train-text-from-scratch.cpp 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252
  1. #include "ggml.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-backend.h"
  4. #include "common.h"
  5. #include "train.h"
  6. #include "llama.h"
  7. #include <unordered_map>
  8. #include <vector>
  9. #include <cassert>
  10. #include <climits>
  11. #include <cstring>
  12. #include <cstdarg>
  13. #include <ctime>
  14. #include <random>
  15. #include <stdexcept>
  16. #include <algorithm>
  17. #include <string>
  18. #if defined(_MSC_VER)
  19. #pragma warning(disable: 4244 4267) // possible loss of data
  20. #endif
  21. struct my_llama_hparams {
  22. uint32_t n_vocab = 32000;
  23. uint32_t n_ctx = 512;
  24. uint32_t n_embd = 4096;
  25. uint32_t n_head = 32;
  26. uint32_t n_layer = 32;
  27. uint32_t n_rot = 64;
  28. uint32_t n_ff = 11008;
  29. // float f_norm_eps = 1e-5f; // falcon
  30. float f_norm_rms_eps = 1e-5f; // llama
  31. float rope_freq_base = 10000.0f;
  32. float rope_freq_scale = 1.0f;
  33. };
  34. struct my_llama_layer {
  35. // normalization
  36. struct ggml_tensor * attention_norm;
  37. // attention
  38. struct ggml_tensor * wq;
  39. struct ggml_tensor * wk;
  40. struct ggml_tensor * wv;
  41. struct ggml_tensor * wo;
  42. // normalization
  43. struct ggml_tensor * ffn_norm;
  44. // ff
  45. struct ggml_tensor * ffn_gate; // w1
  46. struct ggml_tensor * ffn_down; // w2
  47. struct ggml_tensor * ffn_up; // w3
  48. };
  49. struct my_llama_model {
  50. struct ggml_context * ctx = NULL;
  51. ggml_backend_buffer_t data = NULL;
  52. my_llama_hparams hparams;
  53. struct ggml_tensor * tok_embeddings;
  54. struct ggml_tensor * norm;
  55. struct ggml_tensor * output;
  56. std::vector<my_llama_layer> layers;
  57. };
  58. // gguf constants (sync with gguf.py)
  59. static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model";
  60. static const char * LLM_KV_TRAINING_TYPE = "training.type";
  61. static const char * LLM_KV_GENERAL_NAME = "general.name";
  62. static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
  63. static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
  64. static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length";
  65. static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length";
  66. static const char * LLM_KV_BLOCK_COUNT = "%s.block_count";
  67. static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length";
  68. static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count";
  69. static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
  70. static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count";
  71. static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp
  72. static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear";
  73. static const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model";
  74. static const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens";
  75. static const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type";
  76. static const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores";
  77. static const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges";
  78. static const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id";
  79. static const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id";
  80. static const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id";
  81. static const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id";
  82. static const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id";
  83. static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd";
  84. static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm";
  85. static const char * LLM_TENSOR_OUTPUT = "output";
  86. static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm";
  87. static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q";
  88. static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k";
  89. static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v";
  90. static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output";
  91. static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm";
  92. static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate";
  93. static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
  94. static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
  95. static void print_params(struct my_llama_hparams * params) {
  96. printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
  97. printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
  98. printf("%s: n_embd: %u\n", __func__, params->n_embd);
  99. printf("%s: n_head: %u\n", __func__, params->n_head);
  100. printf("%s: n_ff: %u\n", __func__, params->n_ff);
  101. printf("%s: n_layer: %u\n", __func__, params->n_layer);
  102. printf("%s: n_rot: %u\n", __func__, params->n_rot);
  103. }
  104. static void set_param_model(struct my_llama_model * model) {
  105. const auto& hparams = model->hparams;
  106. const uint32_t n_layer = hparams.n_layer;
  107. struct ggml_context* ctx = model->ctx;
  108. ggml_set_param(ctx, model->tok_embeddings);
  109. ggml_set_param(ctx, model->norm);
  110. ggml_set_param(ctx, model->output);
  111. for (uint32_t i = 0; i < n_layer; ++i) {
  112. auto & layer = model->layers[i];
  113. ggml_set_param(ctx, layer.attention_norm);
  114. ggml_set_param(ctx, layer.wq);
  115. ggml_set_param(ctx, layer.wk);
  116. ggml_set_param(ctx, layer.wv);
  117. ggml_set_param(ctx, layer.wo);
  118. ggml_set_param(ctx, layer.ffn_norm);
  119. ggml_set_param(ctx, layer.ffn_gate);
  120. ggml_set_param(ctx, layer.ffn_down);
  121. ggml_set_param(ctx, layer.ffn_up);
  122. }
  123. }
  124. static void init_model(struct my_llama_model * model) {
  125. const auto & hparams = model->hparams;
  126. const uint32_t n_embd = hparams.n_embd;
  127. const uint32_t n_layer = hparams.n_layer;
  128. const uint32_t n_vocab = hparams.n_vocab;
  129. const uint32_t n_ff = hparams.n_ff;
  130. std::vector<char> tn_buf;
  131. tn_buf.resize(GGML_MAX_NAME);
