server.cpp 177 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. struct slot_params {
  79. bool stream = true;
  80. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  81. bool return_tokens = false;
  82. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  83. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  84. int32_t n_predict = -1; // new tokens to predict
  85. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  86. int64_t t_max_prompt_ms = -1; // TODO: implement
  87. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  88. std::vector<common_adapter_lora_info> lora;
  89. std::vector<std::string> antiprompt;
  90. std::vector<std::string> response_fields;
  91. bool timings_per_token = false;
  92. bool post_sampling_probs = false;
  93. bool ignore_eos = false;
  94. struct common_params_sampling sampling;
  95. struct common_params_speculative speculative;
  96. // OAI-compat fields
  97. bool verbose = false;
  98. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  99. std::string oaicompat_model;
  100. std::string oaicompat_cmpl_id;
  101. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  102. json to_json() const {
  103. std::vector<std::string> samplers;
  104. samplers.reserve(sampling.samplers.size());
  105. for (const auto & sampler : sampling.samplers) {
  106. samplers.emplace_back(common_sampler_type_to_str(sampler));
  107. }
  108. json lora = json::array();
  109. for (size_t i = 0; i < this->lora.size(); ++i) {
  110. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  111. }
  112. auto grammar_triggers = json::array();
  113. for (const auto & trigger : sampling.grammar_triggers) {
  114. grammar_triggers.push_back(trigger.to_json<json>());
  115. }
  116. return json {
  117. {"n_predict", n_predict}, // Server configured n_predict
  118. {"seed", sampling.seed},
  119. {"temperature", sampling.temp},
  120. {"dynatemp_range", sampling.dynatemp_range},
  121. {"dynatemp_exponent", sampling.dynatemp_exponent},
  122. {"top_k", sampling.top_k},
  123. {"top_p", sampling.top_p},
  124. {"min_p", sampling.min_p},
  125. {"xtc_probability", sampling.xtc_probability},
  126. {"xtc_threshold", sampling.xtc_threshold},
  127. {"typical_p", sampling.typ_p},
  128. {"repeat_last_n", sampling.penalty_last_n},
  129. {"repeat_penalty", sampling.penalty_repeat},
  130. {"presence_penalty", sampling.penalty_present},
  131. {"frequency_penalty", sampling.penalty_freq},
  132. {"dry_multiplier", sampling.dry_multiplier},
  133. {"dry_base", sampling.dry_base},
  134. {"dry_allowed_length", sampling.dry_allowed_length},
  135. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  136. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  137. {"mirostat", sampling.mirostat},
  138. {"mirostat_tau", sampling.mirostat_tau},
  139. {"mirostat_eta", sampling.mirostat_eta},
  140. {"stop", antiprompt},
  141. {"max_tokens", n_predict}, // User configured n_predict
  142. {"n_keep", n_keep},
  143. {"n_discard", n_discard},
  144. {"ignore_eos", sampling.ignore_eos},
  145. {"stream", stream},
  146. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  147. {"n_probs", sampling.n_probs},
  148. {"min_keep", sampling.min_keep},
  149. {"grammar", sampling.grammar},
  150. {"grammar_lazy", sampling.grammar_lazy},
  151. {"grammar_triggers", grammar_triggers},
  152. {"preserved_tokens", sampling.preserved_tokens},
  153. {"chat_format", common_chat_format_name(oaicompat_chat_format)},
  154. {"samplers", samplers},
  155. {"speculative.n_max", speculative.n_max},
  156. {"speculative.n_min", speculative.n_min},
  157. {"speculative.p_min", speculative.p_min},
  158. {"timings_per_token", timings_per_token},
  159. {"post_sampling_probs", post_sampling_probs},
  160. {"lora", lora},
  161. };
  162. }
  163. };
  164. struct server_task {
  165. int id = -1; // to be filled by server_queue
  166. int index = -1; // used when there are multiple prompts (batch request)
  167. server_task_type type;
  168. // used by SERVER_TASK_TYPE_CANCEL
  169. int id_target = -1;
  170. // used by SERVER_TASK_TYPE_INFERENCE
  171. slot_params params;
  172. llama_tokens prompt_tokens;
  173. int id_selected_slot = -1;
  174. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  175. struct slot_action {
  176. int slot_id;
  177. std::string filename;
  178. std::string filepath;
  179. };
  180. slot_action slot_action;
  181. // used by SERVER_TASK_TYPE_METRICS
  182. bool metrics_reset_bucket = false;
  183. // used by SERVER_TASK_TYPE_SET_LORA
  184. std::vector<common_adapter_lora_info> set_lora;
  185. server_task(server_task_type type) : type(type) {}
  186. static slot_params params_from_json_cmpl(
  187. const llama_context * ctx,
  188. const common_params & params_base,
  189. const json & data) {
  190. const llama_model * model = llama_get_model(ctx);
  191. const llama_vocab * vocab = llama_model_get_vocab(model);
  192. slot_params params;
  193. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  194. slot_params defaults;
  195. defaults.sampling = params_base.sampling;
  196. defaults.speculative = params_base.speculative;
  197. // enabling this will output extra debug information in the HTTP responses from the server
  198. params.verbose = params_base.verbosity > 9;
  199. params.timings_per_token = json_value(data, "timings_per_token", false);
  200. params.stream = json_value(data, "stream", false);
  201. params.cache_prompt = json_value(data, "cache_prompt", true);
  202. params.return_tokens = json_value(data, "return_tokens", false);
  203. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  204. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  205. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  206. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  207. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  208. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  209. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  210. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  211. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  212. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  213. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  214. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  215. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  216. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  217. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  218. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  219. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  220. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  221. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  222. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  223. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  224. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  225. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  226. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  227. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  228. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  229. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  230. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  231. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  232. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  233. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  234. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  235. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  236. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  237. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  238. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  239. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  240. // Use OpenAI API logprobs only if n_probs wasn't provided
  241. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  242. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  243. }
  244. if (data.contains("lora")) {
  245. if (data.at("lora").is_array()) {
  246. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  247. } else {
  248. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  249. }
  250. } else {
  251. params.lora = params_base.lora_adapters;
  252. }
  253. // TODO: add more sanity checks for the input parameters
  254. if (params.sampling.penalty_last_n < -1) {
  255. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  256. }
  257. if (params.sampling.dry_penalty_last_n < -1) {
  258. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  259. }
  260. if (params.sampling.penalty_last_n == -1) {
  261. // note: should be the slot's context and not the full context, but it's ok
  262. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  263. }
  264. if (params.sampling.dry_penalty_last_n == -1) {
  265. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  266. }
  267. if (params.sampling.dry_base < 1.0f) {
  268. params.sampling.dry_base = defaults.sampling.dry_base;
  269. }
  270. // sequence breakers for DRY
  271. {
  272. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  273. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  274. if (data.contains("dry_sequence_breakers")) {
  275. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  276. if (params.sampling.dry_sequence_breakers.empty()) {
  277. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  278. }
  279. }
  280. }
  281. // process "json_schema" and "grammar"
  282. if (data.contains("json_schema") && !data.contains("grammar")) {
  283. try {
  284. auto schema = json_value(data, "json_schema", json::object());
  285. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  286. params.sampling.grammar = json_schema_to_grammar(schema);
  287. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  288. } catch (const std::exception & e) {
  289. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  290. }
  291. } else {
  292. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  293. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  294. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  295. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  296. }
  297. {
  298. auto it = data.find("chat_format");
  299. if (it != data.end()) {
  300. params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
  301. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
  302. } else {
  303. params.oaicompat_chat_format = defaults.oaicompat_chat_format;
  304. }
  305. }
  306. {
  307. const auto preserved_tokens = data.find("preserved_tokens");
  308. if (preserved_tokens != data.end()) {
  309. for (const auto & t : *preserved_tokens) {
  310. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  311. if (ids.size() == 1) {
  312. SRV_DBG("Preserved token: %d\n", ids[0]);
  313. params.sampling.preserved_tokens.insert(ids[0]);
  314. } else {
  315. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  316. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  317. }
  318. }
  319. }
  320. const auto grammar_triggers = data.find("grammar_triggers");
  321. if (grammar_triggers != data.end()) {
  322. for (const auto & t : *grammar_triggers) {
  323. auto ct = common_grammar_trigger::from_json(t);
  324. if (ct.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  325. const auto & word = ct.value;
  326. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  327. if (ids.size() == 1) {
  328. auto token = ids[0];
  329. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  330. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  331. }
  332. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  333. common_grammar_trigger trigger;
  334. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  335. trigger.value = word;
  336. trigger.token = token;
  337. params.sampling.grammar_triggers.push_back(std::move(trigger));
  338. } else {
  339. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  340. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  341. }
  342. } else {
  343. params.sampling.grammar_triggers.push_back(ct);
  344. }
  345. }
  346. }
  347. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  348. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  349. }
  350. }
  351. {
  352. params.sampling.logit_bias.clear();
  353. params.ignore_eos = json_value(data, "ignore_eos", false);
  354. const auto & logit_bias = data.find("logit_bias");
  355. if (logit_bias != data.end() && logit_bias->is_array()) {
  356. const int n_vocab = llama_vocab_n_tokens(vocab);
  357. for (const auto & el : *logit_bias) {
  358. // TODO: we may want to throw errors here, in case "el" is incorrect
  359. if (el.is_array() && el.size() == 2) {
  360. float bias;
  361. if (el[1].is_number()) {
  362. bias = el[1].get<float>();
  363. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  364. bias = -INFINITY;
  365. } else {
  366. continue;
  367. }
  368. if (el[0].is_number_integer()) {
  369. llama_token tok = el[0].get<llama_token>();
  370. if (tok >= 0 && tok < n_vocab) {
  371. params.sampling.logit_bias.push_back({tok, bias});
  372. }
  373. } else if (el[0].is_string()) {
  374. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  375. for (auto tok : toks) {
  376. params.sampling.logit_bias.push_back({tok, bias});
  377. }
  378. }
  379. }
  380. }
  381. }
  382. }
  383. {
  384. params.antiprompt.clear();
  385. const auto & stop = data.find("stop");
  386. if (stop != data.end() && stop->is_array()) {
  387. for (const auto & word : *stop) {
  388. if (!word.empty()) {
  389. params.antiprompt.push_back(word);
  390. }
  391. }
  392. }
  393. }
  394. {
  395. const auto samplers = data.find("samplers");
  396. if (samplers != data.end()) {
  397. if (samplers->is_array()) {
  398. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  399. } else if (samplers->is_string()){
  400. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  401. }
  402. } else {
  403. params.sampling.samplers = defaults.sampling.samplers;
  404. }
  405. }
  406. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  407. params.oaicompat_model = json_value(data, "model", model_name);
  408. return params;
  409. }
  410. // utility function
  411. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  412. std::unordered_set<int> ids(tasks.size());
  413. for (size_t i = 0; i < tasks.size(); i++) {
  414. ids.insert(tasks[i].id);
  415. }
  416. return ids;
  417. }
  418. };
  419. struct result_timings {
  420. int32_t prompt_n = -1;
  421. double prompt_ms;
  422. double prompt_per_token_ms;
  423. double prompt_per_second;
  424. int32_t predicted_n = -1;
  425. double predicted_ms;
  426. double predicted_per_token_ms;
  427. double predicted_per_second;
  428. json to_json() const {
  429. return {
  430. {"prompt_n", prompt_n},
  431. {"prompt_ms", prompt_ms},
  432. {"prompt_per_token_ms", prompt_per_token_ms},
  433. {"prompt_per_second", prompt_per_second},
  434. {"predicted_n", predicted_n},
  435. {"predicted_ms", predicted_ms},
  436. {"predicted_per_token_ms", predicted_per_token_ms},
  437. {"predicted_per_second", predicted_per_second},
  438. };
  439. }
  440. };
  441. struct server_task_result {
  442. int id = -1;
  443. int id_slot = -1;
  444. virtual bool is_error() {
  445. // only used by server_task_result_error
  446. return false;
  447. }
  448. virtual bool is_stop() {
  449. // only used by server_task_result_cmpl_*
  450. return false;
  451. }
  452. virtual int get_index() {
  453. return -1;
  454. }
  455. virtual json to_json() = 0;
  456. virtual ~server_task_result() = default;
  457. };
  458. // using shared_ptr for polymorphism of server_task_result
  459. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  460. inline std::string stop_type_to_str(stop_type type) {
  461. switch (type) {
  462. case STOP_TYPE_EOS: return "eos";
  463. case STOP_TYPE_WORD: return "word";
  464. case STOP_TYPE_LIMIT: return "limit";
  465. default: return "none";
  466. }
  467. }
  468. struct completion_token_output {
  469. llama_token tok;
  470. float prob;
  471. std::string text_to_send;
  472. struct prob_info {
  473. llama_token tok;
  474. std::string txt;
  475. float prob;
  476. };
  477. std::vector<prob_info> probs;
  478. json to_json(bool post_sampling_probs) const {
  479. json probs_for_token = json::array();
  480. for (const auto & p : probs) {
  481. std::string txt(p.txt);
  482. txt.resize(validate_utf8(txt));
  483. probs_for_token.push_back(json {
  484. {"id", p.tok},
  485. {"token", txt},
  486. {"bytes", str_to_bytes(p.txt)},
  487. {
  488. post_sampling_probs ? "prob" : "logprob",
  489. post_sampling_probs ? p.prob : logarithm(p.prob)
  490. },
  491. });
  492. }
  493. return probs_for_token;
  494. }
  495. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  496. json out = json::array();
  497. for (const auto & p : probs) {
  498. std::string txt(p.text_to_send);
  499. txt.resize(validate_utf8(txt));
  500. out.push_back(json {
  501. {"id", p.tok},
  502. {"token", txt},
  503. {"bytes", str_to_bytes(p.text_to_send)},
  504. {
  505. post_sampling_probs ? "prob" : "logprob",
  506. post_sampling_probs ? p.prob : logarithm(p.prob)
  507. },
  508. {
  509. post_sampling_probs ? "top_probs" : "top_logprobs",
