ggml.c 369 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. inline static void* ggml_aligned_malloc(size_t size) {
  101. void* aligned_memory = NULL;
  102. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  103. if (result != 0) {
  104. // Handle allocation failure
  105. return NULL;
  106. }
  107. return aligned_memory;
  108. }
  109. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  110. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  111. #endif
  112. #define UNUSED(x) (void)(x)
  113. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  114. #define GGML_ASSERT(x) \
  115. do { \
  116. if (!(x)) { \
  117. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  118. abort(); \
  119. } \
  120. } while (0)
  121. #if defined(GGML_USE_ACCELERATE)
  122. #include <Accelerate/Accelerate.h>
  123. #elif defined(GGML_USE_OPENBLAS)
  124. #include <cblas.h>
  125. #elif defined(GGML_USE_CUBLAS)
  126. #include <cublas_v2.h>
  127. #include <cuda_runtime.h>
  128. #define CUDA_CHECK(err) \
  129. do { \
  130. cudaError_t err_ = (err); \
  131. if (err_ != cudaSuccess) { \
  132. printf("CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
  133. cudaGetErrorString(err_)); \
  134. exit(1); \
  135. } \
  136. } while (0)
  137. #define CUBLAS_CHECK(err) \
  138. do { \
  139. cublasStatus_t err_ = (err); \
  140. if (err_ != CUBLAS_STATUS_SUCCESS) { \
  141. printf("cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
  142. exit(1); \
  143. } \
  144. } while (0)
  145. static cublasHandle_t cublasH = NULL;
  146. static cudaStream_t cudaStream = NULL;
  147. static void init_cublas(void) {
  148. if (cublasH == NULL) {
  149. // create cublas handle, bind a stream
  150. CUBLAS_CHECK(cublasCreate(&cublasH));
  151. CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
  152. CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
  153. // configure logging to stdout
  154. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
  155. }
  156. }
  157. #endif
  158. #undef MIN
  159. #undef MAX
  160. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  161. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  162. // floating point type used to accumulate sums
  163. typedef double ggml_float;
  164. // 16-bit float
  165. // on Arm, we use __fp16
  166. // on x86, we use uint16_t
  167. #ifdef __ARM_NEON
  168. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  169. //
  170. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  171. //
  172. #include <arm_neon.h>
  173. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  174. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  175. #define GGML_FP16_TO_FP32(x) ((float) (x))
  176. #define GGML_FP32_TO_FP16(x) (x)
  177. #else
  178. #ifdef __wasm_simd128__
  179. #include <wasm_simd128.h>
  180. #else
  181. #ifdef __POWER9_VECTOR__
  182. #include <altivec.h>
  183. #undef bool
  184. #define bool _Bool
  185. #else
  186. #include <immintrin.h>
  187. #endif
  188. #endif
  189. #ifdef __F16C__
  190. #ifdef _MSC_VER
  191. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  192. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  193. #else
  194. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  195. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  196. #endif
  197. #elif defined(__POWER9_VECTOR__)
  198. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  199. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  200. /* the inline asm below is about 12% faster than the lookup method */
  201. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  202. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  203. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  204. register float f;
  205. register double d;
  206. __asm__(
  207. "mtfprd %0,%2\n"
  208. "xscvhpdp %0,%0\n"
  209. "frsp %1,%0\n" :
  210. /* temp */ "=d"(d),
  211. /* out */ "=f"(f):
  212. /* in */ "r"(h));
  213. return f;
  214. }
  215. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  216. register double d;
  217. register ggml_fp16_t r;
  218. __asm__( /* xscvdphp can work on double or single precision */
  219. "xscvdphp %0,%2\n"
  220. "mffprd %1,%0\n" :
  221. /* temp */ "=d"(d),
  222. /* out */ "=r"(r):
  223. /* in */ "f"(f));
  224. return r;
  225. }
  226. #else
  227. // FP16 <-> FP32
  228. // ref: https://github.com/Maratyszcza/FP16
  229. static inline float fp32_from_bits(uint32_t w) {
  230. union {
  231. uint32_t as_bits;
  232. float as_value;
  233. } fp32;
  234. fp32.as_bits = w;
  235. return fp32.as_value;
  236. }
  237. static inline uint32_t fp32_to_bits(float f) {
  238. union {
  239. float as_value;
  240. uint32_t as_bits;
  241. } fp32;
  242. fp32.as_value = f;
  243. return fp32.as_bits;
  244. }
  245. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  246. const uint32_t w = (uint32_t) h << 16;
  247. const uint32_t sign = w & UINT32_C(0x80000000);
  248. const uint32_t two_w = w + w;
  249. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  250. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  251. const float exp_scale = 0x1.0p-112f;
  252. #else
  253. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  254. #endif
  255. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  256. const uint32_t magic_mask = UINT32_C(126) << 23;
  257. const float magic_bias = 0.5f;
  258. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  259. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  260. const uint32_t result = sign |
  261. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  262. return fp32_from_bits(result);
  263. }
  264. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  265. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  266. const float scale_to_inf = 0x1.0p+112f;
  267. const float scale_to_zero = 0x1.0p-110f;
  268. #else
  269. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  270. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  271. #endif
  272. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  273. const uint32_t w = fp32_to_bits(f);
  274. const uint32_t shl1_w = w + w;
  275. const uint32_t sign = w & UINT32_C(0x80000000);
  276. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  277. if (bias < UINT32_C(0x71000000)) {
  278. bias = UINT32_C(0x71000000);
  279. }
  280. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  281. const uint32_t bits = fp32_to_bits(base);
  282. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  283. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  284. const uint32_t nonsign = exp_bits + mantissa_bits;
  285. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  286. }
  287. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  288. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  289. #endif // __F16C__
  290. #endif // __ARM_NEON
  291. //
  292. // global data
  293. //
  294. // precomputed gelu table for f16 (128 KB)
  295. static ggml_fp16_t table_gelu_f16[1 << 16];
  296. // precomputed silu table for f16 (128 KB)
  297. static ggml_fp16_t table_silu_f16[1 << 16];
  298. // precomputed exp table for f16 (128 KB)
  299. static ggml_fp16_t table_exp_f16[1 << 16];
  300. // precomputed f32 table for f16 (256 KB)
  301. static float table_f32_f16[1 << 16];
  302. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  303. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  304. // This is also true for POWER9.
  305. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  306. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  307. uint16_t s;
  308. memcpy(&s, &f, sizeof(uint16_t));
  309. return table_f32_f16[s];
  310. }
  311. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  312. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  313. #endif
  314. // note: do not use these inside ggml.c
  315. // these are meant to be used via the ggml.h API
  316. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  317. return (float) GGML_FP16_TO_FP32(x);
  318. }
  319. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  320. return GGML_FP32_TO_FP16(x);
  321. }
  322. //
  323. // timing
  324. //
  325. #if defined(_MSC_VER) || defined(__MINGW32__)
  326. static int64_t timer_freq;
  327. void ggml_time_init(void) {
  328. LARGE_INTEGER frequency;
  329. QueryPerformanceFrequency(&frequency);
  330. timer_freq = frequency.QuadPart;
  331. }
  332. int64_t ggml_time_ms(void) {
  333. LARGE_INTEGER t;
  334. QueryPerformanceCounter(&t);
  335. return (t.QuadPart * 1000) / timer_freq;
  336. }
  337. int64_t ggml_time_us(void) {
  338. LARGE_INTEGER t;
  339. QueryPerformanceCounter(&t);
  340. return (t.QuadPart * 1000000) / timer_freq;
  341. }
  342. #else
  343. void ggml_time_init(void) {}
  344. int64_t ggml_time_ms(void) {
  345. struct timespec ts;
  346. clock_gettime(CLOCK_MONOTONIC, &ts);
  347. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  348. }
  349. int64_t ggml_time_us(void) {
  350. struct timespec ts;
  351. clock_gettime(CLOCK_MONOTONIC, &ts);
  352. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  353. }
  354. #endif
  355. int64_t ggml_cycles(void) {
  356. return clock();
  357. }
  358. int64_t ggml_cycles_per_ms(void) {
  359. return CLOCKS_PER_SEC/1000;
  360. }
  361. #ifdef GGML_PERF
  362. #define ggml_perf_time_ms() ggml_time_ms()
  363. #define ggml_perf_time_us() ggml_time_us()
  364. #define ggml_perf_cycles() ggml_cycles()
  365. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  366. #else
  367. #define ggml_perf_time_ms() 0
  368. #define ggml_perf_time_us() 0
  369. #define ggml_perf_cycles() 0
  370. #define ggml_perf_cycles_per_ms() 0
  371. #endif
  372. //
  373. // cache line
  374. //
  375. #if defined(__cpp_lib_hardware_interference_size)
  376. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  377. #else
  378. #if defined(__POWER9_VECTOR__)
  379. #define CACHE_LINE_SIZE 128
  380. #else
  381. #define CACHE_LINE_SIZE 64
  382. #endif
  383. #endif
  384. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  385. //
  386. // quantization
  387. //
  388. // AVX routines provided by GH user Const-me
  389. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  390. #if __AVX2__ || __AVX512F__
  391. // Unpack 32 4-bit fields into 32 bytes
  392. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  393. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  394. {
  395. // Load 16 bytes from memory
  396. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  397. // Expand bytes into uint16_t values
  398. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  399. // Unpack values into individual bytes
  400. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  401. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  402. __m256i low = _mm256_and_si256( lowMask, bytes );
  403. high = _mm256_slli_epi16( high, 4 );
  404. bytes = _mm256_or_si256( low, high );
  405. return bytes;
  406. }
  407. static inline __m128i packNibbles( __m256i bytes )
  408. {
  409. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  410. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  411. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  412. __m256i low = _mm256_and_si256( lowByte, bytes );
  413. high = _mm256_srli_epi16( high, 4 );
  414. bytes = _mm256_or_si256( low, high );
  415. // Compress uint16_t lanes into bytes
  416. __m128i r0 = _mm256_castsi256_si128( bytes );
  417. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  418. return _mm_packus_epi16( r0, r1 );
  419. }
  420. #elif __AVX__
  421. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  422. {
  423. // Load 8 bytes from memory
  424. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  425. // Expand bytes into uint16_t values
  426. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  427. // Unpack values into individual bytes
  428. const __m128i lowMask = _mm_set1_epi8( 0xF );
  429. __m128i high = _mm_andnot_si128( lowMask, bytes );
  430. __m128i low = _mm_and_si128( lowMask, bytes );
  431. high = _mm_slli_epi16( high, 4 );
  432. bytes = _mm_or_si128( low, high );
  433. return bytes;
  434. }
  435. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  436. {
  437. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  438. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  439. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  440. __m128i low = _mm_and_si128( lowByte, bytes1 );
  441. high = _mm_srli_epi16( high, 4 );
  442. bytes1 = _mm_or_si128( low, high );
  443. high = _mm_andnot_si128( lowByte, bytes2 );
  444. low = _mm_and_si128( lowByte, bytes2 );
  445. high = _mm_srli_epi16( high, 4 );
  446. bytes2 = _mm_or_si128( low, high );
  447. return _mm_packus_epi16( bytes1, bytes2);
  448. }
  449. #endif
  450. #if __ARM_NEON
  451. #if !defined(__aarch64__)
  452. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  453. return
  454. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  455. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  456. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  457. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  458. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  459. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  460. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  461. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  462. }
  463. inline static int16_t vaddvq_s8(int8x16_t v) {
  464. return
  465. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  466. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  467. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  468. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  469. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  470. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  471. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  472. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  473. }
  474. inline static int32_t vaddvq_s16(int16x8_t v) {
  475. return
  476. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  477. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  478. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  479. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  480. }
  481. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  482. return
  483. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  484. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  485. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  486. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  487. }
  488. inline static int32_t vaddvq_s32(int32x4_t v) {
  489. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  490. }
  491. inline static float vaddvq_f32(float32x4_t v) {
  492. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  493. }
  494. float vminvq_f32(float32x4_t v) {
  495. return
  496. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  497. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  498. }
  499. float vmaxvq_f32(float32x4_t v) {
  500. return
  501. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  502. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  503. }
  504. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  505. return vget_low_s8(vcombine_s8(a, b));
  506. }
  507. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  508. return vget_high_s8(vcombine_s8(a, b));
  509. }
  510. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  511. return vget_low_u8(vcombine_u8(a, b));
  512. }
  513. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  514. return vget_high_u8(vcombine_u8(a, b));
  515. }
  516. #endif
  517. #endif
  518. #define QK4_0 32
  519. typedef struct {
  520. float d; // delta
  521. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  522. } block_q4_0;
  523. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  524. #define QK4_1 32
  525. typedef struct {
  526. float d; // delta
  527. float m; // min
  528. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  529. } block_q4_1;
  530. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
  531. #define QK4_2 16
  532. typedef struct {
  533. ggml_fp16_t d; // delta
  534. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  535. } block_q4_2;
  536. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  537. #define QK8_0 32
  538. typedef struct {
  539. float d; // delta
  540. int8_t qs[QK8_0]; // quants
  541. } block_q8_0;
  542. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  543. // reference implementation for deterministic creation of model files
  544. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  545. assert(k % QK4_0 == 0);
  546. const int nb = k / QK4_0;
  547. uint8_t pp[QK4_0/2];
  548. for (int i = 0; i < nb; i++) {
  549. float amax = 0.0f; // absolute max
  550. for (int l = 0; l < QK4_0; l++) {
  551. const float v = x[i*QK4_0 + l];
  552. amax = MAX(amax, fabsf(v));
  553. }
  554. const float d = amax / ((1 << 3) - 1);
  555. const float id = d ? 1.0f/d : 0.0f;
  556. y[i].d = d;
  557. for (int l = 0; l < QK4_0; l += 2) {
  558. const float v0 = x[i*QK4_0 + l + 0]*id;
  559. const float v1 = x[i*QK4_0 + l + 1]*id;
  560. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  561. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  562. assert(vi0 < 16);
  563. assert(vi1 < 16);
  564. pp[l/2] = vi0 | (vi1 << 4);
  565. }
  566. memcpy(y[i].qs, pp, sizeof(pp));
  567. }
  568. }
  569. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  570. assert(k % QK4_0 == 0);
  571. const int nb = k / QK4_0;
  572. block_q4_0 * restrict y = vy;
  573. #if defined(__POWER9_VECTOR__)
  574. const vector float v85 = vec_splats(8.5f);
  575. for (int i = 0; i < nb; i++) {
  576. float amax = 0.0f; // absolute max
  577. vector float srcv [8];
  578. vector float asrcv[8];
  579. vector float amaxv[8];
  580. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  581. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  582. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  583. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  584. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  585. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  586. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  587. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  588. amax = MAX(
  589. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  590. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  591. const float d = amax / ((1 << 3) - 1);
  592. const float id = d ? 1.0/d : 0.0;
  593. y[i].d = d;
  594. const vector float vid = vec_splats(id);
  595. uint8_t * restrict pb = y[i].qs;
  596. for (int l = 0; l < 8; l++) {
  597. const vector float vf = vec_madd(srcv[l], vid, v85);
  598. const vector signed int vi = vec_signed(vf);
  599. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  600. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  601. }
  602. }
  603. #elif __ARM_NEON
  604. for (int i = 0; i < nb; i++) {
  605. float32x4_t srcv [8];
  606. float32x4_t asrcv[8];
  607. float32x4_t amaxv[8];
  608. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  609. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  610. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  611. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  612. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  613. const float amax = vmaxvq_f32(amaxv[0]);
  614. const float d = amax / ((1 << 3) - 1);
  615. const float id = d ? 1.0f/d : 0.0f;
  616. y[i].d = d;
  617. for (int l = 0; l < 8; l++) {
  618. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  619. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  620. const int32x4_t vi = vcvtq_s32_f32(vf);
  621. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  622. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  623. }
  624. }
  625. #elif defined(__AVX2__)
  626. for (int i = 0; i < nb; i++) {
  627. // Load elements into 4 AVX vectors
  628. __m256 v0 = _mm256_loadu_ps( x );
  629. __m256 v1 = _mm256_loadu_ps( x + 8 );
  630. __m256 v2 = _mm256_loadu_ps( x + 16 );
  631. __m256 v3 = _mm256_loadu_ps( x + 24 );
  632. x += 32;
  633. // Compute max(abs(e)) for the block
  634. const __m256 signBit = _mm256_set1_ps( -0.0f );
  635. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  636. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  637. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  638. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  639. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  640. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  641. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  642. const float maxScalar = _mm_cvtss_f32( max4 );
  643. // Quantize these floats
  644. const float d = maxScalar / 7.0f;
  645. y[i].d = d;
  646. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  647. const __m256 mul = _mm256_set1_ps( id );
  648. // Apply the multiplier
  649. v0 = _mm256_mul_ps( v0, mul );
  650. v1 = _mm256_mul_ps( v1, mul );
  651. v2 = _mm256_mul_ps( v2, mul );
  652. v3 = _mm256_mul_ps( v3, mul );
  653. // Round to nearest integer
  654. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  655. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  656. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  657. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  658. // Convert floats to integers
  659. __m256i i0 = _mm256_cvtps_epi32( v0 );
  660. __m256i i1 = _mm256_cvtps_epi32( v1 );
  661. __m256i i2 = _mm256_cvtps_epi32( v2 );
  662. __m256i i3 = _mm256_cvtps_epi32( v3 );
  663. // Convert int32 to int16
  664. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  665. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  666. // Convert int16 to int8
  667. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  668. // We got our precious signed bytes, but the order is now wrong
  669. // These AVX2 pack instructions process 16-byte pieces independently
  670. // The following instruction is fixing the order
  671. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  672. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  673. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  674. const __m256i off = _mm256_set1_epi8( 8 );
  675. i0 = _mm256_add_epi8( i0, off );
  676. // Compress the vector into 4 bit/value, and store
  677. __m128i res = packNibbles( i0 );
  678. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  679. }
  680. #elif defined(__AVX__)
  681. for (int i = 0; i < nb; i++) {
  682. // Load elements into 4 AVX vectors
  683. __m256 v0 = _mm256_loadu_ps( x );
  684. __m256 v1 = _mm256_loadu_ps( x + 8 );
  685. __m256 v2 = _mm256_loadu_ps( x + 16 );
  686. __m256 v3 = _mm256_loadu_ps( x + 24 );
  687. x += 32;
  688. // Compute max(abs(e)) for the block
  689. const __m256 signBit = _mm256_set1_ps( -0.0f );
  690. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  691. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  692. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  693. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  694. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  695. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  696. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  697. const float maxScalar = _mm_cvtss_f32( max4 );
  698. // Quantize these floats
  699. const float d = maxScalar / 7.0f;
  700. y[i].d = d;
  701. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  702. const __m256 mul = _mm256_set1_ps( id );
  703. // Apply the multiplier
  704. v0 = _mm256_mul_ps( v0, mul );
  705. v1 = _mm256_mul_ps( v1, mul );
  706. v2 = _mm256_mul_ps( v2, mul );
  707. v3 = _mm256_mul_ps( v3, mul );
  708. // Round to nearest integer
  709. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  710. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  711. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  712. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  713. // Convert floats to integers
  714. __m256i i0 = _mm256_cvtps_epi32( v0 );
  715. __m256i i1 = _mm256_cvtps_epi32( v1 );
  716. __m256i i2 = _mm256_cvtps_epi32( v2 );
  717. __m256i i3 = _mm256_cvtps_epi32( v3 );
  718. // Since we don't have in AVX some necessary functions,
  719. // we split the registers in half and call AVX2 analogs from SSE
  720. __m128i ni0 = _mm256_castsi256_si128( i0 );
  721. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  722. __m128i ni2 = _mm256_castsi256_si128( i1 );
  723. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  724. __m128i ni4 = _mm256_castsi256_si128( i2 );
  725. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  726. __m128i ni6 = _mm256_castsi256_si128( i3 );
  727. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  728. // Convert int32 to int16
  729. ni0 = _mm_packs_epi32( ni0, ni1 );
  730. ni2 = _mm_packs_epi32( ni2, ni3 );
  731. ni4 = _mm_packs_epi32( ni4, ni5 );
  732. ni6 = _mm_packs_epi32( ni6, ni7 );
  733. // Convert int16 to int8
  734. ni0 = _mm_packs_epi16( ni0, ni2 );
  735. ni4 = _mm_packs_epi16( ni4, ni6 );
  736. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  737. const __m128i off = _mm_set1_epi8( 8);
  738. ni0 = _mm_add_epi8( ni0, off );
  739. ni4 = _mm_add_epi8( ni4, off );
  740. // Compress the vector into 4 bit/value, and store
  741. __m128i res = packNibbles( ni0, ni4 );
  742. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  743. }
  744. #elif defined(__wasm_simd128__)
  745. for (int i = 0; i < nb; i++) {
  746. float amax = 0.0f; // absolute max
  747. v128_t srcv [8];
  748. v128_t asrcv[8];
  749. v128_t amaxv[8];
  750. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  751. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  752. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  753. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  754. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  755. amax = MAX(
  756. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  757. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  758. const float d = amax / ((1 << 3) - 1);
  759. const float id = d ? 1.0/d : 0.0;
  760. y[i].d = d;
  761. for (int l = 0; l < 8; l++) {
  762. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  763. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  764. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  765. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  766. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  767. }
  768. }
  769. #else
  770. // scalar
  771. quantize_row_q4_0_reference(x, y, k);
  772. #endif
  773. }
  774. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  775. assert(k % QK4_1 == 0);
  776. const int nb = k / QK4_1;
  777. block_q4_1 * restrict y = vy;
  778. uint8_t pp[QK4_1/2];
  779. for (int i = 0; i < nb; i++) {
  780. float min = FLT_MAX;
  781. float max = -FLT_MAX;
  782. for (int l = 0; l < QK4_1; l++) {
  783. const float v = x[i*QK4_1 + l];
  784. if (v < min) min = v;
  785. if (v > max) max = v;
  786. }
  787. const float d = (max - min) / ((1 << 4) - 1);
  788. const float id = d ? 1.0f/d : 0.0f;
  789. y[i].d = d;
  790. y[i].m = min;
  791. for (int l = 0; l < QK4_1; l += 2) {
  792. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  793. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  794. const uint8_t vi0 = roundf(v0);
  795. const uint8_t vi1 = roundf(v1);
  796. assert(vi0 < 16);
  797. assert(vi1 < 16);
  798. pp[l/2] = vi0 | (vi1 << 4);
  799. }
  800. memcpy(y[i].qs, pp, sizeof(pp));
  801. }
  802. }
  803. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  804. assert(k % QK4_1 == 0);
  805. const int nb = k / QK4_1;
  806. block_q4_1 * restrict y = vy;
  807. #if defined(__AVX2__)
  808. for (int i = 0; i < nb; i++) {
  809. // Load elements into 4 AVX vectors
  810. __m256 v0 = _mm256_loadu_ps( x );
  811. __m256 v1 = _mm256_loadu_ps( x + 8 );
  812. __m256 v2 = _mm256_loadu_ps( x + 16 );
  813. __m256 v3 = _mm256_loadu_ps( x + 24 );
  814. x += 32;
  815. // Compute max for the block
  816. __m256 vmax;
  817. vmax = _mm256_max_ps( v0, v1 );
  818. vmax = _mm256_max_ps( vmax, v2 );
  819. vmax = _mm256_max_ps( vmax, v3 );
  820. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  821. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  822. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  823. const float maxScalar = _mm_cvtss_f32( max4 );
  824. // Compute min for the block
  825. __m256 vmin;
  826. vmin = _mm256_min_ps( v0, v1 );
  827. vmin = _mm256_min_ps( vmin, v2 );
  828. vmin = _mm256_min_ps( vmin, v3 );
  829. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  830. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  831. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  832. const float minScalar = _mm_cvtss_f32( min4 );
  833. // Quantize these floats
  834. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  835. const float id = d ? 1.0f/d : 0.0f;
  836. y[i].m = minScalar;
  837. y[i].d = d;
  838. // x = (x-min)*id
  839. const __m256 mul = _mm256_set1_ps( id );
  840. const __m256 off = _mm256_set1_ps( minScalar );
  841. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  842. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  843. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  844. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  845. // Round to nearest integer
  846. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  847. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  848. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  849. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  850. // Convert floats to integers
  851. __m256i i0 = _mm256_cvtps_epi32( v0 );
  852. __m256i i1 = _mm256_cvtps_epi32( v1 );
  853. __m256i i2 = _mm256_cvtps_epi32( v2 );
  854. __m256i i3 = _mm256_cvtps_epi32( v3 );
  855. // Convert int32 to int16
  856. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  857. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  858. // Convert int16 to int8
  859. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  860. // We got our precious signed bytes, but the order is now wrong
  861. // These AVX2 pack instructions process 16-byte pieces independently
  862. // The following instruction is fixing the order
  863. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  864. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  865. // Compress the vector into 4 bit/value, and store
  866. __m128i res = packNibbles( i0 );
  867. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  868. }
  869. #elif __ARM_NEON
  870. for (int i = 0; i < nb; i++) {
  871. float32x4_t srcv[8];
  872. float32x4_t minv[8];
  873. float32x4_t maxv[8];
  874. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  875. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  876. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  877. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  878. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  879. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  880. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  881. const float min = vminvq_f32(minv[0]);
  882. const float max = vmaxvq_f32(maxv[0]);
  883. const float d = (max - min) / ((1 << 4) - 1);
  884. const float id = d ? 1.0f/d : 0.0f;
  885. y[i].d = d;
  886. y[i].m = min;
  887. const float32x4_t minv0 = vdupq_n_f32(min);
  888. for (int l = 0; l < 8; l++) {
  889. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  890. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  891. const int32x4_t vi = vcvtq_s32_f32(vf);
  892. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  893. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  894. }
  895. }
  896. #else
  897. // scalar
  898. quantize_row_q4_1_reference(x, vy, k);
  899. #endif
  900. }
  901. // reference implementation for deterministic creation of model files
  902. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  903. assert(k % QK4_2 == 0);
  904. const int nb = k / QK4_2;
  905. for (int i = 0; i < nb; i++) {
  906. float amax = 0.0f; // absolute max
  907. for (int l = 0; l < QK4_2; l++) {
  908. const float v = x[i*QK4_2 + l];
  909. amax = MAX(amax, fabsf(v));
  910. }
  911. const float d = amax / ((1 << 3) - 1);
  912. const float id = d ? 1.0f/d : 0.0f;
  913. y[i].d = GGML_FP32_TO_FP16(d);
  914. for (int l = 0; l < QK4_2; l += 2) {
  915. const float v0 = x[i*QK4_2 + l + 0]*id;
  916. const float v1 = x[i*QK4_2 + l + 1]*id;
  917. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  918. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  919. assert(vi0 < 16);
  920. assert(vi1 < 16);
  921. y[i].qs[l/2] = vi0 | (vi1 << 4);
  922. }
  923. }
  924. }
  925. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  926. assert(k % QK4_2 == 0);
  927. block_q4_2 * restrict y = vy;
  928. quantize_row_q4_2_reference(x, y, k);
  929. }
  930. // reference implementation for deterministic creation of model files
  931. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  932. assert(k % QK8_0 == 0);
  933. const int nb = k / QK8_0;
  934. for (int i = 0; i < nb; i++) {
  935. float amax = 0.0f; // absolute max
  936. for (int l = 0; l < QK8_0; l++) {
  937. const float v = x[i*QK8_0 + l];
  938. amax = MAX(amax, fabsf(v));
  939. }
  940. const float d = amax / ((1 << 7) - 1);
  941. const float id = d ? 1.0f/d : 0.0f;
  942. y[i].d = d;
  943. for (int l = 0; l < QK8_0; ++l) {
  944. const float v = x[i*QK8_0 + l]*id;
  945. y[i].qs[l] = roundf(v);
  946. }
  947. }
  948. }
  949. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  950. assert(k % QK8_0 == 0);
  951. const int nb = k / QK8_0;
  952. block_q8_0 * restrict y = vy;
  953. #if defined(__ARM_NEON)
  954. for (int i = 0; i < nb; i++) {
  955. float32x4_t srcv [8];
  956. float32x4_t asrcv[8];
  957. float32x4_t amaxv[8];
  958. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  959. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  960. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  961. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  962. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  963. const float amax = vmaxvq_f32(amaxv[0]);
  964. const float d = amax / ((1 << 7) - 1);
  965. const float id = d ? 1.0f/d : 0.0f;
  966. y[i].d = d;
  967. for (int l = 0; l < 8; l++) {
  968. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  969. const int32x4_t vi = vcvtnq_s32_f32(v);
  970. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  971. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  972. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  973. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  974. }
  975. }
  976. #elif defined(__AVX2__) || defined(__AVX__)
  977. for (int i = 0; i < nb; i++) {
  978. // Load elements into 4 AVX vectors
  979. __m256 v0 = _mm256_loadu_ps( x );
  980. __m256 v1 = _mm256_loadu_ps( x + 8 );
  981. __m256 v2 = _mm256_loadu_ps( x + 16 );
  982. __m256 v3 = _mm256_loadu_ps( x + 24 );
  983. x += 32;
  984. // Compute max(abs(e)) for the block
  985. const __m256 signBit = _mm256_set1_ps( -0.0f );
  986. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  987. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  988. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  989. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  990. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  991. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  992. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  993. const float maxScalar = _mm_cvtss_f32( max4 );
  994. // Quantize these floats
  995. const float d = maxScalar / 127.f;
  996. y[i].d = d;
  997. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  998. const __m256 mul = _mm256_set1_ps( id );
  999. // Apply the multiplier
  1000. v0 = _mm256_mul_ps( v0, mul );
  1001. v1 = _mm256_mul_ps( v1, mul );
  1002. v2 = _mm256_mul_ps( v2, mul );
  1003. v3 = _mm256_mul_ps( v3, mul );
  1004. // Round to nearest integer
  1005. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1006. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1007. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1008. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1009. // Convert floats to integers
  1010. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1011. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1012. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1013. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1014. #if defined(__AVX2__)
  1015. // Convert int32 to int16
  1016. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1017. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1018. // Convert int16 to int8
  1019. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1020. // We got our precious signed bytes, but the order is now wrong
  1021. // These AVX2 pack instructions process 16-byte pieces independently
  1022. // The following instruction is fixing the order
  1023. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1024. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1025. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1026. #else
  1027. // Since we don't have in AVX some necessary functions,
  1028. // we split the registers in half and call AVX2 analogs from SSE
  1029. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1030. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1031. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1032. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1033. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1034. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1035. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1036. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1037. // Convert int32 to int16
  1038. ni0 = _mm_packs_epi32( ni0, ni1 );
  1039. ni2 = _mm_packs_epi32( ni2, ni3 );
  1040. ni4 = _mm_packs_epi32( ni4, ni5 );
  1041. ni6 = _mm_packs_epi32( ni6, ni7 );
  1042. // Convert int16 to int8
  1043. ni0 = _mm_packs_epi16( ni0, ni2 );
  1044. ni4 = _mm_packs_epi16( ni4, ni6 );
  1045. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1046. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1047. #endif
  1048. }
  1049. #else
  1050. // scalar
  1051. quantize_row_q8_0_reference(x, y, k);
  1052. #endif
  1053. }
  1054. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1055. assert(k % QK4_0 == 0);
  1056. const int nb = k / QK4_0;
  1057. const block_q4_0 * restrict x = vx;
  1058. #if defined(__AVX2__)
  1059. for (int i = 0; i < nb; i++) {
  1060. // scale factor
  1061. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1062. const uint8_t * restrict pp = x[i].qs;
  1063. for (int l = 0; l < QK4_0; l += 32) {
  1064. // Load 32x4-bit integers into 32x8-bit integers
  1065. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1066. // Subtract 8 from the integers
  1067. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1068. // Convert to 16-bit int
  1069. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1070. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1071. // Convert to 32-bit int -> float 32
  1072. const __m256 vf[4] = {
  1073. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1074. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1075. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1076. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1077. };
  1078. // Scale and store
  1079. for (int j = 0; j < 4; j++) {
  1080. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1081. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1082. }
  1083. }
  1084. }
  1085. #elif defined(__ARM_NEON)
  1086. for (int i = 0; i < nb; i++) {
  1087. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1088. const uint8_t * restrict pp = x[i].qs;
  1089. for (int l = 0; l < QK4_0; l += 16) {
  1090. // Load 16x4-bit integers into 8x8-bit integers
  1091. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1092. // Expand 4-bit qs to 8-bit bytes
  1093. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1094. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1095. // Convert to signed 8-bit integers
  1096. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1097. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1098. // Subtract 8 from each byte
  1099. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1100. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1101. // Interleave and combine
  1102. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1103. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1104. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1105. // convert to 2x int16x8_t
  1106. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1107. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1108. // convert to 4x float32x4_t
  1109. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1110. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1111. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1112. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1113. // Multiply by d
  1114. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1115. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1116. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1117. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1118. // Store
  1119. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1120. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1121. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1122. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1123. }
  1124. }
  1125. #else
  1126. // scalar
  1127. for (int i = 0; i < nb; i++) {
  1128. const float d = x[i].d;
  1129. const uint8_t * restrict pp = x[i].qs;
  1130. for (int l = 0; l < QK4_0; l += 2) {
  1131. const uint8_t vi = pp[l/2];
  1132. const int8_t vi0 = vi & 0xf;
  1133. const int8_t vi1 = vi >> 4;
  1134. const float v0 = (vi0 - 8)*d;
  1135. const float v1 = (vi1 - 8)*d;
  1136. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1137. y[i*QK4_0 + l + 0] = v0;
  1138. y[i*QK4_0 + l + 1] = v1;
  1139. assert(!isnan(y[i*QK4_0 + l + 0]));
  1140. assert(!isnan(y[i*QK4_0 + l + 1]));
  1141. }
  1142. }
  1143. #endif
  1144. }
  1145. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1146. assert(k % QK4_1 == 0);
  1147. const int nb = k / QK4_1;
  1148. const block_q4_1 * restrict x = vx;
  1149. #if defined(__AVX2__)
  1150. for (int i = 0; i < nb; i++) {
  1151. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1152. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1153. const uint8_t * restrict pp = x[i].qs;
  1154. for (int l = 0; l < QK4_1; l += 32) {
  1155. // Load 32x4-bit integers into 32x8-bit integers
  1156. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1157. // Convert to 16-bit int
  1158. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1159. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1160. // Convert to 32-bit int -> float 32
  1161. const __m256 vf[4] = {
  1162. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1163. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1164. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1165. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1166. };
  1167. // Scale, add m and store
  1168. for (int j = 0; j < 4; j++) {
  1169. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1170. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1171. }
  1172. }
  1173. }
  1174. #elif defined(__ARM_NEON)
  1175. for (int i = 0; i < nb; i++) {
  1176. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1177. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1178. const uint8_t * restrict pp = x[i].qs;
  1179. for (int l = 0; l < QK4_1; l += 16) {
  1180. // Load 16x4-bit integers into 8x8-bit integers
  1181. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1182. // Expand 4-bit qs to 8-bit bytes
  1183. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1184. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1185. // Interleave and combine
  1186. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1187. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1188. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1189. // convert to 2x uint16x8_t
  1190. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1191. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1192. // convert to 4x float32x4_t
  1193. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1194. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1195. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1196. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1197. // multiply by d and add m
  1198. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1199. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1200. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1201. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1202. // Store
  1203. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1204. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1205. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1206. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1207. }
  1208. }
  1209. #else
  1210. for (int i = 0; i < nb; i++) {
  1211. const float d = x[i].d;
  1212. const float m = x[i].m;
  1213. const uint8_t * restrict pp = x[i].qs;
  1214. for (int l = 0; l < QK4_1; l += 2) {
  1215. const uint8_t vi = pp[l/2];
  1216. const int8_t vi0 = vi & 0xf;
  1217. const int8_t vi1 = vi >> 4;
  1218. const float v0 = vi0*d + m;
  1219. const float v1 = vi1*d + m;
  1220. y[i*QK4_1 + l + 0] = v0;
  1221. y[i*QK4_1 + l + 1] = v1;
  1222. assert(!isnan(y[i*QK4_1 + l + 0]));
  1223. assert(!isnan(y[i*QK4_1 + l + 1]));
  1224. }
  1225. }
  1226. #endif
  1227. }
  1228. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1229. assert(k % QK4_2 == 0);
  1230. const int nb = k / QK4_2;
  1231. const block_q4_2 * restrict x = vx;
  1232. for (int i = 0; i < nb; i++) {
  1233. const float d = GGML_FP16_TO_FP32(x[i].d);
  1234. const uint8_t * restrict pp = x[i].qs;
  1235. for (int l = 0; l < QK4_2; l += 2) {
  1236. const uint8_t vi = pp[l/2];
  1237. const int8_t vi0 = vi & 0xf;
  1238. const int8_t vi1 = vi >> 4;
  1239. const float v0 = (vi0 - 8)*d;
  1240. const float v1 = (vi1 - 8)*d;
  1241. y[i*QK4_2 + l + 0] = v0;
  1242. y[i*QK4_2 + l + 1] = v1;
  1243. assert(!isnan(y[i*QK4_2 + l + 0]));
  1244. assert(!isnan(y[i*QK4_2 + l + 1]));
  1245. }
  1246. }
  1247. }
  1248. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1249. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1250. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1251. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1252. [GGML_TYPE_Q4_0] = {
  1253. .dequantize_row_q = dequantize_row_q4_0,
  1254. .quantize_row_q = quantize_row_q4_0,
  1255. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1256. .quantize_row_q_dot = quantize_row_q8_0,
  1257. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1258. },
  1259. [GGML_TYPE_Q4_1] = {
  1260. .dequantize_row_q = dequantize_row_q4_1,
  1261. .quantize_row_q = quantize_row_q4_1,
  1262. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1263. .quantize_row_q_dot = quantize_row_q8_0,
  1264. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1265. },
  1266. [GGML_TYPE_Q4_2] = {
  1267. .dequantize_row_q = dequantize_row_q4_2,
  1268. .quantize_row_q = quantize_row_q4_2,
  1269. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1270. .quantize_row_q_dot = quantize_row_q8_0,
  1271. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1272. },
  1273. [GGML_TYPE_Q8_0] = {
  1274. .dequantize_row_q = NULL, // TODO
  1275. .quantize_row_q = quantize_row_q8_0,
  1276. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1277. .quantize_row_q_dot = quantize_row_q8_0,
  1278. .vec_dot_q = NULL, // TODO
  1279. },
  1280. };
  1281. // For internal test use
  1282. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1283. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1284. return quantize_fns[i];
  1285. }
  1286. //
  1287. // simd mappings
  1288. //
  1289. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1290. // we then implement the fundamental computation operations below using only these macros
  1291. // adding support for new architectures requires to define the corresponding SIMD macros
  1292. //
  1293. // GGML_F32_STEP / GGML_F16_STEP
  1294. // number of elements to process in a single step
  1295. //
  1296. // GGML_F32_EPR / GGML_F16_EPR
  1297. // number of elements to fit in a single register
  1298. //
  1299. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1300. #define GGML_SIMD
  1301. // F32 NEON
  1302. #define GGML_F32_STEP 16
  1303. #define GGML_F32_EPR 4
  1304. #define GGML_F32x4 float32x4_t
  1305. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1306. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1307. #define GGML_F32x4_LOAD vld1q_f32
  1308. #define GGML_F32x4_STORE vst1q_f32
  1309. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1310. #define GGML_F32x4_ADD vaddq_f32
  1311. #define GGML_F32x4_MUL vmulq_f32
  1312. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1313. #define GGML_F32x4_REDUCE(res, x) \
  1314. { \
  1315. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1316. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1317. } \
  1318. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1319. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1320. } \
  1321. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1322. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1323. } \
  1324. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1325. }
  1326. #define GGML_F32_VEC GGML_F32x4
  1327. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1328. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1329. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1330. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1331. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1332. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1333. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1334. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1335. // F16 NEON
  1336. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1337. #define GGML_F16_STEP 32
  1338. #define GGML_F16_EPR 8
  1339. #define GGML_F16x8 float16x8_t
  1340. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1341. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1342. #define GGML_F16x8_LOAD vld1q_f16
  1343. #define GGML_F16x8_STORE vst1q_f16
  1344. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1345. #define GGML_F16x8_ADD vaddq_f16
  1346. #define GGML_F16x8_MUL vmulq_f16
  1347. #define GGML_F16x8_REDUCE(res, x) \
  1348. { \
  1349. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1350. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1351. } \
  1352. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1353. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1354. } \
  1355. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1356. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1357. } \
  1358. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1359. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1360. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1361. }
  1362. #define GGML_F16_VEC GGML_F16x8
  1363. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1364. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1365. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1366. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1367. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1368. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1369. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1370. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1371. #else
  1372. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1373. // and take advantage of the vcvt_ functions to convert to/from FP16
  1374. #define GGML_F16_STEP 16
  1375. #define GGML_F16_EPR 4
  1376. #define GGML_F32Cx4 float32x4_t
  1377. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1378. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1379. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1380. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1381. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1382. #define GGML_F32Cx4_ADD vaddq_f32
  1383. #define GGML_F32Cx4_MUL vmulq_f32
  1384. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1385. #define GGML_F16_VEC GGML_F32Cx4
  1386. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1387. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1388. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1389. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1390. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1391. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1392. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1393. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1394. #endif
  1395. #elif defined(__AVX__)
  1396. #define GGML_SIMD
  1397. // F32 AVX
  1398. #define GGML_F32_STEP 32
  1399. #define GGML_F32_EPR 8
  1400. #define GGML_F32x8 __m256
  1401. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1402. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1403. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1404. #define GGML_F32x8_STORE _mm256_storeu_ps
  1405. #if defined(__FMA__)
  1406. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1407. #else
  1408. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1409. #endif
  1410. #define GGML_F32x8_ADD _mm256_add_ps
  1411. #define GGML_F32x8_MUL _mm256_mul_ps
  1412. #define GGML_F32x8_REDUCE(res, x) \
  1413. { \
  1414. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1415. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1416. } \
  1417. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1418. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1419. } \
  1420. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1421. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1422. } \
  1423. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1424. _mm256_extractf128_ps(x[0], 1)); \
  1425. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1426. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1427. }
  1428. // TODO: is this optimal ?
