggml_compute_forward_timestep_embedding(params, tensor);
  14249. } break;
  14250. case GGML_OP_ARGSORT:
  14251. {
  14252. ggml_compute_forward_argsort(params, tensor);
  14253. } break;
  14254. case GGML_OP_LEAKY_RELU:
  14255. {
  14256. ggml_compute_forward_leaky_relu(params, tensor);
  14257. } break;
  14258. case GGML_OP_FLASH_ATTN_EXT:
  14259. {
  14260. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14261. } break;
  14262. case GGML_OP_FLASH_ATTN_BACK:
  14263. {
  14264. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14265. GGML_ASSERT(t == 0 || t == 1);
  14266. bool masked = t != 0;
  14267. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14268. } break;
  14269. case GGML_OP_SSM_CONV:
  14270. {
  14271. ggml_compute_forward_ssm_conv(params, tensor);
  14272. } break;
  14273. case GGML_OP_SSM_SCAN:
  14274. {
  14275. ggml_compute_forward_ssm_scan(params, tensor);
  14276. } break;
  14277. case GGML_OP_WIN_PART:
  14278. {
  14279. ggml_compute_forward_win_part(params, tensor);
  14280. } break;
  14281. case GGML_OP_WIN_UNPART:
  14282. {
  14283. ggml_compute_forward_win_unpart(params, tensor);
  14284. } break;
  14285. case GGML_OP_UNARY:
  14286. {
  14287. ggml_compute_forward_unary(params, tensor);
  14288. } break;
  14289. case GGML_OP_GET_REL_POS:
  14290. {
  14291. ggml_compute_forward_get_rel_pos(params, tensor);
  14292. } break;
  14293. case GGML_OP_ADD_REL_POS:
  14294. {
  14295. ggml_compute_forward_add_rel_pos(params, tensor);
  14296. } break;
  14297. case GGML_OP_MAP_UNARY:
  14298. {
  14299. ggml_unary_op_f32_t fun;
  14300. memcpy(&fun, tensor->op_params, sizeof(fun));
  14301. ggml_compute_forward_map_unary(params, tensor, fun);
  14302. }
  14303. break;
  14304. case GGML_OP_MAP_BINARY:
  14305. {
  14306. ggml_binary_op_f32_t fun;
  14307. memcpy(&fun, tensor->op_params, sizeof(fun));
  14308. ggml_compute_forward_map_binary(params, tensor, fun);
  14309. }
  14310. break;
  14311. case GGML_OP_MAP_CUSTOM1_F32:
  14312. {
  14313. ggml_custom1_op_f32_t fun;
  14314. memcpy(&fun, tensor->op_params, sizeof(fun));
  14315. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14316. }
  14317. break;
  14318. case GGML_OP_MAP_CUSTOM2_F32:
  14319. {
  14320. ggml_custom2_op_f32_t fun;
  14321. memcpy(&fun, tensor->op_params, sizeof(fun));
  14322. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14323. }
  14324. break;
  14325. case GGML_OP_MAP_CUSTOM3_F32:
  14326. {
  14327. ggml_custom3_op_f32_t fun;
  14328. memcpy(&fun, tensor->op_params, sizeof(fun));
  14329. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14330. }
  14331. break;
  14332. case GGML_OP_MAP_CUSTOM1:
  14333. {
  14334. ggml_compute_forward_map_custom1(params, tensor);
  14335. }
  14336. break;
  14337. case GGML_OP_MAP_CUSTOM2:
  14338. {
  14339. ggml_compute_forward_map_custom2(params, tensor);
  14340. }
  14341. break;
  14342. case GGML_OP_MAP_CUSTOM3:
  14343. {
  14344. ggml_compute_forward_map_custom3(params, tensor);
  14345. }
  14346. break;
  14347. case GGML_OP_CROSS_ENTROPY_LOSS:
  14348. {
  14349. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14350. }
  14351. break;
  14352. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14353. {
  14354. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14355. }
  14356. break;
  14357. case GGML_OP_NONE:
  14358. {
  14359. // nop
  14360. } break;
  14361. case GGML_OP_COUNT:
  14362. {
  14363. GGML_ASSERT(false);
  14364. } break;
  14365. }
  14366. }
  14367. ////////////////////////////////////////////////////////////////////////////////
  14368. static size_t ggml_hash_size(size_t min_sz) {
  14369. // next primes after powers of two
  14370. static const size_t primes[] = {
  14371. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14372. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14373. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14374. 16777259, 33554467, 67108879, 134217757, 268435459,
  14375. 536870923, 1073741827, 2147483659
  14376. };
  14377. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14378. // find the smallest prime that is larger or equal to min_sz
  14379. size_t l = 0;
  14380. size_t r = n_primes;
  14381. while (l < r) {
  14382. size_t m = (l + r)/2;
  14383. if (primes[m] < min_sz) {
  14384. l = m + 1;
  14385. } else {
  14386. r = m;
  14387. }
  14388. }
  14389. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14390. return sz;
  14391. }
  14392. static size_t ggml_hash(const void * p) {
  14393. return (size_t)p;
  14394. }
  14395. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14396. size_t h = ggml_hash(key) % hash_set.size;
  14397. // linear probing
  14398. size_t i = h;
  14399. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14400. i = (i + 1) % hash_set.size;
  14401. if (i == h) {
  14402. // visited all hash table entries -> not found
  14403. return GGML_HASHTABLE_FULL;
  14404. }
  14405. }
  14406. return i;
  14407. }
  14408. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14409. size_t i = ggml_hash_find(hash_set, key);
  14410. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14411. }
  14412. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14413. size_t i = ggml_hash_find(hash_set, key);
  14414. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14415. if (hash_set.keys[i] == key) {
  14416. return GGML_HASHTABLE_ALREADY_EXISTS;
  14417. }
  14418. // insert
  14419. GGML_ASSERT(hash_set.keys[i] == NULL);
  14420. hash_set.keys[i] = key;
  14421. return i;
  14422. }
  14423. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14424. size_t i = ggml_hash_find(hash_set, key);
  14425. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14426. hash_set.keys[i] = key;
  14427. return i;
  14428. }
  14429. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14430. size = ggml_hash_size(size);
  14431. struct ggml_hash_set result;
  14432. result.size = size;
  14433. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14434. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14435. return result;
  14436. }
  14437. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14438. GGML_FREE(hash_set.keys);
  14439. }
  14440. struct hash_map {
  14441. struct ggml_hash_set set;
  14442. struct ggml_tensor ** vals;
  14443. };
  14444. static struct hash_map * ggml_new_hash_map(size_t size) {
  14445. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14446. result->set = ggml_hash_set_new(size);
  14447. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14448. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14449. return result;
  14450. }
  14451. static void ggml_hash_map_free(struct hash_map * map) {
  14452. ggml_hash_set_free(map->set);
  14453. GGML_FREE(map->vals);
  14454. GGML_FREE(map);
  14455. }
  14456. // gradient checkpointing
  14457. static struct ggml_tensor * ggml_recompute_graph_node(
  14458. struct ggml_context * ctx,
  14459. struct ggml_cgraph * graph,
  14460. struct hash_map * replacements,
  14461. struct ggml_tensor * node) {
  14462. if (node == NULL) {
  14463. return NULL;
  14464. }
  14465. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14466. return node;
  14467. }
  14468. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14469. return node;
  14470. }
  14471. int count_children = 0;
  14472. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14473. if (node->src[k]) {
  14474. ++count_children;
  14475. }
  14476. }
  14477. if (count_children == 0) {
  14478. return node;
  14479. }
  14480. size_t i = ggml_hash_find(replacements->set, node);
  14481. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14482. if (replacements->set.keys[i] == node) {
  14483. return replacements->vals[i];
  14484. }
  14485. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14486. // insert clone into replacements
  14487. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14488. replacements->set.keys[i] = node;
  14489. replacements->vals[i] = clone;
  14490. clone->op = node->op;
  14491. clone->grad = node->grad;
  14492. clone->flags = node->flags;
  14493. clone->extra = node->extra;
  14494. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14495. clone->nb[k] = node->nb[k];
  14496. }
  14497. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14498. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14499. }
  14500. if (node->view_src != NULL) {
  14501. clone->data = (node->view_src->data == NULL)
  14502. ? NULL // view_src not yet allocated
  14503. : (char *) node->view_src->data // view_src already allocated
  14504. + node->view_offs;
  14505. clone->view_src = node->view_src;
  14506. clone->view_offs = node->view_offs;
  14507. }
  14508. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14509. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14510. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14511. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14512. return clone;
  14513. }
  14514. void ggml_build_backward_gradient_checkpointing(
  14515. struct ggml_context * ctx,
  14516. struct ggml_cgraph * gf,
  14517. struct ggml_cgraph * gb,
  14518. struct ggml_cgraph * gb_tmp,
  14519. struct ggml_tensor * * checkpoints,
  14520. int n_checkpoints) {
  14521. ggml_graph_cpy(gf, gb_tmp);
  14522. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14523. if (n_checkpoints <= 0) {
  14524. ggml_graph_cpy(gb_tmp, gb);
  14525. return;
  14526. }
  14527. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14528. // insert checkpoints in replacements
  14529. for (int i = 0; i < n_checkpoints; ++i) {
  14530. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14531. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14532. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14533. replacements->set.keys[k] = checkpoints[i];
  14534. replacements->vals[k] = checkpoints[i];
  14535. }
  14536. ggml_graph_cpy(gf, gb);
  14537. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14538. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14539. // by recomputing them from checkpoints
  14540. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14541. struct ggml_tensor * node = gb_tmp->nodes[i];
  14542. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14543. // insert new tensors recomputing src, reusing already made replacements,
  14544. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14545. // recurse for input tensors,
  14546. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14547. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14548. }
  14549. // insert rewritten backward node with replacements made into resulting backward graph gb
  14550. ggml_build_forward_expand(gb, node);
  14551. }
  14552. ggml_hash_map_free(replacements);
  14553. }
  14554. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14555. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14556. if (ggml_hash_contains(zero_table, a)) {
  14557. return b;
  14558. } else {
  14559. return ggml_add_impl(ctx, a, b, false);
  14560. }
  14561. }
  14562. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14563. if (ggml_hash_contains(zero_table, a)) {
  14564. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14565. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14566. } else {
  14567. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14568. }
  14569. }
  14570. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14571. if (ggml_hash_contains(zero_table, a)) {
  14572. return ggml_repeat(ctx, b, a);
  14573. } else {
  14574. return ggml_add1_impl(ctx, a, b, false);
  14575. }
  14576. }
  14577. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14578. if (ggml_hash_contains(zero_table, a)) {
  14579. return ggml_neg(ctx, b);
  14580. } else {
  14581. return ggml_sub_impl(ctx, a, b, false);
  14582. }
  14583. }
  14584. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14585. struct ggml_tensor * src0 = tensor->src[0];
  14586. struct ggml_tensor * src1 = tensor->src[1];
  14587. struct ggml_tensor * src2 = tensor->src[2];
  14588. switch (tensor->op) {
  14589. case GGML_OP_DUP:
  14590. {
  14591. if (src0->grad) {
  14592. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14593. }
  14594. } break;
  14595. case GGML_OP_ADD:
  14596. {
  14597. if (src0->grad) {
  14598. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14599. }
  14600. if (src1->grad) {
  14601. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14602. }
  14603. } break;
  14604. case GGML_OP_ADD1:
  14605. {
  14606. if (src0->grad) {
  14607. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14608. }
  14609. if (src1->grad) {
  14610. src1->grad = ggml_add_or_set(ctx,
  14611. src1->grad,
  14612. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14613. zero_table);
  14614. }
  14615. } break;
  14616. case GGML_OP_ACC:
  14617. {
  14618. if (src0->grad) {
  14619. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14620. }
  14621. if (src1->grad) {
  14622. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14623. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14624. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14625. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14626. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14627. tensor->grad,
  14628. src1->grad->ne[0],
  14629. src1->grad->ne[1],
  14630. src1->grad->ne[2],
  14631. src1->grad->ne[3],
  14632. nb1, nb2, nb3, offset);
  14633. src1->grad =
  14634. ggml_add_or_set(ctx,
  14635. src1->grad,
  14636. ggml_reshape(ctx,
  14637. ggml_cont(ctx, tensor_grad_view),
  14638. src1->grad),
  14639. zero_table);
  14640. }
  14641. } break;
  14642. case GGML_OP_SUB:
  14643. {
  14644. if (src0->grad) {
  14645. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14646. }
  14647. if (src1->grad) {
  14648. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14649. }
  14650. } break;
  14651. case GGML_OP_MUL:
  14652. {
  14653. if (src0->grad) {
  14654. src0->grad =
  14655. ggml_add_or_set(ctx,
  14656. src0->grad,
  14657. ggml_mul(ctx, src1, tensor->grad),
  14658. zero_table);
  14659. }
  14660. if (src1->grad) {
  14661. src1->grad =
  14662. ggml_add_or_set(ctx,
  14663. src1->grad,
  14664. ggml_mul(ctx, src0, tensor->grad),
  14665. zero_table);
  14666. }
  14667. } break;
  14668. case GGML_OP_DIV:
  14669. {
  14670. if (src0->grad) {
  14671. src0->grad =
  14672. ggml_add_or_set(ctx,
  14673. src0->grad,
  14674. ggml_div(ctx, tensor->grad, src1),
  14675. zero_table);
  14676. }
  14677. if (src1->grad) {
  14678. src1->grad =
  14679. ggml_sub_or_set(ctx,
  14680. src1->grad,
  14681. ggml_mul(ctx,
  14682. tensor->grad,
  14683. ggml_div(ctx, tensor, src1)),
  14684. zero_table);
  14685. }
  14686. } break;
  14687. case GGML_OP_SQR:
  14688. {
  14689. if (src0->grad) {
  14690. src0->grad =
  14691. ggml_add_or_set(ctx,
  14692. src0->grad,
  14693. ggml_scale(ctx,
  14694. ggml_mul(ctx, src0, tensor->grad),
  14695. 2.0f),
  14696. zero_table);
  14697. }
  14698. } break;
  14699. case GGML_OP_SQRT:
  14700. {
  14701. if (src0->grad) {
  14702. src0->grad =
  14703. ggml_add_or_set(ctx,
  14704. src0->grad,
  14705. ggml_scale(ctx,
  14706. ggml_div(ctx,
  14707. tensor->grad,
  14708. tensor),
  14709. 0.5f),
  14710. zero_table);
  14711. }
  14712. } break;
  14713. case GGML_OP_LOG:
  14714. {
  14715. if (src0->grad) {
  14716. src0->grad =
  14717. ggml_add_or_set(ctx,
  14718. src0->grad,
  14719. ggml_div(ctx,
  14720. tensor->grad,
  14721. src0),
  14722. zero_table);
  14723. }
  14724. } break;
  14725. case GGML_OP_SUM:
  14726. {
  14727. if (src0->grad) {
  14728. src0->grad =
  14729. ggml_add1_or_set(ctx,
  14730. src0->grad,
  14731. tensor->grad,
  14732. zero_table);
  14733. }
  14734. } break;
  14735. case GGML_OP_SUM_ROWS:
  14736. {
  14737. if (src0->grad) {
  14738. src0->grad =
  14739. ggml_add_or_set(ctx,
  14740. src0->grad,
  14741. ggml_repeat(ctx,
  14742. tensor->grad,
  14743. src0->grad),
  14744. zero_table);
  14745. }
  14746. } break;
  14747. case GGML_OP_MEAN:
  14748. case GGML_OP_ARGMAX:
  14749. {
  14750. GGML_ASSERT(false); // TODO: implement
  14751. } break;
  14752. case GGML_OP_REPEAT:
  14753. {
  14754. // necessary for llama
  14755. if (src0->grad) {
  14756. src0->grad = ggml_add_or_set(ctx,
  14757. src0->grad,
  14758. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14759. zero_table);
  14760. }
  14761. } break;
  14762. case GGML_OP_REPEAT_BACK:
  14763. {
  14764. if (src0->grad) {
  14765. // TODO: test this
  14766. src0->grad = ggml_add_or_set(ctx,
  14767. src0->grad,
  14768. ggml_repeat(ctx, tensor->grad, src0->grad),
  14769. zero_table);
  14770. }
  14771. } break;
  14772. case GGML_OP_CONCAT:
  14773. {
  14774. GGML_ASSERT(false); // TODO: implement
  14775. } break;
  14776. case GGML_OP_SILU_BACK:
  14777. {
  14778. GGML_ASSERT(false); // TODO: not implemented
  14779. } break;
  14780. case GGML_OP_NORM:
  14781. {
  14782. GGML_ASSERT(false); // TODO: not implemented
  14783. } break;
  14784. case GGML_OP_RMS_NORM:
  14785. {
  14786. // necessary for llama
  14787. if (src0->grad) {
  14788. float eps;
  14789. memcpy(&eps, tensor->op_params, sizeof(float));
  14790. src0->grad = ggml_add_or_set(ctx,
  14791. src0->grad,
  14792. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14793. zero_table);
  14794. }
  14795. } break;
  14796. case GGML_OP_RMS_NORM_BACK:
  14797. {
  14798. GGML_ASSERT(false); // TODO: not implemented
  14799. } break;
  14800. case GGML_OP_GROUP_NORM:
  14801. {
  14802. GGML_ASSERT(false); // TODO: not implemented
  14803. } break;
  14804. case GGML_OP_MUL_MAT:
  14805. {
  14806. // https://cs231n.github.io/optimization-2/#staged
  14807. // # forward pass
  14808. // s0 = np.random.randn(5, 10)
  14809. // s1 = np.random.randn(10, 3)
  14810. // t = s0.dot(s1)
  14811. // # now suppose we had the gradient on t from above in the circuit
  14812. // dt = np.random.randn(*t.shape) # same shape as t
  14813. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14814. // ds1 = t.T.dot(dt)
  14815. // tensor.shape [m,p,qq,rr]
  14816. // src0.shape [n,m,q1,r1]
  14817. // src1.shape [n,p,qq,rr]
  14818. // necessary for llama
  14819. if (src0->grad) {
  14820. struct ggml_tensor * s1_tg =
  14821. ggml_out_prod(ctx, // [n,m,qq,rr]
  14822. src1, // [n,p,qq,rr]
  14823. tensor->grad); // [m,p,qq,rr]
  14824. const int64_t qq = s1_tg->ne[2];
  14825. const int64_t rr = s1_tg->ne[3];
  14826. const int64_t q1 = src0->ne[2];
  14827. const int64_t r1 = src0->ne[3];
  14828. const bool ne2_broadcasted = qq > q1;
  14829. const bool ne3_broadcasted = rr > r1;
  14830. if (ne2_broadcasted || ne3_broadcasted) {
  14831. // sum broadcast repetitions of s1_tg into shape of src0
  14832. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14833. }
  14834. src0->grad =
  14835. ggml_add_or_set(ctx,
  14836. src0->grad, // [n,m,q1,r1]
  14837. s1_tg, // [n,m,q1,r1]
  14838. zero_table);
  14839. }
  14840. if (src1->grad) {
  14841. src1->grad =
  14842. ggml_add_or_set(ctx,
  14843. src1->grad, // [n,p,qq,rr]
  14844. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14845. // ggml_cont(ctx, // [m,n,q1,r1]