  510. p.to_json(post_sampling_probs)
  511. },
  512. });
  513. }
  514. return out;
  515. }
  516. static float logarithm(float x) {
  517. // nlohmann::json converts -inf to null, so we need to prevent that
  518. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  519. }
  520. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  521. std::vector<unsigned char> bytes;
  522. for (unsigned char c : str) {
  523. bytes.push_back(c);
  524. }
  525. return bytes;
  526. }
  527. };
  528. struct server_task_result_cmpl_final : server_task_result {
  529. int index = 0;
  530. std::string content;
  531. llama_tokens tokens;
  532. bool stream;
  533. result_timings timings;
  534. std::string prompt;
  535. bool truncated;
  536. int32_t n_decoded;
  537. int32_t n_prompt_tokens;
  538. int32_t n_tokens_cached;
  539. bool has_new_line;
  540. std::string stopping_word;
  541. stop_type stop = STOP_TYPE_NONE;
  542. bool post_sampling_probs;
  543. std::vector<completion_token_output> probs_output;
  544. std::vector<std::string> response_fields;
  545. slot_params generation_params;
  546. // OAI-compat fields
  547. bool verbose = false;
  548. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  549. std::string oaicompat_model;
  550. std::string oaicompat_cmpl_id;
  551. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  552. virtual int get_index() override {
  553. return index;
  554. }
  555. virtual bool is_stop() override {
  556. return true; // in stream mode, final responses are considered stop
  557. }
  558. virtual json to_json() override {
  559. switch (oaicompat) {
  560. case OAICOMPAT_TYPE_NONE:
  561. return to_json_non_oaicompat();
  562. case OAICOMPAT_TYPE_COMPLETION:
  563. return to_json_oaicompat();
  564. case OAICOMPAT_TYPE_CHAT:
  565. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  566. default:
  567. GGML_ASSERT(false && "Invalid oaicompat_type");
  568. }
  569. }
  570. json to_json_non_oaicompat() {
  571. json res = json {
  572. {"index", index},
  573. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  574. {"tokens", stream ? llama_tokens {} : tokens},
  575. {"id_slot", id_slot},
  576. {"stop", true},
  577. {"model", oaicompat_model},
  578. {"tokens_predicted", n_decoded},
  579. {"tokens_evaluated", n_prompt_tokens},
  580. {"generation_settings", generation_params.to_json()},
  581. {"prompt", prompt},
  582. {"has_new_line", has_new_line},
  583. {"truncated", truncated},
  584. {"stop_type", stop_type_to_str(stop)},
  585. {"stopping_word", stopping_word},
  586. {"tokens_cached", n_tokens_cached},
  587. {"timings", timings.to_json()},
  588. };
  589. if (!stream && !probs_output.empty()) {
  590. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  591. }
  592. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  593. }
  594. json to_json_oaicompat() {
  595. std::time_t t = std::time(0);
  596. json logprobs = json(nullptr); // OAI default to null
  597. if (!stream && probs_output.size() > 0) {
  598. logprobs = json{
  599. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  600. };
  601. }
  602. json finish_reason = "length";
  603. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  604. finish_reason = "stop";
  605. }
  606. json res = json {
  607. {"choices", json::array({
  608. json{
  609. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  610. {"index", index},
  611. {"logprobs", logprobs},
  612. {"finish_reason", finish_reason},
  613. }
  614. })},
  615. {"created", t},
  616. {"model", oaicompat_model},
  617. {"system_fingerprint", build_info},
  618. {"object", "text_completion"},
  619. {"usage", json {
  620. {"completion_tokens", n_decoded},
  621. {"prompt_tokens", n_prompt_tokens},
  622. {"total_tokens", n_decoded + n_prompt_tokens}
  623. }},
  624. {"id", oaicompat_cmpl_id}
  625. };
  626. // extra fields for debugging purposes
  627. if (verbose) {
  628. res["__verbose"] = to_json_non_oaicompat();
  629. }
  630. if (timings.prompt_n >= 0) {
  631. res.push_back({"timings", timings.to_json()});
  632. }
  633. return res;
  634. }
  635. json to_json_oaicompat_chat() {
  636. std::string finish_reason = "length";
  637. common_chat_msg msg;
  638. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  639. SRV_DBG("Parsing chat message: %s\n", content.c_str());
  640. msg = common_chat_parse(content, oaicompat_chat_format);
  641. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  642. } else {
  643. msg.content = content;
  644. }
  645. json message {
  646. {"role", "assistant"},
  647. };
  648. if (!msg.reasoning_content.empty()) {
  649. message["reasoning_content"] = msg.reasoning_content;
  650. }
  651. if (msg.content.empty() && !msg.tool_calls.empty()) {
  652. message["content"] = json();
  653. } else {
  654. message["content"] = msg.content;
  655. }
  656. if (!msg.tool_calls.empty()) {
  657. auto tool_calls = json::array();
  658. for (const auto & tc : msg.tool_calls) {
  659. tool_calls.push_back({
  660. {"type", "function"},
  661. {"function", {
  662. {"name", tc.name},
  663. {"arguments", tc.arguments},
  664. }},
  665. {"id", tc.id},
  666. });
  667. }
  668. message["tool_calls"] = tool_calls;
  669. }
  670. json choice {
  671. {"finish_reason", finish_reason},
  672. {"index", 0},
  673. {"message", message},
  674. };
  675. if (!stream && probs_output.size() > 0) {
  676. choice["logprobs"] = json{
  677. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  678. };
  679. }
  680. std::time_t t = std::time(0);
  681. json res = json {
  682. {"choices", json::array({choice})},
  683. {"created", t},
  684. {"model", oaicompat_model},
  685. {"system_fingerprint", build_info},
  686. {"object", "chat.completion"},
  687. {"usage", json {
  688. {"completion_tokens", n_decoded},
  689. {"prompt_tokens", n_prompt_tokens},
  690. {"total_tokens", n_decoded + n_prompt_tokens}
  691. }},
  692. {"id", oaicompat_cmpl_id}
  693. };
  694. // extra fields for debugging purposes
  695. if (verbose) {
  696. res["__verbose"] = to_json_non_oaicompat();
  697. }
  698. if (timings.prompt_n >= 0) {
  699. res.push_back({"timings", timings.to_json()});
  700. }
  701. return res;
  702. }
  703. json to_json_oaicompat_chat_stream() {
  704. std::time_t t = std::time(0);
  705. std::string finish_reason = "length";
  706. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  707. finish_reason = "stop";
  708. }
  709. json choice = json {
  710. {"finish_reason", finish_reason},
  711. {"index", 0},
  712. {"delta", json::object()}
  713. };
  714. json ret = json {
  715. {"choices", json::array({choice})},
  716. {"created", t},
  717. {"id", oaicompat_cmpl_id},
  718. {"model", oaicompat_model},
  719. {"system_fingerprint", build_info},
  720. {"object", "chat.completion.chunk"},
  721. {"usage", json {
  722. {"completion_tokens", n_decoded},
  723. {"prompt_tokens", n_prompt_tokens},
  724. {"total_tokens", n_decoded + n_prompt_tokens},
  725. }},
  726. };
  727. if (timings.prompt_n >= 0) {
  728. ret.push_back({"timings", timings.to_json()});
  729. }
  730. return ret;
  731. }
  732. };
  733. struct server_task_result_cmpl_partial : server_task_result {
  734. int index = 0;
  735. std::string content;
  736. llama_tokens tokens;
  737. int32_t n_decoded;
  738. int32_t n_prompt_tokens;
  739. bool post_sampling_probs;
  740. completion_token_output prob_output;
  741. result_timings timings;
  742. // OAI-compat fields
  743. bool verbose = false;
  744. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  745. std::string oaicompat_model;
  746. std::string oaicompat_cmpl_id;
  747. virtual int get_index() override {
  748. return index;
  749. }
  750. virtual bool is_stop() override {
  751. return false; // in stream mode, partial responses are not considered stop
  752. }
  753. virtual json to_json() override {
  754. switch (oaicompat) {
  755. case OAICOMPAT_TYPE_NONE:
  756. return to_json_non_oaicompat();
  757. case OAICOMPAT_TYPE_COMPLETION:
  758. return to_json_oaicompat();
  759. case OAICOMPAT_TYPE_CHAT:
  760. return to_json_oaicompat_chat();
  761. default:
  762. GGML_ASSERT(false && "Invalid oaicompat_type");
  763. }
  764. }
  765. json to_json_non_oaicompat() {
  766. // non-OAI-compat JSON
  767. json res = json {
  768. {"index", index},
  769. {"content", content},
  770. {"tokens", tokens},
  771. {"stop", false},
  772. {"id_slot", id_slot},
  773. {"tokens_predicted", n_decoded},
  774. {"tokens_evaluated", n_prompt_tokens},
  775. };
  776. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  777. if (timings.prompt_n > 0) {
  778. res.push_back({"timings", timings.to_json()});
  779. }
  780. if (!prob_output.probs.empty()) {
  781. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  782. }
  783. return res;
  784. }
  785. json to_json_oaicompat() {
  786. std::time_t t = std::time(0);
  787. json logprobs = json(nullptr); // OAI default to null
  788. if (prob_output.probs.size() > 0) {
  789. logprobs = json{
  790. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  791. };
  792. }
  793. json res = json {
  794. {"choices", json::array({
  795. json{
  796. {"text", content},
  797. {"index", index},
  798. {"logprobs", logprobs},
  799. {"finish_reason", nullptr},
  800. }
  801. })},
  802. {"created", t},
  803. {"model", oaicompat_model},
  804. {"system_fingerprint", build_info},
  805. {"object", "text_completion"},
  806. {"id", oaicompat_cmpl_id}
  807. };
  808. // extra fields for debugging purposes
  809. if (verbose) {
  810. res["__verbose"] = to_json_non_oaicompat();
  811. }
  812. if (timings.prompt_n >= 0) {
  813. res.push_back({"timings", timings.to_json()});
  814. }
  815. return res;
  816. }
  817. json to_json_oaicompat_chat() {
  818. bool first = n_decoded == 0;
  819. std::time_t t = std::time(0);
  820. json choices;
  821. if (first) {
  822. if (content.empty()) {
  823. choices = json::array({json{{"finish_reason", nullptr},
  824. {"index", 0},
  825. {"delta", json{{"role", "assistant"}}}}});
  826. } else {
  827. // We have to send this as two updates to conform to openai behavior
  828. json initial_ret = json{{"choices", json::array({json{
  829. {"finish_reason", nullptr},
  830. {"index", 0},
  831. {"delta", json{
  832. {"role", "assistant"}
  833. }}}})},
  834. {"created", t},
  835. {"id", oaicompat_cmpl_id},
  836. {"model", oaicompat_model},
  837. {"object", "chat.completion.chunk"}};
  838. json second_ret = json{
  839. {"choices", json::array({json{{"finish_reason", nullptr},
  840. {"index", 0},
  841. {"delta", json {
  842. {"content", content}}}
  843. }})},
  844. {"created", t},
  845. {"id", oaicompat_cmpl_id},
  846. {"model", oaicompat_model},
  847. {"object", "chat.completion.chunk"}};
  848. return std::vector<json>({initial_ret, second_ret});
  849. }
  850. } else {
  851. choices = json::array({json{
  852. {"finish_reason", nullptr},
  853. {"index", 0},
  854. {"delta",
  855. json {
  856. {"content", content},
  857. }},
  858. }});
  859. }
  860. GGML_ASSERT(choices.size() >= 1);
  861. if (prob_output.probs.size() > 0) {
  862. choices[0]["logprobs"] = json{
  863. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  864. };
  865. }
  866. json ret = json {
  867. {"choices", choices},
  868. {"created", t},
  869. {"id", oaicompat_cmpl_id},
  870. {"model", oaicompat_model},
  871. {"system_fingerprint", build_info},
  872. {"object", "chat.completion.chunk"}
  873. };
  874. if (timings.prompt_n >= 0) {
  875. ret.push_back({"timings", timings.to_json()});
  876. }
  877. return std::vector<json>({ret});
  878. }
  879. };
  880. struct server_task_result_embd : server_task_result {
  881. int index = 0;
  882. std::vector<std::vector<float>> embedding;
  883. int32_t n_tokens;
  884. // OAI-compat fields
  885. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  886. virtual int get_index() override {
  887. return index;
  888. }
  889. virtual json to_json() override {
  890. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  891. ? to_json_oaicompat()
  892. : to_json_non_oaicompat();
  893. }
  894. json to_json_non_oaicompat() {
  895. return json {
  896. {"index", index},
  897. {"embedding", embedding},
  898. };
  899. }
  900. json to_json_oaicompat() {
  901. return json {
  902. {"index", index},
  903. {"embedding", embedding[0]},
  904. {"tokens_evaluated", n_tokens},
  905. };
  906. }
  907. };
  908. struct server_task_result_rerank : server_task_result {
  909. int index = 0;
  910. float score = -1e6;
  911. int32_t n_tokens;
  912. virtual int get_index() override {
  913. return index;
  914. }
  915. virtual json to_json() override {
  916. return json {
  917. {"index", index},
  918. {"score", score},
  919. {"tokens_evaluated", n_tokens},
  920. };
  921. }
  922. };
  923. // this function maybe used outside of server_task_result_error
  924. static json format_error_response(const std::string & message, const enum error_type type) {
  925. std::string type_str;
  926. int code = 500;
  927. switch (type) {
  928. case ERROR_TYPE_INVALID_REQUEST:
  929. type_str = "invalid_request_error";
  930. code = 400;
  931. break;
  932. case ERROR_TYPE_AUTHENTICATION:
  933. type_str = "authentication_error";
  934. code = 401;
  935. break;
  936. case ERROR_TYPE_NOT_FOUND:
  937. type_str = "not_found_error";
  938. code = 404;
  939. break;
  940. case ERROR_TYPE_SERVER:
  941. type_str = "server_error";
  942. code = 500;
  943. break;
  944. case ERROR_TYPE_PERMISSION:
  945. type_str = "permission_error";
  946. code = 403;
  947. break;
  948. case ERROR_TYPE_NOT_SUPPORTED:
  949. type_str = "not_supported_error";
  950. code = 501;
  951. break;
  952. case ERROR_TYPE_UNAVAILABLE:
  953. type_str = "unavailable_error";
  954. code = 503;
  955. break;
  956. }
  957. return json {
  958. {"code", code},
  959. {"message", message},
  960. {"type", type_str},
  961. };
  962. }
  963. struct server_task_result_error : server_task_result {
  964. int index = 0;
  965. error_type err_type = ERROR_TYPE_SERVER;
  966. std::string err_msg;
  967. virtual bool is_error() override {
  968. return true;
  969. }
  970. virtual json to_json() override {
  971. return format_error_response(err_msg, err_type);
  972. }
  973. };
  974. struct server_task_result_metrics : server_task_result {
  975. int n_idle_slots;
  976. int n_processing_slots;
  977. int n_tasks_deferred;
  978. int64_t t_start;
  979. int32_t kv_cache_tokens_count;
  980. int32_t kv_cache_used_cells;
  981. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  982. uint64_t n_prompt_tokens_processed_total = 0;
  983. uint64_t t_prompt_processing_total = 0;
  984. uint64_t n_tokens_predicted_total = 0;
  985. uint64_t t_tokens_generation_total = 0;
  986. uint64_t n_prompt_tokens_processed = 0;
  987. uint64_t t_prompt_processing = 0;
  988. uint64_t n_tokens_predicted = 0;
  989. uint64_t t_tokens_generation = 0;
  990. uint64_t n_decode_total = 0;
  991. uint64_t n_busy_slots_total = 0;
  992. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  993. // therefore, we use json to temporarily store the slot.to_json() result
  994. json slots_data = json::array();
  995. virtual json to_json() override {
  996. return json {
  997. { "idle", n_idle_slots },
  998. { "processing", n_processing_slots },
  999. { "deferred", n_tasks_deferred },
  1000. { "t_start", t_start },
  1001. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1002. { "t_tokens_generation_total", t_tokens_generation_total },
  1003. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1004. { "t_prompt_processing_total", t_prompt_processing_total },
  1005. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1006. { "t_prompt_processing", t_prompt_processing },
  1007. { "n_tokens_predicted", n_tokens_predicted },
  1008. { "t_tokens_generation", t_tokens_generation },
  1009. { "n_decode_total", n_decode_total },
  1010. { "n_busy_slots_total", n_busy_slots_total },
  1011. { "kv_cache_tokens_count", kv_cache_tokens_count },
  1012. { "kv_cache_used_cells", kv_cache_used_cells },
  1013. { "slots", slots_data },
  1014. };
  1015. }
  1016. };
  1017. struct server_task_result_slot_save_load : server_task_result {
  1018. std::string filename;
  1019. bool is_save; // true = save, false = load
  1020. size_t n_tokens;
  1021. size_t n_bytes;
  1022. double t_ms;
  1023. virtual json to_json() override {
  1024. if (is_save) {
  1025. return json {
  1026. { "id_slot", id_slot },
  1027. { "filename", filename },
  1028. { "n_saved", n_tokens },
  1029. { "n_written", n_bytes },
  1030. { "timings", {
  1031. { "save_ms", t_ms }
  1032. }},
  1033. };
  1034. } else {
  1035. return json {
  1036. { "id_slot", id_slot },
  1037. { "filename", filename },
  1038. { "n_restored", n_tokens },
  1039. { "n_read", n_bytes },
  1040. { "timings", {
  1041. { "restore_ms", t_ms }
  1042. }},
  1043. };
  1044. }
  1045. }
  1046. };
  1047. struct server_task_result_slot_erase : server_task_result {
  1048. size_t n_erased;
  1049. virtual json to_json() override {
  1050. return json {
  1051. { "id_slot", id_slot },
  1052. { "n_erased", n_erased },
  1053. };
  1054. }
  1055. };