  1429. #define GGML_F32_VEC GGML_F32x8
  1430. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1431. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1432. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1433. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1434. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1435. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1436. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1437. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1438. // F16 AVX
  1439. #define GGML_F16_STEP 32
  1440. #define GGML_F16_EPR 8
  1441. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1442. #define GGML_F32Cx8 __m256
  1443. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1444. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1445. #if defined(__F16C__)
  1446. // the _mm256_cvt intrinsics require F16C
  1447. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1448. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1449. #else
  1450. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1451. float tmp[8];
  1452. for (int i = 0; i < 8; i++)
  1453. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1454. return _mm256_loadu_ps(tmp);
  1455. }
  1456. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1457. float arr[8];
  1458. _mm256_storeu_ps(arr, y);
  1459. for (int i = 0; i < 8; i++)
  1460. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1461. }
  1462. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1463. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1464. #endif
  1465. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1466. #define GGML_F32Cx8_ADD _mm256_add_ps
  1467. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1468. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1469. #define GGML_F16_VEC GGML_F32Cx8
  1470. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1471. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1472. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1473. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1474. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1475. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1476. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1477. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1478. #elif defined(__POWER9_VECTOR__)
  1479. #define GGML_SIMD
  1480. // F32 POWER9
  1481. #define GGML_F32_STEP 32
  1482. #define GGML_F32_EPR 4
  1483. #define GGML_F32x4 vector float
  1484. #define GGML_F32x4_ZERO 0.0f
  1485. #define GGML_F32x4_SET1 vec_splats
  1486. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1487. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1488. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1489. #define GGML_F32x4_ADD vec_add
  1490. #define GGML_F32x4_MUL vec_mul
  1491. #define GGML_F32x4_REDUCE(res, x) \
  1492. { \
  1493. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1494. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1495. } \
  1496. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1497. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1498. } \
  1499. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1500. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1501. } \
  1502. res = vec_extract(x[0], 0) + \
  1503. vec_extract(x[0], 1) + \
  1504. vec_extract(x[0], 2) + \
  1505. vec_extract(x[0], 3); \
  1506. }
  1507. #define GGML_F32_VEC GGML_F32x4
  1508. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1509. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1510. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1511. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1512. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1513. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1514. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1515. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1516. // F16 POWER9
  1517. #define GGML_F16_STEP GGML_F32_STEP
  1518. #define GGML_F16_EPR GGML_F32_EPR
  1519. #define GGML_F16_VEC GGML_F32x4
  1520. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1521. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1522. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1523. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1524. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1525. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1526. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1527. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1528. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1529. #define GGML_F16_VEC_STORE(p, r, i) \
  1530. if (i & 0x1) \
  1531. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1532. r[i - GGML_ENDIAN_BYTE(0)]), \
  1533. 0, p - GGML_F16_EPR)
  1534. #elif defined(__wasm_simd128__)
  1535. #define GGML_SIMD
  1536. // F32 WASM
  1537. #define GGML_F32_STEP 16
  1538. #define GGML_F32_EPR 4
  1539. #define GGML_F32x4 v128_t
  1540. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1541. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1542. #define GGML_F32x4_LOAD wasm_v128_load
  1543. #define GGML_F32x4_STORE wasm_v128_store
  1544. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1545. #define GGML_F32x4_ADD wasm_f32x4_add
  1546. #define GGML_F32x4_MUL wasm_f32x4_mul
  1547. #define GGML_F32x4_REDUCE(res, x) \
  1548. { \
  1549. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1550. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1551. } \
  1552. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1553. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1554. } \
  1555. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1556. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1557. } \
  1558. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1559. wasm_f32x4_extract_lane(x[0], 1) + \
  1560. wasm_f32x4_extract_lane(x[0], 2) + \
  1561. wasm_f32x4_extract_lane(x[0], 3); \
  1562. }
  1563. #define GGML_F32_VEC GGML_F32x4
  1564. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1565. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1566. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1567. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1568. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1569. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1570. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1571. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1572. // F16 WASM
  1573. #define GGML_F16_STEP 16
  1574. #define GGML_F16_EPR 4
  1575. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1576. float tmp[4];
  1577. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1578. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1579. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1580. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1581. return wasm_v128_load(tmp);
  1582. }
  1583. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1584. float tmp[4];
  1585. wasm_v128_store(tmp, x);
  1586. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1587. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1588. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1589. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1590. }
  1591. #define GGML_F16x4 v128_t
  1592. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1593. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1594. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1595. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1596. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1597. #define GGML_F16x4_ADD wasm_f32x4_add
  1598. #define GGML_F16x4_MUL wasm_f32x4_mul
  1599. #define GGML_F16x4_REDUCE(res, x) \
  1600. { \
  1601. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1602. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1603. } \
  1604. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1605. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1606. } \
  1607. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1608. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1609. } \
  1610. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1611. wasm_f32x4_extract_lane(x[0], 1) + \
  1612. wasm_f32x4_extract_lane(x[0], 2) + \
  1613. wasm_f32x4_extract_lane(x[0], 3); \
  1614. }
  1615. #define GGML_F16_VEC GGML_F16x4
  1616. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1617. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1618. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1619. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1620. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1621. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1622. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1623. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1624. #elif defined(__SSE3__)
  1625. #define GGML_SIMD
  1626. // F32 SSE
  1627. #define GGML_F32_STEP 32
  1628. #define GGML_F32_EPR 4
  1629. #define GGML_F32x4 __m128
  1630. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1631. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1632. #define GGML_F32x4_LOAD _mm_loadu_ps
  1633. #define GGML_F32x4_STORE _mm_storeu_ps
  1634. #if defined(__FMA__)
  1635. // TODO: Does this work?
  1636. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1637. #else
  1638. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1639. #endif
  1640. #define GGML_F32x4_ADD _mm_add_ps
  1641. #define GGML_F32x4_MUL _mm_mul_ps
  1642. #define GGML_F32x4_REDUCE(res, x) \
  1643. { \
  1644. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1645. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1646. } \
  1647. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1648. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1649. } \
  1650. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1651. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1652. } \
  1653. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1654. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1655. }
  1656. // TODO: is this optimal ?
  1657. #define GGML_F32_VEC GGML_F32x4
  1658. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1659. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1660. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1661. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1662. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1663. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1664. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1665. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1666. // F16 SSE
  1667. #define GGML_F16_STEP 32
  1668. #define GGML_F16_EPR 4
  1669. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1670. float tmp[4];
  1671. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1672. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1673. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1674. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1675. return _mm_loadu_ps(tmp);
  1676. }
  1677. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1678. float arr[4];
  1679. _mm_storeu_ps(arr, y);
  1680. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1681. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1682. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1683. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1684. }
  1685. #define GGML_F32Cx4 __m128
  1686. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1687. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1688. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1689. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1690. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1691. #define GGML_F32Cx4_ADD _mm_add_ps
  1692. #define GGML_F32Cx4_MUL _mm_mul_ps
  1693. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1694. #define GGML_F16_VEC GGML_F32Cx4
  1695. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1696. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1697. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1698. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1699. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1700. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1701. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1702. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1703. #endif
  1704. // GGML_F32_ARR / GGML_F16_ARR
  1705. // number of registers to use per step
  1706. #ifdef GGML_SIMD
  1707. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1708. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1709. #endif
  1710. //
  1711. // fundamental operations
  1712. //
  1713. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1714. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1715. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1716. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1717. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1718. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1719. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1720. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1721. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1722. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1723. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1724. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1725. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1726. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1727. #ifdef GGML_SIMD
  1728. float sumf = 0.0f;
  1729. const int np = (n & ~(GGML_F32_STEP - 1));
  1730. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1731. GGML_F32_VEC ax[GGML_F32_ARR];
  1732. GGML_F32_VEC ay[GGML_F32_ARR];
  1733. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1734. for (int j = 0; j < GGML_F32_ARR; j++) {
  1735. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1736. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1737. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1738. }
  1739. }
  1740. // reduce sum0..sum3 to sum0
  1741. GGML_F32_VEC_REDUCE(sumf, sum);
  1742. // leftovers
  1743. for (int i = np; i < n; ++i) {
  1744. sumf += x[i]*y[i];
  1745. }
  1746. #else
  1747. // scalar
  1748. ggml_float sumf = 0.0;
  1749. for (int i = 0; i < n; ++i) {
  1750. sumf += (ggml_float)(x[i]*y[i]);
  1751. }
  1752. #endif
  1753. *s = sumf;
  1754. }
  1755. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1756. ggml_float sumf = 0.0;
  1757. #if defined(GGML_SIMD)
  1758. const int np = (n & ~(GGML_F16_STEP - 1));
  1759. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1760. GGML_F16_VEC ax[GGML_F16_ARR];
  1761. GGML_F16_VEC ay[GGML_F16_ARR];
  1762. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1763. for (int j = 0; j < GGML_F16_ARR; j++) {
  1764. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1765. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1766. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1767. }
  1768. }
  1769. // reduce sum0..sum3 to sum0
  1770. GGML_F16_VEC_REDUCE(sumf, sum);
  1771. // leftovers
  1772. for (int i = np; i < n; ++i) {
  1773. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1774. }
  1775. #else
  1776. for (int i = 0; i < n; ++i) {
  1777. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1778. }
  1779. #endif
  1780. *s = sumf;
  1781. }
  1782. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1783. const int nb = n / QK8_0;
  1784. assert(n % QK8_0 == 0);
  1785. assert(nb % 2 == 0);
  1786. const block_q4_0 * restrict x = vx;
  1787. const block_q8_0 * restrict y = vy;
  1788. float sumf = 0.0;
  1789. #if defined(__ARM_NEON)
  1790. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1791. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1792. for (int i = 0; i < nb; i += 2) {
  1793. const block_q4_0 * restrict x0 = &x[i + 0];
  1794. const block_q4_0 * restrict x1 = &x[i + 1];
  1795. const block_q8_0 * restrict y0 = &y[i + 0];
  1796. const block_q8_0 * restrict y1 = &y[i + 1];
  1797. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1798. const int8x16_t s8b = vdupq_n_s8(0x8);
  1799. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1800. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1801. // 4-bit -> 8-bit
  1802. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1803. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1804. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1805. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1806. // sub 8
  1807. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1808. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1809. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1810. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1811. // load y
  1812. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1813. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1814. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1815. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1816. // interleave
  1817. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  1818. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  1819. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  1820. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  1821. #if defined(__ARM_FEATURE_DOTPROD)
  1822. // dot product into int32x4_t
  1823. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  1824. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  1825. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1826. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1827. #else
  1828. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1829. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1830. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1831. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1832. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1833. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1834. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1835. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1836. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1837. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1838. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1839. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1840. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1841. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1842. #endif
  1843. }
  1844. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1845. #elif defined(__AVX2__)
  1846. // Initialize accumulator with zeros
  1847. __m256 acc = _mm256_setzero_ps();
  1848. // Main loop
  1849. for (int i = 0; i < nb; ++i) {
  1850. /* Compute combined scale for the block */
  1851. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1852. __m256i bx = bytesFromNibbles(x[i].qs);
  1853. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1854. const __m256i off = _mm256_set1_epi8( 8 );
  1855. bx = _mm256_sub_epi8( bx, off );
  1856. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1857. // Get absolute values of x vectors
  1858. const __m256i ax = _mm256_sign_epi8(bx, bx);
  1859. // Sign the values of the y vectors
  1860. const __m256i sy = _mm256_sign_epi8(by, bx);
  1861. // Perform multiplication and create 16-bit values
  1862. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  1863. const __m256i ones = _mm256_set1_epi16(1);
  1864. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  1865. /* Convert to vectore of 8 int32_t to 8 floats */
  1866. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1867. /* Multiply q with scale and accumulate */
  1868. acc = _mm256_fmadd_ps( d, q, acc );
  1869. }
  1870. // Return horizontal sum of the acc vector
  1871. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1872. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1873. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1874. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1875. sumf = _mm_cvtss_f32( res );
  1876. #elif defined(__AVX__)
  1877. // Initialize accumulator with zeros
  1878. __m256 acc = _mm256_setzero_ps();
  1879. // Main loop
  1880. for (int i = 0; i < nb; ++i) {
  1881. // Compute combined scale for the block
  1882. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1883. __m128i i32[2];
  1884. for (int j = 0; j < 2; ++j) {
  1885. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1886. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1887. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  1888. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1889. const __m128i off = _mm_set1_epi8( 8 );
  1890. bx = _mm_sub_epi8( bx, off );
  1891. // Get absolute values of x vectors
  1892. const __m128i ax = _mm_sign_epi8(bx, bx);
  1893. // Sign the values of the y vectors
  1894. const __m128i sy = _mm_sign_epi8(by, bx);
  1895. // Perform multiplication and create 16-bit values
  1896. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1897. const __m128i ones = _mm_set1_epi16(1);
  1898. i32[j] = _mm_madd_epi16(ones, dot);
  1899. }
  1900. // Convert int32_t to float
  1901. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1902. // Apply the scale, and accumulate
  1903. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1904. }
  1905. // Return horizontal sum of the acc vector
  1906. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1907. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1908. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1909. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1910. sumf = _mm_cvtss_f32( res );
  1911. #else
  1912. // scalar
  1913. for (int i = 0; i < nb; i++) {
  1914. const float d0 = x[i].d;
  1915. const float d1 = y[i].d;
  1916. const uint8_t * restrict p0 = x[i].qs;
  1917. const int8_t * restrict p1 = y[i].qs;
  1918. int sumi = 0;
  1919. for (int j = 0; j < QK8_0/2; j++) {
  1920. const uint8_t v0 = p0[j];
  1921. const int i0 = (int8_t) (v0 & 0xf) - 8;
  1922. const int i1 = (int8_t) (v0 >> 4) - 8;
  1923. const int i2 = p1[2*j + 0];
  1924. const int i3 = p1[2*j + 1];
  1925. sumi += i0*i2 + i1*i3;
  1926. }
  1927. sumf += d0*d1*sumi;
  1928. }
  1929. #endif
  1930. *s = sumf;
  1931. }
  1932. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1933. const int nb = n / QK8_0;
  1934. assert(n % QK8_0 == 0);
  1935. assert(nb % 2 == 0);
  1936. const block_q4_1 * restrict x = vx;
  1937. const block_q8_0 * restrict y = vy;
  1938. float sumf = 0.0;
  1939. // TODO: add AVX / WASM SIMD / etc
  1940. #if defined(__ARM_NEON)
  1941. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1942. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1943. for (int i = 0; i < nb; i += 2) {
  1944. const block_q4_1 * restrict x0 = &x[i + 0];
  1945. const block_q4_1 * restrict x1 = &x[i + 1];
  1946. const block_q8_0 * restrict y0 = &y[i + 0];
  1947. const block_q8_0 * restrict y1 = &y[i + 1];
  1948. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1949. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1950. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1951. // 4-bit -> 8-bit
  1952. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1953. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1954. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1955. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1956. // load y
  1957. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1958. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1959. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1960. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1961. // interleave
  1962. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  1963. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  1964. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  1965. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  1966. const int16x8_t s0i = vaddq_s16(
  1967. vaddq_s16(vmovl_s8(vget_low_s8(v1_0ls)), vmovl_s8(vget_high_s8(v1_0ls))),
  1968. vaddq_s16(vmovl_s8(vget_low_s8(v1_0hs)), vmovl_s8(vget_high_s8(v1_0hs))));
  1969. const int16x8_t s1i = vaddq_s16(
  1970. vaddq_s16(vmovl_s8(vget_low_s8(v1_1ls)), vmovl_s8(vget_high_s8(v1_1ls))),
  1971. vaddq_s16(vmovl_s8(vget_low_s8(v1_1hs)), vmovl_s8(vget_high_s8(v1_1hs))));
  1972. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s0i), vget_high_s16(s0i))), x0->m*y0->d);
  1973. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s1i), vget_high_s16(s1i))), x1->m*y1->d);
  1974. #if defined(__ARM_FEATURE_DOTPROD)
  1975. // dot product into int32x4_t
  1976. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  1977. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  1978. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1979. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1980. #else
  1981. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  1982. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  1983. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  1984. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  1985. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  1986. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  1987. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  1988. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  1989. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1990. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1991. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1992. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1993. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1994. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1995. #endif
  1996. }
  1997. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1998. #elif defined(__AVX2__)
  1999. // Initialize accumulator with zeros
  2000. __m256 acc = _mm256_setzero_ps();
  2001. // Main loop
  2002. for (int i = 0; i < nb; ++i) {
  2003. const float * d0 = &x[i].d;
  2004. const float * d1 = &y[i].d;
  2005. const float * m0 = &x[i].m;
  2006. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2007. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2008. const __m256 m0v = _mm256_broadcast_ss( m0 );
  2009. // Compute combined scales
  2010. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2011. const __m256 d1m0 = _mm256_mul_ps( d1v, m0v );
  2012. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2013. const __m256i bx = bytesFromNibbles( x[i].qs );
  2014. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2015. // Get absolute values of x vectors
  2016. const __m256i ax = _mm256_sign_epi8( bx, bx );
  2017. // Sign the values of the y vectors
  2018. const __m256i sy = _mm256_sign_epi8( by, bx );
  2019. // Perform multiplication and create 16-bit values
  2020. const __m256i dot = _mm256_maddubs_epi16( ax, sy );
  2021. const __m256i ones = _mm256_set1_epi16( 1 );
  2022. const __m256i xy_q = _mm256_madd_epi16( ones, dot );
  2023. // Convert to vector of 8 int32_t to 8 floats
  2024. const __m256 xy = _mm256_cvtepi32_ps( xy_q );
  2025. // Accumulate d0*d1*x*y
  2026. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2027. // Compute sum of y values
  2028. const __m256i y16_l = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  2029. const __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  2030. const __m256i ysumi = _mm256_madd_epi16( _mm256_add_epi16(y16_l, y16_h), ones );
  2031. const __m256 ysum = _mm256_cvtepi32_ps( ysumi );
  2032. // Accumulate d1*m0*y
  2033. acc = _mm256_fmadd_ps( d1m0, ysum, acc );
  2034. }
  2035. // Return horizontal sum of the acc vector
  2036. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2037. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2038. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2039. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2040. sumf = _mm_cvtss_f32( res );
  2041. #else
  2042. // scalar
  2043. for (int i = 0; i < nb; i++) {
  2044. const float d0 = x[i].d;
  2045. const float m0 = x[i].m;
  2046. const float d1 = y[i].d;
  2047. const uint8_t * restrict p0 = x[i].qs;
  2048. const int8_t * restrict p1 = y[i].qs;
  2049. // TODO: this is very slow ..
  2050. for (int j = 0; j < QK8_0/2; j++) {
  2051. const uint8_t v0 = p0[j];
  2052. const float f0 = d0*(v0 & 0xf) + m0;
  2053. const float f1 = d0*(v0 >> 4) + m0;
  2054. const float f2 = d1*p1[2*j + 0];
  2055. const float f3 = d1*p1[2*j + 1];
  2056. sumf += f0*f2 + f1*f3;
  2057. }
  2058. }
  2059. #endif
  2060. *s = sumf;
  2061. }
  2062. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2063. const int nb = n / QK8_0;
  2064. assert(n % QK8_0 == 0);
  2065. assert(nb % 2 == 0);
  2066. assert(QK8_0 == 2*QK4_2);
  2067. const block_q4_2 * restrict x = vx;
  2068. const block_q8_0 * restrict y = vy;
  2069. float sumf = 0.0;
  2070. #if defined(__ARM_NEON)
  2071. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2072. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2073. for (int i = 0; i < nb; i += 2) {
  2074. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2075. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2076. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2077. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2078. const block_q8_0 * restrict y0 = &y[i + 0];
  2079. const block_q8_0 * restrict y1 = &y[i + 1];
  2080. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2081. const int8x16_t s8b = vdupq_n_s8(0x8);
  2082. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2083. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2084. // 4-bit -> 8-bit
  2085. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2086. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2087. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2088. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2089. // sub 8
  2090. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2091. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2092. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2093. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2094. // interleave
  2095. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2096. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2097. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2098. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2099. // load y
  2100. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2101. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2102. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2103. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2104. #if defined(__ARM_FEATURE_DOTPROD)
  2105. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2106. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2107. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2108. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2109. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2110. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2111. #else
  2112. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2113. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2114. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2115. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2116. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2117. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2118. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2119. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2120. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2121. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2122. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2123. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2124. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2125. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2126. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2127. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2128. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2129. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2130. #endif
  2131. }
  2132. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2133. #else
  2134. // scalar
  2135. for (int i = 0; i < nb; i++) {
  2136. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2137. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2138. const int8_t * restrict y0 = y[i].qs;
  2139. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2140. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2141. int sumi_0 = 0;
  2142. int sumi_1 = 0;
  2143. for (int j = 0; j < QK8_0/4; j++) {
  2144. const uint8_t v0 = x0[j];
  2145. const uint8_t v1 = x1[j];
  2146. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2147. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2148. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2149. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2150. const int i2_0 = y0[2*j + 0];
  2151. const int i3_0 = y0[2*j + 1];
  2152. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2153. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2154. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2155. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2156. }
  2157. sumf += (d0 * y[i].d) * sumi_0;
  2158. sumf += (d1 * y[i].d) * sumi_1;
  2159. }
  2160. #endif
  2161. *s = sumf;
  2162. }
  2163. // compute GGML_VEC_DOT_UNROLL dot products at once
  2164. // xs - x row stride in bytes
  2165. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2166. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2167. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2168. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2169. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2170. }
  2171. #if defined(GGML_SIMD)
  2172. const int np = (n & ~(GGML_F16_STEP - 1));
  2173. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2174. GGML_F16_VEC ax[GGML_F16_ARR];
  2175. GGML_F16_VEC ay[GGML_F16_ARR];
  2176. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2177. for (int j = 0; j < GGML_F16_ARR; j++) {
  2178. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2179. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2180. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2181. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2182. }
  2183. }
  2184. }
  2185. // reduce sum0..sum3 to sum0
  2186. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2187. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2188. }
  2189. // leftovers
  2190. for (int i = np; i < n; ++i) {
  2191. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2192. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2193. }
  2194. }
  2195. #else
  2196. for (int i = 0; i < n; ++i) {
  2197. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2198. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2199. }
  2200. }
  2201. #endif
  2202. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2203. s[i] = sumf[i];
  2204. }
  2205. }
  2206. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2207. #if defined(GGML_SIMD)
  2208. const int np = (n & ~(GGML_F32_STEP - 1));
  2209. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2210. GGML_F32_VEC ax[GGML_F32_ARR];
  2211. GGML_F32_VEC ay[GGML_F32_ARR];
  2212. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2213. for (int j = 0; j < GGML_F32_ARR; j++) {
  2214. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2215. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2216. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2217. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2218. }
  2219. }
  2220. // leftovers
  2221. for (int i = np; i < n; ++i) {
  2222. y[i] += x[i]*v;
  2223. }
  2224. #else
  2225. // scalar
  2226. for (int i = 0; i < n; ++i) {
  2227. y[i] += x[i]*v;
  2228. }
  2229. #endif
  2230. }
  2231. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2232. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2233. #if defined(GGML_SIMD)
  2234. const int np = (n & ~(GGML_F32_STEP - 1));
  2235. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2236. GGML_F32_VEC ay[GGML_F32_ARR];
  2237. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2238. for (int j = 0; j < GGML_F32_ARR; j++) {
  2239. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2240. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2241. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2242. }
  2243. }
  2244. // leftovers
  2245. for (int i = np; i < n; ++i) {
  2246. y[i] *= v;
  2247. }
  2248. #else
  2249. // scalar
  2250. for (int i = 0; i < n; ++i) {
  2251. y[i] *= v;
  2252. }
  2253. #endif
  2254. }
  2255. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2256. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2257. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2258. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2259. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2260. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2261. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2262. static const float GELU_COEF_A = 0.044715f;
  2263. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2264. inline static float ggml_gelu_f32(float x) {
  2265. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2266. }
  2267. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2268. const uint16_t * i16 = (const uint16_t *) x;
  2269. for (int i = 0; i < n; ++i) {
  2270. y[i] = table_gelu_f16[i16[i]];
  2271. }
  2272. }
  2273. #ifdef GGML_GELU_FP16
  2274. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2275. uint16_t t;
  2276. for (int i = 0; i < n; ++i) {
  2277. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2278. memcpy(&t, &fp16, sizeof(uint16_t));
  2279. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2280. }
  2281. }
  2282. #else
  2283. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2284. for (int i = 0; i < n; ++i) {
  2285. y[i] = ggml_gelu_f32(x[i]);
  2286. }
  2287. }
  2288. #endif
  2289. // Sigmoid Linear Unit (SiLU) function
  2290. inline static float ggml_silu_f32(float x) {
  2291. return x/(1.0f + expf(-x));
  2292. }
  2293. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2294. const uint16_t * i16 = (const uint16_t *) x;
  2295. for (int i = 0; i < n; ++i) {
  2296. y[i] = table_silu_f16[i16[i]];
  2297. }
  2298. }
  2299. #ifdef GGML_SILU_FP16
  2300. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2301. uint16_t t;
  2302. for (int i = 0; i < n; ++i) {
  2303. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2304. memcpy(&t, &fp16, sizeof(uint16_t));
  2305. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2306. }
  2307. }
  2308. #else
  2309. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2310. for (int i = 0; i < n; ++i) {
  2311. y[i] = ggml_silu_f32(x[i]);
  2312. }
  2313. }
  2314. #endif
  2315. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2316. #ifndef GGML_USE_ACCELERATE
  2317. ggml_float sum = 0.0;
  2318. for (int i = 0; i < n; ++i) {
  2319. sum += (ggml_float)x[i];
  2320. }
  2321. *s = sum;
  2322. #else
  2323. vDSP_sve(x, 1, s, n);
  2324. #endif
  2325. }
  2326. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2327. #ifndef GGML_USE_ACCELERATE
  2328. float max = -INFINITY;
  2329. for (int i = 0; i < n; ++i) {
  2330. max = MAX(max, x[i]);
  2331. }
  2332. *s = max;
  2333. #else
  2334. vDSP_maxv(x, 1, s, n);
  2335. #endif
  2336. }
  2337. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2338. ggml_vec_norm_f32(n, s, x);
  2339. *s = 1.f/(*s);
  2340. }
  2341. //
  2342. // logging
  2343. //
  2344. #if (GGML_DEBUG >= 1)
  2345. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2346. #else
  2347. #define GGML_PRINT_DEBUG(...)
  2348. #endif
  2349. #if (GGML_DEBUG >= 5)
  2350. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2351. #else
  2352. #define GGML_PRINT_DEBUG_5(...)
  2353. #endif
  2354. #if (GGML_DEBUG >= 10)
  2355. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2356. #else
  2357. #define GGML_PRINT_DEBUG_10(...)