  132. auto tn = [&tn_buf](const char * key) -> const char * {
  133. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
  134. return tn_buf.data();
  135. };
  136. auto tni = [&tn_buf](const char * key, int bid) -> const char * {
  137. snprintf(tn_buf.data(), tn_buf.size(), key, bid);
  138. std::string s = tn_buf.data();
  139. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
  140. return tn_buf.data();
  141. };
  142. // context for model tensors without their data
  143. struct ggml_init_params ctx_model_params;
  144. ctx_model_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18);
  145. ctx_model_params.mem_buffer = NULL;
  146. ctx_model_params.no_alloc = true;
  147. struct ggml_context * ctx = ggml_init(ctx_model_params);
  148. model->ctx = ctx;
  149. model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
  150. model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  151. model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
  152. ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD));
  153. ggml_set_name(model->norm, tn(LLM_TENSOR_OUTPUT_NORM));
  154. ggml_set_name(model->output, tn(LLM_TENSOR_OUTPUT));
  155. model->layers.resize(n_layer);
  156. for (uint32_t i = 0; i < n_layer; ++i) {
  157. auto & layer = model->layers[i];
  158. layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  159. layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  160. layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  161. layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  162. layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  163. layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  164. layer.ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  165. layer.ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
  166. layer.ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  167. ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i));
  168. ggml_set_name(layer.wq, tni(LLM_TENSOR_ATTN_Q, i));
  169. ggml_set_name(layer.wk, tni(LLM_TENSOR_ATTN_K, i));
  170. ggml_set_name(layer.wv, tni(LLM_TENSOR_ATTN_V, i));
  171. ggml_set_name(layer.wo, tni(LLM_TENSOR_ATTN_OUT, i));
  172. ggml_set_name(layer.ffn_norm, tni(LLM_TENSOR_FFN_NORM, i));
  173. ggml_set_name(layer.ffn_gate, tni(LLM_TENSOR_FFN_GATE, i));
  174. ggml_set_name(layer.ffn_down, tni(LLM_TENSOR_FFN_DOWN, i));
  175. ggml_set_name(layer.ffn_up, tni(LLM_TENSOR_FFN_UP, i));
  176. }
  177. set_param_model(model);
  178. // allocate data
  179. model->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
  180. }
  181. static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
  182. const auto & hparams = model->hparams;
  183. const uint32_t n_layer = hparams.n_layer;
  184. struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
  185. randomize_tensor_normal(model->tok_embeddings, rnd);
  186. randomize_tensor_normal(model->norm, rnd);
  187. randomize_tensor_normal(model->output, rnd);
  188. for (uint32_t i = 0; i < n_layer; ++i) {
  189. auto & layer = model->layers[i];
  190. randomize_tensor_normal(layer.attention_norm, rnd);
  191. randomize_tensor_normal(layer.wq, rnd);
  192. randomize_tensor_normal(layer.wk, rnd);
  193. randomize_tensor_normal(layer.wv, rnd);
  194. randomize_tensor_normal(layer.wo, rnd);
  195. randomize_tensor_normal(layer.ffn_norm, rnd);
  196. randomize_tensor_normal(layer.ffn_gate, rnd);
  197. randomize_tensor_normal(layer.ffn_down, rnd);
  198. randomize_tensor_normal(layer.ffn_up, rnd);
  199. }
  200. free_random_normal_distribution(rnd);
  201. }
  202. static struct ggml_tensor * llama_build_train_graphs(
  203. struct my_llama_model * model,
  204. ggml_gallocr_t alloc,
  205. struct ggml_context * ctx,
  206. struct ggml_cgraph * gf,
  207. struct ggml_cgraph * gb,
  208. struct ggml_cgraph * gb_tmp,
  209. struct ggml_tensor * * logits,
  210. struct ggml_tensor * tokens_input,
  211. struct ggml_tensor * targets,
  212. const int n_tokens,
  213. const int n_batch,
  214. const bool enable_flash_attn,
  215. const bool enable_checkpointing,
  216. const bool measure_only) {
  217. ggml_set_scratch(ctx, { 0, 0, nullptr, });
  218. const int n_past = 0;
  219. const int N = n_tokens;
  220. const auto & hparams = model->hparams;
  221. const int n_ctx = hparams.n_ctx;
  222. const int n_vocab = hparams.n_vocab;
  223. const int n_embd = hparams.n_embd;
  224. const int n_layer = hparams.n_layer;
  225. const int n_head = hparams.n_head;
  226. const int n_rot = hparams.n_rot;
  227. const int n_ff = hparams.n_ff;
  228. const float f_norm_rms_eps = hparams.f_norm_rms_eps;
  229. const float rope_freq_base = hparams.rope_freq_base;
  230. const float rope_freq_scale = hparams.rope_freq_scale;
  231. auto set_name = [](struct ggml_tensor * t, const char * n) {
  232. ggml_set_name(t, n);
  233. if (t->grad) {
  234. ggml_format_name(t->grad, "%s->grad", n);
  235. }
  236. };
  237. // KQ_pos - contains the positions
  238. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
  239. ggml_set_input(KQ_pos);
  240. // rope has so much parameters that we make a custom function for it
  241. auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
  242. (struct ggml_tensor * t) -> struct ggml_tensor * {
  243. // not capturing these, to silcence warnings
  244. const int rope_mode = 0;
  245. return ggml_rope_custom(
  246. ctx, t, KQ_pos, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
  247. );
  248. };
  249. set_name(tokens_input, "tokens_input");
  250. set_name(targets, "targets");
  251. GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
  252. struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
  253. struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
  254. struct ggml_tensor * cur = t01;
  255. std::vector<struct ggml_tensor *> checkpoints;
  256. checkpoints.push_back(tokens_input);
  257. checkpoints.push_back(targets);
  258. checkpoints.push_back(t00);
  259. checkpoints.push_back(t01);
  260. const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