  14846. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14847. // tensor->grad), // [m,p,qq,rr]
  14848. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14849. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14850. // // and then use ggml_out_prod
  14851. ggml_out_prod(ctx, // [n,p,qq,rr]
  14852. src0, // [n,m,q1,r1]
  14853. ggml_transpose(ctx, // [p,m,qq,rr]
  14854. tensor->grad)), // [m,p,qq,rr]
  14855. zero_table);
  14856. }
  14857. } break;
  14858. case GGML_OP_MUL_MAT_ID:
  14859. {
  14860. GGML_ASSERT(false); // TODO: not implemented
  14861. } break;
  14862. case GGML_OP_OUT_PROD:
  14863. {
  14864. GGML_ASSERT(false); // TODO: not implemented
  14865. } break;
  14866. case GGML_OP_SCALE:
  14867. {
  14868. // necessary for llama
  14869. if (src0->grad) {
  14870. float s;
  14871. memcpy(&s, tensor->op_params, sizeof(float));
  14872. src0->grad =
  14873. ggml_add_or_set(ctx,
  14874. src0->grad,
  14875. ggml_scale_impl(ctx, tensor->grad, s, false),
  14876. zero_table);
  14877. }
  14878. } break;
  14879. case GGML_OP_SET:
  14880. {
  14881. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14882. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14883. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14884. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14885. struct ggml_tensor * tensor_grad_view = NULL;
  14886. if (src0->grad || src1->grad) {
  14887. GGML_ASSERT(src0->type == tensor->type);
  14888. GGML_ASSERT(tensor->grad->type == tensor->type);
  14889. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14890. tensor_grad_view = ggml_view_4d(ctx,
  14891. tensor->grad,
  14892. src1->grad->ne[0],
  14893. src1->grad->ne[1],
  14894. src1->grad->ne[2],
  14895. src1->grad->ne[3],
  14896. nb1, nb2, nb3, offset);
  14897. }
  14898. if (src0->grad) {
  14899. src0->grad = ggml_add_or_set(ctx,
  14900. src0->grad,
  14901. ggml_acc_impl(ctx,
  14902. tensor->grad,
  14903. ggml_neg(ctx, tensor_grad_view),
  14904. nb1, nb2, nb3, offset, false),
  14905. zero_table);
  14906. }
  14907. if (src1->grad) {
  14908. src1->grad =
  14909. ggml_add_or_set(ctx,
  14910. src1->grad,
  14911. ggml_reshape(ctx,
  14912. ggml_cont(ctx, tensor_grad_view),
  14913. src1->grad),
  14914. zero_table);
  14915. }
  14916. } break;
  14917. case GGML_OP_CPY:
  14918. {
  14919. // necessary for llama
  14920. // cpy overwrites value of src1 by src0 and returns view(src1)
  14921. // the overwriting is mathematically equivalent to:
  14922. // tensor = src0 * 1 + src1 * 0
  14923. if (src0->grad) {
  14924. // dsrc0 = dtensor * 1
  14925. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14926. }
  14927. if (src1->grad) {
  14928. // dsrc1 = dtensor * 0 -> noop
  14929. }
  14930. } break;
  14931. case GGML_OP_CONT:
  14932. {
  14933. // same as cpy
  14934. if (src0->grad) {
  14935. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14936. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14937. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14938. }
  14939. } break;
  14940. case GGML_OP_RESHAPE:
  14941. {
  14942. // necessary for llama
  14943. if (src0->grad) {
  14944. src0->grad =
  14945. ggml_add_or_set(ctx, src0->grad,
  14946. ggml_reshape(ctx,
  14947. ggml_is_contiguous(tensor->grad)
  14948. ? tensor->grad
  14949. : ggml_cont(ctx, tensor->grad),
  14950. src0->grad),
  14951. zero_table);
  14952. }
  14953. } break;
  14954. case GGML_OP_VIEW:
  14955. {
  14956. // necessary for llama
  14957. if (src0->grad) {
  14958. size_t offset;
  14959. memcpy(&offset, tensor->op_params, sizeof(offset));
  14960. size_t nb1 = tensor->nb[1];
  14961. size_t nb2 = tensor->nb[2];
  14962. size_t nb3 = tensor->nb[3];
  14963. if (src0->type != src0->grad->type) {
  14964. // gradient is typically F32, but src0 could be other type
  14965. size_t ng = ggml_element_size(src0->grad);
  14966. size_t n0 = ggml_element_size(src0);
  14967. GGML_ASSERT(offset % n0 == 0);
  14968. GGML_ASSERT(nb1 % n0 == 0);
  14969. GGML_ASSERT(nb2 % n0 == 0);
  14970. GGML_ASSERT(nb3 % n0 == 0);
  14971. offset = (offset / n0) * ng;
  14972. nb1 = (nb1 / n0) * ng;
  14973. nb2 = (nb2 / n0) * ng;
  14974. nb3 = (nb3 / n0) * ng;
  14975. }
  14976. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14977. }
  14978. } break;
  14979. case GGML_OP_PERMUTE:
  14980. {
  14981. // necessary for llama
  14982. if (src0->grad) {
  14983. int32_t * axes = (int32_t *) tensor->op_params;
  14984. int axis0 = axes[0] & 0x3;
  14985. int axis1 = axes[1] & 0x3;
  14986. int axis2 = axes[2] & 0x3;
  14987. int axis3 = axes[3] & 0x3;
  14988. int axes_backward[4] = {0,0,0,0};
  14989. axes_backward[axis0] = 0;
  14990. axes_backward[axis1] = 1;
  14991. axes_backward[axis2] = 2;
  14992. axes_backward[axis3] = 3;
  14993. src0->grad =
  14994. ggml_add_or_set(ctx, src0->grad,
  14995. ggml_permute(ctx,
  14996. tensor->grad,
  14997. axes_backward[0],
  14998. axes_backward[1],
  14999. axes_backward[2],
  15000. axes_backward[3]),
  15001. zero_table);
  15002. }
  15003. } break;
  15004. case GGML_OP_TRANSPOSE:
  15005. {
  15006. // necessary for llama
  15007. if (src0->grad) {
  15008. src0->grad =
  15009. ggml_add_or_set(ctx, src0->grad,
  15010. ggml_transpose(ctx, tensor->grad),
  15011. zero_table);
  15012. }
  15013. } break;
  15014. case GGML_OP_GET_ROWS:
  15015. {
  15016. // necessary for llama (only for tokenizer)
  15017. if (src0->grad) {
  15018. src0->grad =
  15019. ggml_add_or_set(ctx, src0->grad,
  15020. // last ggml_get_rows_back argument src0->grad is only
  15021. // necessary to setup correct output shape
  15022. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15023. zero_table);
  15024. }
  15025. if (src1->grad) {
  15026. // noop
  15027. }
  15028. } break;
  15029. case GGML_OP_GET_ROWS_BACK:
  15030. {
  15031. GGML_ASSERT(false); // TODO: not implemented
  15032. } break;
  15033. case GGML_OP_DIAG:
  15034. {
  15035. GGML_ASSERT(false); // TODO: not implemented
  15036. } break;
  15037. case GGML_OP_DIAG_MASK_INF:
  15038. {
  15039. // necessary for llama
  15040. if (src0->grad) {
  15041. const int n_past = ((int32_t *) tensor->op_params)[0];
  15042. src0->grad =
  15043. ggml_add_or_set(ctx, src0->grad,
  15044. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15045. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15046. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15047. zero_table);
  15048. }
  15049. } break;
  15050. case GGML_OP_DIAG_MASK_ZERO:
  15051. {
  15052. // necessary for llama
  15053. if (src0->grad) {
  15054. const int n_past = ((int32_t *) tensor->op_params)[0];
  15055. src0->grad =
  15056. ggml_add_or_set(ctx, src0->grad,
  15057. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15058. zero_table);
  15059. }
  15060. } break;
  15061. case GGML_OP_SOFT_MAX:
  15062. {
  15063. // necessary for llama
  15064. if (src0->grad) {
  15065. src0->grad =
  15066. ggml_add_or_set(ctx, src0->grad,
  15067. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15068. zero_table);
  15069. }
  15070. } break;
  15071. case GGML_OP_SOFT_MAX_BACK:
  15072. {
  15073. GGML_ASSERT(false); // TODO: not implemented
  15074. } break;
  15075. case GGML_OP_ROPE:
  15076. {
  15077. // necessary for llama
  15078. if (src0->grad) {
  15079. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15080. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15081. const int mode = ((int32_t *) tensor->op_params)[2];
  15082. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15083. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15084. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15085. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15086. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15087. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15088. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15089. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15090. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15091. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15092. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15093. src0->grad = ggml_add_or_set(ctx,
  15094. src0->grad,
  15095. ggml_rope_back(ctx,
  15096. tensor->grad,
  15097. src1,
  15098. src2,
  15099. n_dims,
  15100. mode,
  15101. n_ctx,
  15102. n_orig_ctx,
  15103. freq_base,
  15104. freq_scale,
  15105. ext_factor,
  15106. attn_factor,
  15107. beta_fast,
  15108. beta_slow,
  15109. xpos_base,
  15110. xpos_down),
  15111. zero_table);
  15112. }
  15113. } break;
  15114. case GGML_OP_ROPE_BACK:
  15115. {
  15116. if (src0->grad) {
  15117. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15118. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15119. const int mode = ((int32_t *) tensor->op_params)[2];
  15120. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15121. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15122. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15123. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15124. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15125. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15126. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15127. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15128. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15129. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15130. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15131. src0->grad = ggml_add_or_set(ctx,
  15132. src0->grad,
  15133. ggml_rope_impl(ctx,
  15134. tensor->grad,
  15135. src1,
  15136. src2,
  15137. n_dims,
  15138. mode,
  15139. n_ctx,
  15140. n_orig_ctx,
  15141. freq_base,
  15142. freq_scale,
  15143. ext_factor,
  15144. attn_factor,
  15145. beta_fast,
  15146. beta_slow,
  15147. xpos_base,
  15148. xpos_down,
  15149. false),
  15150. zero_table);
  15151. }
  15152. } break;
  15153. case GGML_OP_CLAMP:
  15154. {
  15155. GGML_ASSERT(false); // TODO: not implemented
  15156. } break;
  15157. case GGML_OP_CONV_TRANSPOSE_1D:
  15158. {
  15159. GGML_ASSERT(false); // TODO: not implemented
  15160. } break;
  15161. case GGML_OP_IM2COL:
  15162. {
  15163. GGML_ASSERT(false); // TODO: not implemented
  15164. } break;
  15165. case GGML_OP_CONV_TRANSPOSE_2D:
  15166. {
  15167. GGML_ASSERT(false); // TODO: not implemented
  15168. } break;
  15169. case GGML_OP_POOL_1D:
  15170. {
  15171. GGML_ASSERT(false); // TODO: not implemented
  15172. } break;
  15173. case GGML_OP_POOL_2D:
  15174. {
  15175. GGML_ASSERT(false); // TODO: not implemented
  15176. } break;
  15177. case GGML_OP_UPSCALE:
  15178. {
  15179. GGML_ASSERT(false); // TODO: not implemented
  15180. } break;
  15181. case GGML_OP_PAD:
  15182. {
  15183. GGML_ASSERT(false); // TODO: not implemented
  15184. } break;
  15185. case GGML_OP_ARANGE:
  15186. {
  15187. GGML_ASSERT(false); // TODO: not implemented
  15188. } break;
  15189. case GGML_OP_TIMESTEP_EMBEDDING:
  15190. {
  15191. GGML_ASSERT(false); // TODO: not implemented
  15192. } break;
  15193. case GGML_OP_ARGSORT:
  15194. {
  15195. GGML_ASSERT(false); // TODO: not implemented
  15196. } break;
  15197. case GGML_OP_LEAKY_RELU:
  15198. {
  15199. GGML_ASSERT(false); // TODO: not implemented
  15200. } break;
  15201. case GGML_OP_FLASH_ATTN_EXT:
  15202. {
  15203. struct ggml_tensor * flash_grad = NULL;
  15204. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15205. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15206. GGML_ASSERT(t == 0 || t == 1);
  15207. bool masked = t != 0;
  15208. flash_grad =
  15209. ggml_flash_attn_back(ctx,
  15210. src0,
  15211. src1,
  15212. tensor->src[2],
  15213. tensor->grad,
  15214. masked);
  15215. }
  15216. const int64_t elem_q = ggml_nelements(src0);
  15217. const int64_t elem_k = ggml_nelements(src1);
  15218. const int64_t elem_v = ggml_nelements(src2);
  15219. enum ggml_type result_type = flash_grad->type;
  15220. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15221. const size_t tsize = ggml_type_size(result_type);
  15222. const size_t offs_q = 0;
  15223. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15224. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15225. if (src0->grad) {
  15226. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15227. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15228. src0->grad = ggml_add_or_set(ctx,
  15229. src0->grad,
  15230. grad_q,
  15231. zero_table);
  15232. }
  15233. if (src1->grad) {
  15234. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15235. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15236. src1->grad = ggml_add_or_set(ctx,
  15237. src1->grad,
  15238. grad_k,
  15239. zero_table);
  15240. }
  15241. if (src2->grad) {
  15242. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15243. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15244. src2->grad = ggml_add_or_set(ctx,
  15245. src2->grad,
  15246. grad_v,
  15247. zero_table);
  15248. }
  15249. } break;
  15250. case GGML_OP_FLASH_ATTN_BACK:
  15251. {
  15252. GGML_ASSERT(false); // not supported
  15253. } break;
  15254. case GGML_OP_SSM_CONV:
  15255. case GGML_OP_SSM_SCAN:
  15256. {
  15257. GGML_ASSERT(false); // TODO: not implemented
  15258. } break;
  15259. case GGML_OP_WIN_PART:
  15260. case GGML_OP_WIN_UNPART:
  15261. case GGML_OP_UNARY:
  15262. {
  15263. switch (ggml_get_unary_op(tensor)) {
  15264. case GGML_UNARY_OP_ABS:
  15265. {
  15266. if (src0->grad) {
  15267. src0->grad =
  15268. ggml_add_or_set(ctx,
  15269. src0->grad,
  15270. ggml_mul(ctx,
  15271. ggml_sgn(ctx, src0),
  15272. tensor->grad),
  15273. zero_table);
  15274. }
  15275. } break;
  15276. case GGML_UNARY_OP_SGN:
  15277. {
  15278. if (src0->grad) {
  15279. // noop
  15280. }
  15281. } break;
  15282. case GGML_UNARY_OP_NEG:
  15283. {
  15284. if (src0->grad) {
  15285. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15286. }
  15287. } break;
  15288. case GGML_UNARY_OP_STEP:
  15289. {
  15290. if (src0->grad) {
  15291. // noop
  15292. }
  15293. } break;
  15294. case GGML_UNARY_OP_TANH:
  15295. {
  15296. GGML_ASSERT(false); // TODO: not implemented
  15297. } break;
  15298. case GGML_UNARY_OP_ELU:
  15299. {
  15300. GGML_ASSERT(false); // TODO: not implemented
  15301. } break;
  15302. case GGML_UNARY_OP_RELU:
  15303. {
  15304. if (src0->grad) {
  15305. src0->grad = ggml_add_or_set(ctx,
  15306. src0->grad,
  15307. ggml_mul(ctx,
  15308. ggml_step(ctx, src0),
  15309. tensor->grad),
  15310. zero_table);
  15311. }
  15312. } break;
  15313. case GGML_UNARY_OP_SIGMOID:
  15314. {
  15315. GGML_ASSERT(false); // TODO: not implemented
  15316. } break;
  15317. case GGML_UNARY_OP_GELU:
  15318. {
  15319. GGML_ASSERT(false); // TODO: not implemented
  15320. } break;
  15321. case GGML_UNARY_OP_GELU_QUICK:
  15322. {
  15323. GGML_ASSERT(false); // TODO: not implemented
  15324. } break;
  15325. case GGML_UNARY_OP_SILU:
  15326. {
  15327. // necessary for llama
  15328. if (src0->grad) {
  15329. src0->grad = ggml_add_or_set(ctx,
  15330. src0->grad,
  15331. ggml_silu_back(ctx, src0, tensor->grad),
  15332. zero_table);
  15333. }
  15334. } break;
  15335. default:
  15336. GGML_ASSERT(false);
  15337. }
  15338. } break;
  15339. case GGML_OP_GET_REL_POS:
  15340. case GGML_OP_ADD_REL_POS:
  15341. case GGML_OP_MAP_UNARY:
  15342. case GGML_OP_MAP_BINARY:
  15343. case GGML_OP_MAP_CUSTOM1_F32:
  15344. case GGML_OP_MAP_CUSTOM2_F32:
  15345. case GGML_OP_MAP_CUSTOM3_F32:
  15346. case GGML_OP_MAP_CUSTOM1:
  15347. case GGML_OP_MAP_CUSTOM2:
  15348. case GGML_OP_MAP_CUSTOM3:
  15349. {
  15350. GGML_ASSERT(false); // not supported
  15351. } break;
  15352. case GGML_OP_CROSS_ENTROPY_LOSS:
  15353. {
  15354. if (src0->grad) {
  15355. src0->grad = ggml_add_or_set(ctx,
  15356. src0->grad,
  15357. ggml_cross_entropy_loss_back(ctx,
  15358. src0,
  15359. src1,
  15360. tensor->grad),
  15361. zero_table);
  15362. }
  15363. } break;
  15364. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15365. {
  15366. GGML_ASSERT(false); // not supported
  15367. } break;
  15368. case GGML_OP_NONE:
  15369. {
  15370. // nop
  15371. } break;
  15372. case GGML_OP_COUNT:
  15373. {
  15374. GGML_ASSERT(false);
  15375. } break;
  15376. }
  15377. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15378. if (tensor->src[i] && tensor->src[i]->grad) {
  15379. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15380. }
  15381. }
  15382. }
  15383. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15384. if (node->grad == NULL) {
  15385. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15386. // it can also happen during forward pass, if the user performs computations with constants
  15387. if (node->op != GGML_OP_NONE) {
  15388. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15389. }
  15390. }
  15391. // check if already visited
  15392. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15393. return;
  15394. }
  15395. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15396. const int k =
  15397. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15398. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15399. /* unknown order, just fall back to using i*/ i;
  15400. if (node->src[k]) {
  15401. ggml_visit_parents(cgraph, node->src[k]);
  15402. }
  15403. }
  15404. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15405. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15406. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15407. if (strlen(node->name) == 0) {
  15408. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15409. }
  15410. cgraph->leafs[cgraph->n_leafs] = node;
  15411. cgraph->n_leafs++;
  15412. } else {
  15413. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15414. if (strlen(node->name) == 0) {
  15415. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15416. }
  15417. cgraph->nodes[cgraph->n_nodes] = node;
  15418. if (cgraph->grads) {
  15419. cgraph->grads[cgraph->n_nodes] = node->grad;
  15420. }
  15421. cgraph->n_nodes++;
  15422. }
  15423. }
  15424. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15425. if (!expand) {
  15426. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15427. ggml_graph_clear(cgraph);
  15428. }
  15429. const int n0 = cgraph->n_nodes;
  15430. UNUSED(n0);
  15431. ggml_visit_parents(cgraph, tensor);
  15432. const int n_new = cgraph->n_nodes - n0;
  15433. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15434. if (n_new > 0) {
  15435. // the last added node should always be starting point
  15436. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15437. }
  15438. }
  15439. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15440. ggml_build_forward_impl(cgraph, tensor, true);
  15441. }
  15442. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15443. GGML_ASSERT(gf->n_nodes > 0);
  15444. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15445. if (keep) {
  15446. for (int i = 0; i < gf->n_nodes; i++) {
  15447. struct ggml_tensor * node = gf->nodes[i];
  15448. if (node->grad) {
  15449. node->grad = ggml_dup_tensor(ctx, node);
  15450. gf->grads[i] = node->grad;
  15451. }
  15452. }
  15453. }