  2358. #endif
  2359. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2360. //
  2361. // data types
  2362. //
  2363. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2364. [GGML_TYPE_F32] = 1,
  2365. [GGML_TYPE_F16] = 1,
  2366. [GGML_TYPE_Q4_0] = QK4_0,
  2367. [GGML_TYPE_Q4_1] = QK4_1,
  2368. [GGML_TYPE_Q4_2] = QK4_2,
  2369. [GGML_TYPE_Q8_0] = QK8_0,
  2370. [GGML_TYPE_I8] = 1,
  2371. [GGML_TYPE_I16] = 1,
  2372. [GGML_TYPE_I32] = 1,
  2373. };
  2374. static_assert(GGML_TYPE_COUNT == 9, "GGML_BLCK_SIZE is outdated");
  2375. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2376. [GGML_TYPE_F32] = sizeof(float),
  2377. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2378. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2379. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2380. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2381. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2382. [GGML_TYPE_I8] = sizeof(int8_t),
  2383. [GGML_TYPE_I16] = sizeof(int16_t),
  2384. [GGML_TYPE_I32] = sizeof(int32_t),
  2385. };
  2386. static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_SIZE is outdated");
  2387. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2388. [GGML_TYPE_F32] = "f32",
  2389. [GGML_TYPE_F16] = "f16",
  2390. [GGML_TYPE_Q4_0] = "q4_0",
  2391. [GGML_TYPE_Q4_1] = "q4_1",
  2392. [GGML_TYPE_Q4_2] = "q4_2",
  2393. [GGML_TYPE_Q8_0] = "q8_0",
  2394. [GGML_TYPE_I8] = "i8",
  2395. [GGML_TYPE_I16] = "i16",
  2396. [GGML_TYPE_I32] = "i32",
  2397. };
  2398. static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_NAME is outdated");
  2399. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2400. [GGML_TYPE_F32] = false,
  2401. [GGML_TYPE_F16] = false,
  2402. [GGML_TYPE_Q4_0] = true,
  2403. [GGML_TYPE_Q4_1] = true,
  2404. [GGML_TYPE_Q4_2] = true,
  2405. [GGML_TYPE_Q8_0] = true,
  2406. [GGML_TYPE_I8] = false,
  2407. [GGML_TYPE_I16] = false,
  2408. [GGML_TYPE_I32] = false,
  2409. };
  2410. static_assert(GGML_TYPE_COUNT == 9, "GGML_IS_QUANTIZED is outdated");
  2411. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2412. "NONE",
  2413. "DUP",
  2414. "ADD",
  2415. "SUB",
  2416. "MUL",
  2417. "DIV",
  2418. "SQR",
  2419. "SQRT",
  2420. "SUM",
  2421. "MEAN",
  2422. "REPEAT",
  2423. "ABS",
  2424. "SGN",
  2425. "NEG",
  2426. "STEP",
  2427. "RELU",
  2428. "GELU",
  2429. "SILU",
  2430. "NORM",
  2431. "RMS_NORM",
  2432. "MUL_MAT",
  2433. "SCALE",
  2434. "CPY",
  2435. "CONT",
  2436. "RESHAPE",
  2437. "VIEW",
  2438. "PERMUTE",
  2439. "TRANSPOSE",
  2440. "GET_ROWS",
  2441. "DIAG_MASK_INF",
  2442. "SOFT_MAX",
  2443. "ROPE",
  2444. "CONV_1D_1S",
  2445. "CONV_1D_2S",
  2446. "FLASH_ATTN",
  2447. "FLASH_FF",
  2448. "MAP_UNARY",
  2449. "MAP_BINARY",
  2450. };
  2451. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2452. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2453. "none",
  2454. "x",
  2455. "x+y",
  2456. "x-y",
  2457. "x*y",
  2458. "x/y",
  2459. "x^2",
  2460. "√x",
  2461. "Σx",
  2462. "Σx/n",
  2463. "repeat(x)",
  2464. "abs(x)",
  2465. "sgn(x)",
  2466. "-x",
  2467. "step(x)",
  2468. "relu(x)",
  2469. "gelu(x)",
  2470. "silu(x)",
  2471. "norm(x)",
  2472. "rms_norm(x)",
  2473. "X*Y",
  2474. "x*v",
  2475. "x-\\>y",
  2476. "cont(x)",
  2477. "reshape(x)",
  2478. "view(x)",
  2479. "permute(x)",
  2480. "transpose(x)",
  2481. "get_rows(x)",
  2482. "diag_mask_inf(x)",
  2483. "soft_max(x)",
  2484. "rope(x)",
  2485. "conv_1d_1s(x)",
  2486. "conv_1d_2s(x)",
  2487. "flash_attn(x)",
  2488. "flash_ff(x)",
  2489. "f(x)",
  2490. "f(x,y)",
  2491. };
  2492. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2493. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2494. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2495. //
  2496. // ggml context
  2497. //
  2498. struct ggml_context {
  2499. size_t mem_size;
  2500. void * mem_buffer;
  2501. bool mem_buffer_owned;
  2502. bool no_alloc;
  2503. int n_objects;
  2504. struct ggml_object * objects_begin;
  2505. struct ggml_object * objects_end;
  2506. struct ggml_scratch scratch;
  2507. struct ggml_scratch scratch_save;
  2508. };
  2509. struct ggml_context_container {
  2510. bool used;
  2511. struct ggml_context context;
  2512. };
  2513. //
  2514. // compute types
  2515. //
  2516. enum ggml_task_type {
  2517. GGML_TASK_INIT = 0,
  2518. GGML_TASK_COMPUTE,
  2519. GGML_TASK_FINALIZE,
  2520. };
  2521. struct ggml_compute_params {
  2522. enum ggml_task_type type;
  2523. int ith, nth;
  2524. // work buffer for all threads
  2525. size_t wsize;
  2526. void * wdata;
  2527. };
  2528. //
  2529. // ggml state
  2530. //
  2531. struct ggml_state {
  2532. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2533. };
  2534. // global state
  2535. static struct ggml_state g_state;
  2536. static atomic_int g_state_barrier = 0;
  2537. // barrier via spin lock
  2538. inline static void ggml_critical_section_start(void) {
  2539. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2540. while (processing > 0) {
  2541. // wait for other threads to finish
  2542. atomic_fetch_sub(&g_state_barrier, 1);
  2543. sched_yield(); // TODO: reconsider this
  2544. processing = atomic_fetch_add(&g_state_barrier, 1);
  2545. }
  2546. }
  2547. // TODO: make this somehow automatically executed
  2548. // some sort of "sentry" mechanism
  2549. inline static void ggml_critical_section_end(void) {
  2550. atomic_fetch_sub(&g_state_barrier, 1);
  2551. }
  2552. ////////////////////////////////////////////////////////////////////////////////
  2553. void ggml_print_object(const struct ggml_object * obj) {
  2554. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2555. obj->offs, obj->size, (const void *) obj->next);
  2556. }
  2557. void ggml_print_objects(const struct ggml_context * ctx) {
  2558. struct ggml_object * obj = ctx->objects_begin;
  2559. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2560. while (obj != NULL) {
  2561. ggml_print_object(obj);
  2562. obj = obj->next;
  2563. }
  2564. GGML_PRINT("%s: --- end ---\n", __func__);
  2565. }
  2566. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2567. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2568. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2569. }
  2570. int ggml_nrows(const struct ggml_tensor * tensor) {
  2571. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2572. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2573. }
  2574. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2575. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2576. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2577. }
  2578. int ggml_blck_size(enum ggml_type type) {
  2579. return GGML_BLCK_SIZE[type];
  2580. }
  2581. size_t ggml_type_size(enum ggml_type type) {
  2582. return GGML_TYPE_SIZE[type];
  2583. }
  2584. float ggml_type_sizef(enum ggml_type type) {
  2585. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2586. }
  2587. const char * ggml_type_name(enum ggml_type type) {
  2588. return GGML_TYPE_NAME[type];
  2589. }
  2590. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2591. return GGML_TYPE_SIZE[tensor->type];
  2592. }
  2593. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2594. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2595. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2596. }
  2597. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2598. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2599. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2600. }
  2601. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2602. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2603. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2604. }
  2605. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2606. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2607. return
  2608. (t0->ne[0] == t1->ne[0]) &&
  2609. (t0->ne[2] == t1->ne[2]) &&
  2610. (t0->ne[3] == t1->ne[3]);
  2611. }
  2612. static inline bool ggml_is_quantized(enum ggml_type type) {
  2613. return GGML_IS_QUANTIZED[type];
  2614. }
  2615. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2616. return tensor->nb[0] > tensor->nb[1];
  2617. }
  2618. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2619. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2620. return
  2621. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2622. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2623. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2624. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2625. }
  2626. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2627. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2628. return
  2629. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2630. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2631. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2632. }
  2633. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2634. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2635. return
  2636. (t0->ne[0] == t1->ne[0] ) &&
  2637. (t0->ne[1] == t1->ne[1] ) &&
  2638. (t0->ne[2] == t1->ne[2] ) &&
  2639. (t0->ne[3] == t1->ne[3] );
  2640. }
  2641. // check if t1 can be represented as a repeatition of t0
  2642. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2643. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2644. return
  2645. (t1->ne[0]%t0->ne[0] == 0) &&
  2646. (t1->ne[1]%t0->ne[1] == 0) &&
  2647. (t1->ne[2]%t0->ne[2] == 0) &&
  2648. (t1->ne[3]%t0->ne[3] == 0);
  2649. }
  2650. static inline int ggml_up32(int n) {
  2651. return (n + 31) & ~31;
  2652. }
  2653. static inline int ggml_up64(int n) {
  2654. return (n + 63) & ~63;
  2655. }
  2656. static inline int ggml_up(int n, int m) {
  2657. // assert m is a power of 2
  2658. GGML_ASSERT((m & (m - 1)) == 0);
  2659. return (n + m - 1) & ~(m - 1);
  2660. }
  2661. // assert that pointer is aligned to GGML_MEM_ALIGN
  2662. #define ggml_assert_aligned(ptr) \
  2663. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2664. ////////////////////////////////////////////////////////////////////////////////
  2665. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2666. // make this function thread safe
  2667. ggml_critical_section_start();
  2668. static bool is_first_call = true;
  2669. if (is_first_call) {
  2670. // initialize time system (required on Windows)
  2671. ggml_time_init();
  2672. // initialize GELU, SILU and EXP F32 tables
  2673. {
  2674. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2675. ggml_fp16_t ii;
  2676. for (int i = 0; i < (1 << 16); ++i) {
  2677. uint16_t ui = i;
  2678. memcpy(&ii, &ui, sizeof(ii));
  2679. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2680. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2681. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2682. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2683. }
  2684. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2685. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2686. }
  2687. // initialize g_state
  2688. {
  2689. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2690. g_state = (struct ggml_state) {
  2691. /*.contexts =*/ { { 0 } },
  2692. };
  2693. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2694. g_state.contexts[i].used = false;
  2695. }
  2696. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2697. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2698. }
  2699. // initialize cuBLAS
  2700. #if defined(GGML_USE_CUBLAS)
  2701. init_cublas();
  2702. #endif
  2703. is_first_call = false;
  2704. }
  2705. // find non-used context in g_state
  2706. struct ggml_context * ctx = NULL;
  2707. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2708. if (!g_state.contexts[i].used) {
  2709. g_state.contexts[i].used = true;
  2710. ctx = &g_state.contexts[i].context;
  2711. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2712. break;
  2713. }
  2714. }
  2715. if (ctx == NULL) {
  2716. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2717. ggml_critical_section_end();
  2718. return NULL;
  2719. }
  2720. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2721. *ctx = (struct ggml_context) {
  2722. /*.mem_size =*/ mem_size,
  2723. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2724. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2725. /*.no_alloc =*/ params.no_alloc,
  2726. /*.n_objects =*/ 0,
  2727. /*.objects_begin =*/ NULL,
  2728. /*.objects_end =*/ NULL,
  2729. /*.scratch =*/ { 0, 0, NULL, },
  2730. /*.scratch_save =*/ { 0, 0, NULL, },
  2731. };
  2732. GGML_ASSERT(ctx->mem_buffer != NULL);
  2733. ggml_assert_aligned(ctx->mem_buffer);
  2734. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2735. ggml_critical_section_end();
  2736. return ctx;
  2737. }
  2738. void ggml_free(struct ggml_context * ctx) {
  2739. // make this function thread safe
  2740. ggml_critical_section_start();
  2741. bool found = false;
  2742. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2743. if (&g_state.contexts[i].context == ctx) {
  2744. g_state.contexts[i].used = false;
  2745. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2746. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2747. if (ctx->mem_buffer_owned) {
  2748. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2749. }
  2750. found = true;
  2751. break;
  2752. }
  2753. }
  2754. if (!found) {
  2755. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2756. }
  2757. ggml_critical_section_end();
  2758. }
  2759. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2760. return ctx->objects_end->offs + ctx->objects_end->size;
  2761. }
  2762. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2763. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2764. ctx->scratch = scratch;
  2765. return result;
  2766. }
  2767. ////////////////////////////////////////////////////////////////////////////////
  2768. struct ggml_tensor * ggml_new_tensor_impl(
  2769. struct ggml_context * ctx,
  2770. enum ggml_type type,
  2771. int n_dims,
  2772. const int64_t* ne,
  2773. void* data) {
  2774. // always insert objects at the end of the context's memory pool
  2775. struct ggml_object * obj_cur = ctx->objects_end;
  2776. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2777. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2778. const size_t cur_end = cur_offs + cur_size;
  2779. size_t size_needed = 0;
  2780. if (data == NULL && !ctx->no_alloc) {
  2781. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2782. for (int i = 1; i < n_dims; i++) {
  2783. size_needed *= ne[i];
  2784. }
  2785. // align to GGML_MEM_ALIGN
  2786. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2787. }
  2788. char * const mem_buffer = ctx->mem_buffer;
  2789. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2790. if (ctx->scratch.data == NULL || data != NULL) {
  2791. size_needed += sizeof(struct ggml_tensor);
  2792. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2793. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2794. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2795. assert(false);
  2796. return NULL;
  2797. }
  2798. *obj_new = (struct ggml_object) {
  2799. .offs = cur_end + GGML_OBJECT_SIZE,
  2800. .size = size_needed,
  2801. .next = NULL,
  2802. };
  2803. } else {
  2804. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2805. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2806. assert(false);
  2807. return NULL;
  2808. }
  2809. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2810. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2811. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2812. assert(false);
  2813. return NULL;
  2814. }
  2815. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2816. *obj_new = (struct ggml_object) {
  2817. .offs = cur_end + GGML_OBJECT_SIZE,
  2818. .size = sizeof(struct ggml_tensor),
  2819. .next = NULL,
  2820. };
  2821. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2822. ctx->scratch.offs += size_needed;
  2823. }
  2824. if (obj_cur != NULL) {
  2825. obj_cur->next = obj_new;
  2826. } else {
  2827. // this is the first object in this context
  2828. ctx->objects_begin = obj_new;
  2829. }
  2830. ctx->objects_end = obj_new;
  2831. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2832. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2833. ggml_assert_aligned(result);
  2834. *result = (struct ggml_tensor) {
  2835. /*.type =*/ type,
  2836. /*.n_dims =*/ n_dims,
  2837. /*.ne =*/ { 1, 1, 1, 1 },
  2838. /*.nb =*/ { 0, 0, 0, 0 },
  2839. /*.op =*/ GGML_OP_NONE,
  2840. /*.is_param =*/ false,
  2841. /*.grad =*/ NULL,
  2842. /*.src0 =*/ NULL,
  2843. /*.src1 =*/ NULL,
  2844. /*.opt =*/ { NULL },
  2845. /*.n_tasks =*/ 0,
  2846. /*.perf_runs =*/ 0,
  2847. /*.perf_cycles =*/ 0,
  2848. /*.perf_time_us =*/ 0,
  2849. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2850. /*.pad =*/ { 0 },
  2851. };
  2852. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2853. //ggml_assert_aligned(result->data);
  2854. for (int i = 0; i < n_dims; i++) {
  2855. result->ne[i] = ne[i];
  2856. }
  2857. result->nb[0] = GGML_TYPE_SIZE[type];
  2858. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2859. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2860. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2861. }
  2862. ctx->n_objects++;
  2863. return result;
  2864. }
  2865. struct ggml_tensor * ggml_new_tensor(
  2866. struct ggml_context * ctx,
  2867. enum ggml_type type,
  2868. int n_dims,
  2869. const int64_t * ne) {
  2870. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2871. }
  2872. struct ggml_tensor * ggml_new_tensor_1d(
  2873. struct ggml_context * ctx,
  2874. enum ggml_type type,
  2875. int64_t ne0) {
  2876. return ggml_new_tensor(ctx, type, 1, &ne0);
  2877. }
  2878. struct ggml_tensor * ggml_new_tensor_2d(
  2879. struct ggml_context * ctx,
  2880. enum ggml_type type,
  2881. int64_t ne0,
  2882. int64_t ne1) {
  2883. const int64_t ne[2] = { ne0, ne1 };
  2884. return ggml_new_tensor(ctx, type, 2, ne);
  2885. }
  2886. struct ggml_tensor * ggml_new_tensor_3d(
  2887. struct ggml_context * ctx,
  2888. enum ggml_type type,
  2889. int64_t ne0,
  2890. int64_t ne1,
  2891. int64_t ne2) {
  2892. const int64_t ne[3] = { ne0, ne1, ne2 };
  2893. return ggml_new_tensor(ctx, type, 3, ne);
  2894. }
  2895. struct ggml_tensor * ggml_new_tensor_4d(
  2896. struct ggml_context * ctx,
  2897. enum ggml_type type,
  2898. int64_t ne0,
  2899. int64_t ne1,
  2900. int64_t ne2,
  2901. int64_t ne3) {
  2902. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2903. return ggml_new_tensor(ctx, type, 4, ne);
  2904. }
  2905. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2906. ctx->scratch_save = ctx->scratch;
  2907. ctx->scratch.data = NULL;
  2908. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2909. ctx->scratch = ctx->scratch_save;
  2910. ggml_set_i32(result, value);
  2911. return result;
  2912. }
  2913. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2914. ctx->scratch_save = ctx->scratch;
  2915. ctx->scratch.data = NULL;
  2916. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2917. ctx->scratch = ctx->scratch_save;
  2918. ggml_set_f32(result, value);
  2919. return result;
  2920. }
  2921. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2922. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2923. }
  2924. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2925. memset(tensor->data, 0, ggml_nbytes(tensor));
  2926. return tensor;
  2927. }
  2928. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2929. const int n = ggml_nrows(tensor);
  2930. const int nc = tensor->ne[0];
  2931. const size_t n1 = tensor->nb[1];
  2932. char * const data = tensor->data;
  2933. switch (tensor->type) {
  2934. case GGML_TYPE_I8:
  2935. {
  2936. assert(tensor->nb[0] == sizeof(int8_t));
  2937. for (int i = 0; i < n; i++) {
  2938. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2939. }
  2940. } break;
  2941. case GGML_TYPE_I16:
  2942. {
  2943. assert(tensor->nb[0] == sizeof(int16_t));
  2944. for (int i = 0; i < n; i++) {
  2945. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2946. }
  2947. } break;
  2948. case GGML_TYPE_I32:
  2949. {
  2950. assert(tensor->nb[0] == sizeof(int32_t));
  2951. for (int i = 0; i < n; i++) {
  2952. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2953. }
  2954. } break;
  2955. case GGML_TYPE_F16:
  2956. {
  2957. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2958. for (int i = 0; i < n; i++) {
  2959. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2960. }
  2961. } break;
  2962. case GGML_TYPE_F32:
  2963. {
  2964. assert(tensor->nb[0] == sizeof(float));
  2965. for (int i = 0; i < n; i++) {
  2966. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2967. }
  2968. } break;
  2969. default:
  2970. {
  2971. GGML_ASSERT(false);
  2972. } break;
  2973. }
  2974. return tensor;
  2975. }
  2976. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2977. const int n = ggml_nrows(tensor);
  2978. const int nc = tensor->ne[0];
  2979. const size_t n1 = tensor->nb[1];
  2980. char * const data = tensor->data;
  2981. switch (tensor->type) {
  2982. case GGML_TYPE_I8:
  2983. {
  2984. assert(tensor->nb[0] == sizeof(int8_t));
  2985. for (int i = 0; i < n; i++) {
  2986. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2987. }
  2988. } break;
  2989. case GGML_TYPE_I16:
  2990. {
  2991. assert(tensor->nb[0] == sizeof(int16_t));
  2992. for (int i = 0; i < n; i++) {
  2993. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2994. }
  2995. } break;
  2996. case GGML_TYPE_I32:
  2997. {
  2998. assert(tensor->nb[0] == sizeof(int32_t));
  2999. for (int i = 0; i < n; i++) {
  3000. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3001. }
  3002. } break;
  3003. case GGML_TYPE_F16:
  3004. {
  3005. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3006. for (int i = 0; i < n; i++) {
  3007. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3008. }
  3009. } break;
  3010. case GGML_TYPE_F32:
  3011. {
  3012. assert(tensor->nb[0] == sizeof(float));
  3013. for (int i = 0; i < n; i++) {
  3014. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3015. }
  3016. } break;
  3017. default:
  3018. {
  3019. GGML_ASSERT(false);
  3020. } break;
  3021. }
  3022. return tensor;
  3023. }
  3024. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3025. switch (tensor->type) {
  3026. case GGML_TYPE_I8:
  3027. {
  3028. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3029. return ((int8_t *)(tensor->data))[i];
  3030. } break;
  3031. case GGML_TYPE_I16:
  3032. {
  3033. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3034. return ((int16_t *)(tensor->data))[i];
  3035. } break;
  3036. case GGML_TYPE_I32:
  3037. {
  3038. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3039. return ((int32_t *)(tensor->data))[i];
  3040. } break;
  3041. case GGML_TYPE_F16:
  3042. {
  3043. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3044. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3045. } break;
  3046. case GGML_TYPE_F32:
  3047. {
  3048. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3049. return ((float *)(tensor->data))[i];
  3050. } break;
  3051. default:
  3052. {
  3053. GGML_ASSERT(false);
  3054. } break;
  3055. }
  3056. return 0.0f;
  3057. }
  3058. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3059. switch (tensor->type) {
  3060. case GGML_TYPE_I8:
  3061. {
  3062. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3063. ((int8_t *)(tensor->data))[i] = value;
  3064. } break;
  3065. case GGML_TYPE_I16:
  3066. {
  3067. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3068. ((int16_t *)(tensor->data))[i] = value;
  3069. } break;
  3070. case GGML_TYPE_I32:
  3071. {
  3072. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3073. ((int32_t *)(tensor->data))[i] = value;
  3074. } break;
  3075. case GGML_TYPE_F16:
  3076. {
  3077. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3078. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3079. } break;
  3080. case GGML_TYPE_F32:
  3081. {
  3082. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3083. ((float *)(tensor->data))[i] = value;
  3084. } break;
  3085. default:
  3086. {
  3087. GGML_ASSERT(false);
  3088. } break;
  3089. }
  3090. }
  3091. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3092. switch (tensor->type) {
  3093. case GGML_TYPE_I8:
  3094. {
  3095. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3096. return ((int8_t *)(tensor->data))[i];
  3097. } break;
  3098. case GGML_TYPE_I16:
  3099. {
  3100. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3101. return ((int16_t *)(tensor->data))[i];
  3102. } break;
  3103. case GGML_TYPE_I32:
  3104. {
  3105. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3106. return ((int32_t *)(tensor->data))[i];
  3107. } break;
  3108. case GGML_TYPE_F16:
  3109. {
  3110. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3111. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3112. } break;
  3113. case GGML_TYPE_F32:
  3114. {
  3115. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3116. return ((float *)(tensor->data))[i];
  3117. } break;
  3118. default:
  3119. {
  3120. GGML_ASSERT(false);
  3121. } break;
  3122. }
  3123. return 0.0f;
  3124. }
  3125. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3126. switch (tensor->type) {
  3127. case GGML_TYPE_I8:
  3128. {
  3129. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3130. ((int8_t *)(tensor->data))[i] = value;
  3131. } break;
  3132. case GGML_TYPE_I16:
  3133. {
  3134. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3135. ((int16_t *)(tensor->data))[i] = value;
  3136. } break;
  3137. case GGML_TYPE_I32:
  3138. {
  3139. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3140. ((int32_t *)(tensor->data))[i] = value;
  3141. } break;
  3142. case GGML_TYPE_F16:
  3143. {
  3144. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3145. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3146. } break;
  3147. case GGML_TYPE_F32:
  3148. {
  3149. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3150. ((float *)(tensor->data))[i] = value;
  3151. } break;
  3152. default:
  3153. {
  3154. GGML_ASSERT(false);
  3155. } break;
  3156. }
  3157. }
  3158. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3159. return tensor->data;
  3160. }
  3161. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3162. assert(tensor->type == GGML_TYPE_F32);
  3163. return (float *)(tensor->data);
  3164. }
  3165. struct ggml_tensor * ggml_view_tensor(
  3166. struct ggml_context * ctx,
  3167. const struct ggml_tensor * src) {
  3168. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3169. result->nb[0] = src->nb[0];
  3170. result->nb[1] = src->nb[1];
  3171. result->nb[2] = src->nb[2];
  3172. result->nb[3] = src->nb[3];
  3173. return result;
  3174. }
  3175. ////////////////////////////////////////////////////////////////////////////////
  3176. // ggml_dup
  3177. struct ggml_tensor * ggml_dup_impl(
  3178. struct ggml_context * ctx,
  3179. struct ggml_tensor * a,
  3180. bool inplace) {
  3181. bool is_node = false;
  3182. if (!inplace && (a->grad)) {
  3183. is_node = true;
  3184. }
  3185. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3186. result->op = GGML_OP_DUP;
  3187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3188. result->src0 = a;
  3189. result->src1 = NULL;
  3190. return result;
  3191. }
  3192. struct ggml_tensor * ggml_dup(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. return ggml_dup_impl(ctx, a, false);
  3196. }
  3197. struct ggml_tensor * ggml_dup_inplace(
  3198. struct ggml_context * ctx,
  3199. struct ggml_tensor * a) {
  3200. return ggml_dup_impl(ctx, a, true);
  3201. }
  3202. // ggml_add
  3203. struct ggml_tensor * ggml_add_impl(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a,
  3206. struct ggml_tensor * b,
  3207. bool inplace) {
  3208. GGML_ASSERT(ggml_are_same_shape(a, b));
  3209. bool is_node = false;
  3210. if (!inplace && (a->grad || b->grad)) {
  3211. is_node = true;
  3212. }
  3213. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3214. result->op = GGML_OP_ADD;
  3215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3216. result->src0 = a;
  3217. result->src1 = b;
  3218. return result;
  3219. }
  3220. struct ggml_tensor * ggml_add(
  3221. struct ggml_context * ctx,
  3222. struct ggml_tensor * a,
  3223. struct ggml_tensor * b) {
  3224. return ggml_add_impl(ctx, a, b, false);
  3225. }
  3226. struct ggml_tensor * ggml_add_inplace(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a,
  3229. struct ggml_tensor * b) {
  3230. return ggml_add_impl(ctx, a, b, true);
  3231. }
  3232. // ggml_sub
  3233. struct ggml_tensor * ggml_sub_impl(
  3234. struct ggml_context * ctx,
  3235. struct ggml_tensor * a,
  3236. struct ggml_tensor * b,
  3237. bool inplace) {
  3238. GGML_ASSERT(ggml_are_same_shape(a, b));
  3239. bool is_node = false;
  3240. if (!inplace && (a->grad || b->grad)) {
  3241. is_node = true;
  3242. }
  3243. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3244. result->op = GGML_OP_SUB;
  3245. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3246. result->src0 = a;
  3247. result->src1 = b;
  3248. return result;
  3249. }
  3250. struct ggml_tensor * ggml_sub(
  3251. struct ggml_context * ctx,
  3252. struct ggml_tensor * a,
  3253. struct ggml_tensor * b) {
  3254. return ggml_sub_impl(ctx, a, b, false);
  3255. }
  3256. struct ggml_tensor * ggml_sub_inplace(
  3257. struct ggml_context * ctx,
  3258. struct ggml_tensor * a,
  3259. struct ggml_tensor * b) {
  3260. return ggml_sub_impl(ctx, a, b, true);
  3261. }
  3262. // ggml_mul
  3263. struct ggml_tensor * ggml_mul_impl(
  3264. struct ggml_context * ctx,
  3265. struct ggml_tensor * a,
  3266. struct ggml_tensor * b,
  3267. bool inplace) {
  3268. GGML_ASSERT(ggml_are_same_shape(a, b));
  3269. bool is_node = false;
  3270. if (!inplace && (a->grad || b->grad)) {
  3271. is_node = true;
  3272. }
  3273. if (inplace) {
  3274. GGML_ASSERT(is_node == false);
  3275. }
  3276. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3277. result->op = GGML_OP_MUL;
  3278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3279. result->src0 = a;
  3280. result->src1 = b;
  3281. return result;
  3282. }
  3283. struct ggml_tensor * ggml_mul(
  3284. struct ggml_context * ctx,
  3285. struct ggml_tensor * a,
  3286. struct ggml_tensor * b) {
  3287. return ggml_mul_impl(ctx, a, b, false);
  3288. }
  3289. struct ggml_tensor * ggml_mul_inplace(
  3290. struct ggml_context * ctx,
  3291. struct ggml_tensor * a,
  3292. struct ggml_tensor * b) {
  3293. return ggml_mul_impl(ctx, a, b, true);
  3294. }
  3295. // ggml_div
  3296. struct ggml_tensor * ggml_div_impl(
  3297. struct ggml_context * ctx,
  3298. struct ggml_tensor * a,
  3299. struct ggml_tensor * b,
  3300. bool inplace) {
  3301. GGML_ASSERT(ggml_are_same_shape(a, b));
  3302. bool is_node = false;
  3303. if (!inplace && (a->grad || b->grad)) {
  3304. is_node = true;
  3305. }
  3306. if (inplace) {
  3307. GGML_ASSERT(is_node == false);
  3308. }
  3309. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3310. result->op = GGML_OP_DIV;
  3311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3312. result->src0 = a;
  3313. result->src1 = b;
  3314. return result;
  3315. }
  3316. struct ggml_tensor * ggml_div(
  3317. struct ggml_context * ctx,
  3318. struct ggml_tensor * a,
  3319. struct ggml_tensor * b) {
  3320. return ggml_div_impl(ctx, a, b, false);
  3321. }
  3322. struct ggml_tensor * ggml_div_inplace(
  3323. struct ggml_context * ctx,
  3324. struct ggml_tensor * a,
  3325. struct ggml_tensor * b) {
  3326. return ggml_div_impl(ctx, a, b, true);
  3327. }
  3328. // ggml_sqr
  3329. struct ggml_tensor * ggml_sqr_impl(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a,
  3332. bool inplace) {
  3333. bool is_node = false;
  3334. if (!inplace && (a->grad)) {
  3335. is_node = true;
  3336. }
  3337. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3338. result->op = GGML_OP_SQR;
  3339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3340. result->src0 = a;
  3341. result->src1 = NULL;
  3342. return result;
  3343. }
  3344. struct ggml_tensor * ggml_sqr(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a) {
  3347. return ggml_sqr_impl(ctx, a, false);
  3348. }
  3349. struct ggml_tensor * ggml_sqr_inplace(
  3350. struct ggml_context * ctx,
  3351. struct ggml_tensor * a) {
  3352. return ggml_sqr_impl(ctx, a, true);
  3353. }
  3354. // ggml_sqrt
  3355. struct ggml_tensor * ggml_sqrt_impl(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a,
  3358. bool inplace) {
  3359. bool is_node = false;
  3360. if (!inplace && (a->grad)) {
  3361. is_node = true;
  3362. }
  3363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3364. result->op = GGML_OP_SQRT;
  3365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3366. result->src0 = a;
  3367. result->src1 = NULL;
  3368. return result;
  3369. }
  3370. struct ggml_tensor * ggml_sqrt(
  3371. struct ggml_context * ctx,
  3372. struct ggml_tensor * a) {
  3373. return ggml_sqrt_impl(ctx, a, false);
  3374. }
  3375. struct ggml_tensor * ggml_sqrt_inplace(
  3376. struct ggml_context * ctx,
  3377. struct ggml_tensor * a) {
  3378. return ggml_sqrt_impl(ctx, a, true);
  3379. }
  3380. // ggml_sum
  3381. struct ggml_tensor * ggml_sum(
  3382. struct ggml_context * ctx,
  3383. struct ggml_tensor * a) {
  3384. bool is_node = false;
  3385. if (a->grad) {
  3386. is_node = true;
  3387. }
  3388. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3389. result->op = GGML_OP_SUM;
  3390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3391. result->src0 = a;
  3392. result->src1 = NULL;
  3393. return result;
  3394. }
  3395. // ggml_mean
  3396. struct ggml_tensor * ggml_mean(
  3397. struct ggml_context * ctx,
  3398. struct ggml_tensor * a) {
  3399. bool is_node = false;
  3400. if (a->grad) {
  3401. GGML_ASSERT(false); // TODO: implement
  3402. is_node = true;
  3403. }
  3404. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3405. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3406. result->op = GGML_OP_MEAN;
  3407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3408. result->src0 = a;
  3409. result->src1 = NULL;
  3410. return result;
  3411. }
  3412. // ggml_repeat
  3413. struct ggml_tensor * ggml_repeat(
  3414. struct ggml_context * ctx,
  3415. struct ggml_tensor * a,
  3416. struct ggml_tensor * b) {
  3417. GGML_ASSERT(ggml_can_repeat(a, b));
  3418. bool is_node = false;
  3419. if (a->grad) {
  3420. is_node = true;
  3421. }
  3422. if (ggml_are_same_shape(a, b) && !is_node) {
  3423. return a;
  3424. }
  3425. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3426. result->op = GGML_OP_REPEAT;
  3427. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3428. result->src0 = a;
  3429. result->src1 = b;
  3430. return result;
  3431. }
  3432. // ggml_abs
  3433. struct ggml_tensor * ggml_abs_impl(
  3434. struct ggml_context * ctx,
  3435. struct ggml_tensor * a,
  3436. bool inplace) {
  3437. bool is_node = false;
  3438. if (!inplace && (a->grad)) {
  3439. is_node = true;
  3440. }
  3441. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3442. result->op = GGML_OP_ABS;
  3443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3444. result->src0 = a;
  3445. result->src1 = NULL;
  3446. return result;
  3447. }
  3448. struct ggml_tensor * ggml_abs(
  3449. struct ggml_context * ctx,
  3450. struct ggml_tensor * a) {
  3451. return ggml_abs_impl(ctx, a, false);
  3452. }
  3453. struct ggml_tensor * ggml_abs_inplace(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a) {
  3456. return ggml_abs_impl(ctx, a, true);
  3457. }
  3458. // ggml_sgn
  3459. struct ggml_tensor * ggml_sgn_impl(
  3460. struct ggml_context * ctx,
  3461. struct ggml_tensor * a,
  3462. bool inplace) {
  3463. bool is_node = false;
  3464. if (!inplace && (a->grad)) {
  3465. is_node = true;
  3466. }
  3467. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3468. result->op = GGML_OP_SGN;
  3469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3470. result->src0 = a;
  3471. result->src1 = NULL;
  3472. return result;
  3473. }
  3474. struct ggml_tensor * ggml_sgn(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a) {
  3477. return ggml_sgn_impl(ctx, a, false);
  3478. }
  3479. struct ggml_tensor * ggml_sgn_inplace(
  3480. struct ggml_context * ctx,
  3481. struct ggml_tensor * a) {
  3482. return ggml_sgn_impl(ctx, a, true);
  3483. }
  3484. // ggml_neg
  3485. struct ggml_tensor * ggml_neg_impl(
  3486. struct ggml_context * ctx,
  3487. struct ggml_tensor * a,
  3488. bool inplace) {
  3489. bool is_node = false;
  3490. if (!inplace && (a->grad)) {
  3491. is_node = true;
  3492. }
  3493. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3494. result->op = GGML_OP_NEG;
  3495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3496. result->src0 = a;
  3497. result->src1 = NULL;
  3498. return result;
  3499. }
  3500. struct ggml_tensor * ggml_neg(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a) {
  3503. return ggml_neg_impl(ctx, a, false);
  3504. }
  3505. struct ggml_tensor * ggml_neg_inplace(
  3506. struct ggml_context * ctx,
  3507. struct ggml_tensor * a) {
  3508. return ggml_neg_impl(ctx, a, true);
  3509. }
  3510. // ggml_step
  3511. struct ggml_tensor * ggml_step_impl(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a,
  3514. bool inplace) {
  3515. bool is_node = false;
  3516. if (!inplace && (a->grad)) {
  3517. is_node = true;
  3518. }
  3519. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3520. result->op = GGML_OP_STEP;
  3521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3522. result->src0 = a;
  3523. result->src1 = NULL;
  3524. return result;
  3525. }
  3526. struct ggml_tensor * ggml_step(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a) {
  3529. return ggml_step_impl(ctx, a, false);
  3530. }
  3531. struct ggml_tensor * ggml_step_inplace(
  3532. struct ggml_context * ctx,
  3533. struct ggml_tensor * a) {
  3534. return ggml_step_impl(ctx, a, true);
  3535. }
  3536. // ggml_relu
  3537. struct ggml_tensor * ggml_relu_impl(
  3538. struct ggml_context * ctx,
  3539. struct ggml_tensor * a,
  3540. bool inplace) {
  3541. bool is_node = false;
  3542. if (!inplace && (a->grad)) {
  3543. is_node = true;
  3544. }
  3545. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3546. result->op = GGML_OP_RELU;
  3547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3548. result->src0 = a;
  3549. result->src1 = NULL;
  3550. return result;
  3551. }
  3552. struct ggml_tensor * ggml_relu(
  3553. struct ggml_context * ctx,
  3554. struct ggml_tensor * a) {
  3555. return ggml_relu_impl(ctx, a, false);
  3556. }
  3557. struct ggml_tensor * ggml_relu_inplace(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a) {
  3560. return ggml_relu_impl(ctx, a, true);
  3561. }
  3562. // ggml_gelu
  3563. struct ggml_tensor * ggml_gelu_impl(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a,
  3566. bool inplace) {
  3567. bool is_node = false;
  3568. if (!inplace && (a->grad)) {
  3569. is_node = true;
  3570. }
  3571. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3572. result->op = GGML_OP_GELU;
  3573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3574. result->src0 = a;
  3575. result->src1 = NULL;
  3576. return result;
  3577. }
  3578. struct ggml_tensor * ggml_gelu(
  3579. struct ggml_context * ctx,
  3580. struct ggml_tensor * a) {
  3581. return ggml_gelu_impl(ctx, a, false);
  3582. }
  3583. struct ggml_tensor * ggml_gelu_inplace(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a) {
  3586. return ggml_gelu_impl(ctx, a, true);
  3587. }
  3588. // ggml_silu
  3589. struct ggml_tensor * ggml_silu_impl(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a,
  3592. bool inplace) {
  3593. bool is_node = false;
  3594. if (!inplace && (a->grad)) {
  3595. is_node = true;
  3596. }
  3597. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3598. result->op = GGML_OP_SILU;
  3599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3600. result->src0 = a;
  3601. result->src1 = NULL;
  3602. return result;
  3603. }
  3604. struct ggml_tensor * ggml_silu(
  3605. struct ggml_context * ctx,
  3606. struct ggml_tensor * a) {
  3607. return ggml_silu_impl(ctx, a, false);
  3608. }
  3609. struct ggml_tensor * ggml_silu_inplace(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a) {
  3612. return ggml_silu_impl(ctx, a, true);
  3613. }
  3614. // ggml_norm
  3615. struct ggml_tensor * ggml_norm_impl(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a,
  3618. bool inplace) {
  3619. bool is_node = false;
  3620. if (!inplace && (a->grad)) {
  3621. GGML_ASSERT(false); // TODO: implement backward
  3622. is_node = true;
  3623. }
  3624. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3625. result->op = GGML_OP_NORM;
  3626. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3627. result->src0 = a;
  3628. result->src1 = NULL; // TODO: maybe store epsilon here?
  3629. return result;
  3630. }
  3631. struct ggml_tensor * ggml_norm(
  3632. struct ggml_context * ctx,
  3633. struct ggml_tensor * a) {
  3634. return ggml_norm_impl(ctx, a, false);
  3635. }
  3636. struct ggml_tensor * ggml_norm_inplace(
  3637. struct ggml_context * ctx,
  3638. struct ggml_tensor * a) {
  3639. return ggml_norm_impl(ctx, a, true);
  3640. }
  3641. struct ggml_tensor * ggml_rms_norm_impl(
  3642. struct ggml_context * ctx,
  3643. struct ggml_tensor * a,
  3644. bool inplace) {
  3645. bool is_node = false;
  3646. if (!inplace && (a->grad)) {
  3647. GGML_ASSERT(false); // TODO: implement backward
  3648. is_node = true;
  3649. }
  3650. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3651. result->op = GGML_OP_RMS_NORM;
  3652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3653. result->src0 = a;
  3654. result->src1 = NULL; // TODO: maybe store epsilon here?
  3655. return result;
  3656. }
  3657. struct ggml_tensor * ggml_rms_norm(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a) {
  3660. return ggml_rms_norm_impl(ctx, a, false);
  3661. }
  3662. struct ggml_tensor * ggml_rms_norm_inplace(
  3663. struct ggml_context * ctx,
  3664. struct ggml_tensor * a) {
  3665. return ggml_rms_norm_impl(ctx, a, true);
  3666. }
  3667. // ggml_mul_mat
  3668. struct ggml_tensor * ggml_mul_mat(
  3669. struct ggml_context * ctx,
  3670. struct ggml_tensor * a,
  3671. struct ggml_tensor * b) {
  3672. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3673. GGML_ASSERT(!ggml_is_transposed(a));
  3674. bool is_node = false;
  3675. if (a->grad || b->grad) {
  3676. is_node = true;
  3677. }
  3678. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3679. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3680. result->op = GGML_OP_MUL_MAT;
  3681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3682. result->src0 = a;
  3683. result->src1 = b;
  3684. return result;
  3685. }
  3686. // ggml_scale
  3687. struct ggml_tensor * ggml_scale_impl(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a,
  3690. struct ggml_tensor * b,
  3691. bool inplace) {
  3692. GGML_ASSERT(ggml_is_scalar(b));
  3693. GGML_ASSERT(ggml_is_padded_1d(a));
  3694. bool is_node = false;
  3695. if (!inplace && (a->grad || b->grad)) {
  3696. GGML_ASSERT(false); // TODO: implement backward
  3697. is_node = true;
  3698. }
  3699. // TODO: when implement backward, fix this:
  3700. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3701. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3702. result->op = GGML_OP_SCALE;
  3703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3704. result->src0 = a;
  3705. result->src1 = b;
  3706. return result;
  3707. }
  3708. struct ggml_tensor * ggml_scale(
  3709. struct ggml_context * ctx,
  3710. struct ggml_tensor * a,
  3711. struct ggml_tensor * b) {
  3712. return ggml_scale_impl(ctx, a, b, false);
  3713. }
  3714. struct ggml_tensor * ggml_scale_inplace(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. struct ggml_tensor * b) {
  3718. return ggml_scale_impl(ctx, a, b, true);
  3719. }
  3720. // ggml_cpy
  3721. struct ggml_tensor * ggml_cpy_impl(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a,
  3724. struct ggml_tensor * b,
  3725. bool inplace) {
  3726. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3727. bool is_node = false;
  3728. if (!inplace && (a->grad || b->grad)) {
  3729. GGML_ASSERT(false); // TODO: implement backward
  3730. is_node = true;
  3731. }
  3732. // make a view of the destination
  3733. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3734. result->op = GGML_OP_CPY;
  3735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3736. result->src0 = a;
  3737. result->src1 = b;
  3738. return result;
  3739. }
  3740. struct ggml_tensor * ggml_cpy(
  3741. struct ggml_context * ctx,
  3742. struct ggml_tensor * a,
  3743. struct ggml_tensor * b) {
  3744. return ggml_cpy_impl(ctx, a, b, false);
  3745. }
  3746. struct ggml_tensor * ggml_cpy_inplace(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a,
  3749. struct ggml_tensor * b) {
  3750. return ggml_cpy_impl(ctx, a, b, true);
  3751. }
  3752. // ggml_cont
  3753. struct ggml_tensor * ggml_cont_impl(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. bool inplace) {
  3757. bool is_node = false;
  3758. if (!inplace && a->grad) {
  3759. GGML_ASSERT(false); // TODO: implement backward
  3760. is_node = true;
  3761. }
  3762. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3763. result->op = GGML_OP_CONT;
  3764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3765. result->src0 = a;
  3766. result->src1 = NULL;
  3767. return result;
  3768. }
  3769. struct ggml_tensor * ggml_cont(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a) {
  3772. return ggml_cont_impl(ctx, a, false);
  3773. }
  3774. struct ggml_tensor * ggml_cont_inplace(
  3775. struct ggml_context * ctx,
  3776. struct ggml_tensor * a) {
  3777. return ggml_cont_impl(ctx, a, true);
  3778. }
  3779. // ggml_reshape
  3780. struct ggml_tensor * ggml_reshape(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. struct ggml_tensor * b) {
  3784. GGML_ASSERT(ggml_is_contiguous(a));
  3785. GGML_ASSERT(ggml_is_contiguous(b));
  3786. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3787. bool is_node = false;
  3788. if (a->grad || b->grad) {
  3789. GGML_ASSERT(false); // TODO: implement backward
  3790. is_node = true;
  3791. }
  3792. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3793. result->op = GGML_OP_RESHAPE;
  3794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3795. result->src0 = a;
  3796. result->src1 = NULL;
  3797. return result;
  3798. }
  3799. struct ggml_tensor * ggml_reshape_2d(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. int64_t ne0,
  3803. int64_t ne1) {
  3804. GGML_ASSERT(ggml_is_contiguous(a));
  3805. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3806. bool is_node = false;
  3807. if (a->grad) {
  3808. GGML_ASSERT(false); // TODO: implement backward
  3809. is_node = true;
  3810. }
  3811. const int64_t ne[2] = { ne0, ne1 };
  3812. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3813. result->op = GGML_OP_RESHAPE;
  3814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3815. result->src0 = a;
  3816. result->src1 = NULL;
  3817. return result;
  3818. }
  3819. struct ggml_tensor * ggml_reshape_3d(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a,
  3822. int64_t ne0,
  3823. int64_t ne1,
  3824. int64_t ne2) {
  3825. GGML_ASSERT(ggml_is_contiguous(a));
  3826. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3827. bool is_node = false;
  3828. if (a->grad) {
  3829. GGML_ASSERT(false); // TODO: implement backward
  3830. is_node = true;
  3831. }
  3832. const int64_t ne[3] = { ne0, ne1, ne2 };
  3833. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3834. result->op = GGML_OP_RESHAPE;
  3835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3836. result->src0 = a;
  3837. result->src1 = NULL;
  3838. return result;
  3839. }
  3840. // ggml_view_1d
  3841. struct ggml_tensor * ggml_view_1d(
  3842. struct ggml_context * ctx,
  3843. struct ggml_tensor * a,
  3844. int64_t ne0,
  3845. size_t offset) {
  3846. if (a->grad) {
  3847. GGML_ASSERT(false); // gradient propagation is not supported
  3848. }
  3849. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3850. result->op = GGML_OP_VIEW;
  3851. result->grad = NULL;
  3852. result->src0 = a;
  3853. result->src1 = NULL; // TODO: maybe store the offset here?
  3854. return result;
  3855. }
  3856. // ggml_view_2d
  3857. struct ggml_tensor * ggml_view_2d(
  3858. struct ggml_context * ctx,
  3859. struct ggml_tensor * a,
  3860. int64_t ne0,
  3861. int64_t ne1,
  3862. size_t nb1,
  3863. size_t offset) {
  3864. if (a->grad) {
  3865. GGML_ASSERT(false); // gradient propagation is not supported
  3866. }
  3867. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3868. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3869. result->nb[1] = nb1;
  3870. result->nb[2] = result->nb[1]*ne1;
  3871. result->nb[3] = result->nb[2];
  3872. result->op = GGML_OP_VIEW;
  3873. result->grad = NULL;
  3874. result->src0 = a;
  3875. result->src1 = NULL; // TODO: maybe store the offset here?
  3876. return result;
  3877. }
  3878. // ggml_view_3d
  3879. struct ggml_tensor * ggml_view_3d(
  3880. struct ggml_context * ctx,
  3881. struct ggml_tensor * a,
  3882. int64_t ne0,
  3883. int64_t ne1,
  3884. int64_t ne2,
  3885. size_t nb1,
  3886. size_t nb2,
  3887. size_t offset) {
  3888. if (a->grad) {
  3889. GGML_ASSERT(false); // gradient propagation is not supported
  3890. }
  3891. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3892. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3893. result->nb[1] = nb1;
  3894. result->nb[2] = nb2;
  3895. result->nb[3] = result->nb[2]*ne2;
  3896. result->op = GGML_OP_VIEW;
  3897. result->grad = NULL;
  3898. result->src0 = a;
  3899. result->src1 = NULL; // TODO: maybe store the offset here?
  3900. return result;
  3901. }
  3902. // ggml_permute
  3903. struct ggml_tensor * ggml_permute(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a,
  3906. int axis0,
  3907. int axis1,
  3908. int axis2,
  3909. int axis3) {
  3910. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3911. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3912. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3913. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3914. GGML_ASSERT(axis0 != axis1);
  3915. GGML_ASSERT(axis0 != axis2);
  3916. GGML_ASSERT(axis0 != axis3);
  3917. GGML_ASSERT(axis1 != axis2);
  3918. GGML_ASSERT(axis1 != axis3);
  3919. GGML_ASSERT(axis2 != axis3);
  3920. bool is_node = false;
  3921. if (a->grad) {
  3922. GGML_ASSERT(false); // TODO: implement backward
  3923. is_node = true;
  3924. }
  3925. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3926. int ne[GGML_MAX_DIMS];
  3927. int nb[GGML_MAX_DIMS];
  3928. ne[axis0] = a->ne[0];
  3929. ne[axis1] = a->ne[1];
  3930. ne[axis2] = a->ne[2];
  3931. ne[axis3] = a->ne[3];
  3932. nb[axis0] = a->nb[0];
  3933. nb[axis1] = a->nb[1];
  3934. nb[axis2] = a->nb[2];
  3935. nb[axis3] = a->nb[3];
  3936. result->ne[0] = ne[0];
  3937. result->ne[1] = ne[1];
  3938. result->ne[2] = ne[2];
  3939. result->ne[3] = ne[3];
  3940. result->nb[0] = nb[0];
  3941. result->nb[1] = nb[1];
  3942. result->nb[2] = nb[2];
  3943. result->nb[3] = nb[3];
  3944. result->op = GGML_OP_PERMUTE;
  3945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3946. result->src0 = a;
  3947. result->src1 = NULL; // TODO: maybe store the permutation here?