  261. for (int il = 0; il < n_layer; ++il) {
  262. struct my_llama_layer & layer = model->layers[il];
  263. struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch);
  264. struct ggml_tensor * t03 = ggml_repeat (ctx, layer.attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch);
  265. struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch);
  266. struct ggml_tensor * t05 = ggml_mul_mat (ctx, layer.wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch);
  267. struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch);
  268. struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch);
  269. struct ggml_tensor * t08 = ggml_mul_mat (ctx, layer.wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd, N*n_batch);
  270. struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch);
  271. struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch);
  272. struct ggml_tensor * t11 = ggml_mul_mat (ctx, t04, layer.wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd);
  273. struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head);
  274. struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch);
  275. struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch);
  276. struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
  277. struct ggml_tensor * t16;
  278. if (enable_flash_attn) {
  279. t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
  280. } else {
  281. struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
  282. struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
  283. struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
  284. struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
  285. t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
  286. }
  287. struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch);
  288. struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch);
  289. struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch);
  290. struct ggml_tensor * t20 = ggml_mul_mat (ctx, layer.wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch);
  291. struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch);
  292. struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, f_norm_rms_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch);
  293. struct ggml_tensor * t23 = ggml_repeat (ctx, layer.ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch);
  294. struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch);
  295. struct ggml_tensor * t25 = ggml_mul_mat (ctx, layer.ffn_up, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
  296. struct ggml_tensor * t26 = ggml_mul_mat (ctx, layer.ffn_gate, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
  297. struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch);
  298. struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch);
  299. struct ggml_tensor * t29 = ggml_mul_mat (ctx, layer.ffn_down, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
  300. struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch);
  301. cur = t30;
  302. checkpoints.push_back(cur);
  303. }
  304. struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch);
  305. struct ggml_tensor * t32 = ggml_repeat (ctx, model->norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch);
  306. struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch);
  307. struct ggml_tensor * t34 = ggml_mul_mat (ctx, model->output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch);
  308. struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch);
  309. struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1);
  310. checkpoints.push_back(t31);
  311. checkpoints.push_back(t32);
  312. checkpoints.push_back(t33);
  313. checkpoints.push_back(t34);
  314. checkpoints.push_back(t35);
  315. checkpoints.push_back(t36);
  316. ggml_build_forward_expand(gf, t36);
  317. if (enable_checkpointing) {
  318. ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
  319. } else {
  320. ggml_graph_cpy(gf, gb);
  321. ggml_build_backward_expand(ctx, gf, gb, true);
  322. }
  323. if (alloc) {
  324. // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
  325. int n_leafs_before = gb->n_leafs;
  326. int n_nodes_before = gb->n_nodes;
  327. // output tensors
  328. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
  329. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
  330. // input gradient
  331. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
  332. // KQ_pos
  333. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
  334. GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
  335. ggml_set_input(t36->grad);
  336. // allocating checkpoints in one block to reduce memory fragmentation
  337. // note: they will be freed in reverse order
  338. for (int i = 0; i < (int) checkpoints.size(); ++i) {
  339. if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
  340. ggml_set_input(checkpoints[i]);
  341. }
  342. }
  343. //int n_leafs_after = gb->n_leafs;
  344. //int n_nodes_after = gb->n_nodes;
  345. if (measure_only) {
  346. // FIXME: will still allocate
  347. ggml_gallocr_reserve(alloc, gb);
  348. } else {
  349. ggml_gallocr_alloc_graph(alloc, gb);
  350. if (!measure_only) {
  351. int * data = (int *) KQ_pos->data;
  352. for (int i = 0; i < N; ++i) {
  353. data[i] = n_past + i;
  354. }
  355. }
  356. }
  357. // remove the additional nodes and leafs
  358. for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
  359. gb->leafs[i] = NULL;
  360. }
  361. for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
  362. gb->nodes[i] = NULL;
  363. }
  364. gb->n_leafs = n_leafs_before;
  365. gb->n_nodes = n_nodes_before;
  366. }
  367. *logits = t35;
  368. return t36;
  369. }
  370. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  371. do { \
  372. const std::string skey(key); \
  373. const int kid = gguf_find_key(ctx, skey.c_str()); \
  374. if (kid >= 0) { \
  375. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  376. if (ktype != (type)) { \
  377. die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