  1056. struct server_task_result_apply_lora : server_task_result {
  1057. virtual json to_json() override {
  1058. return json {{ "success", true }};
  1059. }
  1060. };
  1061. struct server_slot {
  1062. int id;
  1063. int id_task = -1;
  1064. // only used for completion/embedding/infill/rerank
  1065. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1066. llama_batch batch_spec = {};
  1067. llama_context * ctx = nullptr;
  1068. llama_context * ctx_dft = nullptr;
  1069. common_speculative * spec = nullptr;
  1070. std::vector<common_adapter_lora_info> lora;
  1071. // the index relative to completion multi-task request
  1072. size_t index = 0;
  1073. struct slot_params params;
  1074. slot_state state = SLOT_STATE_IDLE;
  1075. // used to determine the slot that has been used the longest
  1076. int64_t t_last_used = -1;
  1077. // generation props
  1078. int32_t n_ctx = 0; // context size per slot
  1079. int32_t n_past = 0;
  1080. int32_t n_decoded = 0;
  1081. int32_t n_remaining = -1;
  1082. int32_t i_batch = -1;
  1083. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1084. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1085. int32_t n_prompt_tokens = 0;
  1086. int32_t n_prompt_tokens_processed = 0;
  1087. // input prompt tokens
  1088. llama_tokens prompt_tokens;
  1089. size_t last_nl_pos = 0;
  1090. std::string generated_text;
  1091. llama_tokens generated_tokens;
  1092. llama_tokens cache_tokens;
  1093. std::vector<completion_token_output> generated_token_probs;
  1094. bool has_next_token = true;
  1095. bool has_new_line = false;
  1096. bool truncated = false;
  1097. stop_type stop;
  1098. std::string stopping_word;
  1099. // sampling
  1100. json json_schema;
  1101. struct common_sampler * smpl = nullptr;
  1102. llama_token sampled;
  1103. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1104. // stats
  1105. size_t n_sent_text = 0; // number of sent text character
  1106. int64_t t_start_process_prompt;
  1107. int64_t t_start_generation;
  1108. double t_prompt_processing; // ms
  1109. double t_token_generation; // ms
  1110. std::function<void(int)> callback_on_release;
  1111. void reset() {
  1112. SLT_DBG(*this, "%s", "\n");
  1113. n_prompt_tokens = 0;
  1114. last_nl_pos = 0;
  1115. generated_text = "";
  1116. has_new_line = false;
  1117. truncated = false;
  1118. stop = STOP_TYPE_NONE;
  1119. stopping_word = "";
  1120. n_past = 0;
  1121. n_sent_text = 0;
  1122. task_type = SERVER_TASK_TYPE_COMPLETION;
  1123. generated_tokens.clear();
  1124. generated_token_probs.clear();
  1125. }
  1126. bool is_non_causal() const {
  1127. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1128. }
  1129. bool can_batch_with(server_slot & other_slot) const {
  1130. return is_non_causal() == other_slot.is_non_causal()
  1131. && are_lora_equal(lora, other_slot.lora);
  1132. }
  1133. bool has_budget(const common_params & global_params) {
  1134. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1135. return true; // limitless
  1136. }
  1137. n_remaining = -1;
  1138. if (params.n_predict != -1) {
  1139. n_remaining = params.n_predict - n_decoded;
  1140. } else if (global_params.n_predict != -1) {
  1141. n_remaining = global_params.n_predict - n_decoded;
  1142. }
  1143. return n_remaining > 0; // no budget
  1144. }
  1145. bool is_processing() const {
  1146. return state != SLOT_STATE_IDLE;
  1147. }
  1148. bool can_speculate() const {
  1149. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1150. }
  1151. void add_token(const completion_token_output & token) {
  1152. if (!is_processing()) {
  1153. SLT_WRN(*this, "%s", "slot is not processing\n");
  1154. return;
  1155. }
  1156. generated_token_probs.push_back(token);
  1157. }
  1158. void release() {
  1159. if (is_processing()) {
  1160. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1161. t_last_used = ggml_time_us();
  1162. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1163. state = SLOT_STATE_IDLE;
  1164. callback_on_release(id);
  1165. }
  1166. }
  1167. result_timings get_timings() const {
  1168. result_timings timings;
  1169. timings.prompt_n = n_prompt_tokens_processed;
  1170. timings.prompt_ms = t_prompt_processing;
  1171. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1172. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1173. timings.predicted_n = n_decoded;
  1174. timings.predicted_ms = t_token_generation;
  1175. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1176. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1177. return timings;
  1178. }
  1179. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1180. size_t stop_pos = std::string::npos;
  1181. for (const std::string & word : params.antiprompt) {
  1182. size_t pos;
  1183. if (is_full_stop) {
  1184. const size_t tmp = word.size() + last_token_size;
  1185. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1186. pos = text.find(word, from_pos);
  1187. } else {
  1188. // otherwise, partial stop
  1189. pos = find_partial_stop_string(word, text);
  1190. }
  1191. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1192. if (is_full_stop) {
  1193. stop = STOP_TYPE_WORD;
  1194. stopping_word = word;
  1195. has_next_token = false;
  1196. }
  1197. stop_pos = pos;
  1198. }
  1199. }
  1200. return stop_pos;
  1201. }
  1202. void print_timings() const {
  1203. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1204. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1205. const double t_gen = t_token_generation / n_decoded;
  1206. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1207. SLT_INF(*this,
  1208. "\n"
  1209. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1210. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1211. " total time = %10.2f ms / %5d tokens\n",
  1212. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1213. t_token_generation, n_decoded, t_gen, n_gen_second,
  1214. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1215. }
  1216. json to_json() const {
  1217. return json {
  1218. {"id", id},
  1219. {"id_task", id_task},
  1220. {"n_ctx", n_ctx},
  1221. {"speculative", can_speculate()},
  1222. {"is_processing", is_processing()},
  1223. {"non_causal", is_non_causal()},
  1224. {"params", params.to_json()},
  1225. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1226. {"next_token",
  1227. {
  1228. {"has_next_token", has_next_token},
  1229. {"has_new_line", has_new_line},
  1230. {"n_remain", n_remaining},
  1231. {"n_decoded", n_decoded},
  1232. {"stopping_word", stopping_word},
  1233. }
  1234. },
  1235. };
  1236. }
  1237. };
  1238. struct server_metrics {
  1239. int64_t t_start = 0;
  1240. uint64_t n_prompt_tokens_processed_total = 0;
  1241. uint64_t t_prompt_processing_total = 0;
  1242. uint64_t n_tokens_predicted_total = 0;
  1243. uint64_t t_tokens_generation_total = 0;
  1244. uint64_t n_prompt_tokens_processed = 0;
  1245. uint64_t t_prompt_processing = 0;
  1246. uint64_t n_tokens_predicted = 0;
  1247. uint64_t t_tokens_generation = 0;
  1248. uint64_t n_decode_total = 0;
  1249. uint64_t n_busy_slots_total = 0;
  1250. void init() {
  1251. t_start = ggml_time_us();
  1252. }
  1253. void on_prompt_eval(const server_slot & slot) {
  1254. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1255. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1256. t_prompt_processing += slot.t_prompt_processing;
  1257. t_prompt_processing_total += slot.t_prompt_processing;
  1258. }
  1259. void on_prediction(const server_slot & slot) {
  1260. n_tokens_predicted_total += slot.n_decoded;
  1261. n_tokens_predicted += slot.n_decoded;
  1262. t_tokens_generation += slot.t_token_generation;
  1263. t_tokens_generation_total += slot.t_token_generation;
  1264. }
  1265. void on_decoded(const std::vector<server_slot> & slots) {
  1266. n_decode_total++;
  1267. for (const auto & slot : slots) {
  1268. if (slot.is_processing()) {
  1269. n_busy_slots_total++;
  1270. }
  1271. }
  1272. }
  1273. void reset_bucket() {
  1274. n_prompt_tokens_processed = 0;
  1275. t_prompt_processing = 0;
  1276. n_tokens_predicted = 0;
  1277. t_tokens_generation = 0;
  1278. }
  1279. };
  1280. struct server_queue {
  1281. int id = 0;
  1282. bool running;
  1283. // queues
  1284. std::deque<server_task> queue_tasks;
  1285. std::deque<server_task> queue_tasks_deferred;
  1286. std::mutex mutex_tasks;
  1287. std::condition_variable condition_tasks;
  1288. // callback functions
  1289. std::function<void(server_task)> callback_new_task;
  1290. std::function<void(void)> callback_update_slots;
  1291. // Add a new task to the end of the queue
  1292. int post(server_task task, bool front = false) {
  1293. std::unique_lock<std::mutex> lock(mutex_tasks);
  1294. GGML_ASSERT(task.id != -1);
  1295. // if this is cancel task make sure to clean up pending tasks
  1296. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1297. cleanup_pending_task(task.id_target);
  1298. }
  1299. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1300. if (front) {
  1301. queue_tasks.push_front(std::move(task));
  1302. } else {
  1303. queue_tasks.push_back(std::move(task));
  1304. }
  1305. condition_tasks.notify_one();
  1306. return task.id;
  1307. }
  1308. // multi-task version of post()
  1309. int post(std::vector<server_task> & tasks, bool front = false) {
  1310. std::unique_lock<std::mutex> lock(mutex_tasks);
  1311. for (auto & task : tasks) {
  1312. if (task.id == -1) {
  1313. task.id = id++;
  1314. }
  1315. // if this is cancel task make sure to clean up pending tasks
  1316. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1317. cleanup_pending_task(task.id_target);
  1318. }
  1319. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1320. if (front) {
  1321. queue_tasks.push_front(std::move(task));
  1322. } else {
  1323. queue_tasks.push_back(std::move(task));
  1324. }
  1325. }
  1326. condition_tasks.notify_one();
  1327. return 0;
  1328. }
  1329. // Add a new task, but defer until one slot is available
  1330. void defer(server_task task) {
  1331. std::unique_lock<std::mutex> lock(mutex_tasks);
  1332. QUE_DBG("defer task, id = %d\n", task.id);
  1333. queue_tasks_deferred.push_back(std::move(task));
  1334. condition_tasks.notify_one();
  1335. }
  1336. // Get the next id for creating a new task
  1337. int get_new_id() {
  1338. std::unique_lock<std::mutex> lock(mutex_tasks);
  1339. int new_id = id++;
  1340. return new_id;
  1341. }
  1342. // Register function to process a new task
  1343. void on_new_task(std::function<void(server_task)> callback) {
  1344. callback_new_task = std::move(callback);
  1345. }
  1346. // Register the function to be called when all slots data is ready to be processed
  1347. void on_update_slots(std::function<void(void)> callback) {
  1348. callback_update_slots = std::move(callback);
  1349. }
  1350. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1351. void pop_deferred_task() {
  1352. std::unique_lock<std::mutex> lock(mutex_tasks);
  1353. if (!queue_tasks_deferred.empty()) {
  1354. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1355. queue_tasks_deferred.pop_front();
  1356. }
  1357. condition_tasks.notify_one();
  1358. }
  1359. // end the start_loop routine
  1360. void terminate() {
  1361. std::unique_lock<std::mutex> lock(mutex_tasks);
  1362. running = false;
  1363. condition_tasks.notify_all();
  1364. }
  1365. /**
  1366. * Main loop consists of these steps:
  1367. * - Wait until a new task arrives
  1368. * - Process the task (i.e. maybe copy data into slot)
  1369. * - Check if multitask is finished
  1370. * - Update all slots
  1371. */
  1372. void start_loop() {
  1373. running = true;
  1374. while (true) {
  1375. QUE_DBG("%s", "processing new tasks\n");
  1376. while (true) {
  1377. std::unique_lock<std::mutex> lock(mutex_tasks);
  1378. if (!running) {
  1379. QUE_DBG("%s", "terminate\n");
  1380. return;
  1381. }
  1382. if (queue_tasks.empty()) {
  1383. lock.unlock();
  1384. break;
  1385. }
  1386. server_task task = queue_tasks.front();
  1387. queue_tasks.pop_front();
  1388. lock.unlock();
  1389. QUE_DBG("processing task, id = %d\n", task.id);
  1390. callback_new_task(std::move(task));
  1391. }
  1392. // all tasks in the current loop is processed, slots data is now ready
  1393. QUE_DBG("%s", "update slots\n");
  1394. callback_update_slots();
  1395. QUE_DBG("%s", "waiting for new tasks\n");
  1396. {
  1397. std::unique_lock<std::mutex> lock(mutex_tasks);
  1398. if (!running) {
  1399. QUE_DBG("%s", "terminate\n");
  1400. return;
  1401. }
  1402. if (queue_tasks.empty()) {
  1403. condition_tasks.wait(lock, [&]{
  1404. return (!queue_tasks.empty() || !running);
  1405. });
  1406. }
  1407. }
  1408. }
  1409. }
  1410. private:
  1411. void cleanup_pending_task(int id_target) {
  1412. // no need lock because this is called exclusively by post()
  1413. auto rm_func = [id_target](const server_task & task) {
  1414. return task.id_target == id_target;
  1415. };
  1416. queue_tasks.erase(
  1417. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1418. queue_tasks.end());
  1419. queue_tasks_deferred.erase(
  1420. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1421. queue_tasks_deferred.end());
  1422. }
  1423. };
  1424. struct server_response {
  1425. // for keeping track of all tasks waiting for the result
  1426. std::unordered_set<int> waiting_task_ids;
  1427. // the main result queue (using ptr for polymorphism)
  1428. std::vector<server_task_result_ptr> queue_results;
  1429. std::mutex mutex_results;
  1430. std::condition_variable condition_results;
  1431. // add the id_task to the list of tasks waiting for response
  1432. void add_waiting_task_id(int id_task) {
  1433. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1434. std::unique_lock<std::mutex> lock(mutex_results);
  1435. waiting_task_ids.insert(id_task);
  1436. }
  1437. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1438. std::unique_lock<std::mutex> lock(mutex_results);
  1439. for (const auto & task : tasks) {
  1440. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1441. waiting_task_ids.insert(task.id);
  1442. }
  1443. }
  1444. // when the request is finished, we can remove task associated with it
  1445. void remove_waiting_task_id(int id_task) {
  1446. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1447. std::unique_lock<std::mutex> lock(mutex_results);
  1448. waiting_task_ids.erase(id_task);
  1449. // make sure to clean up all pending results
  1450. queue_results.erase(
  1451. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1452. return res->id == id_task;
  1453. }),
  1454. queue_results.end());
  1455. }
  1456. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1457. std::unique_lock<std::mutex> lock(mutex_results);
  1458. for (const auto & id_task : id_tasks) {
  1459. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1460. waiting_task_ids.erase(id_task);
  1461. }
  1462. }
  1463. // This function blocks the thread until there is a response for one of the id_tasks
  1464. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1465. while (true) {
  1466. std::unique_lock<std::mutex> lock(mutex_results);
  1467. condition_results.wait(lock, [&]{
  1468. return !queue_results.empty();
  1469. });
  1470. for (size_t i = 0; i < queue_results.size(); i++) {
  1471. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1472. server_task_result_ptr res = std::move(queue_results[i]);
  1473. queue_results.erase(queue_results.begin() + i);
  1474. return res;
  1475. }
  1476. }
  1477. }
  1478. // should never reach here
  1479. }
  1480. // same as recv(), but have timeout in seconds
  1481. // if timeout is reached, nullptr is returned
  1482. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1483. while (true) {
  1484. std::unique_lock<std::mutex> lock(mutex_results);
  1485. for (int i = 0; i < (int) queue_results.size(); i++) {
  1486. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1487. server_task_result_ptr res = std::move(queue_results[i]);
  1488. queue_results.erase(queue_results.begin() + i);
  1489. return res;
  1490. }
  1491. }
  1492. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1493. if (cr_res == std::cv_status::timeout) {
  1494. return nullptr;
  1495. }
  1496. }
  1497. // should never reach here
  1498. }
  1499. // single-task version of recv()
  1500. server_task_result_ptr recv(int id_task) {
  1501. std::unordered_set<int> id_tasks = {id_task};
  1502. return recv(id_tasks);
  1503. }
  1504. // Send a new result to a waiting id_task
  1505. void send(server_task_result_ptr && result) {
  1506. SRV_DBG("sending result for task id = %d\n", result->id);
  1507. std::unique_lock<std::mutex> lock(mutex_results);
  1508. for (const auto & id_task : waiting_task_ids) {
  1509. if (result->id == id_task) {
  1510. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1511. queue_results.emplace_back(std::move(result));
  1512. condition_results.notify_all();
  1513. return;
  1514. }
  1515. }
  1516. }
  1517. };
  1518. struct server_context {
  1519. common_params params_base;
  1520. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1521. common_init_result llama_init;