  15454. // remember original gradients which start with zero values
  15455. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15456. for (int i = 0; i < gf->n_nodes; i++) {
  15457. if (gf->grads[i]) {
  15458. ggml_hash_insert(zero_table, gf->grads[i]);
  15459. }
  15460. }
  15461. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15462. struct ggml_tensor * node = gf->nodes[i];
  15463. // inplace operations to add gradients are not created by ggml_compute_backward
  15464. // use allocator to automatically make inplace operations
  15465. if (node->grad) {
  15466. ggml_compute_backward(ctx, node, zero_table);
  15467. }
  15468. }
  15469. for (int i = 0; i < gf->n_nodes; i++) {
  15470. struct ggml_tensor * node = gf->nodes[i];
  15471. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15472. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15473. ggml_build_forward_expand(gb, node->grad);
  15474. }
  15475. }
  15476. ggml_hash_set_free(zero_table);
  15477. }
  15478. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15479. size_t nbytes = sizeof(struct ggml_cgraph);
  15480. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15481. if (grads) {
  15482. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15483. }
  15484. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15485. return nbytes;
  15486. }
  15487. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15488. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15489. }
  15490. size_t ggml_graph_overhead(void) {
  15491. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15492. }
  15493. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15494. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15495. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15496. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15497. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15498. size_t hash_size = ggml_hash_size(size * 2);
  15499. struct ggml_tensor ** nodes_ptr = data_start;
  15500. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15501. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15502. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15503. // check that we allocated the correct amount of memory
  15504. assert(obj_size == (size_t) (
  15505. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15506. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15507. *cgraph = (struct ggml_cgraph) {
  15508. /*.size =*/ size,
  15509. /*.n_nodes =*/ 0,
  15510. /*.n_leafs =*/ 0,
  15511. /*.nodes =*/ nodes_ptr,
  15512. /*.grads =*/ grads_ptr,
  15513. /*.leafs =*/ leafs_ptr,
  15514. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15515. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15516. /*.perf_runs =*/ 0,
  15517. /*.perf_cycles =*/ 0,
  15518. /*.perf_time_us =*/ 0,
  15519. };
  15520. return cgraph;
  15521. }
  15522. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15523. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15524. }
  15525. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15526. struct ggml_cgraph cgraph = {
  15527. /*.size =*/ 0,
  15528. /*.n_nodes =*/ i1 - i0,
  15529. /*.n_leafs =*/ 0,
  15530. /*.nodes =*/ cgraph0->nodes + i0,
  15531. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15532. /*.leafs =*/ NULL,
  15533. /*.hash_table =*/ { 0, NULL },
  15534. /*.order =*/ cgraph0->order,
  15535. /*.perf_runs =*/ 0,
  15536. /*.perf_cycles =*/ 0,
  15537. /*.perf_time_us =*/ 0,
  15538. };
  15539. return cgraph;
  15540. }
  15541. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15542. GGML_ASSERT(dst->size >= src->n_leafs);
  15543. GGML_ASSERT(dst->size >= src->n_nodes);
  15544. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15545. dst->n_leafs = src->n_leafs;
  15546. dst->n_nodes = src->n_nodes;
  15547. dst->order = src->order;
  15548. for (int i = 0; i < src->n_leafs; ++i) {
  15549. dst->leafs[i] = src->leafs[i];
  15550. }
  15551. for (int i = 0; i < src->n_nodes; ++i) {
  15552. dst->nodes[i] = src->nodes[i];
  15553. }
  15554. if (src->grads) {
  15555. GGML_ASSERT(dst->grads != NULL);
  15556. for (int i = 0; i < src->n_nodes; ++i) {
  15557. dst->grads[i] = src->grads[i];
  15558. }
  15559. }
  15560. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15561. if (src->visited_hash_table.keys[i]) {
  15562. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15563. }
  15564. }
  15565. }
  15566. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15567. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15568. ggml_graph_cpy(cgraph, result);
  15569. return result;
  15570. }
  15571. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15572. GGML_ASSERT(cgraph->grads != NULL);
  15573. for (int i = 0; i < cgraph->n_nodes; i++) {
  15574. struct ggml_tensor * grad = cgraph->grads[i];
  15575. if (grad) {
  15576. ggml_set_zero(grad);
  15577. }
  15578. }
  15579. }
  15580. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15581. cgraph->n_leafs = 0;
  15582. cgraph->n_nodes = 0;
  15583. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15584. }
  15585. //
  15586. // thread data
  15587. //
  15588. // synchronization is done via busy loops
  15589. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15590. //
  15591. #ifdef __APPLE__
  15592. //#include <os/lock.h>
  15593. //
  15594. //typedef os_unfair_lock ggml_lock_t;
  15595. //
  15596. //#define ggml_lock_init(x) UNUSED(x)
  15597. //#define ggml_lock_destroy(x) UNUSED(x)
  15598. //#define ggml_lock_lock os_unfair_lock_lock
  15599. //#define ggml_lock_unlock os_unfair_lock_unlock
  15600. //
  15601. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15602. typedef int ggml_lock_t;
  15603. #define ggml_lock_init(x) UNUSED(x)
  15604. #define ggml_lock_destroy(x) UNUSED(x)
  15605. #define ggml_lock_lock(x) UNUSED(x)
  15606. #define ggml_lock_unlock(x) UNUSED(x)
  15607. #define GGML_LOCK_INITIALIZER 0
  15608. #define ggml_thread_create pthread_create
  15609. #define ggml_thread_join pthread_join
  15610. #else
  15611. //typedef pthread_spinlock_t ggml_lock_t;
  15612. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15613. //#define ggml_lock_destroy pthread_spin_destroy
  15614. //#define ggml_lock_lock pthread_spin_lock
  15615. //#define ggml_lock_unlock pthread_spin_unlock
  15616. typedef int ggml_lock_t;
  15617. #define ggml_lock_init(x) UNUSED(x)
  15618. #define ggml_lock_destroy(x) UNUSED(x)
  15619. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15620. #define ggml_lock_lock(x) _mm_pause()
  15621. #else
  15622. #define ggml_lock_lock(x) UNUSED(x)
  15623. #endif
  15624. #define ggml_lock_unlock(x) UNUSED(x)
  15625. #define GGML_LOCK_INITIALIZER 0
  15626. #define ggml_thread_create pthread_create
  15627. #define ggml_thread_join pthread_join
  15628. #endif
  15629. // Android's libc implementation "bionic" does not support setting affinity
  15630. #if defined(__gnu_linux__)
  15631. static void set_numa_thread_affinity(int thread_n) {
  15632. if (!ggml_is_numa()) {
  15633. return;
  15634. }
  15635. int node_num;
  15636. int rv;
  15637. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15638. switch(g_state.numa.numa_strategy) {
  15639. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15640. // run thread on node_num thread_n / (threads per node)
  15641. node_num = thread_n % g_state.numa.n_nodes;
  15642. break;
  15643. case GGML_NUMA_STRATEGY_ISOLATE:
  15644. // run thread on current_node
  15645. node_num = g_state.numa.current_node;
  15646. break;
  15647. case GGML_NUMA_STRATEGY_NUMACTL:
  15648. // use the cpuset that numactl gave us
  15649. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15650. if (rv) {
  15651. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15652. }
  15653. return;
  15654. default:
  15655. return;
  15656. }
  15657. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15658. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15659. CPU_ZERO_S(setsize, cpus);
  15660. for (size_t i = 0; i < node->n_cpus; ++i) {
  15661. CPU_SET_S(node->cpus[i], setsize, cpus);
  15662. }
  15663. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15664. if (rv) {
  15665. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15666. }
  15667. CPU_FREE(cpus);
  15668. }
  15669. static void clear_numa_thread_affinity(void) {
  15670. if (!ggml_is_numa()) {
  15671. return;
  15672. }
  15673. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15674. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15675. CPU_ZERO_S(setsize, cpus);
  15676. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15677. CPU_SET_S(i, setsize, cpus);
  15678. }
  15679. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15680. if (rv) {
  15681. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15682. }
  15683. CPU_FREE(cpus);
  15684. }
  15685. #else
  15686. // TODO: Windows etc.
  15687. // (the linux implementation may also work on BSD, someone should test)
  15688. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15689. static void clear_numa_thread_affinity(void) {}
  15690. #endif
  15691. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15692. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15693. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15694. node->perf_runs++;
  15695. node->perf_cycles += cycles_cur;
  15696. node->perf_time_us += time_us_cur;
  15697. }
  15698. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15699. int n_tasks = 0;
  15700. if (ggml_is_empty(node)) {
  15701. // no need to multi-thread a no-op
  15702. n_tasks = 1;
  15703. return n_tasks;
  15704. }
  15705. switch (node->op) {
  15706. case GGML_OP_CPY:
  15707. case GGML_OP_DUP:
  15708. case GGML_OP_ADD:
  15709. case GGML_OP_ADD1:
  15710. case GGML_OP_ACC:
  15711. {
  15712. n_tasks = n_threads;
  15713. } break;
  15714. case GGML_OP_SUB:
  15715. case GGML_OP_SQR:
  15716. case GGML_OP_SQRT:
  15717. case GGML_OP_LOG:
  15718. case GGML_OP_SUM:
  15719. case GGML_OP_SUM_ROWS:
  15720. case GGML_OP_MEAN:
  15721. case GGML_OP_ARGMAX:
  15722. case GGML_OP_REPEAT:
  15723. case GGML_OP_REPEAT_BACK:
  15724. case GGML_OP_LEAKY_RELU:
  15725. {
  15726. n_tasks = 1;
  15727. } break;
  15728. case GGML_OP_UNARY:
  15729. switch (ggml_get_unary_op(node)) {
  15730. case GGML_UNARY_OP_ABS:
  15731. case GGML_UNARY_OP_SGN:
  15732. case GGML_UNARY_OP_NEG:
  15733. case GGML_UNARY_OP_STEP:
  15734. case GGML_UNARY_OP_TANH:
  15735. case GGML_UNARY_OP_ELU:
  15736. case GGML_UNARY_OP_RELU:
  15737. case GGML_UNARY_OP_SIGMOID:
  15738. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15739. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15740. {
  15741. n_tasks = 1;
  15742. } break;
  15743. case GGML_UNARY_OP_GELU:
  15744. case GGML_UNARY_OP_GELU_QUICK:
  15745. case GGML_UNARY_OP_SILU:
  15746. {
  15747. n_tasks = n_threads;
  15748. } break;
  15749. default:
  15750. GGML_ASSERT(false);
  15751. }
  15752. break;
  15753. case GGML_OP_SILU_BACK:
  15754. case GGML_OP_MUL:
  15755. case GGML_OP_DIV:
  15756. case GGML_OP_NORM:
  15757. case GGML_OP_RMS_NORM:
  15758. case GGML_OP_RMS_NORM_BACK:
  15759. case GGML_OP_GROUP_NORM:
  15760. case GGML_OP_CONCAT:
  15761. {
  15762. n_tasks = n_threads;
  15763. } break;
  15764. case GGML_OP_MUL_MAT:
  15765. {
  15766. n_tasks = n_threads;
  15767. // TODO: use different scheduling for different matrix sizes
  15768. //const int nr0 = ggml_nrows(node->src[0]);
  15769. //const int nr1 = ggml_nrows(node->src[1]);
  15770. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15771. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15772. } break;
  15773. case GGML_OP_MUL_MAT_ID:
  15774. {
  15775. n_tasks = n_threads;
  15776. } break;
  15777. case GGML_OP_OUT_PROD:
  15778. {
  15779. n_tasks = n_threads;
  15780. } break;
  15781. case GGML_OP_GET_ROWS:
  15782. {
  15783. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15784. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15785. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15786. } break;
  15787. case GGML_OP_SCALE:
  15788. case GGML_OP_SET:
  15789. case GGML_OP_CONT:
  15790. case GGML_OP_RESHAPE:
  15791. case GGML_OP_VIEW:
  15792. case GGML_OP_PERMUTE:
  15793. case GGML_OP_TRANSPOSE:
  15794. case GGML_OP_GET_ROWS_BACK:
  15795. case GGML_OP_DIAG:
  15796. {
  15797. n_tasks = 1;
  15798. } break;
  15799. case GGML_OP_DIAG_MASK_ZERO:
  15800. case GGML_OP_DIAG_MASK_INF:
  15801. case GGML_OP_SOFT_MAX_BACK:
  15802. case GGML_OP_ROPE:
  15803. case GGML_OP_ROPE_BACK:
  15804. case GGML_OP_ADD_REL_POS:
  15805. {
  15806. n_tasks = n_threads;
  15807. } break;
  15808. case GGML_OP_CLAMP:
  15809. {
  15810. n_tasks = 1; //TODO
  15811. } break;
  15812. case GGML_OP_SOFT_MAX:
  15813. {
  15814. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15815. } break;
  15816. case GGML_OP_CONV_TRANSPOSE_1D:
  15817. {
  15818. n_tasks = n_threads;
  15819. } break;
  15820. case GGML_OP_IM2COL:
  15821. {
  15822. n_tasks = n_threads;
  15823. } break;
  15824. case GGML_OP_CONV_TRANSPOSE_2D:
  15825. {
  15826. n_tasks = n_threads;
  15827. } break;
  15828. case GGML_OP_POOL_1D:
  15829. case GGML_OP_POOL_2D:
  15830. {
  15831. n_tasks = 1;
  15832. } break;
  15833. case GGML_OP_UPSCALE:
  15834. {
  15835. n_tasks = n_threads;
  15836. } break;
  15837. case GGML_OP_PAD:
  15838. {
  15839. n_tasks = n_threads;
  15840. } break;
  15841. case GGML_OP_ARANGE:
  15842. {
  15843. n_tasks = n_threads;
  15844. } break;
  15845. case GGML_OP_TIMESTEP_EMBEDDING:
  15846. {
  15847. n_tasks = n_threads;
  15848. } break;
  15849. case GGML_OP_ARGSORT:
  15850. {
  15851. n_tasks = n_threads;
  15852. } break;
  15853. case GGML_OP_FLASH_ATTN_EXT:
  15854. {
  15855. n_tasks = n_threads;
  15856. } break;
  15857. case GGML_OP_FLASH_ATTN_BACK:
  15858. {
  15859. n_tasks = n_threads;
  15860. } break;
  15861. case GGML_OP_SSM_CONV:
  15862. case GGML_OP_SSM_SCAN:
  15863. {
  15864. n_tasks = n_threads;
  15865. } break;
  15866. case GGML_OP_WIN_PART:
  15867. case GGML_OP_WIN_UNPART:
  15868. case GGML_OP_GET_REL_POS:
  15869. case GGML_OP_MAP_UNARY:
  15870. case GGML_OP_MAP_BINARY:
  15871. case GGML_OP_MAP_CUSTOM1_F32:
  15872. case GGML_OP_MAP_CUSTOM2_F32:
  15873. case GGML_OP_MAP_CUSTOM3_F32:
  15874. {
  15875. n_tasks = 1;
  15876. } break;
  15877. case GGML_OP_MAP_CUSTOM1:
  15878. {
  15879. struct ggml_map_custom1_op_params p;
  15880. memcpy(&p, node->op_params, sizeof(p));
  15881. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15882. n_tasks = n_threads;
  15883. } else {
  15884. n_tasks = MIN(p.n_tasks, n_threads);
  15885. }
  15886. } break;
  15887. case GGML_OP_MAP_CUSTOM2:
  15888. {
  15889. struct ggml_map_custom2_op_params p;
  15890. memcpy(&p, node->op_params, sizeof(p));
  15891. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15892. n_tasks = n_threads;
  15893. } else {
  15894. n_tasks = MIN(p.n_tasks, n_threads);
  15895. }
  15896. } break;
  15897. case GGML_OP_MAP_CUSTOM3:
  15898. {
  15899. struct ggml_map_custom3_op_params p;
  15900. memcpy(&p, node->op_params, sizeof(p));
  15901. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15902. n_tasks = n_threads;
  15903. } else {
  15904. n_tasks = MIN(p.n_tasks, n_threads);
  15905. }
  15906. } break;
  15907. case GGML_OP_CROSS_ENTROPY_LOSS:
  15908. {
  15909. n_tasks = n_threads;
  15910. } break;
  15911. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15912. {
  15913. n_tasks = n_threads;
  15914. } break;
  15915. case GGML_OP_NONE:
  15916. {
  15917. n_tasks = 1;
  15918. } break;
  15919. case GGML_OP_COUNT:
  15920. {
  15921. GGML_ASSERT(false);
  15922. } break;
  15923. default:
  15924. {
  15925. fprintf(stderr, "%s: op not implemented: ", __func__);
  15926. if (node->op < GGML_OP_COUNT) {
  15927. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15928. } else {
  15929. fprintf(stderr, "%d\n", node->op);
  15930. }
  15931. GGML_ASSERT(false);
  15932. } break;
  15933. }
  15934. assert(n_tasks > 0);
  15935. return n_tasks;
  15936. }
  15937. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15938. // wait for other threads to finish
  15939. const int last_node_n = * node_n;
  15940. while (true) {
  15941. if (do_yield) {
  15942. sched_yield();
  15943. }
  15944. * node_n = atomic_load(&state->shared->node_n);
  15945. if (* node_n != last_node_n) break;
  15946. #if defined(__SSE3__)
  15947. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15948. _mm_pause();
  15949. #endif
  15950. }
  15951. }
  15952. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15953. // wait for other threads to finish
  15954. const int last_task_phase = * task_phase;
  15955. while (true) {
  15956. if (do_yield) {
  15957. sched_yield();
  15958. }
  15959. * task_phase = atomic_load(&state->shared->node_task);
  15960. if (* task_phase != last_task_phase) break;
  15961. #if defined(__SSE3__)
  15962. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15963. _mm_pause();
  15964. #endif
  15965. }
  15966. }
  15967. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15968. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15969. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15970. const struct ggml_cplan * cplan = state->shared->cplan;
  15971. const int n_threads = state->shared->n_threads;
  15972. set_numa_thread_affinity(state->ith);
  15973. int node_n = -1;
  15974. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15975. while (true) {
  15976. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15977. state->shared->node_n += 1;
  15978. state->ec = GGML_STATUS_ABORTED;
  15979. return 0;
  15980. }
  15981. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15982. // all other threads are finished and spinning
  15983. // do finalize and init here so we don't have synchronize again
  15984. struct ggml_compute_params params = {
  15985. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15986. /*.ith =*/ 0,
  15987. /*.nth =*/ 0,
  15988. /*.wsize =*/ cplan->work_size,
  15989. /*.wdata =*/ cplan->work_data,
  15990. };
  15991. if (node_n != -1) {
  15992. /* FINALIZE */
  15993. struct ggml_tensor * node = cgraph->nodes[node_n];
  15994. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15995. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15996. ggml_compute_forward(&params, node, state);
  15997. }
  15998. ggml_graph_compute_perf_stats_node(node, state->shared);
  15999. }
  16000. // distribute new work or execute it direct if 1T
  16001. while (++node_n < cgraph->n_nodes) {
  16002. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16003. struct ggml_tensor * node = cgraph->nodes[node_n];
  16004. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16005. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16006. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16007. params.nth = n_tasks;
  16008. if (n_tasks == 1) {
  16009. /* INIT */
  16010. if (GGML_OP_HAS_INIT[node->op]) {
  16011. params.type = GGML_TASK_TYPE_INIT;
  16012. ggml_compute_forward(&params, node, state);
  16013. }
  16014. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16015. // they do something more efficient than spinning (?)
