ggml.c 395 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. inline static void* ggml_aligned_malloc(size_t size) {
  101. void* aligned_memory = NULL;
  102. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  103. if (result != 0) {
  104. // Handle allocation failure
  105. return NULL;
  106. }
  107. return aligned_memory;
  108. }
  109. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  110. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  111. #endif
  112. #define UNUSED(x) (void)(x)
  113. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  114. #define GGML_ASSERT(x) \
  115. do { \
  116. if (!(x)) { \
  117. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  118. abort(); \
  119. } \
  120. } while (0)
  121. #if defined(GGML_USE_ACCELERATE)
  122. #include <Accelerate/Accelerate.h>
  123. #elif defined(GGML_USE_OPENBLAS)
  124. #include <cblas.h>
  125. #elif defined(GGML_USE_CUBLAS)
  126. #include <cublas_v2.h>
  127. #include <cuda_runtime.h>
  128. #define CUDA_CHECK(err) \
  129. do { \
  130. cudaError_t err_ = (err); \
  131. if (err_ != cudaSuccess) { \
  132. printf("CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
  133. cudaGetErrorString(err_)); \
  134. exit(1); \
  135. } \
  136. } while (0)
  137. #define CUBLAS_CHECK(err) \
  138. do { \
  139. cublasStatus_t err_ = (err); \
  140. if (err_ != CUBLAS_STATUS_SUCCESS) { \
  141. printf("cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
  142. exit(1); \
  143. } \
  144. } while (0)
  145. static cublasHandle_t cublasH = NULL;
  146. static cudaStream_t cudaStream = NULL;
  147. static void init_cublas(void) {
  148. if (cublasH == NULL) {
  149. // create cublas handle, bind a stream
  150. CUBLAS_CHECK(cublasCreate(&cublasH));
  151. CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
  152. CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
  153. // configure logging to stdout
  154. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
  155. }
  156. }
  157. #endif
  158. #undef MIN
  159. #undef MAX
  160. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  161. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  162. // floating point type used to accumulate sums
  163. typedef double ggml_float;
  164. // 16-bit float
  165. // on Arm, we use __fp16
  166. // on x86, we use uint16_t
  167. #ifdef __ARM_NEON
  168. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  169. //
  170. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  171. //
  172. #include <arm_neon.h>
  173. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  174. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  175. #define GGML_FP16_TO_FP32(x) ((float) (x))
  176. #define GGML_FP32_TO_FP16(x) (x)
  177. #else
  178. #ifdef __wasm_simd128__
  179. #include <wasm_simd128.h>
  180. #else
  181. #ifdef __POWER9_VECTOR__
  182. #include <altivec.h>
  183. #undef bool
  184. #define bool _Bool
  185. #else
  186. #include <immintrin.h>
  187. #endif
  188. #endif
  189. #ifdef __F16C__
  190. #ifdef _MSC_VER
  191. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  192. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  193. #else
  194. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  195. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  196. #endif
  197. #elif defined(__POWER9_VECTOR__)
  198. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  199. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  200. /* the inline asm below is about 12% faster than the lookup method */
  201. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  202. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  203. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  204. register float f;
  205. register double d;
  206. __asm__(
  207. "mtfprd %0,%2\n"
  208. "xscvhpdp %0,%0\n"
  209. "frsp %1,%0\n" :
  210. /* temp */ "=d"(d),
  211. /* out */ "=f"(f):
  212. /* in */ "r"(h));
  213. return f;
  214. }
  215. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  216. register double d;
  217. register ggml_fp16_t r;
  218. __asm__( /* xscvdphp can work on double or single precision */
  219. "xscvdphp %0,%2\n"
  220. "mffprd %1,%0\n" :
  221. /* temp */ "=d"(d),
  222. /* out */ "=r"(r):
  223. /* in */ "f"(f));
  224. return r;
  225. }
  226. #else
  227. // FP16 <-> FP32
  228. // ref: https://github.com/Maratyszcza/FP16
  229. static inline float fp32_from_bits(uint32_t w) {
  230. union {
  231. uint32_t as_bits;
  232. float as_value;
  233. } fp32;
  234. fp32.as_bits = w;
  235. return fp32.as_value;
  236. }
  237. static inline uint32_t fp32_to_bits(float f) {
  238. union {
  239. float as_value;
  240. uint32_t as_bits;
  241. } fp32;
  242. fp32.as_value = f;
  243. return fp32.as_bits;
  244. }
  245. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  246. const uint32_t w = (uint32_t) h << 16;
  247. const uint32_t sign = w & UINT32_C(0x80000000);
  248. const uint32_t two_w = w + w;
  249. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  250. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  251. const float exp_scale = 0x1.0p-112f;
  252. #else
  253. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  254. #endif
  255. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  256. const uint32_t magic_mask = UINT32_C(126) << 23;
  257. const float magic_bias = 0.5f;
  258. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  259. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  260. const uint32_t result = sign |
  261. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  262. return fp32_from_bits(result);
  263. }
  264. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  265. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  266. const float scale_to_inf = 0x1.0p+112f;
  267. const float scale_to_zero = 0x1.0p-110f;
  268. #else
  269. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  270. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  271. #endif
  272. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  273. const uint32_t w = fp32_to_bits(f);
  274. const uint32_t shl1_w = w + w;
  275. const uint32_t sign = w & UINT32_C(0x80000000);
  276. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  277. if (bias < UINT32_C(0x71000000)) {
  278. bias = UINT32_C(0x71000000);
  279. }
  280. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  281. const uint32_t bits = fp32_to_bits(base);
  282. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  283. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  284. const uint32_t nonsign = exp_bits + mantissa_bits;
  285. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  286. }
  287. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  288. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  289. #endif // __F16C__
  290. #endif // __ARM_NEON
  291. //
  292. // global data
  293. //
  294. // precomputed gelu table for f16 (128 KB)
  295. static ggml_fp16_t table_gelu_f16[1 << 16];
  296. // precomputed silu table for f16 (128 KB)
  297. static ggml_fp16_t table_silu_f16[1 << 16];
  298. // precomputed exp table for f16 (128 KB)
  299. static ggml_fp16_t table_exp_f16[1 << 16];
  300. // precomputed f32 table for f16 (256 KB)
  301. static float table_f32_f16[1 << 16];
  302. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  303. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  304. // This is also true for POWER9.
  305. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  306. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  307. uint16_t s;
  308. memcpy(&s, &f, sizeof(uint16_t));
  309. return table_f32_f16[s];
  310. }
  311. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  312. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  313. #endif
  314. // note: do not use these inside ggml.c
  315. // these are meant to be used via the ggml.h API
  316. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  317. return (float) GGML_FP16_TO_FP32(x);
  318. }
  319. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  320. return GGML_FP32_TO_FP16(x);
  321. }
  322. //
  323. // timing
  324. //
  325. #if defined(_MSC_VER) || defined(__MINGW32__)
  326. static int64_t timer_freq;
  327. void ggml_time_init(void) {
  328. LARGE_INTEGER frequency;
  329. QueryPerformanceFrequency(&frequency);
  330. timer_freq = frequency.QuadPart;
  331. }
  332. int64_t ggml_time_ms(void) {
  333. LARGE_INTEGER t;
  334. QueryPerformanceCounter(&t);
  335. return (t.QuadPart * 1000) / timer_freq;
  336. }
  337. int64_t ggml_time_us(void) {
  338. LARGE_INTEGER t;
  339. QueryPerformanceCounter(&t);
  340. return (t.QuadPart * 1000000) / timer_freq;
  341. }
  342. #else
  343. void ggml_time_init(void) {}
  344. int64_t ggml_time_ms(void) {
  345. struct timespec ts;
  346. clock_gettime(CLOCK_MONOTONIC, &ts);
  347. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  348. }
  349. int64_t ggml_time_us(void) {
  350. struct timespec ts;
  351. clock_gettime(CLOCK_MONOTONIC, &ts);
  352. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  353. }
  354. #endif
  355. int64_t ggml_cycles(void) {
  356. return clock();
  357. }
  358. int64_t ggml_cycles_per_ms(void) {
  359. return CLOCKS_PER_SEC/1000;
  360. }
  361. #ifdef GGML_PERF
  362. #define ggml_perf_time_ms() ggml_time_ms()
  363. #define ggml_perf_time_us() ggml_time_us()
  364. #define ggml_perf_cycles() ggml_cycles()
  365. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  366. #else
  367. #define ggml_perf_time_ms() 0
  368. #define ggml_perf_time_us() 0
  369. #define ggml_perf_cycles() 0
  370. #define ggml_perf_cycles_per_ms() 0
  371. #endif
  372. //
  373. // cache line
  374. //
  375. #if defined(__cpp_lib_hardware_interference_size)
  376. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  377. #else
  378. #if defined(__POWER9_VECTOR__)
  379. #define CACHE_LINE_SIZE 128
  380. #else
  381. #define CACHE_LINE_SIZE 64
  382. #endif
  383. #endif
  384. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  385. //
  386. // quantization
  387. //
  388. // AVX routines provided by GH user Const-me
  389. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  390. #if __AVX2__ || __AVX512F__
  391. // Unpack 32 4-bit fields into 32 bytes
  392. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  393. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  394. {
  395. // Load 16 bytes from memory
  396. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  397. // Expand bytes into uint16_t values
  398. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  399. // Unpack values into individual bytes
  400. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  401. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  402. __m256i low = _mm256_and_si256( lowMask, bytes );
  403. high = _mm256_slli_epi16( high, 4 );
  404. bytes = _mm256_or_si256( low, high );
  405. return bytes;
  406. }
  407. static inline __m128i packNibbles( __m256i bytes )
  408. {
  409. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  410. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  411. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  412. __m256i low = _mm256_and_si256( lowByte, bytes );
  413. high = _mm256_srli_epi16( high, 4 );
  414. bytes = _mm256_or_si256( low, high );
  415. // Compress uint16_t lanes into bytes
  416. __m128i r0 = _mm256_castsi256_si128( bytes );
  417. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  418. return _mm_packus_epi16( r0, r1 );
  419. }
  420. #elif __AVX__
  421. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  422. {
  423. // Load 8 bytes from memory
  424. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  425. // Expand bytes into uint16_t values
  426. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  427. // Unpack values into individual bytes
  428. const __m128i lowMask = _mm_set1_epi8( 0xF );
  429. __m128i high = _mm_andnot_si128( lowMask, bytes );
  430. __m128i low = _mm_and_si128( lowMask, bytes );
  431. high = _mm_slli_epi16( high, 4 );
  432. bytes = _mm_or_si128( low, high );
  433. return bytes;
  434. }
  435. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  436. {
  437. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  438. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  439. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  440. __m128i low = _mm_and_si128( lowByte, bytes1 );
  441. high = _mm_srli_epi16( high, 4 );
  442. bytes1 = _mm_or_si128( low, high );
  443. high = _mm_andnot_si128( lowByte, bytes2 );
  444. low = _mm_and_si128( lowByte, bytes2 );
  445. high = _mm_srli_epi16( high, 4 );
  446. bytes2 = _mm_or_si128( low, high );
  447. return _mm_packus_epi16( bytes1, bytes2);
  448. }
  449. #endif
  450. #if __ARM_NEON
  451. #if !defined(__aarch64__)
  452. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  453. return
  454. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  455. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  456. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  457. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  458. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  459. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  460. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  461. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  462. }
  463. inline static int32_t vaddvq_s16(int16x8_t v) {
  464. return
  465. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  466. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  467. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  468. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  469. }
  470. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  471. return
  472. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  473. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  474. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  475. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  476. }
  477. inline static int32_t vaddvq_s32(int32x4_t v) {
  478. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  479. }
  480. inline static float vaddvq_f32(float32x4_t v) {
  481. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  482. }
  483. float vminvq_f32(float32x4_t v) {
  484. return
  485. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  486. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  487. }
  488. float vmaxvq_f32(float32x4_t v) {
  489. return
  490. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  491. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  492. }
  493. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  494. return vget_low_s8(vcombine_s8(a, b));
  495. }
  496. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  497. return vget_high_s8(vcombine_s8(a, b));
  498. }
  499. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  500. return vget_low_u8(vcombine_u8(a, b));
  501. }
  502. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  503. return vget_high_u8(vcombine_u8(a, b));
  504. }
  505. #endif
  506. #endif
  507. #define QK4_0 32
  508. typedef struct {
  509. float d; // delta
  510. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  511. } block_q4_0;
  512. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  513. #define QK4_1 32
  514. typedef struct {
  515. float d; // delta
  516. float m; // min
  517. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  518. } block_q4_1;
  519. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
  520. #define QK4_2 16
  521. typedef struct {
  522. ggml_fp16_t d; // delta
  523. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  524. } block_q4_2;
  525. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  526. #define QK8_0 32
  527. typedef struct {
  528. float d; // delta
  529. int8_t qs[QK8_0]; // quants
  530. } block_q8_0;
  531. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  532. // reference implementation for deterministic creation of model files
  533. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  534. assert(k % QK4_0 == 0);
  535. const int nb = k / QK4_0;
  536. uint8_t pp[QK4_0/2];
  537. for (int i = 0; i < nb; i++) {
  538. float amax = 0.0f; // absolute max
  539. for (int l = 0; l < QK4_0; l++) {
  540. const float v = x[i*QK4_0 + l];
  541. amax = MAX(amax, fabsf(v));
  542. }
  543. const float d = amax / ((1 << 3) - 1);
  544. const float id = d ? 1.0f/d : 0.0f;
  545. y[i].d = d;
  546. for (int l = 0; l < QK4_0; l += 2) {
  547. const float v0 = x[i*QK4_0 + l + 0]*id;
  548. const float v1 = x[i*QK4_0 + l + 1]*id;
  549. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  550. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  551. assert(vi0 < 16);
  552. assert(vi1 < 16);
  553. pp[l/2] = vi0 | (vi1 << 4);
  554. }
  555. memcpy(y[i].qs, pp, sizeof(pp));
  556. }
  557. }
  558. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  559. assert(k % QK4_0 == 0);
  560. const int nb = k / QK4_0;
  561. block_q4_0 * restrict y = vy;
  562. #if defined(__POWER9_VECTOR__)
  563. const vector float v85 = vec_splats(8.5f);
  564. for (int i = 0; i < nb; i++) {
  565. float amax = 0.0f; // absolute max
  566. vector float srcv [8];
  567. vector float asrcv[8];
  568. vector float amaxv[8];
  569. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  570. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  571. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  572. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  573. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  574. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  575. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  576. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  577. amax = MAX(
  578. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  579. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  580. const float d = amax / ((1 << 3) - 1);
  581. const float id = d ? 1.0/d : 0.0;
  582. y[i].d = d;
  583. const vector float vid = vec_splats(id);
  584. uint8_t * restrict pb = y[i].qs;
  585. for (int l = 0; l < 8; l++) {
  586. const vector float vf = vec_madd(srcv[l], vid, v85);
  587. const vector signed int vi = vec_signed(vf);
  588. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  589. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  590. }
  591. }
  592. #elif __ARM_NEON
  593. for (int i = 0; i < nb; i++) {
  594. float32x4_t srcv [8];
  595. float32x4_t asrcv[8];
  596. float32x4_t amaxv[8];
  597. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  598. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  599. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  600. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  601. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  602. const float amax = vmaxvq_f32(amaxv[0]);
  603. const float d = amax / ((1 << 3) - 1);
  604. const float id = d ? 1.0f/d : 0.0f;
  605. y[i].d = d;
  606. for (int l = 0; l < 8; l++) {
  607. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  608. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  609. const int32x4_t vi = vcvtq_s32_f32(vf);
  610. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  611. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  612. }
  613. }
  614. #elif defined(__AVX2__)
  615. for (int i = 0; i < nb; i++) {
  616. // Load elements into 4 AVX vectors
  617. __m256 v0 = _mm256_loadu_ps( x );
  618. __m256 v1 = _mm256_loadu_ps( x + 8 );
  619. __m256 v2 = _mm256_loadu_ps( x + 16 );
  620. __m256 v3 = _mm256_loadu_ps( x + 24 );
  621. x += 32;
  622. // Compute max(abs(e)) for the block
  623. const __m256 signBit = _mm256_set1_ps( -0.0f );
  624. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  625. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  626. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  627. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  628. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  629. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  630. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  631. const float maxScalar = _mm_cvtss_f32( max4 );
  632. // Quantize these floats
  633. const float d = maxScalar / 7.0f;
  634. y[i].d = d;
  635. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  636. const __m256 mul = _mm256_set1_ps( id );
  637. // Apply the multiplier
  638. v0 = _mm256_mul_ps( v0, mul );
  639. v1 = _mm256_mul_ps( v1, mul );
  640. v2 = _mm256_mul_ps( v2, mul );
  641. v3 = _mm256_mul_ps( v3, mul );
  642. // Round to nearest integer
  643. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  644. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  645. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  646. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  647. // Convert floats to integers
  648. __m256i i0 = _mm256_cvtps_epi32( v0 );
  649. __m256i i1 = _mm256_cvtps_epi32( v1 );
  650. __m256i i2 = _mm256_cvtps_epi32( v2 );
  651. __m256i i3 = _mm256_cvtps_epi32( v3 );
  652. // Convert int32 to int16
  653. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  654. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  655. // Convert int16 to int8
  656. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  657. // We got our precious signed bytes, but the order is now wrong
  658. // These AVX2 pack instructions process 16-byte pieces independently
  659. // The following instruction is fixing the order
  660. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  661. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  662. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  663. const __m256i off = _mm256_set1_epi8( 8 );
  664. i0 = _mm256_add_epi8( i0, off );
  665. // Compress the vector into 4 bit/value, and store
  666. __m128i res = packNibbles( i0 );
  667. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  668. }
  669. #elif defined(__AVX__)
  670. for (int i = 0; i < nb; i++) {
  671. // Load elements into 4 AVX vectors
  672. __m256 v0 = _mm256_loadu_ps( x );
  673. __m256 v1 = _mm256_loadu_ps( x + 8 );
  674. __m256 v2 = _mm256_loadu_ps( x + 16 );
  675. __m256 v3 = _mm256_loadu_ps( x + 24 );
  676. x += 32;
  677. // Compute max(abs(e)) for the block
  678. const __m256 signBit = _mm256_set1_ps( -0.0f );
  679. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  680. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  681. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  682. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  683. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  684. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  685. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  686. const float maxScalar = _mm_cvtss_f32( max4 );
  687. // Quantize these floats
  688. const float d = maxScalar / 7.0f;
  689. y[i].d = d;
  690. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  691. const __m256 mul = _mm256_set1_ps( id );
  692. // Apply the multiplier
  693. v0 = _mm256_mul_ps( v0, mul );
  694. v1 = _mm256_mul_ps( v1, mul );
  695. v2 = _mm256_mul_ps( v2, mul );
  696. v3 = _mm256_mul_ps( v3, mul );
  697. // Round to nearest integer
  698. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  699. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  700. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  701. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  702. // Convert floats to integers
  703. __m256i i0 = _mm256_cvtps_epi32( v0 );
  704. __m256i i1 = _mm256_cvtps_epi32( v1 );
  705. __m256i i2 = _mm256_cvtps_epi32( v2 );
  706. __m256i i3 = _mm256_cvtps_epi32( v3 );
  707. // Since we don't have in AVX some necessary functions,
  708. // we split the registers in half and call AVX2 analogs from SSE
  709. __m128i ni0 = _mm256_castsi256_si128( i0 );
  710. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  711. __m128i ni2 = _mm256_castsi256_si128( i1 );
  712. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  713. __m128i ni4 = _mm256_castsi256_si128( i2 );
  714. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  715. __m128i ni6 = _mm256_castsi256_si128( i3 );
  716. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  717. // Convert int32 to int16
  718. ni0 = _mm_packs_epi32( ni0, ni1 );
  719. ni2 = _mm_packs_epi32( ni2, ni3 );
  720. ni4 = _mm_packs_epi32( ni4, ni5 );
  721. ni6 = _mm_packs_epi32( ni6, ni7 );
  722. // Convert int16 to int8
  723. ni0 = _mm_packs_epi16( ni0, ni2 );
  724. ni4 = _mm_packs_epi16( ni4, ni6 );
  725. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  726. const __m128i off = _mm_set1_epi8( 8);
  727. ni0 = _mm_add_epi8( ni0, off );
  728. ni4 = _mm_add_epi8( ni4, off );
  729. // Compress the vector into 4 bit/value, and store
  730. __m128i res = packNibbles( ni0, ni4 );
  731. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  732. }
  733. #elif defined(__wasm_simd128__)
  734. for (int i = 0; i < nb; i++) {
  735. float amax = 0.0f; // absolute max
  736. v128_t srcv [8];
  737. v128_t asrcv[8];
  738. v128_t amaxv[8];
  739. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  740. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  741. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  742. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  743. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  744. amax = MAX(
  745. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  746. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  747. const float d = amax / ((1 << 3) - 1);
  748. const float id = d ? 1.0/d : 0.0;
  749. y[i].d = d;
  750. for (int l = 0; l < 8; l++) {
  751. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  752. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  753. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  754. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  755. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  756. }
  757. }
  758. #else
  759. // scalar
  760. quantize_row_q4_0_reference(x, y, k);
  761. #endif
  762. }
  763. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  764. assert(k % QK4_1 == 0);
  765. const int nb = k / QK4_1;
  766. block_q4_1 * restrict y = vy;
  767. uint8_t pp[QK4_1/2];
  768. for (int i = 0; i < nb; i++) {
  769. float min = FLT_MAX;
  770. float max = -FLT_MAX;
  771. for (int l = 0; l < QK4_1; l++) {
  772. const float v = x[i*QK4_1 + l];
  773. if (v < min) min = v;
  774. if (v > max) max = v;
  775. }
  776. const float d = (max - min) / ((1 << 4) - 1);
  777. const float id = d ? 1.0f/d : 0.0f;
  778. y[i].d = d;
  779. y[i].m = min;
  780. for (int l = 0; l < QK4_1; l += 2) {
  781. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  782. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  783. const uint8_t vi0 = roundf(v0);
  784. const uint8_t vi1 = roundf(v1);
  785. assert(vi0 < 16);
  786. assert(vi1 < 16);
  787. pp[l/2] = vi0 | (vi1 << 4);
  788. }
  789. memcpy(y[i].qs, pp, sizeof(pp));
  790. }
  791. }
  792. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  793. assert(k % QK4_1 == 0);
  794. const int nb = k / QK4_1;
  795. block_q4_1 * restrict y = vy;
  796. #if defined(__AVX2__)
  797. for (int i = 0; i < nb; i++) {
  798. // Load elements into 4 AVX vectors
  799. __m256 v0 = _mm256_loadu_ps( x );
  800. __m256 v1 = _mm256_loadu_ps( x + 8 );
  801. __m256 v2 = _mm256_loadu_ps( x + 16 );
  802. __m256 v3 = _mm256_loadu_ps( x + 24 );
  803. x += 32;
  804. // Compute max for the block
  805. __m256 vmax;
  806. vmax = _mm256_max_ps( v0, v1 );
  807. vmax = _mm256_max_ps( vmax, v2 );
  808. vmax = _mm256_max_ps( vmax, v3 );
  809. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  810. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  811. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  812. const float maxScalar = _mm_cvtss_f32( max4 );
  813. // Compute min for the block
  814. __m256 vmin;
  815. vmin = _mm256_min_ps( v0, v1 );
  816. vmin = _mm256_min_ps( vmin, v2 );
  817. vmin = _mm256_min_ps( vmin, v3 );
  818. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  819. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  820. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  821. const float minScalar = _mm_cvtss_f32( min4 );
  822. // Quantize these floats
  823. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  824. const float id = d ? 1.0f/d : 0.0f;
  825. y[i].m = minScalar;
  826. y[i].d = d;
  827. // x = (x-min)*id
  828. const __m256 mul = _mm256_set1_ps( id );
  829. const __m256 off = _mm256_set1_ps( minScalar );
  830. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  831. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  832. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  833. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  834. // Round to nearest integer
  835. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  836. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  837. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  838. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  839. // Convert floats to integers
  840. __m256i i0 = _mm256_cvtps_epi32( v0 );
  841. __m256i i1 = _mm256_cvtps_epi32( v1 );
  842. __m256i i2 = _mm256_cvtps_epi32( v2 );
  843. __m256i i3 = _mm256_cvtps_epi32( v3 );
  844. // Convert int32 to int16
  845. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  846. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  847. // Convert int16 to int8
  848. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  849. // We got our precious signed bytes, but the order is now wrong
  850. // These AVX2 pack instructions process 16-byte pieces independently
  851. // The following instruction is fixing the order
  852. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  853. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  854. // Compress the vector into 4 bit/value, and store
  855. __m128i res = packNibbles( i0 );
  856. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  857. }
  858. #elif __ARM_NEON
  859. for (int i = 0; i < nb; i++) {
  860. float32x4_t srcv[8];
  861. float32x4_t minv[8];
  862. float32x4_t maxv[8];
  863. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  864. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  865. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  866. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  867. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  868. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  869. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  870. const float min = vminvq_f32(minv[0]);
  871. const float max = vmaxvq_f32(maxv[0]);
  872. const float d = (max - min) / ((1 << 4) - 1);
  873. const float id = d ? 1.0f/d : 0.0f;
  874. y[i].d = d;
  875. y[i].m = min;
  876. const float32x4_t minv0 = vdupq_n_f32(min);
  877. for (int l = 0; l < 8; l++) {
  878. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  879. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  880. const int32x4_t vi = vcvtq_s32_f32(vf);
  881. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  882. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  883. }
  884. }
  885. #else
  886. // scalar
  887. quantize_row_q4_1_reference(x, vy, k);
  888. #endif
  889. }
  890. // reference implementation for deterministic creation of model files
  891. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  892. assert(k % QK4_2 == 0);
  893. const int nb = k / QK4_2;
  894. for (int i = 0; i < nb; i++) {
  895. float amax = 0.0f; // absolute max
  896. for (int l = 0; l < QK4_2; l++) {
  897. const float v = x[i*QK4_2 + l];
  898. amax = MAX(amax, fabsf(v));
  899. }
  900. const float d = amax / ((1 << 3) - 1);
  901. const float id = d ? 1.0f/d : 0.0f;
  902. y[i].d = GGML_FP32_TO_FP16(d);
  903. for (int l = 0; l < QK4_2; l += 2) {
  904. const float v0 = x[i*QK4_2 + l + 0]*id;
  905. const float v1 = x[i*QK4_2 + l + 1]*id;
  906. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  907. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  908. assert(vi0 < 16);
  909. assert(vi1 < 16);
  910. y[i].qs[l/2] = vi0 | (vi1 << 4);
  911. }
  912. }
  913. }
  914. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  915. assert(k % QK4_2 == 0);
  916. block_q4_2 * restrict y = vy;
  917. quantize_row_q4_2_reference(x, y, k);
  918. }
  919. // reference implementation for deterministic creation of model files
  920. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  921. assert(k % QK8_0 == 0);
  922. const int nb = k / QK8_0;
  923. for (int i = 0; i < nb; i++) {
  924. float amax = 0.0f; // absolute max
  925. for (int l = 0; l < QK8_0; l++) {
  926. const float v = x[i*QK8_0 + l];
  927. amax = MAX(amax, fabsf(v));
  928. }
  929. const float d = amax / ((1 << 7) - 1);
  930. const float id = d ? 1.0f/d : 0.0f;
  931. y[i].d = d;
  932. for (int l = 0; l < QK8_0; ++l) {
  933. const float v = x[i*QK8_0 + l]*id;
  934. y[i].qs[l] = roundf(v);
  935. }
  936. }
  937. }
  938. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  939. assert(k % QK8_0 == 0);
  940. const int nb = k / QK8_0;
  941. block_q8_0 * restrict y = vy;
  942. #if defined(__ARM_NEON)
  943. for (int i = 0; i < nb; i++) {
  944. float32x4_t srcv [8];
  945. float32x4_t asrcv[8];
  946. float32x4_t amaxv[8];
  947. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  948. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  949. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  950. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  951. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  952. const float amax = vmaxvq_f32(amaxv[0]);
  953. const float d = amax / ((1 << 7) - 1);
  954. const float id = d ? 1.0f/d : 0.0f;
  955. y[i].d = d;
  956. for (int l = 0; l < 8; l++) {
  957. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  958. const int32x4_t vi = vcvtnq_s32_f32(v);
  959. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  960. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  961. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  962. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  963. }
  964. }
  965. #elif defined(__AVX2__) || defined(__AVX__)
  966. for (int i = 0; i < nb; i++) {
  967. // Load elements into 4 AVX vectors
  968. __m256 v0 = _mm256_loadu_ps( x );
  969. __m256 v1 = _mm256_loadu_ps( x + 8 );
  970. __m256 v2 = _mm256_loadu_ps( x + 16 );
  971. __m256 v3 = _mm256_loadu_ps( x + 24 );
  972. x += 32;
  973. // Compute max(abs(e)) for the block
  974. const __m256 signBit = _mm256_set1_ps( -0.0f );
  975. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  976. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  977. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  978. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  979. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  980. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  981. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  982. const float maxScalar = _mm_cvtss_f32( max4 );
  983. // Quantize these floats
  984. const float d = maxScalar / 127.f;
  985. y[i].d = d;
  986. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  987. const __m256 mul = _mm256_set1_ps( id );
  988. // Apply the multiplier
  989. v0 = _mm256_mul_ps( v0, mul );
  990. v1 = _mm256_mul_ps( v1, mul );
  991. v2 = _mm256_mul_ps( v2, mul );
  992. v3 = _mm256_mul_ps( v3, mul );
  993. // Round to nearest integer
  994. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  995. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  996. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  997. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  998. // Convert floats to integers
  999. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1000. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1001. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1002. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1003. #if defined(__AVX2__)
  1004. // Convert int32 to int16
  1005. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1006. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1007. // Convert int16 to int8
  1008. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1009. // We got our precious signed bytes, but the order is now wrong
  1010. // These AVX2 pack instructions process 16-byte pieces independently
  1011. // The following instruction is fixing the order
  1012. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1013. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1014. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1015. #else
  1016. // Since we don't have in AVX some necessary functions,
  1017. // we split the registers in half and call AVX2 analogs from SSE
  1018. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1019. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1020. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1021. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1022. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1023. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1024. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1025. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1026. // Convert int32 to int16
