convert-hf-to-gguf.py 131 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import contextlib
  6. import json
  7. import os
  8. import re
  9. import sys
  10. from abc import ABC, abstractmethod
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  15. import numpy as np
  16. import torch
  17. if TYPE_CHECKING:
  18. from torch import Tensor
  19. if 'NO_LOCAL_GGUF' not in os.environ:
  20. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  21. import gguf
  22. from convert import LlamaHfVocab, permute
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model(ABC):
  34. _model_classes: dict[str, type[Model]] = {}
  35. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
  36. self.dir_model = dir_model
  37. self.ftype = ftype
  38. self.fname_out = fname_out
  39. self.is_big_endian = is_big_endian
  40. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  41. self.use_temp_file = use_temp_file
  42. self.is_safetensors = self._is_model_safetensors()
  43. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  44. self.part_names = self._get_part_names()
  45. self.hparams = Model.load_hparams(self.dir_model)
  46. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  47. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  48. @property
  49. @abstractmethod
  50. def model_arch(self) -> gguf.MODEL_ARCH:
  51. pass
  52. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  53. key = next((k for k in keys if k in self.hparams), None)
  54. if key is not None:
  55. return self.hparams[key]
  56. if optional:
  57. return None
  58. raise KeyError(f"could not find any of: {keys}")
  59. def set_vocab(self):
  60. self._set_vocab_gpt2()
  61. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  62. for part_name in self.part_names:
  63. logger.info(f"gguf: loading model part '{part_name}'")
  64. ctx: ContextManager[Any]
  65. if self.is_safetensors:
  66. from safetensors import safe_open
  67. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  68. else:
  69. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  70. with ctx as model_part:
  71. for name in model_part.keys():
  72. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  73. yield name, data
  74. def set_gguf_parameters(self):
  75. self.gguf_writer.add_name(self.dir_model.name)
  76. self.gguf_writer.add_block_count(self.block_count)
  77. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  78. self.gguf_writer.add_context_length(n_ctx)
  79. logger.info(f"gguf: context length = {n_ctx}")
  80. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  81. self.gguf_writer.add_embedding_length(n_embd)
  82. logger.info(f"gguf: embedding length = {n_embd}")
  83. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  84. self.gguf_writer.add_feed_forward_length(n_ff)
  85. logger.info(f"gguf: feed forward length = {n_ff}")
  86. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  87. self.gguf_writer.add_head_count(n_head)
  88. logger.info(f"gguf: head count = {n_head}")
  89. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  90. self.gguf_writer.add_head_count_kv(n_head_kv)
  91. logger.info(f"gguf: key-value head count = {n_head_kv}")
  92. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  93. self.gguf_writer.add_rope_freq_base(rope_theta)
  94. logger.info(f"gguf: rope theta = {rope_theta}")
  95. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  96. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  97. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  98. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  99. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  100. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  101. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  102. self.gguf_writer.add_expert_count(n_experts)
  103. logger.info(f"gguf: expert count = {n_experts}")
  104. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  105. self.gguf_writer.add_expert_used_count(n_experts_used)
  106. logger.info(f"gguf: experts used count = {n_experts_used}")
  107. self.gguf_writer.add_file_type(self.ftype)
  108. logger.info(f"gguf: file type = {self.ftype}")
  109. def write_tensors(self):
  110. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  111. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  112. for name, data_torch in self.get_tensors():
  113. # we don't need these
  114. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  115. continue
  116. old_dtype = data_torch.dtype
  117. # convert any unsupported data types to float32
  118. if data_torch.dtype not in (torch.float16, torch.float32):
  119. data_torch = data_torch.to(torch.float32)
  120. data = data_torch.squeeze().numpy()
  121. # map tensor names
  122. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  123. if new_name is None:
  124. raise ValueError(f"Can not map tensor {name!r}")
  125. n_dims = len(data.shape)
  126. data_dtype = data.dtype
  127. # if f32 desired, convert any float16 to float32
  128. if self.ftype == 0 and data_dtype == np.float16:
  129. data = data.astype(np.float32)
  130. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  131. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  132. data = data.astype(np.float32)
  133. # if f16 desired, convert any float32 2-dim weight tensors to float16
  134. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  135. data = data.astype(np.float16)
  136. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  137. self.gguf_writer.add_tensor(new_name, data)
  138. def write(self):
  139. self.write_tensors()
  140. self.gguf_writer.write_header_to_file()
  141. self.gguf_writer.write_kv_data_to_file()
  142. self.gguf_writer.write_tensors_to_file()
  143. self.gguf_writer.close()
  144. def write_vocab(self):
  145. self.gguf_writer.write_header_to_file()
  146. self.gguf_writer.write_kv_data_to_file()
  147. self.gguf_writer.close()
  148. @staticmethod
  149. def count_model_parts(dir_model: Path, prefix: str) -> int:
  150. num_parts = 0
  151. for filename in os.listdir(dir_model):
  152. if filename.endswith(prefix):
  153. num_parts += 1
  154. return num_parts
  155. @staticmethod
  156. def load_hparams(dir_model):
  157. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  158. return json.load(f)
  159. @classmethod
  160. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  161. assert names
  162. def func(modelcls: type[Model]):
  163. for name in names:
  164. cls._model_classes[name] = modelcls
  165. return modelcls
  166. return func
  167. @classmethod
  168. def from_model_architecture(cls, arch):
  169. try:
  170. return cls._model_classes[arch]
  171. except KeyError:
  172. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  173. def _is_model_safetensors(self) -> bool:
  174. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  175. def _get_part_names(self):
  176. if self.is_safetensors:
  177. if self.num_parts == 1: # there's only one .safetensors file
  178. return ("model.safetensors",)
  179. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  180. if self.num_parts == 1: # there's only one .bin file
  181. return ("pytorch_model.bin",)
  182. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  183. # used for GPT-2 BPE and WordPiece vocabs
  184. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  185. tokens: list[str] = []
  186. toktypes: list[int] = []
  187. from transformers import AutoTokenizer
  188. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  189. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  190. assert max(tokenizer.vocab.values()) < vocab_size
  191. tokpre = self.get_vocab_base_pre(tokenizer)
  192. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  193. added_vocab = tokenizer.get_added_vocab()
  194. for i in range(vocab_size):
  195. if i not in reverse_vocab:
  196. tokens.append(f"[PAD{i}]")
  197. toktypes.append(gguf.TokenType.USER_DEFINED)
  198. elif reverse_vocab[i] in added_vocab:
  199. tokens.append(reverse_vocab[i])
  200. if tokenizer.added_tokens_decoder[i].special:
  201. toktypes.append(gguf.TokenType.CONTROL)
  202. else:
  203. toktypes.append(gguf.TokenType.USER_DEFINED)
  204. else:
  205. tokens.append(reverse_vocab[i])
  206. toktypes.append(gguf.TokenType.NORMAL)
  207. return tokens, toktypes, tokpre
  208. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  209. # do not modify it manually!
  210. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  211. def get_vocab_base_pre(self, tokenizer) -> str:
  212. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  213. # is specific for the BPE pre-tokenizer used by the model
  214. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  215. # use in llama.cpp to implement the same pre-tokenizer
  216. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  217. chktok = tokenizer.encode(chktxt)
  218. chkhsh = sha256(str(chktok).encode()).hexdigest()
  219. logger.debug(f"chktok: {chktok}")
  220. logger.debug(f"chkhsh: {chkhsh}")
  221. res = None
  222. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  223. # or pull the latest version of the model from Huggingface
  224. # don't edit the hashes manually!
  225. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  226. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  227. res = "llama-bpe"
  228. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  229. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  230. res = "deepseek-llm"
  231. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  232. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  233. res = "deepseek-coder"
  234. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  235. # ref: https://huggingface.co/tiiuae/falcon-7b
  236. res = "falcon"
  237. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  238. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  239. res = "bert-bge"
  240. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  241. # ref: https://huggingface.co/mosaicml/mpt-7b
  242. res = "mpt"
  243. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  244. # ref: https://huggingface.co/bigcode/starcoder2-3b
  245. res = "starcoder"
  246. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  247. # ref: https://huggingface.co/openai-community/gpt2
  248. res = "gpt-2"
  249. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  250. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  251. res = "refact"
  252. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  253. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  254. res = "command-r"
  255. if res is None:
  256. logger.warning("\n")
  257. logger.warning("**************************************************************************************")
  258. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  259. logger.warning("** There are 2 possible reasons for this:")
  260. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  261. logger.warning("** - the pre-tokenization config has changed upstream")
  262. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  263. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  264. logger.warning("**")
  265. logger.warning(f"** chkhsh: {chkhsh}")
  266. logger.warning("**************************************************************************************")
  267. logger.warning("\n")
  268. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  269. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  270. logger.debug(f"chkhsh: {chkhsh}")
  271. return res
  272. def _set_vocab_gpt2(self) -> None:
  273. tokens, toktypes, tokpre = self.get_vocab_base()
  274. self.gguf_writer.add_tokenizer_model("gpt2")
  275. self.gguf_writer.add_tokenizer_pre(tokpre)
  276. self.gguf_writer.add_token_list(tokens)
  277. self.gguf_writer.add_token_types(toktypes)
  278. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  279. special_vocab.add_to_gguf(self.gguf_writer)
  280. def _set_vocab_qwen(self):
  281. dir_model = self.dir_model
  282. hparams = self.hparams
  283. tokens: list[str] = []
  284. toktypes: list[int] = []
  285. from transformers import AutoTokenizer
  286. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  287. vocab_size = hparams["vocab_size"]
  288. assert max(tokenizer.get_vocab().values()) < vocab_size
  289. tokpre = self.get_vocab_base_pre(tokenizer)
  290. merges = []
  291. vocab = {}
  292. mergeable_ranks = tokenizer.mergeable_ranks
  293. for token, rank in mergeable_ranks.items():
  294. vocab[QwenModel.token_bytes_to_string(token)] = rank
  295. if len(token) == 1:
  296. continue
  297. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  298. assert len(merged) == 2
  299. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  300. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  301. added_vocab = tokenizer.special_tokens
  302. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  303. for i in range(vocab_size):
  304. if i not in reverse_vocab:
  305. tokens.append(f"[PAD{i}]")
  306. toktypes.append(gguf.TokenType.USER_DEFINED)
  307. elif reverse_vocab[i] in added_vocab:
  308. tokens.append(reverse_vocab[i])
  309. toktypes.append(gguf.TokenType.CONTROL)
  310. else:
  311. tokens.append(reverse_vocab[i])
  312. toktypes.append(gguf.TokenType.NORMAL)
  313. self.gguf_writer.add_tokenizer_model("gpt2")
  314. self.gguf_writer.add_tokenizer_pre(tokpre)
  315. self.gguf_writer.add_token_list(tokens)
  316. self.gguf_writer.add_token_types(toktypes)
  317. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  318. special_vocab.merges = merges
  319. # only add special tokens when they were not already loaded from config.json
  320. if len(special_vocab.special_token_ids) == 0:
  321. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  322. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  323. # this one is usually not in config.json anyway
  324. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  325. special_vocab.add_to_gguf(self.gguf_writer)
  326. def _set_vocab_sentencepiece(self):
