| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254 |
- #include "llama-model.h"
- #include "llama-impl.h"
- #include "llama-mmap.h"
- #include "llama-batch.h"
- #include "llama-cparams.h"
- #include "llama-model-loader.h"
- #include "llama-kv-cache.h"
- #include "llama-kv-cache-iswa.h"
- #include "llama-memory-hybrid.h"
- #include "llama-memory-recurrent.h"
- #include "ggml-cpp.h"
- #include "ggml-delta.h"
- #include <algorithm>
- #include <cassert>
- #include <cmath>
- #include <cfloat>
- #include <cstring>
- #include <cmath>
- #include <functional>
- #include <map>
- #include <regex>
- #include <sstream>
- #include <stdexcept>
- const char * llm_type_name(llm_type type) {
- switch (type) {
- case LLM_TYPE_14M: return "14M";
- case LLM_TYPE_17M: return "17M";
- case LLM_TYPE_22M: return "22M";
- case LLM_TYPE_33M: return "33M";
- case LLM_TYPE_60M: return "60M";
- case LLM_TYPE_70M: return "70M";
- case LLM_TYPE_80M: return "80M";
- case LLM_TYPE_109M: return "109M";
- case LLM_TYPE_137M: return "137M";
- case LLM_TYPE_140M: return "140M";
- case LLM_TYPE_160M: return "160M";
- case LLM_TYPE_190M: return "190M";
- case LLM_TYPE_220M: return "220M";
- case LLM_TYPE_250M: return "250M";
- case LLM_TYPE_256M: return "256M";
- case LLM_TYPE_270M: return "270M";
- case LLM_TYPE_335M: return "335M";
- case LLM_TYPE_350M: return "350M";
- case LLM_TYPE_360M: return "360M";
- case LLM_TYPE_410M: return "410M";
- case LLM_TYPE_450M: return "450M";
- case LLM_TYPE_475M: return "475M";
- case LLM_TYPE_558M: return "558M";
- case LLM_TYPE_700M: return "700M";
- case LLM_TYPE_770M: return "770M";
- case LLM_TYPE_780M: return "780M";
- case LLM_TYPE_950M: return "950M";
- case LLM_TYPE_0_3B: return "0.3B";
- case LLM_TYPE_0_5B: return "0.5B";
- case LLM_TYPE_0_6B: return "0.6B";
- case LLM_TYPE_1B: return "1B";
- case LLM_TYPE_1_2B: return "1.2B";
- case LLM_TYPE_1_3B: return "1.3B";
- case LLM_TYPE_1_4B: return "1.4B";
- case LLM_TYPE_1_5B: return "1.5B";
- case LLM_TYPE_1_6B: return "1.6B";
- case LLM_TYPE_1_7B: return "1.7B";
- case LLM_TYPE_1_8B: return "1.8B";
- case LLM_TYPE_2B: return "2B";
- case LLM_TYPE_2_8B: return "2.8B";
- case LLM_TYPE_2_9B: return "2.9B";
- case LLM_TYPE_3B: return "3B";
- case LLM_TYPE_4B: return "4B";
- case LLM_TYPE_6B: return "6B";
- case LLM_TYPE_6_9B: return "6.9B";
- case LLM_TYPE_7B: return "7B";
- case LLM_TYPE_8B: return "8B";
- case LLM_TYPE_9B: return "9B";
- case LLM_TYPE_11B: return "11B";
- case LLM_TYPE_12B: return "12B";
- case LLM_TYPE_13B: return "13B";
- case LLM_TYPE_14B: return "14B";
- case LLM_TYPE_15B: return "15B";
- case LLM_TYPE_16B: return "16B";
- case LLM_TYPE_20B: return "20B";
- case LLM_TYPE_27B: return "27B";
- case LLM_TYPE_30B: return "30B";
- case LLM_TYPE_32B: return "32B";
- case LLM_TYPE_34B: return "34B";
- case LLM_TYPE_35B: return "35B";
- case LLM_TYPE_36B: return "36B";
- case LLM_TYPE_40B: return "40B";
- case LLM_TYPE_65B: return "65B";
- case LLM_TYPE_70B: return "70B";
- case LLM_TYPE_120B: return "120B";
- case LLM_TYPE_142B: return "142B";
- case LLM_TYPE_236B: return "236B";
- case LLM_TYPE_290B: return "290B";
- case LLM_TYPE_314B: return "314B";
- case LLM_TYPE_405B: return "405B";
- case LLM_TYPE_671B: return "671B";
- case LLM_TYPE_SMALL: return "0.1B";
- case LLM_TYPE_MEDIUM: return "0.4B";
- case LLM_TYPE_LARGE: return "0.8B";
- case LLM_TYPE_XL: return "1.5B";
- case LLM_TYPE_A1_7B: return "A1.7B";
- case LLM_TYPE_A2_7B: return "A2.7B";
- case LLM_TYPE_8x7B: return "8x7B";
- case LLM_TYPE_8x22B: return "8x22B";
- case LLM_TYPE_16x12B: return "16x12B";
- case LLM_TYPE_16x3_8B: return "16x3.8B";
- case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
- case LLM_TYPE_57B_A14B: return "57B.A14B";
- case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
- case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
- case LLM_TYPE_A13B: return "A13B";
- case LLM_TYPE_21B_A3B: return "21B.A3B";
- case LLM_TYPE_30B_A3B: return "30B.A3B";
- case LLM_TYPE_80B_A3B: return "80B.A3B";
- case LLM_TYPE_106B_A12B: return "106B.A12B";
- case LLM_TYPE_235B_A22B: return "235B.A22B";
- case LLM_TYPE_300B_A47B: return "300B.A47B";
- case LLM_TYPE_355B_A32B: return "355B.A32B";
- case LLM_TYPE_E2B: return "E2B";
- case LLM_TYPE_E4B: return "E4B";
- default: return "?B";
- }
- }
- static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
- switch (type) {
- case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
- case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
- default: return "unknown";
- }
- }
- static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
- { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
- { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
- { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
- { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
- };
- std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
- return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
- }
- static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
- for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
- if (kv.second == name) {
- return (llama_rope_scaling_type) kv.first;
- }
- }
- return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
- }
- // checks if the weight tensor can be used with the specified buffer type and device
- static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
- GGML_ASSERT(w != nullptr);
- if (op == GGML_OP_NONE) {
- return true;
- }
- ggml_init_params params = {
- /*.mem_size =*/ ggml_tensor_overhead()*8,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx_ptr { ggml_init(params) };
- if (!ctx_ptr) {
- throw std::runtime_error(format("failed to create ggml context"));
- }
- ggml_context * ctx = ctx_ptr.get();
- ggml_tensor * op_tensor = nullptr;
- switch (op) {
- case GGML_OP_GET_ROWS:
- {
- ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
- op_tensor = ggml_get_rows(ctx, w, b);
- } break;
- case GGML_OP_MUL_MAT:
- {
- ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
- op_tensor = ggml_mul_mat(ctx, w, b);
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- int n_expert_used = hparams.n_expert_used;
- ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
- ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
- op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
- } break;
- case GGML_OP_ADD:
- {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
- op_tensor = ggml_add(ctx, a, w);
- } break;
- case GGML_OP_ADD_ID:
- {
- int n_expert_used = hparams.n_expert_used;
- ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
- ggml_tensor * c = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
- op_tensor = ggml_add_id(ctx, a, w, c);
- } break;
- case GGML_OP_MUL:
- {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
- op_tensor = ggml_mul(ctx, a, w);
- } break;
- case GGML_OP_DIV:
- {
- ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
- op_tensor = ggml_div(ctx, a, w);
- } break;
- case GGML_OP_ROPE:
- {
- int n_embd_head = hparams.n_embd_head_v;
- int n_head = hparams.n_head();
- ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
- ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
- op_tensor = ggml_rope_ext(
- ctx, a, b, w,
- 0, 0, 0, 0, 0,
- 0, 0, 0, 0
- );
- } break;
- case GGML_OP_SSM_CONV:
- {
- const int64_t n_seq_tokens = 512;
- const int64_t n_seqs = 3;
- ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0] - 1 + n_seq_tokens, w->ne[1], n_seqs);
- op_tensor = ggml_ssm_conv(ctx, conv_x, w);
- } break;
- case GGML_OP_SSM_SCAN:
- {
- // w is ssm_a, which is used to distinguish Mamba-1 and Mamba-2
- const int64_t d_state = w->ne[0] == 1 ? hparams.ssm_d_state : w->ne[0];
- const int64_t n_head = w->ne[1];
- const int64_t head_dim = hparams.ssm_d_inner / n_head;
- const int64_t n_group = hparams.ssm_n_group ? hparams.ssm_n_group : 1;
- const int64_t n_seq_tokens = 512;
- const int64_t n_seqs = 3;
- ggml_tensor * s = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, head_dim, n_head, n_seqs);
- ggml_tensor * x = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, head_dim, n_head, n_seq_tokens, n_seqs);
- ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_head, n_seq_tokens, n_seqs);
- ggml_tensor * B = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
- ggml_tensor * C = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
- ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
- op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C, ids);
- } break;
- case GGML_OP_RWKV_WKV6:
- {
- // FIXME
- const int64_t S = 123;
- const int64_t H = 123;
- const int64_t n_tokens = 123;
- const int64_t n_seqs = 123;
- ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * tf = w;
- ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
- op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
- } break;
- case GGML_OP_IM2COL:
- {
- const int n_embd = hparams.n_embd;
- ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
- op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
- } break;
- case GGML_OP_SCALE:
- {
- op_tensor = ggml_scale(ctx, w, 1.0f);
- } break;
- default:
- GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
- }
- // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
- GGML_ASSERT(w->buffer == nullptr);
- w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
- bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
- ggml_backend_buffer_free(w->buffer);
- w->buffer = nullptr;
- return op_supported;
- }
- // lists of buffer types used for each layer
- using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
- // find the first buffer type in the list that can use the tensor
- static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
- GGML_ASSERT(!buft_list.empty());
- for (const auto & cur : buft_list) {
- ggml_backend_dev_t cur_dev = cur.first;
- ggml_backend_buffer_type_t cur_buft = cur.second;
- if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
- return cur_buft;
- }
- }
- return nullptr;
- }
- // CPU: ACCEL -> GPU host -> CPU extra -> CPU
- static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices, bool use_extra_bufts) {
- buft_list_t buft_list;
- // add ACCEL buffer types
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- ggml_backend_dev_t dev = ggml_backend_dev_get(i);
- if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
- auto * buft = ggml_backend_dev_buffer_type(dev);
- // skip
- if (buft != ggml_backend_cpu_buffer_type()) {
- buft_list.emplace_back(dev, buft);
- }
- }
- }
- // add a host buffer type
- // storing the tensors in a host buffer is useful when the processing of large batches
- // is offloaded to a GPU device, since it reduces the time spent on data transfers
- // generally, this will be done using the first device in the list
- // a better approach would be to handle this on a weight-by-weight basis using the offload_op
- // function of the device to determine if it would benefit from being stored in a host buffer
- for (auto * dev : devices) {
- ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
- if (buft) {
- buft_list.emplace_back(dev, buft);
- break;
- }
- }
- // add extra buffer types
- if (use_extra_bufts) {
- auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- if (cpu_dev == nullptr) {
- throw std::runtime_error(format("%s: no CPU backend found", __func__));
- }
- auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
- auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
- ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
- if (ggml_backend_dev_get_extra_bufts_fn) {
- ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
- while (extra_bufts && *extra_bufts) {
- buft_list.emplace_back(cpu_dev, *extra_bufts);
- ++extra_bufts;
- }
- }
- }
- // add the CPU buffer type
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- ggml_backend_dev_t dev = ggml_backend_dev_get(i);
- if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
- buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
- }
- }
- return buft_list;
- }
- // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
- static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
- buft_list_t buft_list;
- // add the device split buffer type if requested and available
- if (split_mode == LLAMA_SPLIT_MODE_ROW) {
- ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
- auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
- ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
- if (ggml_backend_split_buffer_type_fn) {
- size_t dev_index = [&]() {
- auto * reg = ggml_backend_dev_backend_reg(dev);
- for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
- if (ggml_backend_reg_dev_get(reg, i) == dev) {
- return i;
- }
- }
- throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
- }();
- auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
- if (buft != nullptr) {
- buft_list.emplace_back(dev, buft);
- }
- }
- }
- // add the device default buffer type
- buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
- return buft_list;
- }
- struct llama_model::impl {
- impl() {}
- ~impl() {}
- uint64_t n_elements = 0;
- size_t n_bytes = 0;
- std::string desc_str;
- // model memory mapped files
- llama_mmaps mappings;
- // objects representing data potentially being locked in memory
- llama_mlocks mlock_bufs;
- llama_mlocks mlock_mmaps;
- // contexts where the model tensors metadata is stored
- std::vector<ggml_context_ptr> ctxs;
- // the model memory buffers for the tensor data
- std::vector<ggml_backend_buffer_ptr> bufs;
- buft_list_t cpu_buft_list;
- std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
- struct layer_dev {
- ggml_backend_dev_t dev;
- buft_list_t * buft_list;
- };
- layer_dev dev_input = {};
- layer_dev dev_output = {};
- std::vector<layer_dev> dev_layer;
- bool has_tensor_overrides;
- };
- llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
- pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
- }
- llama_model::~llama_model() {}
- void llama_model::load_stats(llama_model_loader & ml) {
- pimpl->n_elements = ml.n_elements;
- pimpl->n_bytes = ml.n_bytes;
- }
- void llama_model::load_arch(llama_model_loader & ml) {
- arch = ml.get_arch();
- if (arch == LLM_ARCH_UNKNOWN) {
- throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
- }
- }
- void llama_model::load_hparams(llama_model_loader & ml) {
- const gguf_context * ctx = ml.meta.get();
- // get metadata as string
- for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
- gguf_type type = gguf_get_kv_type(ctx, i);
- if (type == GGUF_TYPE_ARRAY) {
- continue;
- }
- const char * name = gguf_get_key(ctx, i);
- const std::string value = gguf_kv_to_str(ctx, i);
- gguf_kv.emplace(name, value);
- }
- // get general kv
- ml.get_key(LLM_KV_GENERAL_NAME, name, false);
- // everything past this point is not vocab-related
- if (hparams.vocab_only) {
- return;
- }
- ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
- ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
- ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
- ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
- ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
- if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
- ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
- ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
- ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
- ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
- ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
- }
- GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
- GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
- if (hparams.n_expert > 0) {
- GGML_ASSERT(hparams.n_expert_used > 0);
- } else {
- GGML_ASSERT(hparams.n_expert_used == 0);
- }
- std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
- std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
- std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
- std::fill(
- hparams.recurrent_layer_arr.begin(),
- hparams.recurrent_layer_arr.end(),
- llm_arch_is_recurrent(ml.get_arch()));
- std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0);
- std::fill(hparams.swa_layers.begin(), hparams.swa_layers.end(), 0);
- ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
- ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
- // n_head_kv is optional, default to n_head
- hparams.n_head_kv_arr = hparams.n_head_arr;
- ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
- bool rope_finetuned = false;
- ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
- hparams.rope_finetuned = rope_finetuned;
- hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
- ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
- // rope_freq_base (optional)
- hparams.rope_freq_base_train = 10000.0f;
- ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
- std::string rope_scaling("linear");
- ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
- hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
- GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
- // rope_freq_scale (inverse of the kv) is optional
- float ropescale = 0.0f;
- if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
- // try the old key name
- ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
- }
- hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
- // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
- hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
- hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
- ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
- // non-transformer models do not have attention heads
- if (hparams.n_head() > 0) {
- // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
- // gpt-j n_rot = rotary_dim
- hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
- ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
- hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
- ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
- // sanity check for n_rot (optional)
- hparams.n_rot = hparams.n_embd_head_k;
- ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
- if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
- if (hparams.n_rot != hparams.n_embd_head_k) {
- throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
- }
- }
- } else {
- hparams.n_rot = 0;
- hparams.n_embd_head_k = 0;
- hparams.n_embd_head_v = 0;
- }
- // for differentiating model types
- uint32_t n_vocab = 0;
- ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
- // for classifier models
- ml.get_arr(LLM_KV_CLASSIFIER_OUTPUT_LABELS, classifier_labels, false);
- if (!classifier_labels.empty()) {
- hparams.n_cls_out = classifier_labels.size();
- }
- // arch-specific KVs
- switch (arch) {
- case LLM_ARCH_LLAMA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- if (hparams.n_expert == 8) {
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_8x7B; break;
- case 56: type = LLM_TYPE_8x22B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } else {
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
- case 22: type = LLM_TYPE_1B; break;
- case 26: type = LLM_TYPE_3B; break;
- case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
- case 30: type = LLM_TYPE_256M; break; // smoldocling 256M
- // granite uses a vocab with len 49152
- case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
- case 36: type = LLM_TYPE_8B; break; // granite
- case 40: type = LLM_TYPE_13B; break;
- case 48: type = LLM_TYPE_34B; break;
- case 60: type = LLM_TYPE_30B; break;
- case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- }
- } break;
- case LLM_ARCH_LLAMA4:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
- const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- if (found_swa && hparams.n_swa == 0) {
- hparams.swa_type = LLAMA_SWA_TYPE_NONE;
- hparams.n_no_rope_layer_step = hparams.n_layer; // always use rope
- } else {
- hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
- hparams.n_swa = 8192;
- hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
- }
- switch (hparams.n_expert) {
- case 0: {
- // MobileLLM (no MoE)
- switch (hparams.n_embd) {
- case 2048: type = LLM_TYPE_140M; break;
- case 4096: type = LLM_TYPE_360M; break;
- case 6144: type = LLM_TYPE_950M; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case 16: type = LLM_TYPE_17B_16E; break;
- case 128: type = LLM_TYPE_17B_128E; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- hparams.use_kq_norm = type != LLM_TYPE_17B_128E;
- } break;
- case LLM_ARCH_ARCEE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // Arcee uses the same structure as Llama
- switch (hparams.n_layer) {
- case 36: type = LLM_TYPE_4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DECI:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 80: type = LLM_TYPE_70B; break;
- case 162: type = LLM_TYPE_405B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MINICPM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
- ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- // MiniCPM uses rope by default, unlike Granite which uses it as a switch
- hparams.rope_finetuned = true;
- switch (hparams.n_layer) {
- case 52: type = LLM_TYPE_1B; break;
- case 40: type = LLM_TYPE_2B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MINICPM3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
- ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
- switch (hparams.n_layer) {
- case 62: type = LLM_TYPE_4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GROK:
- {
- // defaults for old GGUFs
- hparams.yarn_beta_fast = 8.0f;
- hparams.f_logit_scale = 0.5773502691896257f;
- hparams.f_embedding_scale = 78.38367176906169f;
- hparams.f_attn_out_scale = 0.08838834764831845f;
- hparams.f_attn_logit_softcapping = 30.0f;
- hparams.f_router_logit_softcapping = 30.0f;
- // no final_logit_softcapping in grok-1
- hparams.f_final_logit_softcapping = 0.0f;
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, false);
- ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, false);
- ml.get_key(LLM_KV_ATTENTION_OUTPUT_SCALE, hparams.f_attn_out_scale, false);
- ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
- ml.get_key(LLM_KV_ROUTER_LOGIT_SOFTCAPPING, hparams.f_router_logit_softcapping, false);
- ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
- ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.attn_temp_length, false);
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, hparams.yarn_ext_factor, false);
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, hparams.yarn_attn_factor, false);
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST, hparams.yarn_beta_fast, false);
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false);
- switch (hparams.n_layer) {
- case 64: type = LLM_TYPE_314B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 60: type = LLM_TYPE_40B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- if (type == LLM_TYPE_13B) {
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 36: type = LLM_TYPE_3B; break;
- case 42: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_15B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_REFACT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_1B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- } break;
- case LLM_ARCH_BERT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- switch (hparams.n_layer) {
- case 3:
- type = LLM_TYPE_17M; break; // bge-micro
- case 6:
- type = LLM_TYPE_22M; break; // MiniLM-L6
- case 12:
- switch (hparams.n_embd) {
- case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
- case 768: type = LLM_TYPE_109M; break; // bge-base
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 24:
- type = LLM_TYPE_335M; break; // bge-large
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_JINA_BERT_V2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- hparams.f_max_alibi_bias = 8.0f;
- switch (hparams.n_layer) {
- case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
- case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_JINA_BERT_V3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- switch (hparams.n_layer) {
- case 24:
- type = LLM_TYPE_558M; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_NOMIC_BERT_MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
- ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
- if (hparams.n_layer == 12 && hparams.n_embd == 768) {
- if (arch == LLM_ARCH_NOMIC_BERT) {
- type = LLM_TYPE_137M;
- } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
- type = LLM_TYPE_475M;
- }
- }
- } break;
- case LLM_ARCH_NEO_BERT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
- if (hparams.n_layer == 28) {
- type = LLM_TYPE_250M;
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 30:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_3B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- } break;
- case LLM_ARCH_MPT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
- ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 48: type = LLM_TYPE_30B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_3B; break;
- case 40: type = LLM_TYPE_12B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN2VL:
- {
- ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
- }
- // fall through
- case LLM_ARCH_QWEN2:
- {
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
- case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 36: type = LLM_TYPE_3B; break;
- case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
- case 48: type = LLM_TYPE_14B; break;
- case 64: type = LLM_TYPE_32B; break;
- case 80: type = LLM_TYPE_70B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DREAM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // Dream models are primarily 7B with 28 layers
- switch (hparams.n_layer) {
- case 28:
- type = LLM_TYPE_7B;
- break;
- default:
- type = LLM_TYPE_UNKNOWN;
- }
- // Set non-causal attention for diffusion models
- hparams.causal_attn = false;
- }
- break;
- case LLM_ARCH_LLADA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
- switch (hparams.n_layer) {
- case 32:
- type = LLM_TYPE_8B;
- break;
- default:
- type = LLM_TYPE_UNKNOWN;
- }
- // Set non-causal attention for diffusion models
- hparams.causal_attn = false;
- }
- break;
- case LLM_ARCH_LLADA_MOE:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // diffusion language model uses non-causal attention
- hparams.causal_attn = false;
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_A1_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN2MOE:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_A2_7B; break;
- case 28: type = LLM_TYPE_57B_A14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN3:
- {
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
- case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
- case 40: type = LLM_TYPE_14B; break;
- case 64: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN3MOE:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 48: type = LLM_TYPE_30B_A3B; break;
- case 94: type = LLM_TYPE_235B_A22B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PHI3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_3B; break;
- case 40: type = LLM_TYPE_14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- if (found_swa && hparams.n_swa > 0) {
- LLAMA_LOG_WARN("%s: Phi SWA is currently disabled - results might be suboptimal for some models (see %s)\n",
- __func__, "https://github.com/ggml-org/llama.cpp/pull/13676");
- // TODO: fix conversion scripts to correctly populate `n_swa` and `n_swa_pattern`
- hparams.swa_type = LLAMA_SWA_TYPE_NONE;
- hparams.n_swa = 0;
- hparams.set_swa_pattern(1);
- }
- } break;
- case LLM_ARCH_PHIMOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_16x3_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PLAMO2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // Load Mamba SSM parameters
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- for (uint32_t i = 0; i < hparams.n_layer; ++i) {
- hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
- }
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_1B; break;
- case 32:
- if (hparams.n_embd == 2048) {
- type = LLM_TYPE_2B;
- } else if (hparams.n_embd == 4096) {
- type = LLM_TYPE_8B;
- }
- break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GPT2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 12: type = LLM_TYPE_SMALL; break;
- case 24: type = LLM_TYPE_MEDIUM; break;
- case 36: type = LLM_TYPE_LARGE; break;
- case 48: type = LLM_TYPE_XL; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 42: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_ORION:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 48: type = LLM_TYPE_20B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GEMMA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 18: type = LLM_TYPE_2B; break;
- case 28: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GEMMA2:
- {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.n_swa = 4096; // default value of gemma 2
- hparams.set_swa_pattern(2);
- hparams.attn_soft_cap = true;
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
- ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
- switch (hparams.n_layer) {
- case 26: type = LLM_TYPE_2B; break;
- case 42: type = LLM_TYPE_9B; break;
- case 46: type = LLM_TYPE_27B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L173
- hparams.f_attention_scale = type == LLM_TYPE_27B
- ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
- : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
- } break;
- case LLM_ARCH_GEMMA3:
- {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.set_swa_pattern(6);
- hparams.rope_freq_base_train_swa = 10000.0f;
- hparams.rope_freq_scale_train_swa = 1.0f;
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 18: type = LLM_TYPE_270M; break;
- case 26: type = LLM_TYPE_1B; break;
- case 34: type = LLM_TYPE_4B; break;
- case 48: type = LLM_TYPE_12B; break;
- case 62: type = LLM_TYPE_27B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L289
- hparams.f_attention_scale = type == LLM_TYPE_27B
- ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
- : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
- } break;
- case LLM_ARCH_GEMMA3N:
- {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.set_swa_pattern(5);
- hparams.n_layer_kv_from_start = 20;
- hparams.rope_freq_base_train_swa = 10000.0f;
- hparams.rope_freq_scale_train_swa = 1.0f;
- hparams.f_attention_scale = 1.0f;
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 30: type = LLM_TYPE_E2B; break;
- case 35: type = LLM_TYPE_E4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GEMMA_EMBEDDING:
- {
- hparams.swa_type = LLAMA_SWA_TYPE_SYMMETRIC;
- hparams.set_swa_pattern(6);
- hparams.causal_attn = false; // embeddings do not use causal attention
- hparams.rope_freq_base_train_swa = 10000.0f;
- hparams.rope_freq_scale_train_swa = 1.0f;
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_0_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- hparams.f_attention_scale = 1.0f / std::sqrt(float(hparams.n_embd_head_k));
- } break;
- case LLM_ARCH_STARCODER2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 30: type = LLM_TYPE_3B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_15B; break;
- case 52: type = LLM_TYPE_20B; break; // granite
- case 88: type = LLM_TYPE_34B; break; // granite
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MAMBA:
- {
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24:
- switch (hparams.n_embd) {
- case 768: type = LLM_TYPE_SMALL; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 48:
- switch (hparams.n_embd) {
- case 1024: type = LLM_TYPE_MEDIUM; break;
- case 1536: type = LLM_TYPE_LARGE; break;
- case 2048: type = LLM_TYPE_XL; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 64:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MAMBA2:
- {
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24:
- switch (hparams.n_embd) {
- case 768: type = LLM_TYPE_SMALL; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 48:
- switch (hparams.n_embd) {
- case 1024: type = LLM_TYPE_MEDIUM; break;
- case 1536: type = LLM_TYPE_LARGE; break;
- case 2048: type = LLM_TYPE_XL; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 64:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_3B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_JAMBA:
- {
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- for (uint32_t i = 0; i < hparams.n_layer; ++i) {
- hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
- }
- switch (hparams.n_layer) {
- // TODO: Jamba layers are a bit heterogenous, so naming this is hard.