  1027. ni0 = _mm_packs_epi32( ni0, ni1 );
  1028. ni2 = _mm_packs_epi32( ni2, ni3 );
  1029. ni4 = _mm_packs_epi32( ni4, ni5 );
  1030. ni6 = _mm_packs_epi32( ni6, ni7 );
  1031. // Convert int16 to int8
  1032. ni0 = _mm_packs_epi16( ni0, ni2 );
  1033. ni4 = _mm_packs_epi16( ni4, ni6 );
  1034. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1035. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1036. #endif
  1037. }
  1038. #else
  1039. // scalar
  1040. quantize_row_q8_0_reference(x, y, k);
  1041. #endif
  1042. }
  1043. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1044. assert(k % QK4_0 == 0);
  1045. const int nb = k / QK4_0;
  1046. const block_q4_0 * restrict x = vx;
  1047. #if defined(__AVX2__)
  1048. for (int i = 0; i < nb; i++) {
  1049. // scale factor
  1050. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1051. const uint8_t * restrict pp = x[i].qs;
  1052. for (int l = 0; l < QK4_0; l += 32) {
  1053. // Load 32x4-bit integers into 32x8-bit integers
  1054. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1055. // Subtract 8 from the integers
  1056. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1057. // Convert to 16-bit int
  1058. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1059. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1060. // Convert to 32-bit int -> float 32
  1061. const __m256 vf[4] = {
  1062. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1063. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1064. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1065. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1066. };
  1067. // Scale and store
  1068. for (int j = 0; j < 4; j++) {
  1069. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1070. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1071. }
  1072. }
  1073. }
  1074. #elif defined(__ARM_NEON)
  1075. for (int i = 0; i < nb; i++) {
  1076. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1077. const uint8_t * restrict pp = x[i].qs;
  1078. for (int l = 0; l < QK4_0; l += 16) {
  1079. // Load 16x4-bit integers into 8x8-bit integers
  1080. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1081. // Expand 4-bit qs to 8-bit bytes
  1082. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1083. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1084. // Convert to signed 8-bit integers
  1085. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1086. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1087. // Subtract 8 from each byte
  1088. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1089. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1090. // Interleave and combine
  1091. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1092. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1093. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1094. // convert to 2x int16x8_t
  1095. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1096. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1097. // convert to 4x float32x4_t
  1098. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1099. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1100. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1101. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1102. // Multiply by d
  1103. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1104. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1105. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1106. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1107. // Store
  1108. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1109. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1110. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1111. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1112. }
  1113. }
  1114. #else
  1115. // scalar
  1116. for (int i = 0; i < nb; i++) {
  1117. const float d = x[i].d;
  1118. const uint8_t * restrict pp = x[i].qs;
  1119. for (int l = 0; l < QK4_0; l += 2) {
  1120. const uint8_t vi = pp[l/2];
  1121. const int8_t vi0 = vi & 0xf;
  1122. const int8_t vi1 = vi >> 4;
  1123. const float v0 = (vi0 - 8)*d;
  1124. const float v1 = (vi1 - 8)*d;
  1125. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1126. y[i*QK4_0 + l + 0] = v0;
  1127. y[i*QK4_0 + l + 1] = v1;
  1128. assert(!isnan(y[i*QK4_0 + l + 0]));
  1129. assert(!isnan(y[i*QK4_0 + l + 1]));
  1130. }
  1131. }
  1132. #endif
  1133. }
  1134. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1135. assert(k % QK4_1 == 0);
  1136. const int nb = k / QK4_1;
  1137. const block_q4_1 * restrict x = vx;
  1138. #if defined(__AVX2__)
  1139. for (int i = 0; i < nb; i++) {
  1140. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1141. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1142. const uint8_t * restrict pp = x[i].qs;
  1143. for (int l = 0; l < QK4_1; l += 32) {
  1144. // Load 32x4-bit integers into 32x8-bit integers
  1145. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1146. // Convert to 16-bit int
  1147. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1148. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1149. // Convert to 32-bit int -> float 32
  1150. const __m256 vf[4] = {
  1151. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1152. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1153. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1154. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1155. };
  1156. // Scale, add m and store
  1157. for (int j = 0; j < 4; j++) {
  1158. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1159. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1160. }
  1161. }
  1162. }
  1163. #elif defined(__ARM_NEON)
  1164. for (int i = 0; i < nb; i++) {
  1165. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1166. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1167. const uint8_t * restrict pp = x[i].qs;
  1168. for (int l = 0; l < QK4_1; l += 16) {
  1169. // Load 16x4-bit integers into 8x8-bit integers
  1170. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1171. // Expand 4-bit qs to 8-bit bytes
  1172. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1173. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1174. // Interleave and combine
  1175. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1176. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1177. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1178. // convert to 2x uint16x8_t
  1179. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1180. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1181. // convert to 4x float32x4_t
  1182. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1183. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1184. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1185. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1186. // multiply by d and add m
  1187. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1188. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1189. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1190. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1191. // Store
  1192. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1193. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1194. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1195. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1196. }
  1197. }
  1198. #else
  1199. for (int i = 0; i < nb; i++) {
  1200. const float d = x[i].d;
  1201. const float m = x[i].m;
  1202. const uint8_t * restrict pp = x[i].qs;
  1203. for (int l = 0; l < QK4_1; l += 2) {
  1204. const uint8_t vi = pp[l/2];
  1205. const int8_t vi0 = vi & 0xf;
  1206. const int8_t vi1 = vi >> 4;
  1207. const float v0 = vi0*d + m;
  1208. const float v1 = vi1*d + m;
  1209. y[i*QK4_1 + l + 0] = v0;
  1210. y[i*QK4_1 + l + 1] = v1;
  1211. assert(!isnan(y[i*QK4_1 + l + 0]));
  1212. assert(!isnan(y[i*QK4_1 + l + 1]));
  1213. }
  1214. }
  1215. #endif
  1216. }
  1217. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1218. assert(k % QK4_2 == 0);
  1219. const int nb = k / QK4_2;
  1220. const block_q4_2 * restrict x = vx;
  1221. for (int i = 0; i < nb; i++) {
  1222. const float d = GGML_FP16_TO_FP32(x[i].d);
  1223. const uint8_t * restrict pp = x[i].qs;
  1224. for (int l = 0; l < QK4_2; l += 2) {
  1225. const uint8_t vi = pp[l/2];
  1226. const int8_t vi0 = vi & 0xf;
  1227. const int8_t vi1 = vi >> 4;
  1228. const float v0 = (vi0 - 8)*d;
  1229. const float v1 = (vi1 - 8)*d;
  1230. y[i*QK4_2 + l + 0] = v0;
  1231. y[i*QK4_2 + l + 1] = v1;
  1232. assert(!isnan(y[i*QK4_2 + l + 0]));
  1233. assert(!isnan(y[i*QK4_2 + l + 1]));
  1234. }
  1235. }
  1236. }
  1237. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1238. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1239. //static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1240. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1241. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1242. [GGML_TYPE_Q4_0] = {
  1243. .dequantize_row_q = dequantize_row_q4_0,
  1244. .quantize_row_q = quantize_row_q4_0,
  1245. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1246. .quantize_row_q_dot = quantize_row_q8_0,
  1247. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1248. },
  1249. [GGML_TYPE_Q4_1] = {
  1250. .dequantize_row_q = dequantize_row_q4_1,
  1251. .quantize_row_q = quantize_row_q4_1,
  1252. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1253. .quantize_row_q_dot = quantize_row_q4_1,
  1254. .vec_dot_q = ggml_vec_dot_q4_1,
  1255. },
  1256. [GGML_TYPE_Q4_2] = {
  1257. .dequantize_row_q = dequantize_row_q4_2,
  1258. .quantize_row_q = quantize_row_q4_2,
  1259. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1260. .quantize_row_q_dot = quantize_row_q8_0,
  1261. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1262. },
  1263. // TODO: GGML_TYPE_Q8_0
  1264. };
  1265. // For internal test use
  1266. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1267. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1268. return quantize_fns[i];
  1269. }
  1270. //
  1271. // simd mappings
  1272. //
  1273. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1274. // we then implement the fundamental computation operations below using only these macros
  1275. // adding support for new architectures requires to define the corresponding SIMD macros
  1276. //
  1277. // GGML_F32_STEP / GGML_F16_STEP
  1278. // number of elements to process in a single step
  1279. //
  1280. // GGML_F32_EPR / GGML_F16_EPR
  1281. // number of elements to fit in a single register
  1282. //
  1283. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1284. #define GGML_SIMD
  1285. // F32 NEON
  1286. #define GGML_F32_STEP 16
  1287. #define GGML_F32_EPR 4
  1288. #define GGML_F32x4 float32x4_t
  1289. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1290. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1291. #define GGML_F32x4_LOAD vld1q_f32
  1292. #define GGML_F32x4_STORE vst1q_f32
  1293. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1294. #define GGML_F32x4_ADD vaddq_f32
  1295. #define GGML_F32x4_MUL vmulq_f32
  1296. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1297. #define GGML_F32x4_REDUCE(res, x) \
  1298. { \
  1299. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1300. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1301. } \
  1302. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1303. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1304. } \
  1305. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1306. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1307. } \
  1308. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1309. }
  1310. #define GGML_F32_VEC GGML_F32x4
  1311. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1312. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1313. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1314. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1315. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1316. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1317. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1318. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1319. // F16 NEON
  1320. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1321. #define GGML_F16_STEP 32
  1322. #define GGML_F16_EPR 8
  1323. #define GGML_F16x8 float16x8_t
  1324. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1325. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1326. #define GGML_F16x8_LOAD vld1q_f16
  1327. #define GGML_F16x8_STORE vst1q_f16
  1328. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1329. #define GGML_F16x8_ADD vaddq_f16
  1330. #define GGML_F16x8_MUL vmulq_f16
  1331. #define GGML_F16x8_REDUCE(res, x) \
  1332. { \
  1333. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1334. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1335. } \
  1336. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1337. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1338. } \
  1339. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1340. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1341. } \
  1342. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1343. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1344. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1345. }
  1346. #define GGML_F16_VEC GGML_F16x8
  1347. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1348. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1349. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1350. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1351. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1352. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1353. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1354. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1355. #else
  1356. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1357. // and take advantage of the vcvt_ functions to convert to/from FP16
  1358. #define GGML_F16_STEP 16
  1359. #define GGML_F16_EPR 4
  1360. #define GGML_F32Cx4 float32x4_t
  1361. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1362. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1363. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1364. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1365. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1366. #define GGML_F32Cx4_ADD vaddq_f32
  1367. #define GGML_F32Cx4_MUL vmulq_f32
  1368. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1369. #define GGML_F16_VEC GGML_F32Cx4
  1370. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1371. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1372. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1373. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1374. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1375. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1376. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1377. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1378. #endif
  1379. #elif defined(__AVX__)
  1380. #define GGML_SIMD
  1381. // F32 AVX
  1382. #define GGML_F32_STEP 32
  1383. #define GGML_F32_EPR 8
  1384. #define GGML_F32x8 __m256
  1385. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1386. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1387. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1388. #define GGML_F32x8_STORE _mm256_storeu_ps
  1389. #if defined(__FMA__)
  1390. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1391. #else
  1392. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1393. #endif
  1394. #define GGML_F32x8_ADD _mm256_add_ps
  1395. #define GGML_F32x8_MUL _mm256_mul_ps
  1396. #define GGML_F32x8_REDUCE(res, x) \
  1397. { \
  1398. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1399. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1400. } \
  1401. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1402. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1403. } \
  1404. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1405. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1406. } \
  1407. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1408. _mm256_extractf128_ps(x[0], 1)); \
  1409. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1410. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1411. }
  1412. // TODO: is this optimal ?
  1413. #define GGML_F32_VEC GGML_F32x8
  1414. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1415. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1416. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1417. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1418. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1419. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1420. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1421. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1422. // F16 AVX
  1423. #define GGML_F16_STEP 32
  1424. #define GGML_F16_EPR 8
  1425. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1426. #define GGML_F32Cx8 __m256
  1427. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1428. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1429. #if defined(__F16C__)
  1430. // the _mm256_cvt intrinsics require F16C
  1431. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1432. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1433. #else
  1434. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1435. float tmp[8];
  1436. for (int i = 0; i < 8; i++)
  1437. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1438. return _mm256_loadu_ps(tmp);
  1439. }
  1440. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1441. float arr[8];
  1442. _mm256_storeu_ps(arr, y);
  1443. for (int i = 0; i < 8; i++)
  1444. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1445. }
  1446. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1447. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1448. #endif
  1449. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1450. #define GGML_F32Cx8_ADD _mm256_add_ps
  1451. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1452. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1453. #define GGML_F16_VEC GGML_F32Cx8
  1454. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1455. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1456. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1457. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1458. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1459. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1460. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1461. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1462. #elif defined(__POWER9_VECTOR__)
  1463. #define GGML_SIMD
  1464. // F32 POWER9
  1465. #define GGML_F32_STEP 32
  1466. #define GGML_F32_EPR 4
  1467. #define GGML_F32x4 vector float
  1468. #define GGML_F32x4_ZERO 0.0f
  1469. #define GGML_F32x4_SET1 vec_splats
  1470. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1471. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1472. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1473. #define GGML_F32x4_ADD vec_add
  1474. #define GGML_F32x4_MUL vec_mul
  1475. #define GGML_F32x4_REDUCE(res, x) \
  1476. { \
  1477. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1478. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1479. } \
  1480. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1481. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1482. } \
  1483. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1484. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1485. } \
  1486. res = vec_extract(x[0], 0) + \
  1487. vec_extract(x[0], 1) + \
  1488. vec_extract(x[0], 2) + \
  1489. vec_extract(x[0], 3); \
  1490. }
  1491. #define GGML_F32_VEC GGML_F32x4
  1492. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1493. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1494. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1495. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1496. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1497. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1498. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1499. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1500. // F16 POWER9
  1501. #define GGML_F16_STEP GGML_F32_STEP
  1502. #define GGML_F16_EPR GGML_F32_EPR
  1503. #define GGML_F16_VEC GGML_F32x4
  1504. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1505. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1506. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1507. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1508. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1509. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1510. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1511. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1512. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1513. #define GGML_F16_VEC_STORE(p, r, i) \
  1514. if (i & 0x1) \
  1515. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1516. r[i - GGML_ENDIAN_BYTE(0)]), \
  1517. 0, p - GGML_F16_EPR)
  1518. #elif defined(__wasm_simd128__)
  1519. #define GGML_SIMD
  1520. // F32 WASM
  1521. #define GGML_F32_STEP 16
  1522. #define GGML_F32_EPR 4
  1523. #define GGML_F32x4 v128_t
  1524. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1525. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1526. #define GGML_F32x4_LOAD wasm_v128_load
  1527. #define GGML_F32x4_STORE wasm_v128_store
  1528. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1529. #define GGML_F32x4_ADD wasm_f32x4_add
  1530. #define GGML_F32x4_MUL wasm_f32x4_mul
  1531. #define GGML_F32x4_REDUCE(res, x) \
  1532. { \
  1533. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1534. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1535. } \
  1536. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1537. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1538. } \
  1539. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1540. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1541. } \
  1542. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1543. wasm_f32x4_extract_lane(x[0], 1) + \
  1544. wasm_f32x4_extract_lane(x[0], 2) + \
  1545. wasm_f32x4_extract_lane(x[0], 3); \
  1546. }
  1547. #define GGML_F32_VEC GGML_F32x4
  1548. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1549. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1550. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1551. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1552. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1553. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1554. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1555. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1556. // F16 WASM
  1557. #define GGML_F16_STEP 16
  1558. #define GGML_F16_EPR 4
  1559. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1560. float tmp[4];
  1561. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1562. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1563. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1564. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1565. return wasm_v128_load(tmp);
  1566. }
  1567. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1568. float tmp[4];
  1569. wasm_v128_store(tmp, x);
  1570. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1571. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1572. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1573. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1574. }
  1575. #define GGML_F16x4 v128_t
  1576. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1577. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1578. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1579. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1580. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1581. #define GGML_F16x4_ADD wasm_f32x4_add
  1582. #define GGML_F16x4_MUL wasm_f32x4_mul
  1583. #define GGML_F16x4_REDUCE(res, x) \
  1584. { \
  1585. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1586. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1587. } \
  1588. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1589. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1590. } \
  1591. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1592. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1593. } \
  1594. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1595. wasm_f32x4_extract_lane(x[0], 1) + \
  1596. wasm_f32x4_extract_lane(x[0], 2) + \
  1597. wasm_f32x4_extract_lane(x[0], 3); \
  1598. }
  1599. #define GGML_F16_VEC GGML_F16x4
  1600. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1601. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1602. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1603. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1604. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1605. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1606. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1607. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1608. #elif defined(__SSE3__)
  1609. #define GGML_SIMD
  1610. // F32 SSE
  1611. #define GGML_F32_STEP 32
  1612. #define GGML_F32_EPR 4
  1613. #define GGML_F32x4 __m128
  1614. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1615. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1616. #define GGML_F32x4_LOAD _mm_loadu_ps
  1617. #define GGML_F32x4_STORE _mm_storeu_ps
  1618. #if defined(__FMA__)
  1619. // TODO: Does this work?
  1620. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1621. #else
  1622. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1623. #endif
  1624. #define GGML_F32x4_ADD _mm_add_ps
  1625. #define GGML_F32x4_MUL _mm_mul_ps
  1626. #define GGML_F32x4_REDUCE(res, x) \
  1627. { \
  1628. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1629. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1630. } \
  1631. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1632. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1633. } \
  1634. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1635. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1636. } \
  1637. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1638. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1639. }
  1640. // TODO: is this optimal ?
  1641. #define GGML_F32_VEC GGML_F32x4
  1642. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1643. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1644. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1645. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1646. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1647. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1648. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1649. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1650. // F16 SSE
  1651. #define GGML_F16_STEP 32
  1652. #define GGML_F16_EPR 4
  1653. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1654. float tmp[4];
  1655. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1656. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1657. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1658. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1659. return _mm_loadu_ps(tmp);
  1660. }
  1661. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1662. float arr[4];
  1663. _mm_storeu_ps(arr, y);
  1664. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1665. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1666. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1667. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1668. }
  1669. #define GGML_F32Cx4 __m128
  1670. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1671. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1672. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1673. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1674. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1675. #define GGML_F32Cx4_ADD _mm_add_ps
  1676. #define GGML_F32Cx4_MUL _mm_mul_ps
  1677. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1678. #define GGML_F16_VEC GGML_F32Cx4
  1679. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1680. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1681. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1682. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1683. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1684. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1685. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1686. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1687. #endif
  1688. // GGML_F32_ARR / GGML_F16_ARR
  1689. // number of registers to use per step
  1690. #ifdef GGML_SIMD
  1691. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1692. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1693. #endif
  1694. //
  1695. // fundamental operations
  1696. //
  1697. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1698. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1699. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1700. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1701. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1702. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1703. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1704. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1705. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1706. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1707. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1708. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1709. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1710. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1711. #ifdef GGML_SIMD
  1712. float sumf = 0.0f;
  1713. const int np = (n & ~(GGML_F32_STEP - 1));
  1714. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1715. GGML_F32_VEC ax[GGML_F32_ARR];
  1716. GGML_F32_VEC ay[GGML_F32_ARR];
  1717. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1718. for (int j = 0; j < GGML_F32_ARR; j++) {
  1719. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1720. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1721. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1722. }
  1723. }
  1724. // reduce sum0..sum3 to sum0
  1725. GGML_F32_VEC_REDUCE(sumf, sum);
  1726. // leftovers
  1727. for (int i = np; i < n; ++i) {
  1728. sumf += x[i]*y[i];
  1729. }
  1730. #else
  1731. // scalar
  1732. ggml_float sumf = 0.0;
  1733. for (int i = 0; i < n; ++i) {
  1734. sumf += (ggml_float)(x[i]*y[i]);
  1735. }
  1736. #endif
  1737. *s = sumf;
  1738. }
  1739. #if __AVX512F__ && QK4_0 == 32
  1740. static inline __m512i bytes_from_q4_0_twoblocks_avx512( const __m512i blocks ) {
  1741. // The 64 bytes of `blocks` contain two consecutive Q4_0 blocks loaded from memory:
  1742. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1743. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1744. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1745. // | :. =_ () [] <> () Zz Yy|
  1746. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1747. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1748. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1749. // |Xx Ww Vv Uu Tt Ss Rr Qq Pp Oo Nn Mm Ll Kk Jj Ii Hh Gg Ff Ee Dd Cc Bb Aa |
  1750. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1751. //
  1752. // Bytes 04..19 (block #0) and 24..39 (block #1) both contain 32 nibbles (4-bit unsigned integers).
  1753. // We have exactly 64 nibbles, so we want to place each nibble into a separate byte.
  1754. // Bytes 00..03 and 20..23 contain scales, which are irrelevant to this function.
  1755. // Bytes 40..63 are masked when loading the data, so they are zeroed out.
  1756. #ifdef __AVX512VBMI__
  1757. const __m512i byte_perm = _mm512_set_epi8(
  1758. 39, 38, 39, 38, 37, 36, 37, 36, 35, 34, 35, 34, 33, 32, 33, 32,
  1759. 31, 30, 31, 30, 29, 28, 29, 28, 27, 26, 27, 26, 25, 24, 25, 24,
  1760. 19, 18, 19, 18, 17, 16, 17, 16, 15, 14, 15, 14, 13, 12, 13, 12,
  1761. 11, 10, 11, 10, 9, 8, 9, 8, 7, 6, 7, 6, 5, 4, 5, 4
  1762. );
  1763. const __m512i permuted = _mm512_permutexvar_epi8( byte_perm, blocks );
  1764. // After applying VPERMB, `permuted` looks like this:
  1765. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1766. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1767. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1768. // |:. =_ :. =_ () [] () [] <> () <> () Zz Yy Zz Yy Xx Ww Xx Ww Vv Uu Vv Uu Tt Ss Tt Ss Rr Qq Rr Qq|
  1769. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1770. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1771. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1772. // |Pp Oo Pp Oo Nn Mm Nn Mm Ll Kk Ll Kk Jj Ii Jj Ii Hh Gg Hh Gg Ff Ee Ff Ee Dd Cc Dd Cc Bb Aa Bb Aa|
  1773. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1774. #else
  1775. const __m512i word_perm = _mm512_set_epi16(
  1776. 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 12,
  1777. 9, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2
  1778. );
  1779. const __m512i permuted = _mm512_permutexvar_epi16( word_perm, blocks );
  1780. // This is the fallback path for CPUs that don't support VPERMB. Since we permute 16-bit groups only,
  1781. // VPERMB can be replaced with VPERMW. We could always use VPERMW, but at least on Tiger Lake and
  1782. // Ice Lake VPERMW followed by a right shift is quite noticeably slower than VPERMB.
  1783. #endif
  1784. // Shift every odd-numbered 16-bit group to the right by 4 bits.
  1785. const __mmask32 shift_mask = 0xaaaaaaaa;
  1786. const __m512i shifted = _mm512_mask_srai_epi16( permuted, shift_mask, permuted, 4 );
  1787. // After applying VPSRAW, `shifted` looks like this (the "empty" nibbles are filled with zeroes):
  1788. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1789. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
  1790. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1791. // | : .= :. =_ ( )[ () [] < >( <> () Z zY Zz Yy X xW Xx Ww V vU Vv Uu T tS Tt Ss R rQ Rr Qq
  1792. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1793. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1794. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1795. // | P pO Pp Oo N nM Nn Mm L lK Ll Kk J jI Jj Ii H hG Hh Gg F fE Ff Ee D dC Dd Cc B bA Bb Aa|
  1796. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1797. // Now we just need to zero out the higher nibble in each byte, and we're done.
  1798. const __m512i low_nibble_mask = _mm512_set1_epi8( 0xf );
  1799. return _mm512_and_si512( low_nibble_mask, shifted );
  1800. // The final result looks like this:
  1801. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1802. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1803. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1804. // | : = . _ ( [ ) ] < ( > ) Z Y z y X W x w V U v u T S t s R Q r q|
  1805. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1806. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1807. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1808. // | P O p o N M n m L K l k J I j i H G h g F E f e D C d c B A b a|
  1809. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1810. }
  1811. static inline __m512 dot_q4_0_twoblocks_avx512(
  1812. __m512 acc,
  1813. const block_q4_0 * restrict x,
  1814. const block_q4_0 * restrict y,
  1815. int i
  1816. ) {
  1817. // A pair of Q4_0 blocks spans 40 bytes, while an AVX-512 register has 64. The remaining 24 bytes
  1818. // can potentially be unaddressable, so we make sure to mask them out before the load, even though
  1819. // we don't use them at all. This might hurt the performance slightly, since the compiler is forced
  1820. // to use e.g. `VMOVDQU64 REG, MASK, [ADDR] + VPERMB ..., REG` instead of just `VPERMB ..., [ADDR]`.
  1821. const __mmask8 load_mask = 0x1f;
  1822. const __m512i blocks_0 = _mm512_maskz_loadu_epi64( load_mask, &x[i] );
  1823. const __m512i blocks_1 = _mm512_maskz_loadu_epi64( load_mask, &y[i] );
  1824. // We want to multiply the scales, so we interpret both registers as 16 32-bit floats:
  1825. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1826. // | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
  1827. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1828. // blocks_0_float
  1829. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1830. // | | | | | | | xx | xx | xx | xx | B | xx | xx | xx | xx | A |
  1831. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1832. // blocks_1_float
  1833. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1834. // | | | | | | | xx | xx | xx | xx | D | xx | xx | xx | xx | C |
  1835. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1836. const __m512 blocks_0_float = _mm512_castsi512_ps( blocks_0 );
  1837. const __m512 blocks_1_float = _mm512_castsi512_ps( blocks_1 );
  1838. // We absolutely shouldn't touch the floats marked with `xx`: they contain some
  1839. // random data, which might very well underflow. At least on Intel, this leads
  1840. // to a huge penalty that can't be ignored (easily 100x or more) unless you
  1841. // compile your code with something like `-ffast-math` to enable FTZ/DAZ flags.