  3948. return result;
  3949. }
  3950. // ggml_transpose
  3951. struct ggml_tensor * ggml_transpose(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a) {
  3954. bool is_node = false;
  3955. if (a->grad) {
  3956. GGML_ASSERT(false); // TODO: implement backward
  3957. is_node = true;
  3958. }
  3959. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3960. result->ne[0] = a->ne[1];
  3961. result->ne[1] = a->ne[0];
  3962. result->nb[0] = a->nb[1];
  3963. result->nb[1] = a->nb[0];
  3964. result->op = GGML_OP_TRANSPOSE;
  3965. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3966. result->src0 = a;
  3967. result->src1 = NULL;
  3968. return result;
  3969. }
  3970. // ggml_get_rows
  3971. struct ggml_tensor * ggml_get_rows(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a,
  3974. struct ggml_tensor * b) {
  3975. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3976. bool is_node = false;
  3977. if (a->grad || b->grad) {
  3978. GGML_ASSERT(false); // TODO: implement backward
  3979. is_node = true;
  3980. }
  3981. // TODO: implement non F32 return
  3982. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3983. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3984. result->op = GGML_OP_GET_ROWS;
  3985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3986. result->src0 = a;
  3987. result->src1 = b;
  3988. return result;
  3989. }
  3990. // ggml_diag_mask_inf
  3991. struct ggml_tensor * ggml_diag_mask_inf(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. int n_past) {
  3995. bool is_node = false;
  3996. if (a->grad) {
  3997. GGML_ASSERT(false); // TODO: implement backward
  3998. is_node = true;
  3999. }
  4000. // TODO: when implement backward, fix this:
  4001. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4002. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4003. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4004. result->op = GGML_OP_DIAG_MASK_INF;
  4005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4006. result->src0 = a;
  4007. result->src1 = b;
  4008. return result;
  4009. }
  4010. // ggml_soft_max
  4011. struct ggml_tensor * ggml_soft_max(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a) {
  4014. bool is_node = false;
  4015. if (a->grad) {
  4016. GGML_ASSERT(false); // TODO: implement backward
  4017. is_node = true;
  4018. }
  4019. // TODO: when implement backward, fix this:
  4020. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4021. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4022. result->op = GGML_OP_SOFT_MAX;
  4023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4024. result->src0 = a;
  4025. result->src1 = NULL;
  4026. return result;
  4027. }
  4028. // ggml_rope
  4029. struct ggml_tensor * ggml_rope(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a,
  4032. int n_past,
  4033. int n_dims,
  4034. int mode) {
  4035. GGML_ASSERT(n_past >= 0);
  4036. bool is_node = false;
  4037. if (a->grad) {
  4038. GGML_ASSERT(false); // TODO: implement backward
  4039. is_node = true;
  4040. }
  4041. // TODO: when implement backward, fix this:
  4042. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4043. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4044. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4045. ((int32_t *) b->data)[0] = n_past;
  4046. ((int32_t *) b->data)[1] = n_dims;
  4047. ((int32_t *) b->data)[2] = mode;
  4048. result->op = GGML_OP_ROPE;
  4049. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4050. result->src0 = a;
  4051. result->src1 = b;
  4052. return result;
  4053. }
  4054. // ggml_conv_1d_1s
  4055. struct ggml_tensor * ggml_conv_1d_1s(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a,
  4058. struct ggml_tensor * b) {
  4059. GGML_ASSERT(ggml_is_matrix(b));
  4060. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4061. GGML_ASSERT(a->ne[3] == 1);
  4062. bool is_node = false;
  4063. if (a->grad || b->grad) {
  4064. GGML_ASSERT(false); // TODO: implement backward
  4065. is_node = true;
  4066. }
  4067. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4068. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4069. result->op = GGML_OP_CONV_1D_1S;
  4070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4071. result->src0 = a;
  4072. result->src1 = b;
  4073. return result;
  4074. }
  4075. // ggml_conv_1d_2s
  4076. struct ggml_tensor * ggml_conv_1d_2s(
  4077. struct ggml_context * ctx,
  4078. struct ggml_tensor * a,
  4079. struct ggml_tensor * b) {
  4080. GGML_ASSERT(ggml_is_matrix(b));
  4081. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4082. GGML_ASSERT(a->ne[3] == 1);
  4083. bool is_node = false;
  4084. if (a->grad || b->grad) {
  4085. GGML_ASSERT(false); // TODO: implement backward
  4086. is_node = true;
  4087. }
  4088. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4089. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4090. result->op = GGML_OP_CONV_1D_2S;
  4091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4092. result->src0 = a;
  4093. result->src1 = b;
  4094. return result;
  4095. }
  4096. // ggml_flash_attn
  4097. struct ggml_tensor * ggml_flash_attn(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * q,
  4100. struct ggml_tensor * k,
  4101. struct ggml_tensor * v,
  4102. bool masked) {
  4103. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4104. // TODO: check if vT can be multiplied by (k*qT)
  4105. bool is_node = false;
  4106. if (q->grad || k->grad || v->grad) {
  4107. GGML_ASSERT(false); // TODO: implement backward
  4108. is_node = true;
  4109. }
  4110. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4111. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4112. result->op = GGML_OP_FLASH_ATTN;
  4113. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4114. result->src0 = q;
  4115. result->src1 = k;
  4116. result->opt[0] = v;
  4117. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4118. return result;
  4119. }
  4120. // ggml_flash_ff
  4121. struct ggml_tensor * ggml_flash_ff(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a,
  4124. struct ggml_tensor * b0,
  4125. struct ggml_tensor * b1,
  4126. struct ggml_tensor * c0,
  4127. struct ggml_tensor * c1) {
  4128. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4129. // TODO: more checks
  4130. bool is_node = false;
  4131. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4132. GGML_ASSERT(false); // TODO: implement backward
  4133. is_node = true;
  4134. }
  4135. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4136. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4137. result->op = GGML_OP_FLASH_FF;
  4138. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4139. result->src0 = a;
  4140. result->src1 = b0;
  4141. result->opt[0] = b1;
  4142. result->opt[1] = c0;
  4143. result->opt[2] = c1;
  4144. return result;
  4145. }
  4146. // ggml_map_unary
  4147. struct ggml_tensor * ggml_map_unary_impl_f32(
  4148. struct ggml_context * ctx,
  4149. struct ggml_tensor * a,
  4150. const ggml_unary_op_f32_t fun,
  4151. bool inplace) {
  4152. bool is_node = false;
  4153. if (!inplace && a->grad) {
  4154. is_node = true;
  4155. }
  4156. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4157. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4158. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4159. result->op = GGML_OP_MAP_UNARY;
  4160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4161. result->src0 = a;
  4162. result->opt[0] = addr_tensor;
  4163. return result;
  4164. }
  4165. struct ggml_tensor * ggml_map_unary_f32(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a,
  4168. const ggml_unary_op_f32_t fun) {
  4169. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4170. }
  4171. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. const ggml_unary_op_f32_t fun) {
  4175. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4176. }
  4177. // ggml_map_binary
  4178. struct ggml_tensor * ggml_map_binary_impl_f32(
  4179. struct ggml_context * ctx,
  4180. struct ggml_tensor * a,
  4181. struct ggml_tensor * b,
  4182. const ggml_binary_op_f32_t fun,
  4183. bool inplace) {
  4184. GGML_ASSERT(ggml_are_same_shape(a, b));
  4185. bool is_node = false;
  4186. if (!inplace && (a->grad || b->grad)) {
  4187. is_node = true;
  4188. }
  4189. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4190. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4191. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4192. result->op = GGML_OP_MAP_BINARY;
  4193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4194. result->src0 = a;
  4195. result->src1 = b;
  4196. result->opt[0] = addr_tensor;
  4197. return result;
  4198. }
  4199. struct ggml_tensor * ggml_map_binary_f32(
  4200. struct ggml_context * ctx,
  4201. struct ggml_tensor * a,
  4202. struct ggml_tensor * b,
  4203. const ggml_binary_op_f32_t fun) {
  4204. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4205. }
  4206. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a,
  4209. struct ggml_tensor * b,
  4210. const ggml_binary_op_f32_t fun) {
  4211. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4212. }
  4213. ////////////////////////////////////////////////////////////////////////////////
  4214. void ggml_set_param(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * tensor) {
  4217. tensor->is_param = true;
  4218. GGML_ASSERT(tensor->grad == NULL);
  4219. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4220. }
  4221. // ggml_compute_forward_dup
  4222. static void ggml_compute_forward_dup_f16(
  4223. const struct ggml_compute_params * params,
  4224. const struct ggml_tensor * src0,
  4225. struct ggml_tensor * dst) {
  4226. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4227. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4228. return;
  4229. }
  4230. const int64_t ne00 = src0->ne[0];
  4231. const int64_t ne01 = src0->ne[1];
  4232. const int64_t ne02 = src0->ne[2];
  4233. const int64_t ne03 = src0->ne[3];
  4234. const int64_t ne0 = dst->ne[0];
  4235. const int64_t ne1 = dst->ne[1];
  4236. const int64_t ne2 = dst->ne[2];
  4237. const int64_t ne3 = dst->ne[3];
  4238. const size_t nb00 = src0->nb[0];
  4239. const size_t nb01 = src0->nb[1];
  4240. const size_t nb02 = src0->nb[2];
  4241. const size_t nb03 = src0->nb[3];
  4242. const size_t nb0 = dst->nb[0];
  4243. const size_t nb1 = dst->nb[1];
  4244. const size_t nb2 = dst->nb[2];
  4245. const size_t nb3 = dst->nb[3];
  4246. const int ith = params->ith; // thread index
  4247. const int nth = params->nth; // number of threads
  4248. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4249. // parallelize by elements
  4250. const int ne = ggml_nelements(dst);
  4251. const int dr = (ne + nth - 1) / nth;
  4252. const int ie0 = dr * ith;
  4253. const int ie1 = MIN(ie0 + dr, ne);
  4254. memcpy(
  4255. ((char *) dst->data + ie0*nb0),
  4256. ((char *) src0->data + ie0*nb00),
  4257. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4258. return;
  4259. }
  4260. // parallelize by rows
  4261. const int nr = ne01;
  4262. // number of rows per thread
  4263. const int dr = (nr + nth - 1) / nth;
  4264. // row range for this thread
  4265. const int ir0 = dr * ith;
  4266. const int ir1 = MIN(ir0 + dr, nr);
  4267. if (src0->type == dst->type &&
  4268. ne00 == ne0 &&
  4269. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4270. // copy by rows
  4271. const size_t rs = ne00*nb00;
  4272. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4273. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4274. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4275. memcpy(
  4276. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4277. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4278. rs);
  4279. }
  4280. }
  4281. }
  4282. return;
  4283. }
  4284. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4285. if (ggml_is_contiguous(dst)) {
  4286. if (nb00 == sizeof(ggml_fp16_t)) {
  4287. if (dst->type == GGML_TYPE_F16) {
  4288. size_t id = 0;
  4289. const size_t rs = ne00 * nb00;
  4290. char * dst_ptr = (char *) dst->data;
  4291. for (int i03 = 0; i03 < ne03; i03++) {
  4292. for (int i02 = 0; i02 < ne02; i02++) {
  4293. id += rs * ir0;
  4294. for (int i01 = ir0; i01 < ir1; i01++) {
  4295. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4296. memcpy(dst_ptr + id, src0_ptr, rs);
  4297. id += rs;
  4298. }
  4299. id += rs * (ne01 - ir1);
  4300. }
  4301. }
  4302. } else if (dst->type == GGML_TYPE_F32) {
  4303. size_t id = 0;
  4304. float * dst_ptr = (float *) dst->data;
  4305. for (int i03 = 0; i03 < ne03; i03++) {
  4306. for (int i02 = 0; i02 < ne02; i02++) {
  4307. id += ne00 * ir0;
  4308. for (int i01 = ir0; i01 < ir1; i01++) {
  4309. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4310. for (int i00 = 0; i00 < ne00; i00++) {
  4311. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4312. id++;
  4313. }
  4314. }
  4315. id += ne00 * (ne01 - ir1);
  4316. }
  4317. }
  4318. } else if (ggml_is_quantized(dst->type)) {
  4319. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4320. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4321. size_t id = 0;
  4322. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4323. char * dst_ptr = (char *) dst->data;
  4324. for (int i03 = 0; i03 < ne03; i03++) {
  4325. for (int i02 = 0; i02 < ne02; i02++) {
  4326. id += rs * ir0;
  4327. for (int i01 = ir0; i01 < ir1; i01++) {
  4328. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4329. for (int i00 = 0; i00 < ne00; i00++) {
  4330. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4331. }
  4332. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4333. id += rs;
  4334. }
  4335. id += rs * (ne01 - ir1);
  4336. }
  4337. }
  4338. } else {
  4339. GGML_ASSERT(false); // TODO: implement
  4340. }
  4341. } else {
  4342. //printf("%s: this is not optimal - fix me\n", __func__);
  4343. if (dst->type == GGML_TYPE_F32) {
  4344. size_t id = 0;
  4345. float * dst_ptr = (float *) dst->data;
  4346. for (int i03 = 0; i03 < ne03; i03++) {
  4347. for (int i02 = 0; i02 < ne02; i02++) {
  4348. id += ne00 * ir0;
  4349. for (int i01 = ir0; i01 < ir1; i01++) {
  4350. for (int i00 = 0; i00 < ne00; i00++) {
  4351. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4352. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4353. id++;
  4354. }
  4355. }
  4356. id += ne00 * (ne01 - ir1);
  4357. }
  4358. }
  4359. } else if (dst->type == GGML_TYPE_F16) {
  4360. size_t id = 0;
  4361. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4362. for (int i03 = 0; i03 < ne03; i03++) {
  4363. for (int i02 = 0; i02 < ne02; i02++) {
  4364. id += ne00 * ir0;
  4365. for (int i01 = ir0; i01 < ir1; i01++) {
  4366. for (int i00 = 0; i00 < ne00; i00++) {
  4367. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4368. dst_ptr[id] = *src0_ptr;
  4369. id++;
  4370. }
  4371. }
  4372. id += ne00 * (ne01 - ir1);
  4373. }
  4374. }
  4375. } else {
  4376. GGML_ASSERT(false); // TODO: implement
  4377. }
  4378. }
  4379. return;
  4380. }
  4381. // dst counters
  4382. int64_t i10 = 0;
  4383. int64_t i11 = 0;
  4384. int64_t i12 = 0;
  4385. int64_t i13 = 0;
  4386. if (dst->type == GGML_TYPE_F16) {
  4387. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4388. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4389. i10 += ne00 * ir0;
  4390. while (i10 >= ne0) {
  4391. i10 -= ne0;
  4392. if (++i11 == ne1) {
  4393. i11 = 0;
  4394. if (++i12 == ne2) {
  4395. i12 = 0;
  4396. if (++i13 == ne3) {
  4397. i13 = 0;
  4398. }
  4399. }
  4400. }
  4401. }
  4402. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4403. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4404. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4405. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4406. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4407. if (++i10 == ne00) {
  4408. i10 = 0;
  4409. if (++i11 == ne01) {
  4410. i11 = 0;
  4411. if (++i12 == ne02) {
  4412. i12 = 0;
  4413. if (++i13 == ne03) {
  4414. i13 = 0;
  4415. }
  4416. }
  4417. }
  4418. }
  4419. }
  4420. }
  4421. i10 += ne00 * (ne01 - ir1);
  4422. while (i10 >= ne0) {
  4423. i10 -= ne0;
  4424. if (++i11 == ne1) {
  4425. i11 = 0;
  4426. if (++i12 == ne2) {
  4427. i12 = 0;
  4428. if (++i13 == ne3) {
  4429. i13 = 0;
  4430. }
  4431. }
  4432. }
  4433. }
  4434. }
  4435. }
  4436. } else if (dst->type == GGML_TYPE_F32) {
  4437. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4438. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4439. i10 += ne00 * ir0;
  4440. while (i10 >= ne0) {
  4441. i10 -= ne0;
  4442. if (++i11 == ne1) {
  4443. i11 = 0;
  4444. if (++i12 == ne2) {
  4445. i12 = 0;
  4446. if (++i13 == ne3) {
  4447. i13 = 0;
  4448. }
  4449. }
  4450. }
  4451. }
  4452. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4453. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4454. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4455. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4456. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4457. if (++i10 == ne0) {
  4458. i10 = 0;
  4459. if (++i11 == ne1) {
  4460. i11 = 0;
  4461. if (++i12 == ne2) {
  4462. i12 = 0;
  4463. if (++i13 == ne3) {
  4464. i13 = 0;
  4465. }
  4466. }
  4467. }
  4468. }
  4469. }
  4470. }
  4471. i10 += ne00 * (ne01 - ir1);
  4472. while (i10 >= ne0) {
  4473. i10 -= ne0;
  4474. if (++i11 == ne1) {
  4475. i11 = 0;
  4476. if (++i12 == ne2) {
  4477. i12 = 0;
  4478. if (++i13 == ne3) {
  4479. i13 = 0;
  4480. }
  4481. }
  4482. }
  4483. }
  4484. }
  4485. }
  4486. } else {
  4487. GGML_ASSERT(false); // TODO: implement
  4488. }
  4489. }
  4490. static void ggml_compute_forward_dup_f32(
  4491. const struct ggml_compute_params * params,
  4492. const struct ggml_tensor * src0,
  4493. struct ggml_tensor * dst) {
  4494. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4495. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4496. return;
  4497. }
  4498. const int64_t ne00 = src0->ne[0];
  4499. const int64_t ne01 = src0->ne[1];
  4500. const int64_t ne02 = src0->ne[2];
  4501. const int64_t ne03 = src0->ne[3];
  4502. const int64_t ne0 = dst->ne[0];
  4503. const int64_t ne1 = dst->ne[1];
  4504. const int64_t ne2 = dst->ne[2];
  4505. const int64_t ne3 = dst->ne[3];
  4506. const size_t nb00 = src0->nb[0];
  4507. const size_t nb01 = src0->nb[1];
  4508. const size_t nb02 = src0->nb[2];
  4509. const size_t nb03 = src0->nb[3];
  4510. const size_t nb0 = dst->nb[0];
  4511. const size_t nb1 = dst->nb[1];
  4512. const size_t nb2 = dst->nb[2];
  4513. const size_t nb3 = dst->nb[3];
  4514. const int ith = params->ith; // thread index
  4515. const int nth = params->nth; // number of threads
  4516. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4517. // parallelize by elements
  4518. const int ne = ggml_nelements(dst);
  4519. const int dr = (ne + nth - 1) / nth;
  4520. const int ie0 = dr * ith;
  4521. const int ie1 = MIN(ie0 + dr, ne);
  4522. memcpy(
  4523. ((char *) dst->data + ie0*nb0),
  4524. ((char *) src0->data + ie0*nb00),
  4525. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4526. return;
  4527. }
  4528. // parallelize by rows
  4529. const int nr = ne01;
  4530. // number of rows per thread
  4531. const int dr = (nr + nth - 1) / nth;
  4532. // row range for this thread
  4533. const int ir0 = dr * ith;
  4534. const int ir1 = MIN(ir0 + dr, nr);
  4535. if (src0->type == dst->type &&
  4536. ne00 == ne0 &&
  4537. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4538. // copy by rows
  4539. const size_t rs = ne00*nb00;
  4540. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4541. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4542. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4543. memcpy(
  4544. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4545. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4546. rs);
  4547. }
  4548. }
  4549. }
  4550. return;
  4551. }
  4552. if (ggml_is_contiguous(dst)) {
  4553. // TODO: simplify
  4554. if (nb00 == sizeof(float)) {
  4555. if (dst->type == GGML_TYPE_F32) {
  4556. size_t id = 0;
  4557. const size_t rs = ne00 * nb00;
  4558. char * dst_ptr = (char *) dst->data;
  4559. for (int i03 = 0; i03 < ne03; i03++) {
  4560. for (int i02 = 0; i02 < ne02; i02++) {
  4561. id += rs * ir0;
  4562. for (int i01 = ir0; i01 < ir1; i01++) {
  4563. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4564. memcpy(dst_ptr + id, src0_ptr, rs);
  4565. id += rs;
  4566. }
  4567. id += rs * (ne01 - ir1);
  4568. }
  4569. }
  4570. } else if (dst->type == GGML_TYPE_F16) {
  4571. size_t id = 0;
  4572. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4573. for (int i03 = 0; i03 < ne03; i03++) {
  4574. for (int i02 = 0; i02 < ne02; i02++) {
  4575. id += ne00 * ir0;
  4576. for (int i01 = ir0; i01 < ir1; i01++) {
  4577. for (int i00 = 0; i00 < ne00; i00++) {
  4578. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4579. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4580. id++;
  4581. }
  4582. }
  4583. id += ne00 * (ne01 - ir1);
  4584. }
  4585. }
  4586. } else if (ggml_is_quantized(dst->type)) {
  4587. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4588. size_t id = 0;
  4589. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4590. char * dst_ptr = (char *) dst->data;
  4591. for (int i03 = 0; i03 < ne03; i03++) {
  4592. for (int i02 = 0; i02 < ne02; i02++) {
  4593. id += rs * ir0;
  4594. for (int i01 = ir0; i01 < ir1; i01++) {
  4595. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4596. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4597. id += rs;
  4598. }
  4599. id += rs * (ne01 - ir1);
  4600. }
  4601. }
  4602. } else {
  4603. GGML_ASSERT(false); // TODO: implement
  4604. }
  4605. } else {
  4606. //printf("%s: this is not optimal - fix me\n", __func__);
  4607. if (dst->type == GGML_TYPE_F32) {
  4608. size_t id = 0;
  4609. float * dst_ptr = (float *) dst->data;
  4610. for (int i03 = 0; i03 < ne03; i03++) {
  4611. for (int i02 = 0; i02 < ne02; i02++) {
  4612. id += ne00 * ir0;
  4613. for (int i01 = ir0; i01 < ir1; i01++) {
  4614. for (int i00 = 0; i00 < ne00; i00++) {
  4615. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4616. dst_ptr[id] = *src0_ptr;
  4617. id++;
  4618. }
  4619. }
  4620. id += ne00 * (ne01 - ir1);
  4621. }
  4622. }
  4623. } else if (dst->type == GGML_TYPE_F16) {
  4624. size_t id = 0;
  4625. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4626. for (int i03 = 0; i03 < ne03; i03++) {
  4627. for (int i02 = 0; i02 < ne02; i02++) {
  4628. id += ne00 * ir0;
  4629. for (int i01 = ir0; i01 < ir1; i01++) {
  4630. for (int i00 = 0; i00 < ne00; i00++) {
  4631. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4632. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4633. id++;
  4634. }
  4635. }
  4636. id += ne00 * (ne01 - ir1);
  4637. }
  4638. }
  4639. } else {
  4640. GGML_ASSERT(false); // TODO: implement
  4641. }
  4642. }
  4643. return;
  4644. }
  4645. // dst counters
  4646. int64_t i10 = 0;
  4647. int64_t i11 = 0;
  4648. int64_t i12 = 0;
  4649. int64_t i13 = 0;
  4650. if (dst->type == GGML_TYPE_F32) {
  4651. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4652. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4653. i10 += ne00 * ir0;
  4654. while (i10 >= ne0) {
  4655. i10 -= ne0;
  4656. i11++;
  4657. if (++i11 == ne1) {
  4658. i11 = 0;
  4659. if (++i12 == ne2) {
  4660. i12 = 0;
  4661. if (++i13 == ne3) {
  4662. i13 = 0;
  4663. }
  4664. }
  4665. }
  4666. }
  4667. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4668. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4669. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4670. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4671. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4672. if (++i10 == ne0) {
  4673. i10 = 0;
  4674. if (++i11 == ne1) {
  4675. i11 = 0;
  4676. if (++i12 == ne2) {
  4677. i12 = 0;
  4678. if (++i13 == ne3) {
  4679. i13 = 0;
  4680. }
  4681. }
  4682. }
  4683. }
  4684. }
  4685. }
  4686. i10 += ne00 * (ne01 - ir1);
  4687. while (i10 >= ne0) {
  4688. i10 -= ne0;
  4689. if (++i11 == ne1) {
  4690. i11 = 0;
  4691. if (++i12 == ne2) {
  4692. i12 = 0;
  4693. if (++i13 == ne3) {
  4694. i13 = 0;
  4695. }
  4696. }
  4697. }
  4698. }
  4699. }
  4700. }
  4701. } else if (dst->type == GGML_TYPE_F16) {
  4702. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4703. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4704. i10 += ne00 * ir0;
  4705. while (i10 >= ne0) {
  4706. i10 -= ne0;
  4707. if (++i11 == ne1) {
  4708. i11 = 0;
  4709. if (++i12 == ne2) {
  4710. i12 = 0;
  4711. if (++i13 == ne3) {
  4712. i13 = 0;
  4713. }
  4714. }
  4715. }
  4716. }
  4717. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4718. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4719. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4720. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4721. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4722. if (++i10 == ne0) {
  4723. i10 = 0;
  4724. if (++i11 == ne1) {
  4725. i11 = 0;
  4726. if (++i12 == ne2) {
  4727. i12 = 0;
  4728. if (++i13 == ne3) {
  4729. i13 = 0;
  4730. }
  4731. }
  4732. }
  4733. }
  4734. }
  4735. }
  4736. i10 += ne00 * (ne01 - ir1);
  4737. while (i10 >= ne0) {
  4738. i10 -= ne0;
  4739. if (++i11 == ne1) {
  4740. i11 = 0;
  4741. if (++i12 == ne2) {
  4742. i12 = 0;
  4743. if (++i13 == ne3) {
  4744. i13 = 0;
  4745. }
  4746. }
  4747. }
  4748. }
  4749. }
  4750. }
  4751. } else {
  4752. GGML_ASSERT(false); // TODO: implement
  4753. }
  4754. }
  4755. static void ggml_compute_forward_dup(
  4756. const struct ggml_compute_params * params,
  4757. const struct ggml_tensor * src0,
  4758. struct ggml_tensor * dst) {
  4759. switch (src0->type) {
  4760. case GGML_TYPE_F16:
  4761. {
  4762. ggml_compute_forward_dup_f16(params, src0, dst);
  4763. } break;
  4764. case GGML_TYPE_F32:
  4765. {
  4766. ggml_compute_forward_dup_f32(params, src0, dst);
  4767. } break;
  4768. default:
  4769. {
  4770. GGML_ASSERT(false);
  4771. } break;
  4772. }
  4773. }
  4774. // ggml_compute_forward_add
  4775. static void ggml_compute_forward_add_f32(
  4776. const struct ggml_compute_params * params,
  4777. const struct ggml_tensor * src0,
  4778. const struct ggml_tensor * src1,
  4779. struct ggml_tensor * dst) {
  4780. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4782. return;
  4783. }
  4784. const int ith = params->ith;
  4785. const int nth = params->nth;
  4786. const int n = ggml_nrows(src0);
  4787. const int nc = src0->ne[0];
  4788. const size_t nb00 = src0->nb[0];
  4789. const size_t nb01 = src0->nb[1];
  4790. const size_t nb10 = src1->nb[0];
  4791. const size_t nb11 = src1->nb[1];
  4792. const size_t nb0 = dst->nb[0];
  4793. const size_t nb1 = dst->nb[1];
  4794. GGML_ASSERT( nb0 == sizeof(float));
  4795. GGML_ASSERT(nb00 == sizeof(float));
  4796. if (nb10 == sizeof(float)) {
  4797. for (int j = ith; j < n; j += nth) {
  4798. #ifdef GGML_USE_ACCELERATE
  4799. vDSP_vadd(
  4800. (float *) ((char *) src0->data + j*nb01), 1,
  4801. (float *) ((char *) src1->data + j*nb11), 1,
  4802. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4803. #else
  4804. ggml_vec_add_f32(nc,
  4805. (float *) ((char *) dst->data + j*nb1),
  4806. (float *) ((char *) src0->data + j*nb01),
  4807. (float *) ((char *) src1->data + j*nb11));
  4808. #endif
  4809. }
  4810. } else {
  4811. // src1 is not contiguous
  4812. for (int j = ith; j < n; j += nth) {
  4813. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4814. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4815. for (int i = 0; i < nc; i++) {
  4816. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4817. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4818. }
  4819. }
  4820. }
  4821. }
  4822. static void ggml_compute_forward_add_f16_f32(
  4823. const struct ggml_compute_params * params,
  4824. const struct ggml_tensor * src0,
  4825. const struct ggml_tensor * src1,
  4826. struct ggml_tensor * dst) {
  4827. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4829. return;
  4830. }
  4831. const int ith = params->ith;
  4832. const int nth = params->nth;
  4833. const int n = ggml_nrows(src0);
  4834. const int nc = src0->ne[0];
  4835. const size_t nb00 = src0->nb[0];
  4836. const size_t nb01 = src0->nb[1];
  4837. const size_t nb10 = src1->nb[0];
  4838. const size_t nb11 = src1->nb[1];
  4839. const size_t nb0 = dst->nb[0];
  4840. const size_t nb1 = dst->nb[1];
  4841. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4842. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4843. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4844. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4845. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4846. if (nb10 == sizeof(float)) {
  4847. for (int j = ith; j < n; j += nth) {
  4848. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4849. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4850. for (int i = 0; i < nc; i++) {
  4851. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4852. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  4853. }
  4854. }
  4855. }
  4856. else {
  4857. // src1 is not contiguous
  4858. GGML_ASSERT(false);
  4859. }
  4860. }
  4861. static void ggml_compute_forward_add_f16_f16(
  4862. const struct ggml_compute_params * params,
  4863. const struct ggml_tensor * src0,
  4864. const struct ggml_tensor * src1,
  4865. struct ggml_tensor * dst) {
  4866. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4867. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4868. return;
  4869. }
  4870. const int ith = params->ith;
  4871. const int nth = params->nth;
  4872. const int n = ggml_nrows(src0);
  4873. const int nc = src0->ne[0];
  4874. const size_t nb00 = src0->nb[0];
  4875. const size_t nb01 = src0->nb[1];
  4876. const size_t nb10 = src1->nb[0];
  4877. const size_t nb11 = src1->nb[1];
  4878. const size_t nb0 = dst->nb[0];
  4879. const size_t nb1 = dst->nb[1];
  4880. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4881. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  4882. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4883. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4884. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4885. if (nb10 == sizeof(ggml_fp16_t)) {
  4886. for (int j = ith; j < n; j += nth) {
  4887. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4888. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4889. for (int i = 0; i < nc; i++) {
  4890. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  4891. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  4892. }
  4893. }
  4894. }
  4895. else {
  4896. // src1 is not contiguous
  4897. GGML_ASSERT(false);
  4898. }
  4899. }
  4900. static void ggml_compute_forward_add_q_f32(
  4901. const struct ggml_compute_params * params,
  4902. const struct ggml_tensor * src0,
  4903. const struct ggml_tensor * src1,
  4904. struct ggml_tensor * dst) {
  4905. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4906. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4907. return;
  4908. }
  4909. const int64_t ne00 = src0->ne[0];
  4910. const int64_t ne01 = src0->ne[1];
  4911. const int64_t ne02 = src0->ne[2];
  4912. const int64_t ne03 = src0->ne[3];
  4913. //const int64_t ne10 = src1->ne[0];
  4914. //const int64_t ne11 = src1->ne[1];
  4915. const int64_t ne12 = src1->ne[2];
  4916. const int64_t ne13 = src1->ne[3];
  4917. //const int64_t ne0 = dst->ne[0];
  4918. //const int64_t ne1 = dst->ne[1];
  4919. const int64_t ne2 = dst->ne[2];
  4920. const int64_t ne3 = dst->ne[3];
  4921. const int nb00 = src0->nb[0];
  4922. const int nb01 = src0->nb[1];
  4923. const int nb02 = src0->nb[2];
  4924. const int nb03 = src0->nb[3];
  4925. const int nb10 = src1->nb[0];
  4926. const int nb11 = src1->nb[1];
  4927. const int nb12 = src1->nb[2];
  4928. const int nb13 = src1->nb[3];
  4929. const int nb0 = dst->nb[0];
  4930. const int nb1 = dst->nb[1];
  4931. const int nb2 = dst->nb[2];
  4932. const int nb3 = dst->nb[3];
  4933. const int ith = params->ith;
  4934. const int nth = params->nth;
  4935. GGML_ASSERT(ne02 == ne12);
  4936. GGML_ASSERT(ne03 == ne13);
  4937. GGML_ASSERT(ne2 == ne12);
  4938. GGML_ASSERT(ne3 == ne13);
  4939. const enum ggml_type type = src0->type;
  4940. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  4941. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  4942. // we don't support permuted src0 or src1
  4943. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  4944. GGML_ASSERT(nb10 == sizeof(float));
  4945. // dst cannot be transposed or permuted
  4946. GGML_ASSERT(nb0 <= nb1);
  4947. GGML_ASSERT(nb1 <= nb2);
  4948. GGML_ASSERT(nb2 <= nb3);
  4949. GGML_ASSERT(ggml_is_quantized(src0->type));
  4950. GGML_ASSERT(dst->type == src0->type);
  4951. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4952. // total rows in src0
  4953. const int nr = ne01*ne02*ne03;
  4954. // rows per thread
  4955. const int dr = (nr + nth - 1)/nth;
  4956. // row range for this thread
  4957. const int ir0 = dr*ith;
  4958. const int ir1 = MIN(ir0 + dr, nr);
  4959. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4960. for (int ir = ir0; ir < ir1; ++ir) {
  4961. // src0 indices
  4962. const int i03 = ir/(ne02*ne01);
  4963. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4964. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4965. // src1 and dst are same shape as src0 => same indices
  4966. const int i13 = i03;
  4967. const int i12 = i02;
  4968. const int i11 = i01;
  4969. const int i3 = i03;
  4970. const int i2 = i02;
  4971. const int i1 = i01;
  4972. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4973. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  4974. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  4975. assert(ne00 % 32 == 0);
  4976. // unquantize row from src0 to temp buffer
  4977. dequantize_row_q(src0_row, wdata, ne00);
  4978. // add src1
  4979. ggml_vec_acc_f32(ne00, wdata, src1_row);
  4980. // quantize row to dst
  4981. quantize_row_q(wdata, dst_row, ne00);
  4982. }
  4983. }
  4984. static void ggml_compute_forward_add(
  4985. const struct ggml_compute_params * params,
  4986. const struct ggml_tensor * src0,
  4987. const struct ggml_tensor * src1,
  4988. struct ggml_tensor * dst) {
  4989. switch (src0->type) {
  4990. case GGML_TYPE_F32:
  4991. {
  4992. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4993. } break;
  4994. case GGML_TYPE_F16:
  4995. {
  4996. if (src1->type == GGML_TYPE_F16) {
  4997. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  4998. }
  4999. else if (src1->type == GGML_TYPE_F32) {
  5000. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5001. }
  5002. else {
  5003. GGML_ASSERT(false);
  5004. }
  5005. } break;
  5006. case GGML_TYPE_Q4_0:
  5007. case GGML_TYPE_Q4_1:
  5008. case GGML_TYPE_Q4_2:
  5009. {
  5010. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5011. } break;
  5012. default:
  5013. {
  5014. GGML_ASSERT(false);
  5015. } break;
  5016. }
  5017. }
  5018. // ggml_compute_forward_sub
  5019. static void ggml_compute_forward_sub_f32(
  5020. const struct ggml_compute_params * params,
  5021. const struct ggml_tensor * src0,
  5022. const struct ggml_tensor * src1,
  5023. struct ggml_tensor * dst) {
  5024. assert(params->ith == 0);
  5025. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5026. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5027. return;
  5028. }
  5029. const int n = ggml_nrows(src0);
  5030. const int nc = src0->ne[0];
  5031. assert( dst->nb[0] == sizeof(float));
  5032. assert(src0->nb[0] == sizeof(float));
  5033. assert(src1->nb[0] == sizeof(float));
  5034. for (int i = 0; i < n; i++) {
  5035. ggml_vec_sub_f32(nc,
  5036. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5037. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5038. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5039. }
  5040. }
  5041. static void ggml_compute_forward_sub(
  5042. const struct ggml_compute_params * params,
  5043. const struct ggml_tensor * src0,
  5044. const struct ggml_tensor * src1,
  5045. struct ggml_tensor * dst) {
  5046. switch (src0->type) {
  5047. case GGML_TYPE_F32:
  5048. {
  5049. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5050. } break;
  5051. default:
  5052. {
  5053. GGML_ASSERT(false);
  5054. } break;
  5055. }
  5056. }
  5057. // ggml_compute_forward_mul
  5058. static void ggml_compute_forward_mul_f32(
  5059. const struct ggml_compute_params * params,
  5060. const struct ggml_tensor * src0,
  5061. const struct ggml_tensor * src1,
  5062. struct ggml_tensor * dst) {
  5063. assert(params->ith == 0);
  5064. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5065. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5066. return;
  5067. }
  5068. const int n = ggml_nrows(src0);
  5069. const int nc = src0->ne[0];
  5070. assert( dst->nb[0] == sizeof(float));
  5071. assert(src0->nb[0] == sizeof(float));
  5072. assert(src1->nb[0] == sizeof(float));
  5073. for (int i = 0; i < n; i++) {
  5074. ggml_vec_mul_f32(nc,
  5075. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5076. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5077. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5078. }
  5079. }
  5080. static void ggml_compute_forward_mul(
  5081. const struct ggml_compute_params * params,
  5082. const struct ggml_tensor * src0,
  5083. const struct ggml_tensor * src1,
  5084. struct ggml_tensor * dst) {
  5085. switch (src0->type) {
  5086. case GGML_TYPE_F32:
  5087. {
  5088. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5089. } break;
  5090. default:
  5091. {
  5092. GGML_ASSERT(false);
  5093. } break;
  5094. }
  5095. }
  5096. // ggml_compute_forward_div
  5097. static void ggml_compute_forward_div_f32(
  5098. const struct ggml_compute_params * params,
  5099. const struct ggml_tensor * src0,
  5100. const struct ggml_tensor * src1,
  5101. struct ggml_tensor * dst) {
  5102. assert(params->ith == 0);
  5103. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5104. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5105. return;
  5106. }
  5107. const int n = ggml_nrows(src0);
  5108. const int nc = src0->ne[0];
  5109. assert( dst->nb[0] == sizeof(float));
  5110. assert(src0->nb[0] == sizeof(float));
  5111. assert(src1->nb[0] == sizeof(float));
  5112. for (int i = 0; i < n; i++) {
  5113. ggml_vec_div_f32(nc,
  5114. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5115. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5116. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5117. }
  5118. }
  5119. static void ggml_compute_forward_div(
  5120. const struct ggml_compute_params * params,
  5121. const struct ggml_tensor * src0,
  5122. const struct ggml_tensor * src1,
  5123. struct ggml_tensor * dst) {
  5124. switch (src0->type) {
  5125. case GGML_TYPE_F32:
  5126. {
  5127. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5128. } break;
  5129. default:
  5130. {
  5131. GGML_ASSERT(false);
  5132. } break;
  5133. }
  5134. }
  5135. // ggml_compute_forward_sqr
  5136. static void ggml_compute_forward_sqr_f32(
  5137. const struct ggml_compute_params * params,
  5138. const struct ggml_tensor * src0,
  5139. struct ggml_tensor * dst) {
  5140. assert(params->ith == 0);
  5141. assert(ggml_are_same_shape(src0, dst));
  5142. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5143. return;
  5144. }
  5145. const int n = ggml_nrows(src0);
  5146. const int nc = src0->ne[0];
  5147. assert( dst->nb[0] == sizeof(float));
  5148. assert(src0->nb[0] == sizeof(float));
  5149. for (int i = 0; i < n; i++) {
  5150. ggml_vec_sqr_f32(nc,
  5151. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5152. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5153. }
  5154. }
  5155. static void ggml_compute_forward_sqr(
  5156. const struct ggml_compute_params * params,
  5157. const struct ggml_tensor * src0,
  5158. struct ggml_tensor * dst) {
  5159. switch (src0->type) {
  5160. case GGML_TYPE_F32:
  5161. {
  5162. ggml_compute_forward_sqr_f32(params, src0, dst);
  5163. } break;
  5164. default:
  5165. {
  5166. GGML_ASSERT(false);
  5167. } break;
  5168. }
  5169. }
  5170. // ggml_compute_forward_sqrt
  5171. static void ggml_compute_forward_sqrt_f32(
  5172. const struct ggml_compute_params * params,
  5173. const struct ggml_tensor * src0,
  5174. struct ggml_tensor * dst) {
  5175. assert(params->ith == 0);
  5176. assert(ggml_are_same_shape(src0, dst));
  5177. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5178. return;
  5179. }
  5180. const int n = ggml_nrows(src0);
  5181. const int nc = src0->ne[0];
  5182. assert( dst->nb[0] == sizeof(float));
  5183. assert(src0->nb[0] == sizeof(float));
  5184. for (int i = 0; i < n; i++) {
  5185. ggml_vec_sqrt_f32(nc,
  5186. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5187. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5188. }
  5189. }
  5190. static void ggml_compute_forward_sqrt(
  5191. const struct ggml_compute_params * params,
  5192. const struct ggml_tensor * src0,
  5193. struct ggml_tensor * dst) {
  5194. switch (src0->type) {
  5195. case GGML_TYPE_F32:
  5196. {
  5197. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5198. } break;
  5199. default:
  5200. {
  5201. GGML_ASSERT(false);
  5202. } break;
  5203. }
  5204. }
  5205. // ggml_compute_forward_sum
  5206. static void ggml_compute_forward_sum_f32(
  5207. const struct ggml_compute_params * params,
  5208. const struct ggml_tensor * src0,
  5209. struct ggml_tensor * dst) {
  5210. assert(params->ith == 0);
  5211. assert(ggml_is_scalar(dst));
  5212. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5213. return;
  5214. }
  5215. assert(ggml_is_scalar(dst));
  5216. assert(src0->nb[0] == sizeof(float));
  5217. const int64_t ne00 = src0->ne[0];
  5218. const int64_t ne01 = src0->ne[1];
  5219. const int64_t ne02 = src0->ne[2];
  5220. const int64_t ne03 = src0->ne[3];
  5221. const size_t nb01 = src0->nb[1];
  5222. const size_t nb02 = src0->nb[2];
  5223. const size_t nb03 = src0->nb[3];
  5224. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5225. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5226. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5227. ggml_vec_sum_f32(ne00,
  5228. (float *) (dst->data),
  5229. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5230. }
  5231. }
  5232. }
  5233. }
  5234. static void ggml_compute_forward_sum(
  5235. const struct ggml_compute_params * params,
  5236. const struct ggml_tensor * src0,
  5237. struct ggml_tensor * dst) {
  5238. switch (src0->type) {
  5239. case GGML_TYPE_F32:
  5240. {
  5241. ggml_compute_forward_sum_f32(params, src0, dst);
  5242. } break;
  5243. default:
  5244. {
  5245. GGML_ASSERT(false);
  5246. } break;
  5247. }
  5248. }
  5249. // ggml_compute_forward_mean
  5250. static void ggml_compute_forward_mean_f32(
  5251. const struct ggml_compute_params * params,
  5252. const struct ggml_tensor * src0,
  5253. struct ggml_tensor * dst) {
  5254. assert(params->ith == 0);
  5255. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5256. return;
  5257. }
  5258. assert(src0->nb[0] == sizeof(float));
  5259. const int64_t ne00 = src0->ne[0];
  5260. const int64_t ne01 = src0->ne[1];
  5261. const int64_t ne02 = src0->ne[2];
  5262. const int64_t ne03 = src0->ne[3];
  5263. const size_t nb01 = src0->nb[1];
  5264. const size_t nb02 = src0->nb[2];
  5265. const size_t nb03 = src0->nb[3];
  5266. const int64_t ne0 = dst->ne[0];
  5267. const int64_t ne1 = dst->ne[1];
  5268. const int64_t ne2 = dst->ne[2];
  5269. const int64_t ne3 = dst->ne[3];
  5270. assert(ne0 == 1);
  5271. assert(ne1 == ne01);
  5272. assert(ne2 == ne02);
  5273. assert(ne3 == ne03);
  5274. UNUSED(ne0);
  5275. UNUSED(ne1);
  5276. UNUSED(ne2);
  5277. UNUSED(ne3);
  5278. const size_t nb1 = dst->nb[1];
  5279. const size_t nb2 = dst->nb[2];
  5280. const size_t nb3 = dst->nb[3];
  5281. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5282. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5283. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5284. ggml_vec_sum_f32(ne00,
  5285. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5286. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5287. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5288. }
  5289. }
  5290. }
  5291. }
  5292. static void ggml_compute_forward_mean(
  5293. const struct ggml_compute_params * params,
  5294. const struct ggml_tensor * src0,
  5295. struct ggml_tensor * dst) {
  5296. switch (src0->type) {
  5297. case GGML_TYPE_F32:
  5298. {
  5299. ggml_compute_forward_mean_f32(params, src0, dst);
  5300. } break;
  5301. default:
  5302. {
  5303. GGML_ASSERT(false);
  5304. } break;
  5305. }
  5306. }
  5307. // ggml_compute_forward_repeat
  5308. static void ggml_compute_forward_repeat_f32(
  5309. const struct ggml_compute_params * params,
  5310. const struct ggml_tensor * src0,
  5311. struct ggml_tensor * dst) {
  5312. assert(params->ith == 0);
  5313. assert(ggml_can_repeat(src0, dst));
  5314. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5315. return;
  5316. }
  5317. // TODO: implement support for rank > 2 tensors
  5318. assert(src0->ne[2] == 1);
  5319. assert(src0->ne[3] == 1);
  5320. assert( dst->ne[2] == 1);
  5321. assert( dst->ne[3] == 1);
  5322. const int nc = dst->ne[0];
  5323. const int nr = dst->ne[1];
  5324. const int nc0 = src0->ne[0];
  5325. const int nr0 = src0->ne[1];
  5326. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5327. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5328. // TODO: support for transposed / permuted tensors
  5329. assert( dst->nb[0] == sizeof(float));
  5330. assert(src0->nb[0] == sizeof(float));
  5331. // TODO: maybe this is not optimal?