- case 12: // 900M 8x???M
- case 32: // 51B 16x?B
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_XVERSE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- case 80: type = LLM_TYPE_65B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_COMMAND_R:
- {
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_35B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_COHERE2:
- {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.set_swa_pattern(4);
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DBRX:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_16x12B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OLMO:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
- switch (hparams.n_layer) {
- case 22: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 80: type = LLM_TYPE_70B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OLMO2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- if (found_swa && hparams.n_swa > 0) {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.set_swa_pattern(4);
- } else {
- hparams.swa_type = LLAMA_SWA_TYPE_NONE;
- }
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- case 64: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_SEED_OSS:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 64: type = LLM_TYPE_36B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OLMOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_A1_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OPENELM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_270M; break;
- case 20: type = LLM_TYPE_450M; break;
- case 28: type = LLM_TYPE_1B; break;
- case 36: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GPTNEOX:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
- switch (hparams.n_layer) {
- case 6:
- switch (hparams.n_ff()) {
- case 512: type = LLM_TYPE_14M; break;
- case 2048: type = LLM_TYPE_70M; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 12:
- switch (hparams.n_ff()) {
- case 3072: type = LLM_TYPE_160M; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 16:
- switch (hparams.n_ff()) {
- case 8192: type = LLM_TYPE_1B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 24:
- switch (hparams.n_ff()) {
- case 4096: type = LLM_TYPE_410M; break;
- case 8192: type = LLM_TYPE_1_4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 32:
- switch (hparams.n_ff()) {
- case 10240: type = LLM_TYPE_2_8B; break;
- case 16384: type = LLM_TYPE_6_9B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 36:
- switch (hparams.n_ff()) {
- case 20480: type = LLM_TYPE_12B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 44:
- switch (hparams.n_ff()) {
- case 24576: type = LLM_TYPE_20B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_ARCTIC:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- if (hparams.n_expert == 128) {
- switch (hparams.n_layer) {
- case 35: type = LLM_TYPE_10B_128x3_66B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } else {
- type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DEEPSEEK:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- switch (hparams.n_layer) {
- case 28: type = LLM_TYPE_20B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DEEPSEEK2:
- {
- bool is_lite = (hparams.n_layer == 27);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- if (!is_lite) {
- ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
- }
- ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
- ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
- ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
- if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
- // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
- // that have no expert_gating_func model parameter set
- hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
- }
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false);
- switch (hparams.n_layer) {
- case 27: type = LLM_TYPE_16B; break;
- case 60: type = LLM_TYPE_236B; break;
- case 61: type = LLM_TYPE_671B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PLM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_1_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_CHATGLM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 28: {
- if (hparams.n_head(0) == 16) {
- type = LLM_TYPE_1_5B;
- } else {
- type = LLM_TYPE_6B;
- }
- } break;
- case 40: {
- if (hparams.n_head(0) == 24) {
- type = LLM_TYPE_4B;
- } else {
- type = LLM_TYPE_9B;
- }
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GLM4:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_9B; break;
- case 61: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GLM4_MOE:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // MoE parameters
- ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
- ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
- // Expert gating function (GLM-4.5 uses sigmoid)
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
- if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
- hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
- }
- // NextN/MTP parameters
- ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
- // TODO: when MTP is implemented, this should probably be updated if needed
- hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
- switch (hparams.n_layer) {
- case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
- case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer)
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_BITNET:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 26: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_T5:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
- uint32_t dec_start_token_id;
- if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
- hparams.dec_start_token_id = dec_start_token_id;
- }
- hparams.dec_n_layer = hparams.n_layer;
- ml.get_key(LLM_KV_DECODER_BLOCK_COUNT, hparams.dec_n_layer, false);
- switch (hparams.n_layer) {
- case 6: type = LLM_TYPE_60M; break; // t5-small
- case 8: type = LLM_TYPE_80M; break; // flan-t5-small
- case 12:
- switch (hparams.n_ff()) {
- case 3072: type = LLM_TYPE_220M; break; // t5-base
- case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 24:
- switch (hparams.n_ff()) {
- case 4096: type = LLM_TYPE_770M; break; // t5-large
- case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
- case 16384: type = LLM_TYPE_3B; break; // t5-3b
- case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
- case 65536: type = LLM_TYPE_11B; break; // t5-11b
- case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_T5ENCODER:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
- type = LLM_TYPE_UNKNOWN;
- } break;
- case LLM_ARCH_JAIS:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1_3B; break;
- case 40: type = LLM_TYPE_13B; break;
- /* TODO: add variants */
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_NEMOTRON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_NEMOTRON_H:
- {
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- // A layer is recurrent IFF the n_head_kv value is set to 0 and
- // the n_ff value is set to 0
- for (uint32_t i = 0; i < hparams.n_layer; ++i) {
- hparams.recurrent_layer_arr[i] = (hparams.n_head_kv(i) == 0 && hparams.n_ff(i) == 0);
- }
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 56: type = LLM_TYPE_9B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_EXAONE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_EXAONE4:
- {
- if (hparams.n_layer == 64) { // 32B
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.n_swa = 4096;
- hparams.set_swa_pattern(4);
- }
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 30: type = LLM_TYPE_1_2B; break;
- case 64: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_RWKV6:
- case LLM_ARCH_RWKV6QWEN2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
- ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
- ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
- ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
- ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
- ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1_6B; break;
- case 32:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_3B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 61: type = LLM_TYPE_14B; break;
- case 64: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_RWKV7:
- case LLM_ARCH_ARWKV7:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
- ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
- ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
- ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
- ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
- ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
- ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
- switch (hparams.n_layer) {
- case 12:
- switch (hparams.n_embd) {
- case 768: type = LLM_TYPE_190M; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 24:
- switch (hparams.n_embd) {
- case 1024: type = LLM_TYPE_450M; break;
- case 2048: type = LLM_TYPE_1_5B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 28:
- switch (hparams.n_embd) {
- case 1536: type = LLM_TYPE_1_5B; break;
- case 3584: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 32:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_2_9B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 61:
- switch (hparams.n_embd) {
- case 4096: type = LLM_TYPE_14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
- ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
- ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
- // Granite uses rope_finetuned as a switch for rope, so default to true
- bool rope_finetuned = true;
- ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
- hparams.rope_finetuned = rope_finetuned;
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_3B; break;
- case 40: type = LLM_TYPE_3B; break;
- // Add additional layer/vocab/etc checks here for other model sizes
- default: type = LLM_TYPE_UNKNOWN;
- }
- // For Granite MoE Shared
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
- } break;
- case LLM_ARCH_GRANITE_HYBRID:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /* required */ false);
- ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /* required */ false);
- ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /* required */ false);
- ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale, /* required */ false);
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- // Granite uses rope_finetuned as a switch for rope, so default to true
- bool rope_finetuned = true;
- ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
- hparams.rope_finetuned = rope_finetuned;
- // A layer is recurrent IFF the n_head_kv value is set to 0
- for (uint32_t i = 0; i < hparams.n_layer; ++i) {
- hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
- }
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- // TODO: Add llm type label (not sure this is useful)
- default: type = LLM_TYPE_UNKNOWN;
- }
- // For Granite MoE Shared
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
- } break;
- case LLM_ARCH_QWEN3NEXT:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // Load linear attention (gated delta net) parameters
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- // Mark recurrent layers (linear attention layers)
- for (uint32_t i = 0; i < hparams.n_layer; ++i) {
- hparams.recurrent_layer_arr[i] = ((i + 1) % 4 != 0); // TODO: extract the magic 4 from "full_attention_interval"
- }
- switch (hparams.n_layer) {
- case 80: type = LLM_TYPE_80B_A3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_CHAMELEON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
- ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 48: type = LLM_TYPE_34B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_WAVTOKENIZER_DEC:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
- ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- } break;
- case LLM_ARCH_BAILINGMOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
- switch (hparams.n_layer) {
- case 28: type = LLM_TYPE_16B; break;
- case 88: type = LLM_TYPE_290B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DOTS1:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
- switch (hparams.n_layer) {
- case 62: type = LLM_TYPE_142B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_ERNIE4_5:
- case LLM_ARCH_ERNIE4_5_MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- if (arch == LLM_ARCH_ERNIE4_5_MOE) {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
- ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- }
- switch (hparams.n_layer) {
- case 18: type = LLM_TYPE_0_3B; break;
- case 28: type = LLM_TYPE_21B_A3B; break;
- case 54: type = LLM_TYPE_300B_A47B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_FALCON_H1:
- {
- // Common parameters
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // SSM parameters
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- std::fill(hparams.recurrent_layer_arr.begin(), hparams.recurrent_layer_arr.end(), true);
- switch (hparams.n_layer) {
- case 36:
- type = LLM_TYPE_0_5B; break;
- case 24:
- type = LLM_TYPE_1_5B; break;
- case 66:
- type = LLM_TYPE_1B; break;
- case 32:
- type = LLM_TYPE_3B; break;
- case 44:
- type = LLM_TYPE_7B; break;
- case 72:
- type = LLM_TYPE_34B; break;
- default:
- type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_HUNYUAN_MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_A13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_HUNYUAN_DENSE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_embd) {
- case 1024: type = LLM_TYPE_0_5B; break;
- case 2048: type = LLM_TYPE_1_8B; break;
- case 3072: type = LLM_TYPE_4B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_SMOLLM3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- hparams.n_no_rope_layer_step = 4;
- switch (hparams.n_layer) {
- case 36: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OPENAI_MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.set_swa_pattern(2);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_20B; break;
- case 36: type = LLM_TYPE_120B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_LFM2:
- {
- ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- for (uint32_t il = 0; il < hparams.n_layer; ++il) {
- hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
- }
- switch (hparams.n_embd) {
- case 1024: type = LLM_TYPE_350M; break;
- case 1536: type = LLM_TYPE_700M; break;
- case 2048: type = LLM_TYPE_1_2B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_SMALLTHINKER:
- {
- const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- if (found_swa && hparams.n_swa > 0) {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.n_swa = 4096;
- hparams.set_swa_pattern(4, true);
- } else {
- hparams.swa_type = LLAMA_SWA_TYPE_NONE;
- hparams.n_no_rope_layer_step = hparams.n_layer;
- }
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_4B; break;
- case 52: type = LLM_TYPE_20B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- default: throw std::runtime_error("unsupported model architecture");
- }
- pimpl->n_bytes = ml.n_bytes;
- pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
- if (hparams.f_max_alibi_bias > 0.0f) {
- hparams.use_alibi = true;
- }
- hparams.rope_type = llama_model_rope_type(this);
- }
- void llama_model::load_vocab(llama_model_loader & ml) {
- const auto kv = LLM_KV(arch);
- vocab.load(ml, kv);
- }
- bool llama_model::load_tensors(llama_model_loader & ml) {
- const auto & split_mode = params.split_mode;
- const auto & n_gpu_layers = params.n_gpu_layers;
- const auto & use_mlock = params.use_mlock;
- const auto & tensor_split = params.tensor_split;
- const int n_layer = hparams.n_layer;
- const bool use_mmap_buffer = true;
- LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
- // build a list of buffer types for the CPU and GPU devices
- pimpl->cpu_buft_list = make_cpu_buft_list(devices, params.use_extra_bufts);
- for (auto * dev : devices) {
- buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
- // add CPU buffer types as a fallback
- buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
- pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
- }
- // calculate the split points
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
- std::vector<float> splits(n_devices());
- if (all_zero) {
- // default split, by free memory
- for (size_t i = 0; i < n_devices(); ++i) {
- ggml_backend_dev_t dev = devices[i];
- size_t total;
- size_t free;
- ggml_backend_dev_memory(dev, &free, &total);
- splits[i] = free;
- }
- } else {
- std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
- }
- // sum and normalize the splits to get the split points
- float split_sum = 0.0f;
- for (size_t i = 0; i < n_devices(); ++i) {
- split_sum += splits[i];
- splits[i] = split_sum;
- }
- for (size_t i = 0; i < n_devices(); ++i) {
- splits[i] /= split_sum;
- }
- ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- if (cpu_dev == nullptr) {
- throw std::runtime_error(format("%s: no CPU backend found", __func__));
- }
- const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
- const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
- auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
- const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
- if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
- LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
- return {cpu_dev, &pimpl->cpu_buft_list};
- }
- const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
- auto * dev = devices.at(layer_gpu);
- LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
- return {dev, &pimpl->gpu_buft_list.at(dev)};
- };
- // assign the input layer
- // there is very little benefit to offloading the input layer, so always keep it on the CPU
- pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
- // assign the repeating layers to the devices according to the splits
- pimpl->dev_layer.resize(n_layer);
- for (int il = 0; il < n_layer; ++il) {
- pimpl->dev_layer[il] = get_layer_buft_list(il);
- }
- // assign the output layer
- pimpl->dev_output = get_layer_buft_list(n_layer);
- // one ggml context per buffer type
- int max_n_tensors = ml.n_tensors;
- max_n_tensors += 1; // duplicated output tensor
- max_n_tensors += n_layer*2; // duplicated rope freq tensors
- const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
- auto it = ctx_map.find(buft);
- if (it == ctx_map.end()) {
- ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- throw std::runtime_error(format("failed to create ggml context"));
- }
- ctx_map[buft] = ctx;
- pimpl->ctxs.emplace_back(ctx);
- return ctx;
- }
- return it->second;
- };
- const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
- const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
- const auto TENSOR_SKIP = llama_model_loader::TENSOR_SKIP;
- // create tensors for the weights
- {
- // note: cast to int64_t since we will use these for the tensor dimensions
- const int64_t n_head = hparams.n_head();
- const int64_t n_head_kv = hparams.n_head_kv();
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- const int64_t n_embd_head_v = hparams.n_embd_head_v;
- const int64_t n_ff = hparams.n_ff();
- const int64_t n_embd_gqa = n_embd_v_gqa;
- const int64_t n_vocab = vocab.n_tokens();
- const int64_t n_token_types = vocab.n_token_types();
- const int64_t n_rot = hparams.n_rot;
- const int64_t n_expert = hparams.n_expert;
- const int64_t n_expert_used = hparams.n_expert_used;
- const int64_t n_ctx_train = hparams.n_ctx_train;
- if (n_expert > 0 && hparams.n_expert_used == 0) {
- throw std::runtime_error("model has expert layers but no expert layers are used");
- }
- int n_moved_tensors = 0;
- ggml_tensor * first_moved_tensor = nullptr;
- ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
- ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
- auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
- ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
- if (!t_meta) {
- if (flags & TENSOR_NOT_REQUIRED) {
- return nullptr;
- }
- throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
- }
- // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
- // the tensor is duplicated
- // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
- llm_tensor tn_tensor = tn.tensor;
- if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
- tn_tensor = LLM_TENSOR_OUTPUT;
- }
- llm_tensor_info info;
- try {
- info = llm_tensor_info_for(tn_tensor);
- } catch (const std::out_of_range & e) {
- throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
- }
- // skip unused tensors
- if (info.op == GGML_OP_NONE || flags & TENSOR_SKIP) {
- const size_t nbytes = ggml_nbytes(t_meta);
- LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
- ml.size_data -= nbytes;
- ml.n_created++;
- return nullptr;
- }
- // tensors with "bias" suffix are always used with GGML_OP_ADD or GGML_OP_ADD_ID
- ggml_op op;
- bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
- if (bias) {
- if (info.op == GGML_OP_MUL_MAT_ID) {
- op = GGML_OP_ADD_ID;
- } else {
- op = GGML_OP_ADD;
- }
- } else {
- op = info.op;
- }
- // sanity checks
- if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
- if (tn.bid != -1) {
- GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
- }
- } else {
- if (tn.bid == -1) {
- GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
- }
- }
- // select the buffer type for this tensor
- buft_list_t * buft_list;
- switch (info.layer) {
- case LLM_TENSOR_LAYER_INPUT:
- buft_list = pimpl->dev_input.buft_list;
- break;
- case LLM_TENSOR_LAYER_OUTPUT:
- buft_list = pimpl->dev_output.buft_list;
- break;
- case LLM_TENSOR_LAYER_REPEATING:
- buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
- break;
- default:
- GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
- }
- ggml_backend_buffer_type_t buft = nullptr;
- // check overrides
- if (ml.tensor_buft_overrides) {
- std::string tensor_name = tn.str();
- for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
- std::regex pattern(overrides->pattern);
- if (std::regex_search(tensor_name, pattern)) {
- if (overrides->buft == ggml_backend_cpu_buffer_type()) {
- // when overriding to a CPU buffer, consider the extra buffer types
- buft = select_weight_buft(hparams, t_meta, op, pimpl->cpu_buft_list);
- } else {
- buft = overrides->buft;
- }
- LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
- tensor_name.c_str(),
- ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
- ggml_backend_buft_name(buft));
- break;
- }
- }
- }
- if (!buft) {
- buft = select_weight_buft(hparams, t_meta, op, *buft_list);
- if (!buft) {
- throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
- }
- }
- // avoid using a host buffer when using mmap
- auto * buft_dev = ggml_backend_buft_get_device(buft);
- if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
- auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- if (!cpu_dev) {
- throw std::runtime_error("no CPU backend found");
- }
- buft = ggml_backend_dev_buffer_type(cpu_dev);
- }
- if (buft != buft_list->front().second) {
- n_moved_tensors++;
- if (!first_moved_tensor) {
- first_moved_tensor = t_meta;
- first_moved_from_buft = buft_list->front().second;
- first_moved_to_buft = buft;
- }
- }
- ggml_context * ctx = ctx_for_buft(buft);
- // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
- if (flags & TENSOR_DUPLICATED) {
- ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
- if (t) {
- return t;
- }
- }
- return ml.create_tensor(ctx, tn, ne, flags);
- };
- layers.resize(n_layer);
- // TODO: move to a separate function
- const auto tn = LLM_TN(arch);
- switch (arch) {
- case LLM_ARCH_LLAMA:
- case LLM_ARCH_REFACT:
- case LLM_ARCH_MINICPM:
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- else {
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- if (n_expert == 0) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- // optional MLP bias
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- } else {
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- // For Granite MoE Shared
- if (hparams.n_ff_shexp > 0) {
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
- }
- }
- }
- } break;
- case LLM_ARCH_QWEN3NEXT:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
- }
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- // Calculate dimensions from hyperparameters
- const int64_t head_k_dim = hparams.ssm_d_state;
- const int64_t head_v_dim = hparams.ssm_d_state;
- const int64_t n_k_heads = hparams.ssm_n_group;
- const int64_t n_v_heads = hparams.ssm_dt_rank;
- const int64_t key_dim = head_k_dim * n_k_heads;
- const int64_t value_dim = head_v_dim * n_v_heads;
- const int64_t conv_dim = key_dim * 2 + value_dim;
- // Calculate projection sizes
- const int64_t qkvz_projection_size = key_dim * 2 + value_dim * 2;
- const int64_t ba_projection_size = n_v_heads * 2;
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, 0);
- if (!hparams.is_recurrent(i)) {
- // Attention layers
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
- // Q/K normalization for attention layers
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
- // attn gate
- layer.wq_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
- } else {
- // Linear attention (gated delta net) specific tensors
- // Create tensors with calculated dimensions
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), { n_embd, qkvz_projection_size }, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), { hparams.ssm_d_conv, conv_dim }, 0);
- layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), { hparams.ssm_dt_rank }, 0);
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), { hparams.ssm_dt_rank }, 0);
- layer.ssm_beta_alpha = create_tensor(tn(LLM_TENSOR_SSM_BETA_ALPHA, "weight", i), { n_embd, ba_projection_size }, 0);
- layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), { head_v_dim }, 0);
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), { value_dim, n_embd }, 0);
- }
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
- // Shared experts
- layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), { n_embd }, 0);
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { hparams.n_ff_shexp, n_embd }, 0);
- }
- }
- break;
- case LLM_ARCH_LLADA:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output =
- create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- // Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
- layer.wq =
- create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
- // No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
- layer.wo =
- create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
- TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
- // optional MLP bias
- layer.ffn_gate_b =
- create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b =
- create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
- }
- }
- break;
- case LLM_ARCH_LLADA_MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for llada-moe");
- GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for llada-moe");
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_LLAMA4:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- bool is_moe_layer = hparams.n_moe_layer_step > 0 && (i + 1) % hparams.n_moe_layer_step == 0;
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- if (is_moe_layer) {
- int n_ff_exp = hparams.n_ff_exp;
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert
- const int64_t n_ff_shexp = n_ff_exp;
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
- } else {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- }
- } break;
- case LLM_ARCH_DECI:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
- const int64_t n_ff = hparams.n_ff(i);
- const int64_t n_head = hparams.n_head(i);
- const int64_t n_head_kv = hparams.n_head_kv(i);
- if (n_head_kv == 0 && n_head > 0) {
- // linear attention for DeciLMCausalModel
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- }
- else if (n_head_kv > 0) {
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- }
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- if (n_ff > 0) {
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- }
- if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- else {
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- if (n_ff > 0) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- // optional MLP bias
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_MINICPM3:
- {
- const int64_t n_embd_head_qk_rope = hparams.n_rot;
- const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
- const int64_t q_lora_rank = hparams.n_lora_q;
- const int64_t kv_lora_rank = hparams.n_lora_kv;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
- layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
- layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
- layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
- layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
- layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- } break;
- case LLM_ARCH_GROK:
- {
- if (n_expert == 0) {
- throw std::runtime_error("Grok model cannot have zero experts");
- }
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff/* / n_expert_used*/; // grok-1 n_ff_exp == n_ff
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- if (!layer.ffn_post_norm) {
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- }
- } break;
- case LLM_ARCH_DBRX:
- {
- if (n_expert == 0) {
- throw std::runtime_error("DBRX model cannot have zero experts");
- }
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- if (!output) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- if (!output) {
- // needs to be on GPU
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_BERT:
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_NOMIC_BERT_MOE:
- case LLM_ARCH_JINA_BERT_V3:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED);
- if (arch == LLM_ARCH_BERT) {
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
- cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
- cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
- cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
- cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
- }
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- if (!layer.wqkv) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
- if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- } else {
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- if (arch == LLM_ARCH_NOMIC_BERT) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- }
- }
- layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_NEO_BERT:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
- cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
- cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
- cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
- output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff*2}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_JINA_BERT_V2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
- type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
- cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
- cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i]; // JinaBertLayer
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
- layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
- layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_MPT:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- if (!output) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- // AWQ ScaleActivation layer
- layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors, present in Stable LM 2 1.6B
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- // optional q and k layernorms, present in StableLM 2 12B
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
- // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
- }
- } break;
- case LLM_ARCH_QWEN2:
- case LLM_ARCH_QWEN2VL:
- case LLM_ARCH_DREAM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_QWEN2MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
- }
- // MoE branch
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert branch
- const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
- layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
- }
- } break;
- case LLM_ARCH_QWEN3:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_QWEN3MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
- }
- // MoE branch
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- if (layer.wqkv == nullptr) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_PHI3:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- } break;
- case LLM_ARCH_PHIMOE:
- {
- const int64_t n_embd_head = n_embd / n_head;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
- output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
- if (layer.wqkv == nullptr) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_PLAMO2:
- {
- const uint32_t d_conv = hparams.ssm_d_conv;
- const uint32_t d_state = hparams.ssm_d_state;
- const uint32_t num_heads = hparams.ssm_dt_rank;
- const uint32_t intermediate_size = hparams.ssm_d_inner;
- const uint32_t head_dim = intermediate_size / num_heads;
- const uint32_t qk_dim = head_dim;
- const uint32_t v_dim = head_dim;
- const int64_t num_attention_heads = hparams.n_head();
- const int64_t q_num_heads = num_attention_heads;
- const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- bool is_mamba_layer = hparams.is_recurrent(i);
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (is_mamba_layer) {
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2 * intermediate_size}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, intermediate_size}, 0);
- layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {intermediate_size, dt_dim + 2*d_state}, 0);
- layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_dim, num_heads}, 0);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {num_heads}, 0);
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {num_heads}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {num_heads}, 0);
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {intermediate_size, n_embd}, 0);
- layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, i), {dt_dim}, 0);
- layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
- layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
- } else {
- const int64_t num_key_value_heads = hparams.n_head_kv(i);
- const int64_t k_num_heads = num_key_value_heads;
- const int64_t v_num_heads = num_key_value_heads;
- const int64_t q_proj_dim = q_num_heads * qk_dim;
- const int64_t k_proj_dim = k_num_heads * qk_dim;
- const int64_t v_proj_dim = v_num_heads * v_dim;
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {head_dim, num_attention_heads}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {head_dim, k_num_heads}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
- }
- // All layers have post-attention norm, FFN norm, and FFN tensors
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GPT2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if tok embd is NULL, init from output
- if (tok_embd == NULL) {
- tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_ORION:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_GEMMA:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GEMMA2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GEMMA3:
- case LLM_ARCH_GEMMA_EMBEDDING:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GEMMA3N:
- {
- const int64_t n_altup = hparams.n_altup;
- const int64_t laurel_rank = hparams.laurel_rank;
- const int64_t n_embd_altup = hparams.n_embd_altup;
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- tok_embd_per_layer = create_tensor(tn(LLM_TENSOR_PER_LAYER_TOKEN_EMBD, "weight"), {n_embd_altup * n_layer, n_vocab}, 0);
- altup_proj = create_tensor(tn(LLM_TENSOR_ALTUP_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0);
- altup_unembd_proj = create_tensor(tn(LLM_TENSOR_ALTUP_UNEMBD_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0);
- per_layer_model_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_MODEL_PROJ, "weight"), {n_embd, n_embd_altup * n_layer}, 0);
- per_layer_proj_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ_NORM, "weight"), {n_embd_altup}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- // altup & laurel
- layer.per_layer_inp_gate = create_tensor(tn(LLM_TENSOR_PER_LAYER_INP_GATE, "weight", i), {n_embd, n_embd_altup}, 0);
- layer.per_layer_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ, "weight", i), {n_embd_altup, n_embd}, 0);
- layer.per_layer_post_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_POST_NORM, "weight", i), {n_embd}, 0);
- layer.altup_correct_coef = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_COEF, "weight", i), {n_altup, n_altup}, 0);
- layer.altup_correct_scale = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_SCALE, "weight", i), {n_embd}, 0);
- layer.altup_predict_coef = create_tensor(tn(LLM_TENSOR_ALTUP_PREDICT_COEF, "weight", i), {n_altup, n_altup * n_altup}, 0);
- layer.altup_router = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER, "weight", i), {n_embd, n_altup}, 0);
- layer.altup_router_norm = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER_NORM, "weight", i), {n_embd}, 0);
- layer.laurel_l = create_tensor(tn(LLM_TENSOR_LAUREL_L, "weight", i), {n_embd, laurel_rank}, 0);
- layer.laurel_r = create_tensor(tn(LLM_TENSOR_LAUREL_R, "weight", i), {laurel_rank, n_embd}, 0);
- layer.laurel_post_norm = create_tensor(tn(LLM_TENSOR_LAUREL_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_STARCODER2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- // optional bias tensors
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
- }
- } break;
- case LLM_ARCH_MAMBA:
- {
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t dt_rank = hparams.ssm_dt_rank;
- // only an expansion factor of 2 is supported for now
- if (2 * n_embd != d_inner) {
- throw std::runtime_error("only an expansion factor of 2 is supported for now");
- }
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- // norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
- layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
- layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_MAMBA2:
- {
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t n_head = hparams.ssm_dt_rank;
- const int64_t n_group = hparams.ssm_n_group;
- const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_head;
- // only an expansion factor of 2 is supported for now
- GGML_ASSERT(2 * n_embd == d_inner);
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- // norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, 0);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_head}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_head}, 0);
- layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_JAMBA:
- {
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t dt_rank = hparams.ssm_dt_rank;
- // only an expansion factor of 2 is supported for now
- GGML_ASSERT(2 * n_embd == d_inner);
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- const int64_t n_head_kv = hparams.n_head_kv(i);
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
- auto & layer = layers[i];
- // norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (n_head_kv == 0) {
- // Mamba layer
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
- layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
- layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank}, 0);
- layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
- layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state}, 0);
- layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
- } else {
- // Attention layers
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- }
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
- if (layer.ffn_gate_inp) {
- // MoE
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- } else {
- // FFN (no MoE)
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- }
- } break;
- case LLM_ARCH_GRANITE_HYBRID:
- {
- // mamba2 Mixer SSM params
- // NOTE: int64_t for tensor dimensions
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t n_ssm_head = hparams.ssm_dt_rank;
- const int64_t n_group = hparams.ssm_n_group;
- const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
- // only an expansion factor of 2 is supported for now
- GGML_ASSERT(2 * n_embd == d_inner);
- // embeddings
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- // norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (hparams.is_recurrent(i)) {
- // ssm layers
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
- layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
- } else {
- // attention layers (with optional bias)
- const int64_t n_head_i = hparams.n_head(i);
- const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
- const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- }
- // feed forward (w/ optional biases)
- if (n_expert > 0) {
- // MoE FFN
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- // For Granite MoE Shared
- if (hparams.n_ff_shexp > 0) {
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
- }
- } else {
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- }
- }
- } break;
- case LLM_ARCH_XVERSE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_COMMAND_R:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- // init output from the input tok embed
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (n_layer >= 64){
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
- }
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_COHERE2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- // init output from the input tok embed
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
- TENSOR_DUPLICATED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
- }
- }
- break;
- case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_OLMO2:
- {
- const int64_t n_embd_head = n_embd / n_head;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_SEED_OSS:
- {
- const uint32_t head_dim = hparams.n_embd_head_k;
- const int64_t n_qo_dim = n_head * head_dim;
- const int64_t n_kv_dim = n_head_kv * head_dim;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_qo_dim}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_kv_dim}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_kv_dim}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_qo_dim}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_OLMOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- // MoE branch
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_OPENELM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- // init output from the input tok embed
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- for (int i = 0; i < n_layer; ++i) {
- const int64_t n_head = hparams.n_head(i);
- const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
- const int64_t n_ff = hparams.n_ff(i);
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_GPTNEOX:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_ARCTIC:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_DEEPSEEK:
- {
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (i < (int) hparams.n_layer_dense_lead) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- } else {
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- // MoE branch
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert branch
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- }
- }
- } break;
- case LLM_ARCH_DEEPSEEK2:
- {
- const bool is_lite = (hparams.n_layer == 27);
- const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
- // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
- const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
- const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
- const int64_t n_embd_head_qk_rope = hparams.n_rot;
- const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
- const int64_t q_lora_rank = hparams.n_lora_q;
- const int64_t kv_lora_rank = hparams.n_lora_kv;
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (!is_lite) {
- layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
- }
- layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
- if (!is_lite) {
- layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
- layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
- } else {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
- }
- layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
- // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
- if (is_mla) {
- layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
- layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
- } else {
- layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (i < (int) hparams.n_layer_dense_lead) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- } else {
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- // MoE branch
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert branch
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- }
- }
- } break;
- case LLM_ARCH_PLM:
- {
- const int64_t n_embd_head_qk_rope = hparams.n_rot;
- const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
- const int64_t kv_lora_rank = hparams.n_lora_kv;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
- layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
- layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_BITNET:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_T5:
- {
- const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- // n_layer: number of encoder_layers
- // dec_n_layer: number of decoder_layers
- const int dec_n_layer = hparams.dec_n_layer;
- if (dec_n_layer > n_layer) {
- layers.resize(dec_n_layer);
- }
- // load encoder layers
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- // load decoder layers
- for (int i = 0; i < dec_n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
- // this tensor seems to be unused in HF transformers implementation
- layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_T5ENCODER:
- {
- const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_JAIS:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_CHATGLM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- if (layer.wqkv == nullptr) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GLM4:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- if (layer.wqkv == nullptr) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GLM4_MOE:
- {
- const int64_t n_expert = hparams.n_expert;
- const int64_t n_expert_used = hparams.n_expert_used;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- GGML_ASSERT(hparams.n_expert > 0 && "n_expert must be > 0 for GLM4_MOE MoE layers");
- GGML_ASSERT(hparams.n_expert_used > 0 && "n_expert_used must be > 0 for GLM4_MOE MoE layers");
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
- }
- // Load ALL tensors including NextN layer to satisfy total tensor count
- // but only PROCESS up to last layer (skipping final NextN layer) in forward pass
- for (int i = 0; i < n_layer; ++i) {
- int flags = 0;
- if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
- // skip all tensors in the NextN layers
- flags |= TENSOR_SKIP;
- }
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, flags);
- // GLM-style attention with bias terms
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, flags);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, flags);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, flags);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags);
- // K/Q norm tensors (optional for GLM-4.5 355B variant)
- layer.attn_q_norm = create_tensor(
- tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
- layer.attn_k_norm = create_tensor(
- tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, flags);
- // Check if this layer uses MoE or dense FFN based on n_layer_dense_lead
- // GLM 4.5 uses hybrid architecture: layer 0 is dense, layers 1+ are MoE
- const bool use_moe = (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead);
- if (use_moe) {
- // MoE layers
- layer.ffn_gate_inp =
- create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, flags);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, flags);
- // MoE branch
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- layer.ffn_gate_exps = create_tensor(
- tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
- layer.ffn_down_exps = create_tensor(
- tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, flags);
- layer.ffn_up_exps = create_tensor(
- tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
- // Shared expert
- if (n_expert_shared > 0) {
- const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
- layer.ffn_gate_shexp = create_tensor(
- tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
- layer.ffn_down_shexp = create_tensor(
- tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_shexp, n_embd }, flags);
- layer.ffn_up_shexp = create_tensor(
- tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
- }
- } else {
- // Dense layers (first k layers) - GLM uses separate gate/up projections
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, flags);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, flags);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, flags);
- }
- // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
- if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
- layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
- layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags);
- layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
- layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
- layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags);
- layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags);
- }
- }
- }
- break;
- case LLM_ARCH_NEMOTRON:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- // optional MLP bias
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_NEMOTRON_H:
- {
- // mamba2 Mixer SSM params
- // NOTE: int64_t for tensor dimensions
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t n_ssm_head = hparams.ssm_dt_rank;
- const int64_t n_group = hparams.ssm_n_group;
- const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
- // embeddings
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- // all blocks use the attn norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (hparams.is_recurrent(i)) {
- // ssm layers
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
- layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
- } else if (hparams.n_ff(i) == 0) {
- // attention layers (with optional bias)
- const int64_t n_head_i = hparams.n_head(i);
- const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
- const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- } else {
- // mlp layers
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
- }
- }
- } break;
- case LLM_ARCH_EXAONE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_EXAONE4:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_RWKV6:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // Block 0, LN0
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- const int time_mix_extra_dim = hparams.time_mix_extra_dim;
- const int time_decay_extra_dim = hparams.time_decay_extra_dim;
- const int head_size = hparams.wkv_head_size;
- const int attn_hidden_size = n_embd;
- const int ffn_size = hparams.n_ff_arr[0];
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
- layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
- layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
- layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
- layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
- layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
- GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
- layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
- layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
- layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
- layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
- layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
- layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
- layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
- layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
- layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
- layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
- layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
- layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_RWKV6QWEN2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- const int time_mix_extra_dim = hparams.time_mix_extra_dim;
- const int time_decay_extra_dim = hparams.time_decay_extra_dim;
- const int head_size = hparams.wkv_head_size;
- const int attn_hidden_size = n_embd;
- const int n_head_kv = hparams.n_head_kv();
- int attn_key_value_size;
- if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
- attn_key_value_size = attn_hidden_size;
- } else {
- attn_key_value_size = n_head_kv * head_size;