  1522. common_init_result llama_init_dft;
  1523. llama_model * model = nullptr;
  1524. llama_context * ctx = nullptr;
  1525. const llama_vocab * vocab = nullptr;
  1526. llama_model * model_dft = nullptr;
  1527. llama_context_params cparams_dft;
  1528. llama_batch batch = {};
  1529. bool clean_kv_cache = true;
  1530. bool add_bos_token = true;
  1531. bool has_eos_token = false;
  1532. int32_t n_ctx; // total context for all clients / slots
  1533. // slots / clients
  1534. std::vector<server_slot> slots;
  1535. json default_generation_settings_for_props;
  1536. server_queue queue_tasks;
  1537. server_response queue_results;
  1538. server_metrics metrics;
  1539. // Necessary similarity of prompt for slot selection
  1540. float slot_prompt_similarity = 0.0f;
  1541. common_chat_templates_ptr chat_templates;
  1542. ~server_context() {
  1543. // Clear any sampling context
  1544. for (server_slot & slot : slots) {
  1545. common_sampler_free(slot.smpl);
  1546. slot.smpl = nullptr;
  1547. llama_free(slot.ctx_dft);
  1548. slot.ctx_dft = nullptr;
  1549. common_speculative_free(slot.spec);
  1550. slot.spec = nullptr;
  1551. llama_batch_free(slot.batch_spec);
  1552. }
  1553. llama_batch_free(batch);
  1554. }
  1555. bool load_model(const common_params & params) {
  1556. SRV_INF("loading model '%s'\n", params.model.c_str());
  1557. params_base = params;
  1558. llama_init = common_init_from_params(params_base);
  1559. model = llama_init.model.get();
  1560. ctx = llama_init.context.get();
  1561. if (model == nullptr) {
  1562. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1563. return false;
  1564. }
  1565. vocab = llama_model_get_vocab(model);
  1566. n_ctx = llama_n_ctx(ctx);
  1567. add_bos_token = llama_vocab_get_add_bos(vocab);
  1568. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1569. if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
  1570. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1571. auto params_dft = params_base;
  1572. params_dft.devices = params_base.speculative.devices;
  1573. params_dft.hf_file = params_base.speculative.hf_file;
  1574. params_dft.hf_repo = params_base.speculative.hf_repo;
  1575. params_dft.model = params_base.speculative.model;
  1576. params_dft.model_url = params_base.speculative.model_url;
  1577. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1578. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1579. params_dft.n_parallel = 1;
  1580. llama_init_dft = common_init_from_params(params_dft);
  1581. model_dft = llama_init_dft.model.get();
  1582. if (model_dft == nullptr) {
  1583. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1584. return false;
  1585. }
  1586. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1587. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1588. return false;
  1589. }
  1590. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1591. cparams_dft = common_context_params_to_llama(params_dft);
  1592. cparams_dft.n_batch = n_ctx_dft;
  1593. // force F16 KV cache for the draft model for extra performance
  1594. cparams_dft.type_k = GGML_TYPE_F16;
  1595. cparams_dft.type_v = GGML_TYPE_F16;
  1596. // the context is not needed - we will create one for each slot
  1597. llama_init_dft.context.reset();
  1598. }
  1599. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1600. try {
  1601. common_chat_format_example(chat_templates.get(), params.use_jinja);
  1602. } catch (const std::exception & e) {
  1603. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1604. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1605. chat_templates = common_chat_templates_init(model, "chatml");
  1606. }
  1607. return true;
  1608. }
  1609. void init() {
  1610. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1611. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1612. for (int i = 0; i < params_base.n_parallel; i++) {
  1613. server_slot slot;
  1614. slot.id = i;
  1615. slot.ctx = ctx;
  1616. slot.n_ctx = n_ctx_slot;
  1617. slot.n_predict = params_base.n_predict;
  1618. if (model_dft) {
  1619. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1620. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1621. if (slot.ctx_dft == nullptr) {
  1622. SRV_ERR("%s", "failed to create draft context\n");
  1623. return;
  1624. }
  1625. slot.spec = common_speculative_init(slot.ctx_dft);
  1626. if (slot.spec == nullptr) {
  1627. SRV_ERR("%s", "failed to create speculator\n");
  1628. return;
  1629. }
  1630. }
  1631. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1632. slot.params.sampling = params_base.sampling;
  1633. slot.callback_on_release = [this](int) {
  1634. queue_tasks.pop_deferred_task();
  1635. };
  1636. slot.reset();
  1637. slots.push_back(slot);
  1638. }
  1639. default_generation_settings_for_props = slots[0].to_json();
  1640. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1641. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1642. {
  1643. const int32_t n_batch = llama_n_batch(ctx);
  1644. // only a single seq_id per token is needed
  1645. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1646. }
  1647. metrics.init();
  1648. }
  1649. server_slot * get_slot_by_id(int id) {
  1650. for (server_slot & slot : slots) {
  1651. if (slot.id == id) {
  1652. return &slot;
  1653. }
  1654. }
  1655. return nullptr;
  1656. }
  1657. server_slot * get_available_slot(const server_task & task) {
  1658. server_slot * ret = nullptr;
  1659. // find the slot that has at least n% prompt similarity
  1660. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1661. int lcs_len = 0;
  1662. float similarity = 0;
  1663. for (server_slot & slot : slots) {
  1664. // skip the slot if it is not available
  1665. if (slot.is_processing()) {
  1666. continue;
  1667. }
  1668. // skip the slot if it does not contains cached tokens
  1669. if (slot.cache_tokens.empty()) {
  1670. continue;
  1671. }
  1672. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1673. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1674. // fraction of the common subsequence length compared to the current slot's prompt length
  1675. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1676. // select the current slot if the criteria match
  1677. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1678. lcs_len = cur_lcs_len;
  1679. similarity = cur_similarity;
  1680. ret = &slot;
  1681. }
  1682. }
  1683. if (ret != nullptr) {
  1684. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1685. }
  1686. }
  1687. // find the slot that has been least recently used
  1688. if (ret == nullptr) {
  1689. int64_t t_last = ggml_time_us();
  1690. for (server_slot & slot : slots) {
  1691. // skip the slot if it is not available
  1692. if (slot.is_processing()) {
  1693. continue;
  1694. }
  1695. // select the current slot if the criteria match
  1696. if (slot.t_last_used < t_last) {
  1697. t_last = slot.t_last_used;
  1698. ret = &slot;
  1699. }
  1700. }
  1701. if (ret != nullptr) {
  1702. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1703. }
  1704. }
  1705. return ret;
  1706. }
  1707. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1708. slot.reset();
  1709. slot.id_task = task.id;
  1710. slot.index = task.index;
  1711. slot.task_type = task.type;
  1712. slot.params = std::move(task.params);
  1713. slot.prompt_tokens = std::move(task.prompt_tokens);
  1714. if (!are_lora_equal(task.params.lora, slot.lora)) {
  1715. // if lora is changed, we cannot reuse cached tokens
  1716. slot.cache_tokens.clear();
  1717. slot.lora = task.params.lora;
  1718. }
  1719. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1720. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1721. // Might be better to reject the request with a 400 ?
  1722. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1723. slot.params.n_predict = slot.n_predict;
  1724. }
  1725. if (slot.params.ignore_eos && has_eos_token) {
  1726. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1727. }
  1728. {
  1729. if (slot.smpl != nullptr) {
  1730. common_sampler_free(slot.smpl);
  1731. }
  1732. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1733. if (slot.smpl == nullptr) {
  1734. // for now, the only error that may happen here is invalid grammar
  1735. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1736. return false;
  1737. }
  1738. }
  1739. if (slot.ctx_dft) {
  1740. llama_batch_free(slot.batch_spec);
  1741. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1742. }
  1743. slot.state = SLOT_STATE_STARTED;
  1744. SLT_INF(slot, "%s", "processing task\n");
  1745. return true;
  1746. }
  1747. void kv_cache_clear() {
  1748. SRV_DBG("%s", "clearing KV cache\n");
  1749. // clear the entire KV cache
  1750. llama_kv_cache_clear(ctx);
  1751. clean_kv_cache = false;
  1752. }
  1753. bool process_token(completion_token_output & result, server_slot & slot) {
  1754. // remember which tokens were sampled - used for repetition penalties during sampling
  1755. const std::string token_str = result.text_to_send;
  1756. slot.sampled = result.tok;
  1757. slot.generated_text += token_str;
  1758. if (slot.params.return_tokens) {
  1759. slot.generated_tokens.push_back(result.tok);
  1760. }
  1761. slot.has_next_token = true;
  1762. // check if there is incomplete UTF-8 character at the end
  1763. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1764. // search stop word and delete it
  1765. if (!incomplete) {
  1766. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1767. const std::string str_test = slot.generated_text.substr(pos);
  1768. bool send_text = true;
  1769. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1770. if (stop_pos != std::string::npos) {
  1771. slot.generated_text.erase(
  1772. slot.generated_text.begin() + pos + stop_pos,
  1773. slot.generated_text.end());
  1774. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1775. } else if (slot.has_next_token) {
  1776. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1777. send_text = stop_pos == std::string::npos;
  1778. }
  1779. // check if there is any token to predict
  1780. if (send_text) {
  1781. // no send the stop word in the response
  1782. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1783. slot.n_sent_text += result.text_to_send.size();
  1784. // add the token to slot queue and cache
  1785. } else {
  1786. result.text_to_send = "";
  1787. }
  1788. slot.add_token(result);
  1789. if (slot.params.stream) {
  1790. send_partial_response(slot, result);
  1791. }
  1792. }
  1793. if (incomplete) {
  1794. slot.has_next_token = true;
  1795. }
  1796. // check the limits
  1797. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1798. slot.stop = STOP_TYPE_LIMIT;
  1799. slot.has_next_token = false;
  1800. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1801. }
  1802. if (slot.has_new_line) {
  1803. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1804. if (slot.params.n_indent > 0) {
  1805. // check the current indentation
  1806. // TODO: improve by not doing it more than once for each new line
  1807. if (slot.last_nl_pos > 0) {
  1808. size_t pos = slot.last_nl_pos;
  1809. int n_indent = 0;
  1810. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1811. n_indent++;
  1812. pos++;
  1813. }
  1814. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1815. slot.stop = STOP_TYPE_LIMIT;
  1816. slot.has_next_token = false;
  1817. // cut the last line
  1818. slot.generated_text.erase(pos, std::string::npos);
  1819. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1820. }
  1821. }
  1822. // find the next new line
  1823. {
  1824. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1825. if (pos != std::string::npos) {
  1826. slot.last_nl_pos = pos + 1;
  1827. }
  1828. }
  1829. }
  1830. }
  1831. // check if there is a new line in the generated text
  1832. if (result.text_to_send.find('\n') != std::string::npos) {
  1833. slot.has_new_line = true;
  1834. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  1835. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1836. slot.stop = STOP_TYPE_LIMIT;
  1837. slot.has_next_token = false;
  1838. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1839. }
  1840. }
  1841. // if context shift is disabled, we stop when it reaches the context limit
  1842. if (slot.n_past >= slot.n_ctx) {
  1843. slot.truncated = true;
  1844. slot.stop = STOP_TYPE_LIMIT;
  1845. slot.has_next_token = false;
  1846. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1847. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1848. }
  1849. if (llama_vocab_is_eog(vocab, result.tok)) {
  1850. slot.stop = STOP_TYPE_EOS;
  1851. slot.has_next_token = false;
  1852. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1853. }
  1854. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1855. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1856. slot.truncated = true;
  1857. slot.stop = STOP_TYPE_LIMIT;
  1858. slot.has_next_token = false; // stop prediction
  1859. SLT_WRN(slot,
  1860. "n_predict (%d) is set for infinite generation. "
  1861. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1862. slot.params.n_predict, n_ctx_train);
  1863. }
  1864. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1865. return slot.has_next_token; // continue
  1866. }
  1867. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1868. size_t n_probs = slot.params.sampling.n_probs;
  1869. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1870. if (post_sampling) {
  1871. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1872. const size_t max_probs = cur_p->size;
  1873. // set probability for sampled token
  1874. for (size_t i = 0; i < max_probs; i++) {
  1875. if (cur_p->data[i].id == result.tok) {
  1876. result.prob = cur_p->data[i].p;
  1877. break;
  1878. }
  1879. }
  1880. // set probability for top n_probs tokens
  1881. result.probs.reserve(max_probs);
  1882. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1883. result.probs.push_back({
  1884. cur_p->data[i].id,
  1885. common_token_to_piece(ctx, cur_p->data[i].id, special),
  1886. cur_p->data[i].p
  1887. });
  1888. }
  1889. } else {
  1890. // TODO: optimize this with min-p optimization
  1891. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1892. // set probability for sampled token
  1893. for (size_t i = 0; i < n_vocab; i++) {
  1894. // set probability for sampled token
  1895. if (cur[i].id == result.tok) {
  1896. result.prob = cur[i].p;
  1897. break;
  1898. }
  1899. }
  1900. // set probability for top n_probs tokens
  1901. result.probs.reserve(n_probs);
  1902. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1903. result.probs.push_back({
  1904. cur[i].id,
  1905. common_token_to_piece(ctx, cur[i].id, special),
  1906. cur[i].p
  1907. });
  1908. }
  1909. }
  1910. }
  1911. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1912. send_error(task.id, error, type);
  1913. }
  1914. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1915. send_error(slot.id_task, error, type);
  1916. }
  1917. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1918. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1919. auto res = std::make_unique<server_task_result_error>();
  1920. res->id = id_task;
  1921. res->err_type = type;
  1922. res->err_msg = error;
  1923. queue_results.send(std::move(res));
  1924. }
  1925. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1926. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1927. res->id = slot.id_task;
  1928. res->index = slot.index;
  1929. res->content = tkn.text_to_send;
  1930. res->tokens = { tkn.tok };
  1931. res->n_decoded = slot.n_decoded;
  1932. res->n_prompt_tokens = slot.n_prompt_tokens;
  1933. res->post_sampling_probs = slot.params.post_sampling_probs;
  1934. res->verbose = slot.params.verbose;
  1935. res->oaicompat = slot.params.oaicompat;
  1936. res->oaicompat_model = slot.params.oaicompat_model;
  1937. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1938. // populate res.probs_output
  1939. if (slot.params.sampling.n_probs > 0) {
  1940. res->prob_output = tkn; // copy the token probs
  1941. }
  1942. // populate timings if this is final response or timings_per_token is enabled
  1943. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1944. res->timings = slot.get_timings();
  1945. }
  1946. queue_results.send(std::move(res));
  1947. }
  1948. void send_final_response(server_slot & slot) {
  1949. auto res = std::make_unique<server_task_result_cmpl_final>();
  1950. res->id = slot.id_task;
  1951. res->id_slot = slot.id;
  1952. res->index = slot.index;
  1953. res->content = std::move(slot.generated_text);
  1954. res->tokens = std::move(slot.generated_tokens);
  1955. res->timings = slot.get_timings();
  1956. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1957. res->response_fields = std::move(slot.params.response_fields);
  1958. res->truncated = slot.truncated;
  1959. res->n_decoded = slot.n_decoded;
  1960. res->n_prompt_tokens = slot.n_prompt_tokens;
  1961. res->n_tokens_cached = slot.n_past;
  1962. res->has_new_line = slot.has_new_line;
  1963. res->stopping_word = slot.stopping_word;