  16016. params.type = GGML_TASK_TYPE_COMPUTE;
  16017. ggml_compute_forward(&params, node, state);
  16018. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16019. params.type = GGML_TASK_TYPE_FINALIZE;
  16020. ggml_compute_forward(&params, node, state);
  16021. }
  16022. ggml_graph_compute_perf_stats_node(node, state->shared);
  16023. } else {
  16024. break;
  16025. }
  16026. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16027. break;
  16028. }
  16029. }
  16030. task_phase = GGML_TASK_TYPE_INIT;
  16031. atomic_store(&state->shared->n_active, n_threads);
  16032. atomic_store(&state->shared->node_n, node_n);
  16033. atomic_store(&state->shared->node_task, task_phase);
  16034. } else {
  16035. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16036. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16037. }
  16038. // check if we should stop
  16039. if (node_n >= cgraph->n_nodes) break;
  16040. /* INIT & COMPUTE */
  16041. struct ggml_tensor * node = cgraph->nodes[node_n];
  16042. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16043. struct ggml_compute_params params = {
  16044. /*.type =*/ GGML_TASK_TYPE_INIT,
  16045. /*.ith =*/ state->ith,
  16046. /*.nth =*/ n_tasks,
  16047. /*.wsize =*/ cplan->work_size,
  16048. /*.wdata =*/ cplan->work_data,
  16049. };
  16050. if (state->ith < n_tasks) {
  16051. if (GGML_OP_HAS_INIT[node->op]) {
  16052. ggml_compute_forward(&params, node, state);
  16053. }
  16054. }
  16055. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16056. task_phase = GGML_TASK_TYPE_COMPUTE;
  16057. atomic_store(&state->shared->n_active, n_threads);
  16058. atomic_store(&state->shared->node_task, task_phase);
  16059. }
  16060. else {
  16061. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16062. // depending on the workload and the operating system.
  16063. // since it is not clear what is the best approach, it should potentially become user-configurable
  16064. // ref: https://github.com/ggerganov/ggml/issues/291
  16065. // UPD: adding the do_yield flag seems to resolve the issue universally
  16066. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16067. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16068. }
  16069. if (state->ith < n_tasks) {
  16070. params.type = GGML_TASK_TYPE_COMPUTE;
  16071. ggml_compute_forward(&params, node, state);
  16072. }
  16073. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16074. task_phase = GGML_TASK_TYPE_FINALIZE;
  16075. atomic_store(&state->shared->n_active, n_threads);
  16076. atomic_store(&state->shared->node_task, task_phase);
  16077. }
  16078. else {
  16079. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16080. }
  16081. }
  16082. return 0;
  16083. }
  16084. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16085. if (n_threads <= 0) {
  16086. n_threads = GGML_DEFAULT_N_THREADS;
  16087. }
  16088. size_t work_size = 0;
  16089. struct ggml_cplan cplan;
  16090. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16091. int max_tasks = 1;
  16092. // thread scheduling for the different operations + work buffer size estimation
  16093. for (int i = 0; i < cgraph->n_nodes; i++) {
  16094. struct ggml_tensor * node = cgraph->nodes[i];
  16095. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16096. max_tasks = MAX(max_tasks, n_tasks);
  16097. size_t cur = 0;
  16098. switch (node->op) {
  16099. case GGML_OP_CPY:
  16100. case GGML_OP_DUP:
  16101. {
  16102. if (ggml_is_quantized(node->type) ||
  16103. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16104. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16105. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16106. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16107. }
  16108. } break;
  16109. case GGML_OP_ADD:
  16110. case GGML_OP_ADD1:
  16111. {
  16112. if (ggml_is_quantized(node->src[0]->type)) {
  16113. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16114. }
  16115. } break;
  16116. case GGML_OP_ACC:
  16117. {
  16118. if (ggml_is_quantized(node->src[0]->type)) {
  16119. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16120. }
  16121. } break;
  16122. case GGML_OP_MUL_MAT:
  16123. {
  16124. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16125. #if defined(GGML_USE_CLBLAST)
  16126. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16127. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16128. } else
  16129. #endif
  16130. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16131. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16132. if (node->src[0]->type != GGML_TYPE_F32) {
  16133. // here we need memory for fully dequantized matrix from src0
  16134. // take into account that src0 can be broadcasted into src1[2,3]
  16135. cur = ggml_type_size(GGML_TYPE_F32)
  16136. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16137. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16138. }
  16139. } else
  16140. #endif
  16141. if (node->src[1]->type != vec_dot_type) {
  16142. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16143. }
  16144. } break;
  16145. case GGML_OP_MUL_MAT_ID:
  16146. {
  16147. cur = 0;
  16148. const struct ggml_tensor * src0 = node->src[0];
  16149. const struct ggml_tensor * src1 = node->src[1];
  16150. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16151. if (src1->type != vec_dot_type) {
  16152. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16153. }
  16154. const int n_as = src0->ne[2];
  16155. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16156. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16157. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16158. } break;
  16159. case GGML_OP_OUT_PROD:
  16160. {
  16161. if (ggml_is_quantized(node->src[0]->type)) {
  16162. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16163. }
  16164. } break;
  16165. case GGML_OP_SOFT_MAX:
  16166. case GGML_OP_ROPE:
  16167. {
  16168. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16169. } break;
  16170. case GGML_OP_CONV_TRANSPOSE_1D:
  16171. {
  16172. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16173. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16174. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16175. const int64_t ne00 = node->src[0]->ne[0]; // K
  16176. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16177. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16178. const int64_t ne10 = node->src[1]->ne[0]; // L
  16179. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16180. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16181. node->src[0]->type == GGML_TYPE_BF16) &&
  16182. node->src[1]->type == GGML_TYPE_F32) {
  16183. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16184. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16185. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16186. node->src[1]->type == GGML_TYPE_F32) {
  16187. cur += sizeof(float)*ne00*ne01*ne02;
  16188. cur += sizeof(float)*ne10*ne11;
  16189. } else {
  16190. GGML_ASSERT(false);
  16191. }
  16192. } break;
  16193. case GGML_OP_CONV_TRANSPOSE_2D:
  16194. {
  16195. const int64_t ne00 = node->src[0]->ne[0]; // W
  16196. const int64_t ne01 = node->src[0]->ne[1]; // H
  16197. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16198. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16199. const int64_t ne10 = node->src[1]->ne[0]; // W
  16200. const int64_t ne11 = node->src[1]->ne[1]; // H
  16201. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16202. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16203. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16204. } break;
  16205. case GGML_OP_FLASH_ATTN_EXT:
  16206. {
  16207. const int64_t ne00 = node->src[0]->ne[0]; // D
  16208. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16209. } break;
  16210. case GGML_OP_FLASH_ATTN_BACK:
  16211. {
  16212. const int64_t D = node->src[0]->ne[0];
  16213. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16214. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16215. if (node->src[1]->type == GGML_TYPE_F32) {
  16216. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16217. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16218. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16219. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16220. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16221. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16222. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16223. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16224. }
  16225. } break;
  16226. case GGML_OP_CROSS_ENTROPY_LOSS:
  16227. {
  16228. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16229. } break;
  16230. case GGML_OP_COUNT:
  16231. {
  16232. GGML_ASSERT(false);
  16233. } break;
  16234. default:
  16235. break;
  16236. }
  16237. work_size = MAX(work_size, cur);
  16238. }
  16239. if (work_size > 0) {
  16240. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16241. }
  16242. cplan.n_threads = MIN(max_tasks, n_threads);
  16243. cplan.work_size = work_size;
  16244. cplan.work_data = NULL;
  16245. return cplan;
  16246. }
  16247. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16248. {
  16249. GGML_ASSERT(cplan);
  16250. GGML_ASSERT(cplan->n_threads > 0);
  16251. if (cplan->work_size > 0) {
  16252. GGML_ASSERT(cplan->work_data);
  16253. }
  16254. }
  16255. const int n_threads = cplan->n_threads;
  16256. struct ggml_compute_state_shared state_shared = {
  16257. /*.cgraph =*/ cgraph,
  16258. /*.cgraph_plan =*/ cplan,
  16259. /*.perf_node_start_cycles =*/ 0,
  16260. /*.perf_node_start_time_us =*/ 0,
  16261. /*.n_threads =*/ n_threads,
  16262. /*.n_active =*/ n_threads,
  16263. /*.node_n =*/ -1,
  16264. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16265. /*.abort_callback =*/ NULL,
  16266. /*.abort_callback_data =*/ NULL,
  16267. /*.current_chunk; =*/ 0,
  16268. };
  16269. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16270. // create thread pool
  16271. if (n_threads > 1) {
  16272. for (int j = 1; j < n_threads; ++j) {
  16273. workers[j] = (struct ggml_compute_state) {
  16274. .thrd = 0,
  16275. .ith = j,
  16276. .shared = &state_shared,
  16277. .ec = GGML_STATUS_SUCCESS,
  16278. };
  16279. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16280. GGML_ASSERT(rc == 0);
  16281. UNUSED(rc);
  16282. }
  16283. }
  16284. workers[0].ith = 0;
  16285. workers[0].shared = &state_shared;
  16286. workers[0].ec = GGML_STATUS_SUCCESS;
  16287. const int64_t perf_start_cycles = ggml_perf_cycles();
  16288. const int64_t perf_start_time_us = ggml_perf_time_us();
  16289. // this is a work thread too
  16290. ggml_graph_compute_thread(&workers[0]);
  16291. enum ggml_status compute_status = workers[0].ec;
  16292. // don't leave affinity set on the main thread
  16293. clear_numa_thread_affinity();
  16294. // join or kill thread pool
  16295. if (n_threads > 1) {
  16296. for (int j = 1; j < n_threads; j++) {
  16297. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16298. GGML_ASSERT(rc == 0);
  16299. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16300. compute_status = workers[j].ec;
  16301. }
  16302. }
  16303. // performance stats (graph)
  16304. {
  16305. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16306. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16307. cgraph->perf_runs++;
  16308. cgraph->perf_cycles += perf_cycles_cur;
  16309. cgraph->perf_time_us += perf_time_us_cur;
  16310. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16311. __func__, cgraph->perf_runs,
  16312. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16313. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16314. (double) perf_time_us_cur / 1000.0,
  16315. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16316. }
  16317. return compute_status;
  16318. }
  16319. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16320. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16321. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16322. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16323. return ggml_graph_compute(cgraph, &cplan);
  16324. }
  16325. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16326. for (int i = 0; i < cgraph->n_leafs; i++) {
  16327. struct ggml_tensor * leaf = cgraph->leafs[i];
  16328. if (strcmp(leaf->name, name) == 0) {
  16329. return leaf;
  16330. }
  16331. }
  16332. for (int i = 0; i < cgraph->n_nodes; i++) {
  16333. struct ggml_tensor * node = cgraph->nodes[i];
  16334. if (strcmp(node->name, name) == 0) {
  16335. return node;
  16336. }
  16337. }
  16338. return NULL;
  16339. }
  16340. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16341. const int64_t * ne = tensor->ne;
  16342. const size_t * nb = tensor->nb;
  16343. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16344. ggml_type_name(tensor->type),
  16345. ggml_op_name (tensor->op),
  16346. ggml_n_dims(tensor),
  16347. ne[0], ne[1], ne[2], ne[3],
  16348. nb[0], nb[1], nb[2], nb[3],
  16349. tensor->data,
  16350. tensor->name);
  16351. }
  16352. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16353. const int64_t * ne = tensor->ne;
  16354. const size_t * nb = tensor->nb;
  16355. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16356. arg,
  16357. ggml_type_name(tensor->type),
  16358. ggml_op_name (tensor->op),
  16359. ggml_n_dims(tensor),
  16360. ne[0], ne[1], ne[2], ne[3],
  16361. nb[0], nb[1], nb[2], nb[3],
  16362. tensor->data,
  16363. tensor->name);
  16364. }
  16365. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16366. uint64_t size_eval = 0;
  16367. // compute size of intermediate results
  16368. // TODO: does not take into account scratch buffers !!!!