  378. } \
  379. (dst) = func(ctx, kid); \
  380. } else if (req) { \
  381. die_fmt("key not found in model: %s", skey.c_str()); \
  382. } \
  383. } while (0)
  384. static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) {
  385. // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
  386. std::string arch;
  387. std::vector<char> keybuf;
  388. keybuf.resize(512);
  389. auto kv = [&arch, &keybuf](const char * key) -> const char * {
  390. snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
  391. return keybuf.data();
  392. };
  393. std::vector<char> tn_buf;
  394. tn_buf.resize(GGML_MAX_NAME);
  395. auto tn = [&tn_buf](const char * key) -> const char * {
  396. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
  397. return tn_buf.data();
  398. };
  399. auto tni = [&tn_buf](const char * key, int bid) -> const char * {
  400. snprintf(tn_buf.data(), tn_buf.size(), key, bid);
  401. std::string s = tn_buf.data();
  402. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
  403. return tn_buf.data();
  404. };
  405. GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
  406. GGML_ASSERT(arch == "llama");
  407. uint32_t ftype_u;
  408. GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
  409. GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
  410. // n_ctx was not saved in earlier checkpoint file versions, so we make it optional here
  411. GGUF_GET_KEY(fctx, model->hparams.n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
  412. GGUF_GET_KEY(fctx, model->hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  413. GGUF_GET_KEY(fctx, model->hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  414. GGUF_GET_KEY(fctx, model->hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  415. GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  416. model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head;
  417. GGUF_GET_KEY(fctx, model->hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
  418. float rope_freq_scale = 1.0f;
  419. GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  420. GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  421. GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  422. if (rope_freq_scale != 1.0f) {
  423. model->hparams.rope_freq_scale = 1.0f / rope_freq_scale;
  424. }
  425. init_model(model);
  426. copy_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD));
  427. copy_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
  428. copy_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));
  429. for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
  430. auto & layer = model->layers[i];
  431. copy_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i));
  432. copy_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i));
  433. copy_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i));
  434. copy_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
  435. copy_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
  436. copy_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
  437. copy_tensor_by_name(layer.ffn_gate, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
  438. copy_tensor_by_name(layer.ffn_down, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
  439. copy_tensor_by_name(layer.ffn_up, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
  440. }
  441. }
  442. static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
  443. const char * arch = "llama";
  444. enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  445. std::vector<char> keybuf;
  446. keybuf.resize(512);
  447. auto kv = [arch, &keybuf](const char * key) -> const char * {
  448. snprintf(keybuf.data(), keybuf.size(), key, arch);
  449. return keybuf.data();
  450. };
  451. // set arch
  452. gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
  453. gguf_set_val_str(fctx, LLM_KV_GENERAL_NAME, arch);
  454. gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
  455. // set hparams
  456. gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx );
  457. gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd );
  458. gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff );
  459. gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head );
  460. gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer );
  461. gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_rot );
  462. gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps );
  463. gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base ); // TODO load in llama.cpp
  464. gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), 1.0f / model->hparams.rope_freq_scale );
  465. // set vocab by copying from vocab_model gguf file
  466. {
  467. struct gguf_init_params params = {
  468. /*.no_alloc = */ false,
  469. /*.ctx = */ NULL,
  470. };
  471. struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params);
  472. const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST));
  473. if (token_idx == -1) {
  474. die("cannot find tokenizer vocab in model file");
  475. }
  476. const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx);
  477. const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES));
  478. if (score_idx == -1) {
  479. die("cannot find tokenizer scores in model file");
  480. }
  481. const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx);
  482. const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE));
  483. if (toktype_idx == -1) {
  484. die("cannot find token type list in GGUF file");
  485. }
  486. const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx);
  487. std::string tokenizer_name;
  488. GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
  489. gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str());
  490. gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab);
  491. gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab);
  492. int32_t special_bos_id = 1;
  493. int32_t special_eos_id = 2;
  494. int32_t special_unk_id = 0;
  495. int32_t special_sep_id = -1;
  496. int32_t special_pad_id = -1;