  1842. // (and ggml can't assume that you do)...
  1843. const __mmask16 scale_mul_mask = 0x21;
  1844. #ifdef __clang__
  1845. // ...however, clang decides to optimize the multiplication mask away:
  1846. // https://godbolt.org/z/P8PqdsfvW
  1847. // gcc and MSVC do the sane thing. This horrible workaround forces clang to emit the mask.
  1848. __m512i scales;
  1849. __asm__(
  1850. "vmulps %1, %2, %0%{%3%}"
  1851. : "=v" ( scales )
  1852. : "vm" ( blocks_0_float ), "v" ( blocks_1_float ), "Yk" ( scale_mul_mask )
  1853. );
  1854. #else
  1855. const __m512 scales = _mm512_maskz_mul_ps( scale_mul_mask, blocks_0_float, blocks_1_float );
  1856. #endif
  1857. const __m512i scale_perm = _mm512_set_epi32(
  1858. 5, 5, 5, 5, 5, 5, 5, 5,
  1859. 0, 0, 0, 0, 0, 0, 0, 0
  1860. );
  1861. const __m512 permuted_scales = _mm512_permutexvar_ps( scale_perm, scales );
  1862. // After VMULPS and VPERMPS, `permuted_scales` looks like this:
  1863. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1864. // | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
  1865. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1866. // | B*D| B*D| B*D| B*D| B*D| B*D| B*D| B*D| A*C| A*C| A*C| A*C| A*C| A*C| A*C| A*C|
  1867. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1868. const __m512i bytes_0 = bytes_from_q4_0_twoblocks_avx512( blocks_0 );
  1869. const __m512i bytes_1 = bytes_from_q4_0_twoblocks_avx512( blocks_1 );
  1870. // Now we want to compute dot products of 4-element byte vectors and store them in
  1871. // 32-bit integers. That is (only one 4-element vector is shown for clarity):
  1872. // +----+----+----+----+
  1873. // ... | 03 | 02 | 01 | 00 |
  1874. // +----+----+----+----+
  1875. // bytes_0
  1876. // +----+----+----+----+
  1877. // ... | D | C | B | A |
  1878. // +----+----+----+----+
  1879. // bytes_1
  1880. // +----+----+----+----+
  1881. // ... | H | G | F | E |
  1882. // +----+----+----+----+
  1883. // final_res_int
  1884. // +----+----+----+----+
  1885. // ... | A*E+B*F+C*G+D*H |
  1886. // +----+----+----+----+
  1887. const __m512i plus_8 = _mm512_set1_epi8( 8 );
  1888. const __m512i bytes_1_minus_8 = _mm512_sub_epi8( bytes_1, plus_8 );
  1889. #ifdef __AVX512VNNI__
  1890. // We have VPDPBUSDS in AVX512-VNNI, which does exactly what we want, but with a catch:
  1891. // the *left* operand is supposed to be unsigned, while Q4_0 quantization subtracts 8
  1892. // from each nibble, so they can be negative. So, instead of `(bytes_0 - 8) * (bytes_1 - 8)`,
  1893. // we compute `bytes_0 * (bytes_1 - 8) + bytes_1 * (-8) + 64`. VPDPBUSDS uses an accumulator,
  1894. // which means we only need 2 instructions.
  1895. const __m512i dot_init = _mm512_set1_epi32( 4 * 64 );
  1896. const __m512i minus_8 = _mm512_set1_epi8( -8 );
  1897. const __m512i prod_0 = _mm512_dpbusds_epi32( dot_init, bytes_1, minus_8 );
  1898. const __m512i final_res_int = _mm512_dpbusds_epi32( prod_0, bytes_0, bytes_1_minus_8 );
  1899. #else
  1900. // As a fallback, we have VPMADDUBSW in AVX512-BW, which uses 16-bit products instead of 32-bit ones.
  1901. // It has the same catch as VPDPBUSDS: the left operand should be unsigned.
  1902. // This is essentially the AVX-512 version of the AVX-2 trick used by GH user Const-me
  1903. // ref: https://gist.github.com/Const-me/4d30e1fc767ab314596e16e90f53b6f4#file-matmultest-cpp-L119
  1904. const __m512i one = _mm512_set1_epi16( 1 );
  1905. const __m512i prod_0 = _mm512_maddubs_epi16( bytes_0, bytes_1_minus_8 );
  1906. const __m512i prod_1 = _mm512_maddubs_epi16( plus_8, bytes_1_minus_8 );
  1907. const __m512i diff = _mm512_sub_epi16( prod_0, prod_1 );
  1908. const __m512i final_res_int = _mm512_madd_epi16( diff, one );
  1909. #endif
  1910. // Finally, we multiply the permuted scales and the 32-bit dot products, then accumulate.
  1911. const __m512 final_res_float = _mm512_cvtepi32_ps( final_res_int );
  1912. return _mm512_fmadd_ps( permuted_scales, final_res_float, acc );
  1913. }
  1914. #endif
  1915. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1916. ggml_float sumf = 0.0;
  1917. #if defined(GGML_SIMD)
  1918. const int np = (n & ~(GGML_F16_STEP - 1));
  1919. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1920. GGML_F16_VEC ax[GGML_F16_ARR];
  1921. GGML_F16_VEC ay[GGML_F16_ARR];
  1922. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1923. for (int j = 0; j < GGML_F16_ARR; j++) {
  1924. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1925. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1926. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1927. }
  1928. }
  1929. // reduce sum0..sum3 to sum0
  1930. GGML_F16_VEC_REDUCE(sumf, sum);
  1931. // leftovers
  1932. for (int i = np; i < n; ++i) {
  1933. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1934. }
  1935. #else
  1936. for (int i = 0; i < n; ++i) {
  1937. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1938. }
  1939. #endif
  1940. *s = sumf;
  1941. }
  1942. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1943. const int nb = n / QK4_0;
  1944. assert(n % QK4_0 == 0);
  1945. assert(nb % 2 == 0);
  1946. const block_q4_0 * restrict x = vx;
  1947. const block_q4_0 * restrict y = vy;
  1948. float sumf = 0.0;
  1949. #if defined(__ARM_NEON)
  1950. float sum0 = 0.0f;
  1951. float sum1 = 0.0f;
  1952. for (int i = 0; i < nb; i += 2) {
  1953. const block_q4_0 * restrict x0 = &x[i + 0];
  1954. const block_q4_0 * restrict y0 = &y[i + 0];
  1955. const block_q4_0 * restrict x1 = &x[i + 1];
  1956. const block_q4_0 * restrict y1 = &y[i + 1];
  1957. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1958. const int8x16_t s8b = vdupq_n_s8(0x8);
  1959. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1960. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1961. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1962. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1963. // 4-bit -> 8-bit
  1964. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1965. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1966. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1967. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1968. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1969. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1970. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1971. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1972. // sub 8
  1973. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1974. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1975. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1976. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1977. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1978. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1979. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1980. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1981. #if defined(__ARM_FEATURE_DOTPROD)
  1982. // dot product into int32x4_t
  1983. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1984. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1985. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1986. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1987. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  1988. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  1989. #else
  1990. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1991. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1992. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1993. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1994. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1995. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1996. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1997. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1998. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1999. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  2000. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  2001. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  2002. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  2003. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  2004. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  2005. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  2006. #endif
  2007. }
  2008. sumf = sum0 + sum1;
  2009. #elif defined(__AVX512F__)
  2010. // Initialize accumulator with zeros
  2011. __m512 acc0 = _mm512_setzero_ps();
  2012. __m512 acc1 = _mm512_setzero_ps();
  2013. const int superblock_size = 16;
  2014. const int superblock_count = nb / superblock_size;
  2015. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  2016. int i = superblock_ix * superblock_size;
  2017. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+0 );
  2018. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+2 );
  2019. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+4 );
  2020. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+6 );
  2021. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+8 );
  2022. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+10 );
  2023. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+12 );
  2024. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+14 );
  2025. }
  2026. // Remainders
  2027. for (int i = superblock_count * superblock_size; i < nb; i += 2) {
  2028. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i );
  2029. }
  2030. // Horizontal sum of all lanes of the accumulator
  2031. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  2032. #elif defined(__AVX2__)
  2033. // Initialize accumulator with zeros
  2034. __m256 acc = _mm256_setzero_ps();
  2035. /* Prepare the constants we will need during execution */
  2036. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  2037. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  2038. #define UNROLL_COUNT 8
  2039. // make sure we only unroll multiples of the block count
  2040. assert(nb % UNROLL_COUNT == 0);
  2041. // Main loop
  2042. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  2043. // This loop will be unrolled by the compiler
  2044. for (int u=0;u<UNROLL_COUNT;u++) {
  2045. /* Compute combined scale for the block */
  2046. const __m256 scale = _mm256_mul_ps(
  2047. _mm256_broadcast_ss( &x[i+u].d ),
  2048. _mm256_broadcast_ss( &y[i+u].d ) );
  2049. /* get input from x
  2050. Input: 32 Nibbles (16 bytes) at *x[i+u]
  2051. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  2052. /* Load 16 bytes from memory */
  2053. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  2054. /* Expand bytes into uint16_t values */
  2055. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  2056. /* Unpack values into individual bytes */
  2057. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  2058. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  2059. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  2060. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  2061. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  2062. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  2063. /* get input from y
  2064. Input: 32 Nibbles (16 bytes) at *y[i+u]
  2065. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  2066. /* Load 16 bytes from memory */
  2067. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  2068. /* Expand bytes into uint16_t values */
  2069. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  2070. /* Unpack values into individual bytes */
  2071. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  2072. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  2073. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  2074. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  2075. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  2076. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  2077. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  2078. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  2079. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  2080. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  2081. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  2082. /* Convert to vectore of 8 int32_t to 8 floats */
  2083. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2084. /* Multiply q with scale and accumulate */
  2085. acc = _mm256_fmadd_ps( scale, q, acc );
  2086. }
  2087. }
  2088. // Return horizontal sum of the acc vector
  2089. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2090. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2091. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2092. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2093. sumf = _mm_cvtss_f32( res );
  2094. #elif defined(__AVX__)
  2095. // Initialize accumulator with zeros
  2096. __m256 acc = _mm256_setzero_ps();
  2097. // Main loop
  2098. for (int i = 0; i < nb; ++i) {
  2099. // Compute combined scale for the block
  2100. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2101. __m128i i32[2];
  2102. for (int j = 0; j < 2; ++j) {
  2103. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2104. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  2105. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  2106. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2107. const __m128i off = _mm_set1_epi8( 8 );
  2108. bx = _mm_sub_epi8( bx, off );
  2109. by = _mm_sub_epi8( by, off );
  2110. // Get absolute values of x vectors
  2111. const __m128i ax = _mm_sign_epi8(bx, bx);
  2112. // Sign the values of the y vectors
  2113. const __m128i sy = _mm_sign_epi8(by, bx);
  2114. // Perform multiplication and create 16-bit values
  2115. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2116. const __m128i ones = _mm_set1_epi16(1);
  2117. i32[j] = _mm_madd_epi16(ones, dot);
  2118. }
  2119. // Convert int32_t to float
  2120. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2121. // Apply the scale, and accumulate
  2122. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2123. }
  2124. // Return horizontal sum of the acc vector
  2125. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2126. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2127. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2128. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2129. sumf = _mm_cvtss_f32( res );
  2130. #elif defined(__wasm_simd128__)
  2131. // wasm simd
  2132. float sum0 = 0.0f;
  2133. float sum1 = 0.0f;
  2134. for (int i = 0; i < nb; i += 2) {
  2135. const block_q4_0 * restrict x0 = &x[i + 0];
  2136. const block_q4_0 * restrict y0 = &y[i + 0];
  2137. const block_q4_0 * restrict x1 = &x[i + 1];
  2138. const block_q4_0 * restrict y1 = &y[i + 1];
  2139. const v128_t m4b = wasm_u8x16_splat(0xf);
  2140. const v128_t s8b = wasm_i8x16_splat(0x8);
  2141. const v128_t v0_0 = wasm_v128_load(x0->qs);
  2142. const v128_t v0_1 = wasm_v128_load(y0->qs);
  2143. const v128_t v1_0 = wasm_v128_load(x1->qs);
  2144. const v128_t v1_1 = wasm_v128_load(y1->qs);
  2145. // 4-bit -> 8-bit
  2146. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  2147. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  2148. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  2149. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  2150. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  2151. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  2152. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  2153. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  2154. // sub 8
  2155. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  2156. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  2157. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  2158. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  2159. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  2160. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  2161. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  2162. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  2163. // dot product into int16x8_t
  2164. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  2165. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  2166. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  2167. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  2168. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  2169. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  2170. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  2171. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  2172. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  2173. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  2174. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  2175. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  2176. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  2177. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  2178. sum0 += x0->d * y0->d * (
  2179. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  2180. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  2181. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  2182. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  2183. sum1 += x1->d * y1->d * (
  2184. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  2185. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  2186. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  2187. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  2188. }
  2189. sumf = sum0 + sum1;
  2190. #else
  2191. // scalar
  2192. for (int i = 0; i < nb; i++) {
  2193. const float d0 = x[i].d;
  2194. const float d1 = y[i].d;
  2195. const uint8_t * restrict p0 = x[i].qs;
  2196. const uint8_t * restrict p1 = y[i].qs;
  2197. int sumi = 0;
  2198. for (int j = 0; j < QK4_0/2; j++) {
  2199. const uint8_t v0 = p0[j];
  2200. const uint8_t v1 = p1[j];
  2201. const int i0 = (v0 & 0xf) - 8;
  2202. const int i1 = (v0 >> 4) - 8;
  2203. const int i2 = (v1 & 0xf) - 8;
  2204. const int i3 = (v1 >> 4) - 8;
  2205. sumi += i0*i2 + i1*i3;
  2206. }
  2207. sumf += d0 * d1 * sumi;
  2208. }
  2209. #endif
  2210. *s = sumf;
  2211. }
  2212. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2213. const int nb = n / QK4_1;
  2214. const block_q4_1 * restrict x = vx;
  2215. const block_q4_1 * restrict y = vy;
  2216. float sumf = 0.0;
  2217. #if defined(__AVX2__)
  2218. // Initialize accumulator with zeros
  2219. __m256 acc = _mm256_setzero_ps();
  2220. // Accumulator for constant offsets
  2221. float acc_offset = 0.0f;
  2222. // Main loop
  2223. for (int i = 0; i < nb; ++i) {
  2224. const float * d0 = &x[i].d;
  2225. const float * d1 = &y[i].d;
  2226. const float * m0 = &x[i].m;
  2227. const float * m1 = &y[i].m;
  2228. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2229. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2230. const __m256 m0v = _mm256_broadcast_ss( m0 );
  2231. const __m256 m1v = _mm256_broadcast_ss( m1 );
  2232. // Compute combined scale for the block
  2233. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  2234. // Compute cross scales for the block
  2235. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  2236. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  2237. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  2238. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2239. __m256i bx = bytesFromNibbles( x[i].qs );
  2240. __m256i by = bytesFromNibbles( y[i].qs );
  2241. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  2242. // Sign-extend first 16 signed bytes into int16_t
  2243. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  2244. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  2245. // Compute products of int16_t integers, add pairwise
  2246. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  2247. // Sign-extend last 16 signed bytes into int16_t vectors
  2248. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  2249. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  2250. // Accumulate products of int16_t integers
  2251. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  2252. // compute sums of unsigned bytes in bx, by in blocks of 8.
  2253. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  2254. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  2255. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  2256. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  2257. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  2258. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  2259. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  2260. // Convert int32_t to float
  2261. __m256 p = _mm256_cvtepi32_ps( i32 );
  2262. // Apply the scale, and accumulate
  2263. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  2264. acc = _mm256_fmadd_ps( scale_01, p, acc );
  2265. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  2266. // acc_offset += m0*m1 (for each entry in the block)
  2267. acc_offset += (*m0)*(*m1);
  2268. }
  2269. // Return horizontal sum of the acc vector
  2270. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2271. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2272. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2273. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2274. sumf = _mm_cvtss_f32( res ) + acc_offset * QK4_1;
  2275. #elif defined(__ARM_NEON)
  2276. float sum00 = 0.0f;
  2277. float sum01 = 0.0f;
  2278. float sum10 = 0.0f;
  2279. float sum11 = 0.0f;
  2280. for (int i = 0; i < nb; i += 2) {
  2281. const block_q4_1 * restrict x0 = &x[i + 0];
  2282. const block_q4_1 * restrict y0 = &y[i + 0];
  2283. const block_q4_1 * restrict x1 = &x[i + 1];
  2284. const block_q4_1 * restrict y1 = &y[i + 1];
  2285. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2286. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2287. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  2288. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2289. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  2290. // 4-bit -> 8-bit
  2291. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  2292. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  2293. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  2294. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  2295. const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
  2296. const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
  2297. const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
  2298. const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
  2299. sum00 += x0->m*y0->m;
  2300. sum01 += y0->m*x0->d*((uint16_t)vaddvq_u8(v0_0l) + (uint16_t)vaddvq_u8(v0_0h));
  2301. sum10 += x0->m*y0->d*((uint16_t)vaddvq_u8(v1_0l) + (uint16_t)vaddvq_u8(v1_0h));
  2302. sum00 += x1->m*y1->m;
  2303. sum01 += y1->m*x1->d*((uint16_t)vaddvq_u8(v0_1l) + (uint16_t)vaddvq_u8(v0_1h));
  2304. sum10 += x1->m*y1->d*((uint16_t)vaddvq_u8(v1_1l) + (uint16_t)vaddvq_u8(v1_1h));
  2305. #if defined(__ARM_FEATURE_DOTPROD)
  2306. // dot product into int32x4_t
  2307. uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l);
  2308. uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l);
  2309. p_0 = vdotq_u32(p_0, v0_0h, v1_0h);
  2310. p_1 = vdotq_u32(p_1, v0_1h, v1_1h);
  2311. sum11 += x0->d*y0->d*vaddvq_u32(p_0);
  2312. sum11 += x1->d*y1->d*vaddvq_u32(p_1);
  2313. #else
  2314. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  2315. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  2316. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  2317. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  2318. const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
  2319. const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
  2320. const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
  2321. const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
  2322. const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
  2323. const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
  2324. const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
  2325. const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
  2326. const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
  2327. const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
  2328. sum11 += x0->d*y0->d*vaddvq_u16(p_0);
  2329. sum11 += x1->d*y1->d*vaddvq_u16(p_1);
  2330. #endif
  2331. }
  2332. sumf = QK4_1*sum00 + sum01 + sum10 + sum11;
  2333. #else
  2334. // scalar
  2335. for (int i = 0; i < nb; i++) {
  2336. const float d0 = x[i].d;
  2337. const float d1 = y[i].d;
  2338. const float m0 = x[i].m;
  2339. const float m1 = y[i].m;
  2340. const uint8_t * restrict p0 = x[i].qs;
  2341. const uint8_t * restrict p1 = y[i].qs;
  2342. for (int j = 0; j < QK4_1/2; j++) {
  2343. const uint8_t v0 = p0[j];
  2344. const uint8_t v1 = p1[j];
  2345. const float f0 = d0*(v0 & 0xf) + m0;
  2346. const float f1 = d0*(v0 >> 4) + m0;
  2347. const float f2 = d1*(v1 & 0xf) + m1;
  2348. const float f3 = d1*(v1 >> 4) + m1;
  2349. sumf += f0*f2 + f1*f3;
  2350. }
  2351. }
  2352. #endif
  2353. *s = sumf;
  2354. }
  2355. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2356. const int nb = n / QK8_0;
  2357. assert(n % QK8_0 == 0);
  2358. assert(nb % 2 == 0);
  2359. const block_q4_0 * restrict x = vx;
  2360. const block_q8_0 * restrict y = vy;
  2361. float sumf = 0.0;
  2362. #if defined(__ARM_NEON)
  2363. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2364. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2365. for (int i = 0; i < nb; i += 2) {
  2366. const block_q4_0 * restrict x0 = &x[i + 0];
  2367. const block_q4_0 * restrict x1 = &x[i + 1];
  2368. const block_q8_0 * restrict y0 = &y[i + 0];
  2369. const block_q8_0 * restrict y1 = &y[i + 1];
  2370. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2371. const int8x16_t s8b = vdupq_n_s8(0x8);
  2372. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2373. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2374. // 4-bit -> 8-bit
  2375. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2376. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2377. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2378. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2379. // sub 8
  2380. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2381. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2382. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2383. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2384. // load y
  2385. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2386. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2387. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2388. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2389. // interleave
  2390. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2391. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2392. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2393. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2394. #if defined(__ARM_FEATURE_DOTPROD)
  2395. // dot product into int32x4_t
  2396. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  2397. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  2398. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2399. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2400. #else
  2401. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2402. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2403. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2404. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2405. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2406. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2407. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2408. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2409. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2410. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2411. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2412. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2413. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2414. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2415. #endif
  2416. }
  2417. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2418. #elif defined(__AVX2__)
  2419. // Initialize accumulator with zeros
  2420. __m256 acc = _mm256_setzero_ps();
  2421. // Main loop
  2422. for (int i = 0; i < nb; ++i) {
  2423. /* Compute combined scale for the block */
  2424. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2425. __m256i bx = bytesFromNibbles(x[i].qs);
  2426. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2427. const __m256i off = _mm256_set1_epi8( 8 );
  2428. bx = _mm256_sub_epi8( bx, off );
  2429. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2430. // Get absolute values of x vectors
  2431. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2432. // Sign the values of the y vectors
  2433. const __m256i sy = _mm256_sign_epi8(by, bx);
  2434. // Perform multiplication and create 16-bit values
  2435. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2436. const __m256i ones = _mm256_set1_epi16(1);
  2437. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2438. /* Convert to vectore of 8 int32_t to 8 floats */
  2439. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2440. /* Multiply q with scale and accumulate */
  2441. acc = _mm256_fmadd_ps( d, q, acc );
  2442. }
  2443. // Return horizontal sum of the acc vector
  2444. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2445. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2446. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2447. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2448. sumf = _mm_cvtss_f32( res );
  2449. #elif defined(__AVX__)
  2450. // Initialize accumulator with zeros
  2451. __m256 acc = _mm256_setzero_ps();
  2452. // Main loop
  2453. for (int i = 0; i < nb; ++i) {
  2454. // Compute combined scale for the block
  2455. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2456. __m128i i32[2];
  2457. for (int j = 0; j < 2; ++j) {
  2458. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2459. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  2460. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2461. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2462. const __m128i off = _mm_set1_epi8( 8 );
  2463. bx = _mm_sub_epi8( bx, off );
  2464. // Get absolute values of x vectors
  2465. const __m128i ax = _mm_sign_epi8(bx, bx);
  2466. // Sign the values of the y vectors
  2467. const __m128i sy = _mm_sign_epi8(by, bx);
  2468. // Perform multiplication and create 16-bit values
  2469. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2470. const __m128i ones = _mm_set1_epi16(1);
  2471. i32[j] = _mm_madd_epi16(ones, dot);
  2472. }
  2473. // Convert int32_t to float
  2474. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2475. // Apply the scale, and accumulate
  2476. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2477. }
  2478. // Return horizontal sum of the acc vector
  2479. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2480. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2481. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2482. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2483. sumf = _mm_cvtss_f32( res );
  2484. #else
  2485. // scalar
  2486. for (int i = 0; i < nb; i++) {
  2487. const float d0 = x[i].d;
  2488. const float d1 = y[i].d;
  2489. const uint8_t * restrict p0 = x[i].qs;
  2490. const int8_t * restrict p1 = y[i].qs;
  2491. int sumi = 0;
  2492. for (int j = 0; j < QK8_0/2; j++) {
  2493. const uint8_t v0 = p0[j];
  2494. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2495. const int i1 = (int8_t) (v0 >> 4) - 8;
  2496. const int i2 = p1[2*j + 0];
  2497. const int i3 = p1[2*j + 1];
  2498. sumi += i0*i2 + i1*i3;
  2499. }
  2500. sumf += d0*d1*sumi;
  2501. }
  2502. #endif
  2503. *s = sumf;
  2504. }
  2505. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2506. const int nb = n / QK8_0;
  2507. assert(n % QK8_0 == 0);
  2508. assert(nb % 2 == 0);
  2509. assert(QK8_0 == 2*QK4_2);
  2510. const block_q4_2 * restrict x = vx;
  2511. const block_q8_0 * restrict y = vy;
  2512. float sumf = 0.0;
  2513. #if defined(__ARM_NEON)
  2514. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2515. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2516. for (int i = 0; i < nb; i += 2) {
  2517. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2518. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2519. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2520. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2521. const block_q8_0 * restrict y0 = &y[i + 0];
  2522. const block_q8_0 * restrict y1 = &y[i + 1];
  2523. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2524. const int8x16_t s8b = vdupq_n_s8(0x8);
  2525. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2526. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2527. // 4-bit -> 8-bit
  2528. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2529. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2530. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2531. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2532. // sub 8
  2533. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2534. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2535. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2536. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2537. // interleave
  2538. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2539. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2540. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2541. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2542. // load y
  2543. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2544. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2545. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2546. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2547. #if defined(__ARM_FEATURE_DOTPROD)
  2548. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2549. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2550. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2551. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2552. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2553. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2554. #else
  2555. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2556. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2557. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2558. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2559. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2560. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2561. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2562. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2563. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2564. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2565. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2566. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2567. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2568. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2569. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2570. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2571. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2572. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2573. #endif
  2574. }
  2575. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2576. #else
  2577. // scalar
  2578. for (int i = 0; i < nb; i++) {
  2579. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2580. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2581. const int8_t * restrict y0 = y[i].qs;
  2582. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2583. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2584. int sumi_0 = 0;
  2585. int sumi_1 = 0;
  2586. for (int j = 0; j < QK8_0/4; j++) {
  2587. const uint8_t v0 = x0[j];
  2588. const uint8_t v1 = x1[j];
  2589. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2590. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2591. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2592. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2593. const int i2_0 = y0[2*j + 0];
  2594. const int i3_0 = y0[2*j + 1];
  2595. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2596. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2597. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2598. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2599. }
  2600. sumf += (d0 * y[i].d) * sumi_0;
  2601. sumf += (d1 * y[i].d) * sumi_1;
  2602. }
  2603. #endif
  2604. *s = sumf;
  2605. }
  2606. // compute GGML_VEC_DOT_UNROLL dot products at once
  2607. // xs - x row stride in bytes
  2608. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2609. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2610. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2611. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2612. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2613. }
  2614. #if defined(GGML_SIMD)
  2615. const int np = (n & ~(GGML_F16_STEP - 1));
  2616. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2617. GGML_F16_VEC ax[GGML_F16_ARR];
  2618. GGML_F16_VEC ay[GGML_F16_ARR];
  2619. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2620. for (int j = 0; j < GGML_F16_ARR; j++) {
  2621. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2622. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2623. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2624. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2625. }
  2626. }
  2627. }
  2628. // reduce sum0..sum3 to sum0
  2629. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2630. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2631. }
  2632. // leftovers
  2633. for (int i = np; i < n; ++i) {
  2634. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2635. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2636. }
  2637. }
  2638. #else
  2639. for (int i = 0; i < n; ++i) {
  2640. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2641. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2642. }
  2643. }
  2644. #endif
  2645. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2646. s[i] = sumf[i];
  2647. }
  2648. }
  2649. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2650. #if defined(GGML_SIMD)
  2651. const int np = (n & ~(GGML_F32_STEP - 1));
  2652. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2653. GGML_F32_VEC ax[GGML_F32_ARR];
  2654. GGML_F32_VEC ay[GGML_F32_ARR];
  2655. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2656. for (int j = 0; j < GGML_F32_ARR; j++) {
  2657. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2658. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2659. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2660. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2661. }
  2662. }
  2663. // leftovers
  2664. for (int i = np; i < n; ++i) {
  2665. y[i] += x[i]*v;
  2666. }
  2667. #else
  2668. // scalar
  2669. for (int i = 0; i < n; ++i) {
  2670. y[i] += x[i]*v;
  2671. }
  2672. #endif
  2673. }
  2674. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2675. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2676. #if defined(GGML_SIMD)
  2677. const int np = (n & ~(GGML_F32_STEP - 1));
  2678. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2679. GGML_F32_VEC ay[GGML_F32_ARR];
  2680. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2681. for (int j = 0; j < GGML_F32_ARR; j++) {
  2682. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2683. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2684. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2685. }
  2686. }
  2687. // leftovers
  2688. for (int i = np; i < n; ++i) {
  2689. y[i] *= v;
  2690. }
  2691. #else
  2692. // scalar
  2693. for (int i = 0; i < n; ++i) {
  2694. y[i] *= v;
  2695. }
  2696. #endif
  2697. }
  2698. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2699. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2700. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2701. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2702. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2703. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2704. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2705. static const float GELU_COEF_A = 0.044715f;
  2706. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2707. inline static float ggml_gelu_f32(float x) {
  2708. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2709. }
  2710. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2711. const uint16_t * i16 = (const uint16_t *) x;
  2712. for (int i = 0; i < n; ++i) {
  2713. y[i] = table_gelu_f16[i16[i]];
  2714. }
  2715. }
  2716. #ifdef GGML_GELU_FP16
  2717. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2718. uint16_t t;
  2719. for (int i = 0; i < n; ++i) {
  2720. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2721. memcpy(&t, &fp16, sizeof(uint16_t));
  2722. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2723. }
  2724. }
  2725. #else
  2726. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2727. for (int i = 0; i < n; ++i) {
  2728. y[i] = ggml_gelu_f32(x[i]);
  2729. }
  2730. }
  2731. #endif
  2732. // Sigmoid Linear Unit (SiLU) function
  2733. inline static float ggml_silu_f32(float x) {
  2734. return x/(1.0f + expf(-x));
  2735. }
  2736. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2737. const uint16_t * i16 = (const uint16_t *) x;
  2738. for (int i = 0; i < n; ++i) {
  2739. y[i] = table_silu_f16[i16[i]];
  2740. }
  2741. }
  2742. #ifdef GGML_SILU_FP16
  2743. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2744. uint16_t t;
  2745. for (int i = 0; i < n; ++i) {
  2746. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2747. memcpy(&t, &fp16, sizeof(uint16_t));
  2748. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2749. }
  2750. }
  2751. #else
  2752. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2753. for (int i = 0; i < n; ++i) {
  2754. y[i] = ggml_silu_f32(x[i]);
  2755. }
  2756. }
  2757. #endif
  2758. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2759. #ifndef GGML_USE_ACCELERATE
  2760. ggml_float sum = 0.0;
  2761. for (int i = 0; i < n; ++i) {
  2762. sum += (ggml_float)x[i];
  2763. }
  2764. *s = sum;
  2765. #else
  2766. vDSP_sve(x, 1, s, n);
  2767. #endif
  2768. }
  2769. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2770. #ifndef GGML_USE_ACCELERATE
  2771. float max = -INFINITY;
  2772. for (int i = 0; i < n; ++i) {
  2773. max = MAX(max, x[i]);
  2774. }
  2775. *s = max;
  2776. #else
  2777. vDSP_maxv(x, 1, s, n);
  2778. #endif
  2779. }
  2780. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2781. ggml_vec_norm_f32(n, s, x);
  2782. *s = 1.f/(*s);
  2783. }
  2784. //
  2785. // logging
  2786. //
  2787. #if (GGML_DEBUG >= 1)
  2788. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2789. #else
  2790. #define GGML_PRINT_DEBUG(...)