  16369. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16370. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16371. }
  16372. // print
  16373. {
  16374. FILE * fout = stdout;
  16375. fprintf(fout, "\n");
  16376. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16377. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16378. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16379. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16380. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16381. // header
  16382. fprintf(fout, "\n");
  16383. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16384. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16385. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16386. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16387. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16388. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16389. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16390. }
  16391. // header
  16392. fprintf(fout, "\n");
  16393. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16394. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16395. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16396. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16397. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16398. if (cgraph->nodes[i]->src[j]) {
  16399. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16400. }
  16401. }
  16402. fprintf(fout, "\n");
  16403. }
  16404. fprintf(fout, "\n");
  16405. }
  16406. // write binary data
  16407. {
  16408. FILE * fout = ggml_fopen(fname, "wb");
  16409. if (!fout) {
  16410. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16411. return;
  16412. }
  16413. // header
  16414. {
  16415. const uint32_t magic = GGML_FILE_MAGIC;
  16416. const uint32_t version = GGML_FILE_VERSION;
  16417. const uint32_t n_leafs = cgraph->n_leafs;
  16418. const uint32_t n_nodes = cgraph->n_nodes;
  16419. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16420. fwrite(&version, sizeof(uint32_t), 1, fout);
  16421. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16422. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16423. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16424. }
  16425. // leafs
  16426. {
  16427. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16428. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16429. const uint32_t type = tensor->type;
  16430. const uint32_t op = tensor->op;
  16431. fwrite(&type, sizeof(uint32_t), 1, fout);
  16432. fwrite(&op, sizeof(uint32_t), 1, fout);
  16433. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16434. const uint64_t ne = tensor->ne[j];
  16435. const uint64_t nb = tensor->nb[j];
  16436. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16437. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16438. }
  16439. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16440. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16441. // dump the data
  16442. // TODO: pad this to 32 byte boundary
  16443. {
  16444. const size_t size = ggml_nbytes(tensor);
  16445. fwrite(tensor->data, sizeof(char), size, fout);
  16446. }
  16447. }
  16448. }
  16449. // nodes
  16450. {
  16451. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16452. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16453. const uint32_t type = tensor->type;
  16454. const uint32_t op = tensor->op;
  16455. fwrite(&type, sizeof(uint32_t), 1, fout);
  16456. fwrite(&op, sizeof(uint32_t), 1, fout);
  16457. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16458. const uint64_t ne = tensor->ne[j];
  16459. const uint64_t nb = tensor->nb[j];
  16460. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16461. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16462. }
  16463. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16464. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16465. // output the op arguments
  16466. {
  16467. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16468. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16469. args[j] = tensor->src[j];
  16470. }
  16471. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16472. if (args[j]) {
  16473. int32_t idx = -1;
  16474. // check if leaf
  16475. {
  16476. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16477. if (args[j] == cgraph->leafs[k]) {
  16478. idx = k;
  16479. break;
  16480. }
  16481. }
  16482. }
  16483. // check if node
  16484. if (idx == -1) {
  16485. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16486. if (args[j] == cgraph->nodes[k]) {
  16487. idx = cgraph->n_leafs + k;
  16488. break;
  16489. }
  16490. }
  16491. }
  16492. if (idx == -1) {
  16493. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16494. fclose(fout);
  16495. return;
  16496. }
  16497. fwrite(&idx, sizeof(int32_t), 1, fout);
  16498. } else {
  16499. const int32_t nul = -1;
  16500. fwrite(&nul, sizeof(int32_t), 1, fout);
  16501. }
  16502. }
  16503. }
  16504. }
  16505. }
  16506. fclose(fout);
  16507. }
  16508. }
  16509. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16510. assert(*ctx_data == NULL);
  16511. assert(*ctx_eval == NULL);
  16512. struct ggml_cgraph * result = NULL;
  16513. struct ggml_tensor * data = NULL;
  16514. // read file into data
  16515. {
  16516. FILE * fin = ggml_fopen(fname, "rb");
  16517. if (!fin) {
  16518. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16519. return result;
  16520. }
  16521. size_t fsize = 0;
  16522. fseek(fin, 0, SEEK_END);
  16523. fsize = ftell(fin);
  16524. fseek(fin, 0, SEEK_SET);
  16525. // create the data context
  16526. {
  16527. const size_t overhead = 1*ggml_tensor_overhead();
  16528. struct ggml_init_params params = {
  16529. .mem_size = fsize + overhead,
  16530. .mem_buffer = NULL,
  16531. .no_alloc = false,
  16532. };
  16533. *ctx_data = ggml_init(params);
  16534. if (!*ctx_data) {
  16535. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16536. fclose(fin);
  16537. return result;
  16538. }
  16539. }
  16540. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16541. {
  16542. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16543. if (ret != fsize) {
  16544. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16545. fclose(fin);
  16546. return result;
  16547. }
  16548. }
  16549. fclose(fin);
  16550. }
  16551. // populate result
  16552. {
  16553. char * ptr = (char *) data->data;
  16554. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16555. if (magic != GGML_FILE_MAGIC) {
  16556. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16557. return result;
  16558. }
  16559. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16560. if (version != GGML_FILE_VERSION) {
  16561. fprintf(stderr, "%s: invalid version number\n", __func__);
  16562. return result;
  16563. }
  16564. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16565. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16566. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16567. const int graph_size = MAX(n_leafs, n_nodes);
  16568. // create the data context
  16569. {
  16570. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16571. struct ggml_init_params params = {
  16572. .mem_size = size_eval + overhead,
  16573. .mem_buffer = NULL,
  16574. .no_alloc = true,
  16575. };
  16576. *ctx_eval = ggml_init(params);
  16577. if (!*ctx_eval) {
  16578. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16579. return result;
  16580. }
  16581. }
  16582. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16583. result->n_leafs = n_leafs;
  16584. result->n_nodes = n_nodes;
  16585. // leafs
  16586. {
  16587. uint32_t type;
  16588. uint32_t op;
  16589. for (uint32_t i = 0; i < n_leafs; ++i) {
  16590. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16591. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16592. int64_t ne[GGML_MAX_DIMS];
  16593. size_t nb[GGML_MAX_DIMS];
  16594. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16595. uint64_t ne_cur;
  16596. uint64_t nb_cur;
  16597. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16598. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16599. ne[j] = ne_cur;
  16600. nb[j] = nb_cur;
  16601. }
  16602. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16603. tensor->op = (enum ggml_op) op;
  16604. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16605. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16606. tensor->data = (void *) ptr;
  16607. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16608. tensor->nb[j] = nb[j];
  16609. }
  16610. result->leafs[i] = tensor;
  16611. ptr += ggml_nbytes(tensor);
  16612. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16613. }
  16614. }
  16615. ggml_set_no_alloc(*ctx_eval, false);
  16616. // nodes
  16617. {
  16618. uint32_t type;
  16619. uint32_t op;
  16620. for (uint32_t i = 0; i < n_nodes; ++i) {
  16621. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16622. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16623. enum ggml_op eop = (enum ggml_op) op;
  16624. int64_t ne[GGML_MAX_DIMS];
  16625. size_t nb[GGML_MAX_DIMS];
  16626. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16627. uint64_t ne_cur;
  16628. uint64_t nb_cur;
  16629. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16630. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16631. ne[j] = ne_cur;
  16632. nb[j] = nb_cur;
  16633. }
  16634. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16635. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16636. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16637. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16638. // parse args
  16639. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16640. const int32_t arg_idx = ptr_arg_idx[j];
  16641. if (arg_idx == -1) {
  16642. continue;
  16643. }
  16644. if (arg_idx < result->n_leafs) {
  16645. args[j] = result->leafs[arg_idx];
  16646. } else {
  16647. args[j] = result->nodes[arg_idx - result->n_leafs];
  16648. }
  16649. }
  16650. // create the tensor
  16651. // "view" operations are handled differently
  16652. // TODO: handle inplace ops - currently a copy is always made
  16653. struct ggml_tensor * tensor = NULL;
  16654. switch (eop) {
  16655. // TODO: implement other view ops
  16656. case GGML_OP_RESHAPE:
  16657. {
  16658. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16659. } break;
  16660. case GGML_OP_VIEW:
  16661. {
  16662. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16663. size_t offs;
  16664. memcpy(&offs, ptr_op_params, sizeof(offs));
  16665. tensor->data = ((char *) tensor->data) + offs;
  16666. } break;
  16667. case GGML_OP_TRANSPOSE:
  16668. {
  16669. tensor = ggml_transpose(*ctx_eval, args[0]);
  16670. } break;
  16671. case GGML_OP_PERMUTE:
  16672. {
  16673. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16674. } break;
  16675. default:
  16676. {
  16677. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16678. tensor->op = eop;
  16679. } break;
  16680. }
  16681. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16682. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16683. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16684. tensor->nb[j] = nb[j];
  16685. }
  16686. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16687. tensor->src[j] = args[j];
  16688. }
  16689. result->nodes[i] = tensor;
  16690. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16691. }
  16692. }
  16693. }
  16694. return result;
  16695. }
  16696. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16697. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16698. GGML_PRINT("=== GRAPH ===\n");
  16699. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16700. for (int i = 0; i < cgraph->n_nodes; i++) {
  16701. struct ggml_tensor * node = cgraph->nodes[i];
  16702. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16703. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16704. i,
  16705. node->ne[0], node->ne[1], node->ne[2],
  16706. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16707. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16708. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16709. (double) node->perf_time_us / 1000.0,
  16710. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16711. }
  16712. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16713. for (int i = 0; i < cgraph->n_leafs; i++) {
  16714. struct ggml_tensor * node = cgraph->leafs[i];
  16715. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16716. i,
  16717. node->ne[0], node->ne[1],
  16718. ggml_op_name(node->op),
  16719. ggml_get_name(node));
  16720. }
  16721. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16722. if (perf_total_per_op_us[i] == 0) {
  16723. continue;
  16724. }
  16725. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16726. }
  16727. GGML_PRINT("========================================\n");
  16728. }
  16729. // check if node is part of the graph
  16730. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16731. if (cgraph == NULL) {
  16732. return true;
  16733. }
  16734. for (int i = 0; i < cgraph->n_nodes; i++) {
  16735. if (cgraph->nodes[i] == node) {
  16736. return true;
  16737. }
  16738. }
  16739. return false;
  16740. }
  16741. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16742. for (int i = 0; i < cgraph->n_nodes; i++) {
  16743. struct ggml_tensor * parent = cgraph->nodes[i];
  16744. if (parent->grad == node) {
  16745. return parent;
  16746. }
  16747. }
  16748. return NULL;
  16749. }
  16750. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16751. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16752. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16753. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16754. gparent0 ? (void *) gparent0 : (void *) parent,
  16755. gparent0 ? "g" : "x",
  16756. gparent ? (void *) gparent : (void *) node,
  16757. gparent ? "g" : "x",
  16758. gparent ? "empty" : "vee",
  16759. gparent ? "dashed" : "solid",
  16760. label);
  16761. }
  16762. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16763. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16764. (void *) parent, "x",
  16765. (void *) node, "x",
  16766. label);
  16767. }
  16768. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16769. char color[16];
  16770. FILE * fp = ggml_fopen(filename, "w");
  16771. GGML_ASSERT(fp);
  16772. fprintf(fp, "digraph G {\n");
  16773. fprintf(fp, " newrank = true;\n");
  16774. fprintf(fp, " rankdir = LR;\n");
  16775. for (int i = 0; i < gb->n_nodes; i++) {
  16776. struct ggml_tensor * node = gb->nodes[i];
  16777. if (ggml_graph_get_parent(gb, node) != NULL) {
  16778. continue;
  16779. }
  16780. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16781. snprintf(color, sizeof(color), "yellow");
  16782. } else if (node->grad) {
  16783. if (ggml_graph_find(gf, node)) {
  16784. snprintf(color, sizeof(color), "green");
  16785. } else {
  16786. snprintf(color, sizeof(color), "lightblue");
  16787. }
  16788. } else {
  16789. snprintf(color, sizeof(color), "white");
  16790. }
  16791. fprintf(fp, " \"%p\" [ "
  16792. "style = filled; fillcolor = %s; shape = record; "
  16793. "label=\"",
  16794. (void *) node, color);
  16795. if (strlen(node->name) > 0) {
  16796. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16797. } else {
  16798. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16799. }
  16800. if (ggml_is_matrix(node)) {
  16801. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16802. } else {
  16803. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16804. }
  16805. if (node->grad) {
  16806. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16807. } else {
  16808. fprintf(fp, "\"; ]\n");
  16809. }
  16810. }
  16811. for (int i = 0; i < gb->n_leafs; i++) {
  16812. struct ggml_tensor * node = gb->leafs[i];
  16813. snprintf(color, sizeof(color), "pink");
  16814. fprintf(fp, " \"%p\" [ "
  16815. "style = filled; fillcolor = %s; shape = record; "
  16816. "label=\"<x>",
  16817. (void *) node, color);
  16818. if (strlen(node->name) > 0) {
  16819. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16820. } else {
  16821. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16822. }
  16823. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16824. if (ggml_nelements(node) < 5) {
  16825. fprintf(fp, " | (");
  16826. for (int j = 0; j < ggml_nelements(node); j++) {
  16827. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16828. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16829. }
  16830. else if (node->type == GGML_TYPE_F32 ||
  16831. node->type == GGML_TYPE_F16 ||
  16832. node->type == GGML_TYPE_BF16) {
  16833. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16834. }
  16835. else {
  16836. fprintf(fp, "#");
  16837. }
  16838. if (j < ggml_nelements(node) - 1) {
  16839. fprintf(fp, ", ");
  16840. }
  16841. }
  16842. fprintf(fp, ")");
  16843. }
  16844. fprintf(fp, "\"; ]\n");
  16845. }
  16846. for (int i = 0; i < gb->n_nodes; i++) {
  16847. struct ggml_tensor * node = gb->nodes[i];
  16848. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16849. if (node->src[j]) {
  16850. char label[16];
  16851. snprintf(label, sizeof(label), "src %d", j);
  16852. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16853. }
  16854. }
  16855. }
  16856. for (int i = 0; i < gb->n_leafs; i++) {
  16857. struct ggml_tensor * node = gb->leafs[i];
  16858. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16859. if (node->src[j]) {
  16860. char label[16];
  16861. snprintf(label, sizeof(label), "src %d", j);
  16862. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16863. }
  16864. }
  16865. }
  16866. fprintf(fp, "}\n");
  16867. fclose(fp);
  16868. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16869. }
  16870. ////////////////////////////////////////////////////////////////////////////////
  16871. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16872. int i = 0;
  16873. for (int p = 0; p < np; ++p) {
  16874. const int64_t ne = ggml_nelements(ps[p]) ;
  16875. // TODO: add function to set tensor from array
  16876. for (int64_t j = 0; j < ne; ++j) {
  16877. ggml_set_f32_1d(ps[p], j, x[i++]);
  16878. }
  16879. }
  16880. }
  16881. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16882. int i = 0;
  16883. for (int p = 0; p < np; ++p) {
  16884. const int64_t ne = ggml_nelements(ps[p]) ;
  16885. // TODO: add function to get all elements at once
  16886. for (int64_t j = 0; j < ne; ++j) {
  16887. x[i++] = ggml_get_f32_1d(ps[p], j);
  16888. }
  16889. }
  16890. }
  16891. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16892. int64_t i = 0;
  16893. for (int p = 0; p < np; ++p) {
  16894. const int64_t ne = ggml_nelements(ps[p]) ;
  16895. // TODO: add function to get all elements at once
  16896. for (int64_t j = 0; j < ne; ++j) {
  16897. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16898. }
  16899. }
  16900. }
  16901. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16902. int64_t i = 0;
  16903. for (int p = 0; p < np; ++p) {
  16904. const int64_t ne = ggml_nelements(ps[p]) ;
  16905. // TODO: add function to get all elements at once
  16906. for (int64_t j = 0; j < ne; ++j) {
  16907. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16908. }
  16909. }
  16910. }
  16911. //
  16912. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16913. //
  16914. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16915. //
  16916. static enum ggml_opt_result ggml_opt_adam(
  16917. struct ggml_context * ctx,
  16918. struct ggml_opt_context * opt,
  16919. struct ggml_opt_params params,
  16920. struct ggml_tensor * f,
  16921. struct ggml_cgraph * gf,
  16922. struct ggml_cgraph * gb,
  16923. ggml_opt_callback callback,
  16924. void * callback_data) {
  16925. GGML_ASSERT(ggml_is_scalar(f));
  16926. // these will store the parameters we want to optimize
  16927. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16928. int np = 0;
  16929. int64_t nx = 0;
  16930. for (int i = 0; i < gf->n_nodes; ++i) {
  16931. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16932. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16933. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16934. ps[np++] = gf->nodes[i];
  16935. nx += ggml_nelements(gf->nodes[i]);
  16936. }
  16937. }
  16938. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16939. int iter = opt->iter;
  16940. ggml_opt_init(opt->ctx, opt, params, nx);
  16941. opt->iter = iter;
  16942. }
  16943. // constants
  16944. float sched = params.adam.sched;
  16945. const float alpha = params.adam.alpha;
  16946. const float decay = params.adam.decay * alpha;
  16947. const float beta1 = params.adam.beta1;
  16948. const float beta2 = params.adam.beta2;
  16949. const float eps = params.adam.eps;
  16950. const float gclip = params.adam.gclip;
  16951. const int decay_min_ndim = params.adam.decay_min_ndim;
  16952. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16953. const float accum_norm = 1.0f / (float) n_accum;
  16954. float * g = opt->adam.g->data; // gradients
  16955. float * m = opt->adam.m->data; // first moment
  16956. float * v = opt->adam.v->data; // second moment
  16957. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16958. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16959. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16960. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16961. bool cancel = false;
  16962. // compute the function value
  16963. float fx = 0;
  16964. ggml_set_zero(opt->adam.g);