  5332. for (int i = 0; i < nrr; i++) {
  5333. for (int j = 0; j < ncr; j++) {
  5334. for (int k = 0; k < nr0; k++) {
  5335. ggml_vec_cpy_f32(nc0,
  5336. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5337. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5338. }
  5339. }
  5340. }
  5341. }
  5342. static void ggml_compute_forward_repeat(
  5343. const struct ggml_compute_params * params,
  5344. const struct ggml_tensor * src0,
  5345. struct ggml_tensor * dst) {
  5346. switch (src0->type) {
  5347. case GGML_TYPE_F32:
  5348. {
  5349. ggml_compute_forward_repeat_f32(params, src0, dst);
  5350. } break;
  5351. default:
  5352. {
  5353. GGML_ASSERT(false);
  5354. } break;
  5355. }
  5356. }
  5357. // ggml_compute_forward_abs
  5358. static void ggml_compute_forward_abs_f32(
  5359. const struct ggml_compute_params * params,
  5360. const struct ggml_tensor * src0,
  5361. struct ggml_tensor * dst) {
  5362. assert(params->ith == 0);
  5363. assert(ggml_are_same_shape(src0, dst));
  5364. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5365. return;
  5366. }
  5367. const int n = ggml_nrows(src0);
  5368. const int nc = src0->ne[0];
  5369. assert(dst->nb[0] == sizeof(float));
  5370. assert(src0->nb[0] == sizeof(float));
  5371. for (int i = 0; i < n; i++) {
  5372. ggml_vec_abs_f32(nc,
  5373. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5374. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5375. }
  5376. }
  5377. static void ggml_compute_forward_abs(
  5378. const struct ggml_compute_params * params,
  5379. const struct ggml_tensor * src0,
  5380. struct ggml_tensor * dst) {
  5381. switch (src0->type) {
  5382. case GGML_TYPE_F32:
  5383. {
  5384. ggml_compute_forward_abs_f32(params, src0, dst);
  5385. } break;
  5386. default:
  5387. {
  5388. GGML_ASSERT(false);
  5389. } break;
  5390. }
  5391. }
  5392. // ggml_compute_forward_sgn
  5393. static void ggml_compute_forward_sgn_f32(
  5394. const struct ggml_compute_params * params,
  5395. const struct ggml_tensor * src0,
  5396. struct ggml_tensor * dst) {
  5397. assert(params->ith == 0);
  5398. assert(ggml_are_same_shape(src0, dst));
  5399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5400. return;
  5401. }
  5402. const int n = ggml_nrows(src0);
  5403. const int nc = src0->ne[0];
  5404. assert(dst->nb[0] == sizeof(float));
  5405. assert(src0->nb[0] == sizeof(float));
  5406. for (int i = 0; i < n; i++) {
  5407. ggml_vec_sgn_f32(nc,
  5408. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5409. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5410. }
  5411. }
  5412. static void ggml_compute_forward_sgn(
  5413. const struct ggml_compute_params * params,
  5414. const struct ggml_tensor * src0,
  5415. struct ggml_tensor * dst) {
  5416. switch (src0->type) {
  5417. case GGML_TYPE_F32:
  5418. {
  5419. ggml_compute_forward_sgn_f32(params, src0, dst);
  5420. } break;
  5421. default:
  5422. {
  5423. GGML_ASSERT(false);
  5424. } break;
  5425. }
  5426. }
  5427. // ggml_compute_forward_neg
  5428. static void ggml_compute_forward_neg_f32(
  5429. const struct ggml_compute_params * params,
  5430. const struct ggml_tensor * src0,
  5431. struct ggml_tensor * dst) {
  5432. assert(params->ith == 0);
  5433. assert(ggml_are_same_shape(src0, dst));
  5434. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5435. return;
  5436. }
  5437. const int n = ggml_nrows(src0);
  5438. const int nc = src0->ne[0];
  5439. assert(dst->nb[0] == sizeof(float));
  5440. assert(src0->nb[0] == sizeof(float));
  5441. for (int i = 0; i < n; i++) {
  5442. ggml_vec_neg_f32(nc,
  5443. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5444. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5445. }
  5446. }
  5447. static void ggml_compute_forward_neg(
  5448. const struct ggml_compute_params * params,
  5449. const struct ggml_tensor * src0,
  5450. struct ggml_tensor * dst) {
  5451. switch (src0->type) {
  5452. case GGML_TYPE_F32:
  5453. {
  5454. ggml_compute_forward_neg_f32(params, src0, dst);
  5455. } break;
  5456. default:
  5457. {
  5458. GGML_ASSERT(false);
  5459. } break;
  5460. }
  5461. }
  5462. // ggml_compute_forward_step
  5463. static void ggml_compute_forward_step_f32(
  5464. const struct ggml_compute_params * params,
  5465. const struct ggml_tensor * src0,
  5466. struct ggml_tensor * dst) {
  5467. assert(params->ith == 0);
  5468. assert(ggml_are_same_shape(src0, dst));
  5469. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5470. return;
  5471. }
  5472. const int n = ggml_nrows(src0);
  5473. const int nc = src0->ne[0];
  5474. assert(dst->nb[0] == sizeof(float));
  5475. assert(src0->nb[0] == sizeof(float));
  5476. for (int i = 0; i < n; i++) {
  5477. ggml_vec_step_f32(nc,
  5478. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5479. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5480. }
  5481. }
  5482. static void ggml_compute_forward_step(
  5483. const struct ggml_compute_params * params,
  5484. const struct ggml_tensor * src0,
  5485. struct ggml_tensor * dst) {
  5486. switch (src0->type) {
  5487. case GGML_TYPE_F32:
  5488. {
  5489. ggml_compute_forward_step_f32(params, src0, dst);
  5490. } break;
  5491. default:
  5492. {
  5493. GGML_ASSERT(false);
  5494. } break;
  5495. }
  5496. }
  5497. // ggml_compute_forward_relu
  5498. static void ggml_compute_forward_relu_f32(
  5499. const struct ggml_compute_params * params,
  5500. const struct ggml_tensor * src0,
  5501. struct ggml_tensor * dst) {
  5502. assert(params->ith == 0);
  5503. assert(ggml_are_same_shape(src0, dst));
  5504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5505. return;
  5506. }
  5507. const int n = ggml_nrows(src0);
  5508. const int nc = src0->ne[0];
  5509. assert(dst->nb[0] == sizeof(float));
  5510. assert(src0->nb[0] == sizeof(float));
  5511. for (int i = 0; i < n; i++) {
  5512. ggml_vec_relu_f32(nc,
  5513. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5514. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5515. }
  5516. }
  5517. static void ggml_compute_forward_relu(
  5518. const struct ggml_compute_params * params,
  5519. const struct ggml_tensor * src0,
  5520. struct ggml_tensor * dst) {
  5521. switch (src0->type) {
  5522. case GGML_TYPE_F32:
  5523. {
  5524. ggml_compute_forward_relu_f32(params, src0, dst);
  5525. } break;
  5526. default:
  5527. {
  5528. GGML_ASSERT(false);
  5529. } break;
  5530. }
  5531. }
  5532. // ggml_compute_forward_gelu
  5533. static void ggml_compute_forward_gelu_f32(
  5534. const struct ggml_compute_params * params,
  5535. const struct ggml_tensor * src0,
  5536. struct ggml_tensor * dst) {
  5537. GGML_ASSERT(ggml_is_contiguous(src0));
  5538. GGML_ASSERT(ggml_is_contiguous(dst));
  5539. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5540. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5541. return;
  5542. }
  5543. const int ith = params->ith;
  5544. const int nth = params->nth;
  5545. const int nc = src0->ne[0];
  5546. const int nr = ggml_nrows(src0);
  5547. // rows per thread
  5548. const int dr = (nr + nth - 1)/nth;
  5549. // row range for this thread
  5550. const int ir0 = dr*ith;
  5551. const int ir1 = MIN(ir0 + dr, nr);
  5552. for (int i1 = ir0; i1 < ir1; i1++) {
  5553. ggml_vec_gelu_f32(nc,
  5554. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5555. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5556. #ifndef NDEBUG
  5557. for (int k = 0; k < nc; k++) {
  5558. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5559. UNUSED(x);
  5560. assert(!isnan(x));
  5561. assert(!isinf(x));
  5562. }
  5563. #endif
  5564. }
  5565. }
  5566. static void ggml_compute_forward_gelu(
  5567. const struct ggml_compute_params * params,
  5568. const struct ggml_tensor * src0,
  5569. struct ggml_tensor * dst) {
  5570. switch (src0->type) {
  5571. case GGML_TYPE_F32:
  5572. {
  5573. ggml_compute_forward_gelu_f32(params, src0, dst);
  5574. } break;
  5575. default:
  5576. {
  5577. GGML_ASSERT(false);
  5578. } break;
  5579. }
  5580. //printf("XXXXXXXX gelu\n");
  5581. }
  5582. // ggml_compute_forward_silu
  5583. static void ggml_compute_forward_silu_f32(
  5584. const struct ggml_compute_params * params,
  5585. const struct ggml_tensor * src0,
  5586. struct ggml_tensor * dst) {
  5587. GGML_ASSERT(ggml_is_contiguous(src0));
  5588. GGML_ASSERT(ggml_is_contiguous(dst));
  5589. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5591. return;
  5592. }
  5593. const int ith = params->ith;
  5594. const int nth = params->nth;
  5595. const int nc = src0->ne[0];
  5596. const int nr = ggml_nrows(src0);
  5597. // rows per thread
  5598. const int dr = (nr + nth - 1)/nth;
  5599. // row range for this thread
  5600. const int ir0 = dr*ith;
  5601. const int ir1 = MIN(ir0 + dr, nr);
  5602. for (int i1 = ir0; i1 < ir1; i1++) {
  5603. ggml_vec_silu_f32(nc,
  5604. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5605. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5606. #ifndef NDEBUG
  5607. for (int k = 0; k < nc; k++) {
  5608. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5609. UNUSED(x);
  5610. assert(!isnan(x));
  5611. assert(!isinf(x));
  5612. }
  5613. #endif
  5614. }
  5615. }
  5616. static void ggml_compute_forward_silu(
  5617. const struct ggml_compute_params * params,
  5618. const struct ggml_tensor * src0,
  5619. struct ggml_tensor * dst) {
  5620. switch (src0->type) {
  5621. case GGML_TYPE_F32:
  5622. {
  5623. ggml_compute_forward_silu_f32(params, src0, dst);
  5624. } break;
  5625. default:
  5626. {
  5627. GGML_ASSERT(false);
  5628. } break;
  5629. }
  5630. }
  5631. // ggml_compute_forward_norm
  5632. static void ggml_compute_forward_norm_f32(
  5633. const struct ggml_compute_params * params,
  5634. const struct ggml_tensor * src0,
  5635. struct ggml_tensor * dst) {
  5636. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5637. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5638. return;
  5639. }
  5640. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5641. const int ith = params->ith;
  5642. const int nth = params->nth;
  5643. const int64_t ne00 = src0->ne[0];
  5644. const int64_t ne01 = src0->ne[1];
  5645. const int64_t ne02 = src0->ne[2];
  5646. const int64_t ne03 = src0->ne[3];
  5647. const size_t nb01 = src0->nb[1];
  5648. const size_t nb02 = src0->nb[2];
  5649. const size_t nb03 = src0->nb[3];
  5650. const size_t nb1 = dst->nb[1];
  5651. const size_t nb2 = dst->nb[2];
  5652. const size_t nb3 = dst->nb[3];
  5653. const float eps = 1e-5f; // TODO: make this a parameter
  5654. // TODO: optimize
  5655. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5656. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5657. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5658. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5659. ggml_float sum = 0.0;
  5660. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5661. sum += (ggml_float)x[i00];
  5662. }
  5663. float mean = sum/ne00;
  5664. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5665. ggml_float sum2 = 0.0;
  5666. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5667. float v = x[i00] - mean;
  5668. y[i00] = v;
  5669. sum2 += (ggml_float)(v*v);
  5670. }
  5671. float variance = sum2/ne00;
  5672. const float scale = 1.0f/sqrtf(variance + eps);
  5673. ggml_vec_scale_f32(ne00, y, scale);
  5674. }
  5675. }
  5676. }
  5677. }
  5678. static void ggml_compute_forward_norm(
  5679. const struct ggml_compute_params * params,
  5680. const struct ggml_tensor * src0,
  5681. struct ggml_tensor * dst) {
  5682. switch (src0->type) {
  5683. case GGML_TYPE_F32:
  5684. {
  5685. ggml_compute_forward_norm_f32(params, src0, dst);
  5686. } break;
  5687. default:
  5688. {
  5689. GGML_ASSERT(false);
  5690. } break;
  5691. }
  5692. }
  5693. static void ggml_compute_forward_rms_norm_f32(
  5694. const struct ggml_compute_params * params,
  5695. const struct ggml_tensor * src0,
  5696. struct ggml_tensor * dst) {
  5697. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5698. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5699. return;
  5700. }
  5701. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5702. const int ith = params->ith;
  5703. const int nth = params->nth;
  5704. const int64_t ne00 = src0->ne[0];
  5705. const int64_t ne01 = src0->ne[1];
  5706. const int64_t ne02 = src0->ne[2];
  5707. const int64_t ne03 = src0->ne[3];
  5708. const size_t nb01 = src0->nb[1];
  5709. const size_t nb02 = src0->nb[2];
  5710. const size_t nb03 = src0->nb[3];
  5711. const size_t nb1 = dst->nb[1];
  5712. const size_t nb2 = dst->nb[2];
  5713. const size_t nb3 = dst->nb[3];
  5714. const float eps = 1e-6f; // TODO: make this a parameter
  5715. // TODO: optimize
  5716. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5717. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5718. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5719. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5720. ggml_float sum = 0.0;
  5721. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5722. sum += (ggml_float)(x[i00] * x[i00]);
  5723. }
  5724. float mean = sum/ne00;
  5725. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5726. memcpy(y, x, ne00 * sizeof(float));
  5727. // for (int i00 = 0; i00 < ne00; i00++) {
  5728. // y[i00] = x[i00];
  5729. // }
  5730. const float scale = 1.0f/sqrtf(mean + eps);
  5731. ggml_vec_scale_f32(ne00, y, scale);
  5732. }
  5733. }
  5734. }
  5735. }
  5736. static void ggml_compute_forward_rms_norm(
  5737. const struct ggml_compute_params * params,
  5738. const struct ggml_tensor * src0,
  5739. struct ggml_tensor * dst) {
  5740. switch (src0->type) {
  5741. case GGML_TYPE_F32:
  5742. {
  5743. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5744. } break;
  5745. default:
  5746. {
  5747. GGML_ASSERT(false);
  5748. } break;
  5749. }
  5750. }
  5751. // ggml_compute_forward_mul_mat
  5752. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5753. // helper function to determine if it is better to use BLAS or not
  5754. // for large matrices, BLAS is faster
  5755. static bool ggml_compute_forward_mul_mat_use_blas(
  5756. const struct ggml_tensor * src0,
  5757. const struct ggml_tensor * src1,
  5758. struct ggml_tensor * dst) {
  5759. //const int64_t ne00 = src0->ne[0];
  5760. //const int64_t ne01 = src0->ne[1];
  5761. const int64_t ne10 = src1->ne[0];
  5762. const int64_t ne0 = dst->ne[0];
  5763. const int64_t ne1 = dst->ne[1];
  5764. // TODO: find the optimal values for these
  5765. if (ggml_is_contiguous(src0) &&
  5766. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5767. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5768. return true;
  5769. }
  5770. return false;
  5771. }
  5772. #endif
  5773. static void ggml_compute_forward_mul_mat_f32(
  5774. const struct ggml_compute_params * params,
  5775. const struct ggml_tensor * src0,
  5776. const struct ggml_tensor * src1,
  5777. struct ggml_tensor * dst) {
  5778. int64_t t0 = ggml_perf_time_us();
  5779. UNUSED(t0);
  5780. const int64_t ne00 = src0->ne[0];
  5781. const int64_t ne01 = src0->ne[1];
  5782. const int64_t ne02 = src0->ne[2];
  5783. const int64_t ne03 = src0->ne[3];
  5784. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5785. const int64_t ne10 = src1->ne[0];
  5786. #endif
  5787. const int64_t ne11 = src1->ne[1];
  5788. #ifndef NDEBUG
  5789. const int64_t ne12 = src1->ne[2];
  5790. const int64_t ne13 = src1->ne[3];
  5791. const int64_t ne0 = dst->ne[0];
  5792. const int64_t ne1 = dst->ne[1];
  5793. const int64_t ne2 = dst->ne[2];
  5794. const int64_t ne3 = dst->ne[3];
  5795. const int nb00 = src0->nb[0];
  5796. #endif
  5797. const int nb01 = src0->nb[1];
  5798. const int nb02 = src0->nb[2];
  5799. const int nb03 = src0->nb[3];
  5800. #ifndef NDEBUG
  5801. const int nb10 = src1->nb[0];
  5802. #endif
  5803. const int nb11 = src1->nb[1];
  5804. const int nb12 = src1->nb[2];
  5805. const int nb13 = src1->nb[3];
  5806. const int nb0 = dst->nb[0];
  5807. const int nb1 = dst->nb[1];
  5808. const int nb2 = dst->nb[2];
  5809. const int nb3 = dst->nb[3];
  5810. const int ith = params->ith;
  5811. const int nth = params->nth;
  5812. assert(ne02 == ne12);
  5813. assert(ne03 == ne13);
  5814. assert(ne2 == ne12);
  5815. assert(ne3 == ne13);
  5816. // we don't support permuted src0 or src1
  5817. assert(nb00 == sizeof(float));
  5818. assert(nb10 == sizeof(float));
  5819. // dst cannot be transposed or permuted
  5820. assert(nb0 == sizeof(float));
  5821. assert(nb0 <= nb1);
  5822. assert(nb1 <= nb2);
  5823. assert(nb2 <= nb3);
  5824. assert(ne0 == ne01);
  5825. assert(ne1 == ne11);
  5826. assert(ne2 == ne02);
  5827. assert(ne3 == ne03);
  5828. // nb01 >= nb00 - src0 is not transposed
  5829. // compute by src0 rows
  5830. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5831. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5832. if (params->ith != 0) {
  5833. return;
  5834. }
  5835. if (params->type == GGML_TASK_INIT) {
  5836. return;
  5837. }
  5838. if (params->type == GGML_TASK_FINALIZE) {
  5839. return;
  5840. }
  5841. #if defined(GGML_USE_CUBLAS)
  5842. float *d_X = NULL;
  5843. float *d_Y = NULL;
  5844. float *d_D = NULL;
  5845. const float alpha = 1.0f;
  5846. const float beta = 0.0f;
  5847. const int x_ne = ne01 * ne10;
  5848. const int y_ne = ne11 * ne10;
  5849. const int d_ne = ne11 * ne01;
  5850. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  5851. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  5852. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  5853. #endif
  5854. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5855. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5856. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5857. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5858. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5859. #if defined(GGML_USE_CUBLAS)
  5860. // copy data to device
  5861. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  5862. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  5863. // compute
  5864. CUBLAS_CHECK(
  5865. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  5866. ne01, ne11, ne10,
  5867. &alpha, d_X, ne00,
  5868. d_Y, ne10,
  5869. &beta, d_D, ne01));
  5870. // copy data to host
  5871. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  5872. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  5873. #else
  5874. // zT = y * xT
  5875. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5876. ne11, ne01, ne10,
  5877. 1.0f, y, ne10,
  5878. x, ne00,
  5879. 0.0f, d, ne01);
  5880. #endif
  5881. }
  5882. }
  5883. #if defined(GGML_USE_CUBLAS)
  5884. CUDA_CHECK(cudaFree(d_X));
  5885. CUDA_CHECK(cudaFree(d_Y));
  5886. CUDA_CHECK(cudaFree(d_D));
  5887. #endif
  5888. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5889. return;
  5890. }
  5891. #endif
  5892. if (params->type == GGML_TASK_INIT) {
  5893. return;
  5894. }
  5895. if (params->type == GGML_TASK_FINALIZE) {
  5896. return;
  5897. }
  5898. // parallelize by src0 rows using ggml_vec_dot_f32
  5899. // total rows in src0
  5900. const int nr = ne01*ne02*ne03;
  5901. // rows per thread
  5902. const int dr = (nr + nth - 1)/nth;
  5903. // row range for this thread
  5904. const int ir0 = dr*ith;
  5905. const int ir1 = MIN(ir0 + dr, nr);
  5906. for (int ir = ir0; ir < ir1; ++ir) {
  5907. // src0 indices
  5908. const int i03 = ir/(ne02*ne01);
  5909. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5910. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5911. for (int64_t ic = 0; ic < ne11; ++ic) {
  5912. // src1 indices
  5913. const int i13 = i03;
  5914. const int i12 = i02;
  5915. const int i11 = ic;
  5916. // dst indices
  5917. const int i0 = i01;
  5918. const int i1 = i11;
  5919. const int i2 = i02;
  5920. const int i3 = i03;
  5921. ggml_vec_dot_f32(ne00,
  5922. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5923. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5924. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5925. }
  5926. }
  5927. //int64_t t1 = ggml_perf_time_us();
  5928. //static int64_t acc = 0;
  5929. //acc += t1 - t0;
  5930. //if (t1 - t0 > 10) {
  5931. // printf("\n");
  5932. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5933. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5934. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5935. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5936. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5937. //}
  5938. }
  5939. static void ggml_compute_forward_mul_mat_f16_f32(
  5940. const struct ggml_compute_params * params,
  5941. const struct ggml_tensor * src0,
  5942. const struct ggml_tensor * src1,
  5943. struct ggml_tensor * dst) {
  5944. int64_t t0 = ggml_perf_time_us();
  5945. UNUSED(t0);
  5946. const int64_t ne00 = src0->ne[0];
  5947. const int64_t ne01 = src0->ne[1];
  5948. const int64_t ne02 = src0->ne[2];
  5949. const int64_t ne03 = src0->ne[3];
  5950. const int64_t ne10 = src1->ne[0];
  5951. const int64_t ne11 = src1->ne[1];
  5952. const int64_t ne12 = src1->ne[2];
  5953. const int64_t ne13 = src1->ne[3];
  5954. const int64_t ne0 = dst->ne[0];
  5955. const int64_t ne1 = dst->ne[1];
  5956. const int64_t ne2 = dst->ne[2];
  5957. const int64_t ne3 = dst->ne[3];
  5958. //const int64_t ne = ne0*ne1*ne2*ne3;
  5959. const int nb00 = src0->nb[0];
  5960. const int nb01 = src0->nb[1];
  5961. const int nb02 = src0->nb[2];
  5962. const int nb03 = src0->nb[3];
  5963. const int nb10 = src1->nb[0];
  5964. const int nb11 = src1->nb[1];
  5965. const int nb12 = src1->nb[2];
  5966. const int nb13 = src1->nb[3];
  5967. const int nb0 = dst->nb[0];
  5968. const int nb1 = dst->nb[1];
  5969. const int nb2 = dst->nb[2];
  5970. const int nb3 = dst->nb[3];
  5971. const int ith = params->ith;
  5972. const int nth = params->nth;
  5973. GGML_ASSERT(ne02 == ne12);
  5974. GGML_ASSERT(ne03 == ne13);
  5975. GGML_ASSERT(ne2 == ne12);
  5976. GGML_ASSERT(ne3 == ne13);
  5977. // TODO: we don't support permuted src0
  5978. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5979. // dst cannot be transposed or permuted
  5980. GGML_ASSERT(nb0 == sizeof(float));
  5981. GGML_ASSERT(nb0 <= nb1);
  5982. GGML_ASSERT(nb1 <= nb2);
  5983. GGML_ASSERT(nb2 <= nb3);
  5984. GGML_ASSERT(ne0 == ne01);
  5985. GGML_ASSERT(ne1 == ne11);
  5986. GGML_ASSERT(ne2 == ne02);
  5987. GGML_ASSERT(ne3 == ne03);
  5988. // nb01 >= nb00 - src0 is not transposed
  5989. // compute by src0 rows
  5990. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5991. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5992. GGML_ASSERT(nb10 == sizeof(float));
  5993. if (params->ith != 0) {
  5994. return;
  5995. }
  5996. if (params->type == GGML_TASK_INIT) {
  5997. return;
  5998. }
  5999. if (params->type == GGML_TASK_FINALIZE) {
  6000. return;
  6001. }
  6002. #if defined(GGML_USE_CUBLAS)
  6003. ggml_fp16_t * const wdata = params->wdata;
  6004. float *d_X = NULL;
  6005. float *d_Y = NULL;
  6006. float *d_D = NULL;
  6007. const float alpha = 1.0f;
  6008. const float beta = 0.0f;
  6009. const int x_ne = ne01 * ne10;
  6010. const int y_ne = ne11 * ne10;
  6011. const int d_ne = ne11 * ne01;
  6012. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(ggml_fp16_t) * x_ne));
  6013. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6014. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6015. #else
  6016. float * const wdata = params->wdata;
  6017. #endif
  6018. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6019. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6020. #if defined(GGML_USE_CUBLAS)
  6021. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6022. {
  6023. size_t id = 0;
  6024. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6025. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6026. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6027. }
  6028. }
  6029. }
  6030. #else
  6031. {
  6032. size_t id = 0;
  6033. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6034. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6035. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6036. }
  6037. }
  6038. }
  6039. #endif
  6040. #if defined(GGML_USE_CUBLAS)
  6041. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6042. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6043. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6044. // copy data to device
  6045. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6046. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6047. // compute
  6048. CUBLAS_CHECK(
  6049. cublasGemmEx(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6050. ne01, ne11, ne10,
  6051. &alpha, d_X, CUDA_R_16F, ne00,
  6052. d_Y, CUDA_R_16F, ne10,
  6053. &beta, d_D, CUDA_R_32F, ne01,
  6054. CUBLAS_COMPUTE_32F,
  6055. CUBLAS_GEMM_DEFAULT));
  6056. // copy data to host
  6057. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6058. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6059. #else
  6060. const float * x = wdata;
  6061. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6062. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6063. // zT = y * xT
  6064. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6065. ne11, ne01, ne10,
  6066. 1.0f, y, ne10,
  6067. x, ne00,
  6068. 0.0f, d, ne01);
  6069. #endif
  6070. }
  6071. }
  6072. #if defined(GGML_USE_CUBLAS)
  6073. CUDA_CHECK(cudaFree(d_X));
  6074. CUDA_CHECK(cudaFree(d_Y));
  6075. CUDA_CHECK(cudaFree(d_D));
  6076. #endif
  6077. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6078. return;
  6079. }
  6080. #endif
  6081. if (params->type == GGML_TASK_INIT) {
  6082. ggml_fp16_t * const wdata = params->wdata;
  6083. size_t id = 0;
  6084. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6085. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6086. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6087. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6088. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6089. }
  6090. }
  6091. }
  6092. }
  6093. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6094. return;
  6095. }
  6096. if (params->type == GGML_TASK_FINALIZE) {
  6097. return;
  6098. }
  6099. // fp16 -> half the size, so divide by 2
  6100. // TODO: do not support transposed src1
  6101. assert(nb10/2 == sizeof(ggml_fp16_t));
  6102. // parallelize by src0 rows using ggml_vec_dot_f16
  6103. // total rows in src0
  6104. const int nr = ne01*ne02*ne03;
  6105. // rows per thread
  6106. const int dr = (nr + nth - 1)/nth;
  6107. // row range for this thread
  6108. const int ir0 = dr*ith;
  6109. const int ir1 = MIN(ir0 + dr, nr);
  6110. ggml_fp16_t * wdata = params->wdata;
  6111. for (int ir = ir0; ir < ir1; ++ir) {
  6112. // src0 indices
  6113. const int i03 = ir/(ne02*ne01);
  6114. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6115. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6116. const int i13 = i03;
  6117. const int i12 = i02;
  6118. const int i0 = i01;
  6119. const int i2 = i02;
  6120. const int i3 = i03;
  6121. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6122. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6123. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6124. for (int64_t ic = 0; ic < ne11; ++ic) {
  6125. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6126. }
  6127. }
  6128. //int64_t t1 = ggml_time_us();
  6129. //static int64_t acc = 0;
  6130. //acc += t1 - t0;
  6131. //if (t1 - t0 > 10) {
  6132. // printf("\n");
  6133. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6134. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6135. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6136. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6137. //}
  6138. }
  6139. static void ggml_compute_forward_mul_mat_q_f32(
  6140. const struct ggml_compute_params * params,
  6141. const struct ggml_tensor * src0,
  6142. const struct ggml_tensor * src1,
  6143. struct ggml_tensor * dst) {
  6144. int64_t t0 = ggml_perf_time_us();
  6145. UNUSED(t0);
  6146. const int64_t ne00 = src0->ne[0];
  6147. const int64_t ne01 = src0->ne[1];
  6148. const int64_t ne02 = src0->ne[2];
  6149. const int64_t ne03 = src0->ne[3];
  6150. const int64_t ne10 = src1->ne[0];
  6151. const int64_t ne11 = src1->ne[1];
  6152. const int64_t ne12 = src1->ne[2];
  6153. const int64_t ne13 = src1->ne[3];
  6154. const int64_t ne0 = dst->ne[0];
  6155. const int64_t ne1 = dst->ne[1];
  6156. const int64_t ne2 = dst->ne[2];
  6157. const int64_t ne3 = dst->ne[3];
  6158. const int nb00 = src0->nb[0];
  6159. const int nb01 = src0->nb[1];
  6160. const int nb02 = src0->nb[2];
  6161. const int nb03 = src0->nb[3];
  6162. const int nb10 = src1->nb[0];
  6163. const int nb11 = src1->nb[1];
  6164. const int nb12 = src1->nb[2];
  6165. const int nb13 = src1->nb[3];
  6166. const int nb0 = dst->nb[0];
  6167. const int nb1 = dst->nb[1];
  6168. const int nb2 = dst->nb[2];
  6169. const int nb3 = dst->nb[3];
  6170. const int ith = params->ith;
  6171. const int nth = params->nth;
  6172. GGML_ASSERT(ne02 == ne12);
  6173. GGML_ASSERT(ne03 == ne13);
  6174. GGML_ASSERT(ne2 == ne12);
  6175. GGML_ASSERT(ne3 == ne13);
  6176. const enum ggml_type type = src0->type;
  6177. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6178. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6179. // we don't support permuted src0 or src1
  6180. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6181. GGML_ASSERT(nb10 == sizeof(float));
  6182. // dst cannot be transposed or permuted
  6183. GGML_ASSERT(nb0 == sizeof(float));
  6184. GGML_ASSERT(nb0 <= nb1);
  6185. GGML_ASSERT(nb1 <= nb2);
  6186. GGML_ASSERT(nb2 <= nb3);
  6187. GGML_ASSERT(ne0 == ne01);
  6188. GGML_ASSERT(ne1 == ne11);
  6189. GGML_ASSERT(ne2 == ne02);
  6190. GGML_ASSERT(ne3 == ne03);
  6191. // nb01 >= nb00 - src0 is not transposed
  6192. // compute by src0 rows
  6193. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6194. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6195. if (params->ith != 0) {
  6196. return;
  6197. }
  6198. if (params->type == GGML_TASK_INIT) {
  6199. return;
  6200. }
  6201. if (params->type == GGML_TASK_FINALIZE) {
  6202. return;
  6203. }
  6204. float * const wdata = params->wdata;
  6205. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6206. #if defined(GGML_USE_CUBLAS)
  6207. float *d_X = NULL;
  6208. float *d_Y = NULL;
  6209. float *d_D = NULL;
  6210. const float alpha = 1.0f;
  6211. const float beta = 0.0f;
  6212. const int x_ne = ne01 * ne10;
  6213. const int y_ne = ne11 * ne10;
  6214. const int d_ne = ne11 * ne01;
  6215. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6216. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6217. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6218. #endif
  6219. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6220. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6221. {
  6222. size_t id = 0;
  6223. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6224. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6225. id += ne00;
  6226. }
  6227. }
  6228. const float * x = wdata;
  6229. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6230. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6231. #if defined(GGML_USE_CUBLAS)
  6232. // copy data to device
  6233. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6234. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6235. // compute
  6236. CUBLAS_CHECK(
  6237. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6238. ne01, ne11, ne10,
  6239. &alpha, d_X, ne00,
  6240. d_Y, ne10,
  6241. &beta, d_D, ne01));
  6242. // copy data to host
  6243. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6244. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6245. #else
  6246. // zT = y * xT
  6247. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6248. ne11, ne01, ne10,
  6249. 1.0f, y, ne10,
  6250. x, ne00,
  6251. 0.0f, d, ne01);
  6252. #endif
  6253. }
  6254. }
  6255. #if defined(GGML_USE_CUBLAS)
  6256. CUDA_CHECK(cudaFree(d_X));
  6257. CUDA_CHECK(cudaFree(d_Y));
  6258. CUDA_CHECK(cudaFree(d_D));
  6259. #endif
  6260. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6261. return;
  6262. }
  6263. #endif
  6264. if (params->type == GGML_TASK_INIT) {
  6265. char * wdata = params->wdata;
  6266. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6267. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6268. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6269. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6270. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6271. wdata += row_size;
  6272. }
  6273. }
  6274. }
  6275. return;
  6276. }
  6277. if (params->type == GGML_TASK_FINALIZE) {
  6278. return;
  6279. }
  6280. // parallelize by src0 rows using ggml_vec_dot_q
  6281. // total rows in src0
  6282. const int nr = ne01*ne02*ne03;
  6283. // rows per thread
  6284. const int dr = (nr + nth - 1)/nth;
  6285. // row range for this thread
  6286. const int ir0 = dr*ith;
  6287. const int ir1 = MIN(ir0 + dr, nr);
  6288. void * wdata = params->wdata;
  6289. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6290. for (int ir = ir0; ir < ir1; ++ir) {
  6291. // src0 indices
  6292. const int i03 = ir/(ne02*ne01);
  6293. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6294. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6295. const int i13 = i03;
  6296. const int i12 = i02;
  6297. const int i0 = i01;
  6298. const int i2 = i02;
  6299. const int i3 = i03;
  6300. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6301. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6302. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6303. assert(ne00 % 32 == 0);
  6304. for (int64_t ic = 0; ic < ne11; ++ic) {
  6305. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6306. }
  6307. }
  6308. //int64_t t1 = ggml_time_us();
  6309. //static int64_t acc = 0;
  6310. //acc += t1 - t0;
  6311. //if (t1 - t0 > 10) {
  6312. // printf("\n");
  6313. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6314. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6315. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6316. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6317. //}
  6318. }
  6319. static void ggml_compute_forward_mul_mat(
  6320. const struct ggml_compute_params * params,
  6321. const struct ggml_tensor * src0,
  6322. const struct ggml_tensor * src1,
  6323. struct ggml_tensor * dst) {
  6324. switch (src0->type) {
  6325. case GGML_TYPE_Q4_0:
  6326. case GGML_TYPE_Q4_1:
  6327. case GGML_TYPE_Q4_2:
  6328. case GGML_TYPE_Q8_0:
  6329. {
  6330. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6331. } break;
  6332. case GGML_TYPE_F16:
  6333. {
  6334. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6335. } break;
  6336. case GGML_TYPE_F32:
  6337. {
  6338. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6339. } break;
  6340. default:
  6341. {
  6342. GGML_ASSERT(false);
  6343. } break;
  6344. }
  6345. #if 0
  6346. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  6347. static int first = 8;
  6348. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6349. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6350. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6351. if (first) {
  6352. --first;
  6353. } else {
  6354. for (int k = 0; k < dst->ne[1]; ++k) {
  6355. for (int j = 0; j < dst->ne[0]/16; ++j) {
  6356. for (int i = 0; i < 16; ++i) {
  6357. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6358. }
  6359. printf("\n");
  6360. }
  6361. printf("\n");
  6362. }
  6363. printf("\n");
  6364. exit(0);
  6365. }
  6366. } else {
  6367. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6368. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6369. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6370. }
  6371. #endif
  6372. }
  6373. // ggml_compute_forward_scale
  6374. static void ggml_compute_forward_scale_f32(
  6375. const struct ggml_compute_params * params,
  6376. const struct ggml_tensor * src0,
  6377. const struct ggml_tensor * src1,
  6378. struct ggml_tensor * dst) {
  6379. GGML_ASSERT(ggml_is_contiguous(src0));
  6380. GGML_ASSERT(ggml_is_contiguous(dst));
  6381. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6382. GGML_ASSERT(ggml_is_scalar(src1));
  6383. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6384. return;
  6385. }
  6386. // scale factor
  6387. const float v = *(float *) src1->data;
  6388. const int ith = params->ith;
  6389. const int nth = params->nth;
  6390. const int nc = src0->ne[0];
  6391. const int nr = ggml_nrows(src0);
  6392. // rows per thread
  6393. const int dr = (nr + nth - 1)/nth;
  6394. // row range for this thread
  6395. const int ir0 = dr*ith;