  2791. #endif
  2792. #if (GGML_DEBUG >= 5)
  2793. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2794. #else
  2795. #define GGML_PRINT_DEBUG_5(...)
  2796. #endif
  2797. #if (GGML_DEBUG >= 10)
  2798. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2799. #else
  2800. #define GGML_PRINT_DEBUG_10(...)
  2801. #endif
  2802. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2803. //
  2804. // data types
  2805. //
  2806. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2807. [GGML_TYPE_F32] = 1,
  2808. [GGML_TYPE_F16] = 1,
  2809. [GGML_TYPE_Q4_0] = QK4_0,
  2810. [GGML_TYPE_Q4_1] = QK4_1,
  2811. [GGML_TYPE_Q4_2] = QK4_2,
  2812. [GGML_TYPE_Q8_0] = QK8_0,
  2813. [GGML_TYPE_I8] = 1,
  2814. [GGML_TYPE_I16] = 1,
  2815. [GGML_TYPE_I32] = 1,
  2816. };
  2817. static_assert(GGML_TYPE_COUNT == 9, "GGML_BLCK_SIZE is outdated");
  2818. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2819. [GGML_TYPE_F32] = sizeof(float),
  2820. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2821. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2822. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2823. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2824. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2825. [GGML_TYPE_I8] = sizeof(int8_t),
  2826. [GGML_TYPE_I16] = sizeof(int16_t),
  2827. [GGML_TYPE_I32] = sizeof(int32_t),
  2828. };
  2829. static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_SIZE is outdated");
  2830. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2831. [GGML_TYPE_F32] = "f32",
  2832. [GGML_TYPE_F16] = "f16",
  2833. [GGML_TYPE_Q4_0] = "q4_0",
  2834. [GGML_TYPE_Q4_1] = "q4_1",
  2835. [GGML_TYPE_Q4_2] = "q4_2",
  2836. [GGML_TYPE_Q8_0] = "q8_0",
  2837. [GGML_TYPE_I8] = "i8",
  2838. [GGML_TYPE_I16] = "i16",
  2839. [GGML_TYPE_I32] = "i32",
  2840. };
  2841. static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_NAME is outdated");
  2842. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2843. [GGML_TYPE_F32] = false,
  2844. [GGML_TYPE_F16] = false,
  2845. [GGML_TYPE_Q4_0] = true,
  2846. [GGML_TYPE_Q4_1] = true,
  2847. [GGML_TYPE_Q4_2] = true,
  2848. [GGML_TYPE_Q8_0] = true,
  2849. [GGML_TYPE_I8] = false,
  2850. [GGML_TYPE_I16] = false,
  2851. [GGML_TYPE_I32] = false,
  2852. };
  2853. static_assert(GGML_TYPE_COUNT == 9, "GGML_IS_QUANTIZED is outdated");
  2854. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2855. "NONE",
  2856. "DUP",
  2857. "ADD",
  2858. "SUB",
  2859. "MUL",
  2860. "DIV",
  2861. "SQR",
  2862. "SQRT",
  2863. "SUM",
  2864. "MEAN",
  2865. "REPEAT",
  2866. "ABS",
  2867. "SGN",
  2868. "NEG",
  2869. "STEP",
  2870. "RELU",
  2871. "GELU",
  2872. "SILU",
  2873. "NORM",
  2874. "RMS_NORM",
  2875. "MUL_MAT",
  2876. "SCALE",
  2877. "CPY",
  2878. "CONT",
  2879. "RESHAPE",
  2880. "VIEW",
  2881. "PERMUTE",
  2882. "TRANSPOSE",
  2883. "GET_ROWS",
  2884. "DIAG_MASK_INF",
  2885. "SOFT_MAX",
  2886. "ROPE",
  2887. "CONV_1D_1S",
  2888. "CONV_1D_2S",
  2889. "FLASH_ATTN",
  2890. "FLASH_FF",
  2891. "MAP_UNARY",
  2892. "MAP_BINARY",
  2893. };
  2894. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2895. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2896. "none",
  2897. "x",
  2898. "x+y",
  2899. "x-y",
  2900. "x*y",
  2901. "x/y",
  2902. "x^2",
  2903. "√x",
  2904. "Σx",
  2905. "Σx/n",
  2906. "repeat(x)",
  2907. "abs(x)",
  2908. "sgn(x)",
  2909. "-x",
  2910. "step(x)",
  2911. "relu(x)",
  2912. "gelu(x)",
  2913. "silu(x)",
  2914. "norm(x)",
  2915. "rms_norm(x)",
  2916. "X*Y",
  2917. "x*v",
  2918. "x-\\>y",
  2919. "cont(x)",
  2920. "reshape(x)",
  2921. "view(x)",
  2922. "permute(x)",
  2923. "transpose(x)",
  2924. "get_rows(x)",
  2925. "diag_mask_inf(x)",
  2926. "soft_max(x)",
  2927. "rope(x)",
  2928. "conv_1d_1s(x)",
  2929. "conv_1d_2s(x)",
  2930. "flash_attn(x)",
  2931. "flash_ff(x)",
  2932. "f(x)",
  2933. "f(x,y)",
  2934. };
  2935. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2936. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2937. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2938. //
  2939. // ggml context
  2940. //
  2941. struct ggml_context {
  2942. size_t mem_size;
  2943. void * mem_buffer;
  2944. bool mem_buffer_owned;
  2945. bool no_alloc;
  2946. int n_objects;
  2947. struct ggml_object * objects_begin;
  2948. struct ggml_object * objects_end;
  2949. struct ggml_scratch scratch;
  2950. struct ggml_scratch scratch_save;
  2951. };
  2952. struct ggml_context_container {
  2953. bool used;
  2954. struct ggml_context context;
  2955. };
  2956. //
  2957. // compute types
  2958. //
  2959. enum ggml_task_type {
  2960. GGML_TASK_INIT = 0,
  2961. GGML_TASK_COMPUTE,
  2962. GGML_TASK_FINALIZE,
  2963. };
  2964. struct ggml_compute_params {
  2965. enum ggml_task_type type;
  2966. int ith, nth;
  2967. // work buffer for all threads
  2968. size_t wsize;
  2969. void * wdata;
  2970. };
  2971. //
  2972. // ggml state
  2973. //
  2974. struct ggml_state {
  2975. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2976. };
  2977. // global state
  2978. static struct ggml_state g_state;
  2979. static atomic_int g_state_barrier = 0;
  2980. // barrier via spin lock
  2981. inline static void ggml_critical_section_start(void) {
  2982. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2983. while (processing > 0) {
  2984. // wait for other threads to finish
  2985. atomic_fetch_sub(&g_state_barrier, 1);
  2986. sched_yield(); // TODO: reconsider this
  2987. processing = atomic_fetch_add(&g_state_barrier, 1);
  2988. }
  2989. }
  2990. // TODO: make this somehow automatically executed
  2991. // some sort of "sentry" mechanism
  2992. inline static void ggml_critical_section_end(void) {
  2993. atomic_fetch_sub(&g_state_barrier, 1);
  2994. }
  2995. ////////////////////////////////////////////////////////////////////////////////
  2996. void ggml_print_object(const struct ggml_object * obj) {
  2997. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2998. obj->offs, obj->size, (const void *) obj->next);
  2999. }
  3000. void ggml_print_objects(const struct ggml_context * ctx) {
  3001. struct ggml_object * obj = ctx->objects_begin;
  3002. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3003. while (obj != NULL) {
  3004. ggml_print_object(obj);
  3005. obj = obj->next;
  3006. }
  3007. GGML_PRINT("%s: --- end ---\n", __func__);
  3008. }
  3009. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3010. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3011. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3012. }
  3013. int ggml_nrows(const struct ggml_tensor * tensor) {
  3014. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3015. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3016. }
  3017. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3018. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3019. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3020. }
  3021. int ggml_blck_size(enum ggml_type type) {
  3022. return GGML_BLCK_SIZE[type];
  3023. }
  3024. size_t ggml_type_size(enum ggml_type type) {
  3025. return GGML_TYPE_SIZE[type];
  3026. }
  3027. float ggml_type_sizef(enum ggml_type type) {
  3028. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3029. }
  3030. const char * ggml_type_name(enum ggml_type type) {
  3031. return GGML_TYPE_NAME[type];
  3032. }
  3033. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3034. return GGML_TYPE_SIZE[tensor->type];
  3035. }
  3036. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3037. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3038. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3039. }
  3040. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3041. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3042. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3043. }
  3044. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3045. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3046. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3047. }
  3048. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3049. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3050. return
  3051. (t0->ne[0] == t1->ne[0]) &&
  3052. (t0->ne[2] == t1->ne[2]) &&
  3053. (t0->ne[3] == t1->ne[3]);
  3054. }
  3055. static inline bool ggml_is_quantized(enum ggml_type type) {
  3056. return GGML_IS_QUANTIZED[type];
  3057. }
  3058. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3059. return tensor->nb[0] > tensor->nb[1];
  3060. }
  3061. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3062. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3063. return
  3064. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3065. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3066. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3067. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3068. }
  3069. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3070. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3071. return
  3072. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3073. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3074. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3075. }
  3076. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3077. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3078. return
  3079. (t0->ne[0] == t1->ne[0] ) &&
  3080. (t0->ne[1] == t1->ne[1] ) &&
  3081. (t0->ne[2] == t1->ne[2] ) &&
  3082. (t0->ne[3] == t1->ne[3] );
  3083. }
  3084. // check if t1 can be represented as a repeatition of t0
  3085. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3086. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3087. return
  3088. (t1->ne[0]%t0->ne[0] == 0) &&
  3089. (t1->ne[1]%t0->ne[1] == 0) &&
  3090. (t1->ne[2]%t0->ne[2] == 0) &&
  3091. (t1->ne[3]%t0->ne[3] == 0);
  3092. }
  3093. static inline int ggml_up32(int n) {
  3094. return (n + 31) & ~31;
  3095. }
  3096. static inline int ggml_up64(int n) {
  3097. return (n + 63) & ~63;
  3098. }
  3099. static inline int ggml_up(int n, int m) {
  3100. // assert m is a power of 2
  3101. GGML_ASSERT((m & (m - 1)) == 0);
  3102. return (n + m - 1) & ~(m - 1);
  3103. }
  3104. // assert that pointer is aligned to GGML_MEM_ALIGN
  3105. #define ggml_assert_aligned(ptr) \
  3106. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3107. ////////////////////////////////////////////////////////////////////////////////
  3108. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3109. // make this function thread safe
  3110. ggml_critical_section_start();
  3111. static bool is_first_call = true;
  3112. if (is_first_call) {
  3113. // initialize time system (required on Windows)
  3114. ggml_time_init();
  3115. // initialize GELU, SILU and EXP F32 tables
  3116. {
  3117. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3118. ggml_fp16_t ii;
  3119. for (int i = 0; i < (1 << 16); ++i) {
  3120. uint16_t ui = i;
  3121. memcpy(&ii, &ui, sizeof(ii));
  3122. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3123. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3124. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3125. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3126. }
  3127. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3128. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3129. }
  3130. // initialize g_state
  3131. {
  3132. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3133. g_state = (struct ggml_state) {
  3134. /*.contexts =*/ { { 0 } },
  3135. };
  3136. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3137. g_state.contexts[i].used = false;
  3138. }
  3139. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3140. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3141. }
  3142. // initialize cuBLAS
  3143. #if defined(GGML_USE_CUBLAS)
  3144. init_cublas();
  3145. #endif
  3146. is_first_call = false;
  3147. }
  3148. // find non-used context in g_state
  3149. struct ggml_context * ctx = NULL;
  3150. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3151. if (!g_state.contexts[i].used) {
  3152. g_state.contexts[i].used = true;
  3153. ctx = &g_state.contexts[i].context;
  3154. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3155. break;
  3156. }
  3157. }
  3158. if (ctx == NULL) {
  3159. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3160. ggml_critical_section_end();
  3161. return NULL;
  3162. }
  3163. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3164. *ctx = (struct ggml_context) {
  3165. /*.mem_size =*/ mem_size,
  3166. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3167. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3168. /*.no_alloc =*/ params.no_alloc,
  3169. /*.n_objects =*/ 0,
  3170. /*.objects_begin =*/ NULL,
  3171. /*.objects_end =*/ NULL,
  3172. /*.scratch =*/ { 0, 0, NULL, },
  3173. /*.scratch_save =*/ { 0, 0, NULL, },
  3174. };
  3175. GGML_ASSERT(ctx->mem_buffer != NULL);
  3176. ggml_assert_aligned(ctx->mem_buffer);
  3177. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3178. ggml_critical_section_end();
  3179. return ctx;
  3180. }
  3181. void ggml_free(struct ggml_context * ctx) {
  3182. // make this function thread safe
  3183. ggml_critical_section_start();
  3184. bool found = false;
  3185. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3186. if (&g_state.contexts[i].context == ctx) {
  3187. g_state.contexts[i].used = false;
  3188. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3189. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3190. if (ctx->mem_buffer_owned) {
  3191. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3192. }
  3193. found = true;
  3194. break;
  3195. }
  3196. }
  3197. if (!found) {
  3198. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3199. }
  3200. ggml_critical_section_end();
  3201. }
  3202. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3203. return ctx->objects_end->offs + ctx->objects_end->size;
  3204. }
  3205. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3206. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3207. ctx->scratch = scratch;
  3208. return result;
  3209. }
  3210. ////////////////////////////////////////////////////////////////////////////////
  3211. struct ggml_tensor * ggml_new_tensor_impl(
  3212. struct ggml_context * ctx,
  3213. enum ggml_type type,
  3214. int n_dims,
  3215. const int64_t* ne,
  3216. void* data) {
  3217. // always insert objects at the end of the context's memory pool
  3218. struct ggml_object * obj_cur = ctx->objects_end;
  3219. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3220. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3221. const size_t cur_end = cur_offs + cur_size;
  3222. size_t size_needed = 0;
  3223. if (data == NULL && !ctx->no_alloc) {
  3224. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3225. for (int i = 1; i < n_dims; i++) {
  3226. size_needed *= ne[i];
  3227. }
  3228. // align to GGML_MEM_ALIGN
  3229. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3230. }
  3231. char * const mem_buffer = ctx->mem_buffer;
  3232. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3233. if (ctx->scratch.data == NULL || data != NULL) {
  3234. size_needed += sizeof(struct ggml_tensor);
  3235. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3236. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3237. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3238. assert(false);
  3239. return NULL;
  3240. }
  3241. *obj_new = (struct ggml_object) {
  3242. .offs = cur_end + GGML_OBJECT_SIZE,
  3243. .size = size_needed,
  3244. .next = NULL,
  3245. };
  3246. } else {
  3247. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3248. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3249. assert(false);
  3250. return NULL;
  3251. }
  3252. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3253. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3254. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3255. assert(false);
  3256. return NULL;
  3257. }
  3258. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3259. *obj_new = (struct ggml_object) {
  3260. .offs = cur_end + GGML_OBJECT_SIZE,
  3261. .size = sizeof(struct ggml_tensor),
  3262. .next = NULL,
  3263. };
  3264. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3265. ctx->scratch.offs += size_needed;
  3266. }
  3267. if (obj_cur != NULL) {
  3268. obj_cur->next = obj_new;
  3269. } else {
  3270. // this is the first object in this context
  3271. ctx->objects_begin = obj_new;
  3272. }
  3273. ctx->objects_end = obj_new;
  3274. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3275. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3276. ggml_assert_aligned(result);
  3277. *result = (struct ggml_tensor) {
  3278. /*.type =*/ type,
  3279. /*.n_dims =*/ n_dims,
  3280. /*.ne =*/ { 1, 1, 1, 1 },
  3281. /*.nb =*/ { 0, 0, 0, 0 },
  3282. /*.op =*/ GGML_OP_NONE,
  3283. /*.is_param =*/ false,
  3284. /*.grad =*/ NULL,
  3285. /*.src0 =*/ NULL,
  3286. /*.src1 =*/ NULL,
  3287. /*.opt =*/ { NULL },
  3288. /*.n_tasks =*/ 0,
  3289. /*.perf_runs =*/ 0,
  3290. /*.perf_cycles =*/ 0,
  3291. /*.perf_time_us =*/ 0,
  3292. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3293. /*.pad =*/ { 0 },
  3294. };
  3295. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3296. //ggml_assert_aligned(result->data);
  3297. for (int i = 0; i < n_dims; i++) {
  3298. result->ne[i] = ne[i];
  3299. }
  3300. result->nb[0] = GGML_TYPE_SIZE[type];
  3301. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3302. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3303. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3304. }
  3305. ctx->n_objects++;
  3306. return result;
  3307. }
  3308. struct ggml_tensor * ggml_new_tensor(
  3309. struct ggml_context * ctx,
  3310. enum ggml_type type,
  3311. int n_dims,
  3312. const int64_t * ne) {
  3313. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3314. }
  3315. struct ggml_tensor * ggml_new_tensor_1d(
  3316. struct ggml_context * ctx,
  3317. enum ggml_type type,
  3318. int64_t ne0) {
  3319. return ggml_new_tensor(ctx, type, 1, &ne0);
  3320. }
  3321. struct ggml_tensor * ggml_new_tensor_2d(
  3322. struct ggml_context * ctx,
  3323. enum ggml_type type,
  3324. int64_t ne0,
  3325. int64_t ne1) {
  3326. const int64_t ne[2] = { ne0, ne1 };
  3327. return ggml_new_tensor(ctx, type, 2, ne);
  3328. }
  3329. struct ggml_tensor * ggml_new_tensor_3d(
  3330. struct ggml_context * ctx,
  3331. enum ggml_type type,
  3332. int64_t ne0,
  3333. int64_t ne1,
  3334. int64_t ne2) {
  3335. const int64_t ne[3] = { ne0, ne1, ne2 };
  3336. return ggml_new_tensor(ctx, type, 3, ne);
  3337. }
  3338. struct ggml_tensor * ggml_new_tensor_4d(
  3339. struct ggml_context * ctx,
  3340. enum ggml_type type,
  3341. int64_t ne0,
  3342. int64_t ne1,
  3343. int64_t ne2,
  3344. int64_t ne3) {
  3345. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3346. return ggml_new_tensor(ctx, type, 4, ne);
  3347. }
  3348. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3349. ctx->scratch_save = ctx->scratch;
  3350. ctx->scratch.data = NULL;
  3351. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3352. ctx->scratch = ctx->scratch_save;
  3353. ggml_set_i32(result, value);
  3354. return result;
  3355. }
  3356. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3357. ctx->scratch_save = ctx->scratch;
  3358. ctx->scratch.data = NULL;
  3359. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3360. ctx->scratch = ctx->scratch_save;
  3361. ggml_set_f32(result, value);
  3362. return result;
  3363. }
  3364. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3365. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3366. }
  3367. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3368. memset(tensor->data, 0, ggml_nbytes(tensor));
  3369. return tensor;
  3370. }
  3371. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3372. const int n = ggml_nrows(tensor);
  3373. const int nc = tensor->ne[0];
  3374. const size_t n1 = tensor->nb[1];
  3375. char * const data = tensor->data;
  3376. switch (tensor->type) {
  3377. case GGML_TYPE_I8:
  3378. {
  3379. assert(tensor->nb[0] == sizeof(int8_t));
  3380. for (int i = 0; i < n; i++) {
  3381. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3382. }
  3383. } break;
  3384. case GGML_TYPE_I16:
  3385. {
  3386. assert(tensor->nb[0] == sizeof(int16_t));
  3387. for (int i = 0; i < n; i++) {
  3388. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3389. }
  3390. } break;
  3391. case GGML_TYPE_I32:
  3392. {
  3393. assert(tensor->nb[0] == sizeof(int32_t));
  3394. for (int i = 0; i < n; i++) {
  3395. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3396. }
  3397. } break;
  3398. case GGML_TYPE_F16:
  3399. {
  3400. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3401. for (int i = 0; i < n; i++) {
  3402. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3403. }
  3404. } break;
  3405. case GGML_TYPE_F32:
  3406. {
  3407. assert(tensor->nb[0] == sizeof(float));
  3408. for (int i = 0; i < n; i++) {
  3409. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3410. }
  3411. } break;
  3412. default:
  3413. {
  3414. GGML_ASSERT(false);
  3415. } break;
  3416. }
  3417. return tensor;
  3418. }
  3419. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3420. const int n = ggml_nrows(tensor);
  3421. const int nc = tensor->ne[0];
  3422. const size_t n1 = tensor->nb[1];
  3423. char * const data = tensor->data;
  3424. switch (tensor->type) {
  3425. case GGML_TYPE_I8:
  3426. {
  3427. assert(tensor->nb[0] == sizeof(int8_t));
  3428. for (int i = 0; i < n; i++) {
  3429. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3430. }
  3431. } break;
  3432. case GGML_TYPE_I16:
  3433. {
  3434. assert(tensor->nb[0] == sizeof(int16_t));
  3435. for (int i = 0; i < n; i++) {
  3436. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3437. }
  3438. } break;
  3439. case GGML_TYPE_I32:
  3440. {
  3441. assert(tensor->nb[0] == sizeof(int32_t));
  3442. for (int i = 0; i < n; i++) {
  3443. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3444. }
  3445. } break;
  3446. case GGML_TYPE_F16:
  3447. {
  3448. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3449. for (int i = 0; i < n; i++) {
  3450. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3451. }
  3452. } break;
  3453. case GGML_TYPE_F32:
  3454. {
  3455. assert(tensor->nb[0] == sizeof(float));
  3456. for (int i = 0; i < n; i++) {
  3457. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3458. }
  3459. } break;
  3460. default:
  3461. {
  3462. GGML_ASSERT(false);
  3463. } break;
  3464. }
  3465. return tensor;
  3466. }
  3467. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3468. switch (tensor->type) {
  3469. case GGML_TYPE_I8:
  3470. {
  3471. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3472. return ((int8_t *)(tensor->data))[i];
  3473. } break;
  3474. case GGML_TYPE_I16:
  3475. {
  3476. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3477. return ((int16_t *)(tensor->data))[i];
  3478. } break;
  3479. case GGML_TYPE_I32:
  3480. {
  3481. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3482. return ((int32_t *)(tensor->data))[i];
  3483. } break;
  3484. case GGML_TYPE_F16:
  3485. {
  3486. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3487. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3488. } break;
  3489. case GGML_TYPE_F32:
  3490. {
  3491. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3492. return ((float *)(tensor->data))[i];
  3493. } break;
  3494. default:
  3495. {
  3496. GGML_ASSERT(false);
  3497. } break;
  3498. }
  3499. return 0.0f;
  3500. }
  3501. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3502. switch (tensor->type) {
  3503. case GGML_TYPE_I8:
  3504. {
  3505. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3506. ((int8_t *)(tensor->data))[i] = value;
  3507. } break;
  3508. case GGML_TYPE_I16:
  3509. {
  3510. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3511. ((int16_t *)(tensor->data))[i] = value;
  3512. } break;
  3513. case GGML_TYPE_I32:
  3514. {
  3515. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3516. ((int32_t *)(tensor->data))[i] = value;
  3517. } break;
  3518. case GGML_TYPE_F16:
  3519. {
  3520. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3521. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3522. } break;
  3523. case GGML_TYPE_F32:
  3524. {
  3525. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3526. ((float *)(tensor->data))[i] = value;
  3527. } break;
  3528. default:
  3529. {
  3530. GGML_ASSERT(false);
  3531. } break;
  3532. }
  3533. }
  3534. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3535. switch (tensor->type) {
  3536. case GGML_TYPE_I8:
  3537. {
  3538. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3539. return ((int8_t *)(tensor->data))[i];
  3540. } break;
  3541. case GGML_TYPE_I16:
  3542. {
  3543. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3544. return ((int16_t *)(tensor->data))[i];
  3545. } break;
  3546. case GGML_TYPE_I32:
  3547. {
  3548. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3549. return ((int32_t *)(tensor->data))[i];
  3550. } break;
  3551. case GGML_TYPE_F16:
  3552. {
  3553. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3554. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3555. } break;
  3556. case GGML_TYPE_F32:
  3557. {
  3558. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3559. return ((float *)(tensor->data))[i];
  3560. } break;
  3561. default:
  3562. {
  3563. GGML_ASSERT(false);
  3564. } break;
  3565. }
  3566. return 0.0f;
  3567. }
  3568. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3569. switch (tensor->type) {
  3570. case GGML_TYPE_I8:
  3571. {
  3572. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3573. ((int8_t *)(tensor->data))[i] = value;
  3574. } break;
  3575. case GGML_TYPE_I16:
  3576. {
  3577. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3578. ((int16_t *)(tensor->data))[i] = value;
  3579. } break;
  3580. case GGML_TYPE_I32:
  3581. {
  3582. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3583. ((int32_t *)(tensor->data))[i] = value;
  3584. } break;
  3585. case GGML_TYPE_F16:
  3586. {
  3587. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3588. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3589. } break;
  3590. case GGML_TYPE_F32:
  3591. {
  3592. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3593. ((float *)(tensor->data))[i] = value;
  3594. } break;
  3595. default:
  3596. {
  3597. GGML_ASSERT(false);
  3598. } break;
  3599. }
  3600. }
  3601. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3602. return tensor->data;
  3603. }
  3604. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3605. assert(tensor->type == GGML_TYPE_F32);
  3606. return (float *)(tensor->data);
  3607. }
  3608. struct ggml_tensor * ggml_view_tensor(
  3609. struct ggml_context * ctx,
  3610. const struct ggml_tensor * src) {
  3611. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3612. result->nb[0] = src->nb[0];
  3613. result->nb[1] = src->nb[1];
  3614. result->nb[2] = src->nb[2];
  3615. result->nb[3] = src->nb[3];
  3616. return result;
  3617. }
  3618. ////////////////////////////////////////////////////////////////////////////////
  3619. // ggml_dup
  3620. struct ggml_tensor * ggml_dup_impl(
  3621. struct ggml_context * ctx,
  3622. struct ggml_tensor * a,
  3623. bool inplace) {
  3624. bool is_node = false;
  3625. if (!inplace && (a->grad)) {
  3626. is_node = true;
  3627. }
  3628. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3629. result->op = GGML_OP_DUP;
  3630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3631. result->src0 = a;
  3632. result->src1 = NULL;
  3633. return result;
  3634. }
  3635. struct ggml_tensor * ggml_dup(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a) {
  3638. return ggml_dup_impl(ctx, a, false);
  3639. }
  3640. struct ggml_tensor * ggml_dup_inplace(
  3641. struct ggml_context * ctx,
  3642. struct ggml_tensor * a) {
  3643. return ggml_dup_impl(ctx, a, true);
  3644. }
  3645. // ggml_add
  3646. struct ggml_tensor * ggml_add_impl(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * a,
  3649. struct ggml_tensor * b,
  3650. bool inplace) {
  3651. GGML_ASSERT(ggml_are_same_shape(a, b));
  3652. bool is_node = false;
  3653. if (!inplace && (a->grad || b->grad)) {
  3654. is_node = true;
  3655. }
  3656. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3657. result->op = GGML_OP_ADD;
  3658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3659. result->src0 = a;
  3660. result->src1 = b;
  3661. return result;
  3662. }
  3663. struct ggml_tensor * ggml_add(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a,
  3666. struct ggml_tensor * b) {
  3667. return ggml_add_impl(ctx, a, b, false);
  3668. }
  3669. struct ggml_tensor * ggml_add_inplace(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a,
  3672. struct ggml_tensor * b) {
  3673. return ggml_add_impl(ctx, a, b, true);
  3674. }
  3675. // ggml_sub
  3676. struct ggml_tensor * ggml_sub_impl(
  3677. struct ggml_context * ctx,
  3678. struct ggml_tensor * a,
  3679. struct ggml_tensor * b,
  3680. bool inplace) {
  3681. GGML_ASSERT(ggml_are_same_shape(a, b));
  3682. bool is_node = false;
  3683. if (!inplace && (a->grad || b->grad)) {
  3684. is_node = true;
  3685. }
  3686. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3687. result->op = GGML_OP_SUB;
  3688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3689. result->src0 = a;
  3690. result->src1 = b;
  3691. return result;
  3692. }
  3693. struct ggml_tensor * ggml_sub(
  3694. struct ggml_context * ctx,
  3695. struct ggml_tensor * a,
  3696. struct ggml_tensor * b) {
  3697. return ggml_sub_impl(ctx, a, b, false);
  3698. }
  3699. struct ggml_tensor * ggml_sub_inplace(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a,
  3702. struct ggml_tensor * b) {
  3703. return ggml_sub_impl(ctx, a, b, true);
  3704. }
  3705. // ggml_mul
  3706. struct ggml_tensor * ggml_mul_impl(
  3707. struct ggml_context * ctx,
  3708. struct ggml_tensor * a,
  3709. struct ggml_tensor * b,
  3710. bool inplace) {
  3711. GGML_ASSERT(ggml_are_same_shape(a, b));
  3712. bool is_node = false;
  3713. if (!inplace && (a->grad || b->grad)) {
  3714. is_node = true;
  3715. }
  3716. if (inplace) {
  3717. GGML_ASSERT(is_node == false);
  3718. }
  3719. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3720. result->op = GGML_OP_MUL;
  3721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3722. result->src0 = a;
  3723. result->src1 = b;
  3724. return result;
  3725. }
  3726. struct ggml_tensor * ggml_mul(
  3727. struct ggml_context * ctx,
  3728. struct ggml_tensor * a,
  3729. struct ggml_tensor * b) {
  3730. return ggml_mul_impl(ctx, a, b, false);
  3731. }
  3732. struct ggml_tensor * ggml_mul_inplace(
  3733. struct ggml_context * ctx,
  3734. struct ggml_tensor * a,
  3735. struct ggml_tensor * b) {
  3736. return ggml_mul_impl(ctx, a, b, true);
  3737. }
  3738. // ggml_div
  3739. struct ggml_tensor * ggml_div_impl(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a,
  3742. struct ggml_tensor * b,
  3743. bool inplace) {
  3744. GGML_ASSERT(ggml_are_same_shape(a, b));
  3745. bool is_node = false;
  3746. if (!inplace && (a->grad || b->grad)) {
  3747. is_node = true;
  3748. }
  3749. if (inplace) {
  3750. GGML_ASSERT(is_node == false);
  3751. }
  3752. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3753. result->op = GGML_OP_DIV;
  3754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3755. result->src0 = a;
  3756. result->src1 = b;
  3757. return result;
  3758. }
  3759. struct ggml_tensor * ggml_div(
  3760. struct ggml_context * ctx,
  3761. struct ggml_tensor * a,
  3762. struct ggml_tensor * b) {
  3763. return ggml_div_impl(ctx, a, b, false);
  3764. }
  3765. struct ggml_tensor * ggml_div_inplace(
  3766. struct ggml_context * ctx,
  3767. struct ggml_tensor * a,
  3768. struct ggml_tensor * b) {
  3769. return ggml_div_impl(ctx, a, b, true);
  3770. }
  3771. // ggml_sqr
  3772. struct ggml_tensor * ggml_sqr_impl(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a,
  3775. bool inplace) {
  3776. bool is_node = false;
  3777. if (!inplace && (a->grad)) {
  3778. is_node = true;
  3779. }
  3780. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3781. result->op = GGML_OP_SQR;
  3782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3783. result->src0 = a;
  3784. result->src1 = NULL;
  3785. return result;
  3786. }
  3787. struct ggml_tensor * ggml_sqr(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a) {
  3790. return ggml_sqr_impl(ctx, a, false);
  3791. }
  3792. struct ggml_tensor * ggml_sqr_inplace(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * a) {
  3795. return ggml_sqr_impl(ctx, a, true);
  3796. }
  3797. // ggml_sqrt
  3798. struct ggml_tensor * ggml_sqrt_impl(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a,
  3801. bool inplace) {
  3802. bool is_node = false;
  3803. if (!inplace && (a->grad)) {
  3804. is_node = true;
  3805. }
  3806. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3807. result->op = GGML_OP_SQRT;
  3808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3809. result->src0 = a;
  3810. result->src1 = NULL;
  3811. return result;
  3812. }
  3813. struct ggml_tensor * ggml_sqrt(
  3814. struct ggml_context * ctx,
  3815. struct ggml_tensor * a) {
  3816. return ggml_sqrt_impl(ctx, a, false);
  3817. }
  3818. struct ggml_tensor * ggml_sqrt_inplace(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a) {
  3821. return ggml_sqrt_impl(ctx, a, true);
  3822. }
  3823. // ggml_sum
  3824. struct ggml_tensor * ggml_sum(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a) {
  3827. bool is_node = false;
  3828. if (a->grad) {
  3829. is_node = true;
  3830. }
  3831. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3832. result->op = GGML_OP_SUM;
  3833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3834. result->src0 = a;
  3835. result->src1 = NULL;
  3836. return result;
  3837. }
  3838. // ggml_mean
  3839. struct ggml_tensor * ggml_mean(
  3840. struct ggml_context * ctx,
  3841. struct ggml_tensor * a) {
  3842. bool is_node = false;
  3843. if (a->grad) {
  3844. GGML_ASSERT(false); // TODO: implement
  3845. is_node = true;
  3846. }
  3847. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3848. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3849. result->op = GGML_OP_MEAN;
  3850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3851. result->src0 = a;
  3852. result->src1 = NULL;
  3853. return result;
  3854. }
  3855. // ggml_repeat
  3856. struct ggml_tensor * ggml_repeat(
  3857. struct ggml_context * ctx,
  3858. struct ggml_tensor * a,
  3859. struct ggml_tensor * b) {
  3860. GGML_ASSERT(ggml_can_repeat(a, b));
  3861. bool is_node = false;
  3862. if (a->grad) {
  3863. is_node = true;
  3864. }
  3865. if (ggml_are_same_shape(a, b) && !is_node) {
  3866. return a;
  3867. }
  3868. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3869. result->op = GGML_OP_REPEAT;
  3870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3871. result->src0 = a;
  3872. result->src1 = b;
  3873. return result;
  3874. }
  3875. // ggml_abs
  3876. struct ggml_tensor * ggml_abs_impl(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. bool inplace) {
  3880. bool is_node = false;
  3881. if (!inplace && (a->grad)) {
  3882. is_node = true;
  3883. }
  3884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3885. result->op = GGML_OP_ABS;
  3886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3887. result->src0 = a;
  3888. result->src1 = NULL;
  3889. return result;
  3890. }
  3891. struct ggml_tensor * ggml_abs(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a) {
  3894. return ggml_abs_impl(ctx, a, false);
  3895. }
  3896. struct ggml_tensor * ggml_abs_inplace(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a) {
  3899. return ggml_abs_impl(ctx, a, true);
  3900. }
  3901. // ggml_sgn
  3902. struct ggml_tensor * ggml_sgn_impl(
  3903. struct ggml_context * ctx,
  3904. struct ggml_tensor * a,
  3905. bool inplace) {
  3906. bool is_node = false;
  3907. if (!inplace && (a->grad)) {
  3908. is_node = true;
  3909. }
  3910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3911. result->op = GGML_OP_SGN;
  3912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3913. result->src0 = a;
  3914. result->src1 = NULL;
  3915. return result;
  3916. }
  3917. struct ggml_tensor * ggml_sgn(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a) {
  3920. return ggml_sgn_impl(ctx, a, false);
  3921. }
  3922. struct ggml_tensor * ggml_sgn_inplace(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a) {
  3925. return ggml_sgn_impl(ctx, a, true);
  3926. }
  3927. // ggml_neg
  3928. struct ggml_tensor * ggml_neg_impl(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. bool inplace) {
  3932. bool is_node = false;
  3933. if (!inplace && (a->grad)) {
  3934. is_node = true;
  3935. }
  3936. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3937. result->op = GGML_OP_NEG;
  3938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3939. result->src0 = a;
  3940. result->src1 = NULL;
  3941. return result;
  3942. }
  3943. struct ggml_tensor * ggml_neg(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a) {
  3946. return ggml_neg_impl(ctx, a, false);
  3947. }
  3948. struct ggml_tensor * ggml_neg_inplace(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a) {
  3951. return ggml_neg_impl(ctx, a, true);
  3952. }
  3953. // ggml_step
  3954. struct ggml_tensor * ggml_step_impl(
  3955. struct ggml_context * ctx,
  3956. struct ggml_tensor * a,
  3957. bool inplace) {
  3958. bool is_node = false;
  3959. if (!inplace && (a->grad)) {
  3960. is_node = true;
  3961. }
  3962. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3963. result->op = GGML_OP_STEP;
  3964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3965. result->src0 = a;
  3966. result->src1 = NULL;
  3967. return result;
  3968. }
  3969. struct ggml_tensor * ggml_step(
  3970. struct ggml_context * ctx,
  3971. struct ggml_tensor * a) {
  3972. return ggml_step_impl(ctx, a, false);
  3973. }
  3974. struct ggml_tensor * ggml_step_inplace(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a) {
  3977. return ggml_step_impl(ctx, a, true);
  3978. }
  3979. // ggml_relu
  3980. struct ggml_tensor * ggml_relu_impl(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a,
  3983. bool inplace) {
  3984. bool is_node = false;
  3985. if (!inplace && (a->grad)) {
  3986. is_node = true;
  3987. }
  3988. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3989. result->op = GGML_OP_RELU;
  3990. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3991. result->src0 = a;
  3992. result->src1 = NULL;
  3993. return result;
  3994. }
  3995. struct ggml_tensor * ggml_relu(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a) {
  3998. return ggml_relu_impl(ctx, a, false);
  3999. }
  4000. struct ggml_tensor * ggml_relu_inplace(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a) {
  4003. return ggml_relu_impl(ctx, a, true);
  4004. }
  4005. // ggml_gelu
  4006. struct ggml_tensor * ggml_gelu_impl(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a,
  4009. bool inplace) {
  4010. bool is_node = false;
  4011. if (!inplace && (a->grad)) {
  4012. is_node = true;
  4013. }
  4014. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4015. result->op = GGML_OP_GELU;
  4016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4017. result->src0 = a;
  4018. result->src1 = NULL;
  4019. return result;
  4020. }
  4021. struct ggml_tensor * ggml_gelu(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a) {
  4024. return ggml_gelu_impl(ctx, a, false);
  4025. }
  4026. struct ggml_tensor * ggml_gelu_inplace(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a) {
  4029. return ggml_gelu_impl(ctx, a, true);
  4030. }
  4031. // ggml_silu
  4032. struct ggml_tensor * ggml_silu_impl(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a,
  4035. bool inplace) {
  4036. bool is_node = false;
  4037. if (!inplace && (a->grad)) {
  4038. is_node = true;
  4039. }
  4040. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4041. result->op = GGML_OP_SILU;
  4042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4043. result->src0 = a;
  4044. result->src1 = NULL;
  4045. return result;
  4046. }
  4047. struct ggml_tensor * ggml_silu(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a) {
  4050. return ggml_silu_impl(ctx, a, false);
  4051. }
  4052. struct ggml_tensor * ggml_silu_inplace(
  4053. struct ggml_context * ctx,
  4054. struct ggml_tensor * a) {
  4055. return ggml_silu_impl(ctx, a, true);
  4056. }
  4057. // ggml_norm
  4058. struct ggml_tensor * ggml_norm_impl(
  4059. struct ggml_context * ctx,
  4060. struct ggml_tensor * a,
  4061. bool inplace) {
  4062. bool is_node = false;
  4063. if (!inplace && (a->grad)) {
  4064. GGML_ASSERT(false); // TODO: implement backward
  4065. is_node = true;
  4066. }
  4067. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4068. result->op = GGML_OP_NORM;
  4069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4070. result->src0 = a;
  4071. result->src1 = NULL; // TODO: maybe store epsilon here?
  4072. return result;
  4073. }
  4074. struct ggml_tensor * ggml_norm(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a) {
  4077. return ggml_norm_impl(ctx, a, false);
  4078. }
  4079. struct ggml_tensor * ggml_norm_inplace(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a) {
  4082. return ggml_norm_impl(ctx, a, true);
  4083. }
  4084. struct ggml_tensor * ggml_rms_norm_impl(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a,
  4087. bool inplace) {
  4088. bool is_node = false;
  4089. if (!inplace && (a->grad)) {
  4090. GGML_ASSERT(false); // TODO: implement backward
  4091. is_node = true;
  4092. }
  4093. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4094. result->op = GGML_OP_RMS_NORM;
  4095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4096. result->src0 = a;
  4097. result->src1 = NULL; // TODO: maybe store epsilon here?
  4098. return result;
  4099. }
  4100. struct ggml_tensor * ggml_rms_norm(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a) {
  4103. return ggml_rms_norm_impl(ctx, a, false);
  4104. }
  4105. struct ggml_tensor * ggml_rms_norm_inplace(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a) {
  4108. return ggml_rms_norm_impl(ctx, a, true);
  4109. }
  4110. // ggml_mul_mat
  4111. struct ggml_tensor * ggml_mul_mat(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a,
  4114. struct ggml_tensor * b) {
  4115. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4116. GGML_ASSERT(!ggml_is_transposed(a));
  4117. bool is_node = false;
  4118. if (a->grad || b->grad) {
  4119. is_node = true;
  4120. }
  4121. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4122. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4123. result->op = GGML_OP_MUL_MAT;
  4124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4125. result->src0 = a;
  4126. result->src1 = b;
  4127. return result;
  4128. }
  4129. // ggml_scale
  4130. struct ggml_tensor * ggml_scale_impl(
  4131. struct ggml_context * ctx,
  4132. struct ggml_tensor * a,
  4133. struct ggml_tensor * b,
  4134. bool inplace) {
  4135. GGML_ASSERT(ggml_is_scalar(b));
  4136. GGML_ASSERT(ggml_is_padded_1d(a));
  4137. bool is_node = false;
  4138. if (!inplace && (a->grad || b->grad)) {
  4139. GGML_ASSERT(false); // TODO: implement backward
  4140. is_node = true;
  4141. }
  4142. // TODO: when implement backward, fix this:
  4143. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4144. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4145. result->op = GGML_OP_SCALE;
  4146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4147. result->src0 = a;
  4148. result->src1 = b;
  4149. return result;
  4150. }
  4151. struct ggml_tensor * ggml_scale(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. struct ggml_tensor * b) {
  4155. return ggml_scale_impl(ctx, a, b, false);
  4156. }
  4157. struct ggml_tensor * ggml_scale_inplace(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. struct ggml_tensor * b) {
  4161. return ggml_scale_impl(ctx, a, b, true);
  4162. }
  4163. // ggml_cpy
  4164. struct ggml_tensor * ggml_cpy_impl(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a,
  4167. struct ggml_tensor * b,
  4168. bool inplace) {
  4169. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4170. bool is_node = false;
  4171. if (!inplace && (a->grad || b->grad)) {
  4172. GGML_ASSERT(false); // TODO: implement backward
  4173. is_node = true;
  4174. }
  4175. // make a view of the destination
  4176. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4177. result->op = GGML_OP_CPY;
  4178. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4179. result->src0 = a;
  4180. result->src1 = b;
  4181. return result;
  4182. }
  4183. struct ggml_tensor * ggml_cpy(
  4184. struct ggml_context * ctx,
  4185. struct ggml_tensor * a,
  4186. struct ggml_tensor * b) {
  4187. return ggml_cpy_impl(ctx, a, b, false);
  4188. }
  4189. struct ggml_tensor * ggml_cpy_inplace(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a,
  4192. struct ggml_tensor * b) {
  4193. return ggml_cpy_impl(ctx, a, b, true);
  4194. }
  4195. // ggml_cont
  4196. struct ggml_tensor * ggml_cont_impl(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a,
  4199. bool inplace) {
  4200. bool is_node = false;
  4201. if (!inplace && a->grad) {
  4202. GGML_ASSERT(false); // TODO: implement backward
  4203. is_node = true;
  4204. }
  4205. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4206. result->op = GGML_OP_CONT;
  4207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4208. result->src0 = a;
  4209. result->src1 = NULL;
  4210. return result;
  4211. }
  4212. struct ggml_tensor * ggml_cont(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_cont_impl(ctx, a, false);
  4216. }
  4217. struct ggml_tensor * ggml_cont_inplace(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a) {
  4220. return ggml_cont_impl(ctx, a, true);
  4221. }
  4222. // ggml_reshape
  4223. struct ggml_tensor * ggml_reshape(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b) {
  4227. GGML_ASSERT(ggml_is_contiguous(a));
  4228. GGML_ASSERT(ggml_is_contiguous(b));
  4229. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4230. bool is_node = false;
  4231. if (a->grad || b->grad) {
  4232. GGML_ASSERT(false); // TODO: implement backward
  4233. is_node = true;
  4234. }
  4235. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4236. result->op = GGML_OP_RESHAPE;
  4237. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4238. result->src0 = a;
  4239. result->src1 = NULL;
  4240. return result;
  4241. }
  4242. struct ggml_tensor * ggml_reshape_2d(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a,
  4245. int64_t ne0,
  4246. int64_t ne1) {
  4247. GGML_ASSERT(ggml_is_contiguous(a));
  4248. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4249. bool is_node = false;
  4250. if (a->grad) {
  4251. GGML_ASSERT(false); // TODO: implement backward
  4252. is_node = true;
  4253. }
  4254. const int64_t ne[2] = { ne0, ne1 };
  4255. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4256. result->op = GGML_OP_RESHAPE;
  4257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4258. result->src0 = a;
  4259. result->src1 = NULL;
  4260. return result;
  4261. }
  4262. struct ggml_tensor * ggml_reshape_3d(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a,
  4265. int64_t ne0,
  4266. int64_t ne1,
  4267. int64_t ne2) {
  4268. GGML_ASSERT(ggml_is_contiguous(a));
  4269. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4270. bool is_node = false;
  4271. if (a->grad) {
  4272. GGML_ASSERT(false); // TODO: implement backward
  4273. is_node = true;
  4274. }
  4275. const int64_t ne[3] = { ne0, ne1, ne2 };
  4276. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4277. result->op = GGML_OP_RESHAPE;
  4278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4279. result->src0 = a;
  4280. result->src1 = NULL;
  4281. return result;
  4282. }
  4283. // ggml_view_1d
  4284. struct ggml_tensor * ggml_view_1d(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a,
  4287. int64_t ne0,
  4288. size_t offset) {
  4289. if (a->grad) {
  4290. GGML_ASSERT(false); // gradient propagation is not supported
  4291. }
  4292. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4293. result->op = GGML_OP_VIEW;
  4294. result->grad = NULL;
  4295. result->src0 = a;
  4296. result->src1 = NULL; // TODO: maybe store the offset here?
  4297. return result;
  4298. }
  4299. // ggml_view_2d
  4300. struct ggml_tensor * ggml_view_2d(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a,
  4303. int64_t ne0,
  4304. int64_t ne1,
  4305. size_t nb1,
  4306. size_t offset) {
  4307. if (a->grad) {
  4308. GGML_ASSERT(false); // gradient propagation is not supported
  4309. }
  4310. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4311. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4312. result->nb[1] = nb1;
  4313. result->nb[2] = result->nb[1]*ne1;
  4314. result->nb[3] = result->nb[2];
  4315. result->op = GGML_OP_VIEW;
  4316. result->grad = NULL;
  4317. result->src0 = a;
  4318. result->src1 = NULL; // TODO: maybe store the offset here?
  4319. return result;
  4320. }
  4321. // ggml_view_3d
  4322. struct ggml_tensor * ggml_view_3d(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. int64_t ne0,
  4326. int64_t ne1,
  4327. int64_t ne2,
  4328. size_t nb1,
  4329. size_t nb2,
  4330. size_t offset) {
  4331. if (a->grad) {
  4332. GGML_ASSERT(false); // gradient propagation is not supported
  4333. }
  4334. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4335. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4336. result->nb[1] = nb1;
  4337. result->nb[2] = nb2;
  4338. result->nb[3] = result->nb[2]*ne2;
  4339. result->op = GGML_OP_VIEW;
  4340. result->grad = NULL;
  4341. result->src0 = a;
  4342. result->src1 = NULL; // TODO: maybe store the offset here?
  4343. return result;
  4344. }
  4345. // ggml_permute
  4346. struct ggml_tensor * ggml_permute(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a,
  4349. int axis0,
  4350. int axis1,
  4351. int axis2,
  4352. int axis3) {
  4353. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4354. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4355. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4356. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4357. GGML_ASSERT(axis0 != axis1);
  4358. GGML_ASSERT(axis0 != axis2);
  4359. GGML_ASSERT(axis0 != axis3);
  4360. GGML_ASSERT(axis1 != axis2);
  4361. GGML_ASSERT(axis1 != axis3);
  4362. GGML_ASSERT(axis2 != axis3);
  4363. bool is_node = false;
  4364. if (a->grad) {
  4365. GGML_ASSERT(false); // TODO: implement backward
  4366. is_node = true;
  4367. }
  4368. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4369. int ne[GGML_MAX_DIMS];
  4370. int nb[GGML_MAX_DIMS];
  4371. ne[axis0] = a->ne[0];
  4372. ne[axis1] = a->ne[1];
  4373. ne[axis2] = a->ne[2];
  4374. ne[axis3] = a->ne[3];
  4375. nb[axis0] = a->nb[0];
  4376. nb[axis1] = a->nb[1];
  4377. nb[axis2] = a->nb[2];
  4378. nb[axis3] = a->nb[3];
  4379. result->ne[0] = ne[0];
  4380. result->ne[1] = ne[1];
  4381. result->ne[2] = ne[2];
  4382. result->ne[3] = ne[3];
  4383. result->nb[0] = nb[0];
  4384. result->nb[1] = nb[1];
  4385. result->nb[2] = nb[2];
  4386. result->nb[3] = nb[3];
  4387. result->op = GGML_OP_PERMUTE;
  4388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4389. result->src0 = a;
  4390. result->src1 = NULL; // TODO: maybe store the permutation here?