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
- layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
- layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
- layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
- layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
- layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
- layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
- layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
- layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
- layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
- // optional bias tensors
- layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
- layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
- layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
- layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_RWKV7:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // Block 0, LN0
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- const int n_lora_decay = hparams.n_lora_decay;
- const int n_lora_iclr = hparams.n_lora_iclr;
- const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
- const int n_lora_gate = hparams.n_lora_gate;
- const int attn_hidden_size = n_embd;
- const int ffn_size = hparams.n_ff_arr[0];
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
- layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
- layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
- layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
- layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
- layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
- layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
- layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
- if (i == 0) {
- // actually not used
- layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
- layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
- layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
- } else {
- layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
- layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
- layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
- }
- layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
- layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
- layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
- layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
- layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
- layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
- layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
- layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_ARWKV7:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- const int n_lora_decay = hparams.n_lora_decay;
- const int n_lora_iclr = hparams.n_lora_iclr;
- const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
- const int n_lora_gate = hparams.n_lora_gate;
- const int attn_hidden_size = n_embd;
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
- layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
- layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
- layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
- layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
- layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
- if (i == 0) {
- // actually not used
- layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
- layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
- layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
- } else {
- layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
- layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
- layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
- }
- layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
- layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
- try {
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
- } catch(std::runtime_error & e) {
- // ARWKV models may not have gate tensors
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
- }
- layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_CHAMELEON:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
- layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_WAVTOKENIZER_DEC:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
- conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
- conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
- // posnet
- {
- const int64_t n_embd = hparams.posnet.n_embd;
- for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
- auto & layer = layers[i].posnet;
- // posnet:
- //
- // - resnet
- // - resnet
- // - attn
- // - resnet
- // - resnet
- // - norm
- //
- switch (i) {
- case 0:
- case 1:
- case 3:
- case 4:
- {
- layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
- layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
- layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
- layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
- layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
- layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
- layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
- layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
- } break;
- case 2:
- {
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
- layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
- layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
- layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
- layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
- } break;
- case 5:
- {
- layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
- layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
- } break;
- default: GGML_ABORT("unknown posnet layer");
- };
- }
- }
- GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
- // convnext
- {
- const int64_t n_embd = hparams.convnext.n_embd;
- for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
- auto & layer = layers[i].convnext;
- layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
- layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
- layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
- layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
- layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
- layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
- layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
- layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
- layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
- }
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- }
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
- output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
- } break;
- case LLM_ARCH_BAILINGMOE:
- {
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- }
- } break;
- case LLM_ARCH_DOTS1:
- {
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (i < (int) hparams.n_layer_dense_lead) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- } else {
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- // MoE branch
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert branch
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- }
- }
- } break;
- case LLM_ARCH_ARCEE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_ERNIE4_5:
- case LLM_ARCH_ERNIE4_5_MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (arch == LLM_ARCH_ERNIE4_5_MOE && static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
- int n_ff_exp = hparams.n_ff_exp;
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert (if present)
- if (hparams.n_ff_shexp > 0) {
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd }, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0);
- }
- } else { // Dense layers
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- }
- } break;
- case LLM_ARCH_FALCON_H1:
- {
- // Common
- const int64_t hidden_size = hparams.n_embd; // hidden_size
- // mamba2 Mixer SSM params
- const int64_t ssm_conv_kernel_size = hparams.ssm_d_conv; // ssm_conv_kernel_size
- const int64_t ssm_n_groups = hparams.ssm_n_group; // ssm_n_groups
- const int64_t ssm_state_size = hparams.ssm_d_state; // ssm_state_size
- const int64_t ssm_intermediate_size = hparams.ssm_d_inner; // TODO expand
- const int64_t ssm_num_heads = hparams.ssm_dt_rank; // ssm_num_heads
- const int64_t ssm_conv_dim = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size;
- const int64_t ssm_projection_size = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads;
- // attn params
- const int64_t attn_num_attention_head = hparams.n_head(0); // rename to: attn_num_attention_head
- const int64_t attn_num_key_value_head = hparams.n_head_kv(0);
- // ffn params
- const int64_t ffn_intermediate_size = hparams.n_ff(0);
- // embeddings
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, 0);
- // output
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hidden_size, n_vocab}, TENSOR_NOT_REQUIRED);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {hidden_size}, 0);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- /*SSM LAYERS*/
- // ssm in
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {hidden_size, ssm_projection_size}, 0);
- // ssm 1d conv
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {ssm_conv_kernel_size, ssm_conv_dim}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {ssm_conv_dim}, TENSOR_NOT_REQUIRED);
- // ssm_dt
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {ssm_num_heads}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, ssm_num_heads}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, ssm_num_heads}, 0);
- // ssm_norm
- layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {ssm_intermediate_size / ssm_n_groups, ssm_n_groups}, TENSOR_NOT_REQUIRED);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {ssm_intermediate_size, hidden_size}, 0);
- /*ATTENTION LAYERS*/
- // attention layers (with optional bias)
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {hidden_size, n_embd_head_k * attn_num_attention_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_k}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_v}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * attn_num_attention_head, hidden_size}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {attn_num_key_value_head * n_embd_head_k}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {attn_num_key_value_head * n_embd_head_v}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {hidden_size}, 0);
- // feed forward (w/ optional biases)
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, i), {hidden_size}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { ffn_intermediate_size, hidden_size}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_HUNYUAN_MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_HUNYUAN_DENSE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_SMOLLM3:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_OPENAI_MOE:
- {
- const int64_t n_ff_exp = hparams.n_ff_exp;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
- layer.attn_sinks = create_tensor(tn(LLM_TENSOR_ATTN_SINKS, "weight", i), {n_head}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // bias
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_head * n_rot}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_head_kv * n_rot}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_head_kv * n_rot}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_gate_inp_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "bias", i), {n_expert}, 0);
- layer.ffn_gate_exps_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "bias", i), { n_embd, n_expert}, 0);
- layer.ffn_up_exps_b = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_LFM2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- // ffn is same for transformer and conv layers
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- // for operator_norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (!hparams.is_recurrent(i)) {
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- GGML_ASSERT(n_embd_v_gqa == n_embd_k_gqa);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, hparams.n_embd_k_gqa(i)}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, hparams.n_embd_v_gqa(i)}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- } else {
- layer.shortconv.conv = create_tensor(tn(LLM_TENSOR_SHORTCONV_CONV, "weight", i), {hparams.n_shortconv_l_cache, n_embd}, 0);
- layer.shortconv.in_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_INPROJ, "weight", i), {n_embd, 3 * n_embd}, 0);
- layer.shortconv.out_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_OUTPROJ, "weight", i), {n_embd, n_embd}, 0);
- }
- }
- } break;
- case LLM_ARCH_SMALLTHINKER:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
- GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for SMALLTHINKER");
- GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for SMALLTHINKER");
- // MoE branch
- const int64_t n_ff_exp = hparams.n_ff_exp;
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
- }
- } break;
- default:
- throw std::runtime_error("unknown architecture");
- }
- if (n_moved_tensors > 0) {
- LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
- __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
- ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
- }
- }
- ml.done_getting_tensors();
- ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
- pimpl->mappings.reserve(ml.mappings.size());
- // create the backend buffers
- std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
- ctx_bufs.reserve(ctx_map.size());
- // Ensure we have enough capacity for the maximum backend buffer we will potentially create
- const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
- pimpl->bufs.reserve(n_max_backend_buffer);
- for (auto & it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx = it.second;
- // skip contexts without tensors
- if (ggml_get_first_tensor(ctx) == nullptr) {
- continue;
- }
- llama_buf_map buf_map;
- buf_map.reserve(n_max_backend_buffer);
- // check if it is possible to use buffer_from_host_ptr with this buffer type
- ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
- if (!dev) {
- // FIXME: workaround for CPU backend buft having a NULL device
- dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- if (!dev) {
- throw std::runtime_error(format("%s: no CPU backend found", __func__));
- }
- }
- ggml_backend_dev_props props;
- ggml_backend_dev_get_props(dev, &props);
- bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
- bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
- if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
- for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
- // only the mmap region containing the tensors in the model is mapped to the backend buffer
- // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
- // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
- void * addr = nullptr;
- size_t first, last; // NOLINT
- ml.get_mapping_range(&first, &last, &addr, idx, ctx);
- if (first >= last) {
- continue;
- }
- const size_t max_size = ggml_get_max_tensor_size(ctx);
- ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
- if (buf == nullptr) {
- throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
- }
- pimpl->bufs.emplace_back(buf);
- buf_map.emplace(idx, buf);
- }
- }
- else {
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (buf == nullptr) {
- throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
- }
- pimpl->bufs.emplace_back(buf);
- if (use_mlock && ggml_backend_buffer_is_host(buf)) {
- pimpl->mlock_bufs.emplace_back(new llama_mlock);
- auto & mlock_buf = pimpl->mlock_bufs.back();
- mlock_buf->init (ggml_backend_buffer_get_base(buf));
- mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
- }
- for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
- buf_map.emplace(idx, buf);
- }
- }
- if (pimpl->bufs.empty()) {
- throw std::runtime_error("failed to allocate buffer");
- }
- for (auto & buf : buf_map) {
- // indicate that this buffer contains weights
- // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
- ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
- }
- ctx_bufs.emplace_back(ctx, buf_map);
- }
- if (llama_supports_gpu_offload()) {
- const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
- LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
- if (n_gpu_layers > (int) hparams.n_layer) {
- LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
- }
- const int max_backend_supported_layers = hparams.n_layer + 1;
- const int max_offloadable_layers = hparams.n_layer + 1;
- LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
- }
- // print memory requirements per buffer type
- for (auto & buf : pimpl->bufs) {
- LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
- }
- // populate tensors_by_name
- for (auto & ctx : pimpl->ctxs) {
- for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
- tensors_by_name.emplace_back(ggml_get_name(cur), cur);
- }
- }
- // load tensor data
- for (auto & it : ctx_bufs) {
- ggml_context * ctx = it.first;
- auto & bufs = it.second;
- if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
- return false;
- }
- }
- if (use_mmap_buffer) {
- for (auto & mapping : ml.mappings) {
- pimpl->mappings.emplace_back(std::move(mapping));
- }
- }
- return true;
- }
- std::string llama_model::arch_name() const {
- return llm_arch_name(arch);
- }
- std::string llama_model::type_name() const {
- return llm_type_name(type);
- }
- std::string llama_model::desc() const {
- return pimpl->desc_str;
- }
- size_t llama_model::size() const {
- return pimpl->n_bytes;
- }
- size_t llama_model::n_tensors() const {
- return tensors_by_name.size();
- }
- size_t llama_model::n_devices() const {
- return devices.size();
- }
- uint64_t llama_model::n_elements() const {
- return pimpl->n_elements;
- }
- void llama_model::print_info() const {
- const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
- auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
- bool is_var = false;
- std::vector<uint32_t> v;
- for (uint32_t i = 0; i < n; ++i) {
- v.push_back(f(i));
- if (v[i] != v[0]) {
- is_var = true;
- }
- }
- std::stringstream ss;
- if (is_var) {
- ss << "[";
- for (uint32_t i = 0; i < n; ++i) {
- ss << v[i];
- if (i < n - 1) {
- ss << ", ";
- }
- }
- ss << "]";
- } else {
- ss << v[0];
- }
- return ss.str();
- };
- // hparams
- LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
- LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
- if (!hparams.vocab_only) {
- LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
- LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
- LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
- LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
- LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
- LLAMA_LOG_INFO("%s: is_swa_any = %u\n", __func__, hparams.is_swa_any());
- LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
- LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
- LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
- LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
- LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
- LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
- LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
- LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
- LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
- LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
- LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
- LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
- LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
- LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
- LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
- LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
- LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
- LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
- if (!classifier_labels.empty()) {
- LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out);
- size_t i = 0;
- for (auto label : classifier_labels) {
- LLAMA_LOG_INFO("%s: cls_label[%2zu] = %s\n", __func__, i++, label.c_str());
- }
- }
- }
- if (arch == LLM_ARCH_MAMBA ||
- arch == LLM_ARCH_MAMBA2 ||
- arch == LLM_ARCH_JAMBA ||
- arch == LLM_ARCH_FALCON_H1 ||
- arch == LLM_ARCH_PLAMO2 ||
- arch == LLM_ARCH_GRANITE_HYBRID ||
- arch == LLM_ARCH_NEMOTRON_H ||
- arch == LLM_ARCH_QWEN3NEXT) {
- LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
- LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
- LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
- LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
- LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
- LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
- }
- LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
- if (pimpl->n_elements >= 1e12) {
- LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
- } else if (pimpl->n_elements >= 1e9) {
- LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
- } else if (pimpl->n_elements >= 1e6) {
- LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
- } else {
- LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
- }
- // general kv
- LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
- if (arch == LLM_ARCH_DEEPSEEK) {
- LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
- LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
- }
- if (arch == LLM_ARCH_DEEPSEEK2) {
- LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
- LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
- LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
- LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
- LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
- LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
- LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
- LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
- LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
- }
- if (arch == LLM_ARCH_QWEN2MOE) {
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
- }
- if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE) {
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- }
- if (arch == LLM_ARCH_MINICPM ||
- arch == LLM_ARCH_GRANITE ||
- arch == LLM_ARCH_GRANITE_MOE ||
- arch == LLM_ARCH_GRANITE_HYBRID) {
- LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
- LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
- LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
- LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
- }
- if (arch == LLM_ARCH_BAILINGMOE) {
- LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
- LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
- LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
- }
- if (arch == LLM_ARCH_SMALLTHINKER) {
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
- }
- vocab.print_info();
- }
- ggml_backend_dev_t llama_model::dev_layer(int il) const {
- return pimpl->dev_layer.at(il).dev;
- }
- ggml_backend_dev_t llama_model::dev_output() const {
- return pimpl->dev_output.dev;
- }
- template<typename F>
- static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
- ggml_init_params params = {
- /*.mem_size =*/ ggml_tensor_overhead()*8,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx { ggml_init(params) };
- if (!ctx) {
- throw std::runtime_error(format("failed to create ggml context"));
- }
- ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
- ggml_tensor * op_tensor = fn(ctx.get());
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (op_tensor->src[i] != nullptr) {
- assert(op_tensor->src[i]->buffer == nullptr);
- op_tensor->src[i]->buffer = buf.get();
- }
- }
- bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
- return op_supported;
- }
- template<typename F>
- static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
- for (const auto & cur : buft_list) {
- ggml_backend_dev_t cur_dev = cur.first;
- ggml_backend_buffer_type_t cur_buft = cur.second;
- if (buft_supported(cur_buft, cur_dev, fn)) {
- return cur_buft;
- }
- }
- throw std::runtime_error(format("no suitable buffer type found"));
- }
- ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
- return ::select_buft(
- *pimpl->dev_layer.at(il).buft_list,
- [&](ggml_context * ctx) {
- ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
- ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
- return ggml_add(ctx, cur, layer_dir);
- });
- }
- bool llama_model::has_tensor_overrides() const {
- return pimpl->has_tensor_overrides;
- }
- const ggml_tensor * llama_model::get_tensor(const char * name) const {
- auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
- [name](const std::pair<std::string, ggml_tensor *> & it) {
- return it.first == name;
- });
- if (it == tensors_by_name.end()) {
- return nullptr;
- }
- return it->second;
- }
- float llama_model::get_rope_freq_base (const llama_cparams & cparams, int il) const {
- return hparams.is_swa(il) ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
- }
- float llama_model::get_rope_freq_scale(const llama_cparams & cparams, int il) const {
- return hparams.is_swa(il) ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
- }
- ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int il) const {
- const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
- // choose long/short freq factors based on the context size
- if (layers[il].rope_freqs != nullptr) {
- return layers[il].rope_freqs;
- }
- if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
- return layers[il].rope_long;
- }
- return layers[il].rope_short;
- }
- struct llm_build_llama : public llm_graph_context {
- llm_build_llama(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // rope freq factors for llama3; may return nullptr for llama2 and other models
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- if (hparams.use_kq_norm) {
- // Llama4TextL2Norm
- Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
- Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
- cb(Qcur, "Qcur_normed", il);
- cb(Kcur, "Kcur_normed", il);
- }
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network (non-MoE)
- if (model.layers[il].ffn_gate_inp == nullptr) {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- } else {
- // MoE branch
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, true,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(cur, "ffn_moe_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_llama_iswa : public llm_graph_context {
- llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- // temperature tuning
- ggml_tensor * inp_attn_scale = nullptr;
- inp_attn_scale = build_inp_attn_scale();
- auto * inp_attn = build_attn_inp_kv_iswa();
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
- (il + 1) % hparams.n_no_rope_layer_step != 0;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // rope freq factors for llama3; may return nullptr for llama2 and other models
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- if (use_rope) {
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- } else if (inp_attn_scale) {
- Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- if (use_rope && hparams.use_kq_norm) {
- // Llama4TextL2Norm
- Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
- Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
- cb(Qcur, "Qcur_normed", il);
- cb(Kcur, "Kcur_normed", il);
- }
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network (non-MoE)
- if (model.layers[il].ffn_gate_inp == nullptr) {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- } else {
- ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, false,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
- il);
- // Shared experts
- ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(shexp_out, "ffn_moe_shexp", il);
- cur = ggml_add(ctx0, moe_out, shexp_out);
- cb(cur, "ffn_moe_out_merged", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_deci : public llm_graph_context {
- llm_build_deci(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- const int64_t n_head_kv = hparams.n_head_kv(il);
- const int64_t n_head = hparams.n_head(il);
- const int64_t n_ff = hparams.n_ff(il);
- if (n_head == 0) {
- // attention-free layer of Llama-3_1-Nemotron-51B
- cur = inpL;
- } else {
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- }
- if (n_head > 0 && n_head_kv == 0) {
- // "linear attention" of Llama-3_1-Nemotron-51B
- cur = build_lora_mm(model.layers[il].wo, cur);
- cb(cur, "wo", il);
- } else if (n_head > 0) {
- // self-attention
- // rope freq factors for llama3; may return nullptr for llama2 and other models
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- // FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
- if (n_ff == 0) {
- continue;
- }
- // modified to support attention-free layer of Llama-3_1-Nemotron-51B
- ggml_tensor * ffn_inp = cur;
- if (n_head > 0) {
- ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- }
- // feed-forward network
- if (model.layers[il].ffn_gate_inp == nullptr) {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_baichuan : public llm_graph_context {
- llm_build_baichuan(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- switch (model.type) {
- case LLM_TYPE_7B:
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- break;
- case LLM_TYPE_13B:
- break;
- default:
- GGML_ABORT("fatal error");
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_xverse : public llm_graph_context {
- llm_build_xverse(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_falcon : public llm_graph_context {
- llm_build_falcon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * attn_norm;
- attn_norm = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(attn_norm, "attn_norm", il);
- // self-attention
- {
- if (model.layers[il].attn_norm_2) {
- // Falcon-40B
- cur = build_norm(inpL,
- model.layers[il].attn_norm_2,
- model.layers[il].attn_norm_2_b,
- LLM_NORM, il);
- cb(cur, "attn_norm_2", il);
- } else {
- cur = attn_norm;
- }
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- // using mode = 2 for neox mode
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
- }
- ggml_tensor * ffn_inp = cur;
- // feed forward
- {
- cur = build_ffn(attn_norm, // !! use the attn norm, not the result
- model.layers[il].ffn_up, NULL, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = ggml_add(ctx0, cur, inpL);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- // norm
- cur = build_norm(cur,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_grok : public llm_graph_context {
- llm_build_grok(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- cur = build_norm(cur,
- model.layers[il].attn_out_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_out_norm", il);
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // MoE branch
- ggml_tensor * moe_out = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_GELU, true,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(moe_out, "ffn_moe_out", il);
- if (model.layers[il].ffn_up) {
- ggml_tensor * ffn_out = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_PAR, il);
- cb(ffn_out, "ffn_out", il);
- cur = ggml_scale(ctx0, ggml_add(ctx0, ffn_out, moe_out), std::sqrt(2) / 2);
- cb(cur, "ffn_out", il);
- } else {
- cur = moe_out;
- }
- cur = build_norm(cur,
- model.layers[il].ffn_post_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_post_norm", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cur = ggml_scale(ctx0, cur, hparams.f_logit_scale);
- // final logit soft-capping
- if (hparams.f_final_logit_softcapping) {
- cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
- cur = ggml_tanh(ctx0, cur);
- cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
- }
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_dbrx : public llm_graph_context {
- llm_build_dbrx(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- ggml_tensor * Qcur = nullptr;
- ggml_tensor * Kcur = nullptr;
- ggml_tensor * Vcur = nullptr;
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(cur, "wqkv_clamped", il);
- Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- // MoE branch
- cur = build_norm(ffn_inp,
- model.layers[il].attn_out_norm, NULL,
- LLM_NORM, il);
- cb(cur, "attn_out_norm", il);
- cur = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, true,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(cur, "ffn_moe_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_starcoder : public llm_graph_context {
- llm_build_starcoder(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
- cb(pos, "pos_embd", -1);
- inpL = ggml_add(ctx0, inpL, pos);
- cb(inpL, "inpL", -1);
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- cur = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // add the input
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = build_norm(inpL,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_refact : public llm_graph_context {
- llm_build_refact(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_bert : public llm_graph_context {
- llm_build_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- ggml_tensor * inp_pos = nullptr;
- if (model.arch != LLM_ARCH_JINA_BERT_V2) {
- inp_pos = build_inp_pos();
- }
- // construct input embeddings (token, type, position)
- inpL = build_inp_embd(model.tok_embd);
- // token types are hardcoded to zero ("Sentence A")
- if (model.type_embd) {
- ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
- inpL = ggml_add(ctx0, inpL, type_row0);
- }
- if (model.arch == LLM_ARCH_BERT) {
- inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
- }
- cb(inpL, "inp_embd", -1);
- // embed layer norm
- inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
- cb(inpL, "inp_norm", -1);
- auto * inp_attn = build_attn_inp_no_cache();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * cur = inpL;
- {
- ggml_tensor * Qcur;
- ggml_tensor * Kcur;
- ggml_tensor * Vcur;
- // self-attention
- if (model.layers[il].wqkv) {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- if (model.layers[il].bqkv) {
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- }
- Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- } else {
- Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
- Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
- Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- }
- if (model.layers[il].attn_q_norm) {
- Qcur = build_norm(Qcur,
- model.layers[il].attn_q_norm,
- model.layers[il].attn_q_norm_b,
- LLM_NORM, il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- }
- if (model.layers[il].attn_k_norm) {
- Kcur = build_norm(Kcur,
- model.layers[il].attn_k_norm,
- model.layers[il].attn_k_norm_b,
- LLM_NORM, il);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- }
- // RoPE
- if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE || model.arch == LLM_ARCH_JINA_BERT_V3) {
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- cb(cur, "kqv_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // re-add the layer input
- cur = ggml_add(ctx0, cur, inpL);
- // attention layer norm
- cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
- if (model.layers[il].attn_norm_2 != nullptr) {
- cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
- cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
- }
- ggml_tensor * ffn_inp = cur;
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
- // MoE branch
- cur = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- nullptr,
- model.layers[il].ffn_down_exps,
- nullptr,
- hparams.n_expert,
- hparams.n_expert_used,
- LLM_FFN_GELU,
- false, false,
- 0.0f,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
- cb(cur, "ffn_moe_out", il);
- } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE || model.arch == LLM_ARCH_JINA_BERT_V3) {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- } else {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- // attentions bypass the intermediate layer
- cur = ggml_add(ctx0, cur, ffn_inp);
- // output layer norm
- cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cb(cur, "result_embd", -1);
- res->t_embd = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_neo_bert : public llm_graph_context {
- llm_build_neo_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- ggml_tensor * inp_pos = build_inp_pos();
- // construct input embeddings (token, type, position)
- inpL = build_inp_embd(model.tok_embd);
- cb(inpL, "inp_embd", -1);
- auto * inp_attn = build_attn_inp_no_cache();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * cur = inpL;
- // pre-norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- {
- ggml_tensor * Qcur;
- ggml_tensor * Kcur;
- ggml_tensor * Vcur;
- // self-attention
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- // RoPE
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, nullptr,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- cb(cur, "kqv_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // re-add the layer input
- cur = ggml_add(ctx0, cur, inpL);
- ggml_tensor * ffn_inp = cur;
- cb(ffn_inp, "ffn_inp", il);
- // pre-norm
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // feed-forward network
- cur = build_ffn(cur,
- model.layers[il].ffn_up,
- NULL, NULL, NULL, NULL, NULL,
- model.layers[il].ffn_down,
- NULL, NULL, NULL,
- LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
- // attentions bypass the intermediate layer
- cur = ggml_add(ctx0, cur, ffn_inp);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm_enc, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_embd", -1);
- res->t_embd = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_bloom : public llm_graph_context {
- llm_build_bloom(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- auto * inp_attn = build_attn_inp_kv();
- inpL = build_norm(inpL,
- model.tok_norm,
- model.tok_norm_b,
- LLM_NORM, -1);
- cb(inpL, "inp_norm", -1);
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- cur = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // Add the input
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = build_norm(inpL,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_mpt : public llm_graph_context {
- llm_build_mpt(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * pos;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- auto * inp_attn = build_attn_inp_kv();
- if (model.pos_embd) {
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
- cb(pos, "pos_embd", -1);
- inpL = ggml_add(ctx0, inpL, pos);
- cb(inpL, "inpL", -1);
- }
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * attn_norm;
- attn_norm = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(attn_norm, "attn_norm", il);
- // self-attention
- {
- cur = attn_norm;
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- if (model.layers[il].bqkv){
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- }
- if (hparams.f_clamp_kqv > 0.0f) {
- cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(cur, "wqkv_clamped", il);
- }
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- // Q/K Layernorm
- if (model.layers[il].attn_q_norm) {
- Qcur = build_norm(Qcur,
- model.layers[il].attn_q_norm,
- model.layers[il].attn_q_norm_b,
- LLM_NORM, il);
- Kcur = build_norm(Kcur,
- model.layers[il].attn_k_norm,
- model.layers[il].attn_k_norm_b,
- LLM_NORM, il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // Add the input
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // feed forward
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- model.layers[il].ffn_act,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_stablelm : public llm_graph_context {
- llm_build_stablelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- ggml_tensor * inpSA = cur;
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- if (model.layers[il].attn_q_norm) {
- Qcur = build_norm(Qcur,
- model.layers[il].attn_q_norm,
- NULL,
- LLM_NORM, il);
- cb(Qcur, "Qcur", il);
- }
- if (model.layers[il].attn_k_norm) {
- Kcur = build_norm(Kcur,
- model.layers[il].attn_k_norm,
- NULL,
- LLM_NORM, il);
- cb(Kcur, "Kcur", il);
- }
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- if (model.layers[il].ffn_norm) {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- } else {
- // parallel residual
- cur = inpSA;
- }
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_qwen : public llm_graph_context {
- llm_build_qwen(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 2*sizeof(float)*(n_embd));
- // using mode = 2 for neox mode
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward forward
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_qwen2 : public llm_graph_context {
- llm_build_qwen2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- if (model.output_b != nullptr) {
- cur = ggml_add(ctx0, cur, model.output_b);
- }
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_dream : public llm_graph_context {
- llm_build_dream(const llama_model & model, const llm_graph_params & params) :
- llm_graph_context(params) {
- //copied from qwen2
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_no_cache();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_llada : public llm_graph_context {
- llm_build_llada(const llama_model & model, const llm_graph_params & params) :
- llm_graph_context(params) {
- // LLaDA is similar to LLaMA but uses non-causal attention for diffusion
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- // Non-causal attention for diffusion
- auto * inp_attn = build_attn_inp_no_cache();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute separate Q, K, V projections without bias, matching LLaDALlamaBlock
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_qwen2vl : public llm_graph_context {
- llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- int sections[4];
- std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_multi(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_multi(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_qwen2moe : public llm_graph_context {
- llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self_attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // MoE branch
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- ggml_tensor * moe_out =
- build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, false,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(moe_out, "ffn_moe_out", il);
- // FFN shared expert
- {
- ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
- cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
- // sigmoid
- ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
- cb(cur_gate, "ffn_shexp_gate", il);
- ggml_tensor * cur_ffn = build_ffn(cur,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur_ffn, "ffn_shexp", il);
- ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
- cb(ffn_shexp_out, "ffn_shexp_out", il);
- moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
- cb(moe_out, "ffn_out", il);
- cur = moe_out;
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_qwen3 : public llm_graph_context {
- llm_build_qwen3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_normed", il);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_qwen3moe : public llm_graph_context {
- llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self_attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_normed", il);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // MoE branch
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- ggml_tensor * moe_out =
- build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, true,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(moe_out, "ffn_moe_out", il);
- cur = moe_out;
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_phi2 : public llm_graph_context {
- llm_build_phi2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * attn_norm_output;
- ggml_tensor * ffn_output;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- attn_norm_output = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(attn_norm_output, "attn_norm", il);
- // self-attention
- {
- ggml_tensor * Qcur = nullptr;
- ggml_tensor * Kcur = nullptr;
- ggml_tensor * Vcur = nullptr;
- if (model.layers[il].wqkv) {
- cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- } else {
- Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
- Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
- Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- }
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- // with phi2, we scale the Q to avoid precision issues
- // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
- Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
- }
- // FF
- {
- ffn_output = build_ffn(attn_norm_output,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(ffn_output, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_output);
- cur = ggml_add(ctx0, cur, inpL);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = build_norm(inpL,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output_no_bias", -1);
- cur = ggml_add(ctx0, cur, model.output_b);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- template<bool iswa>
- struct llm_build_phi3 : public llm_graph_context {
- llm_build_phi3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
- inp_attn_type * inp_attn = nullptr;
- if constexpr (iswa) {
- inp_attn = build_attn_inp_kv_iswa();
- } else {
- inp_attn = build_attn_inp_kv();
- }
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- auto * residual = inpL;
- // self-attention
- {
- // rope freq factors for 128k context
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- ggml_tensor* attn_norm_output = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM_RMS, il);
- cb(attn_norm_output, "attn_norm", il);
- ggml_tensor * Qcur = nullptr;
- ggml_tensor * Kcur = nullptr;
- ggml_tensor * Vcur = nullptr;
- if (model.layers[il].wqkv) {
- cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
- cb(cur, "wqkv", il);
- Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 0 * sizeof(float) * (n_embd));
- Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd));
- Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
- } else {
- Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
- Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
- Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- }
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
- cb(Qcur, "Qcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- residual = ggml_get_rows(ctx0, residual, inp_out_ids);
- }
- cur = ggml_add(ctx0, cur, residual);
- residual = cur;
- cur = build_norm(cur,
- model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // feed-forward network
- if (model.layers[il].ffn_gate_inp == nullptr) {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- } else {
- // MoE branch
- cur = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, true,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(cur, "ffn_moe_out", il);
- }
- cur = ggml_add(ctx0, residual, cur);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = build_norm(inpL,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- if (model.output_b != nullptr) {
- cb(cur, "result_output_no_bias", -1);
- cur = ggml_add(ctx0, cur, model.output_b);
- }
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_plamo : public llm_graph_context {
- llm_build_plamo(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- ggml_tensor * sa_inp = cur;
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- sa_inp = ggml_get_rows(ctx0, sa_inp, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- ggml_tensor * sa_out = cur;
- cur = sa_inp;
- // feed-forward network
- {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, sa_out);
- cur = ggml_add(ctx0, cur, inpL);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_gpt2 : public llm_graph_context {
- llm_build_gpt2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * pos;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
- cb(pos, "pos_embd", -1);
- inpL = ggml_add(ctx0, inpL, pos);
- cb(inpL, "inpL", -1);
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- cur = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // add the input
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = build_norm(inpL,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_codeshell : public llm_graph_context {
- llm_build_codeshell(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- cur = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // add the input
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = build_norm(inpL,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_orion : public llm_graph_context {
- llm_build_orion(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- // if (model.layers[il].bq) {
- // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- // cb(Qcur, "Qcur", il);
- // }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- // if (model.layers[il].bk) {
- // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- // cb(Kcur, "Kcur", il);
- // }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- // if (model.layers[il].bv) {
- // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- // cb(Vcur, "Vcur", il);
- // }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_internlm2 : public llm_graph_context {
- llm_build_internlm2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_minicpm3 : public llm_graph_context {
- llm_build_minicpm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- //TODO: if the model varies, these parameters need to be read from the model
- const int64_t n_embd_base = 256;
- const float scale_embd = 12.0f;
- const float scale_depth = 1.4f;
- const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
- const uint32_t n_embd_head_qk_rope = hparams.n_rot;
- const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
- const uint32_t kv_lora_rank = hparams.n_lora_kv;
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // scale the input embeddings
- inpL = ggml_scale(ctx0, inpL, scale_embd);
- cb(inpL, "inp_scaled", -1);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self_attention
- {
- ggml_tensor * q = NULL;
- // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
- q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
- cb(q, "q", il);
- q = build_norm(q,
- model.layers[il].attn_q_a_norm, NULL,
- LLM_NORM_RMS, il);
- cb(q, "q", il);
- // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
- q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
- cb(q, "q", il);
- // split into {n_head * n_embd_head_qk_nope, n_tokens}
- ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
- ggml_row_size(q->type, hparams.n_embd_head_k),
- ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
- 0);
- cb(q_nope, "q_nope", il);
- // and {n_head * n_embd_head_qk_rope, n_tokens}
- ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
- ggml_row_size(q->type, hparams.n_embd_head_k),
- ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
- ggml_row_size(q->type, n_embd_head_qk_nope));
- cb(q_pe, "q_pe", il);
- // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
- ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
- cb(kv_pe_compresseed, "kv_pe_compresseed", il);
- // split into {kv_lora_rank, n_tokens}
- ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
- kv_pe_compresseed->nb[1],
- 0);
- cb(kv_compressed, "kv_compressed", il);
- // and {n_embd_head_qk_rope, n_tokens}
- ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
- kv_pe_compresseed->nb[1],
- kv_pe_compresseed->nb[1],
- ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
- cb(k_pe, "k_pe", il);
- kv_compressed = build_norm(kv_compressed,
- model.layers[il].attn_kv_a_norm, NULL,
- LLM_NORM_RMS, il);
- cb(kv_compressed, "kv_compressed", il);
- // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
- ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
- cb(kv, "kv", il);
- // split into {n_head * n_embd_head_qk_nope, n_tokens}
- ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
- ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
- ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
- 0);
- cb(k_nope, "k_nope", il);
- // and {n_head * n_embd_head_v, n_tokens}
- ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
- ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
- ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
- ggml_row_size(kv->type, (n_embd_head_qk_nope)));
- cb(v_states, "v_states", il);
- v_states = ggml_cont(ctx0, v_states);
- cb(v_states, "v_states", il);
- q_pe = ggml_rope_ext(
- ctx0, q_pe, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(q_pe, "q_pe", il);
- // shared RoPE key
- k_pe = ggml_rope_ext(
- ctx0, k_pe, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(k_pe, "k_pe", il);
- ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
- cb(q_states, "q_states", il);
- ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
- cb(k_states, "k_states", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- q_states, k_states, v_states, nullptr, nullptr, nullptr, kq_scale, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- // scale_res - scale the hidden states for residual connection
- const float scale_res = scale_depth/sqrtf(float(n_layer)); // TODO: is this correct?