  327. from sentencepiece import SentencePieceProcessor
  328. tokenizer_path = self.dir_model / 'tokenizer.model'
  329. tokens: list[bytes] = []
  330. scores: list[float] = []
  331. toktypes: list[int] = []
  332. if not tokenizer_path.is_file():
  333. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  334. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  335. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  336. for token_id in range(tokenizer.vocab_size()):
  337. piece = tokenizer.id_to_piece(token_id)
  338. text = piece.encode("utf-8")
  339. score = tokenizer.get_score(token_id)
  340. toktype = SentencePieceTokenTypes.NORMAL
  341. if tokenizer.is_unknown(token_id):
  342. toktype = SentencePieceTokenTypes.UNKNOWN
  343. elif tokenizer.is_control(token_id):
  344. toktype = SentencePieceTokenTypes.CONTROL
  345. elif tokenizer.is_unused(token_id):
  346. toktype = SentencePieceTokenTypes.UNUSED
  347. elif tokenizer.is_byte(token_id):
  348. toktype = SentencePieceTokenTypes.BYTE
  349. tokens.append(text)
  350. scores.append(score)
  351. toktypes.append(toktype)
  352. added_tokens_file = self.dir_model / 'added_tokens.json'
  353. if added_tokens_file.is_file():
  354. with open(added_tokens_file, "r", encoding="utf-8") as f:
  355. added_tokens_json = json.load(f)
  356. for key in added_tokens_json:
  357. key = key.encode("utf-8")
  358. if key not in tokens:
  359. tokens.append(key)
  360. scores.append(-1000.0)
  361. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  362. if vocab_size > len(tokens):
  363. pad_count = vocab_size - len(tokens)
  364. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  365. for i in range(1, pad_count + 1):
  366. tokens.append(f"[PAD{i}]")
  367. scores.append(-1000.0)
  368. toktypes.append(SentencePieceTokenTypes.UNUSED)
  369. assert len(tokens) == vocab_size
  370. self.gguf_writer.add_tokenizer_model("llama")
  371. self.gguf_writer.add_tokenizer_pre("default")
  372. self.gguf_writer.add_token_list(tokens)
  373. self.gguf_writer.add_token_scores(scores)
  374. self.gguf_writer.add_token_types(toktypes)
  375. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  376. special_vocab.add_to_gguf(self.gguf_writer)
  377. def _set_vocab_llama_hf(self):
  378. vocab = LlamaHfVocab(self.dir_model)
  379. tokens = []
  380. scores = []
  381. toktypes = []
  382. for text, score, toktype in vocab.all_tokens():
  383. tokens.append(text)
  384. scores.append(score)
  385. toktypes.append(toktype)
  386. assert len(tokens) == vocab.vocab_size
  387. self.gguf_writer.add_tokenizer_model("llama")
  388. self.gguf_writer.add_tokenizer_pre("default")
  389. self.gguf_writer.add_token_list(tokens)
  390. self.gguf_writer.add_token_scores(scores)
  391. self.gguf_writer.add_token_types(toktypes)
  392. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  393. special_vocab.add_to_gguf(self.gguf_writer)
  394. @Model.register("GPTNeoXForCausalLM")
  395. class GPTNeoXModel(Model):
  396. model_arch = gguf.MODEL_ARCH.GPTNEOX
  397. def set_gguf_parameters(self):
  398. block_count = self.hparams["num_hidden_layers"]
  399. self.gguf_writer.add_name(self.dir_model.name)
  400. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  401. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  402. self.gguf_writer.add_block_count(block_count)
  403. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  404. self.gguf_writer.add_rope_dimension_count(
  405. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  406. )
  407. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  408. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  409. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  410. @Model.register("BloomForCausalLM")
  411. class BloomModel(Model):
  412. model_arch = gguf.MODEL_ARCH.BLOOM
  413. def set_gguf_parameters(self):
  414. self.gguf_writer.add_name("Bloom")
  415. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  416. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  417. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  418. self.gguf_writer.add_embedding_length(n_embed)
  419. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  420. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  421. self.gguf_writer.add_head_count(n_head)
  422. self.gguf_writer.add_head_count_kv(n_head)
  423. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  424. self.gguf_writer.add_file_type(self.ftype)
  425. def write_tensors(self):
  426. block_count = self.hparams["n_layer"]
  427. tensors = dict(self.get_tensors())
  428. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  429. has_lm_head = True
  430. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  431. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  432. for name, data_torch in tensors.items():
  433. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  434. has_lm_head = False
  435. name = re.sub(r'transformer\.', '', name)
  436. old_dtype = data_torch.dtype
  437. # convert any unsupported data types to float32
  438. if data_torch.dtype not in (torch.float16, torch.float32):
  439. data_torch = data_torch.to(torch.float32)
  440. data = data_torch.squeeze().numpy()
  441. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  442. # Map bloom-style qkv_linear to gpt-style qkv_linear
  443. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  444. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  445. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  446. data = np.concatenate(
  447. (
  448. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  449. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  450. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  451. ),
  452. axis=0,
  453. )
  454. logger.info("re-format attention.linear_qkv.weight")
  455. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  456. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  457. data = np.concatenate(
  458. (
  459. qkv_bias[:, 0, :].reshape((n_embed,)),
  460. qkv_bias[:, 1, :].reshape((n_embed,)),
  461. qkv_bias[:, 2, :].reshape((n_embed,)),
  462. ),
  463. axis=0,
  464. )
  465. logger.info("re-format attention.linear_qkv.bias")
  466. # map tensor names
  467. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  468. if new_name is None:
  469. raise ValueError(f"Can not map tensor {name!r}")
  470. n_dims = len(data.shape)
  471. data_dtype = data.dtype
  472. # if f32 desired, convert any float16 to float32
  473. if self.ftype == 0 and data_dtype == np.float16:
  474. data = data.astype(np.float32)
  475. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  476. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  477. data = data.astype(np.float32)
  478. # if f16 desired, convert any float32 2-dim weight tensors to float16
  479. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  480. data = data.astype(np.float16)
  481. logger.info(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  482. self.gguf_writer.add_tensor(new_name, data)
  483. if not has_lm_head and name == "word_embeddings.weight":
  484. self.gguf_writer.add_tensor("output.weight", data)
  485. logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  486. @Model.register("MPTForCausalLM")
  487. class MPTModel(Model):
  488. model_arch = gguf.MODEL_ARCH.MPT
  489. def set_vocab(self):
  490. try:
  491. self._set_vocab_gpt2()
  492. except Exception:
  493. # Fallback for SEA-LION model
  494. self._set_vocab_sentencepiece()
  495. self.gguf_writer.add_add_bos_token(False)
  496. self.gguf_writer.add_pad_token_id(3)
  497. self.gguf_writer.add_eos_token_id(1)
  498. self.gguf_writer.add_unk_token_id(0)
  499. def set_gguf_parameters(self):
  500. block_count = self.hparams["n_layers"]
  501. self.gguf_writer.add_name(self.dir_model.name)
  502. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  503. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  504. self.gguf_writer.add_block_count(block_count)
  505. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  506. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  507. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  508. self.gguf_writer.add_head_count_kv(kv_n_heads)
  509. self.gguf_writer.add_layer_norm_eps(1e-5)
  510. if self.hparams["attn_config"]["clip_qkv"] is not None:
  511. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  512. if self.hparams["attn_config"]["alibi"]:
  513. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  514. else:
  515. self.gguf_writer.add_max_alibi_bias(0.0)
  516. def write_tensors(self):
  517. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  518. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  519. for name, data_torch in self.get_tensors():
  520. # we don't need these
  521. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  522. continue
  523. old_dtype = data_torch.dtype
  524. # convert any unsupported data types to float32
  525. if data_torch.dtype not in (torch.float16, torch.float32):
  526. data_torch = data_torch.to(torch.float32)
  527. data = data_torch.squeeze().numpy()
  528. # map tensor names
  529. if "scales" in name:
  530. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  531. if new_name is not None:
  532. new_name = new_name.replace("scales", "act.scales")
  533. else:
  534. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  535. if new_name is None:
  536. raise ValueError(f"Can not map tensor {name!r}")
  537. n_dims = len(data.shape)
  538. data_dtype = data.dtype
  539. # if f32 desired, convert any float16 to float32
  540. if self.ftype == 0 and data_dtype == np.float16:
  541. data = data.astype(np.float32)
  542. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  543. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  544. data = data.astype(np.float32)
  545. # if f16 desired, convert any float32 2-dim weight tensors to float16
  546. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  547. data = data.astype(np.float16)
  548. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  549. self.gguf_writer.add_tensor(new_name, data)
  550. @Model.register("OrionForCausalLM")
  551. class OrionModel(Model):
  552. model_arch = gguf.MODEL_ARCH.ORION
  553. def set_vocab(self):
  554. self._set_vocab_sentencepiece()
  555. def set_gguf_parameters(self):
  556. block_count = self.hparams["num_hidden_layers"]
  557. head_count = self.hparams["num_attention_heads"]
  558. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  559. hf_repo = self.hparams.get("_name_or_path", "")
  560. ctx_length = 0
  561. if "max_sequence_length" in self.hparams:
  562. ctx_length = self.hparams["max_sequence_length"]
  563. elif "max_position_embeddings" in self.hparams:
  564. ctx_length = self.hparams["max_position_embeddings"]
  565. elif "model_max_length" in self.hparams:
  566. ctx_length = self.hparams["model_max_length"]
  567. else:
  568. raise ValueError("gguf: can not find ctx length parameter.")
  569. self.gguf_writer.add_file_type(self.ftype)
  570. self.gguf_writer.add_name(self.dir_model.name)
  571. self.gguf_writer.add_source_hf_repo(hf_repo)
  572. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  573. self.gguf_writer.add_context_length(ctx_length)
  574. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  575. self.gguf_writer.add_block_count(block_count)
  576. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  577. self.gguf_writer.add_head_count(head_count)
  578. self.gguf_writer.add_head_count_kv(head_count_kv)
  579. # note: config provides rms norm but it is actually layer norm
  580. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  581. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  582. def write_tensors(self):
  583. # Collect tensors from generator object
  584. model_kv = dict(self.get_tensors())
  585. block_count = self.hparams["num_hidden_layers"]
  586. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  587. for name, data_torch in model_kv.items():
  588. # we don't need these
  589. if name.endswith(".rotary_emb.inv_freq"):
  590. continue
  591. old_dtype = data_torch.dtype
  592. # convert any unsupported data types to float32
  593. if data_torch.dtype not in (torch.float16, torch.float32):
  594. data_torch = data_torch.to(torch.float32)
  595. data = data_torch.squeeze().numpy()
  596. # map tensor names
  597. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  598. if new_name is None:
  599. raise ValueError(f"Can not map tensor {name!r}")
  600. n_dims = len(data.shape)
  601. data_dtype = data.dtype
  602. # if f32 desired, convert any float16 to float32
  603. if self.ftype == 0 and data_dtype == np.float16:
  604. data = data.astype(np.float32)
  605. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  606. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  607. data = data.astype(np.float32)
  608. # if f16 desired, convert any float32 2-dim weight tensors to float16
  609. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  610. data = data.astype(np.float16)
  611. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  612. self.gguf_writer.add_tensor(new_name, data)
  613. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  614. class BaichuanModel(Model):
  615. model_arch = gguf.MODEL_ARCH.BAICHUAN
  616. def set_vocab(self):
  617. self._set_vocab_sentencepiece()
  618. def set_gguf_parameters(self):
  619. block_count = self.hparams["num_hidden_layers"]
  620. head_count = self.hparams["num_attention_heads"]
  621. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  622. hf_repo = self.hparams.get("_name_or_path", "")
  623. ctx_length = 0
  624. if "max_sequence_length" in self.hparams:
  625. ctx_length = self.hparams["max_sequence_length"]
  626. elif "max_position_embeddings" in self.hparams:
  627. ctx_length = self.hparams["max_position_embeddings"]
  628. elif "model_max_length" in self.hparams:
  629. ctx_length = self.hparams["model_max_length"]
  630. else:
  631. raise ValueError("gguf: can not find ctx length parameter.")