  16965. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16966. if (callback) {
  16967. callback(callback_data, accum_step, &sched, &cancel);
  16968. if (cancel) {
  16969. return GGML_OPT_RESULT_CANCEL;
  16970. }
  16971. }
  16972. // ggml_graph_reset (gf);
  16973. ggml_set_f32 (f->grad, 1.0f);
  16974. ggml_graph_compute(gb, &cplan);
  16975. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16976. fx += ggml_get_f32_1d(f, 0);
  16977. }
  16978. fx *= accum_norm;
  16979. opt->adam.fx_prev = fx;
  16980. opt->adam.fx_best = opt->adam.fx_prev;
  16981. if (pf) {
  16982. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16983. }
  16984. opt->loss_before = opt->adam.fx_prev;
  16985. opt->loss_after = opt->adam.fx_prev;
  16986. // initialize
  16987. if (opt->just_initialized) {
  16988. opt->adam.n_no_improvement = 0;
  16989. opt->just_initialized = false;
  16990. }
  16991. float * fx_best = &opt->adam.fx_best;
  16992. float * fx_prev = &opt->adam.fx_prev;
  16993. int * n_no_improvement = &opt->adam.n_no_improvement;
  16994. int iter0 = opt->iter;
  16995. // run the optimizer
  16996. for (int t = 0; t < params.adam.n_iter; ++t) {
  16997. opt->iter = iter0 + t + 1;
  16998. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16999. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17000. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17001. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17002. for (int i = 0; i < np; ++i) {
  17003. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17004. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17005. }
  17006. const int64_t t_start_wall = ggml_time_us();
  17007. const int64_t t_start_cpu = ggml_cycles();
  17008. UNUSED(t_start_wall);
  17009. UNUSED(t_start_cpu);
  17010. {
  17011. float gnorm = 1.0f;
  17012. if (gclip > 0.0f) {
  17013. // gradient clipping
  17014. ggml_float sum = 0.0;
  17015. for (int64_t i = 0; i < nx; ++i) {
  17016. sum += (ggml_float)(g[i]*g[i]);
  17017. }
  17018. ggml_float norm = sqrt(sum);
  17019. if (norm > (ggml_float) gclip) {
  17020. gnorm = (float) ((ggml_float) gclip / norm);
  17021. }
  17022. }
  17023. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17024. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17025. int64_t i = 0;
  17026. for (int p = 0; p < np; ++p) {
  17027. const int64_t ne = ggml_nelements(ps[p]);
  17028. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17029. for (int64_t j = 0; j < ne; ++j) {
  17030. float x = ggml_get_f32_1d(ps[p], j);
  17031. float g_ = g[i]*gnorm;
  17032. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17033. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17034. float mh = m[i]*beta1h;
  17035. float vh = v[i]*beta2h;
  17036. vh = sqrtf(vh) + eps;
  17037. x = x*(1.0f - p_decay) - mh/vh;
  17038. ggml_set_f32_1d(ps[p], j, x);
  17039. ++i;
  17040. }
  17041. }
  17042. }
  17043. fx = 0;
  17044. ggml_set_zero(opt->adam.g);
  17045. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17046. if (callback) {
  17047. callback(callback_data, accum_step, &sched, &cancel);
  17048. if (cancel) {
  17049. return GGML_OPT_RESULT_CANCEL;;
  17050. }
  17051. }
  17052. // ggml_graph_reset (gf);
  17053. ggml_set_f32 (f->grad, 1.0f);
  17054. ggml_graph_compute(gb, &cplan);
  17055. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17056. fx += ggml_get_f32_1d(f, 0);
  17057. }
  17058. fx *= accum_norm;
  17059. opt->loss_after = fx;
  17060. // check convergence
  17061. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17062. GGML_PRINT_DEBUG("converged\n");
  17063. return GGML_OPT_RESULT_OK;
  17064. }
  17065. // delta-based convergence test
  17066. if (pf != NULL) {
  17067. // need at least params.past iterations to start checking for convergence
  17068. if (params.past <= iter0 + t) {
  17069. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17070. if (fabsf(rate) < params.delta) {
  17071. return GGML_OPT_RESULT_OK;
  17072. }
  17073. }
  17074. pf[(iter0 + t)%params.past] = fx;
  17075. }
  17076. // check for improvement
  17077. if (params.max_no_improvement > 0) {
  17078. if (fx_best[0] > fx) {
  17079. fx_best[0] = fx;
  17080. n_no_improvement[0] = 0;
  17081. } else {
  17082. ++n_no_improvement[0];
  17083. if (n_no_improvement[0] >= params.max_no_improvement) {
  17084. return GGML_OPT_RESULT_OK;
  17085. }
  17086. }
  17087. }
  17088. fx_prev[0] = fx;
  17089. {
  17090. const int64_t t_end_cpu = ggml_cycles();
  17091. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17092. UNUSED(t_end_cpu);
  17093. const int64_t t_end_wall = ggml_time_us();
  17094. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17095. UNUSED(t_end_wall);
  17096. }
  17097. }
  17098. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17099. }
  17100. //
  17101. // L-BFGS
  17102. //
  17103. // the L-BFGS implementation below is based on the following implementation:
  17104. //
  17105. // https://github.com/chokkan/liblbfgs
  17106. //
  17107. struct ggml_lbfgs_iteration_data {
  17108. float alpha;
  17109. float ys;
  17110. float * s;
  17111. float * y;
  17112. };
  17113. static enum ggml_opt_result linesearch_backtracking(
  17114. const struct ggml_opt_params * params,
  17115. int nx,
  17116. float * x,
  17117. float * fx,
  17118. float * g,
  17119. float * d,
  17120. float * step,
  17121. const float * xp,
  17122. struct ggml_tensor * f,
  17123. struct ggml_cgraph * gb,
  17124. struct ggml_cplan * cplan,
  17125. const int np,
  17126. struct ggml_tensor * ps[],
  17127. bool * cancel,
  17128. ggml_opt_callback callback,
  17129. void * callback_data) {
  17130. int count = 0;
  17131. float width = 0.0f;
  17132. float dg = 0.0f;
  17133. float finit = 0.0f;
  17134. float dginit = 0.0f;
  17135. float dgtest = 0.0f;
  17136. const float dec = 0.5f;
  17137. const float inc = 2.1f;
  17138. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17139. const float accum_norm = 1.0f / (float) n_accum;
  17140. if (*step <= 0.f) {
  17141. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17142. }
  17143. // compute the initial gradient in the search direction
  17144. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17145. // make sure that d points to a descent direction
  17146. if (0 < dginit) {
  17147. return GGML_LINESEARCH_FAIL;
  17148. }
  17149. // initialize local variables
  17150. finit = *fx;
  17151. dgtest = params->lbfgs.ftol*dginit;
  17152. while (true) {
  17153. ggml_vec_cpy_f32(nx, x, xp);
  17154. ggml_vec_mad_f32(nx, x, d, *step);
  17155. // evaluate the function and gradient values
  17156. {
  17157. ggml_opt_set_params(np, ps, x);
  17158. *fx = 0;
  17159. memset(g, 0, sizeof(float)*nx);
  17160. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17161. if (callback) {
  17162. // LBFG-S does not support learning rate -> ignore learning schedule
  17163. float sched = 0;
  17164. callback(callback_data, accum_step, &sched, cancel);
  17165. if (*cancel) {
  17166. return GGML_OPT_RESULT_CANCEL;
  17167. }
  17168. }
  17169. // ggml_graph_reset (gf);
  17170. ggml_set_f32 (f->grad, 1.0f);
  17171. ggml_graph_compute(gb, cplan);
  17172. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17173. *fx += ggml_get_f32_1d(f, 0);
  17174. }
  17175. *fx *= accum_norm;
  17176. }
  17177. ++count;
  17178. if (*fx > finit + (*step)*dgtest) {
  17179. width = dec;
  17180. } else {
  17181. // Armijo condition is satisfied
  17182. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17183. return count;
  17184. }
  17185. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17186. // check the Wolfe condition
  17187. if (dg < params->lbfgs.wolfe * dginit) {
  17188. width = inc;
  17189. } else {
  17190. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17191. // regular Wolfe conditions
  17192. return count;
  17193. }
  17194. if(dg > -params->lbfgs.wolfe*dginit) {
  17195. width = dec;
  17196. } else {
  17197. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17198. return count;
  17199. }
  17200. }
  17201. }
  17202. if (*step < params->lbfgs.min_step) {
  17203. return GGML_LINESEARCH_MINIMUM_STEP;
  17204. }
  17205. if (*step > params->lbfgs.max_step) {
  17206. return GGML_LINESEARCH_MAXIMUM_STEP;
  17207. }
  17208. if (params->lbfgs.max_linesearch <= count) {
  17209. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17210. }
  17211. (*step) *= width;
  17212. }
  17213. GGML_ASSERT(false && "line search failed");
  17214. return GGML_LINESEARCH_FAIL;
  17215. }
  17216. static enum ggml_opt_result ggml_opt_lbfgs(
  17217. struct ggml_context * ctx,
  17218. struct ggml_opt_context * opt,
  17219. struct ggml_opt_params params,
  17220. struct ggml_tensor * f,
  17221. struct ggml_cgraph * gf,
  17222. struct ggml_cgraph * gb,
  17223. ggml_opt_callback callback,
  17224. void * callback_data) {
  17225. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17226. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17227. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17228. return GGML_OPT_RESULT_INVALID_WOLFE;
  17229. }
  17230. }
  17231. const int m = params.lbfgs.m;
  17232. // these will store the parameters we want to optimize
  17233. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17234. int np = 0;
  17235. int nx = 0;
  17236. for (int i = 0; i < gf->n_nodes; ++i) {
  17237. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17238. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17239. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17240. ps[np++] = gf->nodes[i];
  17241. nx += ggml_nelements(gf->nodes[i]);
  17242. }
  17243. }
  17244. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17245. int iter = opt->iter;
  17246. ggml_opt_init(ctx, opt, params, nx);
  17247. opt->iter = iter;
  17248. }
  17249. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17250. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17251. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17252. float * x = opt->lbfgs.x->data; // current parameters
  17253. float * xp = opt->lbfgs.xp->data; // previous parameters
  17254. float * g = opt->lbfgs.g->data; // current gradient
  17255. float * gp = opt->lbfgs.gp->data; // previous gradient
  17256. float * d = opt->lbfgs.d->data; // search direction
  17257. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17258. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17259. const float accum_norm = 1.0f / (float) n_accum;
  17260. float fx = 0.0f; // cost function value
  17261. float xnorm = 0.0f; // ||x||
  17262. float gnorm = 0.0f; // ||g||
  17263. // initialize x from the graph nodes
  17264. ggml_opt_get_params(np, ps, x);
  17265. // the L-BFGS memory
  17266. float * lm_alpha = opt->lbfgs.lmal->data;
  17267. float * lm_ys = opt->lbfgs.lmys->data;
  17268. float * lm_s = opt->lbfgs.lms->data;
  17269. float * lm_y = opt->lbfgs.lmy->data;
  17270. bool cancel = false;
  17271. // evaluate the function value and its gradient
  17272. {
  17273. ggml_opt_set_params(np, ps, x);
  17274. fx = 0;
  17275. memset(g, 0, sizeof(float)*nx);
  17276. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17277. if (callback) {
  17278. // LBFG-S does not support learning rate -> ignore learning schedule
  17279. float sched = 0;
  17280. callback(callback_data, accum_step, &sched, &cancel);
  17281. if (cancel) {
  17282. return GGML_OPT_RESULT_CANCEL;
  17283. }
  17284. }
  17285. // ggml_graph_reset (gf);
  17286. ggml_set_f32 (f->grad, 1.0f);
  17287. ggml_graph_compute(gb, &cplan);
  17288. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17289. fx += ggml_get_f32_1d(f, 0);
  17290. }
  17291. fx *= accum_norm;
  17292. opt->loss_before = fx;
  17293. opt->loss_after = fx;
  17294. }
  17295. // search direction = -gradient
  17296. ggml_vec_neg_f32(nx, d, g);
  17297. // ||x||, ||g||
  17298. ggml_vec_norm_f32(nx, &xnorm, x);
  17299. ggml_vec_norm_f32(nx, &gnorm, g);
  17300. if (xnorm < 1.0f) {
  17301. xnorm = 1.0f;
  17302. }
  17303. // already optimized
  17304. if (gnorm/xnorm <= params.lbfgs.eps) {
  17305. return GGML_OPT_RESULT_OK;
  17306. }
  17307. if (opt->just_initialized) {
  17308. if (pf) {
  17309. pf[0] = fx;
  17310. }
  17311. opt->lbfgs.fx_best = fx;
  17312. // initial step
  17313. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17314. opt->lbfgs.j = 0;
  17315. opt->lbfgs.k = 1;
  17316. opt->lbfgs.end = 0;
  17317. opt->lbfgs.n_no_improvement = 0;
  17318. opt->just_initialized = false;
  17319. }
  17320. float * fx_best = &opt->lbfgs.fx_best;
  17321. float * step = &opt->lbfgs.step;
  17322. int * j = &opt->lbfgs.j;
  17323. int * k = &opt->lbfgs.k;
  17324. int * end = &opt->lbfgs.end;
  17325. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17326. int ls = 0;
  17327. int bound = 0;
  17328. float ys = 0.0f;
  17329. float yy = 0.0f;
  17330. float beta = 0.0f;
  17331. int it = 0;
  17332. while (true) {
  17333. // store the current position and gradient vectors
  17334. ggml_vec_cpy_f32(nx, xp, x);
  17335. ggml_vec_cpy_f32(nx, gp, g);
  17336. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17337. // to determine if the optimization should be cancelled
  17338. // this is a simple change, but not doing this atm, since I don't have a nice
  17339. // way to test and don't want to break something with so many changes lined up
  17340. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17341. if (cancel) {
  17342. return GGML_OPT_RESULT_CANCEL;
  17343. }
  17344. if (ls < 0) {
  17345. // linesearch failed - go back to the previous point and return
  17346. ggml_vec_cpy_f32(nx, x, xp);
  17347. ggml_vec_cpy_f32(nx, g, gp);
  17348. return ls;
  17349. }
  17350. opt->loss_after = fx;
  17351. ggml_vec_norm_f32(nx, &xnorm, x);
  17352. ggml_vec_norm_f32(nx, &gnorm, g);
  17353. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17354. if (xnorm < 1.0f) {
  17355. xnorm = 1.0f;
  17356. }
  17357. if (gnorm/xnorm <= params.lbfgs.eps) {
  17358. // converged
  17359. return GGML_OPT_RESULT_OK;
  17360. }
  17361. // delta-based convergence test
  17362. if (pf != NULL) {
  17363. // need at least params.past iterations to start checking for convergence
  17364. if (params.past <= k[0]) {
  17365. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17366. if (fabsf(rate) < params.delta) {
  17367. return GGML_OPT_RESULT_OK;
  17368. }
  17369. }
  17370. pf[k[0]%params.past] = fx;
  17371. }
  17372. // check for improvement
  17373. if (params.max_no_improvement > 0) {
  17374. if (fx < fx_best[0]) {
  17375. fx_best[0] = fx;
  17376. n_no_improvement[0] = 0;
  17377. } else {
  17378. n_no_improvement[0]++;
  17379. if (n_no_improvement[0] >= params.max_no_improvement) {
  17380. return GGML_OPT_RESULT_OK;
  17381. }
  17382. }
  17383. }
  17384. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17385. // reached the maximum number of iterations
  17386. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17387. }
  17388. // update vectors s and y:
  17389. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17390. // y_{k+1} = g_{k+1} - g_{k}.
  17391. //
  17392. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17393. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17394. // compute scalars ys and yy:
  17395. // ys = y^t \cdot s -> 1 / \rho.
  17396. // yy = y^t \cdot y.
  17397. //
  17398. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17399. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17400. lm_ys[end[0]] = ys;
  17401. // find new search direction
  17402. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17403. bound = (m <= k[0]) ? m : k[0];
  17404. k[0]++;
  17405. it++;
  17406. end[0] = (end[0] + 1)%m;
  17407. // initialize search direction with -g
  17408. ggml_vec_neg_f32(nx, d, g);
  17409. j[0] = end[0];
  17410. for (int i = 0; i < bound; ++i) {
  17411. j[0] = (j[0] + m - 1) % m;
  17412. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17413. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17414. lm_alpha[j[0]] /= lm_ys[j[0]];
  17415. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17416. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17417. }
  17418. ggml_vec_scale_f32(nx, d, ys/yy);
  17419. for (int i = 0; i < bound; ++i) {
  17420. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17421. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17422. beta /= lm_ys[j[0]];
  17423. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17424. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17425. j[0] = (j[0] + 1)%m;
  17426. }
  17427. step[0] = 1.0;
  17428. }
  17429. GGML_ASSERT(false && "lbfgs failed");
  17430. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17431. }
  17432. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17433. struct ggml_opt_params result;
  17434. switch (type) {
  17435. case GGML_OPT_TYPE_ADAM:
  17436. {
  17437. result = (struct ggml_opt_params) {
  17438. .type = GGML_OPT_TYPE_ADAM,
  17439. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17440. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17441. .past = 0,
  17442. .delta = 1e-5f,
  17443. .max_no_improvement = 100,
  17444. .print_forward_graph = true,
  17445. .print_backward_graph = true,
  17446. .n_gradient_accumulation = 1,
  17447. .adam = {
  17448. .n_iter = 10000,
  17449. .sched = 1.000f,
  17450. .decay = 0.0f,
  17451. .decay_min_ndim = 2,
  17452. .alpha = 0.001f,
  17453. .beta1 = 0.9f,
  17454. .beta2 = 0.999f,
  17455. .eps = 1e-8f,
  17456. .eps_f = 1e-5f,
  17457. .eps_g = 1e-3f,
  17458. .gclip = 0.0f,
  17459. },
  17460. };
  17461. } break;
  17462. case GGML_OPT_TYPE_LBFGS:
  17463. {
  17464. result = (struct ggml_opt_params) {
  17465. .type = GGML_OPT_TYPE_LBFGS,
  17466. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17467. .n_threads = 1,
  17468. .past = 0,
  17469. .delta = 1e-5f,
  17470. .max_no_improvement = 0,
  17471. .print_forward_graph = true,
  17472. .print_backward_graph = true,
  17473. .n_gradient_accumulation = 1,
  17474. .lbfgs = {
  17475. .m = 6,
  17476. .n_iter = 100,
  17477. .max_linesearch = 20,
  17478. .eps = 1e-5f,
  17479. .ftol = 1e-4f,
  17480. .wolfe = 0.9f,
  17481. .min_step = 1e-20f,
  17482. .max_step = 1e+20f,
  17483. .linesearch = GGML_LINESEARCH_DEFAULT,
  17484. },
  17485. };
  17486. } break;
  17487. }
  17488. return result;
  17489. }
  17490. GGML_API void ggml_opt_init(
  17491. struct ggml_context * ctx,
  17492. struct ggml_opt_context * opt,
  17493. struct ggml_opt_params params,
  17494. int64_t nx) {
  17495. opt->ctx = ctx;
  17496. opt->params = params;
  17497. opt->iter = 0;
  17498. opt->nx = nx;
  17499. opt->just_initialized = true;
  17500. if (opt->ctx == NULL) {
  17501. struct ggml_init_params ctx_opt_params;
  17502. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17503. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17504. if (opt->params.past > 0) {
  17505. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17506. }
  17507. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17508. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17509. if (opt->params.past > 0) {
  17510. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17511. }
  17512. }
  17513. ctx_opt_params.mem_buffer = NULL;
  17514. ctx_opt_params.no_alloc = false;
  17515. opt->ctx = ggml_init(ctx_opt_params);
  17516. }
  17517. switch (opt->params.type) {
  17518. case GGML_OPT_TYPE_ADAM:
  17519. {
  17520. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17521. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17522. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17523. opt->adam.pf = params.past > 0
  17524. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17525. : NULL;
  17526. ggml_set_zero(opt->adam.m);
  17527. ggml_set_zero(opt->adam.v);
  17528. if (opt->adam.pf) {
  17529. ggml_set_zero(opt->adam.pf);
  17530. }
  17531. } break;
  17532. case GGML_OPT_TYPE_LBFGS:
  17533. {
  17534. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17535. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17536. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17537. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17538. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17539. opt->lbfgs.pf = params.past > 0
  17540. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17541. : NULL;
  17542. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17543. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17544. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17545. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17546. ggml_set_zero(opt->lbfgs.x);
  17547. ggml_set_zero(opt->lbfgs.xp);
  17548. ggml_set_zero(opt->lbfgs.g);
  17549. ggml_set_zero(opt->lbfgs.gp);
  17550. ggml_set_zero(opt->lbfgs.d);
  17551. if (opt->lbfgs.pf) {
  17552. ggml_set_zero(opt->lbfgs.pf);
  17553. }
  17554. ggml_set_zero(opt->lbfgs.lmal);
  17555. ggml_set_zero(opt->lbfgs.lmys);
  17556. ggml_set_zero(opt->lbfgs.lms);
  17557. ggml_set_zero(opt->lbfgs.lmy);
  17558. } break;
  17559. }
  17560. }
  17561. enum ggml_opt_result ggml_opt(
  17562. struct ggml_context * ctx,
  17563. struct ggml_opt_params params,
  17564. struct ggml_tensor * f) {
  17565. bool free_ctx = false;
  17566. if (ctx == NULL) {
  17567. struct ggml_init_params params_ctx = {
  17568. .mem_size = 16*1024*1024,
  17569. .mem_buffer = NULL,
  17570. .no_alloc = false,
  17571. };
  17572. ctx = ggml_init(params_ctx);
  17573. if (ctx == NULL) {
  17574. return GGML_OPT_RESULT_NO_CONTEXT;
  17575. }
  17576. free_ctx = true;
  17577. }