  497. if (tokenizer_name == "llama") {
  498. // default special tokens
  499. special_bos_id = 1;
  500. special_eos_id = 2;
  501. special_unk_id = 0;
  502. special_sep_id = -1;
  503. special_pad_id = -1;
  504. } else if (tokenizer_name == "gpt2") {
  505. // read and copy bpe merges
  506. const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES));
  507. if (merges_keyidx == -1) {
  508. die("cannot find tokenizer merges in model file");
  509. }
  510. const int n_merges = gguf_get_arr_n(vctx, merges_keyidx);
  511. std::vector<const char*> merges;
  512. merges.resize(n_merges);
  513. for (int i = 0; i < n_merges; i++) {
  514. merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i);
  515. }
  516. gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges);
  517. // default special tokens
  518. special_bos_id = 11;
  519. special_eos_id = 11;
  520. special_unk_id = -1;
  521. special_sep_id = -1;
  522. special_pad_id = -1;
  523. } else {
  524. fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  525. fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__);
  526. }
  527. std::vector<const char*> tokens;
  528. tokens.resize(n_vocab);
  529. for (uint32_t i = 0; i < n_vocab; i++) {
  530. tokens[i] = gguf_get_arr_str(vctx, token_idx, i);
  531. }
  532. gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab);
  533. GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
  534. GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
  535. GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
  536. GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
  537. GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
  538. gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id);
  539. gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id);
  540. gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id);
  541. gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id);
  542. gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id);
  543. gguf_free(vctx);
  544. }
  545. // add tensors
  546. gguf_add_tensor(fctx, model->tok_embeddings);
  547. gguf_add_tensor(fctx, model->norm);
  548. gguf_add_tensor(fctx, model->output);
  549. for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
  550. auto & layer = model->layers[i];
  551. gguf_add_tensor(fctx, layer.attention_norm);
  552. gguf_add_tensor(fctx, layer.wq);
  553. gguf_add_tensor(fctx, layer.wk);
  554. gguf_add_tensor(fctx, layer.wv);
  555. gguf_add_tensor(fctx, layer.wo);
  556. gguf_add_tensor(fctx, layer.ffn_norm);
  557. gguf_add_tensor(fctx, layer.ffn_gate);
  558. gguf_add_tensor(fctx, layer.ffn_down);
  559. gguf_add_tensor(fctx, layer.ffn_up);
  560. }
  561. }
  562. static void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
  563. printf("%s: saving to %s\n", __func__, filename);
  564. struct gguf_context * fctx = gguf_init_empty();
  565. save_llama_model_gguf(fctx, fn_vocab_model, model);
  566. // write file
  567. const bool only_meta = false;
  568. gguf_write_to_file(fctx, filename, only_meta);
  569. gguf_free(fctx);
  570. }
  571. static void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct train_state * train) {
  572. load_llama_model_gguf(fctx, f_ggml_ctx, model);
  573. if (load_train_state_gguf(fctx, f_ggml_ctx, train)) {
  574. std::string train_type = LLM_KV_TRAINING_TYPE_TRAIN_MODEL;
  575. GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
  576. GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
  577. } else {
  578. printf("%s: loaded llama model as checkpoint\n", __func__);
  579. }
  580. }
  581. static void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
  582. gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
  583. save_llama_model_gguf(fctx, fn_vocab_model, model);
  584. save_train_state_gguf(fctx, train);
  585. }
  586. static bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct train_state * train) {
  587. struct ggml_context * f_ggml_ctx;
  588. struct gguf_init_params params;
  589. params.no_alloc = false;
  590. params.ctx = &f_ggml_ctx;
  591. struct gguf_context * fctx = gguf_init_from_file(filename, params);
  592. if (fctx == NULL) {
  593. return false;
  594. }
  595. load_checkpoint_gguf(fctx, f_ggml_ctx, model, train);
  596. gguf_free(fctx);
  597. return true;
  598. }
  599. static void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
  600. printf("%s: saving to %s\n", __func__, filename);
  601. struct gguf_context * fctx = gguf_init_empty();
  602. save_checkpoint_gguf(fctx, fn_vocab_model, model, train);
  603. // write file
  604. const bool only_meta = false;
  605. gguf_write_to_file(fctx, filename, only_meta);
  606. gguf_free(fctx);
  607. }
  608. struct train_params {
  609. struct train_params_common common;
  610. const char * fn_vocab_model;
  611. const char * fn_model_out;
  612. bool only_write_model;
  613. int n_ctx;
  614. int n_embd;
  615. int n_head;
  616. int n_layer;
  617. int n_ff;
  618. float f_norm_rms_eps;
  619. float rope_freq_base;
  620. float rope_freq_scale;
  621. };
  622. static struct train_params get_default_train_params() {
  623. struct train_params params;
  624. params.common = get_default_train_params_common();
  625. params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin";
  626. params.fn_model_out = "ggml-checkpoint-f32.bin";
  627. params.only_write_model = false;
  628. params.n_ctx = 128;
  629. params.n_embd = 256;
  630. params.n_head = 8;
  631. params.n_layer = 16;
  632. params.n_ff = 768;
  633. params.f_norm_rms_eps = 1e-5f;
  634. params.rope_freq_base = 10000.0f;
  635. params.rope_freq_scale = 1.0f;
  636. return params;
  637. }
  638. static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
  639. fprintf(stderr, "usage: %s [options]\n", argv[0]);
  640. fprintf(stderr, "\n");
  641. fprintf(stderr, "options:\n");
  642. fprintf(stderr, " -h, --help show this help message and exit\n");
  643. fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model);
  644. fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out);