- cur = ggml_scale(ctx0, cur, scale_res);
- cb(cur, "hidden_scaled", il);
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- // scale the hidden states for residual connection
- cur = ggml_scale(ctx0, cur, scale_res);
- cb(cur, "hidden_scaled_ffn", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head scaling
- const float scale_lmhead = float(n_embd_base)/float(n_embd);
- cur = ggml_scale(ctx0, cur, scale_lmhead);
- cb(cur, "lmhead_scaling", -1);
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_gemma : public llm_graph_context {
- llm_build_gemma(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
- cb(inpL, "inp_scaled", -1);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
- cb(Qcur, "Qcur_scaled", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
- cb(sa_out, "sa_out", il);
- cur = build_norm(sa_out,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // feed-forward network
- {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, sa_out);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_gemma2_iswa : public llm_graph_context {
- llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_k;
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
- cb(inpL, "inp_scaled", -1);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv_iswa();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- cur = build_norm(cur,
- model.layers[il].attn_post_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_post_norm", il);
- ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
- cb(sa_out, "sa_out", il);
- cur = build_norm(sa_out,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // feed-forward network
- {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = build_norm(cur,
- model.layers[il].ffn_post_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "ffn_post_norm", -1);
- cur = ggml_add(ctx0, cur, sa_out);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- // final logit soft-capping
- cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
- cur = ggml_tanh(ctx0, cur);
- cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_gemma3_iswa : public llm_graph_context {
- llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_k;
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
- if (ubatch.token) {
- inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
- cb(inpL, "inp_scaled", -1);
- }
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- // TODO: is causal == true correct? might need some changes
- auto * inp_attn = build_attn_inp_kv_iswa();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- const float freq_base_l = model.get_rope_freq_base (cparams, il);
- const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
- // norm
- cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
- ext_factor, attn_factor, beta_fast, beta_slow);
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_normed", il);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
- Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- cur = build_norm(cur,
- model.layers[il].attn_post_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_post_norm", il);
- ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
- cb(sa_out, "sa_out", il);
- cur = build_norm(sa_out,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // feed-forward network
- {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = build_norm(cur,
- model.layers[il].ffn_post_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "ffn_post_norm", -1);
- cur = ggml_add(ctx0, cur, sa_out);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_gemma3n_iswa : public llm_graph_context {
- const llama_model & model;
- const int64_t n_embd_head;
- const int64_t n_embd_altup;
- const int64_t n_altup;
- const int i_altup_act;
- const int n_layer_sparsity = 10; // number of layers using activation sparsity
- const float f_sparsity_std_mul = 1.6448533535003662f; // std_multiplier = normal_dist.icdf(0.95)
- llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params)
- : llm_graph_context(params),
- model(model),
- n_embd_head(model.hparams.n_embd_head_k),
- n_embd_altup(model.hparams.n_embd_altup),
- n_altup(model.hparams.n_altup),
- i_altup_act(model.hparams.i_altup_act) {
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
- if (ubatch.token) {
- inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
- cb(inpL, "inp_scaled", -1);
- }
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- // TODO: is causal == true correct? might need some changes
- auto * inp_attn = build_attn_inp_kv_iswa();
- // inp_per_layer shape: [n_embd_altup, n_tokens, n_layer]
- ggml_tensor * inp_per_layer = project_per_layer_inputs(inpL, get_per_layer_inputs());
- // inpL now has only 1 altup, project it to the rest of the altups
- // these "added" altups will be concat to the last dim of inpL
- {
- ggml_tensor * target_magnitude = calc_magnitude(inpL);
- ggml_tensor * inp_repeated = ggml_repeat_4d(ctx0, inpL, n_embd, n_tokens, n_altup - 1, 1);
- ggml_tensor * altup_added = ggml_mul_mat(ctx0, model.altup_proj, inp_repeated); // shape: [n_embd, n_tokens, n_altup - 1]
- ggml_tensor * new_magnitude = calc_magnitude(altup_added);
- altup_added = ggml_div(ctx0,
- ggml_mul(ctx0, altup_added, target_magnitude),
- new_magnitude);
- inpL = ggml_concat(ctx0, inpL, altup_added, 2); // shape: [n_embd, n_tokens, n_altup]
- cb(inpL, "inp_stacked", -1);
- }
- // inpL now has shape: [n_embd, n_tokens, n_altup]
- // inp_per_layer now has shape: [n_embd_altup, n_tokens, n_layer]
- for (int il = 0; il < n_layer; ++il) {
- // this block is made to be closely resemble Gemma3p5DecoderLayer on python code
- const float freq_base_l = model.get_rope_freq_base (cparams, il);
- const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
- ggml_tensor * cur = inpL; // [n_embd, n_tokens, n_altup]
- ggml_tensor * predictions = altup_predict(cur, il); // [n_embd, n_tokens, n_altup]
- // predicted value will go through self-attention and laurel
- ggml_tensor * active_prediction = view_2d_slice(predictions, i_altup_act); // [n_embd, n_tokens]
- cur = active_prediction;
- cb(cur, "active_prediction", il);
- // norm
- cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // laurel
- ggml_tensor * laurel_out = laurel(cur, il); // [n_embd, n_tokens]
- // self-attention
- if (hparams.has_kv(il)) {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- Vcur = ggml_rms_norm(ctx0, Vcur, hparams.f_norm_rms_eps);
- cb(Qcur, "Qcur_normed", il);
- cb(Kcur, "Kcur_normed", il);
- cb(Vcur, "Vcur_normed", il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
- ext_factor, attn_factor, beta_fast, beta_slow);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur_pos", il);
- cb(Kcur, "Kcur_pos", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, hparams.f_attention_scale, il);
- } else {
- // reuse KV cache of earlier layers
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur_pos", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, nullptr, nullptr, nullptr, nullptr, nullptr, hparams.f_attention_scale, il);
- }
- cur = build_norm(cur,
- model.layers[il].attn_post_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_post_norm", il);
- cur = ggml_add(ctx0, cur, active_prediction); // [n_embd, n_tokens]
- cb(cur, "attn_gated", il);
- ggml_tensor * attn_laurel = ggml_scale(ctx0,
- ggml_add(ctx0, cur, laurel_out),
- 1.0f / sqrtf(2.0f)); // [n_embd, n_tokens]
- cb(attn_laurel, "attn_laurel", il);
- cur = build_norm(attn_laurel,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // feed-forward network
- {
- ggml_tensor * up_proj = build_lora_mm(model.layers[il].ffn_up, cur);
- ggml_tensor * gate_proj = build_lora_mm(model.layers[il].ffn_gate, cur);
- if (il < n_layer_sparsity) {
- // apply activation sparsity
- gate_proj = gaussian_topk(gate_proj);
- }
- gate_proj = ggml_gelu(ctx0, gate_proj);
- cur = ggml_mul(ctx0, up_proj, gate_proj);
- cur = build_lora_mm(model.layers[il].ffn_down, cur);
- cb(cur, "ffn_out", il);
- }
- cur = build_norm(cur,
- model.layers[il].ffn_post_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "ffn_post_norm", il);
- ggml_tensor * attn_ffw_laurel_gated = ggml_add(ctx0, cur, attn_laurel); // [n_embd, n_tokens]
- cb(attn_ffw_laurel_gated, "attn_ffw_laurel_gated", il);
- ggml_tensor * corrected = altup_correct(predictions, attn_ffw_laurel_gated, il); // [n_embd, n_tokens, n_altup]
- ggml_tensor * first_prediction; // [n_embd, n_tokens]
- {
- first_prediction = view_2d_slice(corrected, i_altup_act); // [n_embd, n_tokens]
- first_prediction = ggml_mul(ctx0, first_prediction, model.layers[il].altup_correct_scale);
- first_prediction = build_lora_mm(model.layers[il].per_layer_inp_gate, first_prediction);
- first_prediction = ggml_gelu(ctx0, first_prediction); // [n_embd_altup, n_tokens]
- cb(first_prediction, "first_prediction_gated", il);
- ggml_tensor * inp_this_layer = view_2d_slice(inp_per_layer, il); // [n_embd_altup, n_tokens]
- first_prediction = ggml_mul(ctx0, first_prediction, inp_this_layer); // [n_embd_altup, n_tokens]
- cb(first_prediction, "first_prediction_scaled", il);
- first_prediction = build_lora_mm(model.layers[il].per_layer_proj, first_prediction); // [n_embd, n_tokens]
- first_prediction = build_norm(first_prediction,
- model.layers[il].per_layer_post_norm, NULL,
- LLM_NORM_RMS, il);
- cb(first_prediction, "first_prediction_out", il);
- }
- // equivalent to python code: corrected_predictions[1:] += first_prediction
- {
- ggml_tensor * slice_first = view_2d_slice(corrected, 0);
- ggml_tensor * slice_rest = ggml_view_3d(ctx0, corrected, n_embd, n_tokens, n_altup - 1,
- ggml_row_size(corrected->type, n_embd),
- ggml_row_size(corrected->type, n_embd*n_tokens),
- n_embd*n_tokens*ggml_element_size(corrected));
- ggml_tensor * tmp = ggml_add(ctx0, slice_rest, first_prediction); // [n_embd, n_tokens, n_altup - 1]
- corrected = ggml_concat(ctx0, slice_first, tmp, 2); // [n_embd, n_tokens, n_altup]
- }
- cur = corrected; // [n_embd, n_tokens, n_altup]
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL; // [n_embd, n_tokens, n_altup]
- // cur now has multiple altup(s), we want to merge them back to 1 altup
- {
- ggml_tensor * target_magnitude = calc_magnitude(view_2d_slice(cur, i_altup_act)); // [n_embd, n_tokens]
- // do a view to skip the first slice (active altup)
- ggml_tensor * alt_slice = ggml_view_3d(ctx0, cur, n_embd, n_tokens, n_altup - 1,
- ggml_row_size(cur->type, n_embd),
- ggml_row_size(cur->type, n_embd*n_tokens),
- n_embd*n_tokens*ggml_element_size(cur));
- ggml_tensor * altup_unembd = ggml_mul_mat(ctx0, model.altup_unembd_proj, alt_slice); // shape: [n_embd, n_tokens, n_altup - 1]
- ggml_tensor * new_magnitude = calc_magnitude(altup_unembd);
- altup_unembd = ggml_div(ctx0,
- ggml_mul(ctx0, altup_unembd, target_magnitude),
- new_magnitude);
- cb(altup_unembd, "altup_unembd", -1);
- // equivalent to torch.mean(hidden_states, dim=0)
- cur = view_2d_slice(cur, 0); // [n_embd, n_tokens]
- for (int i = 0; i < n_altup - 1; ++i) {
- cur = ggml_add(ctx0, cur, view_2d_slice(altup_unembd, i));
- }
- cur = ggml_scale(ctx0, cur, 1.0f / float(n_altup)); // [n_embd, n_tokens]
- cb(cur, "unembd_merged", -1);
- }
- // cur now has shape: [n_embd, n_tokens]
- // TODO: move this to right after the last KV layer
- {
- // skip computing output for unused tokens
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- }
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- {
- // final logit soft-capping
- cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
- cur = ggml_tanh(ctx0, cur);
- cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
- }
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- ggml_tensor * calc_magnitude(ggml_tensor * x) {
- return ggml_sqrt(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, x)));
- }
- // get 2D slice view from a 3D tensor, the idx corresponds to the 3rd dim
- ggml_tensor * view_2d_slice(ggml_tensor * x, int idx) {
- GGML_ASSERT(idx < (int)x->ne[2]);
- return ggml_view_2d(ctx0, x, x->ne[0], x->ne[1],
- ggml_row_size(x->type, x->ne[0]),
- idx * x->ne[0] * x->ne[1] * ggml_element_size(x));
- }
- // equivalent to get_per_layer_inputs() in python code
- // output shape: [n_embd_altup, n_layer, n_tokens]
- ggml_tensor * get_per_layer_inputs() {
- auto inp = std::make_unique<llm_graph_input_embd>();
- ggml_tensor * inp_per_layer;
- if (ubatch.token) {
- inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
- ggml_set_input(inp->tokens);
- res->t_tokens = inp->tokens;
- inp_per_layer = ggml_get_rows(ctx0, model.tok_embd_per_layer, inp->tokens);
- inp_per_layer = ggml_reshape_3d(ctx0, inp_per_layer, n_embd_altup, n_layer, n_tokens);
- inp_per_layer = ggml_scale(ctx0, inp_per_layer, sqrtf((float)n_embd_altup));
- cb(inp_per_layer, "inp_per_layer_selected", -1);
- } else {
- GGML_ABORT("TODO: support embd input");
- }
- res->add_input(std::move(inp));
- return inp_per_layer;
- }
- // equivalent to project_per_layer_inputs() in python code
- // this calculates the per-layer inputs, so the final tensor shape will have n_layer as the last dim
- // output shape: [n_embd_altup, n_tokens, n_layer]
- ggml_tensor * project_per_layer_inputs(ggml_tensor * inputs_embeds, ggml_tensor * inp_per_layer) {
- const float per_layer_projection_scale = 1.0f / sqrtf((float)n_embd);
- const float per_layer_input_scale = 1.0f / sqrtf(2.0f);
- ggml_tensor * per_layer_proj = ggml_mul_mat(ctx0, model.per_layer_model_proj, inputs_embeds);
- per_layer_proj = ggml_scale(ctx0, per_layer_proj, per_layer_projection_scale);
- per_layer_proj = ggml_reshape_3d(ctx0, per_layer_proj, n_embd_altup, n_layer, n_tokens);
- per_layer_proj = build_norm(per_layer_proj,
- model.per_layer_proj_norm, NULL,
- LLM_NORM_RMS, -1); // [n_embd_altup, n_layer, n_tokens]
- cb(per_layer_proj, "per_layer_proj", -1);
- inp_per_layer = ggml_add(ctx0, inp_per_layer, per_layer_proj);
- inp_per_layer = ggml_scale(ctx0, inp_per_layer, per_layer_input_scale);
- cb(inp_per_layer, "inp_per_layer", -1);
- // permute to shape: [n_embd_altup, n_tokens, n_layer]
- inp_per_layer = ggml_cont(ctx0, ggml_permute(ctx0, inp_per_layer, 0, 2, 1, 3));
- return inp_per_layer;
- }
- // input cur shape: [n_altup, n_tokens]
- // output shape: [n_altup, n_tokens]
- ggml_tensor * laurel(ggml_tensor * cur, int il) {
- ggml_tensor * tmp = cur;
- tmp = build_lora_mm(model.layers[il].laurel_l, tmp);
- tmp = build_lora_mm(model.layers[il].laurel_r, tmp);
- tmp = build_norm(tmp, model.layers[il].laurel_post_norm, NULL, LLM_NORM_RMS, il);
- tmp = ggml_add(ctx0, tmp, cur);
- cb(tmp, "laurel_out", il);
- return tmp;
- }
- // input x shape: [n_embd, n_tokens]
- // output shape: [n_embd, n_tokens]
- ggml_tensor * gaussian_topk(ggml_tensor * x) {
- ggml_tensor * mean = ggml_mean(ctx0, x);
- ggml_tensor * std = ggml_sqrt(ctx0, ggml_scale(ctx0,
- ggml_sum_rows(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x, mean))),
- 1.0f / (float)(x->ne[0] - 1)
- ));
- ggml_tensor * cutoff_x = ggml_add(ctx0, mean, ggml_scale(ctx0, std, f_sparsity_std_mul));
- return ggml_relu(ctx0, ggml_sub(ctx0, x, cutoff_x));
- }
- //
- // altup functions
- //
- // equivalent to compute_router_modalities() in python code
- // input x shape: [n_embd, n_tokens]
- // output shape: [n_altup, n_tokens]
- ggml_tensor * altup_compute_router_modalities(ggml_tensor * x, int il) {
- ggml_tensor * router_inputs = build_norm(x,
- model.layers[il].altup_router_norm, NULL,
- LLM_NORM_RMS, il);
- // router_input_scale
- router_inputs = ggml_scale(ctx0, router_inputs, 1.0f / (float)n_embd);
- ggml_tensor * output = ggml_mul_mat(ctx0, model.layers[il].altup_router, router_inputs);
- return ggml_tanh(ctx0, output); // [n_altup, n_tokens]
- }
- // input cur shape: [n_embd, n_tokens, n_altup]
- // output shape: [n_embd, n_tokens, n_altup]
- ggml_tensor * altup_predict(ggml_tensor * cur, int il) {
- ggml_tensor * activated = view_2d_slice(cur, i_altup_act); // [n_embd, n_tokens]
- ggml_tensor * modalities = altup_compute_router_modalities(activated, il); // [n_altup, n_tokens]
- cb(modalities, "modalities", il);
- ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_predict_coef, modalities);
- cb(all_coefs, "all_coefs", il);
- // first dim now having n_altup^2 elements, we reshape it to 2D (so we end up with 3D tensor)
- all_coefs = ggml_reshape_3d(ctx0, all_coefs, n_altup, n_altup, n_tokens);
- // permute to [n_altup, n_embd, n_tokens]
- ggml_tensor * cur_permuted = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
- ggml_tensor * predictions = ggml_mul_mat(ctx0, cur_permuted, all_coefs); // [n_altup, n_embd, n_tokens]
- // final shape must be the same as cur: [n_embd, n_tokens, n_altup]
- predictions = ggml_cont(ctx0, ggml_permute(ctx0, predictions, 0, 2, 1, 3));
- predictions = ggml_add(ctx0, predictions, cur);
- cb(predictions, "predictions", il);
- return predictions;
- }
- // input predictions shape: [n_embd, n_tokens, n_altup]
- // input activated shape: [n_embd, n_tokens]
- // output shape: [n_embd, n_tokens, n_altup]
- ggml_tensor * altup_correct(ggml_tensor * predictions, ggml_tensor * activated, int il) {
- ggml_tensor * modalities = altup_compute_router_modalities(activated, il); // [n_altup, n_tokens]
- cb(modalities, "modalities", il);
- ggml_tensor * active_prediction = view_2d_slice(predictions, i_altup_act);
- ggml_tensor * innovation = ggml_sub(ctx0, activated, active_prediction); // [n_embd, n_tokens]
- cb(innovation, "innovation", il);
- ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_correct_coef, modalities); // [n_altup, n_tokens]
- all_coefs = ggml_scale_bias(ctx0, all_coefs, 1.0f, 1.0f); // + 1.0
- cb(all_coefs, "all_coefs", il);
- all_coefs = ggml_transpose(ctx0, all_coefs); // [n_tokens, n_altup]
- all_coefs = ggml_cont_3d(ctx0, all_coefs, 1, n_tokens, n_altup); // [1, n_tokens, n_altup]
- innovation = ggml_repeat_4d(ctx0, innovation, n_embd, n_tokens, n_altup, 1);
- ggml_tensor * corrected = ggml_mul(ctx0, innovation, all_coefs); // [n_embd, n_tokens, n_altup]
- corrected = ggml_add(ctx0, corrected, predictions); // [n_embd, n_tokens, n_altup]
- cb(corrected, "corrected", il);
- return corrected;
- }
- };
- struct llm_build_gemma_embedding_iswa : public llm_graph_context {
- llm_build_gemma_embedding_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_k;
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
- if (ubatch.token) {
- inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
- cb(inpL, "inp_scaled", -1);
- }
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- // TODO: support cacheless iSWA embeddings [TAG_NO_CACHE_ISWA]
- auto * inp_attn = build_attn_inp_kv_iswa();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- const float freq_base_l = model.get_rope_freq_base (cparams, il);
- const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
- // norm
- cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
- ext_factor, attn_factor, beta_fast, beta_slow);
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_normed", il);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
- Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- cur = build_norm(cur,
- model.layers[il].attn_post_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_post_norm", il);
- ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
- cb(sa_out, "sa_out", il);
- cur = build_norm(sa_out,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // feed-forward network
- {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = build_norm(cur,
- model.layers[il].ffn_post_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "ffn_post_norm", -1);
- cur = ggml_add(ctx0, cur, sa_out);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- // TODO: move up next to build_starcoder
- struct llm_build_starcoder2 : public llm_graph_context {
- llm_build_starcoder2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_graph_context_mamba : public llm_graph_context {
- llm_graph_context_mamba(const llm_graph_params & params) : llm_graph_context(params) {}
- ggml_tensor * build_mamba_layer(
- llm_graph_input_rs * inp,
- ggml_tensor * cur,
- const llama_model & model,
- const llama_ubatch & ubatch,
- int il) {
- const auto * mctx_cur = inp->mctx;
- const auto kv_head = mctx_cur->get_head();
- const auto & layer = model.layers[il];
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t dt_rank = hparams.ssm_dt_rank;
- const int64_t n_head = d_inner;
- const int64_t head_dim = 1;
- const int64_t n_seqs = ubatch.n_seqs;
- // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
- const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
- const int64_t n_seq_tokens = ubatch.n_seq_tokens;
- GGML_ASSERT(n_seqs != 0);
- GGML_ASSERT(ubatch.equal_seqs());
- GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
- ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
- ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
- ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
- conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
- // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
- cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
- // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
- ggml_tensor * xz = build_lora_mm(layer.ssm_in, cur);
- // split the above in two
- // => {d_inner, n_seq_tokens, n_seqs}
- ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
- ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
- // conv
- {
- // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
- ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
- // copy last (d_conv - 1) columns back into the state cache
- ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
- ggml_build_forward_expand(gf,
- ggml_cpy(ctx0, last_conv,
- ggml_view_1d(ctx0, conv_states_all,
- (d_conv - 1)*(d_inner)*(n_seqs),
- kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
- // 1D convolution
- // The equivalent is to make a self-overlapping view of conv_x
- // over d_conv columns at each stride in the 3rd dimension,
- // then element-wise multiply that with the conv1d weight,
- // then sum the elements of each row,
- // (the last two steps are a dot product over rows (also doable with mul_mat))
- // then permute away the ne[0] dimension,
- // and then you're left with the resulting x tensor.