  632. self.gguf_writer.add_name(self.dir_model.name)
  633. self.gguf_writer.add_source_hf_repo(hf_repo)
  634. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  635. self.gguf_writer.add_context_length(ctx_length)
  636. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  637. self.gguf_writer.add_block_count(block_count)
  638. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  639. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  640. self.gguf_writer.add_head_count(head_count)
  641. self.gguf_writer.add_head_count_kv(head_count_kv)
  642. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  643. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  644. if self.hparams["rope_scaling"].get("type") == "linear":
  645. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  646. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  647. def write_tensors(self):
  648. # Collect tensors from generator object
  649. model_kv = dict(self.get_tensors())
  650. block_count = self.hparams["num_hidden_layers"]
  651. head_count = self.hparams["num_attention_heads"]
  652. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  653. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  654. for i in range(block_count):
  655. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  656. logger.info(f"Unpacking and permuting layer {i}")
  657. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  658. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  659. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  660. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  661. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  662. self._reverse_hf_part(w, 2)
  663. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  664. for name, data_torch in model_kv.items():
  665. # we don't need these
  666. if name.endswith(".rotary_emb.inv_freq"):
  667. continue
  668. old_dtype = data_torch.dtype
  669. # convert any unsupported data types to float32
  670. if data_torch.dtype not in (torch.float16, torch.float32):
  671. data_torch = data_torch.to(torch.float32)
  672. data = data_torch.squeeze().numpy()
  673. # map tensor names
  674. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  675. if new_name is None:
  676. raise ValueError(f"Can not map tensor {name!r}")
  677. n_dims = len(data.shape)
  678. data_dtype = data.dtype
  679. # if f32 desired, convert any float16 to float32
  680. if self.ftype == 0 and data_dtype == np.float16:
  681. data = data.astype(np.float32)
  682. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  683. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  684. data = data.astype(np.float32)
  685. # if f16 desired, convert any float32 2-dim weight tensors to float16
  686. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  687. data = data.astype(np.float16)
  688. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  689. self.gguf_writer.add_tensor(new_name, data)
  690. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  691. if n_kv_head is not None and n_head != n_kv_head:
  692. n_head //= n_kv_head
  693. return (
  694. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  695. .swapaxes(1, 2)
  696. .reshape(weights.shape)
  697. )
  698. def _reverse_hf_permute_part(
  699. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  700. ) -> Tensor:
  701. r = weights.shape[0] // 3
  702. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  703. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  704. r = weights.shape[0] // 3
  705. return weights[r * n_part:r * n_part + r, ...]
  706. @Model.register("XverseForCausalLM")
  707. class XverseModel(Model):
  708. model_arch = gguf.MODEL_ARCH.XVERSE
  709. def set_vocab(self):
  710. assert (self.dir_model / "tokenizer.json").is_file()
  711. dir_model = self.dir_model
  712. hparams = self.hparams
  713. tokens: list[bytearray] = []
  714. toktypes: list[int] = []
  715. from transformers import AutoTokenizer
  716. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  717. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  718. assert max(tokenizer.vocab.values()) < vocab_size
  719. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  720. added_vocab = tokenizer.get_added_vocab()
  721. for token_id in range(vocab_size):
  722. token_text = reverse_vocab[token_id].encode('utf-8')
  723. # replace "\x00" to string with length > 0
  724. if token_text == b"\x00":
  725. toktype = gguf.TokenType.BYTE # special
  726. token_text = f"<{token_text}>".encode('utf-8')
  727. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  728. toktype = gguf.TokenType.BYTE # special
  729. elif reverse_vocab[token_id] in added_vocab:
  730. if tokenizer.added_tokens_decoder[token_id].special:
  731. toktype = gguf.TokenType.CONTROL
  732. else:
  733. toktype = gguf.TokenType.USER_DEFINED
  734. else:
  735. toktype = gguf.TokenType.NORMAL
  736. tokens.append(token_text)
  737. toktypes.append(toktype)
  738. self.gguf_writer.add_tokenizer_model("llama")
  739. self.gguf_writer.add_tokenizer_pre("default")
  740. self.gguf_writer.add_token_list(tokens)
  741. self.gguf_writer.add_token_types(toktypes)
  742. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  743. special_vocab.add_to_gguf(self.gguf_writer)
  744. def set_gguf_parameters(self):
  745. block_count = self.hparams["num_hidden_layers"]
  746. head_count = self.hparams["num_attention_heads"]
  747. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  748. hf_repo = self.hparams.get("_name_or_path", "")
  749. ctx_length = 0
  750. if "max_sequence_length" in self.hparams:
  751. ctx_length = self.hparams["max_sequence_length"]
  752. elif "max_position_embeddings" in self.hparams:
  753. ctx_length = self.hparams["max_position_embeddings"]
  754. elif "model_max_length" in self.hparams:
  755. ctx_length = self.hparams["model_max_length"]
  756. else:
  757. raise ValueError("gguf: can not find ctx length parameter.")
  758. self.gguf_writer.add_name(self.dir_model.name)
  759. self.gguf_writer.add_source_hf_repo(hf_repo)
  760. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  761. self.gguf_writer.add_context_length(ctx_length)
  762. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  763. self.gguf_writer.add_block_count(block_count)
  764. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  765. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  766. self.gguf_writer.add_head_count(head_count)
  767. self.gguf_writer.add_head_count_kv(head_count_kv)
  768. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  769. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  770. if self.hparams["rope_scaling"].get("type") == "linear":
  771. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  772. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  773. def write_tensors(self):
  774. # Collect tensors from generator object
  775. model_kv = dict(self.get_tensors())
  776. block_count = self.hparams["num_hidden_layers"]
  777. head_count = self.hparams["num_attention_heads"]
  778. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  779. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  780. for name, data_torch in model_kv.items():
  781. # we don't need these
  782. if name.endswith(".rotary_emb.inv_freq"):
  783. continue
  784. old_dtype = data_torch.dtype
  785. # convert any unsupported data types to float32
  786. if data_torch.dtype not in (torch.float16, torch.float32):
  787. data_torch = data_torch.to(torch.float32)
  788. # HF models permute some of the tensors, so we need to undo that
  789. if name.endswith(("q_proj.weight")):
  790. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  791. if name.endswith(("k_proj.weight")):
  792. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  793. data = data_torch.squeeze().numpy()
  794. # map tensor names
  795. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  796. if new_name is None:
  797. raise ValueError(f"Can not map tensor {name!r}")
  798. n_dims = len(data.shape)
  799. data_dtype = data.dtype
  800. # if f32 desired, convert any float16 to float32
  801. if self.ftype == 0 and data_dtype == np.float16:
  802. data = data.astype(np.float32)
  803. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  804. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  805. data = data.astype(np.float32)
  806. # if f16 desired, convert any float32 2-dim weight tensors to float16
  807. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  808. data = data.astype(np.float16)
  809. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  810. self.gguf_writer.add_tensor(new_name, data)
  811. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  812. if n_kv_head is not None and n_head != n_kv_head:
  813. n_head //= n_kv_head
  814. return (
  815. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  816. .swapaxes(1, 2)
  817. .reshape(weights.shape)
  818. )
  819. @Model.register("FalconForCausalLM", "RWForCausalLM")
  820. class FalconModel(Model):
  821. model_arch = gguf.MODEL_ARCH.FALCON
  822. def set_gguf_parameters(self):
  823. block_count = self.hparams.get("num_hidden_layers")
  824. if block_count is None:
  825. block_count = self.hparams["n_layer"] # old name
  826. n_head = self.hparams.get("num_attention_heads")
  827. if n_head is None:
  828. n_head = self.hparams["n_head"] # old name
  829. n_head_kv = self.hparams.get("num_kv_heads")
  830. if n_head_kv is None:
  831. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  832. self.gguf_writer.add_name("Falcon")
  833. self.gguf_writer.add_context_length(2048) # not in config.json
  834. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  835. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  836. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  837. self.gguf_writer.add_block_count(block_count)
  838. self.gguf_writer.add_head_count(n_head)
  839. self.gguf_writer.add_head_count_kv(n_head_kv)
  840. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  841. self.gguf_writer.add_file_type(self.ftype)
  842. def write_tensors(self):
  843. block_count = self.hparams.get("num_hidden_layers")
  844. if block_count is None:
  845. block_count = self.hparams["n_layer"] # old name
  846. n_head = self.hparams.get("num_attention_heads")
  847. if n_head is None:
  848. n_head = self.hparams["n_head"] # old name
  849. n_head_kv = self.hparams.get("num_kv_heads")
  850. if n_head_kv is None:
  851. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  852. head_dim = self.hparams["hidden_size"] // n_head
  853. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  854. for name, data_torch in self.get_tensors():
  855. old_dtype = data_torch.dtype
  856. # convert any unsupported data types to float32
  857. if data_torch.dtype not in (torch.float16, torch.float32):
  858. data_torch = data_torch.to(torch.float32)
  859. # QKV tensor transform
  860. # The original query_key_value tensor contains n_head_kv "kv groups",
  861. # each consisting of n_head/n_head_kv query weights followed by one key
  862. # and one value weight (shared by all query heads in the kv group).
  863. # This layout makes it a big pain to work with in GGML.
  864. # So we rearrange them here,, so that we have n_head query weights
  865. # followed by n_head_kv key weights followed by n_head_kv value weights,
  866. # in contiguous fashion.