  645. fprintf(stderr, " --only-write-model only save llama model, don't do any training. use this if you only want to convert a checkpoint to a model.\n");
  646. fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd);
  647. fprintf(stderr, " --ff N Feedforward size used for new models. (default %d)\n", params->n_ff);
  648. fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head);
  649. fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer);
  650. fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
  651. fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base);
  652. fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
  653. print_common_train_usage(argc, argv, &params->common);
  654. }
  655. static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
  656. bool invalid_param = false;
  657. std::string arg;
  658. struct train_params default_params = get_default_train_params();
  659. const std::string arg_prefix = "--";
  660. for (int i = 1; i < argc; i++) {
  661. arg = argv[i];
  662. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  663. std::replace(arg.begin(), arg.end(), '_', '-');
  664. }
  665. if (consume_common_train_arg(argc, argv, &i, &params->common, &invalid_param)) {
  666. if (invalid_param) {
  667. break;
  668. } else if (params->common.print_usage) {
  669. train_print_usage(argc, argv, &default_params);
  670. exit(0);
  671. }
  672. } else if (arg == "--vocab-model") {
  673. if (++i >= argc) {
  674. invalid_param = true;
  675. break;
  676. }
  677. params->fn_vocab_model = argv[i];
  678. } else if (arg == "--model-out") {
  679. if (++i >= argc) {
  680. invalid_param = true;
  681. break;
  682. }
  683. params->fn_model_out = argv[i];
  684. } else if (arg == "--only-write-model") {
  685. params->only_write_model = true;
  686. } else if (arg == "--embd") {
  687. if (++i >= argc) {
  688. invalid_param = true;
  689. break;
  690. }
  691. params->n_embd = std::stoi(argv[i]);
  692. } else if (arg == "--ff") {
  693. if (++i >= argc) {
  694. invalid_param = true;
  695. break;
  696. }
  697. params->n_ff = std::stoi(argv[i]);
  698. } else if (arg == "--head") {
  699. if (++i >= argc) {
  700. invalid_param = true;
  701. break;
  702. }
  703. params->n_head = std::stoi(argv[i]);
  704. } else if (arg == "--layer") {
  705. if (++i >= argc) {
  706. invalid_param = true;
  707. break;
  708. }
  709. params->n_layer = std::stoi(argv[i]);
  710. } else if (arg == "--norm-rms-eps") {
  711. if (++i >= argc) {
  712. invalid_param = true;
  713. break;
  714. }
  715. params->f_norm_rms_eps = std::stof(argv[i]);
  716. } else if (arg == "--rope-freq-base") {
  717. if (++i >= argc) {
  718. invalid_param = true;
  719. break;
  720. }
  721. params->rope_freq_base = std::stof(argv[i]);
  722. } else if (arg == "--rope-freq-scale") {
  723. if (++i >= argc) {
  724. invalid_param = true;
  725. break;
  726. }
  727. params->rope_freq_scale = std::stof(argv[i]);
  728. } else {
  729. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  730. train_print_usage(argc, argv, &default_params);
  731. exit(1);
  732. }
  733. }
  734. if (invalid_param) {
  735. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  736. train_print_usage(argc, argv, &default_params);
  737. exit(1);
  738. }
  739. finish_processing_train_args(&params->common);
  740. return true;
  741. }
  742. struct save_train_files_data {
  743. const char * fn_checkpoint_out;
  744. const char * fn_model_out;
  745. const char * fn_vocab_model;
  746. const char * pattern_fn_it;
  747. const char * fn_latest;
  748. struct my_llama_model * model;
  749. };
  750. static void save_train_files(void * vdata, struct train_state * train) {
  751. struct save_train_files_data * data = (struct save_train_files_data *) vdata;
  752. int64_t iter = train->opt->iter;
  753. if (strlen(data->fn_checkpoint_out) > 0) {
  754. save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model, train);
  755. save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model, train);
  756. }
  757. if (strlen(data->fn_model_out) > 0) {
  758. save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model);
  759. save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model);
  760. }
  761. }
  762. static int64_t get_parameter_count(struct my_llama_model* model) {
  763. int64_t nx = 0;
  764. nx += ggml_nelements(model->tok_embeddings);
  765. nx += ggml_nelements(model->norm);
  766. nx += ggml_nelements(model->output);
  767. for (uint32_t i = 0; i < model->layers.size(); ++i) {
  768. auto & layer = model->layers[i];
  769. nx += ggml_nelements(layer.attention_norm);
  770. nx += ggml_nelements(layer.wq);
  771. nx += ggml_nelements(layer.wk);
  772. nx += ggml_nelements(layer.wv);
  773. nx += ggml_nelements(layer.wo);
  774. nx += ggml_nelements(layer.ffn_norm);
  775. nx += ggml_nelements(layer.ffn_gate);
  776. nx += ggml_nelements(layer.ffn_down);
  777. nx += ggml_nelements(layer.ffn_up);
  778. }
  779. return nx;
  780. }
  781. int main(int argc, char ** argv) {
  782. struct train_params params = get_default_train_params();
  783. if (!train_params_parse(argc, argv, &params)) {
  784. return 1;
  785. }
  786. if (params.common.seed == LLAMA_DEFAULT_SEED) {
  787. params.common.seed = time(NULL);
  788. }
  789. printf("%s: seed: %u\n", __func__, params.common.seed);
  790. srand(params.common.seed);
  791. struct llama_model_params mparams = llama_model_default_params();
  792. mparams.vocab_only = true;
  793. struct llama_context_params cparams = llama_context_default_params();
  794. struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, mparams);
  795. struct llama_context * lctx = llama_new_context_with_model(lmodel, cparams);
  796. struct my_llama_model model;
  797. model.hparams.n_vocab = llama_n_vocab(lmodel);
  798. model.hparams.n_ctx = params.common.n_ctx;
  799. model.hparams.n_embd = params.n_embd;
  800. model.hparams.n_head = params.n_head;
  801. model.hparams.n_layer = params.n_layer;
  802. model.hparams.n_ff = params.n_ff;