- // For simultaneous sequences, all sequences need to have the same length.
- x = ggml_ssm_conv(ctx0, conv_x, layer.ssm_conv1d);
- // bias
- x = ggml_add(ctx0, x, layer.ssm_conv1d_b);
- x = ggml_silu(ctx0, x);
- }
- // ssm
- {
- // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
- ggml_tensor * x_db = build_lora_mm(layer.ssm_x, x);
- // split
- ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
- ggml_tensor * B = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
- ggml_tensor * C = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
- // Some Mamba variants (e.g. FalconMamba, Jamba) apply RMS norm in B, C & Dt layers
- if (ssm_dt_b_c_rms || (layer.ssm_dt_norm && layer.ssm_b_norm && layer.ssm_c_norm)) {
- dt = build_norm(dt, layer.ssm_dt_norm, NULL, LLM_NORM_RMS, il);
- B = build_norm(B, layer.ssm_b_norm, NULL, LLM_NORM_RMS, il);
- C = build_norm(C, layer.ssm_c_norm, NULL, LLM_NORM_RMS, il);
- }
- // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
- dt = build_lora_mm(layer.ssm_dt, dt);
- dt = ggml_add(ctx0, dt, layer.ssm_dt_b);
- cur = x;
- x = ggml_reshape_4d(ctx0, x, head_dim, n_head, n_seq_tokens, n_seqs);
- ggml_tensor * A = layer.ssm_a;
- // use the states and the indices provided by build_recurrent_state
- // (this is necessary in order to properly use the states before they are overwritten,
- // while avoiding to make unnecessary copies of the states)
- auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
- ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
- // Custom operator to optimize the parallel associative scan
- // as described in the Annex D of the Mamba paper.
- // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
- return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
- };
- ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
- // store last states
- ggml_build_forward_expand(gf,
- ggml_cpy(ctx0,
- ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]*x->ne[3]),
- ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
- ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[2], x->nb[3], 0);
- // TODO: skip computing output earlier for unused tokens
- y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, layer.ssm_d));
- y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
- // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
- cur = build_lora_mm(layer.ssm_out, y);
- }
- // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
- return cur;
- }
- ggml_tensor * build_mamba2_layer(
- llm_graph_input_rs * inp,
- ggml_tensor * cur,
- const llama_model & model,
- const llama_ubatch & ubatch,
- int il) const {
- const auto * mctx_cur = inp->mctx;
- const auto kv_head = mctx_cur->get_head();
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t n_head = hparams.ssm_dt_rank;
- const int64_t head_dim = d_inner / n_head;
- const int64_t n_group = hparams.ssm_n_group;
- const int64_t n_seqs = ubatch.n_seqs;
- const int64_t n_seq_tokens = ubatch.n_seq_tokens;
- GGML_ASSERT(n_seqs != 0);
- GGML_ASSERT(ubatch.equal_seqs());
- GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
- ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
- ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
- ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
- conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
- // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
- cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
- // d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
- // {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
- ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
- // split the above in three
- ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*zxBCdt->nb[0], zxBCdt->nb[1], zxBCdt->nb[2], 0);
- ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_inner*ggml_element_size(zxBCdt));
- ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_inner + 2*n_group*d_state)*ggml_element_size(zxBCdt));
- // conv
- {
- // => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
- ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
- // copy last (d_conv - 1) columns back into the state cache
- ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
- ggml_build_forward_expand(gf,
- ggml_cpy(ctx0, last_conv,
- ggml_view_1d(ctx0, conv_states_all,
- (d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
- kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
- // 1D convolution
- // The equivalent is to make a self-overlapping view of conv_x
- // over d_conv columns at each stride in the 3rd dimension,
- // then element-wise multiply that with the conv1d weight,
- // then sum the elements of each row,
- // (the last two steps are a dot product over rows (also doable with mul_mat))
- // then permute away the ne[0] dimension,
- // and then you're left with the resulting x tensor.
- // For simultaneous sequences, all sequences need to have the same length.
- xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
- // bias
- xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
- xBC = ggml_silu(ctx0, xBC);
- }
- // ssm
- {
- // These correspond to V K Q in SSM/attention duality
- ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*xBC->nb[0], xBC->nb[1], xBC->nb[2], 0);
- ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_inner*ggml_element_size(xBC));
- ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_inner + n_group*d_state)*ggml_element_size(xBC));
- // {n_head, n_seq_tokens, n_seqs}
- dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
- ggml_tensor * A = model.layers[il].ssm_a;
- // use the states and the indices provided by build_recurrent_state
- // (this is necessary in order to properly use the states before they are overwritten,
- // while avoiding to make unnecessary copies of the states)
- auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
- ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
- // TODO: use semistructured matrices to implement state-space duality
- // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
- return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
- };
- ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
- // store last states
- ggml_build_forward_expand(gf,
- ggml_cpy(ctx0,
- ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, ggml_nelements(x)*x->nb[0]),
- ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
- ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head*x->nb[1], n_seq_tokens*n_head*x->nb[1], 0);
- // TODO: skip computing output earlier for unused tokens
- y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
- y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
- // grouped RMS norm
- if (model.layers[il].ssm_norm) {
- y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
- y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
- }
- y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
- // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
- cur = build_lora_mm(model.layers[il].ssm_out, y);
- }
- // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
- cb(cur, "mamba_out", il);
- return cur;
- }
- };
- struct llm_build_mamba : public llm_graph_context_mamba {
- llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
- ggml_tensor * cur;
- ggml_tensor * inpL;
- // {n_embd, n_tokens}
- inpL = build_inp_embd(model.tok_embd);
- auto * rs_inp = build_rs_inp();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- if (model.arch == LLM_ARCH_MAMBA2) {
- cur = build_mamba2_layer(rs_inp, cur, model, ubatch, il);
- } else {
- cur = build_mamba_layer(rs_inp, cur, model, ubatch, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // residual
- cur = ggml_add(ctx0, cur, inpL);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- // final rmsnorm
- cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_jamba : public llm_graph_context_mamba {
- llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- ggml_tensor * cur;
- ggml_tensor * inpL;
- // {n_embd, n_tokens}
- inpL = build_inp_embd(model.tok_embd);
- auto * inp_hybrid = build_inp_mem_hybrid();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- const int64_t n_head_kv = hparams.n_head_kv(il);
- cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- if (n_head_kv == 0) {
- cur = build_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
- } else {
- // Attention
- struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- // No RoPE :)
- cur = build_attn(inp_hybrid->get_attn(),
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // residual
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur);
- cb(cur, "ffn_inp", il);
- cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // feed-forward network
- if (model.layers[il].ffn_gate_inp == nullptr) {
- // FFN
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- } else {
- // MoE branch
- cur = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, false,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(cur, "ffn_moe_out", il);
- }
- // residual
- cur = ggml_add(ctx0, ffn_inp, cur);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- // final rmsnorm
- cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_command_r : public llm_graph_context {
- llm_build_command_r(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- const float f_logit_scale = hparams.f_logit_scale;
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- ggml_tensor * ffn_inp = cur;
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- if (model.layers[il].attn_q_norm) {
- Qcur = build_norm(Qcur,
- model.layers[il].attn_q_norm,
- NULL,
- LLM_NORM, il);
- cb(Qcur, "Qcur", il);
- }
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- if (model.layers[il].attn_k_norm) {
- Kcur = build_norm(Kcur,
- model.layers[il].attn_k_norm,
- NULL,
- LLM_NORM, il);
- cb(Kcur, "Kcur", il);
- }
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
- }
- ggml_tensor * attn_out = cur;
- // feed-forward network
- {
- cur = build_ffn(ffn_inp,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- // add together residual + FFN + self-attention
- cur = ggml_add(ctx0, cur, inpL);
- cur = ggml_add(ctx0, cur, attn_out);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- if (f_logit_scale) {
- cur = ggml_scale(ctx0, cur, f_logit_scale);
- }
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_cohere2_iswa : public llm_graph_context {
- llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- const float f_logit_scale = hparams.f_logit_scale;
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv_iswa();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- const bool is_swa = hparams.is_swa(il);
- // norm
- cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
- cb(cur, "attn_norm", il);
- ggml_tensor * ffn_inp = cur;
- // self-attention
- {
- // rope freq factors for 128k context
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- if (is_swa) {
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
- }
- ggml_tensor * attn_out = cur;
- // feed-forward network
- {
- cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
- NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
- il);
- cb(cur, "ffn_out", il);
- }
- // add together residual + FFN + self-attention
- cur = ggml_add(ctx0, cur, inpL);
- cur = ggml_add(ctx0, cur, attn_out);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- if (f_logit_scale) {
- cur = ggml_scale(ctx0, cur, f_logit_scale);
- }
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- // ref: https://allenai.org/olmo
- // based on the original build_llama() function, changes:
- // * non-parametric layer norm
- // * clamp qkv
- // * removed bias
- // * removed MoE
- struct llm_build_olmo : public llm_graph_context {
- llm_build_olmo(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- NULL, NULL,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (hparams.f_clamp_kqv > 0.0f) {
- Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (hparams.f_clamp_kqv > 0.0f) {
- Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (hparams.f_clamp_kqv > 0.0f) {
- Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, nullptr,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- NULL, NULL,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- NULL, NULL,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- template <bool iswa>
- struct llm_build_olmo2 : public llm_graph_context {
- llm_build_olmo2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
- inp_attn_type * inp_attn = nullptr;
- if constexpr (iswa) {
- inp_attn = build_attn_inp_kv_iswa();
- } else {
- inp_attn = build_attn_inp_kv();
- }
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- cur = inpL;
- // self_attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
- LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
- LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_normed", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- const bool is_swa = hparams.is_swa(il);
- if (is_swa) {
- // For sliding window layers, Olmo3 use regular rope with no yarn rope scaling.
- // This is achieved here by setting freq_scale and attn_factor to 1.
- // We also set ext_factor to 0 to avoid a few unnecessary computations.
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
- 0.0, 1.0, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
- 0.0, 1.0, beta_fast, beta_slow
- );
- } else {
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- cur = build_norm(cur,
- model.layers[il].attn_post_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_post_norm", il);
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_ffn(ffn_inp,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = build_norm(cur,
- model.layers[il].ffn_post_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "ffn_post_norm", -1);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- // based on the build_qwen2moe() function, changes:
- // * removed shared experts
- // * removed bias
- // * added q, k norm
- struct llm_build_olmoe : public llm_graph_context {
- llm_build_olmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self_attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
- LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
- LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_normed", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // MoE branch
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, false,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(cur, "ffn_moe_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_llada_moe : public llm_graph_context {
- llm_build_llada_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_no_cache();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self_attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_normed", il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // MoE branch
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, false,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(cur, "ffn_moe_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_openelm : public llm_graph_context {
- llm_build_openelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- const int64_t n_head = hparams.n_head(il);
- const int64_t n_head_kv = hparams.n_head_kv(il);
- const int64_t n_head_qkv = 2*n_head_kv + n_head;
- cur = inpL;
- ggml_tensor * residual = cur;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
- cb(Vcur, "Vcur", il);
- Qcur = build_norm(Qcur,
- model.layers[il].attn_q_norm, NULL,
- LLM_NORM_RMS, il);
- cb(Qcur, "Qcur", il);
- Kcur = build_norm(Kcur,
- model.layers[il].attn_k_norm, NULL,
- LLM_NORM_RMS, il);
- cb(Kcur, "Kcur", il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, NULL,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, NULL,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Qcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- residual = ggml_get_rows(ctx0, residual, inp_out_ids);
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- inpL = cur;
- }
- cur = inpL;
- // norm
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_gptneox : public llm_graph_context {
- llm_build_gptneox(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- cur = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // ffn
- if (hparams.use_par_res) {
- // attention and ffn are computed in parallel
- // x = x + attn(ln1(x)) + ffn(ln2(x))
- ggml_tensor * attn_out = cur;
- cur = build_norm(inpL,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, attn_out);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- } else {
- // attention and ffn are computed sequentially
- // x = x + attn(ln1(x))
- // x = x + ffn(ln2(x))
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- }
- cur = build_norm(inpL,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_arctic : public llm_graph_context {
- llm_build_arctic(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
- cb(ffn_out, "ffn_out", il);
- // MoE
- cur = build_norm(inpSA,
- model.layers[il].ffn_norm_exps, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm_exps", il);
- cur = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, true,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(cur, "ffn_moe_out", il);
- cur = ggml_add(ctx0, cur, ffn_out);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_deepseek : public llm_graph_context {
- llm_build_deepseek(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // rope freq factors for llama3; may return nullptr for llama2 and other models
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- if ((uint32_t) il < hparams.n_layer_dense_lead) {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- } else {
- // MoE branch
- ggml_tensor * moe_out =
- build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, false,
- false, hparams.expert_weights_scale,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(moe_out, "ffn_moe_out", il);
- // FFN shared expert
- {
- ggml_tensor * ffn_shexp = build_ffn(cur,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(ffn_shexp, "ffn_shexp", il);
- cur = ggml_add(ctx0, moe_out, ffn_shexp);
- cb(cur, "ffn_out", il);
- }
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_deepseek2 : public llm_graph_context {
- llm_build_deepseek2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- bool is_lite = (hparams.n_layer == 27);
- const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
- // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
- const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
- const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
- const int64_t n_embd_head_qk_rope = hparams.n_rot;
- const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
- const uint32_t kv_lora_rank = hparams.n_lora_kv;
- // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
- // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
- const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
- const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k));
- const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
- ggml_tensor * cur;
- ggml_tensor * inpL;
- // {n_embd, n_tokens}
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self_attention
- {
- ggml_tensor * q = NULL;
- if (!is_lite) {
- q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
- cb(q, "q", il);
- q = build_norm(q,
- model.layers[il].attn_q_a_norm, nullptr,
- LLM_NORM_RMS, il);
- cb(q, "q", il);
- q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
- cb(q, "q", il);
- } else {
- q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(q, "q", il);
- }
- // split into {n_embd_head_qk_nope, n_head, n_tokens}
- ggml_tensor * q_nope = ggml_view_3d(ctx0, q,
- n_embd_head_qk_nope, n_head, n_tokens,
- ggml_row_size(q->type, n_embd_head_k),
- ggml_row_size(q->type, n_embd_head_k) * n_head,
- 0);
- cb(q_nope, "q_nope", il);
- // and {n_embd_head_qk_rope, n_head, n_tokens}
- ggml_tensor * q_pe = ggml_view_3d(ctx0, q,
- n_embd_head_qk_rope, n_head, n_tokens,
- ggml_row_size(q->type, n_embd_head_k),
- ggml_row_size(q->type, n_embd_head_k) * n_head,
- ggml_row_size(q->type, n_embd_head_qk_nope));
- cb(q_pe, "q_pe", il);
- ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
- cb(kv_cmpr_pe, "kv_cmpr_pe", il);
- // split into {kv_lora_rank, n_tokens}
- ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe,
- kv_lora_rank, n_tokens,
- ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
- 0);
- cb(kv_cmpr, "kv_cmpr", il);
- // and {n_embd_head_qk_rope, 1, n_tokens}
- ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe,
- n_embd_head_qk_rope, 1, n_tokens,
- ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
- ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
- ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
- cb(k_pe, "k_pe", il);
- q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(q_pe, "q_pe", il);
- k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(k_pe, "k_pe", il);
- kv_cmpr = build_norm(kv_cmpr,
- model.layers[il].attn_kv_a_norm, nullptr,
- LLM_NORM_RMS, il);
- cb(kv_cmpr, "kv_cmpr", il);
- if (is_mla) {
- // {n_embd_head_qk_nope, n_tokens, n_head}
- q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
- cb(q_nope, "q_nope_perm", il);
- // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
- ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
- cb(q_nope_absorbed, "q_nope_absorbed", il);
- // {kv_lora_rank, n_head, n_tokens}
- q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
- cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
- // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
- // note: rope must go first for in-place context shifting in build_rope_shift()
- ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
- cb(Qcur, "Qcur", il);
- kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
- cb(kv_cmpr, "kv_cmpr_reshape", il);
- // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
- ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
- cb(Kcur, "Kcur", il);
- // {kv_lora_rank, 1, n_tokens}
- ggml_tensor * Vcur = kv_cmpr;
- cb(Vcur, "Vcur", il);
- // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, model.layers[il].wv_b, kq_scale, il);
- } else {
- ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
- cb(kv, "kv", il);
- // split into {n_embd_head_qk_nope, n_head, n_tokens}
- ggml_tensor * k_nope = ggml_view_3d(ctx0, kv,
- n_embd_head_qk_nope, n_head, n_tokens,
- ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
- ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
- 0);
- cb(k_nope, "k_nope_view", il);
- // and {n_embd_head_v, n_head, n_tokens}
- ggml_tensor * Vcur = ggml_view_3d(ctx0, kv,
- n_embd_head_v, n_head, n_tokens,
- ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
- ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
- ggml_row_size(kv->type, n_embd_head_qk_nope));
- cb(Vcur, "Vcur_view", il);
- Vcur = ggml_cont(ctx0, Vcur);
- cb(Vcur, "Vcur_cont", il);
- // note: rope must go first for in-place context shifting in build_rope_shift()
- ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
- cb(Kcur, "Kcur", il);
- // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- }
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- if ((uint32_t) il < hparams.n_layer_dense_lead) {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- } else {
- // MoE branch
- ggml_tensor * moe_out =
- build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- model.layers[il].ffn_exp_probs_b,
- n_expert, n_expert_used,
- LLM_FFN_SILU, hparams.expert_weights_norm,
- true, hparams.expert_weights_scale,
- (llama_expert_gating_func_type) hparams.expert_gating_func,
- il);
- cb(moe_out, "ffn_moe_out", il);
- // FFN shared expert
- {
- ggml_tensor * ffn_shexp = build_ffn(cur,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(ffn_shexp, "ffn_shexp", il);
- cur = ggml_add(ctx0, moe_out, ffn_shexp);
- cb(cur, "ffn_out", il);
- }
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_bitnet : public llm_graph_context {
- llm_build_bitnet(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- if (model.layers[il].wq_scale) {
- Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
- }
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- // B1.K
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- if (model.layers[il].wk_scale) {
- Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
- }
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- // B1.V
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- if (model.layers[il].wv_scale) {
- Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
- }
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- NULL, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- cur = build_norm(cur,
- model.layers[il].attn_sub_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_sub_norm", il);
- cur = build_lora_mm(model.layers[il].wo, cur);
- if (model.layers[il].wo_scale) {
- cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
- }
- if (model.layers[il].bo) {
- cur = ggml_add(ctx0, cur, model.layers[il].bo);
- }
- cb(cur, "attn_o_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward forward
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
- model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
- NULL, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_sub_out", il);
- cur = build_norm(cur,
- model.layers[il].ffn_sub_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_sub_norm", il);
- cur = build_lora_mm(model.layers[il].ffn_down, cur);
- if (model.layers[il].ffn_down_scale) {
- cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
- }
- cb(cur, "ffn_down", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- // FIXME: do not use model.tok_embd directly, duplicate as model.output
- cur = build_lora_mm(model.tok_embd, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_t5_enc : public llm_graph_context {
- llm_build_t5_enc(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
- auto * inp_attn = build_attn_inp_no_cache();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm_enc, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
- ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
- cur = build_attn(inp_attn,
- model.layers[il].wo_enc, nullptr,
- Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il);
- cb(cur, "kqv_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm_enc, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // T5 uses relu, flan-T5 uses gelu-gated
- cur = build_ffn(cur,
- model.layers[il].ffn_up_enc, NULL, NULL,
- model.layers[il].ffn_gate_enc, NULL, NULL,
- model.layers[il].ffn_down_enc, NULL, NULL,
- NULL,
- model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
- model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
- il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cb(cur, "result_embd", -1);
- cur = build_norm(cur,
- model.output_norm_enc, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_t5_dec : public llm_graph_context {
- llm_build_t5_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- ggml_tensor * embd_enc = build_inp_cross_embd();
- ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
- const int64_t n_outputs_enc = embd_enc->ne[1];
- auto * inp_attn_self = build_attn_inp_kv();
- auto * inp_attn_cross = build_attn_inp_cross();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- const int64_t dec_n_layer = hparams.dec_n_layer;
- for (int il = 0; il < dec_n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
- ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
- cur = build_attn(inp_attn_self,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il);
- cb(cur, "kqv_out", il);
- }
- cur = ggml_add(ctx0, cur, inpSA);
- cb(cur, "cross_inp", il);
- ggml_tensor * inpCA = cur;
- // norm
- cur = build_norm(cur,
- model.layers[il].attn_norm_cross, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm_cross", il);
- // cross-attention
- {
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
- cur = build_attn(inp_attn_cross,
- model.layers[il].wo_cross, nullptr,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
- cb(cur, "kqv_out", il);
- //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
- //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
- //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
- //cb(kq, "kq", il);
- //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
- //cb(kq, "kq_soft_max_ext", il);
- //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
- //cb(v, "v", il);
- //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
- //cb(kqv, "kqv", il);
- //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
- //cb(kqv_merged, "kqv_merged", il);
- //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
- //cb(cur, "kqv_merged_cont", il);
- //ggml_build_forward_expand(gf, cur);
- //cur = build_lora_mm(model.layers[il].wo_cross, cur);
- //cb(cur, "kqv_out", il);
- }
- if (il == dec_n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // T5 uses relu, flan-T5 uses gelu-gated
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_RELU,
- model.layers[il].ffn_gate ? LLM_FFN_PAR : LLM_FFN_SEQ,
- il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cb(cur, "result_embd", -1);
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_jais : public llm_graph_context {
- llm_build_jais(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- cur = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*cur->nb[0]*(n_embd));
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*cur->nb[0]*(n_embd));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/float(n_embd_head), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // add the input
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = build_norm(inpL,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_chatglm : public llm_graph_context {
- llm_build_chatglm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- cur = build_norm(inpL,
- model.layers[il].attn_norm,
- NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- ggml_tensor * Qcur = nullptr;
- ggml_tensor * Kcur = nullptr;
- ggml_tensor * Vcur = nullptr;
- if (model.layers[il].wqkv == nullptr) {
- Qcur = build_lora_mm(model.layers[il].wq, cur);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- }
- Kcur = build_lora_mm(model.layers[il].wk, cur);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- }
- Vcur = build_lora_mm(model.layers[il].wv, cur);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- } else {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- if (model.layers[il].bqkv) {
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- }
- Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- }
- //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- // Add the input
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = build_norm(inpL,
- model.output_norm,
- NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_glm4 : public llm_graph_context {
- llm_build_glm4(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // Pre-attention norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm,
- NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- ggml_tensor * Qcur = nullptr;
- ggml_tensor * Kcur = nullptr;
- ggml_tensor * Vcur = nullptr;
- if (model.layers[il].wqkv == nullptr) {
- Qcur = build_lora_mm(model.layers[il].wq, cur);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- }
- Kcur = build_lora_mm(model.layers[il].wk, cur);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- }
- Vcur = build_lora_mm(model.layers[il].wv, cur);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- } else {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- if (model.layers[il].bqkv) {
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- }
- Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- }
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- // Post-attention norm (new!)
- cur = build_norm(cur,
- model.layers[il].attn_post_norm,
- NULL,
- LLM_NORM_RMS, il);
- cb(cur, "post_attn_norm", il);
- // Add the input (residual connection after post-attention norm)
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- // Pre-MLP norm
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // MLP
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- // Post-MLP norm
- cur = build_norm(cur,
- model.layers[il].ffn_post_norm,
- NULL,
- LLM_NORM_RMS, il);
- cb(cur, "post_mlp_norm", il);
- }
- // Add residual connection after post-MLP norm
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- // Final norm
- cur = build_norm(inpL,
- model.output_norm,
- NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // Output projection
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_glm4_moe : public llm_graph_context {
- llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- // Only process up to last layer (skip final NextN layer)
- // Final layer tensors are loaded but not processed in forward pass
- const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
- for (int il = 0; il < n_transformer_layers; ++il) {
- ggml_tensor * inpSA = inpL;
- // Pre-attention norm
- cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- }
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- }
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- }
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- // Apply Q/K norm if available (GLM-4.5 355B variant)
- if (model.layers[il].attn_q_norm) {
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- }
- if (model.layers[il].attn_k_norm) {
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_normed", il);
- }
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_transformer_layers - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // Post-attention norm
- cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "post_attn_norm", il);
- // Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
- if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
- // Dense FFN layer
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- } else {
- // Process routed experts using existing MoE infrastructure
- ggml_tensor * routed_out = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- model.layers[il].ffn_exp_probs_b,
- n_expert, n_expert_used,
- LLM_FFN_SILU, hparams.expert_weights_norm,
- true, hparams.expert_weights_scale,
- (llama_expert_gating_func_type) hparams.expert_gating_func,
- il);
- cb(routed_out, "ffn_moe_out", il);
- // Process shared expert on original input
- ggml_tensor * shared_out = build_ffn(cur,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(shared_out, "ffn_shexp_out", il);
- // Final output: routed_output + shared_output
- cur = ggml_add(ctx0, routed_out, shared_out);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_nemotron : public llm_graph_context {
- llm_build_nemotron(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- //GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_nemotron_h : public llm_graph_context_mamba {
- llm_build_nemotron_h(
- const llama_model & model,
- const llm_graph_params & params) :
- llm_graph_context_mamba(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- auto * inp = build_inp_mem_hybrid();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- if (hparams.is_recurrent(il)) {
- // ssm layer //
- cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
- } else if (hparams.n_ff(il) == 0) {
- // attention layer //
- cur = build_attention_layer(cur, inp->get_attn(), model, n_embd_head, il);
- } else {
- cur = build_ffn_layer(cur, model, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- // add residual
- cur = ggml_add(ctx0, cur, inpSA);
- cb(cur, "block_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- ggml_tensor * build_attention_layer(
- ggml_tensor * cur,
- llm_graph_input_attn_kv * inp_attn,
- const llama_model & model,
- const int64_t n_embd_head,
- const int il) {
- // compute Q and K and (optionally) RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- return cur;
- }
- ggml_tensor * build_ffn_layer(
- ggml_tensor * cur,
- const llama_model & model,
- const int il) {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- return cur;
- }
- };
- struct llm_build_exaone : public llm_graph_context {
- llm_build_exaone(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // rope freq factors for llama3; may return nullptr for llama2 and other models
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- template <bool iswa>
- struct llm_build_exaone4 : public llm_graph_context {
- llm_build_exaone4(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_k;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
- inp_attn_type * inp_attn = nullptr;
- if constexpr (iswa) {
- inp_attn = build_attn_inp_kv_iswa();
- } else {
- inp_attn = build_attn_inp_kv();
- }
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // use RoPE for SWA layers or non-SWA models
- const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE;
- cur = inpL;
- // self-attention
- {
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- cb(Kcur, "Kcur_normed", il);
- if (use_rope) {
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- cb(cur, "attn_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- cur = build_norm(cur,
- model.layers[il].attn_post_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_post_norm", il);
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_ffn(ffn_inp,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = build_norm(cur,
- model.layers[il].ffn_post_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "ffn_post_norm", -1);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_rwkv6_base : public llm_graph_context {
- const llama_model & model;
- llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
- }
- ggml_tensor * build_rwkv6_channel_mix(
- const llama_layer * layer,
- ggml_tensor * cur,
- ggml_tensor * x_prev,
- llm_arch arch) const {
- ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
- switch (arch) {
- case LLM_ARCH_RWKV6:
- {
- ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
- ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
- ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
- ggml_tensor * k = ggml_sqr(
- ctx0,
- ggml_relu(
- ctx0,
- build_lora_mm(layer->channel_mix_key, xk)
- )
- );
- cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
- } break;
- default:
- GGML_ABORT("fatal error");
- }
- return cur;
- }
- ggml_tensor * build_rwkv6_time_mix(
- llm_graph_input_rs * inp,
- ggml_tensor * cur,
- ggml_tensor * x_prev,
- const llama_ubatch & ubatch,
- int il) const {
- const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
- const auto n_tokens = ubatch.n_tokens;
- const auto n_seqs = ubatch.n_seqs;
- const auto n_seq_tokens = ubatch.n_seq_tokens;
- const auto n_embd = hparams.n_embd;
- const auto head_size = hparams.wkv_head_size;
- const auto n_head = n_embd / head_size;
- const auto n_head_kv = hparams.n_head_kv(il);
- const auto kv_head = mctx_cur->get_head();
- const auto & layer = model.layers[il];
- bool is_qrwkv = layer.time_mix_first == nullptr;
- ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
- sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
- cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
- ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
- xxx = ggml_reshape_4d(
- ctx0,
- ggml_tanh(
- ctx0,
- ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
- ),
- layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
- );
- xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
- xxx = ggml_mul_mat(
- ctx0,
- ggml_reshape_4d(
- ctx0,
- layer.time_mix_w2,
- layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
- ),
- xxx
- );
- ggml_tensor *xw, *xk, *xv, *xr, *xg;
- if (layer.time_mix_lerp_fused) {
- // fusing these weights makes some performance improvement
- sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
- cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
- xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
- xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
- xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
- xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
- xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
- xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
- } else {
- // for backward compatibility
- xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
- xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
- xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
- xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
- xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
- xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
- xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
- xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
- xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
- xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
- }
- ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
- ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
- ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
- if (layer.time_mix_receptance_b) {
- r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
- }
- if (layer.time_mix_key_b) {
- k = ggml_add(ctx0, k, layer.time_mix_key_b);
- }
- if (layer.time_mix_value_b) {
- v = ggml_add(ctx0, v, layer.time_mix_value_b);
- }
- ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
- if (is_qrwkv) {
- g = ggml_sigmoid(ctx0, g);
- } else {
- g = ggml_silu(ctx0, g);
- }
- if (n_head_kv != 0 && n_head_kv != n_head) {
- GGML_ASSERT(n_head % n_head_kv == 0);
- k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
- v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
- ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
- k = ggml_repeat(ctx0, k, tmp);
- v = ggml_repeat(ctx0, v, tmp);
- }
- k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
- v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
- r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
- ggml_tensor * w = ggml_mul_mat(
- ctx0,
- layer.time_mix_decay_w2,
- ggml_tanh(
- ctx0,
- ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
- )
- );
- w = ggml_add(ctx0, w, layer.time_mix_decay);
- w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
- w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
- if (is_qrwkv) {
- // k = k * (1 - w)
- k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
- }
- ggml_tensor * wkv_state = build_rs(
- inp, mctx_cur->get_s_l(il),
- hparams.n_embd_s(), n_seqs);
- ggml_tensor * wkv_output;
- if (is_qrwkv) {
- wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
- } else {
- wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
- }
- cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
- wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
- ggml_build_forward_expand(
- gf,
- ggml_cpy(
- ctx0,
- wkv_state,
- ggml_view_1d(
- ctx0,
- mctx_cur->get_s_l(il),
- hparams.n_embd_s() * n_seqs,
- hparams.n_embd_s() * kv_head * ggml_element_size(mctx_cur->get_s_l(il))
- )
- )
- );
- if (!is_qrwkv) {
- // group norm with head_count groups
- cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
- cur = ggml_norm(ctx0, cur, 64e-5f);
- // Convert back to regular vectors.
- cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
- } else {
- cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
- }
- cur = ggml_mul(ctx0, cur, g);
- cur = build_lora_mm(layer.time_mix_output, cur);
- return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
- }
- };
- struct llm_build_rwkv6 : public llm_build_rwkv6_base {
- llm_build_rwkv6(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv6_base(model, params) {
- GGML_ASSERT(hparams.token_shift_count == 2);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
- auto * rs_inp = build_rs_inp();
- const auto n_embd = hparams.n_embd;
- const auto n_seq_tokens = ubatch.n_seq_tokens;
- const auto n_seqs = ubatch.n_seqs;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- const llama_layer * layer = &model.layers[il];
- inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
- ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
- ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
- ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
- ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
- cb(att_norm, "attn_norm", il);
- ggml_tensor * x_prev = ggml_concat(
- ctx0,
- att_shift,
- ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
- 1
- );
- cur = build_rwkv6_time_mix(rs_inp, att_norm, x_prev, ubatch, il);
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
- cb(ffn_norm, "ffn_norm", il);
- x_prev = ggml_concat(
- ctx0,
- ffn_shift,
- ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
- 1
- );
- token_shift = ggml_concat(ctx0,
- ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
- ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
- 1
- );
- ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
- ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
- ffn_norm = ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens);
- x_prev = ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens);
- cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
- if (il == n_layer - 1 && inp_out_ids) {
- ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
- ffn_norm = ggml_get_rows(ctx0, ffn_norm, inp_out_ids);
- x_prev = ggml_get_rows(ctx0, x_prev, inp_out_ids);
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- }
- cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
- cur = ggml_add(ctx0, cur, ffn_inp);
- if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
- cur = ggml_scale(ctx0, cur, 0.5F);
- }
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
- struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
- llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv6_base(model, params) {
- GGML_ASSERT(n_embd == hparams.n_embd_r());
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- auto * rs_inp = build_rs_inp();
- const auto n_embd = hparams.n_embd;
- const auto n_seq_tokens = ubatch.n_seq_tokens;
- const auto n_seqs = ubatch.n_seqs;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- const llama_layer * layer = &model.layers[il];
- inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
- ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
- ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
- cb(att_norm, "attn_norm", il);
- ggml_tensor * x_prev = ggml_concat(
- ctx0,
- token_shift,
- ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
- 1
- );
- cur = build_rwkv6_time_mix(rs_inp, att_norm, x_prev, ubatch, il);
- token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
- ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
- ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
- }
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_rwkv7_base : public llm_graph_context {
- const llama_model & model;
- llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
- }
- ggml_tensor * build_rwkv7_channel_mix(
- const llama_layer * layer,
- ggml_tensor * cur,
- ggml_tensor * x_prev,
- llm_arch arch) const {
- ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
- switch (arch) {
- case LLM_ARCH_RWKV7:
- {
- ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
- ggml_tensor * k = ggml_sqr(
- ctx0,
- ggml_relu(
- ctx0,
- build_lora_mm(layer->channel_mix_key, xk)
- )
- );
- cur = build_lora_mm(layer->channel_mix_value, k);
- } break;
- default:
- GGML_ABORT("fatal error");
- }
- return cur;
- }
- ggml_tensor * build_rwkv7_time_mix(
- llm_graph_input_rs * inp,
- ggml_tensor * cur,
- ggml_tensor * x_prev,
- ggml_tensor *& first_layer_value,
- const llama_ubatch & ubatch,
- int il) const {
- const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
- const auto n_tokens = ubatch.n_tokens;
- const auto n_seqs = ubatch.n_seqs;
- const auto n_embd = hparams.n_embd;
- const auto head_size = hparams.wkv_head_size;
- const auto head_count = n_embd / head_size;
- const auto n_seq_tokens = ubatch.n_seq_tokens;
- const auto kv_head = mctx_cur->get_head();
- const auto & layer = model.layers[il];
- bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
- ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
- ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
- sx = ggml_repeat(ctx0, sx, dummy);
- ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
- ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
- ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
- ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
- ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
- ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
- ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
- ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
- ggml_tensor * w = ggml_add(
- ctx0,
- ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
- layer.time_mix_w0
- );
- w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
- ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
- ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
- if (first_layer_value == nullptr) {
- first_layer_value = v;
- } else {
- // Add the first layer value as a residual connection.
- v = ggml_add(ctx0, v,
- ggml_mul(ctx0,
- ggml_sub(ctx0, first_layer_value, v),
- ggml_sigmoid(ctx0, ggml_add(ctx0,
- ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
- layer.time_mix_v0
- )
- )
- )
- );
- }
- ggml_tensor * g = nullptr;
- if (layer.time_mix_g1 && layer.time_mix_g2) {
- g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
- }
- ggml_tensor * a = ggml_sigmoid(ctx0,
- ggml_add(
- ctx0,
- ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
- layer.time_mix_a0
- )
- );
- ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
- kk = ggml_l2_norm(ctx0, kk, 1e-12);
- ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
- k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
- r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
- w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
- k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
- v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
- a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
- ggml_tensor * wkv_state = build_rs(
- inp, mctx_cur->get_s_l(il),
- hparams.n_embd_s(), n_seqs);
- ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
- cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
- wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
- ggml_build_forward_expand(
- gf,
- ggml_cpy(
- ctx0,
- wkv_state,
- ggml_view_1d(
- ctx0,
- mctx_cur->get_s_l(il),
- hparams.n_embd_s() * n_seqs,
- hparams.n_embd_s() * kv_head * ggml_element_size(mctx_cur->get_s_l(il))
- )
- )
- );
- if (layer.time_mix_ln && layer.time_mix_ln_b) {
- // group norm with head_count groups
- cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
- cur = ggml_norm(ctx0, cur, 64e-5f);
- // Convert back to regular vectors.
- cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
- } else {
- cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
- }
- ggml_tensor * rk = ggml_sum_rows(ctx0,
- ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
- cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
- if (has_gating) {
- cur = ggml_mul(ctx0, cur, g);
- }
- cur = build_lora_mm(layer.time_mix_output, cur);
- return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
- }
- };
- struct llm_build_rwkv7 : public llm_build_rwkv7_base {
- llm_build_rwkv7(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv7_base(model, params) {
- GGML_ASSERT(hparams.token_shift_count == 2);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- ggml_tensor * v_first = nullptr;
- inpL = build_inp_embd(model.tok_embd);
- inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
- auto * rs_inp = build_rs_inp();
- const auto n_embd = hparams.n_embd;
- const auto n_seq_tokens = ubatch.n_seq_tokens;
- const auto n_seqs = ubatch.n_seqs;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- const llama_layer * layer = &model.layers[il];
- inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
- ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
- ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
- ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
- ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
- cb(att_norm, "attn_norm", il);
- ggml_tensor * x_prev = ggml_concat(
- ctx0,
- att_shift,
- ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
- 1
- );
- cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il);
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
- cb(ffn_norm, "ffn_norm", il);
- x_prev = ggml_concat(
- ctx0,
- ffn_shift,
- ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
- 1
- );
- token_shift = ggml_concat(ctx0,
- ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
- ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
- 1
- );
- ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
- ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
- ffn_norm = ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens);
- x_prev = ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens);
- if (il == n_layer - 1 && inp_out_ids) {
- ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
- ffn_norm = ggml_get_rows(ctx0, ffn_norm, inp_out_ids);
- x_prev = ggml_get_rows(ctx0, x_prev, inp_out_ids);
- }
- cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_arwkv7 : public llm_build_rwkv7_base {
- llm_build_arwkv7(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv7_base(model, params) {
- GGML_ASSERT(n_embd == hparams.n_embd_r());
- ggml_tensor * cur;
- ggml_tensor * inpL;
- ggml_tensor * v_first = nullptr;
- inpL = build_inp_embd(model.tok_embd);
- auto * rs_inp = build_rs_inp();
- const auto n_embd = hparams.n_embd;
- const auto n_seq_tokens = ubatch.n_seq_tokens;
- const auto n_seqs = ubatch.n_seqs;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- const llama_layer * layer = &model.layers[il];
- inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
- ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
- ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
- cb(att_norm, "attn_norm", il);
- ggml_tensor * x_prev = ggml_concat(
- ctx0,
- token_shift,
- ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
- 1
- );
- cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il);
- token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
- ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
- ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
- }
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_granite : public llm_graph_context {
- llm_build_granite(
- const llama_model & model,
- const llm_graph_params & params)
- : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - built only if rope enabled
- ggml_tensor * inp_pos = nullptr;
- if (hparams.rope_finetuned) {
- inp_pos = build_inp_pos();
- }
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- cur = build_attention_layer(
- cur, inp_pos, inp_attn,
- model, n_embd_head, il);
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- // ffn
- cur = build_layer_ffn(cur, inpSA, model, il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- // For Granite architectures - scale logits
- cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- ggml_tensor * build_attention_layer(
- ggml_tensor * cur,
- ggml_tensor * inp_pos,
- llm_graph_input_attn_kv * inp_attn,
- const llama_model & model,
- const int64_t n_embd_head,
- const int il) {
- // compute Q and K and (optionally) RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
- const bool use_rope = hparams.rope_finetuned;
- if (use_rope) {
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- return cur;
- }
- ggml_tensor * build_layer_ffn(
- ggml_tensor * cur,
- ggml_tensor * inpSA,
- const llama_model & model,
- const int il) {
- // For Granite architectures - scale residual
- if (hparams.f_residual_scale) {
- cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network (non-MoE)
- if (model.layers[il].ffn_gate_inp == nullptr) {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- } else {
- // MoE branch
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- ggml_tensor * moe_out = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, true,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(moe_out, "ffn_moe_out", il);
- // For Granite MoE Shared
- if (hparams.n_ff_shexp > 0) {
- ggml_tensor * ffn_shexp = build_ffn(cur,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(ffn_shexp, "ffn_shexp", il);
- cur = ggml_add(ctx0, moe_out, ffn_shexp);
- cb(cur, "ffn_out", il);
- } else {
- cur = moe_out;
- }
- }
- // For Granite architectures - scale residual
- if (hparams.f_residual_scale) {
- cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- return cur;
- }
- };
- struct llm_build_granite_hybrid : public llm_graph_context_mamba {
- llm_build_granite_hybrid(
- const llama_model & model,
- const llm_graph_params & params) :
- llm_graph_context_mamba(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- auto * inp = build_inp_mem_hybrid();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- // Positional embeddings populated if rope enabled
- ggml_tensor * inp_pos = nullptr;
- if (hparams.rope_finetuned) {
- inp_pos = build_inp_pos();
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- if (hparams.is_recurrent(il)) {
- // ssm layer //
- cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
- } else {
- // attention layer //
- cur = build_attention_layer(
- cur, inp_pos, inp->get_attn(), model,
- n_embd_head, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- // ffn
- cur = build_layer_ffn(cur, inpSA, model, il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- // For Granite architectures - scale logits
- if (hparams.f_logit_scale) {
- cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
- }
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- ggml_tensor * build_attention_layer(
- ggml_tensor * cur,
- ggml_tensor * inp_pos,
- llm_graph_input_attn_kv * inp_attn,
- const llama_model & model,
- const int64_t n_embd_head,
- const int il) {
- // compute Q and K and (optionally) RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
- const bool use_rope = hparams.rope_finetuned;
- if (use_rope) {
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- return cur;
- }
- ggml_tensor * build_layer_ffn(
- ggml_tensor * cur,
- ggml_tensor * inpSA,
- const llama_model & model,
- const int il) {
- // For Granite architectures - scale residual
- if (hparams.f_residual_scale) {
- cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network (non-MoE)
- if (model.layers[il].ffn_gate_inp == nullptr) {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- } else {
- // MoE branch
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- ggml_tensor * moe_out = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, true,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(moe_out, "ffn_moe_out", il);
- // For Granite MoE Shared
- if (hparams.n_ff_shexp > 0) {
- ggml_tensor * ffn_shexp = build_ffn(cur,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(ffn_shexp, "ffn_shexp", il);
- cur = ggml_add(ctx0, moe_out, ffn_shexp);
- cb(cur, "ffn_out", il);
- } else {
- cur = moe_out;
- }
- }
- // For Granite architectures - scale residual
- if (hparams.f_residual_scale) {
- cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- return cur;
- }
- };
- // ref: https://github.com/facebookresearch/chameleon
- // based on the original build_llama() function, changes:
- // * qk-norm
- // * swin-norm
- // * removed bias
- // * removed MoE
- struct llm_build_chameleon : public llm_graph_context {
- llm_build_chameleon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- if (hparams.swin_norm) {
- cur = inpL;
- } else {
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- }
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].attn_q_norm) {
- Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
- ggml_element_size(Qcur) * n_embd_head,
- ggml_element_size(Qcur) * n_embd_head * n_head,
- 0);
- cb(Qcur, "Qcur", il);
- Qcur = build_norm(Qcur,
- model.layers[il].attn_q_norm,
- model.layers[il].attn_q_norm_b,
- LLM_NORM, il);
- cb(Qcur, "Qcur", il);
- }
- if (model.layers[il].attn_k_norm) {
- Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
- ggml_element_size(Kcur) * n_embd_head,
- ggml_element_size(Kcur) * n_embd_head * n_head_kv,
- 0);
- cb(Kcur, "Kcur", il);
- Kcur = build_norm(Kcur,
- model.layers[il].attn_k_norm,
- model.layers[il].attn_k_norm_b,
- LLM_NORM, il);
- cb(Kcur, "Kcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, nullptr,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- if (hparams.swin_norm) {
- cur = build_norm(cur,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- if (!hparams.swin_norm) {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- }
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- if (hparams.swin_norm) {
- cur = build_norm(cur,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output_with_img_logits", -1);
- // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
- // Needs to be removed once image outputs are supported.
- int img_token_end_idx = 8196;
- int img_token_start_idx = 4;
- int num_img_tokens = img_token_end_idx - img_token_start_idx;
- // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
- // which ensures that text token values are always at least larger than image token values
- ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
- img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
- cb(img_logits, "img_logits", -1);
- cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_wavtokenizer_dec : public llm_graph_context {
- llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
- cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
- cur = ggml_add(ctx0, cur, model.conv1d_b);
- // posnet
- for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
- const auto & layer = model.layers[il].posnet;
- inpL = cur;
- switch (il) {
- case 0:
- case 1:
- case 3:
- case 4:
- {
- cur = build_norm(cur,
- layer.norm1,
- layer.norm1_b,
- LLM_NORM_GROUP, 0);
- cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
- cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
- cur = ggml_add(ctx0, cur, layer.conv1_b);
- cur = build_norm(cur,
- layer.norm2,
- layer.norm2_b,
- LLM_NORM_GROUP, 0);
- cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
- cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
- cur = ggml_add(ctx0, cur, layer.conv2_b);
- cur = ggml_add(ctx0, cur, inpL);
- } break;
- case 2:
- {
- cur = build_norm(cur,
- layer.attn_norm,
- layer.attn_norm_b,
- LLM_NORM_GROUP, 0);
- ggml_tensor * q;
- ggml_tensor * k;
- ggml_tensor * v;
- q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
- k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
- v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
- q = ggml_add(ctx0, q, layer.attn_q_b);
- k = ggml_add(ctx0, k, layer.attn_k_b);
- v = ggml_add(ctx0, v, layer.attn_v_b);
- q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
- k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
- ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
- kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
- cur = ggml_mul_mat(ctx0, kq, v);
- cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
- cur = ggml_add(ctx0, cur, layer.attn_o_b);
- cur = ggml_add(ctx0, cur, inpL);
- } break;
- case 5:
- {
- cur = build_norm(cur,
- layer.norm,
- layer.norm_b,
- LLM_NORM_GROUP, 0);
- } break;
- default: GGML_ABORT("unknown posnet layer");
- };
- }
- cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
- cur = build_norm(cur,
- model.tok_norm,
- model.tok_norm_b,
- LLM_NORM, -1);
- cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
- inpL = cur;
- // convnext
- for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
- const auto & layer = model.layers[il].convnext;
- cur = inpL;
- cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
- cur = ggml_add(ctx0, cur, layer.dw_b);
- cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
- cur = build_norm(cur,
- layer.norm,
- layer.norm_b,
- LLM_NORM, -1);
- cur = build_ffn(cur,
- layer.pw1, layer.pw1_b, NULL,
- NULL, NULL, NULL,
- layer.pw2, layer.pw2_b, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cur = ggml_mul(ctx0, cur, layer.gamma);
- cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
- inpL = ggml_add(ctx0, cur, inpL);
- }
- cur = inpL;
- cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
- cur = build_norm(cur,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cur = ggml_add(ctx0, cur, model.output_b);
- cb(cur, "result_embd", -1);
- res->t_embd = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_plm : public llm_graph_context {
- llm_build_plm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
- const uint32_t n_embd_head_qk_rope = hparams.n_rot;
- const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
- const uint32_t kv_lora_rank = hparams.n_lora_kv;
- ggml_tensor * cur;
- ggml_tensor * inpL;
- // {n_embd, n_tokens}
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self_attention
- {
- ggml_tensor * q = NULL;
- q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(q, "q", il);
- // split into {n_head * n_embd_head_qk_nope, n_tokens}
- ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
- ggml_row_size(q->type, hparams.n_embd_head_k),
- ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
- 0);
- cb(q_nope, "q_nope", il);
- // and {n_head * n_embd_head_qk_rope, n_tokens}
- ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
- ggml_row_size(q->type, hparams.n_embd_head_k),
- ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
- ggml_row_size(q->type, n_embd_head_qk_nope));
- cb(q_pe, "q_pe", il);
- // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
- ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
- cb(kv_pe_compresseed, "kv_pe_compresseed", il);
- // split into {kv_lora_rank, n_tokens}
- ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
- kv_pe_compresseed->nb[1],
- 0);
- cb(kv_compressed, "kv_compressed", il);
- // and {n_embd_head_qk_rope, n_tokens}
- ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
- kv_pe_compresseed->nb[1],
- kv_pe_compresseed->nb[1],
- ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
- cb(k_pe, "k_pe", il);
- kv_compressed = build_norm(kv_compressed,
- model.layers[il].attn_kv_a_norm, NULL,
- LLM_NORM_RMS, il);
- cb(kv_compressed, "kv_compressed", il);
- // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
- ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
- cb(kv, "kv", il);
- // split into {n_head * n_embd_head_qk_nope, n_tokens}
- ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
- ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
- ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
- 0);
- cb(k_nope, "k_nope", il);
- // and {n_head * n_embd_head_v, n_tokens}
- ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
- ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
- ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
- ggml_row_size(kv->type, (n_embd_head_qk_nope)));
- cb(v_states, "v_states", il);
- v_states = ggml_cont(ctx0, v_states);
- cb(v_states, "v_states", il);
- v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
- ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
- 0);
- cb(v_states, "v_states", il);
- q_pe = ggml_rope_ext(
- ctx0, q_pe, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(q_pe, "q_pe", il);
- // shared RoPE key
- k_pe = ggml_rope_ext(
- ctx0, k_pe, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(k_pe, "k_pe", il);
- ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
- cb(q_states, "q_states", il);
- ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
- cb(k_states, "k_states", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- q_states, k_states, v_states, nullptr, nullptr, nullptr, kq_scale, il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_bailingmoe : public llm_graph_context {
- llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // rope freq factors for llama3; may return nullptr for llama2 and other models
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- ggml_tensor * moe_out =
- build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, hparams.expert_weights_norm,
- false, hparams.expert_weights_scale,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(moe_out, "ffn_moe_out", il);
- // FFN shared expert
- {
- ggml_tensor * ffn_shexp = build_ffn(cur,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(ffn_shexp, "ffn_shexp", il);
- cur = ggml_add(ctx0, moe_out, ffn_shexp);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_dots1 : public llm_graph_context {
- llm_build_dots1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self_attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_normed", il);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // MoE branch
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- if ((uint32_t) il < hparams.n_layer_dense_lead) {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- } else {
- ggml_tensor * moe_out =
- build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- model.layers[il].ffn_exp_probs_b,
- n_expert, n_expert_used,
- LLM_FFN_SILU, hparams.expert_weights_norm,
- true, hparams.expert_weights_scale,
- (llama_expert_gating_func_type) hparams.expert_gating_func,
- il);
- cb(moe_out, "ffn_moe_out", il);
- {
- ggml_tensor * ffn_shexp = build_ffn(cur,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(ffn_shexp, "ffn_shexp", il);
- cur = ggml_add(ctx0, moe_out, ffn_shexp);
- cb(cur, "ffn_out", il);
- }
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_ernie4_5 : public llm_graph_context {
- llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- {
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- }
- // self-attention
- {
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_ernie4_5_moe : public llm_graph_context {
- llm_build_ernie4_5_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Ernie 4.5 MoE requires n_moe_layer_step > 0");
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- {
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- }
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- cb(cur, "attn_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- bool is_moe_layer = static_cast<uint32_t>(il) >= hparams.n_layer_dense_lead && (il + 1) % hparams.n_moe_layer_step == 0;
- if (!is_moe_layer) {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- } else {
- // MoE branch
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- ggml_tensor * moe_out = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- model.layers[il].ffn_exp_probs_b,
- n_expert, n_expert_used,
- LLM_FFN_SILU, true,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(moe_out, "ffn_moe_out", il);
- // Shared expert (if present)
- if (hparams.n_ff_shexp > 0) {
- ggml_tensor * ffn_shexp = build_ffn(cur,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(ffn_shexp, "ffn_shexp", il);
- cur = ggml_add(ctx0, moe_out, ffn_shexp);
- } else {
- cur = moe_out;
- }
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_falcon_h1 : public llm_graph_context_mamba {
- llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- // Build the inputs in the recurrent & kv cache
- auto * inp = build_inp_mem_hybrid();
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur-post-rope", il);
- cb(Kcur, "Kcur-post-rope", il);
- cb(Vcur, "Vcur-post-rope", il);
- ggml_tensor * attn_out = build_attn(inp->get_attn(),
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- cb(attn_out, "attn_out", il);
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- // Mamba2 layer
- cb(cur, "ssm_in", il);
- ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
- cb(ssm_out, "ssm_out", il);
- // // Aggregation
- cur = ggml_add(ctx0, attn_out, ssm_out);
- inpSA = ggml_add(ctx0, cur, inpSA);
- cb(cur, "layer_out", il);
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = inpSA;
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, inpSA);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_plamo2 : public llm_graph_context_mamba {
- llm_build_plamo2(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
- ggml_tensor * cur;
- ggml_tensor * inpL;
- // {n_embd, n_tokens}
- inpL = build_inp_embd(model.tok_embd);
- cb(inpL, "embedding_output", -1);
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_hybrid = build_inp_mem_hybrid();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * residual = inpL;
- // ggml_graph_add_node(gf, model.layers[il].attn_norm);
- // cb(model.layers[il].attn_norm, "attn_norm", il);
- // pre_mixer_norm
- cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
- // check if this layer is Mamba or Attention
- bool is_mamba_layer = hparams.is_recurrent(il);
- if (is_mamba_layer) {
- // PLaMo-2 Mamba layer
- cur = build_plamo2_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
- } else {
- // PLaMo-2 Attention layer
- cur = build_plamo2_attn_layer(inp_hybrid->get_attn(), inp_pos, cur, model, il);
- }
- // post_mixer_norm
- cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "attn_post_norm", il);
- // residual connection
- cur = ggml_add(ctx0, cur, residual);
- cb(cur, "attn_residual", il);
- residual = cur;
- // pre-ffn norm
- cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "ffn_pre_norm", il);
- // feed-forward network
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- // post ffn norm
- cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "ffn_post_norm", il);
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- residual = ggml_get_rows(ctx0, residual, inp_out_ids);
- }
- // residual connection
- cur = ggml_add(ctx0, cur, residual);
- cb(cur, "ffn_residual", il);
- inpL = cur;
- }
- cur = inpL;
- // final norm
- cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- // Explicitly mark as output tensor to ensure proper backend assignment
- ggml_set_output(cur);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- private:
- ggml_tensor * build_plamo2_attn_layer(
- llm_graph_input_attn_kv * inp,
- ggml_tensor * inp_pos,
- ggml_tensor * cur,
- const llama_model & model,
- int il) {
- // self-attention
- {
- // PLaMo-2 uses combined QKV tensor
- ggml_tensor * qkv = build_lora_mm(model.layers[il].wqkv, cur);
- cb(qkv, "wqkv", il);
- // split QKV tensor into Q, K, V
- const int64_t n_embd_head_q = hparams.n_embd_head_k;
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- const int64_t n_embd_head_v = hparams.n_embd_head_v;
- int32_t n_head_kv = hparams.n_head_kv(il);
- const int64_t q_offset = 0;
- const int64_t k_offset = n_embd_head_q * n_head;
- const int64_t v_offset = k_offset + n_embd_head_k * n_head_kv;
- ggml_tensor * Qcur = ggml_view_3d(ctx0, qkv, n_embd_head_q, n_head, n_tokens, n_embd_head_q * sizeof(float), qkv->nb[1], q_offset * ggml_element_size(qkv));
- ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head_k, n_head_kv, n_tokens, n_embd_head_k * sizeof(float), qkv->nb[1], k_offset * ggml_element_size(qkv));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head_v, n_head_kv, n_tokens, n_embd_head_v * sizeof(float), qkv->nb[1], v_offset * ggml_element_size(qkv));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_normed", il);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_normed", il);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cur = build_attn(inp,
- model.layers[il].wo, NULL,
- Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f/sqrtf(float(n_embd_head_v)), il);
- }
- cb(cur, "attn_out", il);
- return cur;
- }
- ggml_tensor * build_plamo2_mamba_layer(
- llm_graph_input_rs * inp,
- ggml_tensor * cur,
- const llama_model & model,
- const llama_ubatch & ubatch,
- int il) {
- const auto * mctx_cur = inp->mctx;
- const auto kv_head = mctx_cur->get_head();
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t n_heads = hparams.ssm_dt_rank;
- const int64_t head_dim = d_inner / n_heads;
- const int64_t n_group = hparams.ssm_n_group;
- const int64_t n_seqs = ubatch.n_seqs;
- const int64_t n_seq_tokens = ubatch.n_seq_tokens;
- GGML_ASSERT(n_seqs != 0);
- GGML_ASSERT(ubatch.equal_seqs());
- GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
- ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
- ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
- ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
- conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
- // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
- cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
- // in_proj: {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
- ggml_tensor * zx = build_lora_mm(model.layers[il].ssm_in, cur);
- cb(zx, "mamba_in_proj", il);
- // {8192, 5, 1, 1} -> {8192, 1, 5, 1}
- zx = ggml_permute(ctx0, zx, 0, 2, 1, 3);
- zx = ggml_cont_4d(ctx0, zx, head_dim * 2, n_heads, n_seq_tokens, n_seqs);
- cb(zx, "mamba_in_proj_out", il);
- // split into z and x
- // => {head_dim * n_heads, n_seq_tokens, n_seqs}
- ggml_tensor * x = ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3], head_dim*ggml_element_size(zx));
- x = ggml_cont_3d(ctx0, x, head_dim * n_heads, n_seq_tokens, n_seqs);
- // x = ggml_permute(ctx0, x, 0, 2, 1, 3);
- cb(x, "mamba_x_split", il);
- ggml_tensor * z = ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3], 0);
- cb(z, "mamba_z_split", il);
- // conv1d
- {
- // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
- ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
- cb(conv_x, "mamba_conv1d_input", il);
- // copy last (d_conv - 1) columns back into the state cache
- ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs,
- conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
- ggml_build_forward_expand(gf,
- ggml_cpy(ctx0, last_conv,
- ggml_view_1d(ctx0, conv_states_all,
- (d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
- kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
- cb(conv_states_all, "mamba_conv1d_state", il);
- // 1D convolution
- x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
- cb(x, "mamba_conv1d", il);
- x = ggml_silu(ctx0, x);
- cb(x, "mamba_conv1d_silu", il);
- }
- // SSM
- {
- // bcdt_proj: {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
- ggml_tensor * x_bcdt = build_lora_mm(model.layers[il].ssm_x, x);
- cb(x_bcdt, "mamba_bcdt_proj", il);
- // split into dt, B, C
- const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
- ggml_tensor * B = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2], 0);
- ggml_tensor * C = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2], ggml_element_size(x_bcdt)*d_state);
- ggml_tensor * dt = ggml_view_3d(ctx0, x_bcdt, dt_dim, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2], ggml_element_size(x_bcdt)*(2*d_state));
- cb(B, "mamba_B_raw", il);
- cb(C, "mamba_C_raw", il);
- cb(dt, "mamba_dt_raw", il);
- // Apply RMS norm to dt, B, C (PLaMo-2 specific)
- B = build_norm(B, model.layers[il].ssm_b_norm, NULL, LLM_NORM_RMS, il);
- C = build_norm(C, model.layers[il].ssm_c_norm, NULL, LLM_NORM_RMS, il);
- dt = build_norm(dt, model.layers[il].ssm_dt_norm, NULL, LLM_NORM_RMS, il);
- cb(B, "mamba_B_normed", il);
- cb(C, "mamba_C_normed", il);
- cb(dt, "mamba_dt_normed", il);
- // dt_proj: {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
- dt = build_lora_mm(model.layers[il].ssm_dt, dt);
- dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
- cb(dt, "mamba_dt_proj", il);
- ggml_tensor * A = ggml_reshape_2d(ctx0, model.layers[il].ssm_a, 1, n_heads);
- cb(A, "mamba_A", il);
- x = ggml_view_4d(ctx0, x, head_dim, n_heads, n_seq_tokens, n_seqs, head_dim * ggml_element_size(x), head_dim * n_heads * ggml_element_size(x), head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
- B = ggml_view_4d(ctx0, B, d_state, 1, n_seq_tokens, n_seqs, d_state * B->nb[0], B->nb[1], B->nb[2], 0);
- C = ggml_view_4d(ctx0, C, d_state, 1, n_seq_tokens, n_seqs, d_state * C->nb[0], C->nb[1], C->nb[2], 0);
- // use the states and the indices provided by build_recurrent_state
- // (this is necessary in order to properly use the states before they are overwritten,
- // while avoiding to make unnecessary copies of the states)
- auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
- ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_heads, mctx_cur->get_size());
- // Custom operator to optimize the parallel associative scan
- // as described in the Annex D of the Mamba paper.
- // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
- return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
- };
- ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
- cb(y_ssm, "mamba_ssm_scan", il);
- // store last states
- ggml_build_forward_expand(gf,
- ggml_cpy(ctx0,
- ggml_view_1d(ctx0, y_ssm, n_heads*head_dim*d_state*n_seqs, n_heads*head_dim*n_seq_tokens*n_seqs*ggml_element_size(y_ssm)),
- ggml_view_1d(ctx0, ssm_states_all, n_heads*head_dim*d_state*n_seqs, kv_head*n_seqs*n_heads*head_dim*d_state*ggml_element_size(ssm_states_all))));
- cb(ssm_states_all, "mamba_ssm_states", il);
- ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_heads, n_seq_tokens, n_seqs, head_dim * ggml_element_size(x), head_dim * n_heads * ggml_element_size(x), head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
- cb(y, "mamba_y_view", il);
- // Add D parameter and apply gating with z
- // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
- ggml_tensor * D = ggml_reshape_2d(ctx0, model.layers[il].ssm_d, 1, n_heads);
- y = ggml_add(ctx0, y, ggml_mul(ctx0, x, D));
- cb(y, "mamba_y_add_d", il);
- y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
- cb(y, "mamba_y_swiglu_z", il);
- // out_proj: {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
- y = ggml_view_3d(ctx0, y, head_dim * n_heads, n_seq_tokens, n_seqs, y->nb[2], y->nb[3], 0);
- cur = build_lora_mm(model.layers[il].ssm_out, y);
- cb(cur, "mamba_out_proj", il);
- }
- // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
- cb(cur, "mamba_out", il);
- return cur;
- }
- };
- struct llm_build_arcee : public llm_graph_context {
- llm_build_arcee(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // rope freq factors for llama3; may return nullptr for llama2 and other models
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- // ARCEE uses relu^2 instead of silu
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_hunyuan_moe : public llm_graph_context {
- llm_build_hunyuan_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // rope freq factors for llama3; may return nullptr for llama2 and other models
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = build_norm(Kcur,
- model.layers[il].attn_k_norm, nullptr,
- LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_norm", il);
- Qcur = build_norm(Qcur,
- model.layers[il].attn_q_norm, nullptr,
- LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_norm", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // feed-forward network (non-MoE)
- ggml_tensor * cur_mlp = build_ffn(cur,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur_mlp, "ffn_mlp", il);
- // MoE branch
- ggml_tensor * cur_moe = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU,
- true, // norm_topk_prob
- false,
- 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(cur_moe, "ffn_moe_out", il);
- ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp);
- cb(ffn_out, "ffn_out", il);
- cur = ggml_add(ctx0, ffn_out, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_hunyuan_dense : public llm_graph_context {
- llm_build_hunyuan_dense(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // rope freq factors for llama3; may return nullptr for llama2 and other models
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, rope_factors,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = build_norm(Kcur,
- model.layers[il].attn_k_norm, nullptr,
- LLM_NORM_RMS, il);
- cb(Kcur, "Kcur_norm", il);
- Qcur = build_norm(Qcur,
- model.layers[il].attn_q_norm, nullptr,
- LLM_NORM_RMS, il);
- cb(Qcur, "Qcur_norm", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- // feed-forward network (non-MoE)
- ggml_tensor * cur_mlp = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur_mlp, "ffn_out", il);
- cur = ggml_add(ctx0, cur_mlp, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_smollm3 : public llm_graph_context {
- llm_build_smollm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- const bool use_rope = (il + 1) % hparams.n_no_rope_layer_step != 0;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- if (use_rope) {
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_openai_moe_iswa : public llm_graph_context {
- llm_build_openai_moe_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv_iswa();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, nullptr,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, model.layers[il].attn_sinks, nullptr, 1.0f/sqrtf(float(n_rot)), il);
- cb(cur, "attn_out", il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- cur = ffn_inp;
- cur = build_norm(cur,
- model.layers[il].attn_post_norm, nullptr,
- LLM_NORM_RMS, il);
- cb(cur, "attn_post_norm", il);
- // MoE branch
- cur = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp, model.layers[il].ffn_gate_inp_b,
- model.layers[il].ffn_up_exps, model.layers[il].ffn_up_exps_b,
- model.layers[il].ffn_gate_exps, model.layers[il].ffn_gate_exps_b,
- model.layers[il].ffn_down_exps, model.layers[il].ffn_down_exps_b,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SWIGLU_OAI_MOE, false,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT,
- il);
- cb(cur, "ffn_moe_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_lfm2 : public llm_graph_context {
- const llama_model & model;
- llm_build_lfm2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
- ggml_tensor * cur = build_inp_embd(model.tok_embd);
- cb(cur, "model.embed_tokens", -1);
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_hybrid = build_inp_mem_hybrid();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- auto * prev_cur = cur;
- cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "model.layers.{}.operator_norm", il);
- cur = hparams.is_recurrent(il) ?
- build_shortconv_block(cur, inp_hybrid->get_recr(), il) :
- build_attn_block(cur, inp_pos, inp_hybrid->get_attn(), il) ;
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- prev_cur = ggml_get_rows(ctx0, prev_cur, inp_out_ids);
- }
- cur = ggml_add(ctx0, prev_cur, cur);
- cur = ggml_add(ctx0, cur, build_feed_forward(cur, il));
- }
- cur = build_norm(cur, model.tok_norm, NULL, LLM_NORM_RMS, -1);
- cb(cur, "model.embedding_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "lm_head", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- ggml_tensor * build_feed_forward(ggml_tensor * cur,
- int il) const {
- cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "model.layers.{}.ffn_norm", il);
- GGML_ASSERT(!model.layers[il].ffn_up_b);
- GGML_ASSERT(!model.layers[il].ffn_gate_b);
- GGML_ASSERT(!model.layers[il].ffn_down_b);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "model.layers.{}.feed_forward.w2", il);
- return cur;
- }
- ggml_tensor * build_attn_block(ggml_tensor * cur,
- ggml_tensor * inp_pos,
- llm_graph_input_attn_kv * inp_attn,
- int il) const {
- GGML_ASSERT(hparams.n_embd_v_gqa(il) == hparams.n_embd_k_gqa(il));
- auto const n_embd_head = hparams.n_embd_head_v;
- auto const n_head_kv = hparams.n_head_kv(il);
- auto * q = build_lora_mm(model.layers[il].wq, cur);
- cb(q, "model.layers.{}.self_attn.q_proj", il);
- auto * k = build_lora_mm(model.layers[il].wk, cur);
- cb(k, "model.layers.{}.self_attn.k_proj", il);
- auto * v = build_lora_mm(model.layers[il].wv, cur);
- cb(v, "model.layers.{}.self_attn.v_proj", il);
- q = ggml_reshape_3d(ctx0, q, n_embd_head, n_head, n_tokens);
- k = ggml_reshape_3d(ctx0, k, n_embd_head, n_head_kv, n_tokens);
- v = ggml_reshape_3d(ctx0, v, n_embd_head, n_head_kv, n_tokens);
- // qk norm
- q = build_norm(q, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- cb(q, "model.layers.{}.self_attn.q_layernorm", il);
- k = build_norm(k, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- cb(k, "model.layers.{}.self_attn.k_layernorm", il);
- // RoPE
- q = ggml_rope_ext(
- ctx0, q, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- k = ggml_rope_ext(
- ctx0, k, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cur = build_attn(inp_attn, model.layers[il].wo, NULL,
- q, k, v, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- cb(cur, "model.layers.{}.self_attn.out_proj", il);
- return cur;
- }
- ggml_tensor * build_shortconv_block(ggml_tensor * cur,
- llm_graph_input_rs * inp_recr,
- int il) {
- const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
- const uint32_t kv_head = mctx_cur->get_head();
- const int64_t n_seq_tokens = ubatch.n_seq_tokens;
- const int64_t n_seqs = ubatch.n_seqs;
- GGML_ASSERT(n_seqs != 0);
- GGML_ASSERT(ubatch.equal_seqs());
- GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
- GGML_ASSERT(hparams.n_shortconv_l_cache > 1);
- const uint32_t d_conv = hparams.n_shortconv_l_cache - 1;
- // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
- cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
- auto * bcx = build_lora_mm(model.layers[il].shortconv.in_proj, cur);
- cb(bcx, "model.layers.{}.conv.in_proj", il);
- constexpr auto n_chunks = 3;
- GGML_ASSERT(bcx->ne[0] % n_chunks == 0);
- auto const chunk_size = bcx->ne[0] / n_chunks;
- auto * b = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 0*chunk_size*ggml_element_size(bcx));
- auto * c = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 1*chunk_size*ggml_element_size(bcx));
- auto * x = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 2*chunk_size*ggml_element_size(bcx));
- auto * bx = ggml_transpose(ctx0, ggml_mul(ctx0, b, x));
- // read conv state
- auto * conv_state = mctx_cur->get_r_l(il);
- auto * conv_rs = build_rs(inp_recr, conv_state, hparams.n_embd_r(), n_seqs);
- auto * conv = ggml_reshape_3d(ctx0, conv_rs, d_conv, hparams.n_embd, n_seqs);
- bx = ggml_concat(ctx0, conv, bx, 0);
- GGML_ASSERT(bx->ne[0] > conv->ne[0]);
- // last d_conv columns is a new conv state
- auto * new_conv = ggml_view_3d(ctx0, bx, conv->ne[0], bx->ne[1], bx->ne[2], bx->nb[1], bx->nb[2], (bx->ne[0] - conv->ne[0])*ggml_element_size(bx));
- GGML_ASSERT(ggml_are_same_shape(conv, new_conv));
- // write new conv conv state
- ggml_build_forward_expand(
- gf,
- ggml_cpy(
- ctx0,
- new_conv,
- ggml_view_1d(
- ctx0,
- conv_state,
- ggml_nelements(new_conv),
- kv_head*d_conv*n_embd*ggml_element_size(new_conv)
- )
- )
- );
- auto * conv_kernel = model.layers[il].shortconv.conv;
- auto * conv_out = ggml_ssm_conv(ctx0, bx, conv_kernel);
- cb(conv_out, "model.layers.{}.conv.conv", il);
- auto * y = ggml_mul(ctx0, c, conv_out);
- y = build_lora_mm(model.layers[il].shortconv.out_proj, y);
- cb(y, "model.layers.{}.conv.out_proj", il);
- // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
- y = ggml_reshape_2d(ctx0, y, y->ne[0], n_seq_tokens * n_seqs);
- return y;
- }
- };
- struct llm_build_seed_oss : public llm_graph_context {
- llm_build_seed_oss(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = build_norm(ffn_inp,
- model.layers[il].attn_post_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_post_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- template <bool iswa>
- struct llm_build_smallthinker : public llm_graph_context{
- llm_build_smallthinker(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params){
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
- inp_attn_type * inp_attn = nullptr;
- if constexpr (iswa) {
- inp_attn = build_attn_inp_kv_iswa();
- } else {
- inp_attn = build_attn_inp_kv();
- }
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- ggml_tensor * probs = nullptr;
- probs = build_lora_mm(model.layers[il].ffn_gate_inp, inpL); // [n_expert, n_tokens]
- cb(probs, "ffn_moe_logits", il);
- // norm
- cur = build_norm(inpL,model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // self_attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- if (hparams.n_no_rope_layer_step == n_layer || il % hparams.n_no_rope_layer_step != 0) {
- Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- probs = ggml_get_rows(ctx0, probs, inp_out_ids);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // MoE branch
- cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- ggml_tensor * ffn_out =
- build_moe_ffn(cur,
- nullptr,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_RELU, true,
- false, 0.0,
- static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func),
- il, probs);
- cb(ffn_out, "ffn_out", il);
- cur = ffn_out;
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- };
- struct llm_build_qwen3next : public llm_graph_context_mamba {
- llm_build_qwen3next(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- auto * inp = build_inp_mem_hybrid();
- ggml_tensor * inp_pos = build_inp_pos();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // Pre-norm for attention/linear attention
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- // Determine layer type and build appropriate attention mechanism
- if (hparams.is_recurrent(il)) {
- // Linear attention layer (gated delta net)
- cur = build_qwen3next_linear_attn_layer(inp->get_recr(), cur, model, ubatch, il);
- } else {
- // Full attention layer
- cur = build_qwen3next_attention_layer(
- cur, inp_pos, inp->get_attn(), model,
- n_embd_head, il);
- }
- // Post-attention norm
- cur = build_norm(cur,
- model.layers[il].attn_post_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_post_norm", il);
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- // Residual connection
- cur = ggml_add(ctx0, cur, inpSA);
- cb(cur, "attn_residual", il);
- // FFN layer (MoE or dense)
- cur = build_layer_ffn(cur, model, il);
- // Input for next layer
- inpL = cur;
- }
- cur = inpL;
- // Final norm
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // LM head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- ggml_set_output(cur);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
- private:
- ggml_tensor * build_qwen3next_attention_layer(
- ggml_tensor * cur,
- ggml_tensor * inp_pos,
- llm_graph_input_attn_kv * inp_attn,
- const llama_model & model,
- const int64_t n_embd_head,
- const int il) {
- ggml_tensor * gate = build_lora_mm(model.layers[il].wq_gate, cur);
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- // Apply Q/K normalization
- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
- cb(Kcur, "Qcur_normed", il);
- cb(Kcur, "Kcur_normed", il);
- // Apply RoPE
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- // Attention computation
- const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
- cur = build_attn(inp_attn,
- model.layers[il].wo, nullptr,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
-
- // Apply gating
- cur = ggml_cont(ctx0, ggml_mul(ctx0, cur, ggml_sigmoid(ctx0, gate)));
- cb(cur, "attn_gated", il);
-
- return cur;
- }
- ggml_tensor * build_qwen3next_linear_attn_layer(llm_graph_input_rs * inp,
- ggml_tensor * cur,
- const llama_model & model,
- const llama_ubatch & ubatch,
- int il) {
- // Gated Delta Net implementation using the new ggml_delta_net function
- const auto * mctx_cur = inp->mctx;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t n_heads = hparams.ssm_dt_rank;
- const int64_t head_dim = d_inner / n_heads;
- const int64_t n_seqs = ubatch.n_seqs;
- const int64_t head_k_dim = hparams.ssm_d_state;
- const int64_t head_v_dim = hparams.ssm_d_state;
- const int64_t num_k_heads = hparams.ssm_n_group;
- const int64_t num_v_heads = hparams.ssm_dt_rank;
- const int64_t n_seq_tokens = ubatch.n_seq_tokens;
- const int64_t n_tokens = ubatch.n_tokens;
- GGML_ASSERT(n_seqs != 0);
- GGML_ASSERT(ubatch.equal_seqs());
- GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
- // Input projections
- ggml_tensor * mixed_qkvz = build_lora_mm(model.layers[il].ssm_in, cur);
- cb(mixed_qkvz, "linear_attn_mixed_qkvz", il);
- ggml_tensor * mixed_ba = build_lora_mm(model.layers[il].ssm_beta_alpha, cur);
- cb(mixed_ba, "linear_attn_mixed_ba", il);
- // Reshape mixed_qkvz: [batch, seq_len, hidden_size] -> [batch, seq_len, num_k_heads, 2*head_k_dim + 2*head_v_dim*num_v_heads/num_k_heads]
- int64_t qkvz_new_dim = 2 * head_k_dim + 2 * head_v_dim * num_v_heads / num_k_heads;
- ggml_tensor * mixed_qkvz_reshaped =
- ggml_reshape_4d(ctx0, mixed_qkvz, qkvz_new_dim, num_k_heads, n_tokens, n_seqs);
- // Reshape mixed_ba: [batch, seq_len, hidden_size] -> [batch, seq_len, num_k_heads, 2*num_v_heads/num_k_heads]
- int64_t ba_new_dim = 2 * num_v_heads / num_k_heads;
- ggml_tensor * mixed_ba_reshaped = ggml_reshape_4d(ctx0, mixed_ba, ba_new_dim, num_k_heads, n_tokens, n_seqs);
- // Split mixed_qkvz into query, key, value, z
- int64_t split_sizes_qkvz[4] = {
- head_k_dim, // query size
- head_k_dim, // key size
- head_v_dim * num_v_heads / num_k_heads, // value size
- head_v_dim * num_v_heads / num_k_heads // z size
- };
- ggml_tensor * query = ggml_cont(ctx0, ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[0], num_k_heads,
- n_tokens, n_seqs, split_sizes_qkvz[0] * sizeof(float),
- mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], 0));
- ggml_tensor * key =
- ggml_cont(ctx0, ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[1], num_k_heads, n_tokens, n_seqs,
- split_sizes_qkvz[1] * sizeof(float), mixed_qkvz_reshaped->nb[1],
- mixed_qkvz_reshaped->nb[2], split_sizes_qkvz[0] * sizeof(float)));
- ggml_tensor * value =
- ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[2], num_k_heads, n_tokens, n_seqs,
- split_sizes_qkvz[2] * sizeof(float), mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2],
- (split_sizes_qkvz[0] + split_sizes_qkvz[1]) * sizeof(float));
- ggml_tensor * z =
- ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[3], num_k_heads, n_tokens, n_seqs,
- split_sizes_qkvz[3] * sizeof(float), mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2],
- (split_sizes_qkvz[0] + split_sizes_qkvz[1] + split_sizes_qkvz[2]) * sizeof(float));
- // Reshape value and z to merge head dimensions: [batch, seq_len, num_k_heads, head_v_dim*num_v_heads/num_k_heads] -> [batch, seq_len, num_v_heads, head_v_dim]
- ggml_tensor * value_reshaped =
- ggml_reshape_4d(ctx0, ggml_cont(ctx0, value), head_v_dim, num_v_heads, n_tokens, n_seqs);
- ggml_tensor * z_reshaped = ggml_reshape_4d(ctx0, ggml_cont(ctx0, z), head_v_dim, num_v_heads, n_tokens, n_seqs);
- GGML_ASSERT(ggml_nelements(query) + ggml_nelements(key) + ggml_nelements(value_reshaped) +
- ggml_nelements(z_reshaped) ==
- ggml_nelements(mixed_qkvz));
- // Split mixed_ba into b and a (beta and alpha parameters)
- int64_t split_sizes_ba[2] = {
- num_v_heads / num_k_heads, // beta size
- num_v_heads / num_k_heads // alpha size
- };
- ggml_tensor * b =
- ggml_view_4d(ctx0, mixed_ba_reshaped, split_sizes_ba[0], num_k_heads, n_tokens, n_seqs,
- split_sizes_ba[0] * sizeof(float), mixed_ba_reshaped->nb[1], mixed_ba_reshaped->nb[2], 0);
- ggml_tensor * a = ggml_view_4d(ctx0, mixed_ba_reshaped, split_sizes_ba[1], num_k_heads, n_tokens, n_seqs,
- split_sizes_ba[1] * sizeof(float), mixed_ba_reshaped->nb[1],
- mixed_ba_reshaped->nb[2], split_sizes_ba[0] * sizeof(float));
- // Reshape b and a to merge head dimensions: [batch, seq_len, num_k_heads, num_v_heads/num_k_heads] -> [batch, seq_len, num_v_heads]
- ggml_tensor * beta = ggml_reshape_3d(ctx0, ggml_cont(ctx0, b), num_v_heads, n_tokens, n_seqs);
- ggml_tensor * alpha = ggml_reshape_3d(ctx0, ggml_cont(ctx0, a), num_v_heads, n_tokens, n_seqs);
- GGML_ASSERT(ggml_nelements(beta) + ggml_nelements(alpha) == ggml_nelements(mixed_ba));
- ggml_tensor * alpha_softplus = softplus(alpha, model.layers[il].ssm_dt);
- ggml_tensor * A_log_exp = ggml_exp(ctx0, model.layers[il].ssm_a); // A_log.exp()
- ggml_tensor * gate_scaled = ggml_mul(ctx0, alpha_softplus, A_log_exp); // A_log.exp() * softplus
- ggml_tensor * gate = ggml_scale(ctx0, gate_scaled, -1.0f); // - (A_log.exp() * softplus)
- // Get convolution states from cache
- ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
- ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
- // Build the convolution states tensor
- ggml_tensor * conv_states = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
- // Calculate convolution kernel size
- const int64_t conv_kernel_size = model.layers[il].ssm_conv1d->ne[0];
- // Calculate input dimensions for Qwen3Next
- const int64_t input_dim = (head_k_dim * num_k_heads * 2) + (head_v_dim * num_v_heads);
- // Reshape conv_states to [conv_kernel_size - 1, input_dim, n_seqs]
- conv_states = ggml_reshape_3d(ctx0, conv_states, conv_kernel_size - 1, input_dim, n_seqs);
- cb(conv_states, "conv_states_reshaped", il);
- // Combine query, key, value for convolution input
- ggml_tensor * qkv_mixed = ggml_concat(ctx0, query, key, 1);
- qkv_mixed = ggml_concat(ctx0, qkv_mixed, value_reshaped, 1);
- // Reshape to [input_dim, n_seq_tokens, n_seqs] for concatenation
- qkv_mixed = ggml_reshape_3d(ctx0, qkv_mixed, input_dim, n_seq_tokens, n_seqs);
- cb(qkv_mixed, "qkv_mixed_for_conv", il);
- // Concatenate cached conv states with current input
- // conv_states: [conv_kernel_size - 1, input_dim, n_seqs]
- // qkv_mixed: [input_dim, n_seq_tokens, n_seqs]
- // After transpose: [n_seq_tokens, input_dim, n_seqs]
- ggml_tensor * conv_input = ggml_concat(ctx0, conv_states, ggml_transpose(ctx0, qkv_mixed), 0);
- cb(conv_input, "conv_input", il);
- // Apply convolution
- ggml_tensor * conv_output = ggml_ssm_conv(ctx0, conv_input, model.layers[il].ssm_conv1d);
- cb(conv_output, "conv_output_raw", il);
- if (model.layers[il].ssm_conv1d_b) {
- conv_output = ggml_add(ctx0, conv_output, model.layers[il].ssm_conv1d_b);
- cb(conv_output, "conv_output_bias", il);
- }
- conv_output = ggml_silu(ctx0, conv_output);
- cb(conv_output, "conv_output_silu", il);
- // Update convolution state cache
- // Extract the last (conv_kernel_size - 1) states from conv_input
- ggml_tensor * last_conv_states =
- ggml_view_3d(ctx0, conv_input, conv_kernel_size - 1, input_dim, n_seqs, conv_input->nb[1],
- conv_input->nb[2], n_seq_tokens * conv_input->nb[0]);
- ggml_build_forward_expand(
- gf, ggml_cpy(ctx0, last_conv_states,
- ggml_view_1d(ctx0, conv_states_all, (conv_kernel_size - 1) * input_dim * n_seqs,
- mctx_cur->get_head() * (conv_kernel_size - 1) * input_dim *
- ggml_element_size(conv_states_all))));
- cb(conv_states_all, "conv_states_updated", il);
- // Reshape conv_output back to proper dimensions
- conv_output = ggml_reshape_4d(ctx0, conv_output, input_dim, n_seqs, n_seq_tokens, 1);
- cb(conv_output, "conv_output_reshaped", il);
- conv_output = ggml_permute(ctx0, conv_output, 0, 2, 1, 3);
- cb(conv_output, "conv_output_final", il);
- // Extract the convolved Q, K, V from conv_output
- ggml_tensor * q_conv = ggml_cont(ctx0, ggml_view_4d(ctx0, conv_output, head_k_dim, num_k_heads, n_tokens, n_seqs,
- head_k_dim, conv_output->nb[1], conv_output->nb[2], 0));
- cb(q_conv, "q_conv", il);
- ggml_tensor * k_conv =
- ggml_cont(ctx0, ggml_view_4d(ctx0, conv_output, head_k_dim, num_k_heads, n_tokens, n_seqs, head_k_dim,
- conv_output->nb[1], conv_output->nb[2], head_k_dim * num_k_heads * ggml_element_size(conv_output)));
- cb(q_conv, "k_conv", il);
- ggml_tensor * v_conv =
- ggml_cont(ctx0, ggml_view_4d(ctx0, conv_output, head_v_dim, num_v_heads, n_tokens, n_seqs, head_v_dim,
- conv_output->nb[1], conv_output->nb[2], 2 * head_k_dim * num_k_heads * ggml_element_size(conv_output)));
- cb(q_conv, "v_conv", il);
- ggml_build_forward_expand(gf, ssm_states_all);
- // Beta tensor
- beta = ggml_reshape_3d(ctx0, beta, n_heads, n_tokens, n_seqs);
- ggml_tensor * state = ggml_reshape_4d(ctx0, ssm_states_all, head_dim, head_dim * n_heads, 1, 1);
- ggml_tensor * state_broadcast = ggml_repeat_4d(ctx0, state, head_dim, head_dim * n_heads, n_seqs, n_tokens);
- ggml_tensor * target_gate = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_dim, n_heads, n_tokens, n_seqs);
- ggml_tensor * gate_broadcast = ggml_reshape_4d(ctx0, gate, 1, n_heads, n_tokens, n_seqs);
- gate = ggml_repeat(ctx0, gate_broadcast, target_gate);
- // Call the new ggml_delta_net function with the corrected flow
- ggml_tensor * output = ggml_delta_net(ctx0,
- k_conv, // k tensor (already convolved)
- v_conv, // v tensor (already convolved)
- q_conv, // q tensor (already convolved)
- gate, // g tensor
- beta, // beta tensor
- state_broadcast, // state tensor
- true, // use_qk_l2norm
- 1.0f // scale
- );
- cb(output, "delta_net_output", il);
- // Extract the output part
- ggml_tensor * attn_out = ggml_view_4d(ctx0, output, head_dim, n_heads, n_tokens, n_seqs, output->nb[0],
- output->nb[1], output->nb[2], 0);
- // Extract the new state
- ggml_tensor * new_state =
- ggml_view_4d(ctx0, output, head_dim, head_dim * n_heads, n_tokens, n_seqs, output->nb[0], output->nb[1],
- output->nb[2], n_tokens * n_seqs * head_dim * n_heads * ggml_element_size(output));
- // Only return the last recurrent state
- struct ggml_tensor * state_reshaped =
- ggml_cont_4d(ctx0, new_state, head_dim, head_dim, n_heads, n_tokens * n_seqs);
- struct ggml_tensor * state_last = ggml_view_4d(
- ctx0, state_reshaped, head_dim, head_dim, n_heads, 1, state_reshaped->nb[1], state_reshaped->nb[2],
- state_reshaped->nb[3], head_dim * head_dim * n_heads * ((n_seqs * n_tokens) - 1));
- // Update the recurrent states
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, state_last, ssm_states_all));
- // Reshape both attn_out and z to 2D tensors for normalization
- // attn_out: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim]
- ggml_tensor * attn_out_2d =
- ggml_reshape_2d(ctx0, ggml_cont(ctx0, attn_out), head_dim, n_heads * n_tokens * n_seqs);
- // z: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim]
- ggml_tensor * z_2d = ggml_reshape_2d(ctx0, z_reshaped, head_dim, n_heads * n_tokens * n_seqs);
- // Apply gated normalization: self.norm(core_attn_out, z)
- // This is Qwen3NextRMSNormGated which applies: RMSNorm(x) * silu(gate)
- ggml_tensor * attn_out_norm = build_norm(attn_out_2d, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
- // Apply silu gate: attn_out_norm * silu(z_2d)
- ggml_tensor * z_silu = ggml_silu(ctx0, z_2d);
- ggml_tensor * gated_output = ggml_mul(ctx0, attn_out_norm, z_silu);
- // Reshape back to original dimensions: [n_heads * n_tokens * n_seqs, head_dim] -> [head_dim, n_heads, n_tokens, n_seqs]
- ggml_tensor * gated_output_4d = ggml_reshape_4d(ctx0, gated_output, head_dim, n_heads, n_tokens, n_seqs);
- // Final reshape: [head_dim, n_heads, n_tokens, n_seqs] -> [n_tokens, n_seqs, n_heads * head_dim]
- ggml_tensor * final_output = ggml_reshape_3d(ctx0, gated_output_4d, n_heads * head_dim, n_tokens, n_seqs);
- // Output projection
- cur = build_lora_mm(model.layers[il].ssm_out, final_output);
- cb(cur, "linear_attn_out", il);
- // Reshape back to original dimensions
- cur = ggml_cont(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens));
- return cur;
- }
- ggml_tensor * build_layer_ffn(ggml_tensor * cur, const llama_model & model, const int il) {
- // Check if this is an MoE layer
- if (model.layers[il].ffn_gate_inp != nullptr) {
- // MoE branch
- ggml_tensor * moe_out = build_moe_ffn(cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- nullptr,
- n_expert, n_expert_used,
- LLM_FFN_SILU, true,
- false, 0.0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
- il);
- cb(moe_out, "ffn_moe_out", il);
- // Add shared experts if present
- if (model.layers[il].ffn_up_shexp != nullptr) {
- ggml_tensor * ffn_shexp = build_ffn(cur,
- model.layers[il].ffn_up_shexp, NULL, NULL,
- model.layers[il].ffn_gate_shexp, NULL, NULL,
- model.layers[il].ffn_down_shexp, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(ffn_shexp, "ffn_shexp", il);
- cur = ggml_add(ctx0, moe_out, ffn_shexp);
- cb(cur, "ffn_out", il);
- } else {
- cur = moe_out;
- }
- } else {
- // Dense FFN branch
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- }
- // Residual connection
- cur = ggml_add(ctx0, cur, cur); // This should be the residual from before FFN
- cb(cur, "ffn_residual", il);
- return cur;
- }
- ggml_tensor * softplus(ggml_tensor * alpha, ggml_tensor * dt_bias) {
- ggml_tensor * alpha_biased = ggml_add(ctx0, alpha, dt_bias); // a + dt_bias
- ggml_tensor * alpha_exp = ggml_exp(ctx0, alpha_biased); // exp(a + dt_bias)
- ggml_tensor * one_plus_exp = ggml_scale_bias(ctx0, alpha_exp, 1.0f, 1.0f); // 1 + exp(a + dt_bias)
- ggml_tensor * alpha_softplus = ggml_log(ctx0, one_plus_exp); // log(1 + exp(...))