  867. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  868. if "query_key_value" in name:
  869. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  870. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  871. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  872. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  873. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  874. data = data_torch.squeeze().numpy()
  875. # map tensor names
  876. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  877. if new_name is None:
  878. raise ValueError(f"Can not map tensor {name!r}")
  879. n_dims = len(data.shape)
  880. data_dtype = data.dtype
  881. # if f32 desired, convert any float16 to float32
  882. if self.ftype == 0 and data_dtype == np.float16:
  883. data = data.astype(np.float32)
  884. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  885. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  886. data = data.astype(np.float32)
  887. # if f16 desired, convert any float32 2-dim weight tensors to float16
  888. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  889. data = data.astype(np.float16)
  890. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  891. self.gguf_writer.add_tensor(new_name, data)
  892. @Model.register("GPTBigCodeForCausalLM")
  893. class StarCoderModel(Model):
  894. model_arch = gguf.MODEL_ARCH.STARCODER
  895. def set_gguf_parameters(self):
  896. block_count = self.hparams["n_layer"]
  897. self.gguf_writer.add_name("StarCoder")
  898. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  899. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  900. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  901. self.gguf_writer.add_block_count(block_count)
  902. self.gguf_writer.add_head_count(self.hparams["n_head"])
  903. self.gguf_writer.add_head_count_kv(1)
  904. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  905. self.gguf_writer.add_file_type(self.ftype)
  906. @Model.register("GPTRefactForCausalLM")
  907. class RefactModel(Model):
  908. model_arch = gguf.MODEL_ARCH.REFACT
  909. def set_gguf_parameters(self):
  910. hidden_dim = self.hparams["n_embd"]
  911. inner_dim = 4 * hidden_dim
  912. hidden_dim = int(2 * inner_dim / 3)
  913. multiple_of = 256
  914. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  915. block_count = self.hparams["n_layer"]
  916. self.gguf_writer.add_name("Refact")
  917. # refact uses Alibi. So this is from config.json which might be used by training.
  918. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  919. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  920. self.gguf_writer.add_feed_forward_length(ff_dim)
  921. self.gguf_writer.add_block_count(block_count)
  922. self.gguf_writer.add_head_count(self.hparams["n_head"])
  923. self.gguf_writer.add_head_count_kv(1)
  924. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  925. self.gguf_writer.add_file_type(self.ftype)
  926. def write_tensors(self):
  927. hidden_dim = self.hparams["n_embd"]
  928. inner_dim = 4 * hidden_dim
  929. hidden_dim = int(2 * inner_dim / 3)
  930. multiple_of = 256
  931. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  932. n_head = self.hparams["n_head"]
  933. n_head_kv = 1
  934. head_dim = self.hparams["n_embd"] // n_head
  935. block_count = self.hparams["n_layer"]
  936. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  937. tensors = dict(self.get_tensors())
  938. for i in range(block_count):
  939. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  940. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  941. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  942. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  943. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  944. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  945. del tensors[f"transformer.h.{i}.attn.q.weight"]
  946. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  947. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  948. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  949. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  950. for name, data_torch in tensors.items():
  951. old_dtype = data_torch.dtype
  952. # convert any unsupported data types to float32
  953. if data_torch.dtype not in (torch.float16, torch.float32):
  954. data_torch = data_torch.to(torch.float32)
  955. data = data_torch.squeeze().numpy()
  956. # map tensor names
  957. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  958. if new_name is None:
  959. raise ValueError(f"Can not map tensor {name!r}")
  960. n_dims = len(data.shape)
  961. data_dtype = data.dtype
  962. # if f32 desired, convert any float16 to float32
  963. if self.ftype == 0 and data_dtype == np.float16:
  964. data = data.astype(np.float32)
  965. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  966. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  967. data = data.astype(np.float32)
  968. # if f16 desired, convert any float32 2-dim weight tensors to float16
  969. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  970. data = data.astype(np.float16)
  971. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  972. self.gguf_writer.add_tensor(new_name, data)
  973. @Model.register("PersimmonForCausalLM")
  974. class PersimmonModel(Model):
  975. model_arch = gguf.MODEL_ARCH.PERSIMMON
  976. def set_gguf_parameters(self):
  977. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  978. head_count = self.hparams["num_attention_heads"]
  979. head_count_kv = head_count
  980. hidden_size = self.hparams["hidden_size"]
  981. self.gguf_writer.add_name('persimmon-8b-chat')
  982. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  983. self.gguf_writer.add_embedding_length(hidden_size)
  984. self.gguf_writer.add_block_count(block_count)
  985. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  986. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  987. # than the head size?
  988. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  989. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  990. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  991. self.gguf_writer.add_head_count(head_count)
  992. self.gguf_writer.add_head_count_kv(head_count_kv)
  993. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  994. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  995. def set_vocab(self):
  996. self._set_vocab_sentencepiece()
  997. # self.gguf_writer.add_bos_token_id(71013)
  998. # self.gguf_writer.add_eos_token_id(71013)
  999. def write_tensors(self):
  1000. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1001. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1002. for name, data_torch in self.get_tensors():
  1003. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  1004. continue
  1005. old_dtype = data_torch.dtype
  1006. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  1007. data = data_torch.to(torch.float32).squeeze().numpy()
  1008. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1009. if new_name is None:
  1010. raise ValueError(f"Can not map tensor {name!r}")
  1011. n_dims = len(data.shape)
  1012. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1013. self.gguf_writer.add_tensor(new_name, data)
  1014. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1015. class StableLMModel(Model):
  1016. model_arch = gguf.MODEL_ARCH.STABLELM
  1017. def set_vocab(self):
  1018. if (self.dir_model / "tokenizer.json").is_file():
  1019. self._set_vocab_gpt2()
  1020. else:
  1021. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  1022. self._set_vocab_qwen()
  1023. def set_gguf_parameters(self):
  1024. hparams = self.hparams
  1025. block_count = hparams["num_hidden_layers"]
  1026. self.gguf_writer.add_name(self.dir_model.name)
  1027. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1028. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1029. self.gguf_writer.add_block_count(block_count)
  1030. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1031. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1032. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1033. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1034. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1035. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1036. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1037. def write_tensors(self):
  1038. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1039. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1040. n_head = self.hparams.get("num_attention_heads")
  1041. n_kv_head = self.hparams.get("num_key_value_heads")
  1042. q_norms = dict()
  1043. k_norms = dict()
  1044. for name, data_torch in self.get_tensors():
  1045. # we don't need these
  1046. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1047. continue
  1048. old_dtype = data_torch.dtype
  1049. # convert any unsupported data types to float32
  1050. if data_torch.dtype not in (torch.float16, torch.float32):
  1051. data_torch = data_torch.to(torch.float32)
  1052. data = data_torch.squeeze().numpy()
  1053. n_dims = len(data.shape)
  1054. if name.find("q_layernorm.norms") != -1:
  1055. q_norms[name] = data
  1056. if len(q_norms) >= (block_count * n_head):
  1057. self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
  1058. continue
  1059. if name.find("k_layernorm.norms") != -1:
  1060. k_norms[name] = data
  1061. if len(k_norms) >= (block_count * n_kv_head):
  1062. self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
  1063. continue
  1064. # map tensor names
  1065. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1066. if new_name is None:
  1067. raise ValueError(f"Can not map tensor {name!r}")
  1068. n_dims = len(data.shape)
  1069. data_dtype = data.dtype
  1070. # if f32 desired, convert any float16 to float32
  1071. if self.ftype == 0 and data_dtype == np.float16:
  1072. data = data.astype(np.float32)
  1073. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1074. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1075. data = data.astype(np.float32)
  1076. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1077. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1078. data = data.astype(np.float16)
  1079. logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1080. self.gguf_writer.add_tensor(new_name, data)
  1081. def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
  1082. for bid in range(block_count):
  1083. datas = []
  1084. for xid in range(n_head):
  1085. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1086. datas.append(norms[ename])
  1087. del norms[ename]
  1088. data = np.stack(datas, axis=0)
  1089. data_dtype = data.dtype
  1090. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1091. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1092. if new_name is None:
  1093. raise ValueError(f"Can not map tensor {name!r}")
  1094. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1095. data = data.astype(np.float32)
  1096. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1097. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1098. data = data.astype(np.float16)
  1099. logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1100. self.gguf_writer.add_tensor(new_name, data)
  1101. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1102. class LlamaModel(Model):
  1103. model_arch = gguf.MODEL_ARCH.LLAMA
  1104. def set_vocab(self):
  1105. try:
  1106. self. _set_vocab_sentencepiece()
  1107. except FileNotFoundError:
  1108. try:
  1109. self._set_vocab_llama_hf()
  1110. except (FileNotFoundError, TypeError):
  1111. # Llama 3
  1112. self._set_vocab_gpt2()
  1113. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1114. if self.hparams.get("vocab_size", 32000) == 32016:
  1115. special_vocab = gguf.SpecialVocab(
  1116. self.dir_model, load_merges=False,
  1117. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1118. )
  1119. special_vocab._set_special_token("prefix", 32007)
  1120. special_vocab._set_special_token("suffix", 32008)
  1121. special_vocab._set_special_token("middle", 32009)
  1122. special_vocab._set_special_token("eot", 32010)
  1123. special_vocab.add_to_gguf(self.gguf_writer)
  1124. def set_gguf_parameters(self):
  1125. super().set_gguf_parameters()
  1126. hparams = self.hparams
  1127. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1128. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1129. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1130. if self.hparams["rope_scaling"].get("type") == "linear":
  1131. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1132. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1133. # Same as super class, but permuting q_proj, k_proj
  1134. def write_tensors(self):
  1135. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1136. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1137. n_head = self.hparams.get("num_attention_heads")
  1138. n_kv_head = self.hparams.get("num_key_value_heads")
  1139. n_experts = self.hparams.get("num_local_experts")
  1140. experts = dict()
  1141. for name, data_torch in self.get_tensors():
  1142. # we don't need these
  1143. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  1144. continue
  1145. old_dtype = data_torch.dtype
  1146. # convert any unsupported data types to float32
  1147. if data_torch.dtype not in (torch.float16, torch.float32):
  1148. data_torch = data_torch.to(torch.float32)
  1149. data = data_torch.numpy()
  1150. if name.endswith("q_proj.weight"):
  1151. data = permute(data, n_head, n_head)
  1152. if name.endswith("k_proj.weight"):
  1153. data = permute(data, n_head, n_kv_head)
  1154. data = data.squeeze()
  1155. # process the experts separately
  1156. if name.find("block_sparse_moe.experts") != -1:
  1157. experts[name] = data
  1158. if len(experts) >= n_experts:
  1159. # merge the experts into a single 3d tensor
  1160. for bid in range(block_count):
  1161. for wid in range(1, 4):
  1162. full = True
  1163. for xid in range(n_experts):
  1164. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1165. if ename not in experts:
  1166. full = False
  1167. break
  1168. if not full:
  1169. continue
  1170. datas = []
  1171. for xid in range(n_experts):
  1172. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1173. datas.append(experts[ename])
  1174. del experts[ename]
  1175. data = np.stack(datas, axis=0)
  1176. data_dtype = data.dtype
  1177. if self.ftype == 0 and data_dtype == np.float16:
  1178. data = data.astype(np.float32)
  1179. if self.ftype == 1 and data_dtype == np.float32:
  1180. data = data.astype(np.float16)