  4391. return result;
  4392. }
  4393. // ggml_transpose
  4394. struct ggml_tensor * ggml_transpose(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a) {
  4397. bool is_node = false;
  4398. if (a->grad) {
  4399. GGML_ASSERT(false); // TODO: implement backward
  4400. is_node = true;
  4401. }
  4402. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4403. result->ne[0] = a->ne[1];
  4404. result->ne[1] = a->ne[0];
  4405. result->nb[0] = a->nb[1];
  4406. result->nb[1] = a->nb[0];
  4407. result->op = GGML_OP_TRANSPOSE;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src0 = a;
  4410. result->src1 = NULL;
  4411. return result;
  4412. }
  4413. // ggml_get_rows
  4414. struct ggml_tensor * ggml_get_rows(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a,
  4417. struct ggml_tensor * b) {
  4418. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4419. bool is_node = false;
  4420. if (a->grad || b->grad) {
  4421. GGML_ASSERT(false); // TODO: implement backward
  4422. is_node = true;
  4423. }
  4424. // TODO: implement non F32 return
  4425. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4426. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4427. result->op = GGML_OP_GET_ROWS;
  4428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4429. result->src0 = a;
  4430. result->src1 = b;
  4431. return result;
  4432. }
  4433. // ggml_diag_mask_inf
  4434. struct ggml_tensor * ggml_diag_mask_inf(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a,
  4437. int n_past) {
  4438. bool is_node = false;
  4439. if (a->grad) {
  4440. GGML_ASSERT(false); // TODO: implement backward
  4441. is_node = true;
  4442. }
  4443. // TODO: when implement backward, fix this:
  4444. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4445. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4446. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4447. result->op = GGML_OP_DIAG_MASK_INF;
  4448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4449. result->src0 = a;
  4450. result->src1 = b;
  4451. return result;
  4452. }
  4453. // ggml_soft_max
  4454. struct ggml_tensor * ggml_soft_max(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * a) {
  4457. bool is_node = false;
  4458. if (a->grad) {
  4459. GGML_ASSERT(false); // TODO: implement backward
  4460. is_node = true;
  4461. }
  4462. // TODO: when implement backward, fix this:
  4463. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4464. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4465. result->op = GGML_OP_SOFT_MAX;
  4466. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4467. result->src0 = a;
  4468. result->src1 = NULL;
  4469. return result;
  4470. }
  4471. // ggml_rope
  4472. struct ggml_tensor * ggml_rope(
  4473. struct ggml_context * ctx,
  4474. struct ggml_tensor * a,
  4475. int n_past,
  4476. int n_dims,
  4477. int mode) {
  4478. GGML_ASSERT(n_past >= 0);
  4479. bool is_node = false;
  4480. if (a->grad) {
  4481. GGML_ASSERT(false); // TODO: implement backward
  4482. is_node = true;
  4483. }
  4484. // TODO: when implement backward, fix this:
  4485. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4486. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4487. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4488. ((int32_t *) b->data)[0] = n_past;
  4489. ((int32_t *) b->data)[1] = n_dims;
  4490. ((int32_t *) b->data)[2] = mode;
  4491. result->op = GGML_OP_ROPE;
  4492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4493. result->src0 = a;
  4494. result->src1 = b;
  4495. return result;
  4496. }
  4497. // ggml_conv_1d_1s
  4498. struct ggml_tensor * ggml_conv_1d_1s(
  4499. struct ggml_context * ctx,
  4500. struct ggml_tensor * a,
  4501. struct ggml_tensor * b) {
  4502. GGML_ASSERT(ggml_is_matrix(b));
  4503. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4504. GGML_ASSERT(a->ne[3] == 1);
  4505. bool is_node = false;
  4506. if (a->grad || b->grad) {
  4507. GGML_ASSERT(false); // TODO: implement backward
  4508. is_node = true;
  4509. }
  4510. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4511. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4512. result->op = GGML_OP_CONV_1D_1S;
  4513. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4514. result->src0 = a;
  4515. result->src1 = b;
  4516. return result;
  4517. }
  4518. // ggml_conv_1d_2s
  4519. struct ggml_tensor * ggml_conv_1d_2s(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. struct ggml_tensor * b) {
  4523. GGML_ASSERT(ggml_is_matrix(b));
  4524. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4525. GGML_ASSERT(a->ne[3] == 1);
  4526. bool is_node = false;
  4527. if (a->grad || b->grad) {
  4528. GGML_ASSERT(false); // TODO: implement backward
  4529. is_node = true;
  4530. }
  4531. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4532. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4533. result->op = GGML_OP_CONV_1D_2S;
  4534. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4535. result->src0 = a;
  4536. result->src1 = b;
  4537. return result;
  4538. }
  4539. // ggml_flash_attn
  4540. struct ggml_tensor * ggml_flash_attn(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * q,
  4543. struct ggml_tensor * k,
  4544. struct ggml_tensor * v,
  4545. bool masked) {
  4546. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4547. // TODO: check if vT can be multiplied by (k*qT)
  4548. bool is_node = false;
  4549. if (q->grad || k->grad || v->grad) {
  4550. GGML_ASSERT(false); // TODO: implement backward
  4551. is_node = true;
  4552. }
  4553. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4554. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4555. result->op = GGML_OP_FLASH_ATTN;
  4556. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4557. result->src0 = q;
  4558. result->src1 = k;
  4559. result->opt[0] = v;
  4560. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4561. return result;
  4562. }
  4563. // ggml_flash_ff
  4564. struct ggml_tensor * ggml_flash_ff(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a,
  4567. struct ggml_tensor * b0,
  4568. struct ggml_tensor * b1,
  4569. struct ggml_tensor * c0,
  4570. struct ggml_tensor * c1) {
  4571. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4572. // TODO: more checks
  4573. bool is_node = false;
  4574. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4575. GGML_ASSERT(false); // TODO: implement backward
  4576. is_node = true;
  4577. }
  4578. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4579. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4580. result->op = GGML_OP_FLASH_FF;
  4581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4582. result->src0 = a;
  4583. result->src1 = b0;
  4584. result->opt[0] = b1;
  4585. result->opt[1] = c0;
  4586. result->opt[2] = c1;
  4587. return result;
  4588. }
  4589. // ggml_map_unary
  4590. struct ggml_tensor * ggml_map_unary_impl_f32(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a,
  4593. const ggml_unary_op_f32_t fun,
  4594. bool inplace) {
  4595. bool is_node = false;
  4596. if (!inplace && a->grad) {
  4597. is_node = true;
  4598. }
  4599. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4600. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4601. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4602. result->op = GGML_OP_MAP_UNARY;
  4603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4604. result->src0 = a;
  4605. result->opt[0] = addr_tensor;
  4606. return result;
  4607. }
  4608. struct ggml_tensor * ggml_map_unary_f32(
  4609. struct ggml_context * ctx,
  4610. struct ggml_tensor * a,
  4611. const ggml_unary_op_f32_t fun) {
  4612. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4613. }
  4614. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a,
  4617. const ggml_unary_op_f32_t fun) {
  4618. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4619. }
  4620. // ggml_map_binary
  4621. struct ggml_tensor * ggml_map_binary_impl_f32(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a,
  4624. struct ggml_tensor * b,
  4625. const ggml_binary_op_f32_t fun,
  4626. bool inplace) {
  4627. GGML_ASSERT(ggml_are_same_shape(a, b));
  4628. bool is_node = false;
  4629. if (!inplace && (a->grad || b->grad)) {
  4630. is_node = true;
  4631. }
  4632. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4633. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4634. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4635. result->op = GGML_OP_MAP_BINARY;
  4636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4637. result->src0 = a;
  4638. result->src1 = b;
  4639. result->opt[0] = addr_tensor;
  4640. return result;
  4641. }
  4642. struct ggml_tensor * ggml_map_binary_f32(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. struct ggml_tensor * b,
  4646. const ggml_binary_op_f32_t fun) {
  4647. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4648. }
  4649. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a,
  4652. struct ggml_tensor * b,
  4653. const ggml_binary_op_f32_t fun) {
  4654. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4655. }
  4656. ////////////////////////////////////////////////////////////////////////////////
  4657. void ggml_set_param(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * tensor) {
  4660. tensor->is_param = true;
  4661. GGML_ASSERT(tensor->grad == NULL);
  4662. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4663. }
  4664. // ggml_compute_forward_dup
  4665. static void ggml_compute_forward_dup_f16(
  4666. const struct ggml_compute_params * params,
  4667. const struct ggml_tensor * src0,
  4668. struct ggml_tensor * dst) {
  4669. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4670. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4671. return;
  4672. }
  4673. const int64_t ne00 = src0->ne[0];
  4674. const int64_t ne01 = src0->ne[1];
  4675. const int64_t ne02 = src0->ne[2];
  4676. const int64_t ne03 = src0->ne[3];
  4677. const int64_t ne0 = dst->ne[0];
  4678. const int64_t ne1 = dst->ne[1];
  4679. const int64_t ne2 = dst->ne[2];
  4680. const int64_t ne3 = dst->ne[3];
  4681. const size_t nb00 = src0->nb[0];
  4682. const size_t nb01 = src0->nb[1];
  4683. const size_t nb02 = src0->nb[2];
  4684. const size_t nb03 = src0->nb[3];
  4685. const size_t nb0 = dst->nb[0];
  4686. const size_t nb1 = dst->nb[1];
  4687. const size_t nb2 = dst->nb[2];
  4688. const size_t nb3 = dst->nb[3];
  4689. const int ith = params->ith; // thread index
  4690. const int nth = params->nth; // number of threads
  4691. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4692. // parallelize by elements
  4693. const int ne = ggml_nelements(dst);
  4694. const int dr = (ne + nth - 1) / nth;
  4695. const int ie0 = dr * ith;
  4696. const int ie1 = MIN(ie0 + dr, ne);
  4697. memcpy(
  4698. ((char *) dst->data + ie0*nb0),
  4699. ((char *) src0->data + ie0*nb00),
  4700. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4701. return;
  4702. }
  4703. // parallelize by rows
  4704. const int nr = ne01;
  4705. // number of rows per thread
  4706. const int dr = (nr + nth - 1) / nth;
  4707. // row range for this thread
  4708. const int ir0 = dr * ith;
  4709. const int ir1 = MIN(ir0 + dr, nr);
  4710. if (src0->type == dst->type &&
  4711. ne00 == ne0 &&
  4712. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4713. // copy by rows
  4714. const size_t rs = ne00*nb00;
  4715. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4716. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4717. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4718. memcpy(
  4719. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4720. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4721. rs);
  4722. }
  4723. }
  4724. }
  4725. return;
  4726. }
  4727. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4728. if (ggml_is_contiguous(dst)) {
  4729. if (nb00 == sizeof(ggml_fp16_t)) {
  4730. if (dst->type == GGML_TYPE_F16) {
  4731. size_t id = 0;
  4732. const size_t rs = ne00 * nb00;
  4733. char * dst_ptr = (char *) dst->data;
  4734. for (int i03 = 0; i03 < ne03; i03++) {
  4735. for (int i02 = 0; i02 < ne02; i02++) {
  4736. id += rs * ir0;
  4737. for (int i01 = ir0; i01 < ir1; i01++) {
  4738. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4739. memcpy(dst_ptr + id, src0_ptr, rs);
  4740. id += rs;
  4741. }
  4742. id += rs * (ne01 - ir1);
  4743. }
  4744. }
  4745. } else if (dst->type == GGML_TYPE_F32) {
  4746. size_t id = 0;
  4747. float * dst_ptr = (float *) dst->data;
  4748. for (int i03 = 0; i03 < ne03; i03++) {
  4749. for (int i02 = 0; i02 < ne02; i02++) {
  4750. id += ne00 * ir0;
  4751. for (int i01 = ir0; i01 < ir1; i01++) {
  4752. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4753. for (int i00 = 0; i00 < ne00; i00++) {
  4754. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4755. id++;
  4756. }
  4757. }
  4758. id += ne00 * (ne01 - ir1);
  4759. }
  4760. }
  4761. } else if (ggml_is_quantized(dst->type)) {
  4762. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4763. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4764. size_t id = 0;
  4765. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4766. char * dst_ptr = (char *) dst->data;
  4767. for (int i03 = 0; i03 < ne03; i03++) {
  4768. for (int i02 = 0; i02 < ne02; i02++) {
  4769. id += rs * ir0;
  4770. for (int i01 = ir0; i01 < ir1; i01++) {
  4771. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4772. for (int i00 = 0; i00 < ne00; i00++) {
  4773. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4774. }
  4775. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4776. id += rs;
  4777. }
  4778. id += rs * (ne01 - ir1);
  4779. }
  4780. }
  4781. } else {
  4782. GGML_ASSERT(false); // TODO: implement
  4783. }
  4784. } else {
  4785. //printf("%s: this is not optimal - fix me\n", __func__);
  4786. if (dst->type == GGML_TYPE_F32) {
  4787. size_t id = 0;
  4788. float * dst_ptr = (float *) dst->data;
  4789. for (int i03 = 0; i03 < ne03; i03++) {
  4790. for (int i02 = 0; i02 < ne02; i02++) {
  4791. id += ne00 * ir0;
  4792. for (int i01 = ir0; i01 < ir1; i01++) {
  4793. for (int i00 = 0; i00 < ne00; i00++) {
  4794. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4795. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4796. id++;
  4797. }
  4798. }
  4799. id += ne00 * (ne01 - ir1);
  4800. }
  4801. }
  4802. } else if (dst->type == GGML_TYPE_F16) {
  4803. size_t id = 0;
  4804. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4805. for (int i03 = 0; i03 < ne03; i03++) {
  4806. for (int i02 = 0; i02 < ne02; i02++) {
  4807. id += ne00 * ir0;
  4808. for (int i01 = ir0; i01 < ir1; i01++) {
  4809. for (int i00 = 0; i00 < ne00; i00++) {
  4810. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4811. dst_ptr[id] = *src0_ptr;
  4812. id++;
  4813. }
  4814. }
  4815. id += ne00 * (ne01 - ir1);
  4816. }
  4817. }
  4818. } else {
  4819. GGML_ASSERT(false); // TODO: implement
  4820. }
  4821. }
  4822. return;
  4823. }
  4824. // dst counters
  4825. int64_t i10 = 0;
  4826. int64_t i11 = 0;
  4827. int64_t i12 = 0;
  4828. int64_t i13 = 0;
  4829. if (dst->type == GGML_TYPE_F16) {
  4830. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4831. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4832. i10 += ne00 * ir0;
  4833. while (i10 >= ne0) {
  4834. i10 -= ne0;
  4835. if (++i11 == ne1) {
  4836. i11 = 0;
  4837. if (++i12 == ne2) {
  4838. i12 = 0;
  4839. if (++i13 == ne3) {
  4840. i13 = 0;
  4841. }
  4842. }
  4843. }
  4844. }
  4845. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4846. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4847. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4848. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4849. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4850. if (++i10 == ne00) {
  4851. i10 = 0;
  4852. if (++i11 == ne01) {
  4853. i11 = 0;
  4854. if (++i12 == ne02) {
  4855. i12 = 0;
  4856. if (++i13 == ne03) {
  4857. i13 = 0;
  4858. }
  4859. }
  4860. }
  4861. }
  4862. }
  4863. }
  4864. i10 += ne00 * (ne01 - ir1);
  4865. while (i10 >= ne0) {
  4866. i10 -= ne0;
  4867. if (++i11 == ne1) {
  4868. i11 = 0;
  4869. if (++i12 == ne2) {
  4870. i12 = 0;
  4871. if (++i13 == ne3) {
  4872. i13 = 0;
  4873. }
  4874. }
  4875. }
  4876. }
  4877. }
  4878. }
  4879. } else if (dst->type == GGML_TYPE_F32) {
  4880. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4881. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4882. i10 += ne00 * ir0;
  4883. while (i10 >= ne0) {
  4884. i10 -= ne0;
  4885. if (++i11 == ne1) {
  4886. i11 = 0;
  4887. if (++i12 == ne2) {
  4888. i12 = 0;
  4889. if (++i13 == ne3) {
  4890. i13 = 0;
  4891. }
  4892. }
  4893. }
  4894. }
  4895. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4896. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4897. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4898. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4899. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4900. if (++i10 == ne0) {
  4901. i10 = 0;
  4902. if (++i11 == ne1) {
  4903. i11 = 0;
  4904. if (++i12 == ne2) {
  4905. i12 = 0;
  4906. if (++i13 == ne3) {
  4907. i13 = 0;
  4908. }
  4909. }
  4910. }
  4911. }
  4912. }
  4913. }
  4914. i10 += ne00 * (ne01 - ir1);
  4915. while (i10 >= ne0) {
  4916. i10 -= ne0;
  4917. if (++i11 == ne1) {
  4918. i11 = 0;
  4919. if (++i12 == ne2) {
  4920. i12 = 0;
  4921. if (++i13 == ne3) {
  4922. i13 = 0;
  4923. }
  4924. }
  4925. }
  4926. }
  4927. }
  4928. }
  4929. } else {
  4930. GGML_ASSERT(false); // TODO: implement
  4931. }
  4932. }
  4933. static void ggml_compute_forward_dup_f32(
  4934. const struct ggml_compute_params * params,
  4935. const struct ggml_tensor * src0,
  4936. struct ggml_tensor * dst) {
  4937. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4939. return;
  4940. }
  4941. const int64_t ne00 = src0->ne[0];
  4942. const int64_t ne01 = src0->ne[1];
  4943. const int64_t ne02 = src0->ne[2];
  4944. const int64_t ne03 = src0->ne[3];
  4945. const int64_t ne0 = dst->ne[0];
  4946. const int64_t ne1 = dst->ne[1];
  4947. const int64_t ne2 = dst->ne[2];
  4948. const int64_t ne3 = dst->ne[3];
  4949. const size_t nb00 = src0->nb[0];
  4950. const size_t nb01 = src0->nb[1];
  4951. const size_t nb02 = src0->nb[2];
  4952. const size_t nb03 = src0->nb[3];
  4953. const size_t nb0 = dst->nb[0];
  4954. const size_t nb1 = dst->nb[1];
  4955. const size_t nb2 = dst->nb[2];
  4956. const size_t nb3 = dst->nb[3];
  4957. const int ith = params->ith; // thread index
  4958. const int nth = params->nth; // number of threads
  4959. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4960. // parallelize by elements
  4961. const int ne = ggml_nelements(dst);
  4962. const int dr = (ne + nth - 1) / nth;
  4963. const int ie0 = dr * ith;
  4964. const int ie1 = MIN(ie0 + dr, ne);
  4965. memcpy(
  4966. ((char *) dst->data + ie0*nb0),
  4967. ((char *) src0->data + ie0*nb00),
  4968. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4969. return;
  4970. }
  4971. // parallelize by rows
  4972. const int nr = ne01;
  4973. // number of rows per thread
  4974. const int dr = (nr + nth - 1) / nth;
  4975. // row range for this thread
  4976. const int ir0 = dr * ith;
  4977. const int ir1 = MIN(ir0 + dr, nr);
  4978. if (src0->type == dst->type &&
  4979. ne00 == ne0 &&
  4980. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4981. // copy by rows
  4982. const size_t rs = ne00*nb00;
  4983. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4984. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4985. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4986. memcpy(
  4987. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4988. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4989. rs);
  4990. }
  4991. }
  4992. }
  4993. return;
  4994. }
  4995. if (ggml_is_contiguous(dst)) {
  4996. // TODO: simplify
  4997. if (nb00 == sizeof(float)) {
  4998. if (dst->type == GGML_TYPE_F32) {
  4999. size_t id = 0;
  5000. const size_t rs = ne00 * nb00;
  5001. char * dst_ptr = (char *) dst->data;
  5002. for (int i03 = 0; i03 < ne03; i03++) {
  5003. for (int i02 = 0; i02 < ne02; i02++) {
  5004. id += rs * ir0;
  5005. for (int i01 = ir0; i01 < ir1; i01++) {
  5006. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5007. memcpy(dst_ptr + id, src0_ptr, rs);
  5008. id += rs;
  5009. }
  5010. id += rs * (ne01 - ir1);
  5011. }
  5012. }
  5013. } else if (dst->type == GGML_TYPE_F16) {
  5014. size_t id = 0;
  5015. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5016. for (int i03 = 0; i03 < ne03; i03++) {
  5017. for (int i02 = 0; i02 < ne02; i02++) {
  5018. id += ne00 * ir0;
  5019. for (int i01 = ir0; i01 < ir1; i01++) {
  5020. for (int i00 = 0; i00 < ne00; i00++) {
  5021. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5022. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5023. id++;
  5024. }
  5025. }
  5026. id += ne00 * (ne01 - ir1);
  5027. }
  5028. }
  5029. } else if (ggml_is_quantized(dst->type)) {
  5030. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5031. size_t id = 0;
  5032. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5033. char * dst_ptr = (char *) dst->data;
  5034. for (int i03 = 0; i03 < ne03; i03++) {
  5035. for (int i02 = 0; i02 < ne02; i02++) {
  5036. id += rs * ir0;
  5037. for (int i01 = ir0; i01 < ir1; i01++) {
  5038. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5039. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5040. id += rs;
  5041. }
  5042. id += rs * (ne01 - ir1);
  5043. }
  5044. }
  5045. } else {
  5046. GGML_ASSERT(false); // TODO: implement
  5047. }
  5048. } else {
  5049. //printf("%s: this is not optimal - fix me\n", __func__);
  5050. if (dst->type == GGML_TYPE_F32) {
  5051. size_t id = 0;
  5052. float * dst_ptr = (float *) dst->data;
  5053. for (int i03 = 0; i03 < ne03; i03++) {
  5054. for (int i02 = 0; i02 < ne02; i02++) {
  5055. id += ne00 * ir0;
  5056. for (int i01 = ir0; i01 < ir1; i01++) {
  5057. for (int i00 = 0; i00 < ne00; i00++) {
  5058. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5059. dst_ptr[id] = *src0_ptr;
  5060. id++;
  5061. }
  5062. }
  5063. id += ne00 * (ne01 - ir1);
  5064. }
  5065. }
  5066. } else if (dst->type == GGML_TYPE_F16) {
  5067. size_t id = 0;
  5068. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5069. for (int i03 = 0; i03 < ne03; i03++) {
  5070. for (int i02 = 0; i02 < ne02; i02++) {
  5071. id += ne00 * ir0;
  5072. for (int i01 = ir0; i01 < ir1; i01++) {
  5073. for (int i00 = 0; i00 < ne00; i00++) {
  5074. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5075. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5076. id++;
  5077. }
  5078. }
  5079. id += ne00 * (ne01 - ir1);
  5080. }
  5081. }
  5082. } else {
  5083. GGML_ASSERT(false); // TODO: implement
  5084. }
  5085. }
  5086. return;
  5087. }
  5088. // dst counters
  5089. int64_t i10 = 0;
  5090. int64_t i11 = 0;
  5091. int64_t i12 = 0;
  5092. int64_t i13 = 0;
  5093. if (dst->type == GGML_TYPE_F32) {
  5094. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5095. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5096. i10 += ne00 * ir0;
  5097. while (i10 >= ne0) {
  5098. i10 -= ne0;
  5099. i11++;
  5100. if (++i11 == ne1) {
  5101. i11 = 0;
  5102. if (++i12 == ne2) {
  5103. i12 = 0;
  5104. if (++i13 == ne3) {
  5105. i13 = 0;
  5106. }
  5107. }
  5108. }
  5109. }
  5110. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5111. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5112. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5113. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5114. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5115. if (++i10 == ne0) {
  5116. i10 = 0;
  5117. if (++i11 == ne1) {
  5118. i11 = 0;
  5119. if (++i12 == ne2) {
  5120. i12 = 0;
  5121. if (++i13 == ne3) {
  5122. i13 = 0;
  5123. }
  5124. }
  5125. }
  5126. }
  5127. }
  5128. }
  5129. i10 += ne00 * (ne01 - ir1);
  5130. while (i10 >= ne0) {
  5131. i10 -= ne0;
  5132. if (++i11 == ne1) {
  5133. i11 = 0;
  5134. if (++i12 == ne2) {
  5135. i12 = 0;
  5136. if (++i13 == ne3) {
  5137. i13 = 0;
  5138. }
  5139. }
  5140. }
  5141. }
  5142. }
  5143. }
  5144. } else if (dst->type == GGML_TYPE_F16) {
  5145. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5146. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5147. i10 += ne00 * ir0;
  5148. while (i10 >= ne0) {
  5149. i10 -= ne0;
  5150. if (++i11 == ne1) {
  5151. i11 = 0;
  5152. if (++i12 == ne2) {
  5153. i12 = 0;
  5154. if (++i13 == ne3) {
  5155. i13 = 0;
  5156. }
  5157. }
  5158. }
  5159. }
  5160. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5161. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5162. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5163. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5164. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5165. if (++i10 == ne0) {
  5166. i10 = 0;
  5167. if (++i11 == ne1) {
  5168. i11 = 0;
  5169. if (++i12 == ne2) {
  5170. i12 = 0;
  5171. if (++i13 == ne3) {
  5172. i13 = 0;
  5173. }
  5174. }
  5175. }
  5176. }
  5177. }
  5178. }
  5179. i10 += ne00 * (ne01 - ir1);
  5180. while (i10 >= ne0) {
  5181. i10 -= ne0;
  5182. if (++i11 == ne1) {
  5183. i11 = 0;
  5184. if (++i12 == ne2) {
  5185. i12 = 0;
  5186. if (++i13 == ne3) {
  5187. i13 = 0;
  5188. }
  5189. }
  5190. }
  5191. }
  5192. }
  5193. }
  5194. } else {
  5195. GGML_ASSERT(false); // TODO: implement
  5196. }
  5197. }
  5198. static void ggml_compute_forward_dup(
  5199. const struct ggml_compute_params * params,
  5200. const struct ggml_tensor * src0,
  5201. struct ggml_tensor * dst) {
  5202. switch (src0->type) {
  5203. case GGML_TYPE_F16:
  5204. {
  5205. ggml_compute_forward_dup_f16(params, src0, dst);
  5206. } break;
  5207. case GGML_TYPE_F32:
  5208. {
  5209. ggml_compute_forward_dup_f32(params, src0, dst);
  5210. } break;
  5211. default:
  5212. {
  5213. GGML_ASSERT(false);
  5214. } break;
  5215. }
  5216. }
  5217. // ggml_compute_forward_add
  5218. static void ggml_compute_forward_add_f32(
  5219. const struct ggml_compute_params * params,
  5220. const struct ggml_tensor * src0,
  5221. const struct ggml_tensor * src1,
  5222. struct ggml_tensor * dst) {
  5223. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5224. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5225. return;
  5226. }
  5227. const int ith = params->ith;
  5228. const int nth = params->nth;
  5229. const int n = ggml_nrows(src0);
  5230. const int nc = src0->ne[0];
  5231. const size_t nb00 = src0->nb[0];
  5232. const size_t nb01 = src0->nb[1];
  5233. const size_t nb10 = src1->nb[0];
  5234. const size_t nb11 = src1->nb[1];
  5235. const size_t nb0 = dst->nb[0];
  5236. const size_t nb1 = dst->nb[1];
  5237. GGML_ASSERT( nb0 == sizeof(float));
  5238. GGML_ASSERT(nb00 == sizeof(float));
  5239. if (nb10 == sizeof(float)) {
  5240. for (int j = ith; j < n; j += nth) {
  5241. #ifdef GGML_USE_ACCELERATE
  5242. vDSP_vadd(
  5243. (float *) ((char *) src0->data + j*nb01), 1,
  5244. (float *) ((char *) src1->data + j*nb11), 1,
  5245. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5246. #else
  5247. ggml_vec_add_f32(nc,
  5248. (float *) ((char *) dst->data + j*nb1),
  5249. (float *) ((char *) src0->data + j*nb01),
  5250. (float *) ((char *) src1->data + j*nb11));
  5251. #endif
  5252. }
  5253. } else {
  5254. // src1 is not contiguous
  5255. for (int j = ith; j < n; j += nth) {
  5256. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5257. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5258. for (int i = 0; i < nc; i++) {
  5259. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5260. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5261. }
  5262. }
  5263. }
  5264. }
  5265. static void ggml_compute_forward_add_f16_f32(
  5266. const struct ggml_compute_params * params,
  5267. const struct ggml_tensor * src0,
  5268. const struct ggml_tensor * src1,
  5269. struct ggml_tensor * dst) {
  5270. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5271. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5272. return;
  5273. }
  5274. const int ith = params->ith;
  5275. const int nth = params->nth;
  5276. const int n = ggml_nrows(src0);
  5277. const int nc = src0->ne[0];
  5278. const size_t nb00 = src0->nb[0];
  5279. const size_t nb01 = src0->nb[1];
  5280. const size_t nb10 = src1->nb[0];
  5281. const size_t nb11 = src1->nb[1];
  5282. const size_t nb0 = dst->nb[0];
  5283. const size_t nb1 = dst->nb[1];