  17578. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17579. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17580. ggml_opt_init(ctx, opt, params, 0);
  17581. result = ggml_opt_resume(ctx, opt, f);
  17582. if (free_ctx) {
  17583. ggml_free(ctx);
  17584. }
  17585. return result;
  17586. }
  17587. enum ggml_opt_result ggml_opt_resume(
  17588. struct ggml_context * ctx,
  17589. struct ggml_opt_context * opt,
  17590. struct ggml_tensor * f) {
  17591. // build forward + backward compute graphs
  17592. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17593. ggml_build_forward_expand(gf, f);
  17594. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17595. ggml_build_backward_expand(ctx, gf, gb, true);
  17596. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17597. }
  17598. enum ggml_opt_result ggml_opt_resume_g(
  17599. struct ggml_context * ctx,
  17600. struct ggml_opt_context * opt,
  17601. struct ggml_tensor * f,
  17602. struct ggml_cgraph * gf,
  17603. struct ggml_cgraph * gb,
  17604. ggml_opt_callback callback,
  17605. void * callback_data) {
  17606. // build forward + backward compute graphs
  17607. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17608. switch (opt->params.type) {
  17609. case GGML_OPT_TYPE_ADAM:
  17610. {
  17611. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17612. } break;
  17613. case GGML_OPT_TYPE_LBFGS:
  17614. {
  17615. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17616. } break;
  17617. }
  17618. if (opt->params.print_forward_graph) {
  17619. ggml_graph_print (gf);
  17620. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17621. }
  17622. if (opt->params.print_backward_graph) {
  17623. ggml_graph_print (gb);
  17624. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17625. }
  17626. return result;
  17627. }
  17628. ////////////////////////////////////////////////////////////////////////////////
  17629. void ggml_set_input(struct ggml_tensor * tensor) {
  17630. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17631. }
  17632. void ggml_set_output(struct ggml_tensor * tensor) {
  17633. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17634. }
  17635. ////////////////////////////////////////////////////////////////////////////////
  17636. void ggml_quantize_init(enum ggml_type type) {
  17637. ggml_critical_section_start();
  17638. switch (type) {
  17639. case GGML_TYPE_IQ2_XXS:
  17640. case GGML_TYPE_IQ2_XS:
  17641. case GGML_TYPE_IQ2_S:
  17642. case GGML_TYPE_IQ1_S:
  17643. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17644. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17645. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17646. default: // nothing
  17647. break;
  17648. }
  17649. ggml_critical_section_end();
  17650. }
  17651. void ggml_quantize_free(void) {
  17652. ggml_critical_section_start();
  17653. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17654. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17655. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17656. iq3xs_free_impl(256);
  17657. ggml_critical_section_end();
  17658. }
  17659. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17660. return
  17661. type == GGML_TYPE_IQ2_XXS ||
  17662. type == GGML_TYPE_IQ2_XS ||
  17663. type == GGML_TYPE_IQ1_S;// ||
  17664. //type == GGML_TYPE_IQ1_M;
  17665. }
  17666. size_t ggml_quantize_chunk(
  17667. enum ggml_type type,
  17668. const float * src,
  17669. void * dst,
  17670. int64_t start,
  17671. int64_t nrows,
  17672. int64_t n_per_row,
  17673. const float * imatrix) {
  17674. const int64_t n = (int64_t) nrows * n_per_row;
  17675. if (ggml_quantize_requires_imatrix(type)) {
  17676. GGML_ASSERT(imatrix != NULL);
  17677. }
  17678. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17679. GGML_ASSERT(start % n_per_row == 0);
  17680. ggml_quantize_init(type); // this is noop if already initialized
  17681. const size_t start_row = start / n_per_row;
  17682. const size_t row_size = ggml_row_size(type, n_per_row);
  17683. size_t result = 0;
  17684. switch (type) {
  17685. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17686. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17687. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17688. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17689. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17690. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17691. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17692. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17693. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17694. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17695. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17696. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17697. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17698. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17699. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17700. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17701. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17702. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17703. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17704. case GGML_TYPE_F16:
  17705. {
  17706. size_t elemsize = sizeof(ggml_fp16_t);
  17707. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17708. result = n * elemsize;
  17709. } break;
  17710. case GGML_TYPE_BF16:
  17711. {
  17712. size_t elemsize = sizeof(ggml_bf16_t);
  17713. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17714. result = n * elemsize;
  17715. } break;
  17716. case GGML_TYPE_F32:
  17717. {
  17718. size_t elemsize = sizeof(float);
  17719. result = n * elemsize;
  17720. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17721. } break;
  17722. default:
  17723. assert(false);
  17724. }
  17725. GGML_ASSERT(result == nrows * row_size);
  17726. return result;
  17727. }
  17728. ////////////////////////////////////////////////////////////////////////////////
  17729. struct gguf_str {
  17730. uint64_t n; // GGUFv2
  17731. char * data;
  17732. };
  17733. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17734. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17735. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17736. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17737. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17738. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17739. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17740. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17741. [GGUF_TYPE_BOOL] = sizeof(bool),
  17742. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17743. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17744. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17745. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17746. [GGUF_TYPE_ARRAY] = 0, // undefined
  17747. };
  17748. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17749. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17750. [GGUF_TYPE_UINT8] = "u8",
  17751. [GGUF_TYPE_INT8] = "i8",
  17752. [GGUF_TYPE_UINT16] = "u16",
  17753. [GGUF_TYPE_INT16] = "i16",
  17754. [GGUF_TYPE_UINT32] = "u32",
  17755. [GGUF_TYPE_INT32] = "i32",
  17756. [GGUF_TYPE_FLOAT32] = "f32",
  17757. [GGUF_TYPE_BOOL] = "bool",
  17758. [GGUF_TYPE_STRING] = "str",
  17759. [GGUF_TYPE_ARRAY] = "arr",
  17760. [GGUF_TYPE_UINT64] = "u64",
  17761. [GGUF_TYPE_INT64] = "i64",
  17762. [GGUF_TYPE_FLOAT64] = "f64",
  17763. };
  17764. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17765. union gguf_value {
  17766. uint8_t uint8;
  17767. int8_t int8;
  17768. uint16_t uint16;
  17769. int16_t int16;
  17770. uint32_t uint32;
  17771. int32_t int32;
  17772. float float32;
  17773. uint64_t uint64;
  17774. int64_t int64;
  17775. double float64;
  17776. bool bool_;
  17777. struct gguf_str str;
  17778. struct {
  17779. enum gguf_type type;
  17780. uint64_t n; // GGUFv2
  17781. void * data;
  17782. } arr;
  17783. };
  17784. struct gguf_kv {
  17785. struct gguf_str key;
  17786. enum gguf_type type;
  17787. union gguf_value value;
  17788. };
  17789. struct gguf_header {
  17790. char magic[4];
  17791. uint32_t version;
  17792. uint64_t n_tensors; // GGUFv2
  17793. uint64_t n_kv; // GGUFv2
  17794. };
  17795. struct gguf_tensor_info {
  17796. struct gguf_str name;
  17797. uint32_t n_dims;
  17798. uint64_t ne[GGML_MAX_DIMS];
  17799. enum ggml_type type;
  17800. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17801. // for writing API
  17802. const void * data;
  17803. size_t size;
  17804. };
  17805. struct gguf_context {
  17806. struct gguf_header header;
  17807. struct gguf_kv * kv;
  17808. struct gguf_tensor_info * infos;
  17809. size_t alignment;
  17810. size_t offset; // offset of `data` from beginning of file
  17811. size_t size; // size of `data` in bytes
  17812. //uint8_t * padding;
  17813. void * data;
  17814. };
  17815. static size_t gguf_type_size(enum gguf_type type) {
  17816. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17817. return GGUF_TYPE_SIZE[type];
  17818. }
  17819. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17820. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17821. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17822. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17823. GGML_ASSERT(info->ne[i] > 0);
  17824. }
  17825. // prevent overflow for total number of elements
  17826. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17827. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17828. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17829. }
  17830. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17831. const size_t n = fread(dst, 1, size, file);
  17832. *offset += n;
  17833. return n == size;
  17834. }
  17835. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17836. p->n = 0;
  17837. p->data = NULL;
  17838. bool ok = true;
  17839. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17840. // early exit if string length is invalid, prevents from integer overflow
  17841. if (p->n == SIZE_MAX) {
  17842. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17843. return false;
  17844. }
  17845. p->data = GGML_CALLOC(p->n + 1, 1);
  17846. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17847. return ok;
  17848. }
  17849. static void gguf_free_kv(struct gguf_kv * kv) {
  17850. if (kv->key.data) {
  17851. GGML_FREE(kv->key.data);
  17852. }
  17853. if (kv->type == GGUF_TYPE_STRING) {
  17854. if (kv->value.str.data) {
  17855. GGML_FREE(kv->value.str.data);
  17856. }
  17857. }
  17858. if (kv->type == GGUF_TYPE_ARRAY) {
  17859. if (kv->value.arr.data) {
  17860. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17861. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17862. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17863. if (str->data) {
  17864. GGML_FREE(str->data);
  17865. }
  17866. }
  17867. }
  17868. GGML_FREE(kv->value.arr.data);
  17869. }
  17870. }
  17871. }
  17872. struct gguf_context * gguf_init_empty(void) {
  17873. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17874. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17875. ctx->header.version = GGUF_VERSION;
  17876. ctx->header.n_tensors = 0;
  17877. ctx->header.n_kv = 0;
  17878. ctx->kv = NULL;
  17879. ctx->infos = NULL;
  17880. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17881. ctx->offset = 0;
  17882. ctx->size = 0;
  17883. ctx->data = NULL;
  17884. return ctx;
  17885. }
  17886. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17887. FILE * file = ggml_fopen(fname, "rb");
  17888. if (!file) {
  17889. return NULL;
  17890. }
  17891. // offset from start of file
  17892. size_t offset = 0;
  17893. char magic[4];
  17894. // check the magic before making allocations
  17895. {
  17896. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17897. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17898. if (magic[i] != GGUF_MAGIC[i]) {
  17899. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17900. fclose(file);
  17901. return NULL;
  17902. }
  17903. }
  17904. }
  17905. bool ok = true;
  17906. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17907. // read the header
  17908. {
  17909. strncpy(ctx->header.magic, magic, 4);
  17910. ctx->kv = NULL;
  17911. ctx->infos = NULL;
  17912. ctx->data = NULL;
  17913. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17914. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17915. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17916. if (ctx->header.version == 1) {
  17917. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17918. fclose(file);
  17919. gguf_free(ctx);
  17920. return NULL;
  17921. }
  17922. // sanity-checks to prevent from integer/buffer overflows
  17923. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17924. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17925. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17926. if (!ok) {
  17927. fprintf(stderr, "%s: failed to read header\n", __func__);
  17928. fclose(file);
  17929. gguf_free(ctx);
  17930. return NULL;
  17931. }
  17932. }
  17933. // read the kv pairs
  17934. {
  17935. const uint64_t n_kv = ctx->header.n_kv;
  17936. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17937. ctx->header.n_kv = 0;
  17938. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17939. for (uint64_t i = 0; i < n_kv; ++i) {
  17940. struct gguf_kv * kv = &ctx->kv[i];
  17941. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17942. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17943. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17944. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17945. switch (kv->type) {
  17946. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17947. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17948. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17949. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17950. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17951. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17952. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17953. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17954. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17955. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17956. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17957. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17958. case GGUF_TYPE_ARRAY:
  17959. {
  17960. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17961. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17962. switch (kv->value.arr.type) {
  17963. case GGUF_TYPE_UINT8:
  17964. case GGUF_TYPE_INT8:
  17965. case GGUF_TYPE_UINT16:
  17966. case GGUF_TYPE_INT16:
  17967. case GGUF_TYPE_UINT32:
  17968. case GGUF_TYPE_INT32:
  17969. case GGUF_TYPE_FLOAT32:
  17970. case GGUF_TYPE_UINT64:
  17971. case GGUF_TYPE_INT64:
  17972. case GGUF_TYPE_FLOAT64:
  17973. case GGUF_TYPE_BOOL:
  17974. {
  17975. // prevent from integer overflow in the malloc below
  17976. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17977. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17978. fclose(file);
  17979. gguf_free(ctx);
  17980. return NULL;
  17981. }
  17982. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17983. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17984. } break;
  17985. case GGUF_TYPE_STRING:
  17986. {
  17987. // prevent from integer overflow in the malloc below
  17988. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17989. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17990. fclose(file);
  17991. gguf_free(ctx);
  17992. return NULL;
  17993. }
  17994. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17995. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17996. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17997. }
  17998. } break;
  17999. case GGUF_TYPE_ARRAY:
  18000. default: GGML_ASSERT(false && "invalid type"); break;
  18001. }
  18002. } break;
  18003. default: GGML_ASSERT(false && "invalid type");
  18004. }
  18005. if (!ok) {
  18006. break;
  18007. }
  18008. ctx->header.n_kv++;
  18009. }
  18010. if (!ok) {
  18011. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18012. fclose(file);
  18013. gguf_free(ctx);
  18014. return NULL;
  18015. }
  18016. }
  18017. // read the tensor infos
  18018. if (ctx->header.n_tensors > 0) {
  18019. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18020. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18021. struct gguf_tensor_info * info = &ctx->infos[i];
  18022. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18023. info->ne[j] = 1;
  18024. }
  18025. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18026. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18027. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18028. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18029. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18030. }
  18031. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18032. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18033. // TODO: return an error instead of crashing with GGML_ASSERT
  18034. gguf_tensor_info_sanitize(info);
  18035. // make sure there is no duplicated tensor names
  18036. for (uint64_t j = 0; j < i; ++j) {
  18037. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18038. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18039. ok = false;
  18040. }
  18041. }
  18042. if (!ok) {
  18043. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18044. fclose(file);
  18045. gguf_free(ctx);
  18046. return NULL;
  18047. }
  18048. }
  18049. }
  18050. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18051. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18052. if (alignment_idx != -1) {
  18053. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18054. }
  18055. // we require the data section to be aligned, so take into account any padding
  18056. {
  18057. const size_t offset_pad = offset % ctx->alignment;
  18058. if (offset_pad != 0) {
  18059. offset += ctx->alignment - offset_pad;
  18060. fseek(file, offset, SEEK_SET);
  18061. }
  18062. }
  18063. // store the current file offset - this is where the data section starts
  18064. ctx->offset = offset;
  18065. // compute the total size of the data section, taking into account the alignment
  18066. {
  18067. ctx->size = 0;
  18068. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18069. struct gguf_tensor_info * info = &ctx->infos[i];
  18070. const int64_t ne =
  18071. (int64_t) info->ne[0] *
  18072. (int64_t) info->ne[1] *
  18073. (int64_t) info->ne[2] *
  18074. (int64_t) info->ne[3];
  18075. if (ne % ggml_blck_size(info->type) != 0) {
  18076. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18077. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18078. fclose(file);
  18079. gguf_free(ctx);
  18080. return NULL;
  18081. }
  18082. const size_t size_cur = ggml_row_size(info->type, ne);
  18083. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18084. }
  18085. }
  18086. // load the tensor data only if requested
  18087. if (params.ctx != NULL) {
  18088. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18089. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18090. // the ggml_tensor structs to the appropriate locations in the binary blob
  18091. // compute the exact size needed for the new ggml_context
  18092. const size_t mem_size =
  18093. params.no_alloc ?
  18094. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18095. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18096. struct ggml_init_params pdata = {
  18097. .mem_size = mem_size,
  18098. .mem_buffer = NULL,
  18099. .no_alloc = params.no_alloc,
  18100. };
  18101. *params.ctx = ggml_init(pdata);
  18102. struct ggml_context * ctx_data = *params.ctx;
  18103. struct ggml_tensor * data = NULL;
  18104. if (!params.no_alloc) {
  18105. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18106. ok = ok && data != NULL;
  18107. // read the binary blob with the tensor data
  18108. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18109. if (!ok) {
  18110. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18111. fclose(file);
  18112. ggml_free(ctx_data);
  18113. gguf_free(ctx);
  18114. return NULL;
  18115. }
  18116. ctx->data = data->data;
  18117. }
  18118. ggml_set_no_alloc(ctx_data, true);
  18119. // create the tensors
  18120. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18121. const int64_t ne[GGML_MAX_DIMS] = {
  18122. ctx->infos[i].ne[0],
  18123. ctx->infos[i].ne[1],
  18124. ctx->infos[i].ne[2],
  18125. ctx->infos[i].ne[3],
  18126. };
  18127. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18128. ok = ok && cur != NULL;
  18129. if (!ok) {
  18130. break;
  18131. }
  18132. ggml_set_name(cur, ctx->infos[i].name.data);
  18133. // point the data member to the appropriate location in the binary blob using the tensor infos
  18134. if (!params.no_alloc) {
  18135. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18136. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18137. }
  18138. }
  18139. if (!ok) {
  18140. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18141. fclose(file);
  18142. ggml_free(ctx_data);
  18143. gguf_free(ctx);
  18144. return NULL;
  18145. }
  18146. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18147. }
  18148. fclose(file);
  18149. return ctx;
  18150. }
  18151. void gguf_free(struct gguf_context * ctx) {
  18152. if (ctx == NULL) {
  18153. return;
  18154. }
  18155. if (ctx->kv) {
  18156. // free string memory - not great..