  803. // llama.cpp requires n_rot to be exactly n_embd / n_head
  804. model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head;
  805. model.hparams.f_norm_rms_eps = params.f_norm_rms_eps;
  806. model.hparams.rope_freq_base = params.rope_freq_base;
  807. model.hparams.rope_freq_scale = params.rope_freq_scale;
  808. struct train_state * train = init_train_state();
  809. struct ggml_opt_context * opt = train->opt;
  810. // set opt params from command line
  811. opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
  812. opt->params.print_forward_graph = false;
  813. opt->params.print_backward_graph = false;
  814. opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
  815. opt->params.n_threads = params.common.n_threads;
  816. opt->params.past = params.common.opt_past;
  817. opt->params.delta = params.common.opt_delta;
  818. opt->params.max_no_improvement = params.common.opt_max_no_improvement;
  819. opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
  820. opt->params.adam.n_iter = params.common.adam_n_iter;
  821. opt->params.adam.sched = 1.0f;
  822. opt->params.adam.alpha = params.common.adam_alpha;
  823. opt->params.adam.decay = params.common.adam_decay;
  824. opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim;
  825. opt->params.adam.beta1 = params.common.adam_beta1;
  826. opt->params.adam.beta2 = params.common.adam_beta2;
  827. opt->params.adam.gclip = params.common.adam_gclip;
  828. opt->params.adam.eps_f = params.common.adam_eps_f;
  829. printf("%s: init model\n", __func__);
  830. bool existed = load_checkpoint_file(params.common.fn_checkpoint_in, &model, train);
  831. if (existed) {
  832. // overwrite last n_ctx with user provided n_ctx
  833. if (params.common.custom_n_ctx) {
  834. model.hparams.n_ctx = params.common.n_ctx;
  835. }
  836. const bool opt_past_changed = opt->params.past != params.common.opt_past;
  837. if (opt_past_changed) {
  838. die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value train from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
  839. // need to discard previous optimizer past function value statistics and opt_init with new shapes
  840. // TODO
  841. }
  842. } else {
  843. init_model(&model);
  844. randomize_model(&model, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
  845. if (!params.only_write_model) {
  846. ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&model));
  847. }
  848. }
  849. opt->iter = train->train_its;
  850. print_params(&model.hparams);
  851. printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
  852. printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
  853. printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
  854. printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
  855. printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)), (float) (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)) / (1024.0f*1024.0f));
  856. if (params.only_write_model) {
  857. save_train_files_data save_data;
  858. save_data.fn_checkpoint_out = "";
  859. save_data.fn_model_out = params.fn_model_out;
  860. save_data.fn_vocab_model = params.fn_vocab_model;
  861. save_data.pattern_fn_it = params.common.pattern_fn_it;
  862. save_data.fn_latest = params.common.fn_latest;
  863. save_data.model = &model;
  864. save_train_files(&save_data, train);
  865. free_train_state(train);
  866. ggml_free(model.ctx);
  867. llama_free(lctx);
  868. llama_free_model(lmodel);
  869. return 0;
  870. }
  871. printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
  872. printf("%s: opt iter %d\n", __func__, opt->iter);
  873. int n_tokens = model.hparams.n_ctx;
  874. int n_vocab = model.hparams.n_vocab;
  875. int n_batch = params.common.n_batch;
  876. // context for input tensors without their data
  877. struct ggml_init_params ctx_input_params = {
  878. ggml_tensor_overhead() * 2, // mem_size
  879. NULL, // mem_buffer
  880. true, // no_alloc
  881. };
  882. struct ggml_context * ctx_input = ggml_init(ctx_input_params);
  883. // the input tensors
  884. struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
  885. struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
  886. // measure required memory for input tensors
  887. // allocate input tensors
  888. ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
  889. size_t max_input_size = ggml_backend_buffer_get_size(input_data);
  890. printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
  891. // context for compute tensors without their data
  892. const size_t estimated_compute_size_wo_data = (
  893. 2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
  894. (params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
  895. );
  896. struct ggml_init_params ctx_compute_params = {
  897. estimated_compute_size_wo_data, // mem_size
  898. NULL, // mem_buffer
  899. true, // no_alloc
  900. };
  901. struct ggml_context * ctx_compute = NULL;
  902. struct ggml_tensor * loss = NULL;
  903. struct ggml_tensor * logits = NULL;
  904. struct ggml_cgraph * gf = NULL;
  905. struct ggml_cgraph * gb = NULL;
  906. struct ggml_cgraph * gb_tmp = NULL;
  907. // measure required memory for compute tensors
  908. size_t best_compute_size = SIZE_MAX;
  909. enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
  910. // find best evaluation order
  911. for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
  912. ctx_compute = ggml_init(ctx_compute_params);
  913. ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
  914. gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  915. gf->order = (enum ggml_cgraph_eval_order) order;
  916. gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  917. gb_tmp = params.common.use_checkpointing
  918. ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
  919. : NULL;
  920. loss = llama_build_train_graphs(
  921. &model, alloc, ctx_compute,
  922. gf, gb, gb_tmp,
  923. &logits, tokens_input, target_probs,
  924. n_tokens, n_batch,
  925. params.common.use_flash,
  926. params.common.use_checkpointing,