  6396. const int ir1 = MIN(ir0 + dr, nr);
  6397. for (int i1 = ir0; i1 < ir1; i1++) {
  6398. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6399. }
  6400. }
  6401. static void ggml_compute_forward_scale(
  6402. const struct ggml_compute_params * params,
  6403. const struct ggml_tensor * src0,
  6404. const struct ggml_tensor * src1,
  6405. struct ggml_tensor * dst) {
  6406. switch (src0->type) {
  6407. case GGML_TYPE_F32:
  6408. {
  6409. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6410. } break;
  6411. default:
  6412. {
  6413. GGML_ASSERT(false);
  6414. } break;
  6415. }
  6416. }
  6417. // ggml_compute_forward_cpy
  6418. static void ggml_compute_forward_cpy(
  6419. const struct ggml_compute_params * params,
  6420. const struct ggml_tensor * src0,
  6421. struct ggml_tensor * dst) {
  6422. ggml_compute_forward_dup(params, src0, dst);
  6423. }
  6424. // ggml_compute_forward_cont
  6425. static void ggml_compute_forward_cont(
  6426. const struct ggml_compute_params * params,
  6427. const struct ggml_tensor * src0,
  6428. struct ggml_tensor * dst) {
  6429. ggml_compute_forward_dup(params, src0, dst);
  6430. }
  6431. // ggml_compute_forward_reshape
  6432. static void ggml_compute_forward_reshape(
  6433. const struct ggml_compute_params * params,
  6434. const struct ggml_tensor * src0,
  6435. struct ggml_tensor * dst) {
  6436. // NOP
  6437. UNUSED(params);
  6438. UNUSED(src0);
  6439. UNUSED(dst);
  6440. }
  6441. // ggml_compute_forward_view
  6442. static void ggml_compute_forward_view(
  6443. const struct ggml_compute_params * params,
  6444. const struct ggml_tensor * src0) {
  6445. // NOP
  6446. UNUSED(params);
  6447. UNUSED(src0);
  6448. }
  6449. // ggml_compute_forward_permute
  6450. static void ggml_compute_forward_permute(
  6451. const struct ggml_compute_params * params,
  6452. const struct ggml_tensor * src0) {
  6453. // NOP
  6454. UNUSED(params);
  6455. UNUSED(src0);
  6456. }
  6457. // ggml_compute_forward_transpose
  6458. static void ggml_compute_forward_transpose(
  6459. const struct ggml_compute_params * params,
  6460. const struct ggml_tensor * src0) {
  6461. // NOP
  6462. UNUSED(params);
  6463. UNUSED(src0);
  6464. }
  6465. // ggml_compute_forward_get_rows
  6466. static void ggml_compute_forward_get_rows_q(
  6467. const struct ggml_compute_params * params,
  6468. const struct ggml_tensor * src0,
  6469. const struct ggml_tensor * src1,
  6470. struct ggml_tensor * dst) {
  6471. assert(params->ith == 0);
  6472. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6473. return;
  6474. }
  6475. const int nc = src0->ne[0];
  6476. const int nr = ggml_nelements(src1);
  6477. const enum ggml_type type = src0->type;
  6478. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6479. assert( dst->ne[0] == nc);
  6480. assert( dst->ne[1] == nr);
  6481. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6482. for (int i = 0; i < nr; ++i) {
  6483. const int r = ((int32_t *) src1->data)[i];
  6484. dequantize_row_q(
  6485. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6486. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6487. }
  6488. }
  6489. static void ggml_compute_forward_get_rows_f16(
  6490. const struct ggml_compute_params * params,
  6491. const struct ggml_tensor * src0,
  6492. const struct ggml_tensor * src1,
  6493. struct ggml_tensor * dst) {
  6494. assert(params->ith == 0);
  6495. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6496. return;
  6497. }
  6498. const int nc = src0->ne[0];
  6499. const int nr = ggml_nelements(src1);
  6500. assert( dst->ne[0] == nc);
  6501. assert( dst->ne[1] == nr);
  6502. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6503. for (int i = 0; i < nr; ++i) {
  6504. const int r = ((int32_t *) src1->data)[i];
  6505. for (int j = 0; j < nc; ++j) {
  6506. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6507. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6508. }
  6509. }
  6510. }
  6511. static void ggml_compute_forward_get_rows_f32(
  6512. const struct ggml_compute_params * params,
  6513. const struct ggml_tensor * src0,
  6514. const struct ggml_tensor * src1,
  6515. struct ggml_tensor * dst) {
  6516. assert(params->ith == 0);
  6517. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6518. return;
  6519. }
  6520. const int nc = src0->ne[0];
  6521. const int nr = ggml_nelements(src1);
  6522. assert( dst->ne[0] == nc);
  6523. assert( dst->ne[1] == nr);
  6524. assert(src0->nb[0] == sizeof(float));
  6525. for (int i = 0; i < nr; ++i) {
  6526. const int r = ((int32_t *) src1->data)[i];
  6527. ggml_vec_cpy_f32(nc,
  6528. (float *) ((char *) dst->data + i*dst->nb[1]),
  6529. (float *) ((char *) src0->data + r*src0->nb[1]));
  6530. }
  6531. }
  6532. static void ggml_compute_forward_get_rows(
  6533. const struct ggml_compute_params * params,
  6534. const struct ggml_tensor * src0,
  6535. const struct ggml_tensor * src1,
  6536. struct ggml_tensor * dst) {
  6537. switch (src0->type) {
  6538. case GGML_TYPE_Q4_0:
  6539. case GGML_TYPE_Q4_1:
  6540. case GGML_TYPE_Q4_2:
  6541. case GGML_TYPE_Q8_0:
  6542. {
  6543. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6544. } break;
  6545. case GGML_TYPE_F16:
  6546. {
  6547. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6548. } break;
  6549. case GGML_TYPE_F32:
  6550. {
  6551. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6552. } break;
  6553. default:
  6554. {
  6555. GGML_ASSERT(false);
  6556. } break;
  6557. }
  6558. //static bool first = true;
  6559. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6560. //if (first) {
  6561. // first = false;
  6562. //} else {
  6563. // for (int k = 0; k < dst->ne[1]; ++k) {
  6564. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6565. // for (int i = 0; i < 16; ++i) {
  6566. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6567. // }
  6568. // printf("\n");
  6569. // }
  6570. // printf("\n");
  6571. // }
  6572. // printf("\n");
  6573. // exit(0);
  6574. //}
  6575. }
  6576. // ggml_compute_forward_diag_mask_inf
  6577. static void ggml_compute_forward_diag_mask_inf_f32(
  6578. const struct ggml_compute_params * params,
  6579. const struct ggml_tensor * src0,
  6580. const struct ggml_tensor * src1,
  6581. struct ggml_tensor * dst) {
  6582. assert(params->ith == 0);
  6583. assert(src1->type == GGML_TYPE_I32);
  6584. assert(ggml_nelements(src1) == 1);
  6585. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6586. return;
  6587. }
  6588. const int n_past = ((int32_t *) src1->data)[0];
  6589. // TODO: handle transposed/permuted matrices
  6590. const int n = ggml_nrows(src0);
  6591. const int nc = src0->ne[0];
  6592. const int nr = src0->ne[1];
  6593. const int nz = n/nr;
  6594. assert( dst->nb[0] == sizeof(float));
  6595. assert(src0->nb[0] == sizeof(float));
  6596. for (int k = 0; k < nz; k++) {
  6597. for (int j = 0; j < nr; j++) {
  6598. for (int i = n_past; i < nc; i++) {
  6599. if (i > n_past + j) {
  6600. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6601. }
  6602. }
  6603. }
  6604. }
  6605. }
  6606. static void ggml_compute_forward_diag_mask_inf(
  6607. const struct ggml_compute_params * params,
  6608. const struct ggml_tensor * src0,
  6609. const struct ggml_tensor * src1,
  6610. struct ggml_tensor * dst) {
  6611. switch (src0->type) {
  6612. case GGML_TYPE_F32:
  6613. {
  6614. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6615. } break;
  6616. default:
  6617. {
  6618. GGML_ASSERT(false);
  6619. } break;
  6620. }
  6621. }
  6622. // ggml_compute_forward_soft_max
  6623. static void ggml_compute_forward_soft_max_f32(
  6624. const struct ggml_compute_params * params,
  6625. const struct ggml_tensor * src0,
  6626. struct ggml_tensor * dst) {
  6627. GGML_ASSERT(ggml_is_contiguous(src0));
  6628. GGML_ASSERT(ggml_is_contiguous(dst));
  6629. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6631. return;
  6632. }
  6633. // TODO: handle transposed/permuted matrices
  6634. const int ith = params->ith;
  6635. const int nth = params->nth;
  6636. const int nc = src0->ne[0];
  6637. const int nr = ggml_nrows(src0);
  6638. // rows per thread
  6639. const int dr = (nr + nth - 1)/nth;
  6640. // row range for this thread
  6641. const int ir0 = dr*ith;
  6642. const int ir1 = MIN(ir0 + dr, nr);
  6643. for (int i1 = ir0; i1 < ir1; i1++) {
  6644. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6645. #ifndef NDEBUG
  6646. for (int i = 0; i < nc; ++i) {
  6647. //printf("p[%d] = %f\n", i, p[i]);
  6648. assert(!isnan(p[i]));
  6649. }
  6650. #endif
  6651. float max = -INFINITY;
  6652. ggml_vec_max_f32(nc, &max, p);
  6653. ggml_float sum = 0.0;
  6654. uint16_t scvt;
  6655. for (int i = 0; i < nc; i++) {
  6656. if (p[i] == -INFINITY) {
  6657. p[i] = 0.0f;
  6658. } else {
  6659. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6660. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6661. memcpy(&scvt, &s, sizeof(scvt));
  6662. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6663. sum += (ggml_float)val;
  6664. p[i] = val;
  6665. }
  6666. }
  6667. assert(sum > 0.0);
  6668. sum = 1.0/sum;
  6669. ggml_vec_scale_f32(nc, p, sum);
  6670. #ifndef NDEBUG
  6671. for (int i = 0; i < nc; ++i) {
  6672. assert(!isnan(p[i]));
  6673. assert(!isinf(p[i]));
  6674. }
  6675. #endif
  6676. }
  6677. }
  6678. static void ggml_compute_forward_soft_max(
  6679. const struct ggml_compute_params * params,
  6680. const struct ggml_tensor * src0,
  6681. struct ggml_tensor * dst) {
  6682. switch (src0->type) {
  6683. case GGML_TYPE_F32:
  6684. {
  6685. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6686. } break;
  6687. default:
  6688. {
  6689. GGML_ASSERT(false);
  6690. } break;
  6691. }
  6692. }
  6693. // ggml_compute_forward_rope
  6694. static void ggml_compute_forward_rope_f32(
  6695. const struct ggml_compute_params * params,
  6696. const struct ggml_tensor * src0,
  6697. const struct ggml_tensor * src1,
  6698. struct ggml_tensor * dst) {
  6699. assert(src1->type == GGML_TYPE_I32);
  6700. assert(ggml_nelements(src1) == 3);
  6701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6702. return;
  6703. }
  6704. const int n_past = ((int32_t *) src1->data)[0];
  6705. const int n_dims = ((int32_t *) src1->data)[1];
  6706. const int mode = ((int32_t *) src1->data)[2];
  6707. //const int64_t ne0 = src0->ne[0];
  6708. const int64_t ne1 = src0->ne[1];
  6709. const int64_t ne2 = src0->ne[2];
  6710. const int64_t ne3 = src0->ne[3];
  6711. const int nb0 = src0->nb[0];
  6712. const int nb1 = src0->nb[1];
  6713. const int nb2 = src0->nb[2];
  6714. const int nb3 = src0->nb[3];
  6715. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6716. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6717. assert(nb0 == sizeof(float));
  6718. const int ith = params->ith;
  6719. const int nth = params->nth;
  6720. const int nr = ggml_nrows(src0);
  6721. // rows per thread
  6722. const int dr = (nr + nth - 1)/nth;
  6723. // row range for this thread
  6724. const int ir0 = dr*ith;
  6725. const int ir1 = MIN(ir0 + dr, nr);
  6726. // row index used to determine which thread to use
  6727. int ir = 0;
  6728. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6729. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6730. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6731. const int p = (mode == 0 ? n_past + i2 : i2);
  6732. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6733. if (ir++ < ir0) continue;
  6734. if (ir > ir1) break;
  6735. float theta = (float)p;
  6736. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6737. const float cos_theta = cosf(theta);
  6738. const float sin_theta = sinf(theta);
  6739. theta *= theta_scale;
  6740. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6741. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6742. const float x0 = src[0];
  6743. const float x1 = src[1];
  6744. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6745. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6746. }
  6747. }
  6748. }
  6749. }
  6750. }
  6751. static void ggml_compute_forward_rope_f16(
  6752. const struct ggml_compute_params * params,
  6753. const struct ggml_tensor * src0,
  6754. const struct ggml_tensor * src1,
  6755. struct ggml_tensor * dst) {
  6756. assert(src1->type == GGML_TYPE_I32);
  6757. assert(ggml_nelements(src1) == 3);
  6758. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6759. return;
  6760. }
  6761. const int n_past = ((int32_t *) src1->data)[0];
  6762. const int n_dims = ((int32_t *) src1->data)[1];
  6763. const int mode = ((int32_t *) src1->data)[2];
  6764. //const int64_t ne0 = src0->ne[0];
  6765. const int64_t ne1 = src0->ne[1];
  6766. const int64_t ne2 = src0->ne[2];
  6767. const int64_t ne3 = src0->ne[3];
  6768. const int nb0 = src0->nb[0];
  6769. const int nb1 = src0->nb[1];
  6770. const int nb2 = src0->nb[2];
  6771. const int nb3 = src0->nb[3];
  6772. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6773. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6774. assert(nb0 == sizeof(ggml_fp16_t));
  6775. const int ith = params->ith;
  6776. const int nth = params->nth;
  6777. const int nr = ggml_nrows(src0);
  6778. // rows per thread
  6779. const int dr = (nr + nth - 1)/nth;
  6780. // row range for this thread
  6781. const int ir0 = dr*ith;
  6782. const int ir1 = MIN(ir0 + dr, nr);
  6783. // row index used to determine which thread to use
  6784. int ir = 0;
  6785. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6786. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6787. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6788. const int p = (mode == 0 ? n_past + i2 : i2);
  6789. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6790. if (ir++ < ir0) continue;
  6791. if (ir > ir1) break;
  6792. float theta = (float)p;
  6793. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6794. const float cos_theta = cosf(theta);
  6795. const float sin_theta = sinf(theta);
  6796. theta *= theta_scale;
  6797. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6798. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6799. const float x0 = GGML_FP16_TO_FP32(src[0]);
  6800. const float x1 = GGML_FP16_TO_FP32(src[1]);
  6801. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  6802. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  6803. }
  6804. }
  6805. }
  6806. }
  6807. }
  6808. static void ggml_compute_forward_rope(
  6809. const struct ggml_compute_params * params,
  6810. const struct ggml_tensor * src0,
  6811. const struct ggml_tensor * src1,
  6812. struct ggml_tensor * dst) {
  6813. switch (src0->type) {
  6814. case GGML_TYPE_F16:
  6815. {
  6816. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6817. } break;
  6818. case GGML_TYPE_F32:
  6819. {
  6820. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6821. } break;
  6822. default:
  6823. {
  6824. GGML_ASSERT(false);
  6825. } break;
  6826. }
  6827. }
  6828. // ggml_compute_forward_conv_1d_1s
  6829. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6830. const struct ggml_compute_params * params,
  6831. const struct ggml_tensor * src0,
  6832. const struct ggml_tensor * src1,
  6833. struct ggml_tensor * dst) {
  6834. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6835. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6836. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6837. int64_t t0 = ggml_perf_time_us();
  6838. UNUSED(t0);
  6839. const int64_t ne00 = src0->ne[0];
  6840. const int64_t ne01 = src0->ne[1];
  6841. const int64_t ne02 = src0->ne[2];
  6842. //const int64_t ne03 = src0->ne[3];
  6843. const int64_t ne10 = src1->ne[0];
  6844. const int64_t ne11 = src1->ne[1];
  6845. //const int64_t ne12 = src1->ne[2];
  6846. //const int64_t ne13 = src1->ne[3];
  6847. //const int64_t ne0 = dst->ne[0];
  6848. //const int64_t ne1 = dst->ne[1];
  6849. //const int64_t ne2 = dst->ne[2];
  6850. //const int64_t ne3 = dst->ne[3];
  6851. //const int64_t ne = ne0*ne1*ne2*ne3;
  6852. const int nb00 = src0->nb[0];
  6853. const int nb01 = src0->nb[1];
  6854. const int nb02 = src0->nb[2];
  6855. //const int nb03 = src0->nb[3];
  6856. const int nb10 = src1->nb[0];
  6857. const int nb11 = src1->nb[1];
  6858. //const int nb12 = src1->nb[2];
  6859. //const int nb13 = src1->nb[3];
  6860. //const int nb0 = dst->nb[0];
  6861. const int nb1 = dst->nb[1];
  6862. //const int nb2 = dst->nb[2];
  6863. //const int nb3 = dst->nb[3];
  6864. const int ith = params->ith;
  6865. const int nth = params->nth;
  6866. const int nk = ne00;
  6867. const int nh = nk/2;
  6868. const int ew0 = ggml_up32(ne01);
  6869. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6870. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6871. GGML_ASSERT(nb10 == sizeof(float));
  6872. if (params->type == GGML_TASK_INIT) {
  6873. // TODO: fix this memset (wsize is overestimated)
  6874. memset(params->wdata, 0, params->wsize);
  6875. // prepare kernel data (src0)
  6876. {
  6877. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6878. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6879. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6880. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6881. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6882. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6883. dst_data[i00*ew0 + i01] = src[i00];
  6884. }
  6885. }
  6886. }
  6887. }
  6888. // prepare source data (src1)
  6889. {
  6890. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6891. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6892. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6893. ggml_fp16_t * dst_data = wdata;
  6894. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6895. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6896. }
  6897. }
  6898. }
  6899. return;
  6900. }
  6901. if (params->type == GGML_TASK_FINALIZE) {
  6902. return;
  6903. }
  6904. // total rows in dst
  6905. const int nr = ne02;
  6906. // rows per thread
  6907. const int dr = (nr + nth - 1)/nth;
  6908. // row range for this thread
  6909. const int ir0 = dr*ith;
  6910. const int ir1 = MIN(ir0 + dr, nr);
  6911. for (int i1 = ir0; i1 < ir1; i1++) {
  6912. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6913. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6914. dst_data[i0] = 0;
  6915. for (int k = -nh; k <= nh; k++) {
  6916. float v = 0.0f;
  6917. ggml_vec_dot_f16(ew0, &v,
  6918. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6919. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6920. dst_data[i0] += v;
  6921. }
  6922. }
  6923. }
  6924. }
  6925. static void ggml_compute_forward_conv_1d_1s_f32(
  6926. const struct ggml_compute_params * params,
  6927. const struct ggml_tensor * src0,
  6928. const struct ggml_tensor * src1,
  6929. struct ggml_tensor * dst) {
  6930. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6931. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6932. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6933. int64_t t0 = ggml_perf_time_us();
  6934. UNUSED(t0);
  6935. const int64_t ne00 = src0->ne[0];
  6936. const int64_t ne01 = src0->ne[1];
  6937. const int64_t ne02 = src0->ne[2];
  6938. //const int64_t ne03 = src0->ne[3];
  6939. const int64_t ne10 = src1->ne[0];
  6940. const int64_t ne11 = src1->ne[1];
  6941. //const int64_t ne12 = src1->ne[2];
  6942. //const int64_t ne13 = src1->ne[3];
  6943. //const int64_t ne0 = dst->ne[0];
  6944. //const int64_t ne1 = dst->ne[1];
  6945. //const int64_t ne2 = dst->ne[2];
  6946. //const int64_t ne3 = dst->ne[3];
  6947. //const int64_t ne = ne0*ne1*ne2*ne3;
  6948. const int nb00 = src0->nb[0];
  6949. const int nb01 = src0->nb[1];
  6950. const int nb02 = src0->nb[2];
  6951. //const int nb03 = src0->nb[3];
  6952. const int nb10 = src1->nb[0];
  6953. const int nb11 = src1->nb[1];
  6954. //const int nb12 = src1->nb[2];
  6955. //const int nb13 = src1->nb[3];
  6956. //const int nb0 = dst->nb[0];
  6957. const int nb1 = dst->nb[1];
  6958. //const int nb2 = dst->nb[2];
  6959. //const int nb3 = dst->nb[3];
  6960. const int ith = params->ith;
  6961. const int nth = params->nth;
  6962. const int nk = ne00;
  6963. const int nh = nk/2;
  6964. const int ew0 = ggml_up32(ne01);
  6965. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6966. GGML_ASSERT(nb00 == sizeof(float));
  6967. GGML_ASSERT(nb10 == sizeof(float));
  6968. if (params->type == GGML_TASK_INIT) {
  6969. // TODO: fix this memset (wsize is overestimated)
  6970. memset(params->wdata, 0, params->wsize);
  6971. // prepare kernel data (src0)
  6972. {
  6973. float * const wdata = (float *) params->wdata + 0;
  6974. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6975. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6976. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6977. float * dst_data = wdata + i02*ew0*ne00;
  6978. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6979. dst_data[i00*ew0 + i01] = src[i00];
  6980. }
  6981. }
  6982. }
  6983. }
  6984. // prepare source data (src1)
  6985. {
  6986. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6987. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6988. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6989. float * dst_data = wdata;
  6990. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6991. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6992. }
  6993. }
  6994. }
  6995. return;
  6996. }
  6997. if (params->type == GGML_TASK_FINALIZE) {
  6998. return;
  6999. }
  7000. // total rows in dst
  7001. const int nr = ne02;
  7002. // rows per thread
  7003. const int dr = (nr + nth - 1)/nth;
  7004. // row range for this thread
  7005. const int ir0 = dr*ith;
  7006. const int ir1 = MIN(ir0 + dr, nr);
  7007. for (int i1 = ir0; i1 < ir1; i1++) {
  7008. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7009. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7010. dst_data[i0] = 0;
  7011. for (int k = -nh; k <= nh; k++) {
  7012. float v = 0.0f;
  7013. ggml_vec_dot_f32(ew0, &v,
  7014. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7015. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7016. dst_data[i0] += v;
  7017. }
  7018. }
  7019. }
  7020. }
  7021. static void ggml_compute_forward_conv_1d_1s(
  7022. const struct ggml_compute_params * params,
  7023. const struct ggml_tensor * src0,
  7024. const struct ggml_tensor * src1,
  7025. struct ggml_tensor * dst) {
  7026. switch (src0->type) {
  7027. case GGML_TYPE_F16:
  7028. {
  7029. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7030. } break;
  7031. case GGML_TYPE_F32:
  7032. {
  7033. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7034. } break;
  7035. default:
  7036. {
  7037. GGML_ASSERT(false);
  7038. } break;
  7039. }
  7040. }
  7041. // ggml_compute_forward_conv_1d_2s
  7042. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7043. const struct ggml_compute_params * params,
  7044. const struct ggml_tensor * src0,
  7045. const struct ggml_tensor * src1,
  7046. struct ggml_tensor * dst) {
  7047. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7048. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7049. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7050. int64_t t0 = ggml_perf_time_us();
  7051. UNUSED(t0);
  7052. const int64_t ne00 = src0->ne[0];
  7053. const int64_t ne01 = src0->ne[1];
  7054. const int64_t ne02 = src0->ne[2];
  7055. //const int64_t ne03 = src0->ne[3];
  7056. const int64_t ne10 = src1->ne[0];
  7057. const int64_t ne11 = src1->ne[1];
  7058. //const int64_t ne12 = src1->ne[2];
  7059. //const int64_t ne13 = src1->ne[3];
  7060. //const int64_t ne0 = dst->ne[0];
  7061. //const int64_t ne1 = dst->ne[1];
  7062. //const int64_t ne2 = dst->ne[2];
  7063. //const int64_t ne3 = dst->ne[3];
  7064. //const int64_t ne = ne0*ne1*ne2*ne3;
  7065. const int nb00 = src0->nb[0];
  7066. const int nb01 = src0->nb[1];
  7067. const int nb02 = src0->nb[2];
  7068. //const int nb03 = src0->nb[3];
  7069. const int nb10 = src1->nb[0];
  7070. const int nb11 = src1->nb[1];
  7071. //const int nb12 = src1->nb[2];
  7072. //const int nb13 = src1->nb[3];
  7073. //const int nb0 = dst->nb[0];
  7074. const int nb1 = dst->nb[1];
  7075. //const int nb2 = dst->nb[2];
  7076. //const int nb3 = dst->nb[3];
  7077. const int ith = params->ith;
  7078. const int nth = params->nth;
  7079. const int nk = ne00;
  7080. const int nh = nk/2;
  7081. const int ew0 = ggml_up32(ne01);
  7082. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7083. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7084. GGML_ASSERT(nb10 == sizeof(float));
  7085. if (params->type == GGML_TASK_INIT) {
  7086. // TODO: fix this memset (wsize is overestimated)
  7087. memset(params->wdata, 0, params->wsize);
  7088. // prepare kernel data (src0)
  7089. {
  7090. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7091. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7092. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7093. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7094. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7095. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7096. dst_data[i00*ew0 + i01] = src[i00];
  7097. }
  7098. }
  7099. }
  7100. }
  7101. // prepare source data (src1)
  7102. {
  7103. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7104. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7105. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7106. ggml_fp16_t * dst_data = wdata;
  7107. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7108. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7109. }
  7110. }
  7111. }
  7112. return;
  7113. }
  7114. if (params->type == GGML_TASK_FINALIZE) {
  7115. return;
  7116. }
  7117. // total rows in dst
  7118. const int nr = ne02;
  7119. // rows per thread
  7120. const int dr = (nr + nth - 1)/nth;
  7121. // row range for this thread
  7122. const int ir0 = dr*ith;
  7123. const int ir1 = MIN(ir0 + dr, nr);
  7124. for (int i1 = ir0; i1 < ir1; i1++) {
  7125. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7126. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7127. dst_data[i0/2] = 0;
  7128. for (int k = -nh; k <= nh; k++) {
  7129. float v = 0.0f;
  7130. ggml_vec_dot_f16(ew0, &v,
  7131. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7132. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7133. dst_data[i0/2] += v;
  7134. }
  7135. }
  7136. }
  7137. }
  7138. static void ggml_compute_forward_conv_1d_2s_f32(
  7139. const struct ggml_compute_params * params,
  7140. const struct ggml_tensor * src0,
  7141. const struct ggml_tensor * src1,
  7142. struct ggml_tensor * dst) {
  7143. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7144. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7145. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7146. int64_t t0 = ggml_perf_time_us();
  7147. UNUSED(t0);
  7148. const int64_t ne00 = src0->ne[0];
  7149. const int64_t ne01 = src0->ne[1];
  7150. const int64_t ne02 = src0->ne[2];
  7151. //const int64_t ne03 = src0->ne[3];
  7152. const int64_t ne10 = src1->ne[0];
  7153. const int64_t ne11 = src1->ne[1];
  7154. //const int64_t ne12 = src1->ne[2];
  7155. //const int64_t ne13 = src1->ne[3];
  7156. //const int64_t ne0 = dst->ne[0];
  7157. //const int64_t ne1 = dst->ne[1];
  7158. //const int64_t ne2 = dst->ne[2];
  7159. //const int64_t ne3 = dst->ne[3];
  7160. //const int64_t ne = ne0*ne1*ne2*ne3;
  7161. const int nb00 = src0->nb[0];
  7162. const int nb01 = src0->nb[1];
  7163. const int nb02 = src0->nb[2];
  7164. //const int nb03 = src0->nb[3];
  7165. const int nb10 = src1->nb[0];
  7166. const int nb11 = src1->nb[1];
  7167. //const int nb12 = src1->nb[2];
  7168. //const int nb13 = src1->nb[3];
  7169. //const int nb0 = dst->nb[0];
  7170. const int nb1 = dst->nb[1];
  7171. //const int nb2 = dst->nb[2];
  7172. //const int nb3 = dst->nb[3];
  7173. const int ith = params->ith;
  7174. const int nth = params->nth;
  7175. const int nk = ne00;
  7176. const int nh = nk/2;
  7177. const int ew0 = ggml_up32(ne01);
  7178. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7179. GGML_ASSERT(nb00 == sizeof(float));
  7180. GGML_ASSERT(nb10 == sizeof(float));
  7181. if (params->type == GGML_TASK_INIT) {
  7182. // TODO: fix this memset (wsize is overestimated)
  7183. memset(params->wdata, 0, params->wsize);
  7184. // prepare kernel data (src0)
  7185. {
  7186. float * const wdata = (float *) params->wdata + 0;
  7187. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7188. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7189. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7190. float * dst_data = wdata + i02*ew0*ne00;
  7191. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7192. dst_data[i00*ew0 + i01] = src[i00];
  7193. }
  7194. }
  7195. }
  7196. }
  7197. // prepare source data (src1)
  7198. {
  7199. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7200. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7201. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7202. float * dst_data = wdata;
  7203. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7204. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7205. }
  7206. }
  7207. }
  7208. return;
  7209. }
  7210. if (params->type == GGML_TASK_FINALIZE) {
  7211. return;
  7212. }
  7213. // total rows in dst
  7214. const int nr = ne02;
  7215. // rows per thread
  7216. const int dr = (nr + nth - 1)/nth;
  7217. // row range for this thread
  7218. const int ir0 = dr*ith;
  7219. const int ir1 = MIN(ir0 + dr, nr);
  7220. for (int i1 = ir0; i1 < ir1; i1++) {
  7221. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7222. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7223. dst_data[i0/2] = 0;
  7224. for (int k = -nh; k <= nh; k++) {
  7225. float v = 0.0f;
  7226. ggml_vec_dot_f32(ew0, &v,
  7227. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7228. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7229. dst_data[i0/2] += v;
  7230. }
  7231. }
  7232. }
  7233. }
  7234. static void ggml_compute_forward_conv_1d_2s(
  7235. const struct ggml_compute_params * params,
  7236. const struct ggml_tensor * src0,
  7237. const struct ggml_tensor * src1,
  7238. struct ggml_tensor * dst) {
  7239. switch (src0->type) {
  7240. case GGML_TYPE_F16:
  7241. {
  7242. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7243. } break;
  7244. case GGML_TYPE_F32:
  7245. {
  7246. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7247. } break;
  7248. default:
  7249. {
  7250. GGML_ASSERT(false);
  7251. } break;
  7252. }
  7253. }
  7254. // ggml_compute_forward_flash_attn
  7255. static void ggml_compute_forward_flash_attn_f32(
  7256. const struct ggml_compute_params * params,
  7257. const struct ggml_tensor * q,
  7258. const struct ggml_tensor * k,
  7259. const struct ggml_tensor * v,
  7260. const bool masked,
  7261. struct ggml_tensor * dst) {
  7262. int64_t t0 = ggml_perf_time_us();
  7263. UNUSED(t0);
  7264. const int64_t neq0 = q->ne[0];
  7265. const int64_t neq1 = q->ne[1];
  7266. const int64_t neq2 = q->ne[2];
  7267. const int64_t neq3 = q->ne[3];
  7268. const int64_t nek0 = k->ne[0];
  7269. const int64_t nek1 = k->ne[1];
  7270. //const int64_t nek2 = k->ne[2];
  7271. //const int64_t nek3 = k->ne[3];
  7272. //const int64_t nev0 = v->ne[0];
  7273. const int64_t nev1 = v->ne[1];
  7274. //const int64_t nev2 = v->ne[2];
  7275. //const int64_t nev3 = v->ne[3];
  7276. const int64_t ne0 = dst->ne[0];
  7277. const int64_t ne1 = dst->ne[1];
  7278. //const int64_t ne2 = dst->ne[2];
  7279. //const int64_t ne3 = dst->ne[3];
  7280. const int nbk0 = k->nb[0];
  7281. const int nbk1 = k->nb[1];
  7282. const int nbk2 = k->nb[2];
  7283. const int nbk3 = k->nb[3];
  7284. const int nbq0 = q->nb[0];
  7285. const int nbq1 = q->nb[1];
  7286. const int nbq2 = q->nb[2];
  7287. const int nbq3 = q->nb[3];
  7288. const int nbv0 = v->nb[0];
  7289. const int nbv1 = v->nb[1];
  7290. const int nbv2 = v->nb[2];
  7291. const int nbv3 = v->nb[3];
  7292. const int nb0 = dst->nb[0];
  7293. const int nb1 = dst->nb[1];
  7294. const int nb2 = dst->nb[2];
  7295. const int nb3 = dst->nb[3];
  7296. const int ith = params->ith;
  7297. const int nth = params->nth;
  7298. const int64_t D = neq0;
  7299. const int64_t N = neq1;
  7300. const int64_t P = nek1 - N;
  7301. const int64_t M = P + N;
  7302. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7303. GGML_ASSERT(ne0 == D);
  7304. GGML_ASSERT(ne1 == N);
  7305. GGML_ASSERT(P >= 0);
  7306. GGML_ASSERT(nbq0 == sizeof(float));
  7307. GGML_ASSERT(nbk0 == sizeof(float));
  7308. GGML_ASSERT(nbv0 == sizeof(float));
  7309. GGML_ASSERT(neq0 == D);
  7310. GGML_ASSERT(nek0 == D);
  7311. GGML_ASSERT(nev1 == D);
  7312. GGML_ASSERT(neq1 == N);
  7313. GGML_ASSERT(nek1 == N + P);
  7314. GGML_ASSERT(nev1 == D);
  7315. // dst cannot be transposed or permuted
  7316. GGML_ASSERT(nb0 == sizeof(float));
  7317. GGML_ASSERT(nb0 <= nb1);
  7318. GGML_ASSERT(nb1 <= nb2);
  7319. GGML_ASSERT(nb2 <= nb3);
  7320. if (params->type == GGML_TASK_INIT) {
  7321. return;
  7322. }
  7323. if (params->type == GGML_TASK_FINALIZE) {
  7324. return;
  7325. }
  7326. // parallelize by q rows using ggml_vec_dot_f32
  7327. // total rows in q
  7328. const int nr = neq1*neq2*neq3;
  7329. // rows per thread
  7330. const int dr = (nr + nth - 1)/nth;
  7331. // row range for this thread
  7332. const int ir0 = dr*ith;
  7333. const int ir1 = MIN(ir0 + dr, nr);
  7334. const float scale = 1.0f/sqrtf(D);
  7335. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7336. for (int ir = ir0; ir < ir1; ++ir) {
  7337. // q indices
  7338. const int iq3 = ir/(neq2*neq1);
  7339. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7340. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7341. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7342. for (int i = M; i < Mup; ++i) {
  7343. S[i] = -INFINITY;
  7344. }
  7345. for (int64_t ic = 0; ic < nek1; ++ic) {
  7346. // k indices
  7347. const int ik3 = iq3;
  7348. const int ik2 = iq2;
  7349. const int ik1 = ic;
  7350. // S indices
  7351. const int i1 = ik1;
  7352. ggml_vec_dot_f32(neq0,
  7353. S + i1,
  7354. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7355. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7356. }
  7357. // scale
  7358. ggml_vec_scale_f32(nek1, S, scale);
  7359. if (masked) {
  7360. for (int64_t i = P; i < M; i++) {
  7361. if (i > P + iq1) {
  7362. S[i] = -INFINITY;
  7363. }
  7364. }
  7365. }
  7366. // softmax
  7367. {
  7368. float max = -INFINITY;
  7369. ggml_vec_max_f32(M, &max, S);
  7370. ggml_float sum = 0.0;
  7371. {
  7372. #ifdef GGML_SOFT_MAX_ACCELERATE
  7373. max = -max;
  7374. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7375. vvexpf(S, S, &Mup);
  7376. ggml_vec_sum_f32(Mup, &sum, S);
  7377. #else
  7378. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7379. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7380. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7381. float * SS = S + i;
  7382. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7383. if (SS[j] == -INFINITY) {
  7384. SS[j] = 0.0f;
  7385. } else {
  7386. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7387. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7388. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7389. sump[j] += (ggml_float)val;
  7390. SS[j] = val;
  7391. }
  7392. }
  7393. }
  7394. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7395. sum += sump[i];
  7396. }
  7397. #endif
  7398. }
  7399. assert(sum > 0.0);
  7400. sum = 1.0/sum;
  7401. ggml_vec_scale_f32(M, S, sum);
  7402. #ifndef NDEBUG
  7403. for (int i = 0; i < M; ++i) {
  7404. assert(!isnan(S[i]));
  7405. assert(!isinf(S[i]));
  7406. }
  7407. #endif
  7408. }
  7409. for (int64_t ic = 0; ic < nev1; ++ic) {
  7410. // dst indices
  7411. const int i1 = iq1;
  7412. const int i2 = iq2;
  7413. const int i3 = iq3;
  7414. ggml_vec_dot_f32(nek1,
  7415. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7416. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7417. S);
  7418. }
  7419. }
  7420. }
  7421. static void ggml_compute_forward_flash_attn_f16(
  7422. const struct ggml_compute_params * params,
  7423. const struct ggml_tensor * q,
  7424. const struct ggml_tensor * k,
  7425. const struct ggml_tensor * v,
  7426. const bool masked,
  7427. struct ggml_tensor * dst) {
  7428. int64_t t0 = ggml_perf_time_us();
  7429. UNUSED(t0);
  7430. const int64_t neq0 = q->ne[0];
  7431. const int64_t neq1 = q->ne[1];
  7432. const int64_t neq2 = q->ne[2];
  7433. const int64_t neq3 = q->ne[3];
  7434. const int64_t nek0 = k->ne[0];
  7435. const int64_t nek1 = k->ne[1];
  7436. //const int64_t nek2 = k->ne[2];
  7437. //const int64_t nek3 = k->ne[3];