  1964. res->stop = slot.stop;
  1965. res->post_sampling_probs = slot.params.post_sampling_probs;
  1966. res->verbose = slot.params.verbose;
  1967. res->stream = slot.params.stream;
  1968. res->oaicompat = slot.params.oaicompat;
  1969. res->oaicompat_model = slot.params.oaicompat_model;
  1970. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1971. res->oaicompat_chat_format = slot.params.oaicompat_chat_format;
  1972. // populate res.probs_output
  1973. if (slot.params.sampling.n_probs > 0) {
  1974. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1975. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1976. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1977. res->probs_output = std::vector<completion_token_output>(
  1978. slot.generated_token_probs.begin(),
  1979. slot.generated_token_probs.end() - safe_offset);
  1980. } else {
  1981. res->probs_output = std::vector<completion_token_output>(
  1982. slot.generated_token_probs.begin(),
  1983. slot.generated_token_probs.end());
  1984. }
  1985. }
  1986. res->generation_params = slot.params; // copy the parameters
  1987. queue_results.send(std::move(res));
  1988. }
  1989. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1990. auto res = std::make_unique<server_task_result_embd>();
  1991. res->id = slot.id_task;
  1992. res->index = slot.index;
  1993. res->n_tokens = slot.n_prompt_tokens;
  1994. res->oaicompat = slot.params.oaicompat;
  1995. const int n_embd = llama_model_n_embd(model);
  1996. std::vector<float> embd_res(n_embd, 0.0f);
  1997. for (int i = 0; i < batch.n_tokens; ++i) {
  1998. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1999. continue;
  2000. }
  2001. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2002. if (embd == NULL) {
  2003. embd = llama_get_embeddings_ith(ctx, i);
  2004. }
  2005. if (embd == NULL) {
  2006. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2007. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2008. continue;
  2009. }
  2010. // normalize only when there is pooling
  2011. // TODO: configurable
  2012. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2013. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  2014. res->embedding.push_back(embd_res);
  2015. } else {
  2016. res->embedding.push_back({ embd, embd + n_embd });
  2017. }
  2018. }
  2019. SLT_DBG(slot, "%s", "sending embeddings\n");
  2020. queue_results.send(std::move(res));
  2021. }
  2022. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2023. auto res = std::make_unique<server_task_result_rerank>();
  2024. res->id = slot.id_task;
  2025. res->index = slot.index;
  2026. res->n_tokens = slot.n_prompt_tokens;
  2027. for (int i = 0; i < batch.n_tokens; ++i) {
  2028. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2029. continue;
  2030. }
  2031. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2032. if (embd == NULL) {
  2033. embd = llama_get_embeddings_ith(ctx, i);
  2034. }
  2035. if (embd == NULL) {
  2036. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2037. res->score = -1e6;
  2038. continue;
  2039. }
  2040. res->score = embd[0];
  2041. }
  2042. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2043. queue_results.send(std::move(res));
  2044. }
  2045. //
  2046. // Functions to create new task(s) and receive result(s)
  2047. //
  2048. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2049. std::vector<server_task> cancel_tasks;
  2050. cancel_tasks.reserve(id_tasks.size());
  2051. for (const auto & id_task : id_tasks) {
  2052. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2053. server_task task(SERVER_TASK_TYPE_CANCEL);
  2054. task.id_target = id_task;
  2055. queue_results.remove_waiting_task_id(id_task);
  2056. cancel_tasks.push_back(task);
  2057. }
  2058. // push to beginning of the queue, so it has highest priority
  2059. queue_tasks.post(cancel_tasks, true);
  2060. }
  2061. // receive the results from task(s)
  2062. void receive_multi_results(
  2063. const std::unordered_set<int> & id_tasks,
  2064. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2065. const std::function<void(json)> & error_handler,
  2066. const std::function<bool()> & is_connection_closed) {
  2067. std::vector<server_task_result_ptr> results(id_tasks.size());
  2068. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2069. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2070. if (is_connection_closed()) {
  2071. cancel_tasks(id_tasks);
  2072. return;
  2073. }
  2074. if (result == nullptr) {
  2075. i--; // retry
  2076. continue;
  2077. }
  2078. if (result->is_error()) {
  2079. error_handler(result->to_json());
  2080. cancel_tasks(id_tasks);
  2081. return;
  2082. }
  2083. GGML_ASSERT(
  2084. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2085. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2086. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2087. );
  2088. const size_t idx = result->get_index();
  2089. GGML_ASSERT(idx < results.size() && "index out of range");
  2090. results[idx] = std::move(result);
  2091. }
  2092. result_handler(results);
  2093. }
  2094. // receive the results from task(s), in stream mode
  2095. void receive_cmpl_results_stream(
  2096. const std::unordered_set<int> & id_tasks,
  2097. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2098. const std::function<void(json)> & error_handler,
  2099. const std::function<bool()> & is_connection_closed) {
  2100. size_t n_finished = 0;
  2101. while (true) {
  2102. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2103. if (is_connection_closed()) {
  2104. cancel_tasks(id_tasks);
  2105. return;
  2106. }
  2107. if (result == nullptr) {
  2108. continue; // retry
  2109. }
  2110. if (result->is_error()) {
  2111. error_handler(result->to_json());
  2112. cancel_tasks(id_tasks);
  2113. return;
  2114. }
  2115. GGML_ASSERT(
  2116. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2117. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2118. );
  2119. if (!result_handler(result)) {
  2120. cancel_tasks(id_tasks);
  2121. break;
  2122. }
  2123. if (result->is_stop()) {
  2124. if (++n_finished == id_tasks.size()) {
  2125. break;
  2126. }
  2127. }
  2128. }
  2129. }
  2130. //
  2131. // Functions to process the task
  2132. //
  2133. void process_single_task(server_task task) {
  2134. switch (task.type) {
  2135. case SERVER_TASK_TYPE_COMPLETION:
  2136. case SERVER_TASK_TYPE_INFILL:
  2137. case SERVER_TASK_TYPE_EMBEDDING:
  2138. case SERVER_TASK_TYPE_RERANK:
  2139. {
  2140. const int id_slot = task.id_selected_slot;
  2141. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2142. if (slot == nullptr) {
  2143. // if no slot is available, we defer this task for processing later
  2144. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2145. queue_tasks.defer(task);
  2146. break;
  2147. }
  2148. if (slot->is_processing()) {
  2149. // if requested slot is unavailable, we defer this task for processing later
  2150. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2151. queue_tasks.defer(task);
  2152. break;
  2153. }
  2154. if (!launch_slot_with_task(*slot, task)) {
  2155. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2156. break;
  2157. }
  2158. } break;
  2159. case SERVER_TASK_TYPE_CANCEL:
  2160. {
  2161. // release slot linked with the task id
  2162. for (auto & slot : slots) {
  2163. if (slot.id_task == task.id_target) {
  2164. slot.release();
  2165. break;
  2166. }
  2167. }
  2168. } break;
  2169. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2170. {
  2171. // do nothing
  2172. } break;
  2173. case SERVER_TASK_TYPE_METRICS:
  2174. {
  2175. json slots_data = json::array();
  2176. int n_idle_slots = 0;
  2177. int n_processing_slots = 0;
  2178. for (server_slot & slot : slots) {
  2179. json slot_data = slot.to_json();
  2180. if (slot.is_processing()) {
  2181. n_processing_slots++;
  2182. } else {
  2183. n_idle_slots++;
  2184. }
  2185. slots_data.push_back(slot_data);
  2186. }
  2187. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2188. auto res = std::make_unique<server_task_result_metrics>();
  2189. res->id = task.id;
  2190. res->slots_data = std::move(slots_data);
  2191. res->n_idle_slots = n_idle_slots;
  2192. res->n_processing_slots = n_processing_slots;
  2193. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2194. res->t_start = metrics.t_start;
  2195. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  2196. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  2197. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2198. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2199. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2200. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2201. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2202. res->t_prompt_processing = metrics.t_prompt_processing;
  2203. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2204. res->t_tokens_generation = metrics.t_tokens_generation;
  2205. res->n_decode_total = metrics.n_decode_total;
  2206. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2207. if (task.metrics_reset_bucket) {
  2208. metrics.reset_bucket();
  2209. }
  2210. queue_results.send(std::move(res));
  2211. } break;
  2212. case SERVER_TASK_TYPE_SLOT_SAVE:
  2213. {
  2214. int id_slot = task.slot_action.slot_id;
  2215. server_slot * slot = get_slot_by_id(id_slot);
  2216. if (slot == nullptr) {
  2217. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2218. break;
  2219. }
  2220. if (slot->is_processing()) {
  2221. // if requested slot is unavailable, we defer this task for processing later
  2222. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2223. queue_tasks.defer(task);
  2224. break;
  2225. }
  2226. const size_t token_count = slot->cache_tokens.size();
  2227. const int64_t t_start = ggml_time_us();
  2228. std::string filename = task.slot_action.filename;
  2229. std::string filepath = task.slot_action.filepath;
  2230. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2231. const int64_t t_end = ggml_time_us();
  2232. const double t_save_ms = (t_end - t_start) / 1000.0;
  2233. auto res = std::make_unique<server_task_result_slot_save_load>();
  2234. res->id = task.id;
  2235. res->id_slot = id_slot;
  2236. res->filename = filename;
  2237. res->is_save = true;
  2238. res->n_tokens = token_count;
  2239. res->n_bytes = nwrite;
  2240. res->t_ms = t_save_ms;
  2241. queue_results.send(std::move(res));
  2242. } break;
  2243. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2244. {
  2245. int id_slot = task.slot_action.slot_id;
  2246. server_slot * slot = get_slot_by_id(id_slot);
  2247. if (slot == nullptr) {
  2248. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2249. break;
  2250. }
  2251. if (slot->is_processing()) {
  2252. // if requested slot is unavailable, we defer this task for processing later
  2253. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2254. queue_tasks.defer(task);
  2255. break;
  2256. }
  2257. const int64_t t_start = ggml_time_us();
  2258. std::string filename = task.slot_action.filename;
  2259. std::string filepath = task.slot_action.filepath;
  2260. slot->cache_tokens.resize(slot->n_ctx);
  2261. size_t token_count = 0;
  2262. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2263. if (nread == 0) {
  2264. slot->cache_tokens.resize(0);
  2265. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2266. break;
  2267. }
  2268. slot->cache_tokens.resize(token_count);
  2269. const int64_t t_end = ggml_time_us();
  2270. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2271. auto res = std::make_unique<server_task_result_slot_save_load>();
  2272. res->id = task.id;
  2273. res->id_slot = id_slot;
  2274. res->filename = filename;
  2275. res->is_save = false;
  2276. res->n_tokens = token_count;
  2277. res->n_bytes = nread;
  2278. res->t_ms = t_restore_ms;
  2279. queue_results.send(std::move(res));
  2280. } break;
  2281. case SERVER_TASK_TYPE_SLOT_ERASE:
  2282. {
  2283. int id_slot = task.slot_action.slot_id;
  2284. server_slot * slot = get_slot_by_id(id_slot);
  2285. if (slot == nullptr) {
  2286. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2287. break;
  2288. }
  2289. if (slot->is_processing()) {
  2290. // if requested slot is unavailable, we defer this task for processing later
  2291. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2292. queue_tasks.defer(task);
  2293. break;
  2294. }
  2295. // Erase token cache
  2296. const size_t n_erased = slot->cache_tokens.size();
  2297. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  2298. slot->cache_tokens.clear();
  2299. auto res = std::make_unique<server_task_result_slot_erase>();
  2300. res->id = task.id;
  2301. res->id_slot = id_slot;
  2302. res->n_erased = n_erased;
  2303. queue_results.send(std::move(res));
  2304. } break;
  2305. case SERVER_TASK_TYPE_SET_LORA:
  2306. {
  2307. params_base.lora_adapters = std::move(task.set_lora);
  2308. auto res = std::make_unique<server_task_result_apply_lora>();
  2309. res->id = task.id;
  2310. queue_results.send(std::move(res));
  2311. } break;
  2312. }
  2313. }
  2314. void update_slots() {
  2315. // check if all slots are idle
  2316. {
  2317. bool all_idle = true;
  2318. for (auto & slot : slots) {
  2319. if (slot.is_processing()) {
  2320. all_idle = false;
  2321. break;
  2322. }
  2323. }
  2324. if (all_idle) {
  2325. SRV_INF("%s", "all slots are idle\n");
  2326. if (clean_kv_cache) {
  2327. kv_cache_clear();
  2328. }
  2329. return;
  2330. }
  2331. }
  2332. {
  2333. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2334. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2335. task.id = queue_tasks.get_new_id();
  2336. queue_tasks.post(task);
  2337. }
  2338. // apply context-shift if needed
  2339. // TODO: simplify and improve
  2340. for (server_slot & slot : slots) {
  2341. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2342. if (!params_base.ctx_shift) {
  2343. // this check is redundant (for good)
  2344. // we should never get here, because generation should already stopped in process_token()
  2345. slot.release();
  2346. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2347. continue;
  2348. }
  2349. // Shift context
  2350. const int n_keep = slot.params.n_keep + add_bos_token;
  2351. const int n_left = slot.n_past - n_keep;
  2352. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2353. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2354. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2355. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2356. if (slot.params.cache_prompt) {
  2357. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2358. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2359. }
  2360. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2361. }
  2362. slot.n_past -= n_discard;
  2363. slot.truncated = true;
  2364. }
  2365. }
  2366. // start populating the batch for this iteration
  2367. common_batch_clear(batch);
  2368. // track if given slot can be batched with slots already in the batch
  2369. server_slot * slot_batched = nullptr;
  2370. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2371. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2372. };
  2373. // frist, add sampled tokens from any ongoing sequences
  2374. for (auto & slot : slots) {
  2375. if (slot.state != SLOT_STATE_GENERATING) {
  2376. continue;
  2377. }
  2378. // check if we can batch this slot with the previous one
  2379. if (!slot_batched) {
  2380. slot_batched = &slot;
  2381. } else if (!slot_batched->can_batch_with(slot)) {
  2382. continue;
  2383. }
  2384. slot.i_batch = batch.n_tokens;
  2385. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2386. slot.n_past += 1;
  2387. if (slot.params.cache_prompt) {
  2388. slot.cache_tokens.push_back(slot.sampled);
  2389. }
  2390. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2391. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2392. }
  2393. // process in chunks of params.n_batch
  2394. int32_t n_batch = llama_n_batch(ctx);
  2395. int32_t n_ubatch = llama_n_ubatch(ctx);
  2396. // next, batch any pending prompts without exceeding n_batch
  2397. if (params_base.cont_batching || batch.n_tokens == 0) {
  2398. for (auto & slot : slots) {
  2399. // check if we can batch this slot with the previous one
  2400. if (slot.is_processing()) {
  2401. if (!slot_batched) {
  2402. slot_batched = &slot;
  2403. } else if (!slot_batched->can_batch_with(slot)) {
  2404. continue;
  2405. }
  2406. }
  2407. // this slot still has a prompt to be processed
  2408. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2409. auto & prompt_tokens = slot.prompt_tokens;
  2410. // TODO: maybe move branch to outside of this loop in the future
  2411. if (slot.state == SLOT_STATE_STARTED) {
  2412. slot.t_start_process_prompt = ggml_time_us();
  2413. slot.t_start_generation = 0;
  2414. slot.n_past = 0;
  2415. slot.n_prompt_tokens = prompt_tokens.size();
  2416. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2417. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2418. // print prompt tokens (for debugging)
  2419. if (1) {
  2420. // first 16 tokens (avoid flooding logs)