  927. true
  928. );
  929. size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
  930. if (max_compute_size < best_compute_size) {
  931. best_compute_size = max_compute_size;
  932. best_order = gf->order;
  933. }
  934. ggml_free(ctx_compute);
  935. }
  936. size_t max_compute_size = best_compute_size;
  937. printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
  938. printf("%s: evaluation order = %s\n", __func__,
  939. (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
  940. (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
  941. "invalid");
  942. // allocate compute tensors
  943. ctx_compute = ggml_init(ctx_compute_params);
  944. ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
  945. gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  946. gf->order = best_order;
  947. gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  948. gb_tmp = params.common.use_checkpointing
  949. ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
  950. : NULL;
  951. loss = llama_build_train_graphs(
  952. &model, alloc, ctx_compute,
  953. gf, gb, gb_tmp,
  954. &logits, tokens_input, target_probs,
  955. n_tokens, n_batch,
  956. params.common.use_flash,
  957. params.common.use_checkpointing,
  958. false
  959. );
  960. std::vector<llama_token> train_tokens;
  961. std::vector<size_t> train_samples_begin;
  962. std::vector<size_t> train_samples_size;
  963. printf("%s: tokenize training data\n", __func__);
  964. tokenize_file(lctx,
  965. params.common.fn_train_data,
  966. params.common.sample_start,
  967. params.common.include_sample_start,
  968. params.common.overlapping_samples,
  969. n_tokens,
  970. train_tokens,
  971. train_samples_begin,
  972. train_samples_size);
  973. GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
  974. printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
  975. size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
  976. const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
  977. if (changed_train_data) {
  978. printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
  979. }
  980. if (params.common.force_reshuffle) {
  981. printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
  982. }
  983. if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
  984. train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
  985. train->shuffle_sample_count = train_samples_size.size();
  986. train->shuffle_next_sample = 0;
  987. train->shuffle_samples_hash = shuffle_samples_hash;
  988. }
  989. std::vector<size_t> train_shuffled_samples_offs;
  990. std::vector<size_t> train_shuffled_samples_begin;
  991. std::vector<size_t> train_shuffled_samples_size;
  992. train_shuffled_samples_offs.resize(train_samples_begin.size());
  993. train_shuffled_samples_begin.resize(train_samples_begin.size());
  994. train_shuffled_samples_size.resize(train_samples_size.size());
  995. train->shuffle_rng_state_next = shuffle_samples(
  996. train->shuffle_rng_state_current,
  997. train_shuffled_samples_offs.data(),
  998. train_shuffled_samples_begin.data(),
  999. train_shuffled_samples_size.data(),
  1000. train_samples_begin.data(),
  1001. train_samples_size.data(),
  1002. train_samples_size.size());
  1003. printf("%s: begin training\n", __func__);
  1004. save_train_files_data save_data;
  1005. save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
  1006. save_data.fn_model_out = params.fn_model_out;
  1007. save_data.fn_vocab_model = params.fn_vocab_model;
  1008. save_data.pattern_fn_it = params.common.pattern_fn_it;
  1009. save_data.fn_latest = params.common.fn_latest;
  1010. save_data.model = &model;
  1011. struct train_opt_callback_data opt_cb_data;
  1012. opt_cb_data.params = &params.common;
  1013. opt_cb_data.train = train;
  1014. opt_cb_data.save_cb = &save_train_files;
  1015. opt_cb_data.save_data = &save_data;
  1016. opt_cb_data.lctx = lctx;
  1017. opt_cb_data.last_save_iter = opt->iter;
  1018. opt_cb_data.tokens_data = train_tokens.data();
  1019. opt_cb_data.tokens_size = train_tokens.size();
  1020. opt_cb_data.samples_begin = train_samples_begin.data();
  1021. opt_cb_data.samples_size = train_samples_size.data();
  1022. opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data();
  1023. opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
  1024. opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data();
  1025. opt_cb_data.samples_count = train_samples_size.size();
  1026. opt_cb_data.tokens_input = tokens_input;
  1027. opt_cb_data.target_probs = target_probs;
  1028. opt_cb_data.first_iter = opt->iter;
  1029. opt_cb_data.first_epoch = train->train_epochs;
  1030. opt_cb_data.iter_at_last_epoch = -1;
  1031. opt_cb_data.last_time = ggml_time_ms();
  1032. opt_cb_data.millis_per_iter = 0.0;
  1033. // measure required memory for work buffer
  1034. size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
  1035. printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
  1036. // context for work buffer
  1037. struct ggml_init_params ctx_work_params = {
  1038. max_work_size, // mem_size
  1039. NULL, // mem_buffer
  1040. false, // no_alloc
  1041. };
  1042. struct ggml_context * ctx_work = ggml_init(ctx_work_params);
  1043. int64_t t0 = ggml_time_ms();
  1044. ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
  1045. ggml_free(ctx_work);
  1046. ggml_free(ctx_compute);
  1047. ggml_free(ctx_input);
  1048. int64_t t1 = ggml_time_ms();
  1049. printf("%s: total training time: ", __func__);
  1050. print_duration((double) (t1 - t0));
  1051. printf("\n");
  1052. int new_iters = opt->iter - opt_cb_data.last_save_iter;
  1053. if (new_iters > 0) {
  1054. train->train_its += new_iters;
  1055. train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
  1056. save_train_files(&save_data, train);
  1057. opt_cb_data.last_save_iter = opt->iter;
  1058. }
  1059. ggml_free(opt->ctx);
  1060. free_train_state(train);
  1061. ggml_free(model.ctx);
  1062. llama_free(lctx);
  1063. llama_free_model(lmodel);
  1064. return 0;
  1065. }