  1181. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1182. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1183. if new_name is None:
  1184. raise ValueError(f"Can not map tensor {name!r}")
  1185. logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1186. self.gguf_writer.add_tensor(new_name, data)
  1187. continue
  1188. # map tensor names
  1189. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1190. if new_name is None:
  1191. raise ValueError(f"Can not map tensor {name!r}")
  1192. n_dims = len(data.shape)
  1193. data_dtype = data.dtype
  1194. # if f32 desired, convert any float16 to float32
  1195. if self.ftype == 0 and data_dtype == np.float16:
  1196. data = data.astype(np.float32)
  1197. # 1d tensors need to be converted to float32
  1198. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1199. data = data.astype(np.float32)
  1200. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1201. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1202. data = data.astype(np.float16)
  1203. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1204. self.gguf_writer.add_tensor(new_name, data)
  1205. if len(experts) > 0:
  1206. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1207. @Model.register("GrokForCausalLM")
  1208. class GrokModel(Model):
  1209. model_arch = gguf.MODEL_ARCH.GROK
  1210. def set_vocab(self):
  1211. self._set_vocab_sentencepiece()
  1212. def __init__(self, *args, **kwargs):
  1213. super().__init__(*args, **kwargs)
  1214. def set_gguf_parameters(self):
  1215. super().set_gguf_parameters()
  1216. self.gguf_writer.add_name("Grok")
  1217. def write_tensors(self):
  1218. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1219. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1220. n_experts = self.hparams.get("num_local_experts")
  1221. experts = dict()
  1222. for name, data_torch in self.get_tensors():
  1223. # we don't need these
  1224. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1225. continue
  1226. old_dtype = data_torch.dtype
  1227. # convert any unsupported data types to float32
  1228. if data_torch.dtype not in (torch.float16, torch.float32):
  1229. data_torch = data_torch.to(torch.float32)
  1230. data = data_torch.squeeze().numpy()
  1231. # process the experts separately
  1232. if name.find(".moe.") != -1:
  1233. experts[name] = data
  1234. if len(experts) >= n_experts:
  1235. # merge the experts into a single 3d tensor
  1236. for bid in range(block_count):
  1237. for wid in ["linear", "linear_1", "linear_v"]:
  1238. full = True
  1239. for xid in range(n_experts):
  1240. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1241. if ename not in experts:
  1242. full = False
  1243. break
  1244. if not full:
  1245. continue
  1246. datas = []
  1247. for xid in range(n_experts):
  1248. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1249. datas.append(experts[ename])
  1250. del experts[ename]
  1251. data = np.stack(datas, axis=0)
  1252. data_dtype = data.dtype
  1253. if self.ftype == 0 and data_dtype == np.float16:
  1254. data = data.astype(np.float32)
  1255. if self.ftype == 1 and data_dtype == np.float32:
  1256. data = data.astype(np.float16)
  1257. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1258. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1259. if new_name is None:
  1260. raise ValueError(f"Can not map tensor {name!r}")
  1261. logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1262. self.gguf_writer.add_tensor(new_name, data)
  1263. continue
  1264. # map tensor names
  1265. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1266. if new_name is None:
  1267. raise ValueError(f"Can not map tensor {name!r}")
  1268. n_dims = len(data.shape)
  1269. data_dtype = data.dtype
  1270. # if f32 desired, convert any float16 to float32
  1271. if self.ftype == 0 and data_dtype == np.float16:
  1272. data = data.astype(np.float32)
  1273. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1274. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1275. data = data.astype(np.float32)
  1276. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1277. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1278. data = data.astype(np.float16)
  1279. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1280. self.gguf_writer.add_tensor(new_name, data)
  1281. @Model.register("DbrxForCausalLM")
  1282. class DbrxModel(Model):
  1283. model_arch = gguf.MODEL_ARCH.DBRX
  1284. def set_gguf_parameters(self):
  1285. ffn_config = self.hparams["ffn_config"]
  1286. attn_config = self.hparams["attn_config"]
  1287. self.gguf_writer.add_name(self.hparams["model_type"])
  1288. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1289. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1290. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1291. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1292. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1293. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1294. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1295. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1296. self.gguf_writer.add_file_type(self.ftype)
  1297. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1298. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1299. self.gguf_writer.add_layer_norm_eps(1e-5)
  1300. self.gguf_writer.add_file_type(self.ftype)
  1301. logger.info(f"gguf: file type = {self.ftype}")
  1302. def write_tensors(self):
  1303. block_count = self.hparams.get("n_layers")
  1304. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1305. for name, data_torch in self.get_tensors():
  1306. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1307. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1308. n_embd = self.hparams["d_model"]
  1309. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1310. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1311. # But llama.cpp moe graph works differently
  1312. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1313. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1314. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1315. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1316. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1317. experts = False
  1318. for exp_tensor_name in exp_tensor_names.keys():
  1319. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1320. experts = True
  1321. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1322. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1323. data_torch = data_torch.permute(*permute_tensor)
  1324. break
  1325. old_dtype = data_torch.dtype
  1326. # convert any unsupported data types to float32
  1327. if data_torch.dtype not in (torch.float16, torch.float32):
  1328. data_torch = data_torch.to(torch.float32)
  1329. data = data_torch.squeeze().numpy()
  1330. # map tensor names
  1331. # In MoE models the ffn tensors are typically most of the model weights,
  1332. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1333. # Every other model has the weight names ending in .weight,
  1334. # let's assume that is the convention which is not the case for dbrx:
  1335. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1336. new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1337. if new_name is None:
  1338. raise ValueError(f"Can not map tensor {name!r}")
  1339. n_dims = len(data.shape)
  1340. data_dtype = data.dtype
  1341. # Most of the codebase that takes in 1D tensors only handles F32 tensors
  1342. # and most of the outputs tensors are F32.
  1343. if data_dtype != np.float32 and n_dims == 1:
  1344. raise ValueError(f"Can not map tensor {name!r}: all 1D tensors must be F32")
  1345. # if f32 desired, convert any float16 to float32
  1346. if self.ftype == 0 and data_dtype == np.float16:
  1347. data = data.astype(np.float32)
  1348. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1349. if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
  1350. data = data.astype(np.float16)
  1351. logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1352. self.gguf_writer.add_tensor(new_name, data)
  1353. @Model.register("MiniCPMForCausalLM")
  1354. class MiniCPMModel(Model):
  1355. model_arch = gguf.MODEL_ARCH.MINICPM
  1356. def set_gguf_parameters(self):
  1357. block_count = self.hparams["num_hidden_layers"]
  1358. self.gguf_writer.add_name("MiniCPM")
  1359. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1360. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1361. self.gguf_writer.add_block_count(block_count)
  1362. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1363. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1364. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1365. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1366. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1367. self.gguf_writer.add_file_type(self.ftype)
  1368. def set_vocab(self):
  1369. self._set_vocab_llama_hf()
  1370. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1371. if n_kv_head is not None and n_head != n_kv_head:
  1372. n_head //= n_kv_head
  1373. return (
  1374. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1375. .swapaxes(1, 2)
  1376. .reshape(weights.shape)
  1377. )
  1378. def write_tensors(self):
  1379. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1380. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1381. n_head = self.hparams.get("num_attention_heads")
  1382. n_kv_head = self.hparams.get("num_key_value_heads")
  1383. for name, data_torch in self.get_tensors():
  1384. # we don't need these
  1385. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1386. continue
  1387. old_dtype = data_torch.dtype
  1388. # convert any unsupported data types to float32
  1389. if data_torch.dtype not in (torch.float16, torch.float32):
  1390. data_torch = data_torch.to(torch.float32)
  1391. # HF models permute some of the tensors, so we need to undo that
  1392. if name.endswith(("q_proj.weight")):
  1393. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1394. if name.endswith(("k_proj.weight")):
  1395. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1396. data = data_torch.squeeze().numpy()
  1397. # map tensor names
  1398. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1399. if new_name is None:
  1400. raise ValueError(f"Can not map tensor {name!r}")
  1401. n_dims = len(data.shape)
  1402. data_dtype = data.dtype
  1403. # if f32 desired, convert any float16 to float32
  1404. if self.ftype == 0 and data_dtype == np.float16:
  1405. data = data.astype(np.float32)
  1406. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1407. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1408. data = data.astype(np.float32)
  1409. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1410. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1411. data = data.astype(np.float16)
  1412. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1413. self.gguf_writer.add_tensor(new_name, data)
  1414. @Model.register("QWenLMHeadModel")
  1415. class QwenModel(Model):
  1416. model_arch = gguf.MODEL_ARCH.QWEN
  1417. @staticmethod
  1418. def token_bytes_to_string(b):
  1419. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1420. byte_encoder = bytes_to_unicode()
  1421. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1422. @staticmethod
  1423. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1424. parts = [bytes([b]) for b in token]
  1425. while True:
  1426. min_idx = None
  1427. min_rank = None
  1428. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1429. rank = mergeable_ranks.get(pair[0] + pair[1])
  1430. if rank is not None and (min_rank is None or rank < min_rank):
  1431. min_idx = i
  1432. min_rank = rank
  1433. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1434. break
  1435. assert min_idx is not None
  1436. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1437. return parts
  1438. def set_vocab(self):
  1439. self._set_vocab_qwen()
  1440. def set_gguf_parameters(self):
  1441. self.gguf_writer.add_name("Qwen")
  1442. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1443. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1444. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1445. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1446. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1447. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1448. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1449. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1450. def write_tensors(self):
  1451. block_count = self.hparams["num_hidden_layers"]
  1452. model_kv = dict(self.get_tensors())
  1453. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1454. for name, data_torch in model_kv.items():
  1455. # we don't need these
  1456. if name.endswith(".rotary_emb.inv_freq"):
  1457. continue
  1458. old_dtype = data_torch.dtype
  1459. # convert any unsupported data types to float32
  1460. if data_torch.dtype not in (torch.float16, torch.float32):
  1461. data_torch = data_torch.to(torch.float32)
  1462. data = data_torch.squeeze().numpy()
  1463. # map tensor names
  1464. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1465. if new_name is None:
  1466. raise ValueError(f"Can not map tensor {name!r}")
  1467. n_dims = len(data.shape)
  1468. data_dtype = data.dtype
  1469. # if f32 desired, convert any float16 to float32
  1470. if self.ftype == 0 and data_dtype == np.float16:
  1471. data = data.astype(np.float32)
  1472. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1473. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1474. data = data.astype(np.float32)
  1475. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1476. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1477. data = data.astype(np.float16)
  1478. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1479. self.gguf_writer.add_tensor(new_name, data)
  1480. @Model.register("Qwen2ForCausalLM")
  1481. class Qwen2Model(Model):
  1482. model_arch = gguf.MODEL_ARCH.QWEN2
  1483. def set_vocab(self):
  1484. try:
  1485. self._set_vocab_sentencepiece()
  1486. except FileNotFoundError:
  1487. self._set_vocab_gpt2()
  1488. @Model.register("Qwen2MoeForCausalLM")
  1489. class Qwen2MoeModel(Model):
  1490. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1491. def set_gguf_parameters(self):
  1492. super().set_gguf_parameters()
  1493. if (n_experts := self.hparams.get("num_experts")) is not None:
  1494. self.gguf_writer.add_expert_count(n_experts)
  1495. def write_tensors(self):
  1496. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1497. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1498. n_experts = self.hparams.get("num_experts")
  1499. experts = dict()