  2421. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2422. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2423. }
  2424. } else {
  2425. // all
  2426. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2427. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2428. }
  2429. }
  2430. // empty prompt passed -> release the slot and send empty response
  2431. if (prompt_tokens.empty()) {
  2432. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2433. slot.release();
  2434. slot.print_timings();
  2435. send_final_response(slot);
  2436. continue;
  2437. }
  2438. if (slot.is_non_causal()) {
  2439. if (slot.n_prompt_tokens > n_ubatch) {
  2440. slot.release();
  2441. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2442. continue;
  2443. }
  2444. if (slot.n_prompt_tokens > slot.n_ctx) {
  2445. slot.release();
  2446. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2447. continue;
  2448. }
  2449. } else {
  2450. if (!params_base.ctx_shift) {
  2451. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2452. // TODO: there should be a separate parameter that control prompt truncation
  2453. // context shift should be applied only during the generation phase
  2454. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2455. slot.release();
  2456. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2457. continue;
  2458. }
  2459. }
  2460. if (slot.params.n_keep < 0) {
  2461. slot.params.n_keep = slot.n_prompt_tokens;
  2462. }
  2463. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2464. // if input prompt is too big, truncate it
  2465. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2466. const int n_left = slot.n_ctx - slot.params.n_keep;
  2467. const int n_block_size = n_left / 2;
  2468. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2469. llama_tokens new_tokens(
  2470. prompt_tokens.begin(),
  2471. prompt_tokens.begin() + slot.params.n_keep);
  2472. new_tokens.insert(
  2473. new_tokens.end(),
  2474. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2475. prompt_tokens.end());
  2476. prompt_tokens = std::move(new_tokens);
  2477. slot.truncated = true;
  2478. slot.n_prompt_tokens = prompt_tokens.size();
  2479. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2480. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2481. }
  2482. if (slot.params.cache_prompt) {
  2483. // reuse any previously computed tokens that are common with the new prompt
  2484. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2485. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2486. if (params_base.n_cache_reuse > 0) {
  2487. size_t head_c = slot.n_past; // cache
  2488. size_t head_p = slot.n_past; // current prompt
  2489. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2490. while (head_c < slot.cache_tokens.size() &&
  2491. head_p < prompt_tokens.size()) {
  2492. size_t n_match = 0;
  2493. while (head_c + n_match < slot.cache_tokens.size() &&
  2494. head_p + n_match < prompt_tokens.size() &&
  2495. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2496. n_match++;
  2497. }
  2498. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2499. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2500. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2501. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2502. //}
  2503. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2504. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2505. llama_kv_cache_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
  2506. for (size_t i = 0; i < n_match; i++) {
  2507. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2508. slot.n_past++;
  2509. }
  2510. head_c += n_match;
  2511. head_p += n_match;
  2512. } else {
  2513. head_c += 1;
  2514. }
  2515. }
  2516. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2517. }
  2518. }
  2519. }
  2520. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2521. // we have to evaluate at least 1 token to generate logits.
  2522. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2523. slot.n_past--;
  2524. }
  2525. slot.n_prompt_tokens_processed = 0;
  2526. }
  2527. // non-causal tasks require to fit the entire prompt in the physical batch
  2528. if (slot.is_non_causal()) {
  2529. // cannot fit the prompt in the current batch - will try next iter
  2530. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2531. continue;
  2532. }
  2533. }
  2534. // keep only the common part
  2535. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2536. // could not partially delete (likely using a non-Transformer model)
  2537. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2538. // there is no common part left
  2539. slot.n_past = 0;
  2540. }
  2541. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2542. // remove the non-common part from the cache
  2543. slot.cache_tokens.resize(slot.n_past);
  2544. // add prompt tokens for processing in the current batch
  2545. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2546. // without pooling, we want to output the embeddings for all the tokens in the batch
  2547. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2548. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2549. if (slot.params.cache_prompt) {
  2550. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2551. }
  2552. slot.n_prompt_tokens_processed++;
  2553. slot.n_past++;
  2554. }
  2555. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2556. // entire prompt has been processed
  2557. if (slot.n_past == slot.n_prompt_tokens) {
  2558. slot.state = SLOT_STATE_DONE_PROMPT;
  2559. GGML_ASSERT(batch.n_tokens > 0);
  2560. common_sampler_reset(slot.smpl);
  2561. // Process all prompt tokens through sampler system
  2562. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2563. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2564. }
  2565. // extract the logits only for the last token
  2566. batch.logits[batch.n_tokens - 1] = true;
  2567. slot.n_decoded = 0;
  2568. slot.i_batch = batch.n_tokens - 1;
  2569. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2570. }
  2571. }
  2572. if (batch.n_tokens >= n_batch) {
  2573. break;
  2574. }
  2575. }
  2576. }
  2577. if (batch.n_tokens == 0) {
  2578. SRV_WRN("%s", "no tokens to decode\n");
  2579. return;
  2580. }
  2581. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2582. if (slot_batched) {
  2583. // make sure we're in the right embedding mode
  2584. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2585. // apply lora, only need to do it once per batch
  2586. common_set_adapter_lora(ctx, slot_batched->lora);
  2587. }
  2588. // process the created batch of tokens
  2589. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2590. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2591. llama_batch batch_view = {
  2592. n_tokens,
  2593. batch.token + i,
  2594. nullptr,
  2595. batch.pos + i,
  2596. batch.n_seq_id + i,
  2597. batch.seq_id + i,
  2598. batch.logits + i,
  2599. };
  2600. const int ret = llama_decode(ctx, batch_view);
  2601. metrics.on_decoded(slots);
  2602. if (ret != 0) {
  2603. if (n_batch == 1 || ret < 0) {
  2604. // if you get here, it means the KV cache is full - try increasing it via the context size
  2605. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2606. for (auto & slot : slots) {
  2607. slot.release();
  2608. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2609. }
  2610. break; // break loop of n_batch
  2611. }
  2612. // retry with half the batch size to try to find a free slot in the KV cache
  2613. n_batch /= 2;
  2614. i -= n_batch;
  2615. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2616. continue; // continue loop of n_batch
  2617. }
  2618. for (auto & slot : slots) {
  2619. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2620. continue; // continue loop of slots
  2621. }
  2622. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2623. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2624. // prompt evaluated for embedding
  2625. send_embedding(slot, batch_view);
  2626. slot.release();
  2627. slot.i_batch = -1;
  2628. continue; // continue loop of slots
  2629. }
  2630. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2631. send_rerank(slot, batch_view);
  2632. slot.release();
  2633. slot.i_batch = -1;
  2634. continue; // continue loop of slots
  2635. }
  2636. // prompt evaluated for next-token prediction
  2637. slot.state = SLOT_STATE_GENERATING;
  2638. } else if (slot.state != SLOT_STATE_GENERATING) {
  2639. continue; // continue loop of slots
  2640. }
  2641. const int tok_idx = slot.i_batch - i;
  2642. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2643. slot.i_batch = -1;
  2644. common_sampler_accept(slot.smpl, id, true);
  2645. slot.n_decoded += 1;
  2646. const int64_t t_current = ggml_time_us();
  2647. if (slot.n_decoded == 1) {
  2648. slot.t_start_generation = t_current;
  2649. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2650. metrics.on_prompt_eval(slot);
  2651. }
  2652. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2653. completion_token_output result;
  2654. result.tok = id;
  2655. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2656. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2657. if (slot.params.sampling.n_probs > 0) {
  2658. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2659. }
  2660. if (!process_token(result, slot)) {
  2661. // release slot because of stop condition
  2662. slot.release();
  2663. slot.print_timings();
  2664. send_final_response(slot);
  2665. metrics.on_prediction(slot);
  2666. continue;
  2667. }
  2668. }
  2669. // do speculative decoding
  2670. for (auto & slot : slots) {
  2671. if (!slot.is_processing() || !slot.can_speculate()) {
  2672. continue;
  2673. }
  2674. if (slot.state != SLOT_STATE_GENERATING) {
  2675. continue;
  2676. }
  2677. // determine the max draft that fits the current slot state
  2678. int n_draft_max = slot.params.speculative.n_max;
  2679. // note: n_past is not yet increased for the `id` token sampled above
  2680. // also, need to leave space for 1 extra token to allow context shifts
  2681. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2682. if (slot.n_remaining > 0) {
  2683. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2684. }
  2685. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2686. if (n_draft_max < slot.params.speculative.n_min) {
  2687. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2688. continue;
  2689. }
  2690. llama_token id = slot.sampled;
  2691. struct common_speculative_params params_spec;
  2692. params_spec.n_draft = n_draft_max;
  2693. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2694. params_spec.p_min = slot.params.speculative.p_min;
  2695. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2696. // ignore small drafts
  2697. if (slot.params.speculative.n_min > (int) draft.size()) {
  2698. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2699. continue;
  2700. }
  2701. // construct the speculation batch
  2702. common_batch_clear(slot.batch_spec);
  2703. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2704. for (size_t i = 0; i < draft.size(); ++i) {
  2705. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2706. }
  2707. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2708. llama_decode(ctx, slot.batch_spec);
  2709. // the accepted tokens from the speculation
  2710. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2711. slot.n_past += ids.size();
  2712. slot.n_decoded += ids.size();
  2713. slot.cache_tokens.push_back(id);
  2714. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2715. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2716. for (size_t i = 0; i < ids.size(); ++i) {
  2717. completion_token_output result;
  2718. result.tok = ids[i];
  2719. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2720. result.prob = 1.0f; // set later
  2721. // TODO: set result.probs
  2722. if (!process_token(result, slot)) {
  2723. // release slot because of stop condition
  2724. slot.release();
  2725. slot.print_timings();
  2726. send_final_response(slot);
  2727. metrics.on_prediction(slot);
  2728. break;
  2729. }
  2730. }
  2731. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2732. }
  2733. }
  2734. SRV_DBG("%s", "run slots completed\n");
  2735. }
  2736. json model_meta() const {
  2737. return json {
  2738. {"vocab_type", llama_vocab_type (vocab)},
  2739. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2740. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2741. {"n_embd", llama_model_n_embd (model)},
  2742. {"n_params", llama_model_n_params (model)},
  2743. {"size", llama_model_size (model)},
  2744. };
  2745. }
  2746. };
  2747. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2748. // skip GH copilot requests when using default port
  2749. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2750. return;
  2751. }
  2752. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  2753. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2754. SRV_DBG("request: %s\n", req.body.c_str());
  2755. SRV_DBG("response: %s\n", res.body.c_str());
  2756. }
  2757. std::function<void(int)> shutdown_handler;
  2758. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2759. inline void signal_handler(int signal) {
  2760. if (is_terminating.test_and_set()) {
  2761. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2762. // this is for better developer experience, we can remove when the server is stable enough
  2763. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2764. exit(1);
  2765. }
  2766. shutdown_handler(signal);
  2767. }
  2768. int main(int argc, char ** argv) {
  2769. // own arguments required by this example
  2770. common_params params;
  2771. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2772. return 1;
  2773. }
  2774. common_init();
  2775. // struct that contains llama context and inference
  2776. server_context ctx_server;
  2777. llama_backend_init();
  2778. llama_numa_init(params.numa);
  2779. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2780. LOG_INF("\n");
  2781. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2782. LOG_INF("\n");
  2783. std::unique_ptr<httplib::Server> svr;
  2784. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2785. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2786. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2787. svr.reset(
  2788. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2789. );
  2790. } else {
  2791. LOG_INF("Running without SSL\n");
  2792. svr.reset(new httplib::Server());
  2793. }
  2794. #else
  2795. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2796. LOG_ERR("Server is built without SSL support\n");
  2797. return 1;
  2798. }
  2799. svr.reset(new httplib::Server());
  2800. #endif
  2801. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2802. svr->set_default_headers({{"Server", "llama.cpp"}});
  2803. svr->set_logger(log_server_request);
  2804. auto res_error = [](httplib::Response & res, const json & error_data) {
  2805. json final_response {{"error", error_data}};
  2806. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2807. res.status = json_value(error_data, "code", 500);
  2808. };
  2809. auto res_ok = [](httplib::Response & res, const json & data) {
  2810. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2811. res.status = 200;
  2812. };
  2813. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2814. std::string message;
  2815. try {
  2816. std::rethrow_exception(ep);
  2817. } catch (const std::exception & e) {
  2818. message = e.what();
  2819. } catch (...) {
  2820. message = "Unknown Exception";
  2821. }
  2822. try {
  2823. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2824. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2825. res_error(res, formatted_error);
  2826. } catch (const std::exception & e) {
  2827. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  2828. }
  2829. });
  2830. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2831. if (res.status == 404) {
  2832. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2833. }
  2834. // for other error codes, we skip processing here because it's already done by res_error()
  2835. });
  2836. // set timeouts and change hostname and port
  2837. svr->set_read_timeout (params.timeout_read);
  2838. svr->set_write_timeout(params.timeout_write);
  2839. std::unordered_map<std::string, std::string> log_data;
  2840. log_data["hostname"] = params.hostname;
  2841. log_data["port"] = std::to_string(params.port);
  2842. if (params.api_keys.size() == 1) {
  2843. auto key = params.api_keys[0];
  2844. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2845. } else if (params.api_keys.size() > 1) {
  2846. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2847. }
  2848. // Necessary similarity of prompt for slot selection
  2849. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2850. //
  2851. // Middlewares
  2852. //
  2853. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2854. static const std::unordered_set<std::string> public_endpoints = {
  2855. "/health",
  2856. "/models",
  2857. "/v1/models",
  2858. };