  5284. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5285. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5286. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5287. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5288. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5289. if (nb10 == sizeof(float)) {
  5290. for (int j = ith; j < n; j += nth) {
  5291. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5292. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5293. for (int i = 0; i < nc; i++) {
  5294. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5295. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5296. }
  5297. }
  5298. }
  5299. else {
  5300. // src1 is not contiguous
  5301. GGML_ASSERT(false);
  5302. }
  5303. }
  5304. static void ggml_compute_forward_add_f16_f16(
  5305. const struct ggml_compute_params * params,
  5306. const struct ggml_tensor * src0,
  5307. const struct ggml_tensor * src1,
  5308. struct ggml_tensor * dst) {
  5309. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5310. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5311. return;
  5312. }
  5313. const int ith = params->ith;
  5314. const int nth = params->nth;
  5315. const int n = ggml_nrows(src0);
  5316. const int nc = src0->ne[0];
  5317. const size_t nb00 = src0->nb[0];
  5318. const size_t nb01 = src0->nb[1];
  5319. const size_t nb10 = src1->nb[0];
  5320. const size_t nb11 = src1->nb[1];
  5321. const size_t nb0 = dst->nb[0];
  5322. const size_t nb1 = dst->nb[1];
  5323. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5324. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5325. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5326. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5327. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5328. if (nb10 == sizeof(ggml_fp16_t)) {
  5329. for (int j = ith; j < n; j += nth) {
  5330. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5331. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5332. for (int i = 0; i < nc; i++) {
  5333. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5334. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5335. }
  5336. }
  5337. }
  5338. else {
  5339. // src1 is not contiguous
  5340. GGML_ASSERT(false);
  5341. }
  5342. }
  5343. static void ggml_compute_forward_add_q_f32(
  5344. const struct ggml_compute_params * params,
  5345. const struct ggml_tensor * src0,
  5346. const struct ggml_tensor * src1,
  5347. struct ggml_tensor * dst) {
  5348. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5349. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5350. return;
  5351. }
  5352. const int64_t ne00 = src0->ne[0];
  5353. const int64_t ne01 = src0->ne[1];
  5354. const int64_t ne02 = src0->ne[2];
  5355. const int64_t ne03 = src0->ne[3];
  5356. //const int64_t ne10 = src1->ne[0];
  5357. //const int64_t ne11 = src1->ne[1];
  5358. const int64_t ne12 = src1->ne[2];
  5359. const int64_t ne13 = src1->ne[3];
  5360. //const int64_t ne0 = dst->ne[0];
  5361. //const int64_t ne1 = dst->ne[1];
  5362. const int64_t ne2 = dst->ne[2];
  5363. const int64_t ne3 = dst->ne[3];
  5364. const int nb00 = src0->nb[0];
  5365. const int nb01 = src0->nb[1];
  5366. const int nb02 = src0->nb[2];
  5367. const int nb03 = src0->nb[3];
  5368. const int nb10 = src1->nb[0];
  5369. const int nb11 = src1->nb[1];
  5370. const int nb12 = src1->nb[2];
  5371. const int nb13 = src1->nb[3];
  5372. const int nb0 = dst->nb[0];
  5373. const int nb1 = dst->nb[1];
  5374. const int nb2 = dst->nb[2];
  5375. const int nb3 = dst->nb[3];
  5376. const int ith = params->ith;
  5377. const int nth = params->nth;
  5378. GGML_ASSERT(ne02 == ne12);
  5379. GGML_ASSERT(ne03 == ne13);
  5380. GGML_ASSERT(ne2 == ne12);
  5381. GGML_ASSERT(ne3 == ne13);
  5382. const enum ggml_type type = src0->type;
  5383. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5384. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5385. // we don't support permuted src0 or src1
  5386. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5387. GGML_ASSERT(nb10 == sizeof(float));
  5388. // dst cannot be transposed or permuted
  5389. GGML_ASSERT(nb0 <= nb1);
  5390. GGML_ASSERT(nb1 <= nb2);
  5391. GGML_ASSERT(nb2 <= nb3);
  5392. GGML_ASSERT(ggml_is_quantized(src0->type));
  5393. GGML_ASSERT(dst->type == src0->type);
  5394. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5395. // total rows in src0
  5396. const int nr = ne01*ne02*ne03;
  5397. // rows per thread
  5398. const int dr = (nr + nth - 1)/nth;
  5399. // row range for this thread
  5400. const int ir0 = dr*ith;
  5401. const int ir1 = MIN(ir0 + dr, nr);
  5402. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5403. for (int ir = ir0; ir < ir1; ++ir) {
  5404. // src0 indices
  5405. const int i03 = ir/(ne02*ne01);
  5406. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5407. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5408. // src1 and dst are same shape as src0 => same indices
  5409. const int i13 = i03;
  5410. const int i12 = i02;
  5411. const int i11 = i01;
  5412. const int i3 = i03;
  5413. const int i2 = i02;
  5414. const int i1 = i01;
  5415. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5416. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5417. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5418. assert(ne00 % 32 == 0);
  5419. // unquantize row from src0 to temp buffer
  5420. dequantize_row_q(src0_row, wdata, ne00);
  5421. // add src1
  5422. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5423. // quantize row to dst
  5424. quantize_row_q(wdata, dst_row, ne00);
  5425. }
  5426. }
  5427. static void ggml_compute_forward_add(
  5428. const struct ggml_compute_params * params,
  5429. const struct ggml_tensor * src0,
  5430. const struct ggml_tensor * src1,
  5431. struct ggml_tensor * dst) {
  5432. switch (src0->type) {
  5433. case GGML_TYPE_F32:
  5434. {
  5435. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5436. } break;
  5437. case GGML_TYPE_F16:
  5438. {
  5439. if (src1->type == GGML_TYPE_F16) {
  5440. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5441. }
  5442. else if (src1->type == GGML_TYPE_F32) {
  5443. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5444. }
  5445. else {
  5446. GGML_ASSERT(false);
  5447. }
  5448. } break;
  5449. case GGML_TYPE_Q4_0:
  5450. case GGML_TYPE_Q4_1:
  5451. case GGML_TYPE_Q4_2:
  5452. {
  5453. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5454. } break;
  5455. default:
  5456. {
  5457. GGML_ASSERT(false);
  5458. } break;
  5459. }
  5460. }
  5461. // ggml_compute_forward_sub
  5462. static void ggml_compute_forward_sub_f32(
  5463. const struct ggml_compute_params * params,
  5464. const struct ggml_tensor * src0,
  5465. const struct ggml_tensor * src1,
  5466. struct ggml_tensor * dst) {
  5467. assert(params->ith == 0);
  5468. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5469. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5470. return;
  5471. }
  5472. const int n = ggml_nrows(src0);
  5473. const int nc = src0->ne[0];
  5474. assert( dst->nb[0] == sizeof(float));
  5475. assert(src0->nb[0] == sizeof(float));
  5476. assert(src1->nb[0] == sizeof(float));
  5477. for (int i = 0; i < n; i++) {
  5478. ggml_vec_sub_f32(nc,
  5479. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5480. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5481. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5482. }
  5483. }
  5484. static void ggml_compute_forward_sub(
  5485. const struct ggml_compute_params * params,
  5486. const struct ggml_tensor * src0,
  5487. const struct ggml_tensor * src1,
  5488. struct ggml_tensor * dst) {
  5489. switch (src0->type) {
  5490. case GGML_TYPE_F32:
  5491. {
  5492. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5493. } break;
  5494. default:
  5495. {
  5496. GGML_ASSERT(false);
  5497. } break;
  5498. }
  5499. }
  5500. // ggml_compute_forward_mul
  5501. static void ggml_compute_forward_mul_f32(
  5502. const struct ggml_compute_params * params,
  5503. const struct ggml_tensor * src0,
  5504. const struct ggml_tensor * src1,
  5505. struct ggml_tensor * dst) {
  5506. assert(params->ith == 0);
  5507. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5508. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5509. return;
  5510. }
  5511. const int n = ggml_nrows(src0);
  5512. const int nc = src0->ne[0];
  5513. assert( dst->nb[0] == sizeof(float));
  5514. assert(src0->nb[0] == sizeof(float));
  5515. assert(src1->nb[0] == sizeof(float));
  5516. for (int i = 0; i < n; i++) {
  5517. ggml_vec_mul_f32(nc,
  5518. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5519. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5520. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5521. }
  5522. }
  5523. static void ggml_compute_forward_mul(
  5524. const struct ggml_compute_params * params,
  5525. const struct ggml_tensor * src0,
  5526. const struct ggml_tensor * src1,
  5527. struct ggml_tensor * dst) {
  5528. switch (src0->type) {
  5529. case GGML_TYPE_F32:
  5530. {
  5531. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5532. } break;
  5533. default:
  5534. {
  5535. GGML_ASSERT(false);
  5536. } break;
  5537. }
  5538. }
  5539. // ggml_compute_forward_div
  5540. static void ggml_compute_forward_div_f32(
  5541. const struct ggml_compute_params * params,
  5542. const struct ggml_tensor * src0,
  5543. const struct ggml_tensor * src1,
  5544. struct ggml_tensor * dst) {
  5545. assert(params->ith == 0);
  5546. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5547. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5548. return;
  5549. }
  5550. const int n = ggml_nrows(src0);
  5551. const int nc = src0->ne[0];
  5552. assert( dst->nb[0] == sizeof(float));
  5553. assert(src0->nb[0] == sizeof(float));
  5554. assert(src1->nb[0] == sizeof(float));
  5555. for (int i = 0; i < n; i++) {
  5556. ggml_vec_div_f32(nc,
  5557. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5558. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5559. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5560. }
  5561. }
  5562. static void ggml_compute_forward_div(
  5563. const struct ggml_compute_params * params,
  5564. const struct ggml_tensor * src0,
  5565. const struct ggml_tensor * src1,
  5566. struct ggml_tensor * dst) {
  5567. switch (src0->type) {
  5568. case GGML_TYPE_F32:
  5569. {
  5570. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5571. } break;
  5572. default:
  5573. {
  5574. GGML_ASSERT(false);
  5575. } break;
  5576. }
  5577. }
  5578. // ggml_compute_forward_sqr
  5579. static void ggml_compute_forward_sqr_f32(
  5580. const struct ggml_compute_params * params,
  5581. const struct ggml_tensor * src0,
  5582. struct ggml_tensor * dst) {
  5583. assert(params->ith == 0);
  5584. assert(ggml_are_same_shape(src0, dst));
  5585. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5586. return;
  5587. }
  5588. const int n = ggml_nrows(src0);
  5589. const int nc = src0->ne[0];
  5590. assert( dst->nb[0] == sizeof(float));
  5591. assert(src0->nb[0] == sizeof(float));
  5592. for (int i = 0; i < n; i++) {
  5593. ggml_vec_sqr_f32(nc,
  5594. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5595. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5596. }
  5597. }
  5598. static void ggml_compute_forward_sqr(
  5599. const struct ggml_compute_params * params,
  5600. const struct ggml_tensor * src0,
  5601. struct ggml_tensor * dst) {
  5602. switch (src0->type) {
  5603. case GGML_TYPE_F32:
  5604. {
  5605. ggml_compute_forward_sqr_f32(params, src0, dst);
  5606. } break;
  5607. default:
  5608. {
  5609. GGML_ASSERT(false);
  5610. } break;
  5611. }
  5612. }
  5613. // ggml_compute_forward_sqrt
  5614. static void ggml_compute_forward_sqrt_f32(
  5615. const struct ggml_compute_params * params,
  5616. const struct ggml_tensor * src0,
  5617. struct ggml_tensor * dst) {
  5618. assert(params->ith == 0);
  5619. assert(ggml_are_same_shape(src0, dst));
  5620. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5621. return;
  5622. }
  5623. const int n = ggml_nrows(src0);
  5624. const int nc = src0->ne[0];
  5625. assert( dst->nb[0] == sizeof(float));
  5626. assert(src0->nb[0] == sizeof(float));
  5627. for (int i = 0; i < n; i++) {
  5628. ggml_vec_sqrt_f32(nc,
  5629. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5630. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5631. }
  5632. }
  5633. static void ggml_compute_forward_sqrt(
  5634. const struct ggml_compute_params * params,
  5635. const struct ggml_tensor * src0,
  5636. struct ggml_tensor * dst) {
  5637. switch (src0->type) {
  5638. case GGML_TYPE_F32:
  5639. {
  5640. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5641. } break;
  5642. default:
  5643. {
  5644. GGML_ASSERT(false);
  5645. } break;
  5646. }
  5647. }
  5648. // ggml_compute_forward_sum
  5649. static void ggml_compute_forward_sum_f32(
  5650. const struct ggml_compute_params * params,
  5651. const struct ggml_tensor * src0,
  5652. struct ggml_tensor * dst) {
  5653. assert(params->ith == 0);
  5654. assert(ggml_is_scalar(dst));
  5655. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5656. return;
  5657. }
  5658. assert(ggml_is_scalar(dst));
  5659. assert(src0->nb[0] == sizeof(float));
  5660. const int64_t ne00 = src0->ne[0];
  5661. const int64_t ne01 = src0->ne[1];
  5662. const int64_t ne02 = src0->ne[2];
  5663. const int64_t ne03 = src0->ne[3];
  5664. const size_t nb01 = src0->nb[1];
  5665. const size_t nb02 = src0->nb[2];
  5666. const size_t nb03 = src0->nb[3];
  5667. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5668. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5669. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5670. ggml_vec_sum_f32(ne00,
  5671. (float *) (dst->data),
  5672. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5673. }
  5674. }
  5675. }
  5676. }
  5677. static void ggml_compute_forward_sum(
  5678. const struct ggml_compute_params * params,
  5679. const struct ggml_tensor * src0,
  5680. struct ggml_tensor * dst) {
  5681. switch (src0->type) {
  5682. case GGML_TYPE_F32:
  5683. {
  5684. ggml_compute_forward_sum_f32(params, src0, dst);
  5685. } break;
  5686. default:
  5687. {
  5688. GGML_ASSERT(false);
  5689. } break;
  5690. }
  5691. }
  5692. // ggml_compute_forward_mean
  5693. static void ggml_compute_forward_mean_f32(
  5694. const struct ggml_compute_params * params,
  5695. const struct ggml_tensor * src0,
  5696. struct ggml_tensor * dst) {
  5697. assert(params->ith == 0);
  5698. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5699. return;
  5700. }
  5701. assert(src0->nb[0] == sizeof(float));
  5702. const int64_t ne00 = src0->ne[0];
  5703. const int64_t ne01 = src0->ne[1];
  5704. const int64_t ne02 = src0->ne[2];
  5705. const int64_t ne03 = src0->ne[3];
  5706. const size_t nb01 = src0->nb[1];
  5707. const size_t nb02 = src0->nb[2];
  5708. const size_t nb03 = src0->nb[3];
  5709. const int64_t ne0 = dst->ne[0];
  5710. const int64_t ne1 = dst->ne[1];
  5711. const int64_t ne2 = dst->ne[2];
  5712. const int64_t ne3 = dst->ne[3];
  5713. assert(ne0 == 1);
  5714. assert(ne1 == ne01);
  5715. assert(ne2 == ne02);
  5716. assert(ne3 == ne03);
  5717. UNUSED(ne0);
  5718. UNUSED(ne1);
  5719. UNUSED(ne2);
  5720. UNUSED(ne3);
  5721. const size_t nb1 = dst->nb[1];
  5722. const size_t nb2 = dst->nb[2];
  5723. const size_t nb3 = dst->nb[3];
  5724. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5725. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5726. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5727. ggml_vec_sum_f32(ne00,
  5728. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5729. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5730. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5731. }
  5732. }
  5733. }
  5734. }
  5735. static void ggml_compute_forward_mean(
  5736. const struct ggml_compute_params * params,
  5737. const struct ggml_tensor * src0,
  5738. struct ggml_tensor * dst) {
  5739. switch (src0->type) {
  5740. case GGML_TYPE_F32:
  5741. {
  5742. ggml_compute_forward_mean_f32(params, src0, dst);
  5743. } break;
  5744. default:
  5745. {
  5746. GGML_ASSERT(false);
  5747. } break;
  5748. }
  5749. }
  5750. // ggml_compute_forward_repeat
  5751. static void ggml_compute_forward_repeat_f32(
  5752. const struct ggml_compute_params * params,
  5753. const struct ggml_tensor * src0,
  5754. struct ggml_tensor * dst) {
  5755. assert(params->ith == 0);
  5756. assert(ggml_can_repeat(src0, dst));
  5757. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5758. return;
  5759. }
  5760. // TODO: implement support for rank > 2 tensors
  5761. assert(src0->ne[2] == 1);
  5762. assert(src0->ne[3] == 1);
  5763. assert( dst->ne[2] == 1);
  5764. assert( dst->ne[3] == 1);
  5765. const int nc = dst->ne[0];
  5766. const int nr = dst->ne[1];
  5767. const int nc0 = src0->ne[0];
  5768. const int nr0 = src0->ne[1];
  5769. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5770. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5771. // TODO: support for transposed / permuted tensors
  5772. assert( dst->nb[0] == sizeof(float));
  5773. assert(src0->nb[0] == sizeof(float));
  5774. // TODO: maybe this is not optimal?
  5775. for (int i = 0; i < nrr; i++) {
  5776. for (int j = 0; j < ncr; j++) {
  5777. for (int k = 0; k < nr0; k++) {
  5778. ggml_vec_cpy_f32(nc0,
  5779. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5780. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5781. }
  5782. }
  5783. }
  5784. }
  5785. static void ggml_compute_forward_repeat(
  5786. const struct ggml_compute_params * params,
  5787. const struct ggml_tensor * src0,
  5788. struct ggml_tensor * dst) {
  5789. switch (src0->type) {
  5790. case GGML_TYPE_F32:
  5791. {
  5792. ggml_compute_forward_repeat_f32(params, src0, dst);
  5793. } break;
  5794. default:
  5795. {
  5796. GGML_ASSERT(false);
  5797. } break;
  5798. }
  5799. }
  5800. // ggml_compute_forward_abs
  5801. static void ggml_compute_forward_abs_f32(
  5802. const struct ggml_compute_params * params,
  5803. const struct ggml_tensor * src0,
  5804. struct ggml_tensor * dst) {
  5805. assert(params->ith == 0);
  5806. assert(ggml_are_same_shape(src0, dst));
  5807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5808. return;
  5809. }
  5810. const int n = ggml_nrows(src0);
  5811. const int nc = src0->ne[0];
  5812. assert(dst->nb[0] == sizeof(float));
  5813. assert(src0->nb[0] == sizeof(float));
  5814. for (int i = 0; i < n; i++) {
  5815. ggml_vec_abs_f32(nc,
  5816. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5817. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5818. }
  5819. }
  5820. static void ggml_compute_forward_abs(
  5821. const struct ggml_compute_params * params,
  5822. const struct ggml_tensor * src0,
  5823. struct ggml_tensor * dst) {
  5824. switch (src0->type) {
  5825. case GGML_TYPE_F32:
  5826. {
  5827. ggml_compute_forward_abs_f32(params, src0, dst);
  5828. } break;
  5829. default:
  5830. {
  5831. GGML_ASSERT(false);
  5832. } break;
  5833. }
  5834. }
  5835. // ggml_compute_forward_sgn
  5836. static void ggml_compute_forward_sgn_f32(
  5837. const struct ggml_compute_params * params,
  5838. const struct ggml_tensor * src0,
  5839. struct ggml_tensor * dst) {
  5840. assert(params->ith == 0);
  5841. assert(ggml_are_same_shape(src0, dst));
  5842. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5843. return;
  5844. }
  5845. const int n = ggml_nrows(src0);
  5846. const int nc = src0->ne[0];
  5847. assert(dst->nb[0] == sizeof(float));
  5848. assert(src0->nb[0] == sizeof(float));
  5849. for (int i = 0; i < n; i++) {
  5850. ggml_vec_sgn_f32(nc,
  5851. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5852. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5853. }
  5854. }
  5855. static void ggml_compute_forward_sgn(
  5856. const struct ggml_compute_params * params,
  5857. const struct ggml_tensor * src0,
  5858. struct ggml_tensor * dst) {
  5859. switch (src0->type) {
  5860. case GGML_TYPE_F32:
  5861. {
  5862. ggml_compute_forward_sgn_f32(params, src0, dst);
  5863. } break;
  5864. default:
  5865. {
  5866. GGML_ASSERT(false);
  5867. } break;
  5868. }
  5869. }
  5870. // ggml_compute_forward_neg
  5871. static void ggml_compute_forward_neg_f32(
  5872. const struct ggml_compute_params * params,
  5873. const struct ggml_tensor * src0,
  5874. struct ggml_tensor * dst) {
  5875. assert(params->ith == 0);
  5876. assert(ggml_are_same_shape(src0, dst));
  5877. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5878. return;
  5879. }
  5880. const int n = ggml_nrows(src0);
  5881. const int nc = src0->ne[0];
  5882. assert(dst->nb[0] == sizeof(float));
  5883. assert(src0->nb[0] == sizeof(float));
  5884. for (int i = 0; i < n; i++) {
  5885. ggml_vec_neg_f32(nc,
  5886. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5887. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5888. }
  5889. }
  5890. static void ggml_compute_forward_neg(
  5891. const struct ggml_compute_params * params,
  5892. const struct ggml_tensor * src0,
  5893. struct ggml_tensor * dst) {
  5894. switch (src0->type) {
  5895. case GGML_TYPE_F32:
  5896. {
  5897. ggml_compute_forward_neg_f32(params, src0, dst);
  5898. } break;
  5899. default:
  5900. {
  5901. GGML_ASSERT(false);
  5902. } break;
  5903. }
  5904. }
  5905. // ggml_compute_forward_step
  5906. static void ggml_compute_forward_step_f32(
  5907. const struct ggml_compute_params * params,
  5908. const struct ggml_tensor * src0,
  5909. struct ggml_tensor * dst) {
  5910. assert(params->ith == 0);
  5911. assert(ggml_are_same_shape(src0, dst));
  5912. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5913. return;
  5914. }
  5915. const int n = ggml_nrows(src0);
  5916. const int nc = src0->ne[0];
  5917. assert(dst->nb[0] == sizeof(float));
  5918. assert(src0->nb[0] == sizeof(float));
  5919. for (int i = 0; i < n; i++) {
  5920. ggml_vec_step_f32(nc,
  5921. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5922. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5923. }
  5924. }
  5925. static void ggml_compute_forward_step(
  5926. const struct ggml_compute_params * params,
  5927. const struct ggml_tensor * src0,
  5928. struct ggml_tensor * dst) {
  5929. switch (src0->type) {
  5930. case GGML_TYPE_F32:
  5931. {
  5932. ggml_compute_forward_step_f32(params, src0, dst);
  5933. } break;
  5934. default:
  5935. {
  5936. GGML_ASSERT(false);
  5937. } break;
  5938. }
  5939. }
  5940. // ggml_compute_forward_relu
  5941. static void ggml_compute_forward_relu_f32(
  5942. const struct ggml_compute_params * params,
  5943. const struct ggml_tensor * src0,
  5944. struct ggml_tensor * dst) {
  5945. assert(params->ith == 0);
  5946. assert(ggml_are_same_shape(src0, dst));
  5947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5948. return;
  5949. }
  5950. const int n = ggml_nrows(src0);
  5951. const int nc = src0->ne[0];
  5952. assert(dst->nb[0] == sizeof(float));
  5953. assert(src0->nb[0] == sizeof(float));
  5954. for (int i = 0; i < n; i++) {
  5955. ggml_vec_relu_f32(nc,
  5956. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5957. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5958. }
  5959. }
  5960. static void ggml_compute_forward_relu(
  5961. const struct ggml_compute_params * params,
  5962. const struct ggml_tensor * src0,
  5963. struct ggml_tensor * dst) {
  5964. switch (src0->type) {
  5965. case GGML_TYPE_F32:
  5966. {
  5967. ggml_compute_forward_relu_f32(params, src0, dst);
  5968. } break;
  5969. default:
  5970. {
  5971. GGML_ASSERT(false);
  5972. } break;
  5973. }
  5974. }
  5975. // ggml_compute_forward_gelu
  5976. static void ggml_compute_forward_gelu_f32(
  5977. const struct ggml_compute_params * params,
  5978. const struct ggml_tensor * src0,
  5979. struct ggml_tensor * dst) {
  5980. GGML_ASSERT(ggml_is_contiguous(src0));
  5981. GGML_ASSERT(ggml_is_contiguous(dst));
  5982. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5983. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5984. return;
  5985. }
  5986. const int ith = params->ith;
  5987. const int nth = params->nth;
  5988. const int nc = src0->ne[0];
  5989. const int nr = ggml_nrows(src0);
  5990. // rows per thread
  5991. const int dr = (nr + nth - 1)/nth;
  5992. // row range for this thread
  5993. const int ir0 = dr*ith;
  5994. const int ir1 = MIN(ir0 + dr, nr);
  5995. for (int i1 = ir0; i1 < ir1; i1++) {
  5996. ggml_vec_gelu_f32(nc,
  5997. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5998. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5999. #ifndef NDEBUG
  6000. for (int k = 0; k < nc; k++) {
  6001. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6002. UNUSED(x);
  6003. assert(!isnan(x));
  6004. assert(!isinf(x));
  6005. }
  6006. #endif
  6007. }
  6008. }
  6009. static void ggml_compute_forward_gelu(
  6010. const struct ggml_compute_params * params,
  6011. const struct ggml_tensor * src0,
  6012. struct ggml_tensor * dst) {
  6013. switch (src0->type) {
  6014. case GGML_TYPE_F32:
  6015. {
  6016. ggml_compute_forward_gelu_f32(params, src0, dst);
  6017. } break;
  6018. default:
  6019. {
  6020. GGML_ASSERT(false);
  6021. } break;
  6022. }
  6023. //printf("XXXXXXXX gelu\n");
  6024. }
  6025. // ggml_compute_forward_silu
  6026. static void ggml_compute_forward_silu_f32(
  6027. const struct ggml_compute_params * params,
  6028. const struct ggml_tensor * src0,
  6029. struct ggml_tensor * dst) {
  6030. GGML_ASSERT(ggml_is_contiguous(src0));
  6031. GGML_ASSERT(ggml_is_contiguous(dst));
  6032. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6033. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6034. return;
  6035. }
  6036. const int ith = params->ith;
  6037. const int nth = params->nth;
  6038. const int nc = src0->ne[0];
  6039. const int nr = ggml_nrows(src0);
  6040. // rows per thread
  6041. const int dr = (nr + nth - 1)/nth;
  6042. // row range for this thread
  6043. const int ir0 = dr*ith;
  6044. const int ir1 = MIN(ir0 + dr, nr);
  6045. for (int i1 = ir0; i1 < ir1; i1++) {
  6046. ggml_vec_silu_f32(nc,
  6047. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6048. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6049. #ifndef NDEBUG
  6050. for (int k = 0; k < nc; k++) {
  6051. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6052. UNUSED(x);
  6053. assert(!isnan(x));
  6054. assert(!isinf(x));
  6055. }
  6056. #endif
  6057. }
  6058. }
  6059. static void ggml_compute_forward_silu(
  6060. const struct ggml_compute_params * params,
  6061. const struct ggml_tensor * src0,
  6062. struct ggml_tensor * dst) {
  6063. switch (src0->type) {
  6064. case GGML_TYPE_F32:
  6065. {
  6066. ggml_compute_forward_silu_f32(params, src0, dst);
  6067. } break;
  6068. default:
  6069. {
  6070. GGML_ASSERT(false);
  6071. } break;
  6072. }
  6073. }
  6074. // ggml_compute_forward_norm
  6075. static void ggml_compute_forward_norm_f32(
  6076. const struct ggml_compute_params * params,
  6077. const struct ggml_tensor * src0,
  6078. struct ggml_tensor * dst) {
  6079. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6080. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6081. return;
  6082. }
  6083. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6084. const int ith = params->ith;
  6085. const int nth = params->nth;
  6086. const int64_t ne00 = src0->ne[0];
  6087. const int64_t ne01 = src0->ne[1];
  6088. const int64_t ne02 = src0->ne[2];
  6089. const int64_t ne03 = src0->ne[3];
  6090. const size_t nb01 = src0->nb[1];
  6091. const size_t nb02 = src0->nb[2];
  6092. const size_t nb03 = src0->nb[3];
  6093. const size_t nb1 = dst->nb[1];
  6094. const size_t nb2 = dst->nb[2];
  6095. const size_t nb3 = dst->nb[3];
  6096. const float eps = 1e-5f; // TODO: make this a parameter
  6097. // TODO: optimize
  6098. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6099. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6100. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6101. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6102. ggml_float sum = 0.0;
  6103. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6104. sum += (ggml_float)x[i00];
  6105. }
  6106. float mean = sum/ne00;
  6107. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6108. ggml_float sum2 = 0.0;
  6109. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6110. float v = x[i00] - mean;
  6111. y[i00] = v;
  6112. sum2 += (ggml_float)(v*v);
  6113. }
  6114. float variance = sum2/ne00;
  6115. const float scale = 1.0f/sqrtf(variance + eps);
  6116. ggml_vec_scale_f32(ne00, y, scale);