  1500. for name, data_torch in self.get_tensors():
  1501. # we don't need these
  1502. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1503. continue
  1504. old_dtype = data_torch.dtype
  1505. # convert any unsupported data types to float32
  1506. if data_torch.dtype not in (torch.float16, torch.float32):
  1507. data_torch = data_torch.to(torch.float32)
  1508. data = data_torch.squeeze().numpy()
  1509. # process the experts separately
  1510. if name.find("experts") != -1:
  1511. experts[name] = data
  1512. if len(experts) >= n_experts * 3:
  1513. # merge the experts into a single 3d tensor
  1514. for bid in range(block_count):
  1515. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1516. full = True
  1517. for xid in range(n_experts):
  1518. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1519. if ename not in experts:
  1520. full = False
  1521. break
  1522. if not full:
  1523. continue
  1524. datas = []
  1525. for xid in range(n_experts):
  1526. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1527. datas.append(experts[ename])
  1528. del experts[ename]
  1529. data = np.stack(datas, axis=0)
  1530. data_dtype = data.dtype
  1531. if self.ftype == 0 and data_dtype == np.float16:
  1532. data = data.astype(np.float32)
  1533. if self.ftype == 1 and data_dtype == np.float32:
  1534. data = data.astype(np.float16)
  1535. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1536. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1537. if new_name is None:
  1538. raise ValueError(f"Can not map tensor {name!r}")
  1539. logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1540. self.gguf_writer.add_tensor(new_name, data)
  1541. continue
  1542. # map tensor names
  1543. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1544. if new_name is None:
  1545. raise ValueError(f"Can not map tensor {name!r}")
  1546. n_dims = len(data.shape)
  1547. data_dtype = data.dtype
  1548. # if f32 desired, convert any float16 to float32
  1549. if self.ftype == 0 and data_dtype == np.float16:
  1550. data = data.astype(np.float32)
  1551. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1552. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1553. data = data.astype(np.float32)
  1554. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1555. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1556. data = data.astype(np.float16)
  1557. logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1558. self.gguf_writer.add_tensor(new_name, data)
  1559. if len(experts) > 0:
  1560. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1561. @Model.register("GPT2LMHeadModel")
  1562. class GPT2Model(Model):
  1563. model_arch = gguf.MODEL_ARCH.GPT2
  1564. def set_gguf_parameters(self):
  1565. self.gguf_writer.add_name(self.dir_model.name)
  1566. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1567. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1568. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1569. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1570. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1571. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1572. self.gguf_writer.add_file_type(self.ftype)
  1573. def write_tensors(self):
  1574. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1575. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1576. for name, data_torch in self.get_tensors():
  1577. # we don't need these
  1578. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1579. continue
  1580. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1581. data_torch = data_torch.transpose(1, 0)
  1582. old_dtype = data_torch.dtype
  1583. # convert any unsupported data types to float32
  1584. if data_torch.dtype not in (torch.float16, torch.float32):
  1585. data_torch = data_torch.to(torch.float32)
  1586. data = data_torch.squeeze().numpy()
  1587. # map tensor names
  1588. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1589. if new_name is None:
  1590. raise ValueError(f"Can not map tensor {name!r}")
  1591. n_dims = len(data.shape)
  1592. data_dtype = data.dtype
  1593. # if f32 desired, convert any float16 to float32
  1594. if self.ftype == 0 and data_dtype == np.float16:
  1595. data = data.astype(np.float32)
  1596. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1597. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1598. data = data.astype(np.float32)
  1599. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1600. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1601. data = data.astype(np.float16)
  1602. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1603. self.gguf_writer.add_tensor(new_name, data)
  1604. # note: GPT2 output is tied to (same as) wte in original model
  1605. if new_name == "token_embd.weight":
  1606. logger.info(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1607. self.gguf_writer.add_tensor("output.weight", data)
  1608. @Model.register("PhiForCausalLM")
  1609. class Phi2Model(Model):
  1610. model_arch = gguf.MODEL_ARCH.PHI2
  1611. def set_gguf_parameters(self):
  1612. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1613. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1614. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1615. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1616. self.gguf_writer.add_name("Phi2")
  1617. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1618. self.gguf_writer.add_embedding_length(n_embd)
  1619. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1620. self.gguf_writer.add_block_count(block_count)
  1621. self.gguf_writer.add_head_count(n_head)
  1622. self.gguf_writer.add_head_count_kv(n_head)
  1623. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1624. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1625. self.gguf_writer.add_file_type(self.ftype)
  1626. self.gguf_writer.add_add_bos_token(False)
  1627. @Model.register("Phi3ForCausalLM")
  1628. class Phi3MiniModel(Model):
  1629. model_arch = gguf.MODEL_ARCH.PHI3
  1630. def set_vocab(self):
  1631. from sentencepiece import SentencePieceProcessor
  1632. tokenizer_path = self.dir_model / 'tokenizer.model'
  1633. if not tokenizer_path.is_file():
  1634. raise ValueError(f'Error: Missing {tokenizer_path}')
  1635. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1636. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1637. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1638. scores: list[float] = [-10000.0] * vocab_size
  1639. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1640. for token_id in range(tokenizer.vocab_size()):
  1641. piece = tokenizer.id_to_piece(token_id)
  1642. text = piece.encode("utf-8")
  1643. score = tokenizer.get_score(token_id)
  1644. toktype = SentencePieceTokenTypes.NORMAL
  1645. if tokenizer.is_unknown(token_id):
  1646. toktype = SentencePieceTokenTypes.UNKNOWN
  1647. elif tokenizer.is_control(token_id):
  1648. toktype = SentencePieceTokenTypes.CONTROL
  1649. elif tokenizer.is_unused(token_id):
  1650. toktype = SentencePieceTokenTypes.UNUSED
  1651. elif tokenizer.is_byte(token_id):
  1652. toktype = SentencePieceTokenTypes.BYTE
  1653. tokens[token_id] = text
  1654. scores[token_id] = score
  1655. toktypes[token_id] = toktype
  1656. added_tokens_file = self.dir_model / 'added_tokens.json'
  1657. if added_tokens_file.is_file():
  1658. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1659. added_tokens_json = json.load(f)
  1660. for key in added_tokens_json:
  1661. token_id = added_tokens_json[key]
  1662. if (token_id >= vocab_size):
  1663. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1664. continue
  1665. tokens[token_id] = key.encode("utf-8")
  1666. scores[token_id] = -1000.0
  1667. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1668. self.gguf_writer.add_tokenizer_model("llama")
  1669. self.gguf_writer.add_tokenizer_pre("default")
  1670. self.gguf_writer.add_token_list(tokens)
  1671. self.gguf_writer.add_token_scores(scores)
  1672. self.gguf_writer.add_token_types(toktypes)
  1673. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1674. special_vocab.add_to_gguf(self.gguf_writer)
  1675. def set_gguf_parameters(self):
  1676. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1677. rot_pct = 1.0
  1678. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1679. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1680. rms_eps = self.find_hparam(["rms_norm_eps"])
  1681. self.gguf_writer.add_name("Phi3")
  1682. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1683. self.gguf_writer.add_embedding_length(n_embd)
  1684. self.gguf_writer.add_feed_forward_length(8192)
  1685. self.gguf_writer.add_block_count(block_count)
  1686. self.gguf_writer.add_head_count(n_head)
  1687. self.gguf_writer.add_head_count_kv(n_head)
  1688. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1689. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1690. self.gguf_writer.add_file_type(self.ftype)
  1691. @Model.register("PlamoForCausalLM")
  1692. class PlamoModel(Model):
  1693. model_arch = gguf.MODEL_ARCH.PLAMO
  1694. def set_vocab(self):
  1695. self._set_vocab_sentencepiece()
  1696. def set_gguf_parameters(self):
  1697. hparams = self.hparams
  1698. block_count = hparams["num_hidden_layers"]
  1699. self.gguf_writer.add_name("PLaMo")
  1700. self.gguf_writer.add_context_length(4096) # not in config.json
  1701. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1702. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1703. self.gguf_writer.add_block_count(block_count)
  1704. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1705. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1706. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1707. def shuffle_attn_q_weight(self, data_torch):
  1708. assert data_torch.size() == (5120, 5120)
  1709. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1710. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1711. data_torch = torch.reshape(data_torch, (5120, 5120))
  1712. return data_torch
  1713. def shuffle_attn_output_weight(self, data_torch):
  1714. assert data_torch.size() == (5120, 5120)
  1715. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1716. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1717. data_torch = torch.reshape(data_torch, (5120, 5120))
  1718. return data_torch
  1719. def write_tensors(self):
  1720. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1721. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1722. for name, data_torch in self.get_tensors():
  1723. if "self_attn.rotary_emb.inv_freq" in name:
  1724. continue
  1725. # map tensor names
  1726. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1727. if new_name is None:
  1728. raise ValueError(f"Can not map tensor {name!r}")
  1729. # shuffle for broadcasting of gqa in ggml_mul_mat
  1730. if new_name.endswith("attn_q.weight"):
  1731. data_torch = self.shuffle_attn_q_weight(data_torch)
  1732. elif new_name.endswith("attn_output.weight"):
  1733. data_torch = self.shuffle_attn_output_weight(data_torch)
  1734. old_dtype = data_torch.dtype
  1735. # convert any unsupported data types to float32
  1736. if data_torch.dtype not in (torch.float16, torch.float32):
  1737. data_torch = data_torch.to(torch.float32)
  1738. data = data_torch.squeeze().numpy()
  1739. n_dims = len(data.shape)
  1740. data_dtype = data.dtype
  1741. # if f32 desired, convert any float16 to float32
  1742. if self.ftype == 0 and data_dtype == np.float16:
  1743. data = data.astype(np.float32)
  1744. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1745. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1746. data = data.astype(np.float32)
  1747. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1748. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1749. data = data.astype(np.float16)
  1750. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1751. self.gguf_writer.add_tensor(new_name, data)
  1752. @Model.register("CodeShellForCausalLM")
  1753. class CodeShellModel(Model):
  1754. model_arch = gguf.MODEL_ARCH.CODESHELL
  1755. def set_gguf_parameters(self):
  1756. block_count = self.hparams["n_layer"]
  1757. self.gguf_writer.add_name("CodeShell")
  1758. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1759. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1760. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1761. self.gguf_writer.add_block_count(block_count)
  1762. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1763. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1764. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1765. self.gguf_writer.add_file_type(self.ftype)
  1766. self.gguf_writer.add_rope_freq_base(10000.0)
  1767. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1768. self.gguf_writer.add_rope_scaling_factor(1.0)
  1769. def write_tensors(self):
  1770. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1771. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1772. tensors = dict(self.get_tensors())
  1773. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1774. for name, data_torch in tensors.items():
  1775. # we don't need these
  1776. if name.endswith((".attn.rotary_emb.inv_freq")):
  1777. continue
  1778. old_dtype = data_torch.dtype
  1779. # convert any unsupported data types to float32
  1780. if data_torch.dtype not in (torch.float16, torch.float32):
  1781. data_torch = data_torch.to(torch.float32)
  1782. data = data_torch.squeeze().numpy()
  1783. # map tensor names
  1784. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1785. if new_name is None:
  1786. raise ValueError(f"Can not map tensor {name!r}")
  1787. n_dims = len(data.shape)
  1788. data_dtype = data.dtype
  1789. # if f32 desired, convert any float16 to float32
  1790. if self.ftype == 0 and data_dtype == np.float16:
  1791. data = data.astype(np.float32)
  1792. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1793. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1794. data = data.astype(np.float32)
  1795. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1796. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1797. data = data.astype(np.float16)
  1798. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1799. self.gguf_writer.add_tensor(new_name, data)
  1800. if not has_lm_head and name == "transformer.wte.weight":
  1801. self.gguf_writer.add_tensor("output.weight", data)
  1802. logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1803. @Model.register("InternLM2ForCausalLM")
  1804. class InternLM2Model(Model):
  1805. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1806. def set_vocab(self):
  1807. # (TODO): Is there a better way?