  2859. // If API key is not set, skip validation
  2860. if (params.api_keys.empty()) {
  2861. return true;
  2862. }
  2863. // If path is public or is static file, skip validation
  2864. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2865. return true;
  2866. }
  2867. // Check for API key in the header
  2868. auto auth_header = req.get_header_value("Authorization");
  2869. std::string prefix = "Bearer ";
  2870. if (auth_header.substr(0, prefix.size()) == prefix) {
  2871. std::string received_api_key = auth_header.substr(prefix.size());
  2872. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2873. return true; // API key is valid
  2874. }
  2875. }
  2876. // API key is invalid or not provided
  2877. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2878. LOG_WRN("Unauthorized: Invalid API Key\n");
  2879. return false;
  2880. };
  2881. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2882. server_state current_state = state.load();
  2883. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2884. auto tmp = string_split<std::string>(req.path, '.');
  2885. if (req.path == "/" || tmp.back() == "html") {
  2886. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2887. res.status = 503;
  2888. } else {
  2889. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2890. }
  2891. return false;
  2892. }
  2893. return true;
  2894. };
  2895. // register server middlewares
  2896. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2897. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2898. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2899. if (req.method == "OPTIONS") {
  2900. res.set_header("Access-Control-Allow-Credentials", "true");
  2901. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2902. res.set_header("Access-Control-Allow-Headers", "*");
  2903. res.set_content("", "text/html"); // blank response, no data
  2904. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2905. }
  2906. if (!middleware_server_state(req, res)) {
  2907. return httplib::Server::HandlerResponse::Handled;
  2908. }
  2909. if (!middleware_validate_api_key(req, res)) {
  2910. return httplib::Server::HandlerResponse::Handled;
  2911. }
  2912. return httplib::Server::HandlerResponse::Unhandled;
  2913. });
  2914. //
  2915. // Route handlers (or controllers)
  2916. //
  2917. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2918. // error and loading states are handled by middleware
  2919. json health = {{"status", "ok"}};
  2920. res_ok(res, health);
  2921. };
  2922. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2923. if (!params.endpoint_slots) {
  2924. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2925. return;
  2926. }
  2927. // request slots data using task queue
  2928. server_task task(SERVER_TASK_TYPE_METRICS);
  2929. task.id = ctx_server.queue_tasks.get_new_id();
  2930. ctx_server.queue_results.add_waiting_task_id(task.id);
  2931. ctx_server.queue_tasks.post(task, true); // high-priority task
  2932. // get the result
  2933. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2934. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2935. if (result->is_error()) {
  2936. res_error(res, result->to_json());
  2937. return;
  2938. }
  2939. // TODO: get rid of this dynamic_cast
  2940. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2941. GGML_ASSERT(res_metrics != nullptr);
  2942. // optionally return "fail_on_no_slot" error
  2943. if (req.has_param("fail_on_no_slot")) {
  2944. if (res_metrics->n_idle_slots == 0) {
  2945. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2946. return;
  2947. }
  2948. }
  2949. res_ok(res, res_metrics->slots_data);
  2950. };
  2951. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2952. if (!params.endpoint_metrics) {
  2953. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2954. return;
  2955. }
  2956. // request slots data using task queue
  2957. server_task task(SERVER_TASK_TYPE_METRICS);
  2958. task.id = ctx_server.queue_tasks.get_new_id();
  2959. task.metrics_reset_bucket = true;
  2960. ctx_server.queue_results.add_waiting_task_id(task.id);
  2961. ctx_server.queue_tasks.post(task, true); // high-priority task
  2962. // get the result
  2963. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2964. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2965. if (result->is_error()) {
  2966. res_error(res, result->to_json());
  2967. return;
  2968. }
  2969. // TODO: get rid of this dynamic_cast
  2970. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2971. GGML_ASSERT(res_metrics != nullptr);
  2972. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2973. json all_metrics_def = json {
  2974. {"counter", {{
  2975. {"name", "prompt_tokens_total"},
  2976. {"help", "Number of prompt tokens processed."},
  2977. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2978. }, {
  2979. {"name", "prompt_seconds_total"},
  2980. {"help", "Prompt process time"},
  2981. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2982. }, {
  2983. {"name", "tokens_predicted_total"},
  2984. {"help", "Number of generation tokens processed."},
  2985. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2986. }, {
  2987. {"name", "tokens_predicted_seconds_total"},
  2988. {"help", "Predict process time"},
  2989. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2990. }, {
  2991. {"name", "n_decode_total"},
  2992. {"help", "Total number of llama_decode() calls"},
  2993. {"value", res_metrics->n_decode_total}
  2994. }, {
  2995. {"name", "n_busy_slots_per_decode"},
  2996. {"help", "Average number of busy slots per llama_decode() call"},
  2997. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  2998. }}},
  2999. {"gauge", {{
  3000. {"name", "prompt_tokens_seconds"},
  3001. {"help", "Average prompt throughput in tokens/s."},
  3002. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3003. },{
  3004. {"name", "predicted_tokens_seconds"},
  3005. {"help", "Average generation throughput in tokens/s."},
  3006. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3007. },{
  3008. {"name", "kv_cache_usage_ratio"},
  3009. {"help", "KV-cache usage. 1 means 100 percent usage."},
  3010. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  3011. },{
  3012. {"name", "kv_cache_tokens"},
  3013. {"help", "KV-cache tokens."},
  3014. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  3015. },{
  3016. {"name", "requests_processing"},
  3017. {"help", "Number of requests processing."},
  3018. {"value", (uint64_t) res_metrics->n_processing_slots}
  3019. },{
  3020. {"name", "requests_deferred"},
  3021. {"help", "Number of requests deferred."},
  3022. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3023. }}}
  3024. };
  3025. std::stringstream prometheus;
  3026. for (const auto & el : all_metrics_def.items()) {
  3027. const auto & type = el.key();
  3028. const auto & metrics_def = el.value();
  3029. for (const auto & metric_def : metrics_def) {
  3030. const std::string name = metric_def.at("name");
  3031. const std::string help = metric_def.at("help");
  3032. auto value = json_value(metric_def, "value", 0.);
  3033. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3034. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3035. << "llamacpp:" << name << " " << value << "\n";
  3036. }
  3037. }
  3038. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3039. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3040. res.status = 200; // HTTP OK
  3041. };
  3042. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3043. json request_data = json::parse(req.body);
  3044. std::string filename = request_data.at("filename");
  3045. if (!fs_validate_filename(filename)) {
  3046. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3047. return;
  3048. }
  3049. std::string filepath = params.slot_save_path + filename;
  3050. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3051. task.id = ctx_server.queue_tasks.get_new_id();
  3052. task.slot_action.slot_id = id_slot;
  3053. task.slot_action.filename = filename;
  3054. task.slot_action.filepath = filepath;
  3055. ctx_server.queue_results.add_waiting_task_id(task.id);
  3056. ctx_server.queue_tasks.post(task);
  3057. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3058. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3059. if (result->is_error()) {
  3060. res_error(res, result->to_json());
  3061. return;
  3062. }
  3063. res_ok(res, result->to_json());
  3064. };
  3065. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3066. json request_data = json::parse(req.body);
  3067. std::string filename = request_data.at("filename");
  3068. if (!fs_validate_filename(filename)) {
  3069. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3070. return;
  3071. }
  3072. std::string filepath = params.slot_save_path + filename;
  3073. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3074. task.id = ctx_server.queue_tasks.get_new_id();
  3075. task.slot_action.slot_id = id_slot;
  3076. task.slot_action.filename = filename;
  3077. task.slot_action.filepath = filepath;
  3078. ctx_server.queue_results.add_waiting_task_id(task.id);
  3079. ctx_server.queue_tasks.post(task);
  3080. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3081. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3082. if (result->is_error()) {
  3083. res_error(res, result->to_json());
  3084. return;
  3085. }
  3086. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3087. res_ok(res, result->to_json());
  3088. };
  3089. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3090. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3091. task.id = ctx_server.queue_tasks.get_new_id();
  3092. task.slot_action.slot_id = id_slot;
  3093. ctx_server.queue_results.add_waiting_task_id(task.id);
  3094. ctx_server.queue_tasks.post(task);
  3095. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3096. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3097. if (result->is_error()) {
  3098. res_error(res, result->to_json());
  3099. return;
  3100. }
  3101. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3102. res_ok(res, result->to_json());
  3103. };
  3104. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3105. if (params.slot_save_path.empty()) {
  3106. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3107. return;
  3108. }
  3109. std::string id_slot_str = req.path_params.at("id_slot");
  3110. int id_slot;
  3111. try {
  3112. id_slot = std::stoi(id_slot_str);
  3113. } catch (const std::exception &) {
  3114. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3115. return;
  3116. }
  3117. std::string action = req.get_param_value("action");
  3118. if (action == "save") {
  3119. handle_slots_save(req, res, id_slot);
  3120. } else if (action == "restore") {
  3121. handle_slots_restore(req, res, id_slot);
  3122. } else if (action == "erase") {
  3123. handle_slots_erase(req, res, id_slot);
  3124. } else {
  3125. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3126. }
  3127. };
  3128. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3129. // this endpoint is publicly available, please only return what is safe to be exposed
  3130. json data = {
  3131. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3132. { "total_slots", ctx_server.params_base.n_parallel },
  3133. { "model_path", ctx_server.params_base.model },
  3134. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3135. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3136. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3137. { "build_info", build_info },
  3138. };
  3139. if (ctx_server.params_base.use_jinja) {
  3140. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3141. data["chat_template_tool_use"] = tool_use_src;
  3142. }
  3143. }
  3144. res_ok(res, data);
  3145. };
  3146. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3147. if (!ctx_server.params_base.endpoint_props) {
  3148. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3149. return;
  3150. }
  3151. json data = json::parse(req.body);
  3152. // update any props here
  3153. res_ok(res, {{ "success", true }});
  3154. };
  3155. // handle completion-like requests (completion, chat, infill)
  3156. // we can optionally provide a custom format for partial results and final results
  3157. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3158. server_task_type type,
  3159. json & data,
  3160. std::function<bool()> is_connection_closed,
  3161. httplib::Response & res,
  3162. oaicompat_type oaicompat) {
  3163. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3164. if (ctx_server.params_base.embedding) {
  3165. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3166. return;
  3167. }
  3168. auto completion_id = gen_chatcmplid();
  3169. std::vector<server_task> tasks;
  3170. try {
  3171. const auto & prompt = data.at("prompt");
  3172. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3173. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3174. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3175. tasks.reserve(tokenized_prompts.size());
  3176. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3177. server_task task = server_task(type);
  3178. task.id = ctx_server.queue_tasks.get_new_id();
  3179. task.index = i;
  3180. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3181. task.params = server_task::params_from_json_cmpl(
  3182. ctx_server.ctx,
  3183. ctx_server.params_base,
  3184. data);
  3185. task.id_selected_slot = json_value(data, "id_slot", -1);
  3186. // OAI-compat
  3187. task.params.oaicompat = oaicompat;
  3188. task.params.oaicompat_cmpl_id = completion_id;
  3189. // oaicompat_model is already populated by params_from_json_cmpl
  3190. tasks.push_back(task);
  3191. }
  3192. } catch (const std::exception & e) {
  3193. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3194. return;
  3195. }
  3196. ctx_server.queue_results.add_waiting_tasks(tasks);
  3197. ctx_server.queue_tasks.post(tasks);
  3198. bool stream = json_value(data, "stream", false);
  3199. const auto task_ids = server_task::get_list_id(tasks);
  3200. if (!stream) {
  3201. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3202. if (results.size() == 1) {
  3203. // single result
  3204. res_ok(res, results[0]->to_json());
  3205. } else {
  3206. // multiple results (multitask)
  3207. json arr = json::array();
  3208. for (auto & res : results) {
  3209. arr.push_back(res->to_json());
  3210. }
  3211. res_ok(res, arr);
  3212. }
  3213. }, [&](const json & error_data) {
  3214. res_error(res, error_data);
  3215. }, is_connection_closed);
  3216. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3217. } else {
  3218. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3219. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3220. json res_json = result->to_json();
  3221. if (res_json.is_array()) {
  3222. for (const auto & res : res_json) {
  3223. if (!server_sent_event(sink, "data", res)) {
  3224. // sending failed (HTTP connection closed), cancel the generation
  3225. return false;
  3226. }
  3227. }
  3228. return true;
  3229. } else {
  3230. return server_sent_event(sink, "data", res_json);
  3231. }
  3232. }, [&](const json & error_data) {
  3233. server_sent_event(sink, "error", error_data);
  3234. }, [&sink]() {
  3235. // note: do not use req.is_connection_closed here because req is already destroyed
  3236. return !sink.is_writable();
  3237. });
  3238. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3239. static const std::string ev_done = "data: [DONE]\n\n";
  3240. sink.write(ev_done.data(), ev_done.size());
  3241. }
  3242. sink.done();
  3243. return false;
  3244. };
  3245. auto on_complete = [task_ids, &ctx_server] (bool) {
  3246. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3247. };
  3248. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3249. }
  3250. };
  3251. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3252. json data = json::parse(req.body);
  3253. return handle_completions_impl(
  3254. SERVER_TASK_TYPE_COMPLETION,
  3255. data,
  3256. req.is_connection_closed,
  3257. res,
  3258. OAICOMPAT_TYPE_NONE);
  3259. };
  3260. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3261. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3262. return handle_completions_impl(
  3263. SERVER_TASK_TYPE_COMPLETION,
  3264. data,
  3265. req.is_connection_closed,
  3266. res,
  3267. OAICOMPAT_TYPE_COMPLETION);
  3268. };
  3269. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3270. // check model compatibility
  3271. std::string err;
  3272. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3273. err += "prefix token is missing. ";
  3274. }
  3275. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3276. err += "suffix token is missing. ";
  3277. }
  3278. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3279. err += "middle token is missing. ";
  3280. }
  3281. if (!err.empty()) {
  3282. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3283. return;
  3284. }
  3285. json data = json::parse(req.body);
  3286. // validate input
  3287. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3288. // prompt is optional
  3289. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3290. }