  18157. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18158. gguf_free_kv(&ctx->kv[i]);
  18159. }
  18160. GGML_FREE(ctx->kv);
  18161. }
  18162. if (ctx->infos) {
  18163. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18164. struct gguf_tensor_info * info = &ctx->infos[i];
  18165. if (info->name.data) {
  18166. GGML_FREE(info->name.data);
  18167. }
  18168. }
  18169. GGML_FREE(ctx->infos);
  18170. }
  18171. GGML_FREE(ctx);
  18172. }
  18173. const char * gguf_type_name(enum gguf_type type) {
  18174. return GGUF_TYPE_NAME[type];
  18175. }
  18176. int gguf_get_version(const struct gguf_context * ctx) {
  18177. return ctx->header.version;
  18178. }
  18179. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18180. return ctx->alignment;
  18181. }
  18182. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18183. return ctx->offset;
  18184. }
  18185. void * gguf_get_data(const struct gguf_context * ctx) {
  18186. return ctx->data;
  18187. }
  18188. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18189. return ctx->header.n_kv;
  18190. }
  18191. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18192. // return -1 if key not found
  18193. int keyfound = -1;
  18194. const int n_kv = gguf_get_n_kv(ctx);
  18195. for (int i = 0; i < n_kv; ++i) {
  18196. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18197. keyfound = i;
  18198. break;
  18199. }
  18200. }
  18201. return keyfound;
  18202. }
  18203. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18204. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18205. return ctx->kv[key_id].key.data;
  18206. }
  18207. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18208. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18209. return ctx->kv[key_id].type;
  18210. }
  18211. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18212. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18213. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18214. return ctx->kv[key_id].value.arr.type;
  18215. }
  18216. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18217. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18218. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18219. return ctx->kv[key_id].value.arr.data;
  18220. }
  18221. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18222. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18223. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18224. struct gguf_kv * kv = &ctx->kv[key_id];
  18225. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18226. return str->data;
  18227. }
  18228. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18229. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18230. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18231. return ctx->kv[key_id].value.arr.n;
  18232. }
  18233. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18234. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18235. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18236. return ctx->kv[key_id].value.uint8;
  18237. }
  18238. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18239. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18240. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18241. return ctx->kv[key_id].value.int8;
  18242. }
  18243. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18244. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18245. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18246. return ctx->kv[key_id].value.uint16;
  18247. }
  18248. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18249. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18250. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18251. return ctx->kv[key_id].value.int16;
  18252. }
  18253. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18254. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18255. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18256. return ctx->kv[key_id].value.uint32;
  18257. }
  18258. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18259. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18260. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18261. return ctx->kv[key_id].value.int32;
  18262. }
  18263. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18264. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18265. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18266. return ctx->kv[key_id].value.float32;
  18267. }
  18268. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18269. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18270. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18271. return ctx->kv[key_id].value.uint64;
  18272. }
  18273. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18274. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18275. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18276. return ctx->kv[key_id].value.int64;
  18277. }
  18278. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18279. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18280. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18281. return ctx->kv[key_id].value.float64;
  18282. }
  18283. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18284. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18285. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18286. return ctx->kv[key_id].value.bool_;
  18287. }
  18288. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18289. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18290. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18291. return ctx->kv[key_id].value.str.data;
  18292. }
  18293. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18294. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18295. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18296. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18297. return &ctx->kv[key_id].value;
  18298. }
  18299. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18300. return ctx->header.n_tensors;
  18301. }
  18302. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18303. // return -1 if tensor not found
  18304. int tensorfound = -1;
  18305. const int n_tensors = gguf_get_n_tensors(ctx);
  18306. for (int i = 0; i < n_tensors; ++i) {
  18307. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18308. tensorfound = i;
  18309. break;
  18310. }
  18311. }
  18312. return tensorfound;
  18313. }
  18314. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18315. return ctx->infos[i].offset;
  18316. }
  18317. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18318. return ctx->infos[i].name.data;
  18319. }
  18320. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18321. return ctx->infos[i].type;
  18322. }
  18323. // returns the index
  18324. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18325. const int idx = gguf_find_key(ctx, key);
  18326. if (idx >= 0) {
  18327. return idx;
  18328. }
  18329. const int n_kv = gguf_get_n_kv(ctx);
  18330. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18331. ctx->kv[n_kv].key.n = strlen(key);
  18332. ctx->kv[n_kv].key.data = strdup(key);
  18333. ctx->header.n_kv++;
  18334. return n_kv;
  18335. }
  18336. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18337. const int idx = gguf_find_key(ctx, key);
  18338. if (idx >= 0) {
  18339. const int n_kv = gguf_get_n_kv(ctx);
  18340. gguf_free_kv(&ctx->kv[idx]);
  18341. for (int i = idx; i < n_kv-1; ++i) {
  18342. ctx->kv[i] = ctx->kv[i+1];
  18343. }
  18344. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18345. ctx->header.n_kv--;
  18346. }
  18347. }
  18348. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18349. const int idx = gguf_get_or_add_key(ctx, key);
  18350. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18351. ctx->kv[idx].value.uint8 = val;
  18352. }
  18353. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18354. const int idx = gguf_get_or_add_key(ctx, key);
  18355. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18356. ctx->kv[idx].value.int8 = val;
  18357. }
  18358. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18359. const int idx = gguf_get_or_add_key(ctx, key);
  18360. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18361. ctx->kv[idx].value.uint16 = val;
  18362. }
  18363. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18364. const int idx = gguf_get_or_add_key(ctx, key);
  18365. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18366. ctx->kv[idx].value.int16 = val;
  18367. }
  18368. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18369. const int idx = gguf_get_or_add_key(ctx, key);
  18370. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18371. ctx->kv[idx].value.uint32 = val;
  18372. }
  18373. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18374. const int idx = gguf_get_or_add_key(ctx, key);
  18375. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18376. ctx->kv[idx].value.int32 = val;
  18377. }
  18378. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18379. const int idx = gguf_get_or_add_key(ctx, key);
  18380. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18381. ctx->kv[idx].value.float32 = val;
  18382. }
  18383. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18384. const int idx = gguf_get_or_add_key(ctx, key);
  18385. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18386. ctx->kv[idx].value.uint64 = val;
  18387. }
  18388. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18389. const int idx = gguf_get_or_add_key(ctx, key);
  18390. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18391. ctx->kv[idx].value.int64 = val;
  18392. }
  18393. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18394. const int idx = gguf_get_or_add_key(ctx, key);
  18395. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18396. ctx->kv[idx].value.float64 = val;
  18397. }
  18398. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18399. const int idx = gguf_get_or_add_key(ctx, key);
  18400. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18401. ctx->kv[idx].value.bool_ = val;
  18402. }
  18403. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18404. const int idx = gguf_get_or_add_key(ctx, key);
  18405. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18406. ctx->kv[idx].value.str.n = strlen(val);
  18407. ctx->kv[idx].value.str.data = strdup(val);
  18408. }
  18409. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18410. const int idx = gguf_get_or_add_key(ctx, key);
  18411. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18412. ctx->kv[idx].value.arr.type = type;
  18413. ctx->kv[idx].value.arr.n = n;
  18414. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18415. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18416. }
  18417. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18418. const int idx = gguf_get_or_add_key(ctx, key);
  18419. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18420. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18421. ctx->kv[idx].value.arr.n = n;
  18422. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18423. for (int i = 0; i < n; i++) {
  18424. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18425. str->n = strlen(data[i]);
  18426. str->data = strdup(data[i]);
  18427. }
  18428. }
  18429. // set or add KV pairs from another context
  18430. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18431. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18432. switch (src->kv[i].type) {
  18433. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18434. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18435. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18436. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18437. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18438. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18439. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18440. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18441. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18442. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18443. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18444. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18445. case GGUF_TYPE_ARRAY:
  18446. {
  18447. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18448. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18449. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18450. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18451. }
  18452. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18453. GGML_FREE((void *)data);
  18454. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18455. GGML_ASSERT(false && "nested arrays not supported");
  18456. } else {
  18457. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18458. }
  18459. } break;
  18460. default: GGML_ASSERT(false && "invalid type"); break;
  18461. }
  18462. }
  18463. }
  18464. void gguf_add_tensor(
  18465. struct gguf_context * ctx,
  18466. const struct ggml_tensor * tensor) {
  18467. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18468. GGML_ASSERT(false && "duplicated tensor name");
  18469. }
  18470. const int idx = ctx->header.n_tensors;
  18471. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18472. ctx->infos[idx].name.n = strlen(tensor->name);
  18473. ctx->infos[idx].name.data = strdup(tensor->name);
  18474. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18475. ctx->infos[idx].ne[i] = 1;
  18476. }
  18477. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18478. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18479. ctx->infos[idx].ne[i] = tensor->ne[i];
  18480. }
  18481. ctx->infos[idx].type = tensor->type;
  18482. ctx->infos[idx].offset = 0;
  18483. ctx->infos[idx].data = tensor->data;
  18484. ctx->infos[idx].size = ggml_nbytes(tensor);
  18485. if (ctx->header.n_tensors > 0) {
  18486. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18487. }
  18488. ctx->header.n_tensors++;
  18489. }
  18490. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18491. const int idx = gguf_find_tensor(ctx, name);
  18492. if (idx < 0) {
  18493. GGML_ASSERT(false && "tensor not found");
  18494. }
  18495. ctx->infos[idx].type = type;
  18496. }
  18497. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18498. const int idx = gguf_find_tensor(ctx, name);
  18499. if (idx < 0) {
  18500. GGML_ASSERT(false && "tensor not found");
  18501. }
  18502. ctx->infos[idx].data = data;
  18503. ctx->infos[idx].size = size;
  18504. // update offsets
  18505. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18506. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18507. }
  18508. }
  18509. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18510. // fwrite(&val->n, sizeof(val->n), 1, file);
  18511. // fwrite(val->data, sizeof(char), val->n, file);
  18512. //}
  18513. //
  18514. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18515. // fwrite(val, sizeof(char), size, file);
  18516. //}
  18517. struct gguf_buf {
  18518. void * data;
  18519. size_t size;
  18520. size_t offset;
  18521. };
  18522. static struct gguf_buf gguf_buf_init(size_t size) {
  18523. struct gguf_buf buf = {
  18524. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18525. /*buf.size =*/ size,
  18526. /*buf.offset =*/ 0,
  18527. };
  18528. return buf;
  18529. }
  18530. static void gguf_buf_free(struct gguf_buf buf) {
  18531. if (buf.data) {
  18532. GGML_FREE(buf.data);
  18533. }
  18534. }
  18535. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18536. if (buf->offset + size > buf->size) {
  18537. buf->size = 1.5*(buf->offset + size);
  18538. if (buf->data) {
  18539. buf->data = realloc(buf->data, buf->size);
  18540. }
  18541. }
  18542. }
  18543. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18544. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18545. if (buf->data) {
  18546. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18547. }
  18548. buf->offset += sizeof(val->n);
  18549. if (buf->data) {
  18550. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18551. }
  18552. buf->offset += val->n;
  18553. }
  18554. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18555. gguf_buf_grow(buf, el_size);
  18556. if (buf->data) {
  18557. memcpy((char *) buf->data + buf->offset, val, el_size);
  18558. }
  18559. buf->offset += el_size;
  18560. }
  18561. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18562. // write header
  18563. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18564. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18565. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18566. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18567. // write key-value pairs
  18568. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18569. struct gguf_kv * kv = &ctx->kv[i];
  18570. gguf_bwrite_str(buf, &kv->key);
  18571. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18572. switch (kv->type) {
  18573. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18574. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18575. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18576. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18577. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18578. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18579. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18580. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18581. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18582. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18583. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18584. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18585. case GGUF_TYPE_ARRAY:
  18586. {
  18587. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18588. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18589. switch (kv->value.arr.type) {
  18590. case GGUF_TYPE_UINT8:
  18591. case GGUF_TYPE_INT8:
  18592. case GGUF_TYPE_UINT16:
  18593. case GGUF_TYPE_INT16:
  18594. case GGUF_TYPE_UINT32:
  18595. case GGUF_TYPE_INT32:
  18596. case GGUF_TYPE_FLOAT32:
  18597. case GGUF_TYPE_UINT64:
  18598. case GGUF_TYPE_INT64:
  18599. case GGUF_TYPE_FLOAT64:
  18600. case GGUF_TYPE_BOOL:
  18601. {
  18602. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18603. } break;
  18604. case GGUF_TYPE_STRING:
  18605. {
  18606. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18607. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18608. }
  18609. } break;
  18610. case GGUF_TYPE_ARRAY:
  18611. default: GGML_ASSERT(false && "invalid type"); break;
  18612. }
  18613. } break;
  18614. default: GGML_ASSERT(false && "invalid type");
  18615. }
  18616. }
  18617. // write tensor infos
  18618. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18619. struct gguf_tensor_info * info = &ctx->infos[i];
  18620. gguf_bwrite_str(buf, &info->name);
  18621. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18622. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18623. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18624. }
  18625. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18626. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18627. }
  18628. // we require the data section to be aligned, so take into account any padding
  18629. {
  18630. const size_t offset = buf->offset;
  18631. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18632. if (offset_pad != offset) {
  18633. uint8_t pad = 0;
  18634. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18635. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18636. }
  18637. }
  18638. }
  18639. if (only_meta) {
  18640. return;
  18641. }
  18642. size_t offset = 0;
  18643. // write tensor data
  18644. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18645. struct gguf_tensor_info * info = &ctx->infos[i];
  18646. const size_t size = info->size;
  18647. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18648. gguf_bwrite_el(buf, info->data, size);
  18649. if (size_pad != size) {
  18650. uint8_t pad = 0;
  18651. for (size_t j = 0; j < size_pad - size; ++j) {
  18652. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18653. }
  18654. }
  18655. GGML_ASSERT(offset == info->offset);
  18656. offset += size_pad;
  18657. }
  18658. }
  18659. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18660. FILE * file = ggml_fopen(fname, "wb");
  18661. if (!file) {
  18662. GGML_ASSERT(false && "failed to open file for writing");
  18663. }
  18664. struct gguf_buf buf = gguf_buf_init(16*1024);
  18665. gguf_write_to_buf(ctx, &buf, only_meta);
  18666. fwrite(buf.data, 1, buf.offset, file);
  18667. gguf_buf_free(buf);
  18668. fclose(file);
  18669. }
  18670. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18671. // no allocs - only compute size
  18672. struct gguf_buf buf = gguf_buf_init(0);
  18673. gguf_write_to_buf(ctx, &buf, true);
  18674. return buf.offset;
  18675. }
  18676. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18677. struct gguf_buf buf = gguf_buf_init(16*1024);
  18678. gguf_write_to_buf(ctx, &buf, true);
  18679. memcpy(data, buf.data, buf.offset);
  18680. gguf_buf_free(buf);
  18681. }
  18682. ////////////////////////////////////////////////////////////////////////////////
  18683. int ggml_cpu_has_avx(void) {
  18684. #if defined(__AVX__)
  18685. return 1;
  18686. #else
  18687. return 0;
  18688. #endif
  18689. }
  18690. int ggml_cpu_has_avx_vnni(void) {
  18691. #if defined(__AVXVNNI__)
  18692. return 1;
  18693. #else
  18694. return 0;
  18695. #endif
  18696. }
  18697. int ggml_cpu_has_avx2(void) {
  18698. #if defined(__AVX2__)
  18699. return 1;
  18700. #else
  18701. return 0;
  18702. #endif
  18703. }
  18704. int ggml_cpu_has_avx512(void) {
  18705. #if defined(__AVX512F__)
  18706. return 1;
  18707. #else
  18708. return 0;
  18709. #endif
  18710. }
  18711. int ggml_cpu_has_avx512_vbmi(void) {
  18712. #if defined(__AVX512VBMI__)
  18713. return 1;
  18714. #else
  18715. return 0;
  18716. #endif
  18717. }
  18718. int ggml_cpu_has_avx512_vnni(void) {
  18719. #if defined(__AVX512VNNI__)
  18720. return 1;
  18721. #else
  18722. return 0;
  18723. #endif
  18724. }
  18725. int ggml_cpu_has_avx512_bf16(void) {
  18726. #if defined(__AVX512BF16__)
  18727. return 1;
  18728. #else
  18729. return 0;
  18730. #endif
  18731. }
  18732. int ggml_cpu_has_fma(void) {
  18733. #if defined(__FMA__)
  18734. return 1;
  18735. #else
  18736. return 0;
  18737. #endif
  18738. }
  18739. int ggml_cpu_has_neon(void) {
  18740. #if defined(__ARM_NEON)
  18741. return 1;
  18742. #else
  18743. return 0;
  18744. #endif
  18745. }
  18746. int ggml_cpu_has_sve(void) {
  18747. #if defined(__ARM_FEATURE_SVE)
  18748. // TODO: Currently, SVE 256 bit is only supported.
  18749. GGML_ASSERT(svcntb() == QK8_0);
  18750. return 1;
  18751. #else
  18752. return 0;
  18753. #endif
  18754. }
  18755. int ggml_cpu_has_arm_fma(void) {
  18756. #if defined(__ARM_FEATURE_FMA)
  18757. return 1;
  18758. #else
  18759. return 0;
  18760. #endif
  18761. }
  18762. int ggml_cpu_has_metal(void) {
  18763. #if defined(GGML_USE_METAL)
  18764. return 1;
  18765. #else
  18766. return 0;
  18767. #endif
  18768. }
  18769. int ggml_cpu_has_f16c(void) {
  18770. #if defined(__F16C__)
  18771. return 1;
  18772. #else
  18773. return 0;
  18774. #endif
  18775. }
  18776. int ggml_cpu_has_fp16_va(void) {
  18777. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18778. return 1;
  18779. #else
  18780. return 0;
  18781. #endif
  18782. }
  18783. int ggml_cpu_has_wasm_simd(void) {
  18784. #if defined(__wasm_simd128__)
  18785. return 1;
  18786. #else
  18787. return 0;
  18788. #endif
  18789. }
  18790. int ggml_cpu_has_blas(void) {
  18791. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18792. return 1;
  18793. #else
  18794. return 0;
  18795. #endif
  18796. }
  18797. int ggml_cpu_has_cuda(void) {
  18798. #if defined(GGML_USE_CUDA)
  18799. return 1;
  18800. #else
  18801. return 0;
  18802. #endif
  18803. }
  18804. int ggml_cpu_has_clblast(void) {
  18805. #if defined(GGML_USE_CLBLAST)
  18806. return 1;
  18807. #else
  18808. return 0;
  18809. #endif
  18810. }
  18811. int ggml_cpu_has_vulkan(void) {
  18812. #if defined(GGML_USE_VULKAN)
  18813. return 1;
  18814. #else
  18815. return 0;
  18816. #endif
  18817. }
  18818. int ggml_cpu_has_kompute(void) {
  18819. #if defined(GGML_USE_KOMPUTE)
  18820. return 1;
  18821. #else
  18822. return 0;
  18823. #endif
  18824. }
  18825. int ggml_cpu_has_sycl(void) {
  18826. #if defined(GGML_USE_SYCL)
  18827. return 1;
  18828. #else
  18829. return 0;
  18830. #endif
  18831. }
  18832. int ggml_cpu_has_gpublas(void) {
  18833. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18834. ggml_cpu_has_sycl();
  18835. }
  18836. int ggml_cpu_has_sse3(void) {
  18837. #if defined(__SSE3__)
  18838. return 1;
  18839. #else
  18840. return 0;
  18841. #endif
  18842. }
  18843. int ggml_cpu_has_ssse3(void) {
  18844. #if defined(__SSSE3__)
  18845. return 1;
  18846. #else
  18847. return 0;
  18848. #endif
  18849. }
  18850. int ggml_cpu_has_vsx(void) {
  18851. #if defined(__POWER9_VECTOR__)
  18852. return 1;
  18853. #else
  18854. return 0;
  18855. #endif
  18856. }
  18857. int ggml_cpu_has_matmul_int8(void) {
  18858. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18859. return 1;
  18860. #else
  18861. return 0;
  18862. #endif
  18863. }
  18864. ////////////////////////////////////////////////////////////////////////////////