  7438. //const int64_t nev0 = v->ne[0];
  7439. const int64_t nev1 = v->ne[1];
  7440. //const int64_t nev2 = v->ne[2];
  7441. //const int64_t nev3 = v->ne[3];
  7442. const int64_t ne0 = dst->ne[0];
  7443. const int64_t ne1 = dst->ne[1];
  7444. //const int64_t ne2 = dst->ne[2];
  7445. //const int64_t ne3 = dst->ne[3];
  7446. const int nbk0 = k->nb[0];
  7447. const int nbk1 = k->nb[1];
  7448. const int nbk2 = k->nb[2];
  7449. const int nbk3 = k->nb[3];
  7450. const int nbq0 = q->nb[0];
  7451. const int nbq1 = q->nb[1];
  7452. const int nbq2 = q->nb[2];
  7453. const int nbq3 = q->nb[3];
  7454. const int nbv0 = v->nb[0];
  7455. const int nbv1 = v->nb[1];
  7456. const int nbv2 = v->nb[2];
  7457. const int nbv3 = v->nb[3];
  7458. const int nb0 = dst->nb[0];
  7459. const int nb1 = dst->nb[1];
  7460. const int nb2 = dst->nb[2];
  7461. const int nb3 = dst->nb[3];
  7462. const int ith = params->ith;
  7463. const int nth = params->nth;
  7464. const int64_t D = neq0;
  7465. const int64_t N = neq1;
  7466. const int64_t P = nek1 - N;
  7467. const int64_t M = P + N;
  7468. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7469. GGML_ASSERT(ne0 == D);
  7470. GGML_ASSERT(ne1 == N);
  7471. GGML_ASSERT(P >= 0);
  7472. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7473. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7474. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7475. GGML_ASSERT(neq0 == D);
  7476. GGML_ASSERT(nek0 == D);
  7477. GGML_ASSERT(nev1 == D);
  7478. GGML_ASSERT(neq1 == N);
  7479. GGML_ASSERT(nek1 == N + P);
  7480. GGML_ASSERT(nev1 == D);
  7481. // dst cannot be transposed or permuted
  7482. GGML_ASSERT(nb0 == sizeof(float));
  7483. GGML_ASSERT(nb0 <= nb1);
  7484. GGML_ASSERT(nb1 <= nb2);
  7485. GGML_ASSERT(nb2 <= nb3);
  7486. if (params->type == GGML_TASK_INIT) {
  7487. return;
  7488. }
  7489. if (params->type == GGML_TASK_FINALIZE) {
  7490. return;
  7491. }
  7492. // parallelize by q rows using ggml_vec_dot_f32
  7493. // total rows in q
  7494. const int nr = neq1*neq2*neq3;
  7495. // rows per thread
  7496. const int dr = (nr + nth - 1)/nth;
  7497. // row range for this thread
  7498. const int ir0 = dr*ith;
  7499. const int ir1 = MIN(ir0 + dr, nr);
  7500. const float scale = 1.0f/sqrtf(D);
  7501. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7502. for (int ir = ir0; ir < ir1; ++ir) {
  7503. // q indices
  7504. const int iq3 = ir/(neq2*neq1);
  7505. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7506. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7507. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7508. for (int i = M; i < Mup; ++i) {
  7509. S[i] = -INFINITY;
  7510. }
  7511. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7512. for (int64_t ic = 0; ic < nek1; ++ic) {
  7513. // k indices
  7514. const int ik3 = iq3;
  7515. const int ik2 = iq2;
  7516. const int ik1 = ic;
  7517. // S indices
  7518. const int i1 = ik1;
  7519. ggml_vec_dot_f16(neq0,
  7520. S + i1,
  7521. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7522. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7523. }
  7524. } else {
  7525. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7526. // k indices
  7527. const int ik3 = iq3;
  7528. const int ik2 = iq2;
  7529. const int ik1 = ic;
  7530. // S indices
  7531. const int i1 = ik1;
  7532. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7533. S + i1,
  7534. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7535. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7536. }
  7537. }
  7538. // scale
  7539. ggml_vec_scale_f32(nek1, S, scale);
  7540. if (masked) {
  7541. for (int64_t i = P; i < M; i++) {
  7542. if (i > P + iq1) {
  7543. S[i] = -INFINITY;
  7544. }
  7545. }
  7546. }
  7547. // softmax
  7548. {
  7549. float max = -INFINITY;
  7550. ggml_vec_max_f32(M, &max, S);
  7551. ggml_float sum = 0.0;
  7552. {
  7553. #ifdef GGML_SOFT_MAX_ACCELERATE
  7554. max = -max;
  7555. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7556. vvexpf(S, S, &Mup);
  7557. ggml_vec_sum_f32(Mup, &sum, S);
  7558. #else
  7559. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7560. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7561. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7562. float * SS = S + i;
  7563. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7564. if (SS[j] == -INFINITY) {
  7565. SS[j] = 0.0f;
  7566. } else {
  7567. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7568. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7569. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7570. sump[j] += (ggml_float)val;
  7571. SS[j] = val;
  7572. }
  7573. }
  7574. }
  7575. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7576. sum += sump[i];
  7577. }
  7578. #endif
  7579. }
  7580. assert(sum > 0.0);
  7581. sum = 1.0/sum;
  7582. ggml_vec_scale_f32(M, S, sum);
  7583. #ifndef NDEBUG
  7584. for (int i = 0; i < M; ++i) {
  7585. assert(!isnan(S[i]));
  7586. assert(!isinf(S[i]));
  7587. }
  7588. #endif
  7589. }
  7590. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7591. for (int64_t i = 0; i < M; i++) {
  7592. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7593. }
  7594. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7595. for (int64_t ic = 0; ic < nev1; ++ic) {
  7596. // dst indices
  7597. const int i1 = iq1;
  7598. const int i2 = iq2;
  7599. const int i3 = iq3;
  7600. ggml_vec_dot_f16(nek1,
  7601. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7602. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7603. S16);
  7604. }
  7605. } else {
  7606. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7607. // dst indices
  7608. const int i1 = iq1;
  7609. const int i2 = iq2;
  7610. const int i3 = iq3;
  7611. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7612. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7613. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7614. S16);
  7615. }
  7616. }
  7617. }
  7618. }
  7619. static void ggml_compute_forward_flash_attn(
  7620. const struct ggml_compute_params * params,
  7621. const struct ggml_tensor * q,
  7622. const struct ggml_tensor * k,
  7623. const struct ggml_tensor * v,
  7624. const bool masked,
  7625. struct ggml_tensor * dst) {
  7626. switch (q->type) {
  7627. case GGML_TYPE_F16:
  7628. {
  7629. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7630. } break;
  7631. case GGML_TYPE_F32:
  7632. {
  7633. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7634. } break;
  7635. default:
  7636. {
  7637. GGML_ASSERT(false);
  7638. } break;
  7639. }
  7640. }
  7641. // ggml_compute_forward_flash_ff
  7642. static void ggml_compute_forward_flash_ff_f16(
  7643. const struct ggml_compute_params * params,
  7644. const struct ggml_tensor * a, // F16
  7645. const struct ggml_tensor * b0, // F16 fc_w
  7646. const struct ggml_tensor * b1, // F32 fc_b
  7647. const struct ggml_tensor * c0, // F16 proj_w
  7648. const struct ggml_tensor * c1, // F32 proj_b
  7649. struct ggml_tensor * dst) {
  7650. int64_t t0 = ggml_perf_time_us();
  7651. UNUSED(t0);
  7652. const int64_t nea0 = a->ne[0];
  7653. const int64_t nea1 = a->ne[1];
  7654. const int64_t nea2 = a->ne[2];
  7655. const int64_t nea3 = a->ne[3];
  7656. const int64_t neb00 = b0->ne[0];
  7657. const int64_t neb01 = b0->ne[1];
  7658. //const int64_t neb02 = b0->ne[2];
  7659. //const int64_t neb03 = b0->ne[3];
  7660. const int64_t neb10 = b1->ne[0];
  7661. const int64_t neb11 = b1->ne[1];
  7662. //const int64_t neb12 = b1->ne[2];
  7663. //const int64_t neb13 = b1->ne[3];
  7664. const int64_t nec00 = c0->ne[0];
  7665. const int64_t nec01 = c0->ne[1];
  7666. //const int64_t nec02 = c0->ne[2];
  7667. //const int64_t nec03 = c0->ne[3];
  7668. const int64_t nec10 = c1->ne[0];
  7669. const int64_t nec11 = c1->ne[1];
  7670. //const int64_t nec12 = c1->ne[2];
  7671. //const int64_t nec13 = c1->ne[3];
  7672. const int64_t ne0 = dst->ne[0];
  7673. const int64_t ne1 = dst->ne[1];
  7674. const int64_t ne2 = dst->ne[2];
  7675. //const int64_t ne3 = dst->ne[3];
  7676. const int nba0 = a->nb[0];
  7677. const int nba1 = a->nb[1];
  7678. const int nba2 = a->nb[2];
  7679. const int nba3 = a->nb[3];
  7680. const int nbb00 = b0->nb[0];
  7681. const int nbb01 = b0->nb[1];
  7682. const int nbb02 = b0->nb[2];
  7683. const int nbb03 = b0->nb[3];
  7684. const int nbb10 = b1->nb[0];
  7685. //const int nbb11 = b1->nb[1];
  7686. //const int nbb12 = b1->nb[2];
  7687. //const int nbb13 = b1->nb[3];
  7688. const int nbc00 = c0->nb[0];
  7689. const int nbc01 = c0->nb[1];
  7690. const int nbc02 = c0->nb[2];
  7691. const int nbc03 = c0->nb[3];
  7692. const int nbc10 = c1->nb[0];
  7693. //const int nbc11 = c1->nb[1];
  7694. //const int nbc12 = c1->nb[2];
  7695. //const int nbc13 = c1->nb[3];
  7696. const int nb0 = dst->nb[0];
  7697. const int nb1 = dst->nb[1];
  7698. const int nb2 = dst->nb[2];
  7699. const int nb3 = dst->nb[3];
  7700. const int ith = params->ith;
  7701. const int nth = params->nth;
  7702. const int64_t D = nea0;
  7703. //const int64_t N = nea1;
  7704. const int64_t M = neb01;
  7705. GGML_ASSERT(ne0 == nea0);
  7706. GGML_ASSERT(ne1 == nea1);
  7707. GGML_ASSERT(ne2 == nea2);
  7708. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7709. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7710. GGML_ASSERT(nbb10 == sizeof(float));
  7711. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7712. GGML_ASSERT(nbc10 == sizeof(float));
  7713. GGML_ASSERT(neb00 == D);
  7714. GGML_ASSERT(neb01 == M);
  7715. GGML_ASSERT(neb10 == M);
  7716. GGML_ASSERT(neb11 == 1);
  7717. GGML_ASSERT(nec00 == M);
  7718. GGML_ASSERT(nec01 == D);
  7719. GGML_ASSERT(nec10 == D);
  7720. GGML_ASSERT(nec11 == 1);
  7721. // dst cannot be transposed or permuted
  7722. GGML_ASSERT(nb0 == sizeof(float));
  7723. GGML_ASSERT(nb0 <= nb1);
  7724. GGML_ASSERT(nb1 <= nb2);
  7725. GGML_ASSERT(nb2 <= nb3);
  7726. if (params->type == GGML_TASK_INIT) {
  7727. return;
  7728. }
  7729. if (params->type == GGML_TASK_FINALIZE) {
  7730. return;
  7731. }
  7732. // parallelize by a rows using ggml_vec_dot_f32
  7733. // total rows in a
  7734. const int nr = nea1*nea2*nea3;
  7735. // rows per thread
  7736. const int dr = (nr + nth - 1)/nth;
  7737. // row range for this thread
  7738. const int ir0 = dr*ith;
  7739. const int ir1 = MIN(ir0 + dr, nr);
  7740. for (int ir = ir0; ir < ir1; ++ir) {
  7741. // a indices
  7742. const int ia3 = ir/(nea2*nea1);
  7743. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7744. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7745. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7746. for (int64_t ic = 0; ic < neb01; ++ic) {
  7747. // b0 indices
  7748. const int ib03 = ia3;
  7749. const int ib02 = ia2;
  7750. const int ib01 = ic;
  7751. // S indices
  7752. const int i1 = ib01;
  7753. ggml_vec_dot_f16(nea0,
  7754. S + i1,
  7755. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7756. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7757. }
  7758. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7759. //ggml_vec_gelu_f32(neb01, S, S);
  7760. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7761. for (int64_t i = 0; i < M; i++) {
  7762. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7763. }
  7764. ggml_vec_gelu_f16(neb01, S16, S16);
  7765. {
  7766. // dst indices
  7767. const int i1 = ia1;
  7768. const int i2 = ia2;
  7769. const int i3 = ia3;
  7770. for (int64_t ic = 0; ic < nec01; ++ic) {
  7771. ggml_vec_dot_f16(neb01,
  7772. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7773. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7774. S16);
  7775. }
  7776. ggml_vec_add_f32(nec01,
  7777. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7778. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7779. (float *) c1->data);
  7780. }
  7781. }
  7782. }
  7783. static void ggml_compute_forward_flash_ff(
  7784. const struct ggml_compute_params * params,
  7785. const struct ggml_tensor * a,
  7786. const struct ggml_tensor * b0,
  7787. const struct ggml_tensor * b1,
  7788. const struct ggml_tensor * c0,
  7789. const struct ggml_tensor * c1,
  7790. struct ggml_tensor * dst) {
  7791. switch (b0->type) {
  7792. case GGML_TYPE_F16:
  7793. {
  7794. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7795. } break;
  7796. case GGML_TYPE_F32:
  7797. {
  7798. GGML_ASSERT(false); // TODO
  7799. } break;
  7800. default:
  7801. {
  7802. GGML_ASSERT(false);
  7803. } break;
  7804. }
  7805. }
  7806. // ggml_compute_forward_map_unary
  7807. static void ggml_compute_forward_map_unary_f32(
  7808. const struct ggml_compute_params * params,
  7809. const struct ggml_tensor * src0,
  7810. struct ggml_tensor * dst,
  7811. const ggml_unary_op_f32_t fun) {
  7812. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7813. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7814. return;
  7815. }
  7816. const int n = ggml_nrows(src0);
  7817. const int nc = src0->ne[0];
  7818. assert( dst->nb[0] == sizeof(float));
  7819. assert(src0->nb[0] == sizeof(float));
  7820. for (int i = 0; i < n; i++) {
  7821. fun(nc,
  7822. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7823. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7824. }
  7825. }
  7826. static void ggml_compute_forward_map_unary(
  7827. const struct ggml_compute_params * params,
  7828. const struct ggml_tensor * src0,
  7829. struct ggml_tensor * dst,
  7830. const ggml_unary_op_f32_t fun) {
  7831. switch (src0->type) {
  7832. case GGML_TYPE_F32:
  7833. {
  7834. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  7835. } break;
  7836. default:
  7837. {
  7838. GGML_ASSERT(false);
  7839. } break;
  7840. }
  7841. }
  7842. // ggml_compute_forward_map_binary
  7843. static void ggml_compute_forward_map_binary_f32(
  7844. const struct ggml_compute_params * params,
  7845. const struct ggml_tensor * src0,
  7846. const struct ggml_tensor * src1,
  7847. struct ggml_tensor * dst,
  7848. const ggml_binary_op_f32_t fun) {
  7849. assert(params->ith == 0);
  7850. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7851. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7852. return;
  7853. }
  7854. const int n = ggml_nrows(src0);
  7855. const int nc = src0->ne[0];
  7856. assert( dst->nb[0] == sizeof(float));
  7857. assert(src0->nb[0] == sizeof(float));
  7858. assert(src1->nb[0] == sizeof(float));
  7859. for (int i = 0; i < n; i++) {
  7860. fun(nc,
  7861. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7862. (float *) ((char *) src0->data + i*(src0->nb[1])),
  7863. (float *) ((char *) src1->data + i*(src1->nb[1])));
  7864. }
  7865. }
  7866. static void ggml_compute_forward_map_binary(
  7867. const struct ggml_compute_params * params,
  7868. const struct ggml_tensor * src0,
  7869. const struct ggml_tensor * src1,
  7870. struct ggml_tensor * dst,
  7871. const ggml_binary_op_f32_t fun) {
  7872. switch (src0->type) {
  7873. case GGML_TYPE_F32:
  7874. {
  7875. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  7876. } break;
  7877. default:
  7878. {
  7879. GGML_ASSERT(false);
  7880. } break;
  7881. }
  7882. }
  7883. /////////////////////////////////
  7884. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7885. GGML_ASSERT(params);
  7886. switch (tensor->op) {
  7887. case GGML_OP_DUP:
  7888. {
  7889. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7890. } break;
  7891. case GGML_OP_ADD:
  7892. {
  7893. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7894. } break;
  7895. case GGML_OP_SUB:
  7896. {
  7897. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7898. } break;
  7899. case GGML_OP_MUL:
  7900. {
  7901. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7902. } break;
  7903. case GGML_OP_DIV:
  7904. {
  7905. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7906. } break;
  7907. case GGML_OP_SQR:
  7908. {
  7909. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7910. } break;
  7911. case GGML_OP_SQRT:
  7912. {
  7913. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7914. } break;
  7915. case GGML_OP_SUM:
  7916. {
  7917. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7918. } break;
  7919. case GGML_OP_MEAN:
  7920. {
  7921. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7922. } break;
  7923. case GGML_OP_REPEAT:
  7924. {
  7925. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7926. } break;
  7927. case GGML_OP_ABS:
  7928. {
  7929. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7930. } break;
  7931. case GGML_OP_SGN:
  7932. {
  7933. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7934. } break;
  7935. case GGML_OP_NEG:
  7936. {
  7937. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7938. } break;
  7939. case GGML_OP_STEP:
  7940. {
  7941. ggml_compute_forward_step(params, tensor->src0, tensor);
  7942. } break;
  7943. case GGML_OP_RELU:
  7944. {
  7945. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7946. } break;
  7947. case GGML_OP_GELU:
  7948. {
  7949. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7950. } break;
  7951. case GGML_OP_SILU:
  7952. {
  7953. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7954. } break;
  7955. case GGML_OP_NORM:
  7956. {
  7957. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7958. } break;
  7959. case GGML_OP_RMS_NORM:
  7960. {
  7961. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7962. } break;
  7963. case GGML_OP_MUL_MAT:
  7964. {
  7965. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7966. } break;
  7967. case GGML_OP_SCALE:
  7968. {
  7969. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7970. } break;
  7971. case GGML_OP_CPY:
  7972. {
  7973. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7974. } break;
  7975. case GGML_OP_CONT:
  7976. {
  7977. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7978. } break;
  7979. case GGML_OP_RESHAPE:
  7980. {
  7981. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7982. } break;
  7983. case GGML_OP_VIEW:
  7984. {
  7985. ggml_compute_forward_view(params, tensor->src0);
  7986. } break;
  7987. case GGML_OP_PERMUTE:
  7988. {
  7989. ggml_compute_forward_permute(params, tensor->src0);
  7990. } break;
  7991. case GGML_OP_TRANSPOSE:
  7992. {
  7993. ggml_compute_forward_transpose(params, tensor->src0);
  7994. } break;
  7995. case GGML_OP_GET_ROWS:
  7996. {
  7997. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7998. } break;
  7999. case GGML_OP_DIAG_MASK_INF:
  8000. {
  8001. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8002. } break;
  8003. case GGML_OP_SOFT_MAX:
  8004. {
  8005. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8006. } break;
  8007. case GGML_OP_ROPE:
  8008. {
  8009. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8010. } break;
  8011. case GGML_OP_CONV_1D_1S:
  8012. {
  8013. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8014. } break;
  8015. case GGML_OP_CONV_1D_2S:
  8016. {
  8017. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8018. } break;
  8019. case GGML_OP_FLASH_ATTN:
  8020. {
  8021. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8022. GGML_ASSERT(t == 0 || t == 1);
  8023. bool masked = t != 0;
  8024. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8025. } break;
  8026. case GGML_OP_FLASH_FF:
  8027. {
  8028. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8029. } break;
  8030. case GGML_OP_MAP_UNARY:
  8031. {
  8032. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8033. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8034. }
  8035. break;
  8036. case GGML_OP_MAP_BINARY:
  8037. {
  8038. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8039. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8040. }
  8041. break;
  8042. case GGML_OP_NONE:
  8043. {
  8044. // nop
  8045. } break;
  8046. case GGML_OP_COUNT:
  8047. {
  8048. GGML_ASSERT(false);
  8049. } break;
  8050. }
  8051. }
  8052. ////////////////////////////////////////////////////////////////////////////////
  8053. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8054. struct ggml_tensor * src0 = tensor->src0;
  8055. struct ggml_tensor * src1 = tensor->src1;
  8056. switch (tensor->op) {
  8057. case GGML_OP_DUP:
  8058. {
  8059. if (src0->grad) {
  8060. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8061. }
  8062. } break;
  8063. case GGML_OP_ADD:
  8064. {
  8065. if (src0->grad) {
  8066. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8067. }
  8068. if (src1->grad) {
  8069. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8070. }
  8071. } break;
  8072. case GGML_OP_SUB:
  8073. {
  8074. if (src0->grad) {
  8075. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8076. }
  8077. if (src1->grad) {
  8078. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8079. }
  8080. } break;
  8081. case GGML_OP_MUL:
  8082. {
  8083. if (src0->grad) {
  8084. src0->grad =
  8085. ggml_add_impl(ctx,
  8086. src0->grad,
  8087. ggml_mul(ctx, src1, tensor->grad),
  8088. inplace);
  8089. }
  8090. if (src1->grad) {
  8091. src1->grad =
  8092. ggml_add_impl(ctx,
  8093. src1->grad,
  8094. ggml_mul(ctx, src0, tensor->grad),
  8095. inplace);
  8096. }
  8097. } break;
  8098. case GGML_OP_DIV:
  8099. {
  8100. if (src0->grad) {
  8101. src0->grad =
  8102. ggml_add_impl(ctx,
  8103. src0->grad,
  8104. ggml_div(ctx, tensor->grad, src1),
  8105. inplace);
  8106. }
  8107. if (src1->grad) {
  8108. src1->grad =
  8109. ggml_sub_impl(ctx,
  8110. src1->grad,
  8111. ggml_mul(ctx,
  8112. tensor->grad,
  8113. ggml_div(ctx, tensor, src1)),
  8114. inplace);
  8115. }
  8116. } break;
  8117. case GGML_OP_SQR:
  8118. {
  8119. if (src0->grad) {
  8120. src0->grad =
  8121. ggml_add_impl(ctx,
  8122. src0->grad,
  8123. ggml_mul(ctx,
  8124. ggml_mul(ctx, src0, tensor->grad),
  8125. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8126. inplace);
  8127. }
  8128. } break;
  8129. case GGML_OP_SQRT:
  8130. {
  8131. if (src0->grad) {
  8132. src0->grad =
  8133. ggml_add_impl(ctx,
  8134. src0->grad,
  8135. ggml_div(ctx,
  8136. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8137. tensor),
  8138. inplace);
  8139. }
  8140. } break;
  8141. case GGML_OP_SUM:
  8142. {
  8143. if (src0->grad) {
  8144. src0->grad =
  8145. ggml_add_impl(ctx,
  8146. src0->grad,
  8147. ggml_repeat(ctx, tensor->grad, src0->grad),
  8148. inplace);
  8149. }
  8150. } break;
  8151. case GGML_OP_MEAN:
  8152. {
  8153. GGML_ASSERT(false); // TODO: implement
  8154. } break;
  8155. case GGML_OP_REPEAT:
  8156. {
  8157. if (src0->grad) {
  8158. src0->grad =
  8159. ggml_add_impl(ctx,
  8160. src0->grad,
  8161. ggml_sum(ctx, tensor->grad),
  8162. inplace);
  8163. }
  8164. } break;
  8165. case GGML_OP_ABS:
  8166. {
  8167. if (src0->grad) {
  8168. src0->grad =
  8169. ggml_add_impl(ctx,
  8170. src0->grad,
  8171. ggml_mul(ctx,
  8172. ggml_sgn(ctx, src0),
  8173. tensor->grad),
  8174. inplace);
  8175. }
  8176. } break;
  8177. case GGML_OP_SGN:
  8178. {
  8179. if (src0->grad) {
  8180. // noop
  8181. }
  8182. } break;
  8183. case GGML_OP_NEG:
  8184. {
  8185. if (src0->grad) {
  8186. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8187. }
  8188. } break;
  8189. case GGML_OP_STEP:
  8190. {
  8191. if (src0->grad) {
  8192. // noop
  8193. }
  8194. } break;
  8195. case GGML_OP_RELU:
  8196. {
  8197. if (src0->grad) {
  8198. src0->grad = ggml_sub_impl(ctx,
  8199. src0->grad,
  8200. ggml_mul(ctx,
  8201. ggml_step(ctx, src0),
  8202. tensor->grad),
  8203. inplace);
  8204. }
  8205. } break;
  8206. case GGML_OP_GELU:
  8207. {
  8208. GGML_ASSERT(false); // TODO: not implemented
  8209. } break;
  8210. case GGML_OP_SILU:
  8211. {
  8212. GGML_ASSERT(false); // TODO: not implemented
  8213. } break;
  8214. case GGML_OP_NORM:
  8215. {
  8216. GGML_ASSERT(false); // TODO: not implemented
  8217. } break;
  8218. case GGML_OP_RMS_NORM:
  8219. {
  8220. GGML_ASSERT(false); // TODO: not implemented
  8221. } break;
  8222. case GGML_OP_MUL_MAT:
  8223. {
  8224. if (src0->grad) {
  8225. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8226. GGML_ASSERT(false);
  8227. }
  8228. if (src1->grad) {
  8229. src1->grad =
  8230. ggml_add_impl(ctx,
  8231. src1->grad,
  8232. ggml_mul_mat(ctx,
  8233. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8234. tensor->grad),
  8235. inplace);
  8236. }
  8237. } break;
  8238. case GGML_OP_SCALE:
  8239. {
  8240. GGML_ASSERT(false); // TODO: not implemented
  8241. } break;
  8242. case GGML_OP_CPY:
  8243. {
  8244. GGML_ASSERT(false); // TODO: not implemented
  8245. } break;
  8246. case GGML_OP_CONT:
  8247. {
  8248. GGML_ASSERT(false); // TODO: not implemented
  8249. } break;
  8250. case GGML_OP_RESHAPE:
  8251. {
  8252. GGML_ASSERT(false); // TODO: not implemented
  8253. } break;
  8254. case GGML_OP_VIEW:
  8255. {
  8256. GGML_ASSERT(false); // not supported
  8257. } break;
  8258. case GGML_OP_PERMUTE:
  8259. {
  8260. GGML_ASSERT(false); // TODO: not implemented
  8261. } break;
  8262. case GGML_OP_TRANSPOSE:
  8263. {
  8264. GGML_ASSERT(false); // TODO: not implemented
  8265. } break;
  8266. case GGML_OP_GET_ROWS:
  8267. {
  8268. GGML_ASSERT(false); // TODO: not implemented
  8269. } break;
  8270. case GGML_OP_DIAG_MASK_INF:
  8271. {
  8272. GGML_ASSERT(false); // TODO: not implemented
  8273. } break;
  8274. case GGML_OP_SOFT_MAX:
  8275. {
  8276. GGML_ASSERT(false); // TODO: not implemented
  8277. } break;
  8278. case GGML_OP_ROPE:
  8279. {
  8280. GGML_ASSERT(false); // TODO: not implemented
  8281. } break;
  8282. case GGML_OP_CONV_1D_1S:
  8283. {
  8284. GGML_ASSERT(false); // TODO: not implemented
  8285. } break;
  8286. case GGML_OP_CONV_1D_2S:
  8287. {
  8288. GGML_ASSERT(false); // TODO: not implemented
  8289. } break;
  8290. case GGML_OP_FLASH_ATTN:
  8291. {
  8292. GGML_ASSERT(false); // not supported
  8293. } break;
  8294. case GGML_OP_FLASH_FF:
  8295. {
  8296. GGML_ASSERT(false); // not supported
  8297. } break;
  8298. case GGML_OP_MAP_UNARY:
  8299. case GGML_OP_MAP_BINARY:
  8300. {
  8301. GGML_ASSERT(false); // not supported
  8302. } break;
  8303. case GGML_OP_NONE:
  8304. {
  8305. // nop
  8306. } break;
  8307. case GGML_OP_COUNT:
  8308. {
  8309. GGML_ASSERT(false);
  8310. } break;
  8311. }
  8312. }
  8313. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8314. if (node->grad == NULL) {
  8315. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8316. // it can also happen during forward pass, if the user performs computations with constants
  8317. if (node->op != GGML_OP_NONE) {
  8318. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8319. }
  8320. }
  8321. // check if already visited
  8322. for (int i = 0; i < cgraph->n_nodes; i++) {
  8323. if (cgraph->nodes[i] == node) {
  8324. return;
  8325. }
  8326. }
  8327. for (int i = 0; i < cgraph->n_leafs; i++) {
  8328. if (cgraph->leafs[i] == node) {
  8329. return;
  8330. }
  8331. }
  8332. if (node->src0) {
  8333. ggml_visit_parents(cgraph, node->src0);
  8334. }
  8335. if (node->src1) {
  8336. ggml_visit_parents(cgraph, node->src1);
  8337. }
  8338. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8339. if (node->opt[i]) {
  8340. ggml_visit_parents(cgraph, node->opt[i]);
  8341. }
  8342. }
  8343. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8344. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8345. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8346. cgraph->leafs[cgraph->n_leafs] = node;
  8347. cgraph->n_leafs++;
  8348. } else {
  8349. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8350. cgraph->nodes[cgraph->n_nodes] = node;
  8351. cgraph->grads[cgraph->n_nodes] = node->grad;
  8352. cgraph->n_nodes++;
  8353. }
  8354. }
  8355. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8356. if (!expand) {
  8357. cgraph->n_nodes = 0;
  8358. cgraph->n_leafs = 0;
  8359. }
  8360. const int n0 = cgraph->n_nodes;
  8361. UNUSED(n0);
  8362. ggml_visit_parents(cgraph, tensor);
  8363. const int n_new = cgraph->n_nodes - n0;
  8364. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8365. if (n_new > 0) {
  8366. // the last added node should always be starting point
  8367. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8368. }
  8369. }
  8370. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8371. ggml_build_forward_impl(cgraph, tensor, true);
  8372. }
  8373. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8374. struct ggml_cgraph result = {
  8375. /*.n_nodes =*/ 0,
  8376. /*.n_leafs =*/ 0,
  8377. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8378. /*.work_size =*/ 0,
  8379. /*.work =*/ NULL,
  8380. /*.nodes =*/ { NULL },
  8381. /*.grads =*/ { NULL },
  8382. /*.leafs =*/ { NULL },
  8383. /*.perf_runs =*/ 0,
  8384. /*.perf_cycles =*/ 0,
  8385. /*.perf_time_us =*/ 0,
  8386. };
  8387. ggml_build_forward_impl(&result, tensor, false);
  8388. return result;
  8389. }
  8390. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8391. struct ggml_cgraph result = *gf;
  8392. GGML_ASSERT(gf->n_nodes > 0);
  8393. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8394. if (keep) {
  8395. for (int i = 0; i < gf->n_nodes; i++) {
  8396. struct ggml_tensor * node = gf->nodes[i];
  8397. if (node->grad) {
  8398. node->grad = ggml_dup_tensor(ctx, node);
  8399. gf->grads[i] = node->grad;
  8400. }
  8401. }
  8402. }
  8403. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8404. struct ggml_tensor * node = gf->nodes[i];
  8405. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8406. if (node->grad) {
  8407. ggml_compute_backward(ctx, node, keep);
  8408. }
  8409. }
  8410. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8411. struct ggml_tensor * node = gf->nodes[i];
  8412. if (node->is_param) {
  8413. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8414. ggml_build_forward_impl(&result, node->grad, true);
  8415. }
  8416. }
  8417. return result;
  8418. }
  8419. //
  8420. // thread data
  8421. //
  8422. // synchronization is done via busy loops
  8423. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8424. //
  8425. #ifdef __APPLE__
  8426. //#include <os/lock.h>
  8427. //
  8428. //typedef os_unfair_lock ggml_lock_t;
  8429. //
  8430. //#define ggml_lock_init(x) UNUSED(x)
  8431. //#define ggml_lock_destroy(x) UNUSED(x)
  8432. //#define ggml_lock_lock os_unfair_lock_lock
  8433. //#define ggml_lock_unlock os_unfair_lock_unlock
  8434. //
  8435. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8436. typedef int ggml_lock_t;
  8437. #define ggml_lock_init(x) UNUSED(x)
  8438. #define ggml_lock_destroy(x) UNUSED(x)
  8439. #define ggml_lock_lock(x) UNUSED(x)
  8440. #define ggml_lock_unlock(x) UNUSED(x)
  8441. #define GGML_LOCK_INITIALIZER 0
  8442. typedef pthread_t ggml_thread_t;
  8443. #define ggml_thread_create pthread_create
  8444. #define ggml_thread_join pthread_join
  8445. #else
  8446. //typedef pthread_spinlock_t ggml_lock_t;
  8447. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8448. //#define ggml_lock_destroy pthread_spin_destroy
  8449. //#define ggml_lock_lock pthread_spin_lock
  8450. //#define ggml_lock_unlock pthread_spin_unlock
  8451. typedef int ggml_lock_t;
  8452. #define ggml_lock_init(x) UNUSED(x)
  8453. #define ggml_lock_destroy(x) UNUSED(x)
  8454. #define ggml_lock_lock(x) UNUSED(x)
  8455. #define ggml_lock_unlock(x) UNUSED(x)
  8456. #define GGML_LOCK_INITIALIZER 0
  8457. typedef pthread_t ggml_thread_t;
  8458. #define ggml_thread_create pthread_create
  8459. #define ggml_thread_join pthread_join
  8460. #endif
  8461. struct ggml_compute_state_shared {
  8462. ggml_lock_t spin;
  8463. int n_threads;
  8464. // synchronization primitives
  8465. atomic_int n_ready;
  8466. atomic_bool has_work;
  8467. atomic_bool stop; // stop all threads
  8468. };
  8469. struct ggml_compute_state {
  8470. ggml_thread_t thrd;
  8471. struct ggml_compute_params params;
  8472. struct ggml_tensor * node;
  8473. struct ggml_compute_state_shared * shared;
  8474. };
  8475. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8476. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8477. const int n_threads = state->shared->n_threads;
  8478. while (true) {
  8479. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8480. atomic_store(&state->shared->has_work, false);
  8481. } else {
  8482. while (atomic_load(&state->shared->has_work)) {
  8483. if (atomic_load(&state->shared->stop)) {
  8484. return 0;
  8485. }
  8486. ggml_lock_lock (&state->shared->spin);
  8487. ggml_lock_unlock(&state->shared->spin);
  8488. }
  8489. }
  8490. atomic_fetch_sub(&state->shared->n_ready, 1);
  8491. // wait for work
  8492. while (!atomic_load(&state->shared->has_work)) {
  8493. if (atomic_load(&state->shared->stop)) {
  8494. return 0;
  8495. }
  8496. ggml_lock_lock (&state->shared->spin);
  8497. ggml_lock_unlock(&state->shared->spin);
  8498. }
  8499. // check if we should stop
  8500. if (atomic_load(&state->shared->stop)) {
  8501. break;
  8502. }
  8503. if (state->node) {
  8504. if (state->params.ith < state->params.nth) {
  8505. ggml_compute_forward(&state->params, state->node);
  8506. }
  8507. state->node = NULL;
  8508. } else {
  8509. break;
  8510. }
  8511. }
  8512. return 0;
  8513. }
  8514. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8515. const int n_threads = cgraph->n_threads;
  8516. struct ggml_compute_state_shared state_shared = {
  8517. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8518. /*.n_threads =*/ n_threads,
  8519. /*.n_ready =*/ 0,
  8520. /*.has_work =*/ false,
  8521. /*.stop =*/ false,
  8522. };
  8523. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8524. // create thread pool
  8525. if (n_threads > 1) {
  8526. ggml_lock_init(&state_shared.spin);
  8527. atomic_store(&state_shared.has_work, true);
  8528. for (int j = 0; j < n_threads - 1; j++) {
  8529. workers[j] = (struct ggml_compute_state) {
  8530. .thrd = 0,
  8531. .params = {
  8532. .type = GGML_TASK_COMPUTE,
  8533. .ith = j + 1,
  8534. .nth = n_threads,
  8535. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8536. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8537. },
  8538. .node = NULL,
  8539. .shared = &state_shared,
  8540. };
  8541. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8542. GGML_ASSERT(rc == 0);
  8543. UNUSED(rc);
  8544. }
  8545. }
  8546. // initialize tasks + work buffer
  8547. {
  8548. size_t work_size = 0;
  8549. // thread scheduling for the different operations
  8550. for (int i = 0; i < cgraph->n_nodes; i++) {
  8551. struct ggml_tensor * node = cgraph->nodes[i];
  8552. switch (node->op) {
  8553. case GGML_OP_CPY:
  8554. case GGML_OP_DUP:
  8555. {
  8556. node->n_tasks = n_threads;
  8557. size_t cur = 0;
  8558. if (ggml_is_quantized(node->type)) {
  8559. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8560. }
  8561. work_size = MAX(work_size, cur);
  8562. } break;
  8563. case GGML_OP_ADD:
  8564. {
  8565. node->n_tasks = n_threads;
  8566. size_t cur = 0;
  8567. if (ggml_is_quantized(node->src0->type)) {
  8568. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8569. }
  8570. work_size = MAX(work_size, cur);
  8571. } break;
  8572. case GGML_OP_SUB:
  8573. case GGML_OP_MUL:
  8574. case GGML_OP_DIV:
  8575. case GGML_OP_SQR:
  8576. case GGML_OP_SQRT:
  8577. case GGML_OP_SUM:
  8578. case GGML_OP_MEAN:
  8579. case GGML_OP_REPEAT:
  8580. case GGML_OP_ABS:
  8581. case GGML_OP_SGN:
  8582. case GGML_OP_NEG:
  8583. case GGML_OP_STEP:
  8584. case GGML_OP_RELU:
  8585. {
  8586. node->n_tasks = 1;
  8587. } break;
  8588. case GGML_OP_GELU:
  8589. {
  8590. node->n_tasks = n_threads;
  8591. } break;
  8592. case GGML_OP_SILU:
  8593. {
  8594. node->n_tasks = n_threads;
  8595. } break;
  8596. case GGML_OP_NORM:
  8597. case GGML_OP_RMS_NORM:
  8598. {
  8599. node->n_tasks = n_threads;
  8600. } break;
  8601. case GGML_OP_MUL_MAT:
  8602. {
  8603. node->n_tasks = n_threads;
  8604. // TODO: use different scheduling for different matrix sizes
  8605. //const int nr0 = ggml_nrows(node->src0);
  8606. //const int nr1 = ggml_nrows(node->src1);
  8607. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8608. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8609. size_t cur = 0;
  8610. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8611. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8612. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8613. node->n_tasks = 1; // TODO: this actually is doing nothing
  8614. // the threads are still spinning
  8615. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8616. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8617. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8618. //printf("cur = %zu\n", cur);
  8619. } else {
  8620. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8621. }