- return alpha_softplus;
- }
- };
- llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
- llama_memory_i * res;
- switch (arch) {
- // Models that need specific instantiation should be handled in the
- // switch statement
- case LLM_ARCH_BERT:
- case LLM_ARCH_JINA_BERT_V2:
- case LLM_ARCH_JINA_BERT_V3:
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_NOMIC_BERT_MOE:
- case LLM_ARCH_NEO_BERT:
- case LLM_ARCH_WAVTOKENIZER_DEC:
- //case LLM_ARCH_GEMMA_EMBEDDING: // TODO: disabled until the cacheless SWA logic is fixed [TAG_NO_CACHE_ISWA]
- case LLM_ARCH_DREAM:
- case LLM_ARCH_LLADA:
- case LLM_ARCH_LLADA_MOE:
- {
- res = nullptr;
- } break;
- // Models that need standard caching should rely on recurrent/hybrid
- // checks
- default:
- {
- if (llm_arch_is_recurrent(arch)) {
- res = new llama_memory_recurrent(
- *this,
- GGML_TYPE_F32,
- GGML_TYPE_F32,
- cparams.offload_kqv,
- std::max((uint32_t) 1, cparams.n_seq_max),
- cparams.n_seq_max,
- nullptr);
- } else if (llm_arch_is_hybrid(arch)) {
- // The main difference between hybrid architectures is the
- // layer filters, so pick the right one here
- llama_memory_hybrid::layer_filter_cb filter_attn = nullptr;
- llama_memory_hybrid::layer_filter_cb filter_recr = nullptr;
- if (arch == LLM_ARCH_FALCON_H1) {
- filter_attn = [&](int32_t) { return true; };
- filter_recr = [&](int32_t) { return true; };
- } else if (arch == LLM_ARCH_NEMOTRON_H) {
- filter_attn = [&](int32_t il) {
- return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
- };
- filter_recr = [&](int32_t il) {
- return hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
- };
- }
- const auto padding = llama_kv_cache::get_padding(cparams);
- cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
- res = new llama_memory_hybrid(
- /* model */ *this,
- /* attn_type_k */ params.type_k,
- /* attn_type_v */ params.type_v,
- /* attn_v_trans */ !cparams.flash_attn,
- /* attn_kv_size */ cparams.n_ctx,
- /* attn_n_pad */ padding,
- /* attn_n_swa */ hparams.n_swa,
- /* attn_swa_type */ hparams.swa_type,
- /* recurrent_type_k */ GGML_TYPE_F32,
- /* recurrent_type_v */ GGML_TYPE_F32,
- /* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max),
- /* n_seq_max */ cparams.n_seq_max,
- /* offload */ cparams.offload_kqv,
- /* unified */ cparams.kv_unified,
- /* filter_attn */ std::move(filter_attn),
- /* filter_recr */ std::move(filter_recr));
- } else {
- const auto padding = llama_kv_cache::get_padding(cparams);
- uint32_t n_ctx_per_stream = cparams.n_ctx;
- if (!cparams.kv_unified) {
- n_ctx_per_stream = (cparams.n_ctx + cparams.n_seq_max - 1)/cparams.n_seq_max;
- n_ctx_per_stream = GGML_PAD(n_ctx_per_stream, padding);
- cparams.n_ctx = n_ctx_per_stream*cparams.n_seq_max;
- } else {
- n_ctx_per_stream = GGML_PAD(n_ctx_per_stream, padding);
- cparams.n_ctx = n_ctx_per_stream;
- }
- LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
- llama_memory_i::layer_reuse_cb reuse = nullptr;
- if (arch == LLM_ARCH_GEMMA3N) {
- reuse = [&](int32_t il) {
- if (il >= (int32_t) hparams.n_layer_kv_from_start) {
- return (int32_t) hparams.n_layer_kv_from_start - (hparams.is_swa(il) ? 2 : 1);
- }
- return -1;
- };
- }
- if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
- GGML_ASSERT(hparams.is_swa_any());
- res = new llama_kv_cache_iswa(
- *this,
- params.type_k,
- params.type_v,
- !cparams.flash_attn,
- cparams.offload_kqv,
- params.swa_full,
- cparams.kv_unified,
- n_ctx_per_stream,
- cparams.n_seq_max,
- cparams.n_ubatch,
- padding,
- nullptr,
- reuse);
- } else {
- GGML_ASSERT(!hparams.is_swa_any());
- res = new llama_kv_cache(
- *this,
- params.type_k,
- params.type_v,
- !cparams.flash_attn,
- cparams.offload_kqv,
- cparams.kv_unified,
- n_ctx_per_stream,
- cparams.n_seq_max,
- padding,
- hparams.n_swa,
- hparams.swa_type,
- nullptr,
- nullptr);
- }
- }
- }
- }
- return res;
- }
- ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
- std::unique_ptr<llm_graph_context> llm;
- switch (arch) {
- case LLM_ARCH_LLAMA:
- {
- llm = std::make_unique<llm_build_llama>(*this, params);
- } break;
- case LLM_ARCH_LLAMA4:
- {
- if (hparams.swa_type == LLAMA_SWA_TYPE_NONE) {
- llm = std::make_unique<llm_build_llama>(*this, params);
- } else {
- llm = std::make_unique<llm_build_llama_iswa>(*this, params);
- }
- } break;
- case LLM_ARCH_DECI:
- {
- llm = std::make_unique<llm_build_deci>(*this, params);
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- llm = std::make_unique<llm_build_baichuan>(*this, params);
- } break;
- case LLM_ARCH_FALCON:
- {
- llm = std::make_unique<llm_build_falcon>(*this, params);
- } break;
- case LLM_ARCH_GROK:
- {
- llm = std::make_unique<llm_build_grok>(*this, params);
- } break;
- case LLM_ARCH_STARCODER:
- {
- llm = std::make_unique<llm_build_starcoder>(*this, params);
- } break;
- case LLM_ARCH_REFACT:
- {
- llm = std::make_unique<llm_build_refact>(*this, params);
- } break;
- case LLM_ARCH_BERT:
- case LLM_ARCH_JINA_BERT_V2:
- case LLM_ARCH_JINA_BERT_V3:
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_NOMIC_BERT_MOE:
- {
- llm = std::make_unique<llm_build_bert>(*this, params);
- } break;
- case LLM_ARCH_NEO_BERT:
- {
- llm = std::make_unique<llm_build_neo_bert>(*this, params);
- } break;
- case LLM_ARCH_BLOOM:
- {
- llm = std::make_unique<llm_build_bloom>(*this, params);
- } break;
- case LLM_ARCH_MPT:
- {
- llm = std::make_unique<llm_build_mpt>(*this, params);
- } break;
- case LLM_ARCH_STABLELM:
- {
- llm = std::make_unique<llm_build_stablelm>(*this, params);
- } break;
- case LLM_ARCH_QWEN:
- {
- llm = std::make_unique<llm_build_qwen>(*this, params);
- } break;
- case LLM_ARCH_QWEN2:
- {
- llm = std::make_unique<llm_build_qwen2>(*this, params);
- } break;
- case LLM_ARCH_DREAM:
- {
- llm = std::make_unique<llm_build_dream>(*this, params);
- }
- break;
- case LLM_ARCH_LLADA:
- {
- llm = std::make_unique<llm_build_llada>(*this, params);
- }
- break;
- case LLM_ARCH_LLADA_MOE:
- {
- llm = std::make_unique<llm_build_llada_moe>(*this, params);
- }
- break;
- case LLM_ARCH_QWEN2VL:
- {
- llm = std::make_unique<llm_build_qwen2vl>(*this, params);
- } break;
- case LLM_ARCH_QWEN2MOE:
- {
- llm = std::make_unique<llm_build_qwen2moe>(*this, params);
- } break;
- case LLM_ARCH_QWEN3:
- {
- llm = std::make_unique<llm_build_qwen3>(*this, params);
- } break;
- case LLM_ARCH_QWEN3MOE:
- {
- llm = std::make_unique<llm_build_qwen3moe>(*this, params);
- } break;
- case LLM_ARCH_PHI2:
- {
- llm = std::make_unique<llm_build_phi2>(*this, params);
- } break;
- case LLM_ARCH_PHI3:
- case LLM_ARCH_PHIMOE:
- {
- if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
- llm = std::make_unique<llm_build_phi3<true>> (*this, params);
- } else {
- llm = std::make_unique<llm_build_phi3<false>>(*this, params);
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- llm = std::make_unique<llm_build_plamo>(*this, params);
- } break;
- case LLM_ARCH_PLAMO2:
- {
- llm = std::make_unique<llm_build_plamo2>(*this, params);
- } break;
- case LLM_ARCH_GPT2:
- {
- llm = std::make_unique<llm_build_gpt2>(*this, params);
- } break;
- case LLM_ARCH_CODESHELL:
- {
- llm = std::make_unique<llm_build_codeshell>(*this, params);
- } break;
- case LLM_ARCH_ORION:
- {
- llm = std::make_unique<llm_build_orion>(*this, params);
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- llm = std::make_unique<llm_build_internlm2>(*this, params);
- } break;
- case LLM_ARCH_MINICPM3:
- {
- llm = std::make_unique<llm_build_minicpm3>(*this, params);
- } break;
- case LLM_ARCH_GEMMA:
- {
- llm = std::make_unique<llm_build_gemma>(*this, params);
- } break;
- case LLM_ARCH_GEMMA2:
- {
- llm = std::make_unique<llm_build_gemma2_iswa>(*this, params);
- } break;
- case LLM_ARCH_GEMMA3:
- {
- llm = std::make_unique<llm_build_gemma3_iswa>(*this, params);
- } break;
- case LLM_ARCH_GEMMA3N:
- {
- llm = std::make_unique<llm_build_gemma3n_iswa>(*this, params);
- } break;
- case LLM_ARCH_GEMMA_EMBEDDING:
- {
- llm = std::make_unique<llm_build_gemma_embedding_iswa>(*this, params);
- } break;
- case LLM_ARCH_STARCODER2:
- {
- llm = std::make_unique<llm_build_starcoder2>(*this, params);
- } break;
- case LLM_ARCH_MAMBA:
- case LLM_ARCH_MAMBA2:
- {
- llm = std::make_unique<llm_build_mamba>(*this, params);
- } break;
- case LLM_ARCH_JAMBA:
- {
- llm = std::make_unique<llm_build_jamba>(*this, params);
- } break;
- case LLM_ARCH_XVERSE:
- {
- llm = std::make_unique<llm_build_xverse>(*this, params);
- } break;
- case LLM_ARCH_COMMAND_R:
- {
- llm = std::make_unique<llm_build_command_r>(*this, params);
- } break;
- case LLM_ARCH_COHERE2:
- {
- llm = std::make_unique<llm_build_cohere2_iswa>(*this, params);
- } break;
- case LLM_ARCH_DBRX:
- {
- llm = std::make_unique<llm_build_dbrx>(*this, params);
- } break;
- case LLM_ARCH_OLMO:
- {
- llm = std::make_unique<llm_build_olmo>(*this, params);
- } break;
- case LLM_ARCH_OLMO2:
- {
- if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
- llm = std::make_unique<llm_build_olmo2<true>>(*this, params);
- } else {
- llm = std::make_unique<llm_build_olmo2<false>>(*this, params);
- }
- } break;
- case LLM_ARCH_OLMOE:
- {
- llm = std::make_unique<llm_build_olmoe>(*this, params);
- } break;
- case LLM_ARCH_OPENELM:
- {
- llm = std::make_unique<llm_build_openelm>(*this, params);
- } break;
- case LLM_ARCH_GPTNEOX:
- {
- llm = std::make_unique<llm_build_gptneox>(*this, params);
- } break;
- case LLM_ARCH_ARCTIC:
- {
- llm = std::make_unique<llm_build_arctic>(*this, params);
- } break;
- case LLM_ARCH_DEEPSEEK:
- {
- llm = std::make_unique<llm_build_deepseek>(*this, params);
- } break;
- case LLM_ARCH_DEEPSEEK2:
- {
- llm = std::make_unique<llm_build_deepseek2>(*this, params);
- } break;
- case LLM_ARCH_CHATGLM:
- {
- llm = std::make_unique<llm_build_chatglm>(*this, params);
- } break;
- case LLM_ARCH_GLM4:
- {
- llm = std::make_unique<llm_build_glm4>(*this, params);
- } break;
- case LLM_ARCH_GLM4_MOE:
- {
- llm = std::make_unique<llm_build_glm4_moe>(*this, params);
- } break;
- case LLM_ARCH_BITNET:
- {
- llm = std::make_unique<llm_build_bitnet>(*this, params);
- } break;
- case LLM_ARCH_T5:
- {
- switch (params.gtype) {
- case LLM_GRAPH_TYPE_ENCODER:
- llm = std::make_unique<llm_build_t5_enc>(*this, params);
- break;
- case LLM_GRAPH_TYPE_DEFAULT:
- case LLM_GRAPH_TYPE_DECODER:
- llm = std::make_unique<llm_build_t5_dec>(*this, params);
- break;
- default:
- GGML_ABORT("invalid graph type");
- };
- } break;
- case LLM_ARCH_T5ENCODER:
- {
- llm = std::make_unique<llm_build_t5_enc>(*this, params);
- }
- break;
- case LLM_ARCH_JAIS:
- {
- llm = std::make_unique<llm_build_jais>(*this, params);
- } break;
- case LLM_ARCH_NEMOTRON:
- {
- llm = std::make_unique<llm_build_nemotron>(*this, params);
- } break;
- case LLM_ARCH_NEMOTRON_H:
- {
- llm = std::make_unique<llm_build_nemotron_h>(*this, params);
- } break;
- case LLM_ARCH_EXAONE:
- {
- llm = std::make_unique<llm_build_exaone>(*this, params);
- } break;
- case LLM_ARCH_EXAONE4:
- {
- if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
- llm = std::make_unique<llm_build_exaone4<true>>(*this, params);
- } else {
- llm = std::make_unique<llm_build_exaone4<false>>(*this, params);
- }
- } break;
- case LLM_ARCH_RWKV6:
- {
- llm = std::make_unique<llm_build_rwkv6>(*this, params);
- } break;
- case LLM_ARCH_RWKV6QWEN2:
- {
- llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params);
- } break;
- case LLM_ARCH_RWKV7:
- {
- llm = std::make_unique<llm_build_rwkv7>(*this, params);
- } break;
- case LLM_ARCH_ARWKV7:
- {
- llm = std::make_unique<llm_build_arwkv7>(*this, params);
- } break;
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- case LLM_ARCH_MINICPM:
- {
- llm = std::make_unique<llm_build_granite>(*this, params);
- } break;
- case LLM_ARCH_GRANITE_HYBRID:
- {
- llm = std::make_unique<llm_build_granite_hybrid>(*this, params);
- } break;
- case LLM_ARCH_CHAMELEON:
- {
- llm = std::make_unique<llm_build_chameleon>(*this, params);
- } break;
- case LLM_ARCH_WAVTOKENIZER_DEC:
- {
- llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params);
- } break;
- case LLM_ARCH_PLM:
- {
- llm = std::make_unique<llm_build_plm>(*this, params);
- } break;
- case LLM_ARCH_BAILINGMOE:
- {
- llm = std::make_unique<llm_build_bailingmoe>(*this, params);
- } break;
- case LLM_ARCH_SEED_OSS:
- {
- llm = std::make_unique<llm_build_seed_oss>(*this, params);
- } break;
- case LLM_ARCH_DOTS1:
- {
- llm = std::make_unique<llm_build_dots1>(*this, params);
- } break;
- case LLM_ARCH_ARCEE:
- {
- llm = std::make_unique<llm_build_arcee>(*this, params);
- } break;
- case LLM_ARCH_ERNIE4_5:
- {
- llm = std::make_unique<llm_build_ernie4_5>(*this, params);
- } break;
- case LLM_ARCH_ERNIE4_5_MOE:
- {
- llm = std::make_unique<llm_build_ernie4_5_moe>(*this, params);
- } break;
- case LLM_ARCH_HUNYUAN_MOE:
- {
- llm = std::make_unique<llm_build_hunyuan_moe>(*this, params);
- } break;
- case LLM_ARCH_HUNYUAN_DENSE:
- {
- llm = std::make_unique<llm_build_hunyuan_dense>(*this, params);
- } break;
- case LLM_ARCH_SMOLLM3:
- {
- llm = std::make_unique<llm_build_smollm3>(*this, params);
- } break;
- case LLM_ARCH_OPENAI_MOE:
- {
- llm = std::make_unique<llm_build_openai_moe_iswa>(*this, params);
- } break;
- case LLM_ARCH_FALCON_H1:
- {
- llm = std::make_unique<llm_build_falcon_h1>(*this, params);
- } break;
- case LLM_ARCH_LFM2:
- {
- llm = std::make_unique<llm_build_lfm2>(*this, params);
- } break;
- case LLM_ARCH_SMALLTHINKER:
- {
- if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
- llm = std::make_unique<llm_build_smallthinker<true>> (*this, params);
- } else {
- llm = std::make_unique<llm_build_smallthinker<false>>(*this, params);
- }
- } break;
- case LLM_ARCH_QWEN3NEXT:
- {
- llm = std::make_unique<llm_build_qwen3next>(*this, params);
- } break;
- default:
- GGML_ABORT("fatal error");
- }
- // add on pooling layer
- llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
- return llm->res->get_gf();
- }
- //
- // interface implementation
- //
- llama_model_params llama_model_default_params() {
- llama_model_params result = {
- /*.devices =*/ nullptr,
- /*.tensor_buft_overrides =*/ nullptr,
- /*.n_gpu_layers =*/ 999,
- /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
- /*.main_gpu =*/ 0,
- /*.tensor_split =*/ nullptr,
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- /*.kv_overrides =*/ nullptr,
- /*.vocab_only =*/ false,
- /*.use_mmap =*/ true,
- /*.use_mlock =*/ false,
- /*.check_tensors =*/ false,
- /*.use_extra_bufts =*/ true,
- };
- return result;
- }
- const llama_vocab * llama_model_get_vocab(const llama_model * model) {
- return &model->vocab;
- }
- void llama_free_model(llama_model * model) {
- llama_model_free(model);
- }
- void llama_model_free(llama_model * model) {
- delete model;
- }
- int32_t llama_model_n_ctx_train(const llama_model * model) {
- return model->hparams.n_ctx_train;
- }
- int32_t llama_model_n_embd(const llama_model * model) {
- return model->hparams.n_embd;
- }
- int32_t llama_model_n_layer(const llama_model * model) {
- return model->hparams.n_layer;
- }
- int32_t llama_model_n_head(const llama_model * model) {
- return model->hparams.n_head();
- }
- int32_t llama_model_n_head_kv(const llama_model * model) {
- return model->hparams.n_head_kv();
- }
- int32_t llama_model_n_swa(const llama_model * model) {
- return model->hparams.n_swa;
- }
- uint32_t llama_model_n_cls_out(const struct llama_model * model) {
- return model->hparams.n_cls_out;
- }
- const char * llama_model_cls_label(const struct llama_model * model, uint32_t i) {
- if (i < model->classifier_labels.size()) {
- return model->classifier_labels[i].c_str();
- }
- return nullptr;
- }
- // deprecated
- int32_t llama_n_ctx_train(const llama_model * model) {
- return llama_model_n_ctx_train(model);
- }
- // deprecated
- int32_t llama_n_embd(const llama_model * model) {
- return llama_model_n_embd(model);
- }
- // deprecated
- int32_t llama_n_layer(const llama_model * model) {
- return llama_model_n_layer(model);
- }
- // deprecated
- int32_t llama_n_head(const llama_model * model) {
- return llama_model_n_head(model);
- }
- llama_rope_type llama_model_rope_type(const llama_model * model) {
- switch (model->arch) {
- // these models do not use RoPE
- case LLM_ARCH_GPT2:
- case LLM_ARCH_GPTJ:
- case LLM_ARCH_MPT:
- case LLM_ARCH_REFACT:
- case LLM_ARCH_BLOOM:
- case LLM_ARCH_MAMBA:
- case LLM_ARCH_MAMBA2:
- case LLM_ARCH_JAMBA:
- case LLM_ARCH_JINA_BERT_V2:
- case LLM_ARCH_T5:
- case LLM_ARCH_T5ENCODER:
- case LLM_ARCH_JAIS:
- case LLM_ARCH_RWKV6:
- case LLM_ARCH_RWKV6QWEN2:
- case LLM_ARCH_RWKV7:
- case LLM_ARCH_ARWKV7:
- case LLM_ARCH_WAVTOKENIZER_DEC:
- case LLM_ARCH_NEMOTRON_H:
- return LLAMA_ROPE_TYPE_NONE;
- // use what we call a normal RoPE, operating on pairs of consecutive head values
- case LLM_ARCH_LLAMA:
- case LLM_ARCH_LLADA:
- case LLM_ARCH_LLAMA4:
- case LLM_ARCH_DECI:
- case LLM_ARCH_BAICHUAN:
- case LLM_ARCH_STARCODER:
- case LLM_ARCH_INTERNLM2:
- case LLM_ARCH_MINICPM:
- case LLM_ARCH_XVERSE:
- case LLM_ARCH_COMMAND_R:
- case LLM_ARCH_COHERE2:
- case LLM_ARCH_OLMO:
- case LLM_ARCH_ARCTIC:
- case LLM_ARCH_DEEPSEEK:
- case LLM_ARCH_DEEPSEEK2:
- case LLM_ARCH_PLM:
- case LLM_ARCH_CHATGLM:
- case LLM_ARCH_GLM4:
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- case LLM_ARCH_GRANITE_HYBRID:
- case LLM_ARCH_CHAMELEON:
- case LLM_ARCH_BAILINGMOE:
- case LLM_ARCH_NEO_BERT:
- case LLM_ARCH_SMOLLM3:
- case LLM_ARCH_ARCEE:
- case LLM_ARCH_ERNIE4_5:
- case LLM_ARCH_ERNIE4_5_MOE:
- return LLAMA_ROPE_TYPE_NORM;
- // the pairs of head values are offset by n_rot/2
- case LLM_ARCH_FALCON:
- case LLM_ARCH_FALCON_H1:
- case LLM_ARCH_GROK:
- case LLM_ARCH_DBRX:
- case LLM_ARCH_BERT:
- case LLM_ARCH_JINA_BERT_V3:
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_NOMIC_BERT_MOE:
- case LLM_ARCH_STABLELM:
- case LLM_ARCH_BITNET:
- case LLM_ARCH_QWEN:
- case LLM_ARCH_QWEN2:
- case LLM_ARCH_DREAM:
- case LLM_ARCH_QWEN2MOE:
- case LLM_ARCH_QWEN3:
- case LLM_ARCH_QWEN3MOE:
- case LLM_ARCH_QWEN3NEXT:
- case LLM_ARCH_LLADA_MOE:
- case LLM_ARCH_OLMO2:
- case LLM_ARCH_OLMOE:
- case LLM_ARCH_PHI2:
- case LLM_ARCH_PHI3:
- case LLM_ARCH_PHIMOE:
- case LLM_ARCH_PLAMO:
- case LLM_ARCH_PLAMO2:
- case LLM_ARCH_GEMMA:
- case LLM_ARCH_GEMMA2:
- case LLM_ARCH_GEMMA3:
- case LLM_ARCH_GEMMA3N:
- case LLM_ARCH_GEMMA_EMBEDDING:
- case LLM_ARCH_STARCODER2:
- case LLM_ARCH_OPENELM:
- case LLM_ARCH_GPTNEOX:
- case LLM_ARCH_CODESHELL:
- case LLM_ARCH_ORION:
- case LLM_ARCH_NEMOTRON:
- case LLM_ARCH_EXAONE:
- case LLM_ARCH_EXAONE4:
- case LLM_ARCH_MINICPM3:
- case LLM_ARCH_DOTS1:
- case LLM_ARCH_HUNYUAN_MOE:
- case LLM_ARCH_OPENAI_MOE:
- case LLM_ARCH_HUNYUAN_DENSE:
- case LLM_ARCH_LFM2:
- case LLM_ARCH_SMALLTHINKER:
- case LLM_ARCH_GLM4_MOE:
- case LLM_ARCH_SEED_OSS:
- return LLAMA_ROPE_TYPE_NEOX;
- case LLM_ARCH_QWEN2VL:
- return LLAMA_ROPE_TYPE_MROPE;
- // all model arches should be listed explicitly here
- case LLM_ARCH_UNKNOWN:
- GGML_ABORT("unknown architecture");
- }
- return LLAMA_ROPE_TYPE_NONE;
- }
- float llama_model_rope_freq_scale_train(const llama_model * model) {
- return model->hparams.rope_freq_scale_train;
- }
- int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
- const auto & it = model->gguf_kv.find(key);
- if (it == model->gguf_kv.end()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_meta_count(const llama_model * model) {
- return (int)model->gguf_kv.size();
- }
- int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->first.c_str());
- }
- int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
- return snprintf(buf, buf_size, "%s", model->desc().c_str());
- }
- uint64_t llama_model_size(const llama_model * model) {
- return model->size();
- }
- const char * llama_model_chat_template(const llama_model * model, const char * name) {
- const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE)
- : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
- const auto & it = model->gguf_kv.find(key);
- if (it == model->gguf_kv.end()) {
- // one-off fix for very popular models (so we are not flooded with issues)
- // do not extend this list unless absolutely necessary
- // Mistral-Small-2503 does not have built-in chat template
- llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
- if (!name && pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
- return "mistral-v7-tekken";
- }
- return nullptr;
- }
- return it->second.c_str();
- }
- uint64_t llama_model_n_params(const llama_model * model) {
- return model->n_elements();
- }
- bool llama_model_has_encoder(const llama_model * model) {
- switch (model->arch) {
- case LLM_ARCH_T5: return true;
- case LLM_ARCH_T5ENCODER: return true;
- default: return false;
- }
- }
- bool llama_model_has_decoder(const llama_model * model) {
- switch (model->arch) {
- case LLM_ARCH_T5ENCODER: return false;
- default: return true;
- }
- }
- llama_token llama_model_decoder_start_token(const llama_model * model) {
- return model->hparams.dec_start_token_id;
- }
- bool llama_model_is_recurrent(const llama_model * model) {
- return llm_arch_is_recurrent(model->arch);
- }
- bool llama_model_is_diffusion(const llama_model * model) {
- return llm_arch_is_diffusion(model->arch);
- }
- const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
- return model->tensors_by_name;
- }
|