  3291. if (!data.contains("input_prefix")) {
  3292. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3293. }
  3294. if (!data.contains("input_suffix")) {
  3295. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3296. }
  3297. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3298. // input_extra is optional
  3299. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3300. return;
  3301. }
  3302. json input_extra = json_value(data, "input_extra", json::array());
  3303. for (const auto & chunk : input_extra) {
  3304. // { "text": string, "filename": string }
  3305. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3306. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3307. return;
  3308. }
  3309. // filename is optional
  3310. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3311. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3312. return;
  3313. }
  3314. }
  3315. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3316. std::string prompt = json_value(data, "prompt", std::string());
  3317. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3318. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3319. data["prompt"] = format_infill(
  3320. ctx_server.vocab,
  3321. data.at("input_prefix"),
  3322. data.at("input_suffix"),
  3323. data.at("input_extra"),
  3324. ctx_server.params_base.n_batch,
  3325. ctx_server.params_base.n_predict,
  3326. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3327. ctx_server.params_base.spm_infill,
  3328. tokenized_prompts[0]
  3329. );
  3330. return handle_completions_impl(
  3331. SERVER_TASK_TYPE_INFILL,
  3332. data,
  3333. req.is_connection_closed,
  3334. res,
  3335. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3336. };
  3337. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3338. LOG_DBG("request: %s\n", req.body.c_str());
  3339. if (ctx_server.params_base.embedding) {
  3340. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3341. return;
  3342. }
  3343. auto body = json::parse(req.body);
  3344. json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
  3345. return handle_completions_impl(
  3346. SERVER_TASK_TYPE_COMPLETION,
  3347. data,
  3348. req.is_connection_closed,
  3349. res,
  3350. OAICOMPAT_TYPE_CHAT);
  3351. };
  3352. // same with handle_chat_completions, but without inference part
  3353. const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3354. auto body = json::parse(req.body);
  3355. json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
  3356. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3357. };
  3358. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3359. json models = {
  3360. {"object", "list"},
  3361. {"data", {
  3362. {
  3363. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3364. {"object", "model"},
  3365. {"created", std::time(0)},
  3366. {"owned_by", "llamacpp"},
  3367. {"meta", ctx_server.model_meta()}
  3368. },
  3369. }}
  3370. };
  3371. res_ok(res, models);
  3372. };
  3373. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3374. const json body = json::parse(req.body);
  3375. json tokens_response = json::array();
  3376. if (body.count("content") != 0) {
  3377. const bool add_special = json_value(body, "add_special", false);
  3378. const bool with_pieces = json_value(body, "with_pieces", false);
  3379. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3380. if (with_pieces) {
  3381. for (const auto& token : tokens) {
  3382. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3383. json piece_json;
  3384. // Check if the piece is valid UTF-8
  3385. if (is_valid_utf8(piece)) {
  3386. piece_json = piece;
  3387. } else {
  3388. // If not valid UTF-8, store as array of byte values
  3389. piece_json = json::array();
  3390. for (unsigned char c : piece) {
  3391. piece_json.push_back(static_cast<int>(c));
  3392. }
  3393. }
  3394. tokens_response.push_back({
  3395. {"id", token},
  3396. {"piece", piece_json}
  3397. });
  3398. }
  3399. } else {
  3400. tokens_response = tokens;
  3401. }
  3402. }
  3403. const json data = format_tokenizer_response(tokens_response);
  3404. res_ok(res, data);
  3405. };
  3406. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3407. const json body = json::parse(req.body);
  3408. std::string content;
  3409. if (body.count("tokens") != 0) {
  3410. const llama_tokens tokens = body.at("tokens");
  3411. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3412. }
  3413. const json data = format_detokenized_response(content);
  3414. res_ok(res, data);
  3415. };
  3416. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3417. const json body = json::parse(req.body);
  3418. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3419. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3420. return;
  3421. }
  3422. // for the shape of input/content, see tokenize_input_prompts()
  3423. json prompt;
  3424. if (body.count("input") != 0) {
  3425. prompt = body.at("input");
  3426. } else if (body.contains("content")) {
  3427. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3428. prompt = body.at("content");
  3429. } else {
  3430. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3431. return;
  3432. }
  3433. bool use_base64 = false;
  3434. if (body.count("encoding_format") != 0) {
  3435. const std::string& format = body.at("encoding_format");
  3436. if (format == "base64") {
  3437. use_base64 = true;
  3438. } else if (format != "float") {
  3439. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3440. return;
  3441. }
  3442. }
  3443. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3444. for (const auto & tokens : tokenized_prompts) {
  3445. // this check is necessary for models that do not add BOS token to the input
  3446. if (tokens.empty()) {
  3447. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3448. return;
  3449. }
  3450. }
  3451. // create and queue the task
  3452. json responses = json::array();
  3453. bool error = false;
  3454. {
  3455. std::vector<server_task> tasks;
  3456. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3457. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3458. task.id = ctx_server.queue_tasks.get_new_id();
  3459. task.index = i;
  3460. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3461. // OAI-compat
  3462. task.params.oaicompat = oaicompat;
  3463. tasks.push_back(task);
  3464. }
  3465. ctx_server.queue_results.add_waiting_tasks(tasks);
  3466. ctx_server.queue_tasks.post(tasks);
  3467. // get the result
  3468. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3469. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3470. for (auto & res : results) {
  3471. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3472. responses.push_back(res->to_json());
  3473. }
  3474. }, [&](const json & error_data) {
  3475. res_error(res, error_data);
  3476. error = true;
  3477. }, req.is_connection_closed);
  3478. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3479. }
  3480. if (error) {
  3481. return;
  3482. }
  3483. // write JSON response
  3484. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3485. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3486. : json(responses);
  3487. res_ok(res, root);
  3488. };
  3489. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3490. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3491. };
  3492. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3493. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3494. };
  3495. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3496. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3497. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3498. return;
  3499. }
  3500. const json body = json::parse(req.body);
  3501. // TODO: implement
  3502. //int top_n = 1;
  3503. //if (body.count("top_n") != 1) {
  3504. // top_n = body.at("top_n");
  3505. //} else {
  3506. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3507. // return;
  3508. //}
  3509. // if true, use TEI API format, otherwise use Jina API format
  3510. // Jina: https://jina.ai/reranker/
  3511. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  3512. bool is_tei_format = body.contains("texts");
  3513. json query;
  3514. if (body.count("query") == 1) {
  3515. query = body.at("query");
  3516. if (!query.is_string()) {
  3517. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3518. return;
  3519. }
  3520. } else {
  3521. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3522. return;
  3523. }
  3524. std::vector<std::string> documents = json_value(body, "documents",
  3525. json_value(body, "texts", std::vector<std::string>()));
  3526. if (documents.empty()) {
  3527. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3528. return;
  3529. }
  3530. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3531. // create and queue the task
  3532. json responses = json::array();
  3533. bool error = false;
  3534. {
  3535. std::vector<server_task> tasks;
  3536. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3537. tasks.reserve(tokenized_docs.size());
  3538. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3539. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3540. task.id = ctx_server.queue_tasks.get_new_id();
  3541. task.index = i;
  3542. task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3543. tasks.push_back(task);
  3544. }
  3545. ctx_server.queue_results.add_waiting_tasks(tasks);
  3546. ctx_server.queue_tasks.post(tasks);
  3547. // get the result
  3548. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3549. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3550. for (auto & res : results) {
  3551. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3552. responses.push_back(res->to_json());
  3553. }
  3554. }, [&](const json & error_data) {
  3555. res_error(res, error_data);
  3556. error = true;
  3557. }, req.is_connection_closed);
  3558. }
  3559. if (error) {
  3560. return;
  3561. }
  3562. // write JSON response
  3563. json root = format_response_rerank(
  3564. body,
  3565. responses,
  3566. is_tei_format,
  3567. documents);
  3568. res_ok(res, root);
  3569. };
  3570. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3571. json result = json::array();
  3572. const auto & loras = ctx_server.params_base.lora_adapters;
  3573. for (size_t i = 0; i < loras.size(); ++i) {
  3574. auto & lora = loras[i];
  3575. result.push_back({
  3576. {"id", i},
  3577. {"path", lora.path},
  3578. {"scale", lora.scale},
  3579. });
  3580. }
  3581. res_ok(res, result);
  3582. res.status = 200; // HTTP OK
  3583. };
  3584. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3585. const json body = json::parse(req.body);
  3586. if (!body.is_array()) {
  3587. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3588. return;
  3589. }
  3590. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3591. task.id = ctx_server.queue_tasks.get_new_id();
  3592. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3593. ctx_server.queue_results.add_waiting_task_id(task.id);
  3594. ctx_server.queue_tasks.post(task);
  3595. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3596. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3597. if (result->is_error()) {
  3598. res_error(res, result->to_json());
  3599. return;
  3600. }
  3601. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3602. res_ok(res, result->to_json());
  3603. };
  3604. //
  3605. // Router
  3606. //
  3607. if (!params.webui) {
  3608. LOG_INF("Web UI is disabled\n");
  3609. } else {
  3610. // register static assets routes
  3611. if (!params.public_path.empty()) {
  3612. // Set the base directory for serving static files
  3613. bool is_found = svr->set_mount_point("/", params.public_path);
  3614. if (!is_found) {
  3615. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3616. return 1;
  3617. }
  3618. } else {
  3619. // using embedded static index.html
  3620. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3621. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3622. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3623. } else {
  3624. res.set_header("Content-Encoding", "gzip");
  3625. // COEP and COOP headers, required by pyodide (python interpreter)
  3626. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  3627. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  3628. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3629. }
  3630. return false;
  3631. });
  3632. }
  3633. }
  3634. // register API routes
  3635. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3636. svr->Get ("/metrics", handle_metrics);
  3637. svr->Get ("/props", handle_props);
  3638. svr->Post("/props", handle_props_change);
  3639. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3640. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3641. svr->Post("/completion", handle_completions); // legacy
  3642. svr->Post("/completions", handle_completions);
  3643. svr->Post("/v1/completions", handle_completions_oai);
  3644. svr->Post("/chat/completions", handle_chat_completions);
  3645. svr->Post("/v1/chat/completions", handle_chat_completions);
  3646. svr->Post("/infill", handle_infill);
  3647. svr->Post("/embedding", handle_embeddings); // legacy
  3648. svr->Post("/embeddings", handle_embeddings);
  3649. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3650. svr->Post("/rerank", handle_rerank);
  3651. svr->Post("/reranking", handle_rerank);
  3652. svr->Post("/v1/rerank", handle_rerank);
  3653. svr->Post("/v1/reranking", handle_rerank);
  3654. svr->Post("/tokenize", handle_tokenize);
  3655. svr->Post("/detokenize", handle_detokenize);
  3656. svr->Post("/apply-template", handle_apply_template);
  3657. // LoRA adapters hotswap
  3658. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3659. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3660. // Save & load slots
  3661. svr->Get ("/slots", handle_slots);
  3662. svr->Post("/slots/:id_slot", handle_slots_action);
  3663. //
  3664. // Start the server
  3665. //
  3666. if (params.n_threads_http < 1) {
  3667. // +2 threads for monitoring endpoints
  3668. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3669. }
  3670. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3671. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3672. // clean up function, to be called before exit
  3673. auto clean_up = [&svr]() {
  3674. SRV_INF("%s: cleaning up before exit...\n", __func__);
  3675. svr->stop();
  3676. llama_backend_free();
  3677. };
  3678. // bind HTTP listen port
  3679. bool was_bound = false;
  3680. if (params.port == 0) {
  3681. int bound_port = svr->bind_to_any_port(params.hostname);
  3682. if ((was_bound = (bound_port >= 0))) {
  3683. params.port = bound_port;
  3684. }
  3685. } else {
  3686. was_bound = svr->bind_to_port(params.hostname, params.port);
  3687. }
  3688. if (!was_bound) {
  3689. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3690. clean_up();
  3691. return 1;
  3692. }
  3693. // run the HTTP server in a thread
  3694. std::thread t([&]() { svr->listen_after_bind(); });
  3695. svr->wait_until_ready();
  3696. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3697. // load the model
  3698. LOG_INF("%s: loading model\n", __func__);
  3699. if (!ctx_server.load_model(params)) {
  3700. clean_up();
  3701. // t.join(); // FIXME: see below
  3702. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3703. return 1;
  3704. }
  3705. ctx_server.init();
  3706. state.store(SERVER_STATE_READY);
  3707. LOG_INF("%s: model loaded\n", __func__);
  3708. // print sample chat example to make it clear which template is used
  3709. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3710. common_chat_templates_source(ctx_server.chat_templates.get()),
  3711. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
  3712. ctx_server.queue_tasks.on_new_task([&ctx_server](const server_task & task) {
  3713. ctx_server.process_single_task(task);
  3714. });
  3715. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  3716. ctx_server.update_slots();
  3717. });
  3718. shutdown_handler = [&](int) {
  3719. // this will unblock start_loop()
  3720. ctx_server.queue_tasks.terminate();
  3721. };
  3722. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3723. struct sigaction sigint_action;
  3724. sigint_action.sa_handler = signal_handler;
  3725. sigemptyset (&sigint_action.sa_mask);
  3726. sigint_action.sa_flags = 0;
  3727. sigaction(SIGINT, &sigint_action, NULL);
  3728. sigaction(SIGTERM, &sigint_action, NULL);
  3729. #elif defined (_WIN32)
  3730. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3731. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3732. };
  3733. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3734. #endif
  3735. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3736. // this call blocks the main thread until queue_tasks.terminate() is called
  3737. ctx_server.queue_tasks.start_loop();
  3738. clean_up();
  3739. // t.join(); // FIXME: http thread may stuck if there is an on-going request. we don't need to care about this for now as the HTTP connection will already be closed at this point, but it's better to fix this
  3740. return 0;
  3741. }