  1808. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1809. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1810. # recognized as an empty string in C++.
  1811. from sentencepiece import SentencePieceProcessor
  1812. from sentencepiece import sentencepiece_model_pb2 as model
  1813. tokenizer_path = self.dir_model / 'tokenizer.model'
  1814. tokens: list[bytes] = []
  1815. scores: list[float] = []
  1816. toktypes: list[int] = []
  1817. if not tokenizer_path.is_file():
  1818. logger.error(f'Error: Missing {tokenizer_path}')
  1819. sys.exit(1)
  1820. sentencepiece_model = model.ModelProto()
  1821. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1822. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1823. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1824. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1825. for token_id in range(vocab_size):
  1826. piece = tokenizer.id_to_piece(token_id)
  1827. text = piece.encode("utf-8")
  1828. score = tokenizer.get_score(token_id)
  1829. if text == b"\x00":
  1830. # (TODO): fixme
  1831. # Hack here and replace the \x00 characters.
  1832. logger.debug(f"InternLM2 convert token '{text}' to '🐉'!")
  1833. text = "🐉"
  1834. toktype = SentencePieceTokenTypes.NORMAL
  1835. if tokenizer.is_unknown(token_id):
  1836. toktype = SentencePieceTokenTypes.UNKNOWN
  1837. elif tokenizer.is_control(token_id):
  1838. toktype = SentencePieceTokenTypes.CONTROL
  1839. elif tokenizer.is_unused(token_id):
  1840. toktype = SentencePieceTokenTypes.UNUSED
  1841. elif tokenizer.is_byte(token_id):
  1842. toktype = SentencePieceTokenTypes.BYTE
  1843. tokens.append(text)
  1844. scores.append(score)
  1845. toktypes.append(toktype)
  1846. added_tokens_file = self.dir_model / 'added_tokens.json'
  1847. if added_tokens_file.is_file():
  1848. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1849. added_tokens_json = json.load(f)
  1850. for key in added_tokens_json:
  1851. tokens.append(key.encode("utf-8"))
  1852. scores.append(-1000.0)
  1853. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1854. self.gguf_writer.add_tokenizer_model("llama")
  1855. self.gguf_writer.add_tokenizer_pre("default")
  1856. self.gguf_writer.add_token_list(tokens)
  1857. self.gguf_writer.add_token_scores(scores)
  1858. self.gguf_writer.add_token_types(toktypes)
  1859. self.gguf_writer.add_add_space_prefix(add_prefix)
  1860. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1861. old_eos = special_vocab.special_token_ids["eos"]
  1862. if "chat" in os.path.basename(self.dir_model.absolute()):
  1863. # For the chat model, we replace the eos with '<|im_end|>'.
  1864. # TODO: this is a hack, should be fixed
  1865. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1866. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1867. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1868. in chat mode so that the conversation can end normally.")
  1869. special_vocab.add_to_gguf(self.gguf_writer)
  1870. def _try_get_sft_eos(self, tokenizer):
  1871. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1872. im_end_list = tokenizer.encode('<|im_end|>')
  1873. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1874. if len(unused_145_list) == 1:
  1875. eos_token = unused_145_list[0]
  1876. if len(im_end_list) == 1:
  1877. eos_token = im_end_list[0]
  1878. return eos_token
  1879. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1880. if n_head_kv is not None and n_head != n_head_kv:
  1881. n_head = n_head_kv
  1882. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1883. .swapaxes(1, 2)
  1884. .reshape(weights.shape))
  1885. def set_gguf_parameters(self):
  1886. self.gguf_writer.add_name("InternLM2")
  1887. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1888. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1889. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1890. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1891. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1892. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1893. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1894. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1895. def post_write_tensors(self, tensor_map, name, data_torch):
  1896. old_dtype = data_torch.dtype
  1897. # convert any unsupported data types to float32
  1898. if data_torch.dtype not in (torch.float16, torch.float32):
  1899. data_torch = data_torch.to(torch.float32)
  1900. data = data_torch.squeeze().numpy()
  1901. # map tensor names
  1902. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1903. if new_name is None:
  1904. raise ValueError(f"Can not map tensor {name!r}")
  1905. n_dims = len(data.shape)
  1906. data_dtype = data.dtype
  1907. # if f32 desired, convert any float16 to float32
  1908. if self.ftype == 0 and data_dtype == np.float16:
  1909. data = data.astype(np.float32)
  1910. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1911. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1912. data = data.astype(np.float32)
  1913. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1914. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1915. data = data.astype(np.float16)
  1916. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1917. self.gguf_writer.add_tensor(new_name, data)
  1918. def write_tensors(self):
  1919. from einops import rearrange
  1920. num_heads = self.hparams.get("num_attention_heads")
  1921. num_kv_heads = self.hparams.get("num_key_value_heads")
  1922. hidden_size = self.hparams.get("hidden_size")
  1923. q_per_kv = num_heads // num_kv_heads
  1924. head_dim = hidden_size // num_heads
  1925. num_groups = num_heads // q_per_kv
  1926. block_count = self.hparams["num_hidden_layers"]
  1927. model_kv = dict(self.get_tensors())
  1928. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1929. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1930. for name, data_torch in model_kv.items():
  1931. # we don't need these
  1932. if name.endswith(".rotary_emb.inv_freq"):
  1933. continue
  1934. if re.match(qkv_pattern, name):
  1935. bid = re.findall(qkv_pattern, name)[0]
  1936. qkv = data_torch
  1937. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1938. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1939. # The model weights of q and k equire additional reshape.
  1940. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1941. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1942. v = rearrange(v, " o g n i -> o (g n i)").T
  1943. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1944. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1945. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1946. else:
  1947. self.post_write_tensors(tensor_map, name, data_torch)
  1948. @Model.register("BertModel", "CamembertModel")
  1949. class BertModel(Model):
  1950. model_arch = gguf.MODEL_ARCH.BERT
  1951. def __init__(self, *args, **kwargs):
  1952. super().__init__(*args, **kwargs)
  1953. self.vocab_size = None
  1954. def set_gguf_parameters(self):
  1955. super().set_gguf_parameters()
  1956. self.gguf_writer.add_causal_attention(False)
  1957. # get pooling path
  1958. pooling_path = None
  1959. module_path = self.dir_model / "modules.json"
  1960. if module_path.is_file():
  1961. with open(module_path, encoding="utf-8") as f:
  1962. modules = json.load(f)
  1963. for mod in modules:
  1964. if mod["type"] == "sentence_transformers.models.Pooling":
  1965. pooling_path = mod["path"]
  1966. break
  1967. # get pooling type
  1968. if pooling_path is not None:
  1969. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1970. pooling = json.load(f)
  1971. if pooling["pooling_mode_mean_tokens"]:
  1972. pooling_type = gguf.PoolingType.MEAN
  1973. elif pooling["pooling_mode_cls_token"]:
  1974. pooling_type = gguf.PoolingType.CLS
  1975. else:
  1976. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1977. self.gguf_writer.add_pooling_type(pooling_type)
  1978. def set_vocab(self):
  1979. tokens, toktypes, tokpre = self.get_vocab_base()
  1980. self.vocab_size = len(tokens)
  1981. # we need this to validate the size of the token_type embeddings
  1982. # though currently we are passing all zeros to the token_type embeddings
  1983. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1984. # convert to phantom space vocab
  1985. def phantom(tok):
  1986. if tok.startswith("[") and tok.endswith("]"):
  1987. return tok
  1988. if tok.startswith("##"):
  1989. return tok[2:]
  1990. return "\u2581" + tok
  1991. tokens = list(map(phantom, tokens))
  1992. # add vocab to gguf
  1993. self.gguf_writer.add_tokenizer_model("bert")
  1994. self.gguf_writer.add_tokenizer_pre(tokpre)
  1995. self.gguf_writer.add_token_list(tokens)
  1996. self.gguf_writer.add_token_types(toktypes)
  1997. # handle special tokens
  1998. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1999. special_vocab.add_to_gguf(self.gguf_writer)
  2000. def write_tensors(self):
  2001. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2002. tensors = dict(self.get_tensors())
  2003. for name, data_torch in tensors.items():
  2004. # we are only using BERT for embeddings so we don't need the pooling layer
  2005. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2006. continue # we don't need these
  2007. # map tensor names
  2008. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2009. if new_name is None:
  2010. raise ValueError(f"Can not map tensor {name!r}")
  2011. # convert any unsupported data types to float32
  2012. if data_torch.dtype not in (torch.float16, torch.float32):
  2013. data_torch = data_torch.to(torch.float32)
  2014. data = data_torch.squeeze().numpy()
  2015. n_dims = len(data.shape)
  2016. new_dtype: type[np.floating[Any]]
  2017. if (
  2018. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  2019. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  2020. ):
  2021. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2022. new_dtype = np.float16
  2023. else:
  2024. # if f32 desired, convert any float16 to float32
  2025. new_dtype = np.float32
  2026. logger.info(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  2027. if data.dtype != new_dtype:
  2028. data = data.astype(new_dtype)
  2029. self.gguf_writer.add_tensor(new_name, data)
  2030. @Model.register("NomicBertModel")
  2031. class NomicBertModel(BertModel):
  2032. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2033. def __init__(self, *args, **kwargs):
  2034. super().__init__(*args, **kwargs)
  2035. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2036. self.hparams["n_ctx"] = 2048
  2037. # SwigLU activation
  2038. assert self.hparams["activation_function"] == "swiglu"
  2039. # this doesn't do anything in the HF version
  2040. assert self.hparams["causal"] is False
  2041. # no bias tensors
  2042. assert self.hparams["qkv_proj_bias"] is False
  2043. assert self.hparams["mlp_fc1_bias"] is False
  2044. assert self.hparams["mlp_fc2_bias"] is False
  2045. # norm at end of layer
  2046. assert self.hparams["prenorm"] is False
  2047. # standard RoPE
  2048. assert self.hparams["rotary_emb_fraction"] == 1.0
  2049. assert self.hparams["rotary_emb_interleaved"] is False
  2050. assert self.hparams["rotary_emb_scale_base"] is None
  2051. def set_gguf_parameters(self):
  2052. super().set_gguf_parameters()
  2053. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2054. @Model.register("GemmaForCausalLM")
  2055. class GemmaModel(Model):
  2056. model_arch = gguf.MODEL_ARCH.GEMMA
  2057. def set_vocab(self):
  2058. self._set_vocab_sentencepiece()
  2059. # TODO: these special tokens should be exported only for the CodeGemma family
  2060. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2061. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2062. special_vocab._set_special_token("prefix", 67)
  2063. special_vocab._set_special_token("suffix", 69)
  2064. special_vocab._set_special_token("middle", 68)
  2065. special_vocab._set_special_token("fsep", 70)
  2066. special_vocab._set_special_token("eot", 107)
  2067. special_vocab.add_to_gguf(self.gguf_writer)
  2068. def set_gguf_parameters(self):
  2069. hparams = self.hparams
  2070. block_count = hparams["num_hidden_layers"]
  2071. self.gguf_writer.add_name(self.dir_model.name)
  2072. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2073. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2074. self.gguf_writer.add_block_count(block_count)
  2075. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2076. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2077. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2078. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2079. self.gguf_writer.add_key_length(hparams["head_dim"])
  2080. self.gguf_writer.add_value_length(hparams["head_dim"])
  2081. self.gguf_writer.add_file_type(self.ftype)
  2082. def write_tensors(self):
  2083. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2084. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2085. for name, data_torch in self.get_tensors():
  2086. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2087. # To prevent errors, skip loading lm_head.weight.