  8622. #else
  8623. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8624. #endif
  8625. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8626. cur = 0;
  8627. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8628. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8629. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8630. node->n_tasks = 1;
  8631. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8632. } else
  8633. #endif
  8634. {
  8635. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8636. }
  8637. } else {
  8638. GGML_ASSERT(false);
  8639. }
  8640. work_size = MAX(work_size, cur);
  8641. } break;
  8642. case GGML_OP_SCALE:
  8643. {
  8644. node->n_tasks = n_threads;
  8645. } break;
  8646. case GGML_OP_CONT:
  8647. case GGML_OP_RESHAPE:
  8648. case GGML_OP_VIEW:
  8649. case GGML_OP_PERMUTE:
  8650. case GGML_OP_TRANSPOSE:
  8651. case GGML_OP_GET_ROWS:
  8652. case GGML_OP_DIAG_MASK_INF:
  8653. {
  8654. node->n_tasks = 1;
  8655. } break;
  8656. case GGML_OP_SOFT_MAX:
  8657. {
  8658. node->n_tasks = n_threads;
  8659. } break;
  8660. case GGML_OP_ROPE:
  8661. {
  8662. node->n_tasks = n_threads;
  8663. } break;
  8664. case GGML_OP_CONV_1D_1S:
  8665. case GGML_OP_CONV_1D_2S:
  8666. {
  8667. node->n_tasks = n_threads;
  8668. GGML_ASSERT(node->src0->ne[3] == 1);
  8669. GGML_ASSERT(node->src1->ne[2] == 1);
  8670. GGML_ASSERT(node->src1->ne[3] == 1);
  8671. size_t cur = 0;
  8672. const int nk = node->src0->ne[0];
  8673. if (node->src0->type == GGML_TYPE_F16 &&
  8674. node->src1->type == GGML_TYPE_F32) {
  8675. cur = sizeof(ggml_fp16_t)*(
  8676. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8677. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8678. );
  8679. } else if (node->src0->type == GGML_TYPE_F32 &&
  8680. node->src1->type == GGML_TYPE_F32) {
  8681. cur = sizeof(float)*(
  8682. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8683. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8684. );
  8685. } else {
  8686. GGML_ASSERT(false);
  8687. }
  8688. work_size = MAX(work_size, cur);
  8689. } break;
  8690. case GGML_OP_FLASH_ATTN:
  8691. {
  8692. node->n_tasks = n_threads;
  8693. size_t cur = 0;
  8694. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8695. if (node->src1->type == GGML_TYPE_F32) {
  8696. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8697. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8698. }
  8699. if (node->src1->type == GGML_TYPE_F16) {
  8700. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8701. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8702. }
  8703. work_size = MAX(work_size, cur);
  8704. } break;
  8705. case GGML_OP_FLASH_FF:
  8706. {
  8707. node->n_tasks = n_threads;
  8708. size_t cur = 0;
  8709. if (node->src1->type == GGML_TYPE_F32) {
  8710. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8711. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8712. }
  8713. if (node->src1->type == GGML_TYPE_F16) {
  8714. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8715. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8716. }
  8717. work_size = MAX(work_size, cur);
  8718. } break;
  8719. case GGML_OP_MAP_UNARY:
  8720. case GGML_OP_MAP_BINARY:
  8721. {
  8722. node->n_tasks = 1;
  8723. } break;
  8724. case GGML_OP_NONE:
  8725. {
  8726. node->n_tasks = 1;
  8727. } break;
  8728. case GGML_OP_COUNT:
  8729. {
  8730. GGML_ASSERT(false);
  8731. } break;
  8732. }
  8733. }
  8734. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8735. GGML_ASSERT(false); // TODO: better handling
  8736. }
  8737. if (work_size > 0 && cgraph->work == NULL) {
  8738. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8739. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8740. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8741. }
  8742. }
  8743. const int64_t perf_start_cycles = ggml_perf_cycles();
  8744. const int64_t perf_start_time_us = ggml_perf_time_us();
  8745. for (int i = 0; i < cgraph->n_nodes; i++) {
  8746. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8747. struct ggml_tensor * node = cgraph->nodes[i];
  8748. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8749. //if (node->grad == NULL && node->perf_runs > 0) {
  8750. // continue;
  8751. //}
  8752. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8753. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8754. // INIT
  8755. struct ggml_compute_params params = {
  8756. /*.type =*/ GGML_TASK_INIT,
  8757. /*.ith =*/ 0,
  8758. /*.nth =*/ node->n_tasks,
  8759. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8760. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8761. };
  8762. ggml_compute_forward(&params, node);
  8763. // COMPUTE
  8764. if (node->n_tasks > 1) {
  8765. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8766. atomic_store(&state_shared.has_work, false);
  8767. }
  8768. while (atomic_load(&state_shared.has_work)) {
  8769. ggml_lock_lock (&state_shared.spin);
  8770. ggml_lock_unlock(&state_shared.spin);
  8771. }
  8772. // launch thread pool
  8773. for (int j = 0; j < n_threads - 1; j++) {
  8774. workers[j].params = (struct ggml_compute_params) {
  8775. .type = GGML_TASK_COMPUTE,
  8776. .ith = j + 1,
  8777. .nth = node->n_tasks,
  8778. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8779. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8780. };
  8781. workers[j].node = node;
  8782. }
  8783. atomic_fetch_sub(&state_shared.n_ready, 1);
  8784. while (atomic_load(&state_shared.n_ready) > 0) {
  8785. ggml_lock_lock (&state_shared.spin);
  8786. ggml_lock_unlock(&state_shared.spin);
  8787. }
  8788. atomic_store(&state_shared.has_work, true);
  8789. }
  8790. params.type = GGML_TASK_COMPUTE;
  8791. ggml_compute_forward(&params, node);
  8792. // wait for thread pool
  8793. if (node->n_tasks > 1) {
  8794. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8795. atomic_store(&state_shared.has_work, false);
  8796. }
  8797. while (atomic_load(&state_shared.has_work)) {
  8798. ggml_lock_lock (&state_shared.spin);
  8799. ggml_lock_unlock(&state_shared.spin);
  8800. }
  8801. atomic_fetch_sub(&state_shared.n_ready, 1);
  8802. while (atomic_load(&state_shared.n_ready) != 0) {
  8803. ggml_lock_lock (&state_shared.spin);
  8804. ggml_lock_unlock(&state_shared.spin);
  8805. }
  8806. }
  8807. // FINALIZE
  8808. if (node->n_tasks > 1) {
  8809. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8810. atomic_store(&state_shared.has_work, false);
  8811. }
  8812. while (atomic_load(&state_shared.has_work)) {
  8813. ggml_lock_lock (&state_shared.spin);
  8814. ggml_lock_unlock(&state_shared.spin);
  8815. }
  8816. // launch thread pool
  8817. for (int j = 0; j < n_threads - 1; j++) {
  8818. workers[j].params = (struct ggml_compute_params) {
  8819. .type = GGML_TASK_FINALIZE,
  8820. .ith = j + 1,
  8821. .nth = node->n_tasks,
  8822. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8823. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8824. };
  8825. workers[j].node = node;
  8826. }
  8827. atomic_fetch_sub(&state_shared.n_ready, 1);
  8828. while (atomic_load(&state_shared.n_ready) > 0) {
  8829. ggml_lock_lock (&state_shared.spin);
  8830. ggml_lock_unlock(&state_shared.spin);
  8831. }
  8832. atomic_store(&state_shared.has_work, true);
  8833. }
  8834. params.type = GGML_TASK_FINALIZE;
  8835. ggml_compute_forward(&params, node);
  8836. // wait for thread pool
  8837. if (node->n_tasks > 1) {
  8838. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8839. atomic_store(&state_shared.has_work, false);
  8840. }
  8841. while (atomic_load(&state_shared.has_work)) {
  8842. ggml_lock_lock (&state_shared.spin);
  8843. ggml_lock_unlock(&state_shared.spin);
  8844. }
  8845. atomic_fetch_sub(&state_shared.n_ready, 1);
  8846. while (atomic_load(&state_shared.n_ready) != 0) {
  8847. ggml_lock_lock (&state_shared.spin);
  8848. ggml_lock_unlock(&state_shared.spin);
  8849. }
  8850. }
  8851. // performance stats (node)
  8852. {
  8853. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8854. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8855. node->perf_runs++;
  8856. node->perf_cycles += perf_cycles_cur;
  8857. node->perf_time_us += perf_time_us_cur;
  8858. }
  8859. }
  8860. // join thread pool
  8861. if (n_threads > 1) {
  8862. atomic_store(&state_shared.stop, true);
  8863. atomic_store(&state_shared.has_work, true);
  8864. for (int j = 0; j < n_threads - 1; j++) {
  8865. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8866. GGML_ASSERT(rc == 0);
  8867. UNUSED(rc);
  8868. }
  8869. ggml_lock_destroy(&state_shared.spin);
  8870. }
  8871. // performance stats (graph)
  8872. {
  8873. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8874. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8875. cgraph->perf_runs++;
  8876. cgraph->perf_cycles += perf_cycles_cur;
  8877. cgraph->perf_time_us += perf_time_us_cur;
  8878. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8879. __func__, cgraph->perf_runs,
  8880. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8881. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8882. (double) perf_time_us_cur / 1000.0,
  8883. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8884. }
  8885. }
  8886. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8887. for (int i = 0; i < cgraph->n_nodes; i++) {
  8888. struct ggml_tensor * grad = cgraph->grads[i];
  8889. if (grad) {
  8890. ggml_set_zero(grad);
  8891. }
  8892. }
  8893. }
  8894. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8895. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8896. GGML_PRINT("=== GRAPH ===\n");
  8897. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8898. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  8899. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8900. for (int i = 0; i < cgraph->n_nodes; i++) {
  8901. struct ggml_tensor * node = cgraph->nodes[i];
  8902. perf_total_per_op_us[node->op] += node->perf_time_us;
  8903. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8904. i,
  8905. node->ne[0], node->ne[1], node->ne[2],
  8906. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8907. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8908. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8909. (double) node->perf_time_us / 1000.0,
  8910. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8911. }
  8912. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8913. for (int i = 0; i < cgraph->n_leafs; i++) {
  8914. struct ggml_tensor * node = cgraph->leafs[i];
  8915. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8916. i,
  8917. node->ne[0], node->ne[1],
  8918. GGML_OP_LABEL[node->op]);
  8919. }
  8920. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8921. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8922. }
  8923. GGML_PRINT("========================================\n");
  8924. }
  8925. // check if node is part of the graph
  8926. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8927. if (cgraph == NULL) {
  8928. return true;
  8929. }
  8930. for (int i = 0; i < cgraph->n_nodes; i++) {
  8931. if (cgraph->nodes[i] == node) {
  8932. return true;
  8933. }
  8934. }
  8935. return false;
  8936. }
  8937. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8938. for (int i = 0; i < cgraph->n_nodes; i++) {
  8939. struct ggml_tensor * parent = cgraph->nodes[i];
  8940. if (parent->grad == node) {
  8941. return parent;
  8942. }
  8943. }
  8944. return NULL;
  8945. }
  8946. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8947. char color[16];
  8948. FILE * fp = fopen(filename, "w");
  8949. GGML_ASSERT(fp);
  8950. fprintf(fp, "digraph G {\n");
  8951. fprintf(fp, " newrank = true;\n");
  8952. fprintf(fp, " rankdir = LR;\n");
  8953. for (int i = 0; i < gb->n_nodes; i++) {
  8954. struct ggml_tensor * node = gb->nodes[i];
  8955. if (ggml_graph_get_parent(gb, node) != NULL) {
  8956. continue;
  8957. }
  8958. if (node->is_param) {
  8959. snprintf(color, sizeof(color), "yellow");
  8960. } else if (node->grad) {
  8961. if (ggml_graph_find(gf, node)) {
  8962. snprintf(color, sizeof(color), "green");
  8963. } else {
  8964. snprintf(color, sizeof(color), "lightblue");
  8965. }
  8966. } else {
  8967. snprintf(color, sizeof(color), "white");
  8968. }
  8969. fprintf(fp, " \"%p\" [ \
  8970. style = filled; fillcolor = %s; shape = record; \
  8971. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8972. (void *) node, color,
  8973. i, node->ne[0], node->ne[1],
  8974. GGML_OP_SYMBOL[node->op]);
  8975. if (node->grad) {
  8976. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8977. } else {
  8978. fprintf(fp, "\"; ]\n");
  8979. }
  8980. }
  8981. for (int i = 0; i < gb->n_leafs; i++) {
  8982. struct ggml_tensor * node = gb->leafs[i];
  8983. snprintf(color, sizeof(color), "pink");
  8984. if (ggml_nelements(node) == 1) {
  8985. fprintf(fp, " \"%p\" [ \
  8986. style = filled; fillcolor = %s; shape = record; \
  8987. label=\"<x>%.1e\"; ]\n",
  8988. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8989. } else {
  8990. fprintf(fp, " \"%p\" [ \
  8991. style = filled; fillcolor = %s; shape = record; \
  8992. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8993. (void *) node, color,
  8994. i, node->ne[0], node->ne[1]);
  8995. }
  8996. }
  8997. for (int i = 0; i < gb->n_nodes; i++) {
  8998. struct ggml_tensor * node = gb->nodes[i];
  8999. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9000. if (node->src0) {
  9001. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9002. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9003. parent0 ? (void *) parent0 : (void *) node->src0,
  9004. parent0 ? "g" : "x",
  9005. parent ? (void *) parent : (void *) node,
  9006. parent ? "g" : "x",
  9007. parent ? "empty" : "vee",
  9008. parent ? "dashed" : "solid");
  9009. }
  9010. if (node->src1) {
  9011. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9012. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9013. parent1 ? (void *) parent1 : (void *) node->src1,
  9014. parent1 ? "g" : "x",
  9015. parent ? (void *) parent : (void *) node,
  9016. parent ? "g" : "x",
  9017. parent ? "empty" : "vee",
  9018. parent ? "dashed" : "solid");
  9019. }
  9020. }
  9021. for (int i = 0; i < gb->n_leafs; i++) {
  9022. struct ggml_tensor * node = gb->leafs[i];
  9023. if (node->src0) {
  9024. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9025. (void *) node->src0, "x",
  9026. (void *) node, "x");
  9027. }
  9028. if (node->src1) {
  9029. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9030. (void *) node->src1, "x",
  9031. (void *) node, "x");
  9032. }
  9033. }
  9034. fprintf(fp, "}\n");
  9035. fclose(fp);
  9036. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9037. }
  9038. ////////////////////////////////////////////////////////////////////////////////
  9039. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9040. int i = 0;
  9041. for (int p = 0; p < np; ++p) {
  9042. const int64_t ne = ggml_nelements(ps[p]) ;
  9043. // TODO: add function to set tensor from array
  9044. for (int64_t j = 0; j < ne; ++j) {
  9045. ggml_set_f32_1d(ps[p], j, x[i++]);
  9046. }
  9047. }
  9048. }
  9049. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9050. int i = 0;
  9051. for (int p = 0; p < np; ++p) {
  9052. const int64_t ne = ggml_nelements(ps[p]) ;
  9053. // TODO: add function to get all elements at once
  9054. for (int64_t j = 0; j < ne; ++j) {
  9055. x[i++] = ggml_get_f32_1d(ps[p], j);
  9056. }
  9057. }
  9058. }
  9059. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9060. int i = 0;
  9061. for (int p = 0; p < np; ++p) {
  9062. const int64_t ne = ggml_nelements(ps[p]) ;
  9063. // TODO: add function to get all elements at once
  9064. for (int64_t j = 0; j < ne; ++j) {
  9065. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9066. }
  9067. }
  9068. }
  9069. //
  9070. // ADAM
  9071. //
  9072. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9073. //
  9074. static enum ggml_opt_result ggml_opt_adam(
  9075. struct ggml_context * ctx,
  9076. struct ggml_opt_params params,
  9077. struct ggml_tensor * f,
  9078. struct ggml_cgraph * gf,
  9079. struct ggml_cgraph * gb) {
  9080. GGML_ASSERT(ggml_is_scalar(f));
  9081. gf->n_threads = params.n_threads;
  9082. gb->n_threads = params.n_threads;
  9083. // these will store the parameters we want to optimize
  9084. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9085. int np = 0;
  9086. int nx = 0;
  9087. for (int i = 0; i < gf->n_nodes; ++i) {
  9088. if (gf->nodes[i]->is_param) {
  9089. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9090. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9091. ps[np++] = gf->nodes[i];
  9092. nx += ggml_nelements(gf->nodes[i]);
  9093. }
  9094. }
  9095. // constants
  9096. const float alpha = params.adam.alpha;
  9097. const float beta1 = params.adam.beta1;
  9098. const float beta2 = params.adam.beta2;
  9099. const float eps = params.adam.eps;
  9100. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9101. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9102. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9103. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9104. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9105. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9106. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9107. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9108. // initialize
  9109. ggml_vec_set_f32(nx, m, 0.0f);
  9110. ggml_vec_set_f32(nx, v, 0.0f);
  9111. // update view
  9112. ggml_opt_get_params(np, ps, x);
  9113. // compute the function value
  9114. ggml_graph_reset (gf);
  9115. ggml_set_f32 (f->grad, 1.0f);
  9116. ggml_graph_compute(ctx, gb);
  9117. float fx_prev = ggml_get_f32_1d(f, 0);
  9118. if (pf) {
  9119. pf[0] = fx_prev;
  9120. }
  9121. int n_no_improvement = 0;
  9122. float fx_best = fx_prev;
  9123. // run the optimizer
  9124. for (int t = 0; t < params.adam.n_iter; ++t) {
  9125. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9126. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9127. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9128. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9129. for (int i = 0; i < np; ++i) {
  9130. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9131. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9132. }
  9133. const int64_t t_start_wall = ggml_time_us();
  9134. const int64_t t_start_cpu = ggml_cycles();
  9135. UNUSED(t_start_wall);
  9136. UNUSED(t_start_cpu);
  9137. {
  9138. // update the gradient
  9139. ggml_opt_get_grad(np, ps, g1);
  9140. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9141. ggml_vec_scale_f32(nx, m, beta1);
  9142. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9143. // g2 = g1^2
  9144. ggml_vec_sqr_f32 (nx, g2, g1);
  9145. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9146. ggml_vec_scale_f32(nx, v, beta2);
  9147. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9148. // m^hat = m_t / (1 - beta1^t)
  9149. // v^hat = v_t / (1 - beta2^t)
  9150. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9151. ggml_vec_cpy_f32 (nx, mh, m);
  9152. ggml_vec_cpy_f32 (nx, vh, v);
  9153. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9154. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9155. ggml_vec_sqrt_f32 (nx, vh, vh);
  9156. ggml_vec_acc1_f32 (nx, vh, eps);
  9157. ggml_vec_div_f32 (nx, mh, mh, vh);
  9158. ggml_vec_sub_f32 (nx, x, x, mh);
  9159. // update the parameters
  9160. ggml_opt_set_params(np, ps, x);
  9161. }
  9162. ggml_graph_reset (gf);
  9163. ggml_set_f32 (f->grad, 1.0f);
  9164. ggml_graph_compute(ctx, gb);
  9165. const float fx = ggml_get_f32_1d(f, 0);
  9166. // check convergence
  9167. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9168. GGML_PRINT_DEBUG("converged\n");
  9169. return GGML_OPT_OK;
  9170. }
  9171. // delta-based convergence test
  9172. if (pf != NULL) {
  9173. // need at least params.past iterations to start checking for convergence
  9174. if (params.past <= t) {
  9175. const float rate = (pf[t%params.past] - fx)/fx;
  9176. if (fabsf(rate) < params.delta) {
  9177. return GGML_OPT_OK;
  9178. }
  9179. }
  9180. pf[t%params.past] = fx;
  9181. }
  9182. // check for improvement
  9183. if (params.max_no_improvement > 0) {
  9184. if (fx_best > fx) {
  9185. fx_best = fx;
  9186. n_no_improvement = 0;
  9187. } else {
  9188. ++n_no_improvement;
  9189. if (n_no_improvement >= params.max_no_improvement) {
  9190. return GGML_OPT_OK;
  9191. }
  9192. }
  9193. }
  9194. fx_prev = fx;
  9195. {
  9196. const int64_t t_end_cpu = ggml_cycles();
  9197. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9198. UNUSED(t_end_cpu);
  9199. const int64_t t_end_wall = ggml_time_us();
  9200. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9201. UNUSED(t_end_wall);
  9202. }
  9203. }
  9204. return GGML_OPT_DID_NOT_CONVERGE;
  9205. }
  9206. //
  9207. // L-BFGS
  9208. //
  9209. // the L-BFGS implementation below is based on the following implementation:
  9210. //
  9211. // https://github.com/chokkan/liblbfgs
  9212. //
  9213. struct ggml_lbfgs_iteration_data {
  9214. float alpha;
  9215. float ys;
  9216. float * s;
  9217. float * y;
  9218. };
  9219. static enum ggml_opt_result linesearch_backtracking(
  9220. struct ggml_context * ctx,
  9221. const struct ggml_opt_params * params,
  9222. int nx,
  9223. float * x,
  9224. float * fx,
  9225. float * g,
  9226. float * d,
  9227. float * step,
  9228. const float * xp,
  9229. struct ggml_tensor * f,
  9230. struct ggml_cgraph * gf,
  9231. struct ggml_cgraph * gb,
  9232. const int np,
  9233. struct ggml_tensor * ps[]) {
  9234. int count = 0;
  9235. float width = 0.0f;
  9236. float dg = 0.0f;
  9237. float finit = 0.0f;
  9238. float dginit = 0.0f;
  9239. float dgtest = 0.0f;
  9240. const float dec = 0.5f;
  9241. const float inc = 2.1f;
  9242. if (*step <= 0.f) {
  9243. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9244. }
  9245. // compute the initial gradient in the search direction
  9246. ggml_vec_dot_f32(nx, &dginit, g, d);
  9247. // make sure that d points to a descent direction
  9248. if (0 < dginit) {
  9249. return GGML_LINESEARCH_FAIL;
  9250. }
  9251. // initialize local variables
  9252. finit = *fx;
  9253. dgtest = params->lbfgs.ftol*dginit;
  9254. while (true) {
  9255. ggml_vec_cpy_f32(nx, x, xp);
  9256. ggml_vec_mad_f32(nx, x, d, *step);
  9257. // evaluate the function and gradient values
  9258. {
  9259. ggml_opt_set_params(np, ps, x);
  9260. ggml_graph_reset (gf);
  9261. ggml_set_f32 (f->grad, 1.0f);
  9262. ggml_graph_compute(ctx, gb);
  9263. ggml_opt_get_grad(np, ps, g);
  9264. *fx = ggml_get_f32_1d(f, 0);
  9265. }
  9266. ++count;
  9267. if (*fx > finit + (*step)*dgtest) {
  9268. width = dec;
  9269. } else {
  9270. // Armijo condition is satisfied
  9271. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9272. return count;
  9273. }
  9274. ggml_vec_dot_f32(nx, &dg, g, d);
  9275. // check the Wolfe condition
  9276. if (dg < params->lbfgs.wolfe * dginit) {
  9277. width = inc;
  9278. } else {
  9279. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9280. // regular Wolfe conditions
  9281. return count;
  9282. }
  9283. if(dg > -params->lbfgs.wolfe*dginit) {
  9284. width = dec;
  9285. } else {
  9286. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9287. return count;
  9288. }
  9289. return count;
  9290. }
  9291. }
  9292. if (*step < params->lbfgs.min_step) {
  9293. return GGML_LINESEARCH_MINIMUM_STEP;
  9294. }
  9295. if (*step > params->lbfgs.max_step) {
  9296. return GGML_LINESEARCH_MAXIMUM_STEP;
  9297. }
  9298. if (params->lbfgs.max_linesearch <= count) {
  9299. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9300. }
  9301. (*step) *= width;
  9302. }
  9303. return GGML_LINESEARCH_FAIL;
  9304. }
  9305. static enum ggml_opt_result ggml_opt_lbfgs(
  9306. struct ggml_context * ctx,
  9307. struct ggml_opt_params params,
  9308. struct ggml_tensor * f,
  9309. struct ggml_cgraph * gf,
  9310. struct ggml_cgraph * gb) {
  9311. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9312. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9313. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9314. return GGML_OPT_INVALID_WOLFE;
  9315. }
  9316. }
  9317. gf->n_threads = params.n_threads;
  9318. gb->n_threads = params.n_threads;
  9319. const int m = params.lbfgs.m;
  9320. // these will store the parameters we want to optimize
  9321. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9322. int np = 0;
  9323. int nx = 0;
  9324. for (int i = 0; i < gf->n_nodes; ++i) {
  9325. if (gf->nodes[i]->is_param) {
  9326. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9327. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9328. ps[np++] = gf->nodes[i];
  9329. nx += ggml_nelements(gf->nodes[i]);
  9330. }
  9331. }
  9332. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9333. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9334. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9335. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9336. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9337. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9338. float fx = 0.0f; // cost function value
  9339. float xnorm = 0.0f; // ||x||
  9340. float gnorm = 0.0f; // ||g||
  9341. float step = 0.0f;
  9342. // initialize x from the graph nodes
  9343. ggml_opt_get_params(np, ps, x);
  9344. // the L-BFGS memory
  9345. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9346. for (int i = 0; i < m; ++i) {
  9347. lm[i].alpha = 0.0f;
  9348. lm[i].ys = 0.0f;
  9349. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9350. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9351. }
  9352. // evaluate the function value and its gradient
  9353. {
  9354. ggml_opt_set_params(np, ps, x);
  9355. ggml_graph_reset (gf);
  9356. ggml_set_f32 (f->grad, 1.0f);
  9357. ggml_graph_compute(ctx, gb);
  9358. ggml_opt_get_grad(np, ps, g);
  9359. fx = ggml_get_f32_1d(f, 0);
  9360. }
  9361. if (pf) {
  9362. pf[0] = fx;
  9363. }
  9364. float fx_best = fx;
  9365. // search direction = -gradient
  9366. ggml_vec_neg_f32(nx, d, g);
  9367. // ||x||, ||g||
  9368. ggml_vec_norm_f32(nx, &xnorm, x);
  9369. ggml_vec_norm_f32(nx, &gnorm, g);
  9370. if (xnorm < 1.0f) {
  9371. xnorm = 1.0f;
  9372. }
  9373. // already optimized
  9374. if (gnorm/xnorm <= params.lbfgs.eps) {
  9375. return GGML_OPT_OK;
  9376. }
  9377. // initial step
  9378. ggml_vec_norm_inv_f32(nx, &step, d);
  9379. int j = 0;
  9380. int k = 1;
  9381. int ls = 0;
  9382. int end = 0;
  9383. int bound = 0;
  9384. int n_no_improvement = 0;
  9385. float ys = 0.0f;
  9386. float yy = 0.0f;
  9387. float beta = 0.0f;
  9388. while (true) {
  9389. // store the current position and gradient vectors
  9390. ggml_vec_cpy_f32(nx, xp, x);
  9391. ggml_vec_cpy_f32(nx, gp, g);
  9392. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9393. if (ls < 0) {
  9394. // linesearch failed - go back to the previous point and return
  9395. ggml_vec_cpy_f32(nx, x, xp);
  9396. ggml_vec_cpy_f32(nx, g, gp);
  9397. return ls;
  9398. }
  9399. ggml_vec_norm_f32(nx, &xnorm, x);
  9400. ggml_vec_norm_f32(nx, &gnorm, g);
  9401. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9402. if (xnorm < 1.0f) {
  9403. xnorm = 1.0f;
  9404. }
  9405. if (gnorm/xnorm <= params.lbfgs.eps) {
  9406. // converged
  9407. return GGML_OPT_OK;
  9408. }
  9409. // delta-based convergence test
  9410. if (pf != NULL) {
  9411. // need at least params.past iterations to start checking for convergence
  9412. if (params.past <= k) {
  9413. const float rate = (pf[k%params.past] - fx)/fx;
  9414. if (fabsf(rate) < params.delta) {
  9415. return GGML_OPT_OK;
  9416. }
  9417. }
  9418. pf[k%params.past] = fx;
  9419. }
  9420. // check for improvement
  9421. if (params.max_no_improvement > 0) {
  9422. if (fx < fx_best) {
  9423. fx_best = fx;
  9424. n_no_improvement = 0;
  9425. } else {
  9426. n_no_improvement++;
  9427. if (n_no_improvement >= params.max_no_improvement) {
  9428. return GGML_OPT_OK;
  9429. }
  9430. }
  9431. }
  9432. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9433. // reached the maximum number of iterations
  9434. return GGML_OPT_DID_NOT_CONVERGE;
  9435. }
  9436. // update vectors s and y:
  9437. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9438. // y_{k+1} = g_{k+1} - g_{k}.
  9439. //
  9440. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9441. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9442. // compute scalars ys and yy:
  9443. // ys = y^t \cdot s -> 1 / \rho.
  9444. // yy = y^t \cdot y.
  9445. //
  9446. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9447. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9448. lm[end].ys = ys;
  9449. // find new search direction
  9450. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9451. bound = (m <= k) ? m : k;
  9452. k++;
  9453. end = (end + 1)%m;
  9454. // initialize search direction with -g
  9455. ggml_vec_neg_f32(nx, d, g);
  9456. j = end;
  9457. for (int i = 0; i < bound; ++i) {
  9458. j = (j + m - 1) % m;
  9459. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9460. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9461. lm[j].alpha /= lm[j].ys;
  9462. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9463. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9464. }
  9465. ggml_vec_scale_f32(nx, d, ys/yy);
  9466. for (int i = 0; i < bound; ++i) {
  9467. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9468. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9469. beta /= lm[j].ys;
  9470. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9471. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9472. j = (j + 1)%m;
  9473. }
  9474. step = 1.0;
  9475. }
  9476. return GGML_OPT_DID_NOT_CONVERGE;
  9477. }
  9478. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9479. struct ggml_opt_params result;
  9480. switch (type) {
  9481. case GGML_OPT_ADAM:
  9482. {
  9483. result = (struct ggml_opt_params) {
  9484. .type = GGML_OPT_ADAM,
  9485. .n_threads = 1,
  9486. .past = 0,
  9487. .delta = 1e-5f,
  9488. .max_no_improvement = 100,
  9489. .print_forward_graph = true,
  9490. .print_backward_graph = true,
  9491. .adam = {
  9492. .n_iter = 10000,
  9493. .alpha = 0.001f,
  9494. .beta1 = 0.9f,
  9495. .beta2 = 0.999f,
  9496. .eps = 1e-8f,
  9497. .eps_f = 1e-5f,
  9498. .eps_g = 1e-3f,
  9499. },
  9500. };
  9501. } break;
  9502. case GGML_OPT_LBFGS:
  9503. {
  9504. result = (struct ggml_opt_params) {
  9505. .type = GGML_OPT_LBFGS,
  9506. .n_threads = 1,
  9507. .past = 0,
  9508. .delta = 1e-5f,
  9509. .max_no_improvement = 0,
  9510. .print_forward_graph = true,
  9511. .print_backward_graph = true,
  9512. .lbfgs = {
  9513. .m = 6,
  9514. .n_iter = 100,
  9515. .max_linesearch = 20,
  9516. .eps = 1e-5f,
  9517. .ftol = 1e-4f,
  9518. .wolfe = 0.9f,
  9519. .min_step = 1e-20f,
  9520. .max_step = 1e+20f,
  9521. .linesearch = GGML_LINESEARCH_DEFAULT,
  9522. },
  9523. };
  9524. } break;
  9525. }
  9526. return result;
  9527. }
  9528. enum ggml_opt_result ggml_opt(
  9529. struct ggml_context * ctx,
  9530. struct ggml_opt_params params,
  9531. struct ggml_tensor * f) {
  9532. bool free_ctx = false;
  9533. if (ctx == NULL) {
  9534. struct ggml_init_params params_ctx = {
  9535. .mem_size = 16*1024*1024,
  9536. .mem_buffer = NULL,
  9537. .no_alloc = false,
  9538. };
  9539. ctx = ggml_init(params_ctx);
  9540. if (ctx == NULL) {
  9541. return GGML_OPT_NO_CONTEXT;
  9542. }
  9543. free_ctx = true;
  9544. }
  9545. enum ggml_opt_result result = GGML_OPT_OK;
  9546. // build forward + backward compute graphs
  9547. struct ggml_cgraph gf = ggml_build_forward (f);
  9548. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9549. switch (params.type) {
  9550. case GGML_OPT_ADAM:
  9551. {
  9552. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9553. } break;
  9554. case GGML_OPT_LBFGS:
  9555. {
  9556. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9557. } break;
  9558. }
  9559. if (params.print_forward_graph) {
  9560. ggml_graph_print (&gf);
  9561. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9562. }
  9563. if (params.print_backward_graph) {
  9564. ggml_graph_print (&gb);
  9565. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9566. }
  9567. if (free_ctx) {
  9568. ggml_free(ctx);
  9569. }
  9570. return result;
  9571. }
  9572. ////////////////////////////////////////////////////////////////////////////////
  9573. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9574. assert(k % QK4_0 == 0);
  9575. const int nb = k / QK4_0;
  9576. for (int j = 0; j < n; j += k) {
  9577. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9578. quantize_row_q4_0_reference(src + j, y, k);
  9579. for (int i = 0; i < nb; i++) {
  9580. for (int l = 0; l < QK4_0; l += 2) {
  9581. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9582. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9583. hist[vi0]++;
  9584. hist[vi1]++;
  9585. }
  9586. }
  9587. }
  9588. return (n/QK4_0*sizeof(block_q4_0));
  9589. }
  9590. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9591. assert(k % QK4_1 == 0);
  9592. const int nb = k / QK4_1;
  9593. for (int j = 0; j < n; j += k) {
  9594. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9595. quantize_row_q4_1_reference(src + j, y, k);
  9596. for (int i = 0; i < nb; i++) {
  9597. for (int l = 0; l < QK4_1; l += 2) {
  9598. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9599. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9600. hist[vi0]++;
  9601. hist[vi1]++;
  9602. }
  9603. }
  9604. }
  9605. return (n/QK4_1*sizeof(block_q4_1));
  9606. }
  9607. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9608. assert(k % QK4_2 == 0);
  9609. const int nb = k / QK4_2;
  9610. for (int j = 0; j < n; j += k) {
  9611. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9612. quantize_row_q4_2_reference(src + j, y, k);
  9613. for (int i = 0; i < nb; i++) {
  9614. for (int l = 0; l < QK4_2; l += 2) {
  9615. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9616. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9617. hist[vi0]++;
  9618. hist[vi1]++;
  9619. }
  9620. }
  9621. }
  9622. return (n/QK4_2*sizeof(block_q4_2));
  9623. }
  9624. ////////////////////////////////////////////////////////////////////////////////
  9625. int ggml_cpu_has_avx(void) {
  9626. #if defined(__AVX__)
  9627. return 1;
  9628. #else
  9629. return 0;
  9630. #endif
  9631. }
  9632. int ggml_cpu_has_avx2(void) {
  9633. #if defined(__AVX2__)
  9634. return 1;
  9635. #else
  9636. return 0;
  9637. #endif
  9638. }
  9639. int ggml_cpu_has_avx512(void) {
  9640. #if defined(__AVX512F__)
  9641. return 1;
  9642. #else
  9643. return 0;
  9644. #endif
  9645. }
  9646. int ggml_cpu_has_avx512_vbmi(void) {
  9647. #if defined(__AVX512VBMI__)
  9648. return 1;
  9649. #else
  9650. return 0;
  9651. #endif
  9652. }
  9653. int ggml_cpu_has_avx512_vnni(void) {
  9654. #if defined(__AVX512VNNI__)
  9655. return 1;
  9656. #else
  9657. return 0;
  9658. #endif
  9659. }
  9660. int ggml_cpu_has_fma(void) {
  9661. #if defined(__FMA__)
  9662. return 1;
  9663. #else
  9664. return 0;
  9665. #endif
  9666. }
  9667. int ggml_cpu_has_neon(void) {
  9668. #if defined(__ARM_NEON)
  9669. return 1;
  9670. #else
  9671. return 0;
  9672. #endif
  9673. }
  9674. int ggml_cpu_has_arm_fma(void) {
  9675. #if defined(__ARM_FEATURE_FMA)
  9676. return 1;
  9677. #else
  9678. return 0;
  9679. #endif
  9680. }
  9681. int ggml_cpu_has_f16c(void) {
  9682. #if defined(__F16C__)
  9683. return 1;
  9684. #else
  9685. return 0;
  9686. #endif
  9687. }
  9688. int ggml_cpu_has_fp16_va(void) {
  9689. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  9690. return 1;
  9691. #else
  9692. return 0;
  9693. #endif
  9694. }
  9695. int ggml_cpu_has_wasm_simd(void) {
  9696. #if defined(__wasm_simd128__)
  9697. return 1;
  9698. #else
  9699. return 0;
  9700. #endif
  9701. }
  9702. int ggml_cpu_has_blas(void) {
  9703. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9704. return 1;
  9705. #else
  9706. return 0;
  9707. #endif
  9708. }
  9709. int ggml_cpu_has_cublas(void) {
  9710. #if defined(GGML_USE_CUBLAS)
  9711. return 1;
  9712. #else
  9713. return 0;
  9714. #endif
  9715. }
  9716. int ggml_cpu_has_sse3(void) {
  9717. #if defined(__SSE3__)
  9718. return 1;
  9719. #else
  9720. return 0;
  9721. #endif
  9722. }
  9723. int ggml_cpu_has_vsx(void) {
  9724. #if defined(__POWER9_VECTOR__)
  9725. return 1;
  9726. #else
  9727. return 0;
  9728. #endif
  9729. }
  9730. ////////////////////////////////////////////////////////////////////////////////