  2088. if name == "lm_head.weight":
  2089. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2090. continue
  2091. old_dtype = data_torch.dtype
  2092. # convert any unsupported data types to float32
  2093. if data_torch.dtype not in (torch.float16, torch.float32):
  2094. data_torch = data_torch.to(torch.float32)
  2095. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2096. if name.endswith("norm.weight"):
  2097. data_torch = data_torch + 1
  2098. data = data_torch.squeeze().numpy()
  2099. # map tensor names
  2100. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2101. if new_name is None:
  2102. raise ValueError(f"Can not map tensor {name!r}")
  2103. n_dims = len(data.shape)
  2104. data_dtype = data.dtype
  2105. data = data.astype(np.float32)
  2106. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2107. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  2108. data = data.astype(np.float16)
  2109. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2110. self.gguf_writer.add_tensor(new_name, data)
  2111. @Model.register("Starcoder2ForCausalLM")
  2112. class StarCoder2Model(Model):
  2113. model_arch = gguf.MODEL_ARCH.STARCODER2
  2114. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2115. class MambaModel(Model):
  2116. model_arch = gguf.MODEL_ARCH.MAMBA
  2117. def set_vocab(self):
  2118. vocab_size = self.hparams["vocab_size"]
  2119. # Round vocab size to next multiple of 8
  2120. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2121. # pad using ceiling division
  2122. # ref: https://stackoverflow.com/a/17511341/22827863
  2123. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2124. self.hparams["vocab_size"] = vocab_size
  2125. if (self.dir_model / "tokenizer.json").is_file():
  2126. self._set_vocab_gpt2()
  2127. else:
  2128. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2129. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  2130. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  2131. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  2132. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  2133. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  2134. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  2135. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]))
  2136. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  2137. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  2138. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  2139. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  2140. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  2141. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  2142. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  2143. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  2144. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  2145. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  2146. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  2147. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  2148. def set_gguf_parameters(self):
  2149. d_model = self.find_hparam(["hidden_size", "d_model"])
  2150. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2151. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2152. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2153. # ceiling division
  2154. # ref: https://stackoverflow.com/a/17511341/22827863
  2155. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2156. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2157. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2158. # Fail early for models which don't have a block expansion factor of 2
  2159. assert d_inner == 2 * d_model
  2160. self.gguf_writer.add_name(self.dir_model.name)
  2161. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2162. self.gguf_writer.add_embedding_length(d_model)
  2163. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2164. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2165. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2166. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2167. self.gguf_writer.add_ssm_inner_size(d_inner)
  2168. self.gguf_writer.add_ssm_state_size(d_state)
  2169. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2170. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2171. self.gguf_writer.add_file_type(self.ftype)
  2172. def write_tensors(self):
  2173. block_count = self.hparams["n_layer"]
  2174. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2175. tok_embd = None
  2176. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  2177. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  2178. for name, data_torch in self.get_tensors():
  2179. old_dtype = data_torch.dtype
  2180. # convert any unsupported data types to float32
  2181. if data_torch.dtype not in (torch.float16, torch.float32):
  2182. data_torch = data_torch.to(torch.float32)
  2183. # map tensor names
  2184. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2185. if new_name is None:
  2186. raise ValueError(f"Can not map tensor {name!r}")
  2187. if name.endswith(".A_log"):
  2188. logger.debug("A_log --> A ==> " + new_name)
  2189. data_torch = -torch.exp(data_torch)
  2190. # assuming token_embd.weight is seen before output.weight
  2191. if tok_embd is not None and new_name == output_name:
  2192. if torch.equal(tok_embd, data_torch):
  2193. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2194. continue
  2195. if new_name == tok_embd_name:
  2196. tok_embd = data_torch
  2197. data = data_torch.squeeze().numpy()
  2198. n_dims = len(data.shape)
  2199. data_dtype = data.dtype
  2200. # if f32 desired, convert any float16 to float32
  2201. if self.ftype == 0 and data_dtype == np.float16:
  2202. data = data.astype(np.float32)
  2203. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  2204. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2205. data = data.astype(np.float32)
  2206. # if f16 desired, convert big float32 2-dim weight tensors to float16
  2207. new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
  2208. if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  2209. data = data.astype(np.float16)
  2210. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2211. self.gguf_writer.add_tensor(new_name, data)
  2212. @Model.register("CohereForCausalLM")
  2213. class CommandR2Model(Model):
  2214. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2215. def __init__(self, *args, **kwargs):
  2216. super().__init__(*args, **kwargs)
  2217. # max_position_embeddings = 8192 in config.json but model was actually
  2218. # trained on 128k context length
  2219. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  2220. def set_gguf_parameters(self):
  2221. super().set_gguf_parameters()
  2222. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2223. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2224. @Model.register("OlmoForCausalLM")
  2225. @Model.register("OLMoForCausalLM")
  2226. class OlmoModel(Model):
  2227. model_arch = gguf.MODEL_ARCH.OLMO
  2228. def set_gguf_parameters(self):
  2229. super().set_gguf_parameters()
  2230. self.gguf_writer.add_layer_norm_eps(1e-5)
  2231. if "clip_qkv" in self.hparams is not None:
  2232. self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
  2233. # Same as super class, but permuting q_proj, k_proj
  2234. # Copied from: LlamaModel
  2235. def write_tensors(self):
  2236. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2237. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2238. n_head = self.hparams.get("num_attention_heads")
  2239. n_kv_head = self.hparams.get("num_key_value_heads")
  2240. for name, data_torch in self.get_tensors():
  2241. old_dtype = data_torch.dtype
  2242. # convert any unsupported data types to float32
  2243. if data_torch.dtype not in (torch.float16, torch.float32):
  2244. data_torch = data_torch.to(torch.float32)
  2245. data = data_torch.numpy()
  2246. if name.endswith("q_proj.weight"):
  2247. data = permute(data, n_head, n_head)
  2248. if name.endswith("k_proj.weight"):
  2249. data = permute(data, n_head, n_kv_head)
  2250. data = data.squeeze()
  2251. # map tensor names
  2252. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2253. if new_name is None:
  2254. raise ValueError(f"Can not map tensor {name!r}")
  2255. n_dims = len(data.shape)
  2256. data_dtype = data.dtype
  2257. # if f32 desired, convert any float16 to float32
  2258. if self.ftype == 0 and data_dtype == np.float16:
  2259. data = data.astype(np.float32)
  2260. # 1d tensors need to be converted to float32
  2261. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2262. data = data.astype(np.float32)
  2263. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2264. if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
  2265. data = data.astype(np.float16)
  2266. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2267. self.gguf_writer.add_tensor(new_name, data)
  2268. ###### CONVERSION LOGIC ######
  2269. def parse_args() -> argparse.Namespace:
  2270. parser = argparse.ArgumentParser(
  2271. description="Convert a huggingface model to a GGML compatible file")
  2272. parser.add_argument(
  2273. "--vocab-only", action="store_true",
  2274. help="extract only the vocab",
  2275. )
  2276. parser.add_argument(
  2277. "--awq-path", type=Path, default=None,
  2278. help="Path to scale awq cache file")
  2279. parser.add_argument(
  2280. "--outfile", type=Path,
  2281. help="path to write to; default: based on input",
  2282. )
  2283. parser.add_argument(
  2284. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  2285. help="output format - use f32 for float32, f16 for float16",
  2286. )
  2287. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  2288. parser.add_argument(
  2289. "model", type=Path,
  2290. help="directory containing model file",
  2291. )
  2292. parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
  2293. parser.add_argument("--model-name", type=str, default=None, help="name of the model")
  2294. parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
  2295. return parser.parse_args()
  2296. def main() -> None:
  2297. args = parse_args()
  2298. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2299. dir_model = args.model
  2300. if args.awq_path:
  2301. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2302. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2303. tmp_model_path = args.model / "weighted_model"
  2304. dir_model = tmp_model_path
  2305. if tmp_model_path.is_dir():
  2306. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2307. else:
  2308. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2309. logger.info("Saving new weighted model ...")
  2310. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2311. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2312. if not dir_model.is_dir():
  2313. logger.error(f'Error: {args.model} is not a directory')
  2314. sys.exit(1)
  2315. ftype_map = {
  2316. "f32": gguf.GGMLQuantizationType.F32,
  2317. "f16": gguf.GGMLQuantizationType.F16,
  2318. }
  2319. if args.outfile is not None:
  2320. fname_out = args.outfile
  2321. else:
  2322. # output in the same directory as the model by default
  2323. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  2324. logger.info(f"Loading model: {dir_model.name}")
  2325. hparams = Model.load_hparams(dir_model)
  2326. with torch.inference_mode():
  2327. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2328. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
  2329. logger.info("Set model parameters")
  2330. model_instance.set_gguf_parameters()
  2331. logger.info("Set model tokenizer")
  2332. model_instance.set_vocab()
  2333. if args.vocab_only:
  2334. logger.info(f"Exporting model vocab to '{fname_out}'")
  2335. model_instance.write_vocab()
  2336. else:
  2337. logger.info(f"Exporting model to '{fname_out}'")
  2338. model_instance.write()
  2339. logger.info(f"Model successfully exported to '{fname_out}'")
  2340. if __name__ == '__main__':
  2341. main()