  6117. }
  6118. }
  6119. }
  6120. }
  6121. static void ggml_compute_forward_norm(
  6122. const struct ggml_compute_params * params,
  6123. const struct ggml_tensor * src0,
  6124. struct ggml_tensor * dst) {
  6125. switch (src0->type) {
  6126. case GGML_TYPE_F32:
  6127. {
  6128. ggml_compute_forward_norm_f32(params, src0, dst);
  6129. } break;
  6130. default:
  6131. {
  6132. GGML_ASSERT(false);
  6133. } break;
  6134. }
  6135. }
  6136. static void ggml_compute_forward_rms_norm_f32(
  6137. const struct ggml_compute_params * params,
  6138. const struct ggml_tensor * src0,
  6139. struct ggml_tensor * dst) {
  6140. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6141. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6142. return;
  6143. }
  6144. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6145. const int ith = params->ith;
  6146. const int nth = params->nth;
  6147. const int64_t ne00 = src0->ne[0];
  6148. const int64_t ne01 = src0->ne[1];
  6149. const int64_t ne02 = src0->ne[2];
  6150. const int64_t ne03 = src0->ne[3];
  6151. const size_t nb01 = src0->nb[1];
  6152. const size_t nb02 = src0->nb[2];
  6153. const size_t nb03 = src0->nb[3];
  6154. const size_t nb1 = dst->nb[1];
  6155. const size_t nb2 = dst->nb[2];
  6156. const size_t nb3 = dst->nb[3];
  6157. const float eps = 1e-6f; // TODO: make this a parameter
  6158. // TODO: optimize
  6159. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6160. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6161. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6162. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6163. ggml_float sum = 0.0;
  6164. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6165. sum += (ggml_float)(x[i00] * x[i00]);
  6166. }
  6167. float mean = sum/ne00;
  6168. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6169. memcpy(y, x, ne00 * sizeof(float));
  6170. // for (int i00 = 0; i00 < ne00; i00++) {
  6171. // y[i00] = x[i00];
  6172. // }
  6173. const float scale = 1.0f/sqrtf(mean + eps);
  6174. ggml_vec_scale_f32(ne00, y, scale);
  6175. }
  6176. }
  6177. }
  6178. }
  6179. static void ggml_compute_forward_rms_norm(
  6180. const struct ggml_compute_params * params,
  6181. const struct ggml_tensor * src0,
  6182. struct ggml_tensor * dst) {
  6183. switch (src0->type) {
  6184. case GGML_TYPE_F32:
  6185. {
  6186. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6187. } break;
  6188. default:
  6189. {
  6190. GGML_ASSERT(false);
  6191. } break;
  6192. }
  6193. }
  6194. // ggml_compute_forward_mul_mat
  6195. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6196. // helper function to determine if it is better to use BLAS or not
  6197. // for large matrices, BLAS is faster
  6198. static bool ggml_compute_forward_mul_mat_use_blas(
  6199. const struct ggml_tensor * src0,
  6200. const struct ggml_tensor * src1,
  6201. struct ggml_tensor * dst) {
  6202. //const int64_t ne00 = src0->ne[0];
  6203. //const int64_t ne01 = src0->ne[1];
  6204. const int64_t ne10 = src1->ne[0];
  6205. const int64_t ne0 = dst->ne[0];
  6206. const int64_t ne1 = dst->ne[1];
  6207. // TODO: find the optimal values for these
  6208. if (ggml_is_contiguous(src0) &&
  6209. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6210. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6211. return true;
  6212. }
  6213. return false;
  6214. }
  6215. #endif
  6216. static void ggml_compute_forward_mul_mat_f32(
  6217. const struct ggml_compute_params * params,
  6218. const struct ggml_tensor * src0,
  6219. const struct ggml_tensor * src1,
  6220. struct ggml_tensor * dst) {
  6221. int64_t t0 = ggml_perf_time_us();
  6222. UNUSED(t0);
  6223. const int64_t ne00 = src0->ne[0];
  6224. const int64_t ne01 = src0->ne[1];
  6225. const int64_t ne02 = src0->ne[2];
  6226. const int64_t ne03 = src0->ne[3];
  6227. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6228. const int64_t ne10 = src1->ne[0];
  6229. #endif
  6230. const int64_t ne11 = src1->ne[1];
  6231. #ifndef NDEBUG
  6232. const int64_t ne12 = src1->ne[2];
  6233. const int64_t ne13 = src1->ne[3];
  6234. const int64_t ne0 = dst->ne[0];
  6235. const int64_t ne1 = dst->ne[1];
  6236. const int64_t ne2 = dst->ne[2];
  6237. const int64_t ne3 = dst->ne[3];
  6238. const int nb00 = src0->nb[0];
  6239. #endif
  6240. const int nb01 = src0->nb[1];
  6241. const int nb02 = src0->nb[2];
  6242. const int nb03 = src0->nb[3];
  6243. #ifndef NDEBUG
  6244. const int nb10 = src1->nb[0];
  6245. #endif
  6246. const int nb11 = src1->nb[1];
  6247. const int nb12 = src1->nb[2];
  6248. const int nb13 = src1->nb[3];
  6249. const int nb0 = dst->nb[0];
  6250. const int nb1 = dst->nb[1];
  6251. const int nb2 = dst->nb[2];
  6252. const int nb3 = dst->nb[3];
  6253. const int ith = params->ith;
  6254. const int nth = params->nth;
  6255. assert(ne02 == ne12);
  6256. assert(ne03 == ne13);
  6257. assert(ne2 == ne12);
  6258. assert(ne3 == ne13);
  6259. // we don't support permuted src0 or src1
  6260. assert(nb00 == sizeof(float));
  6261. assert(nb10 == sizeof(float));
  6262. // dst cannot be transposed or permuted
  6263. assert(nb0 == sizeof(float));
  6264. assert(nb0 <= nb1);
  6265. assert(nb1 <= nb2);
  6266. assert(nb2 <= nb3);
  6267. assert(ne0 == ne01);
  6268. assert(ne1 == ne11);
  6269. assert(ne2 == ne02);
  6270. assert(ne3 == ne03);
  6271. // nb01 >= nb00 - src0 is not transposed
  6272. // compute by src0 rows
  6273. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6274. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6275. if (params->ith != 0) {
  6276. return;
  6277. }
  6278. if (params->type == GGML_TASK_INIT) {
  6279. return;
  6280. }
  6281. if (params->type == GGML_TASK_FINALIZE) {
  6282. return;
  6283. }
  6284. #if defined(GGML_USE_CUBLAS)
  6285. float *d_X = NULL;
  6286. float *d_Y = NULL;
  6287. float *d_D = NULL;
  6288. const float alpha = 1.0f;
  6289. const float beta = 0.0f;
  6290. const int x_ne = ne01 * ne10;
  6291. const int y_ne = ne11 * ne10;
  6292. const int d_ne = ne11 * ne01;
  6293. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6294. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6295. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6296. #endif
  6297. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6298. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6299. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6300. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6301. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6302. #if defined(GGML_USE_CUBLAS)
  6303. // copy data to device
  6304. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6305. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6306. // compute
  6307. CUBLAS_CHECK(
  6308. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6309. ne01, ne11, ne10,
  6310. &alpha, d_X, ne00,
  6311. d_Y, ne10,
  6312. &beta, d_D, ne01));
  6313. // copy data to host
  6314. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6315. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6316. #else
  6317. // zT = y * xT
  6318. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6319. ne11, ne01, ne10,
  6320. 1.0f, y, ne10,
  6321. x, ne00,
  6322. 0.0f, d, ne01);
  6323. #endif
  6324. }
  6325. }
  6326. #if defined(GGML_USE_CUBLAS)
  6327. CUDA_CHECK(cudaFree(d_X));
  6328. CUDA_CHECK(cudaFree(d_Y));
  6329. CUDA_CHECK(cudaFree(d_D));
  6330. #endif
  6331. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6332. return;
  6333. }
  6334. #endif
  6335. if (params->type == GGML_TASK_INIT) {
  6336. return;
  6337. }
  6338. if (params->type == GGML_TASK_FINALIZE) {
  6339. return;
  6340. }
  6341. // parallelize by src0 rows using ggml_vec_dot_f32
  6342. // total rows in src0
  6343. const int nr = ne01*ne02*ne03;
  6344. // rows per thread
  6345. const int dr = (nr + nth - 1)/nth;
  6346. // row range for this thread
  6347. const int ir0 = dr*ith;
  6348. const int ir1 = MIN(ir0 + dr, nr);
  6349. for (int ir = ir0; ir < ir1; ++ir) {
  6350. // src0 indices
  6351. const int i03 = ir/(ne02*ne01);
  6352. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6353. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6354. for (int64_t ic = 0; ic < ne11; ++ic) {
  6355. // src1 indices
  6356. const int i13 = i03;
  6357. const int i12 = i02;
  6358. const int i11 = ic;
  6359. // dst indices
  6360. const int i0 = i01;
  6361. const int i1 = i11;
  6362. const int i2 = i02;
  6363. const int i3 = i03;
  6364. ggml_vec_dot_f32(ne00,
  6365. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6366. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6367. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6368. }
  6369. }
  6370. //int64_t t1 = ggml_perf_time_us();
  6371. //static int64_t acc = 0;
  6372. //acc += t1 - t0;
  6373. //if (t1 - t0 > 10) {
  6374. // printf("\n");
  6375. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6376. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6377. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6378. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6379. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6380. //}
  6381. }
  6382. static void ggml_compute_forward_mul_mat_f16_f32(
  6383. const struct ggml_compute_params * params,
  6384. const struct ggml_tensor * src0,
  6385. const struct ggml_tensor * src1,
  6386. struct ggml_tensor * dst) {
  6387. int64_t t0 = ggml_perf_time_us();
  6388. UNUSED(t0);
  6389. const int64_t ne00 = src0->ne[0];
  6390. const int64_t ne01 = src0->ne[1];
  6391. const int64_t ne02 = src0->ne[2];
  6392. const int64_t ne03 = src0->ne[3];
  6393. const int64_t ne10 = src1->ne[0];
  6394. const int64_t ne11 = src1->ne[1];
  6395. const int64_t ne12 = src1->ne[2];
  6396. const int64_t ne13 = src1->ne[3];
  6397. const int64_t ne0 = dst->ne[0];
  6398. const int64_t ne1 = dst->ne[1];
  6399. const int64_t ne2 = dst->ne[2];
  6400. const int64_t ne3 = dst->ne[3];
  6401. //const int64_t ne = ne0*ne1*ne2*ne3;
  6402. const int nb00 = src0->nb[0];
  6403. const int nb01 = src0->nb[1];
  6404. const int nb02 = src0->nb[2];
  6405. const int nb03 = src0->nb[3];
  6406. const int nb10 = src1->nb[0];
  6407. const int nb11 = src1->nb[1];
  6408. const int nb12 = src1->nb[2];
  6409. const int nb13 = src1->nb[3];
  6410. const int nb0 = dst->nb[0];
  6411. const int nb1 = dst->nb[1];
  6412. const int nb2 = dst->nb[2];
  6413. const int nb3 = dst->nb[3];
  6414. const int ith = params->ith;
  6415. const int nth = params->nth;
  6416. GGML_ASSERT(ne02 == ne12);
  6417. GGML_ASSERT(ne03 == ne13);
  6418. GGML_ASSERT(ne2 == ne12);
  6419. GGML_ASSERT(ne3 == ne13);
  6420. // TODO: we don't support permuted src0
  6421. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6422. // dst cannot be transposed or permuted
  6423. GGML_ASSERT(nb0 == sizeof(float));
  6424. GGML_ASSERT(nb0 <= nb1);
  6425. GGML_ASSERT(nb1 <= nb2);
  6426. GGML_ASSERT(nb2 <= nb3);
  6427. GGML_ASSERT(ne0 == ne01);
  6428. GGML_ASSERT(ne1 == ne11);
  6429. GGML_ASSERT(ne2 == ne02);
  6430. GGML_ASSERT(ne3 == ne03);
  6431. // nb01 >= nb00 - src0 is not transposed
  6432. // compute by src0 rows
  6433. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6434. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6435. GGML_ASSERT(nb10 == sizeof(float));
  6436. if (params->ith != 0) {
  6437. return;
  6438. }
  6439. if (params->type == GGML_TASK_INIT) {
  6440. return;
  6441. }
  6442. if (params->type == GGML_TASK_FINALIZE) {
  6443. return;
  6444. }
  6445. #if defined(GGML_USE_CUBLAS)
  6446. ggml_fp16_t * const wdata = params->wdata;
  6447. float *d_X = NULL;
  6448. float *d_Y = NULL;
  6449. float *d_D = NULL;
  6450. const float alpha = 1.0f;
  6451. const float beta = 0.0f;
  6452. const int x_ne = ne01 * ne10;
  6453. const int y_ne = ne11 * ne10;
  6454. const int d_ne = ne11 * ne01;
  6455. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(ggml_fp16_t) * x_ne));
  6456. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6457. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6458. #else
  6459. float * const wdata = params->wdata;
  6460. #endif
  6461. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6462. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6463. #if defined(GGML_USE_CUBLAS)
  6464. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6465. {
  6466. size_t id = 0;
  6467. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6468. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6469. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6470. }
  6471. }
  6472. }
  6473. #else
  6474. {
  6475. size_t id = 0;
  6476. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6477. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6478. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6479. }
  6480. }
  6481. }
  6482. #endif
  6483. #if defined(GGML_USE_CUBLAS)
  6484. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6485. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6486. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6487. // copy data to device
  6488. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6489. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6490. // compute
  6491. CUBLAS_CHECK(
  6492. cublasGemmEx(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6493. ne01, ne11, ne10,
  6494. &alpha, d_X, CUDA_R_16F, ne00,
  6495. d_Y, CUDA_R_16F, ne10,
  6496. &beta, d_D, CUDA_R_32F, ne01,
  6497. CUBLAS_COMPUTE_32F,
  6498. CUBLAS_GEMM_DEFAULT));
  6499. // copy data to host
  6500. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6501. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6502. #else
  6503. const float * x = wdata;
  6504. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6505. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6506. // zT = y * xT
  6507. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6508. ne11, ne01, ne10,
  6509. 1.0f, y, ne10,
  6510. x, ne00,
  6511. 0.0f, d, ne01);
  6512. #endif
  6513. }
  6514. }
  6515. #if defined(GGML_USE_CUBLAS)
  6516. CUDA_CHECK(cudaFree(d_X));
  6517. CUDA_CHECK(cudaFree(d_Y));
  6518. CUDA_CHECK(cudaFree(d_D));
  6519. #endif
  6520. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6521. return;
  6522. }
  6523. #endif
  6524. if (params->type == GGML_TASK_INIT) {
  6525. ggml_fp16_t * const wdata = params->wdata;
  6526. size_t id = 0;
  6527. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6528. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6529. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6530. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6531. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6532. }
  6533. }
  6534. }
  6535. }
  6536. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6537. return;
  6538. }
  6539. if (params->type == GGML_TASK_FINALIZE) {
  6540. return;
  6541. }
  6542. // fp16 -> half the size, so divide by 2
  6543. // TODO: do not support transposed src1
  6544. assert(nb10/2 == sizeof(ggml_fp16_t));
  6545. // parallelize by src0 rows using ggml_vec_dot_f16
  6546. // total rows in src0
  6547. const int nr = ne01*ne02*ne03;
  6548. // rows per thread
  6549. const int dr = (nr + nth - 1)/nth;
  6550. // row range for this thread
  6551. const int ir0 = dr*ith;
  6552. const int ir1 = MIN(ir0 + dr, nr);
  6553. ggml_fp16_t * wdata = params->wdata;
  6554. for (int ir = ir0; ir < ir1; ++ir) {
  6555. // src0 indices
  6556. const int i03 = ir/(ne02*ne01);
  6557. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6558. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6559. const int i13 = i03;
  6560. const int i12 = i02;
  6561. const int i0 = i01;
  6562. const int i2 = i02;
  6563. const int i3 = i03;
  6564. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6565. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6566. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6567. for (int64_t ic = 0; ic < ne11; ++ic) {
  6568. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6569. }
  6570. }
  6571. //int64_t t1 = ggml_time_us();
  6572. //static int64_t acc = 0;
  6573. //acc += t1 - t0;
  6574. //if (t1 - t0 > 10) {
  6575. // printf("\n");
  6576. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6577. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6578. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6579. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6580. //}
  6581. }
  6582. static void ggml_compute_forward_mul_mat_q_f32(
  6583. const struct ggml_compute_params * params,
  6584. const struct ggml_tensor * src0,
  6585. const struct ggml_tensor * src1,
  6586. struct ggml_tensor * dst) {
  6587. int64_t t0 = ggml_perf_time_us();
  6588. UNUSED(t0);
  6589. const int64_t ne00 = src0->ne[0];
  6590. const int64_t ne01 = src0->ne[1];
  6591. const int64_t ne02 = src0->ne[2];
  6592. const int64_t ne03 = src0->ne[3];
  6593. const int64_t ne10 = src1->ne[0];
  6594. const int64_t ne11 = src1->ne[1];
  6595. const int64_t ne12 = src1->ne[2];
  6596. const int64_t ne13 = src1->ne[3];
  6597. const int64_t ne0 = dst->ne[0];
  6598. const int64_t ne1 = dst->ne[1];
  6599. const int64_t ne2 = dst->ne[2];
  6600. const int64_t ne3 = dst->ne[3];
  6601. const int nb00 = src0->nb[0];
  6602. const int nb01 = src0->nb[1];
  6603. const int nb02 = src0->nb[2];
  6604. const int nb03 = src0->nb[3];
  6605. const int nb10 = src1->nb[0];
  6606. const int nb11 = src1->nb[1];
  6607. const int nb12 = src1->nb[2];
  6608. const int nb13 = src1->nb[3];
  6609. const int nb0 = dst->nb[0];
  6610. const int nb1 = dst->nb[1];
  6611. const int nb2 = dst->nb[2];
  6612. const int nb3 = dst->nb[3];
  6613. const int ith = params->ith;
  6614. const int nth = params->nth;
  6615. GGML_ASSERT(ne02 == ne12);
  6616. GGML_ASSERT(ne03 == ne13);
  6617. GGML_ASSERT(ne2 == ne12);
  6618. GGML_ASSERT(ne3 == ne13);
  6619. const enum ggml_type type = src0->type;
  6620. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6621. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6622. // we don't support permuted src0 or src1
  6623. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6624. GGML_ASSERT(nb10 == sizeof(float));
  6625. // dst cannot be transposed or permuted
  6626. GGML_ASSERT(nb0 == sizeof(float));
  6627. GGML_ASSERT(nb0 <= nb1);
  6628. GGML_ASSERT(nb1 <= nb2);
  6629. GGML_ASSERT(nb2 <= nb3);
  6630. GGML_ASSERT(ne0 == ne01);
  6631. GGML_ASSERT(ne1 == ne11);
  6632. GGML_ASSERT(ne2 == ne02);
  6633. GGML_ASSERT(ne3 == ne03);
  6634. // nb01 >= nb00 - src0 is not transposed
  6635. // compute by src0 rows
  6636. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6637. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6638. if (params->ith != 0) {
  6639. return;
  6640. }
  6641. if (params->type == GGML_TASK_INIT) {
  6642. return;
  6643. }
  6644. if (params->type == GGML_TASK_FINALIZE) {
  6645. return;
  6646. }
  6647. float * const wdata = params->wdata;
  6648. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6649. #if defined(GGML_USE_CUBLAS)
  6650. float *d_X = NULL;
  6651. float *d_Y = NULL;
  6652. float *d_D = NULL;
  6653. const float alpha = 1.0f;
  6654. const float beta = 0.0f;
  6655. const int x_ne = ne01 * ne10;
  6656. const int y_ne = ne11 * ne10;
  6657. const int d_ne = ne11 * ne01;
  6658. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6659. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6660. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6661. #endif
  6662. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6663. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6664. {
  6665. size_t id = 0;
  6666. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6667. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6668. id += ne00;
  6669. }
  6670. }
  6671. const float * x = wdata;
  6672. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6673. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6674. #if defined(GGML_USE_CUBLAS)
  6675. // copy data to device
  6676. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6677. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6678. // compute
  6679. CUBLAS_CHECK(
  6680. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6681. ne01, ne11, ne10,
  6682. &alpha, d_X, ne00,
  6683. d_Y, ne10,
  6684. &beta, d_D, ne01));
  6685. // copy data to host
  6686. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6687. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6688. #else
  6689. // zT = y * xT
  6690. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6691. ne11, ne01, ne10,
  6692. 1.0f, y, ne10,
  6693. x, ne00,
  6694. 0.0f, d, ne01);
  6695. #endif
  6696. }
  6697. }
  6698. #if defined(GGML_USE_CUBLAS)
  6699. CUDA_CHECK(cudaFree(d_X));
  6700. CUDA_CHECK(cudaFree(d_Y));
  6701. CUDA_CHECK(cudaFree(d_D));
  6702. #endif
  6703. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6704. return;
  6705. }
  6706. #endif
  6707. if (params->type == GGML_TASK_INIT) {
  6708. char * wdata = params->wdata;
  6709. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6710. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6711. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6712. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6713. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6714. wdata += row_size;
  6715. }
  6716. }
  6717. }
  6718. return;
  6719. }
  6720. if (params->type == GGML_TASK_FINALIZE) {
  6721. return;
  6722. }
  6723. // parallelize by src0 rows using ggml_vec_dot_q
  6724. // total rows in src0
  6725. const int nr = ne01*ne02*ne03;
  6726. // rows per thread
  6727. const int dr = (nr + nth - 1)/nth;
  6728. // row range for this thread
  6729. const int ir0 = dr*ith;
  6730. const int ir1 = MIN(ir0 + dr, nr);
  6731. void * wdata = params->wdata;
  6732. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6733. for (int ir = ir0; ir < ir1; ++ir) {
  6734. // src0 indices
  6735. const int i03 = ir/(ne02*ne01);
  6736. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6737. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6738. const int i13 = i03;
  6739. const int i12 = i02;
  6740. const int i0 = i01;
  6741. const int i2 = i02;
  6742. const int i3 = i03;
  6743. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6744. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6745. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6746. assert(ne00 % 32 == 0);
  6747. for (int64_t ic = 0; ic < ne11; ++ic) {
  6748. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6749. }
  6750. }
  6751. //int64_t t1 = ggml_time_us();
  6752. //static int64_t acc = 0;
  6753. //acc += t1 - t0;
  6754. //if (t1 - t0 > 10) {
  6755. // printf("\n");
  6756. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6757. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6758. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6759. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6760. //}
  6761. }
  6762. static void ggml_compute_forward_mul_mat(
  6763. const struct ggml_compute_params * params,
  6764. const struct ggml_tensor * src0,
  6765. const struct ggml_tensor * src1,
  6766. struct ggml_tensor * dst) {
  6767. switch (src0->type) {
  6768. case GGML_TYPE_Q4_0:
  6769. case GGML_TYPE_Q4_1:
  6770. case GGML_TYPE_Q4_2:
  6771. case GGML_TYPE_Q8_0:
  6772. {
  6773. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6774. } break;
  6775. case GGML_TYPE_F16:
  6776. {
  6777. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6778. } break;
  6779. case GGML_TYPE_F32:
  6780. {
  6781. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6782. } break;
  6783. default:
  6784. {
  6785. GGML_ASSERT(false);
  6786. } break;
  6787. }
  6788. #if 0
  6789. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  6790. static int first = 8;
  6791. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6792. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6793. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6794. if (first) {
  6795. --first;
  6796. } else {
  6797. for (int k = 0; k < dst->ne[1]; ++k) {
  6798. for (int j = 0; j < dst->ne[0]/16; ++j) {
  6799. for (int i = 0; i < 16; ++i) {
  6800. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6801. }
  6802. printf("\n");
  6803. }
  6804. printf("\n");
  6805. }
  6806. printf("\n");
  6807. exit(0);
  6808. }
  6809. } else {
  6810. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6811. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6812. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6813. }
  6814. #endif
  6815. }
  6816. // ggml_compute_forward_scale
  6817. static void ggml_compute_forward_scale_f32(
  6818. const struct ggml_compute_params * params,
  6819. const struct ggml_tensor * src0,
  6820. const struct ggml_tensor * src1,
  6821. struct ggml_tensor * dst) {
  6822. GGML_ASSERT(ggml_is_contiguous(src0));
  6823. GGML_ASSERT(ggml_is_contiguous(dst));
  6824. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6825. GGML_ASSERT(ggml_is_scalar(src1));
  6826. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6827. return;
  6828. }
  6829. // scale factor
  6830. const float v = *(float *) src1->data;
  6831. const int ith = params->ith;
  6832. const int nth = params->nth;
  6833. const int nc = src0->ne[0];
  6834. const int nr = ggml_nrows(src0);
  6835. // rows per thread
  6836. const int dr = (nr + nth - 1)/nth;
  6837. // row range for this thread
  6838. const int ir0 = dr*ith;
  6839. const int ir1 = MIN(ir0 + dr, nr);
  6840. for (int i1 = ir0; i1 < ir1; i1++) {
  6841. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6842. }
  6843. }
  6844. static void ggml_compute_forward_scale(
  6845. const struct ggml_compute_params * params,
  6846. const struct ggml_tensor * src0,
  6847. const struct ggml_tensor * src1,
  6848. struct ggml_tensor * dst) {
  6849. switch (src0->type) {
  6850. case GGML_TYPE_F32:
  6851. {
  6852. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6853. } break;
  6854. default:
  6855. {
  6856. GGML_ASSERT(false);
  6857. } break;
  6858. }
  6859. }
  6860. // ggml_compute_forward_cpy
  6861. static void ggml_compute_forward_cpy(
  6862. const struct ggml_compute_params * params,
  6863. const struct ggml_tensor * src0,
  6864. struct ggml_tensor * dst) {
  6865. ggml_compute_forward_dup(params, src0, dst);
  6866. }
  6867. // ggml_compute_forward_cont
  6868. static void ggml_compute_forward_cont(
  6869. const struct ggml_compute_params * params,
  6870. const struct ggml_tensor * src0,
  6871. struct ggml_tensor * dst) {
  6872. ggml_compute_forward_dup(params, src0, dst);
  6873. }
  6874. // ggml_compute_forward_reshape
  6875. static void ggml_compute_forward_reshape(
  6876. const struct ggml_compute_params * params,
  6877. const struct ggml_tensor * src0,
  6878. struct ggml_tensor * dst) {
  6879. // NOP
  6880. UNUSED(params);
  6881. UNUSED(src0);
  6882. UNUSED(dst);
  6883. }
  6884. // ggml_compute_forward_view
  6885. static void ggml_compute_forward_view(
  6886. const struct ggml_compute_params * params,
  6887. const struct ggml_tensor * src0) {
  6888. // NOP
  6889. UNUSED(params);
  6890. UNUSED(src0);
  6891. }
  6892. // ggml_compute_forward_permute
  6893. static void ggml_compute_forward_permute(
  6894. const struct ggml_compute_params * params,
  6895. const struct ggml_tensor * src0) {
  6896. // NOP
  6897. UNUSED(params);
  6898. UNUSED(src0);
  6899. }
  6900. // ggml_compute_forward_transpose
  6901. static void ggml_compute_forward_transpose(
  6902. const struct ggml_compute_params * params,
  6903. const struct ggml_tensor * src0) {
  6904. // NOP
  6905. UNUSED(params);
  6906. UNUSED(src0);
  6907. }
  6908. // ggml_compute_forward_get_rows
  6909. static void ggml_compute_forward_get_rows_q(
  6910. const struct ggml_compute_params * params,
  6911. const struct ggml_tensor * src0,
  6912. const struct ggml_tensor * src1,
  6913. struct ggml_tensor * dst) {
  6914. assert(params->ith == 0);
  6915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6916. return;
  6917. }
  6918. const int nc = src0->ne[0];
  6919. const int nr = ggml_nelements(src1);
  6920. const enum ggml_type type = src0->type;
  6921. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6922. assert( dst->ne[0] == nc);
  6923. assert( dst->ne[1] == nr);
  6924. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6925. for (int i = 0; i < nr; ++i) {
  6926. const int r = ((int32_t *) src1->data)[i];
  6927. dequantize_row_q(
  6928. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6929. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6930. }
  6931. }
  6932. static void ggml_compute_forward_get_rows_f16(
  6933. const struct ggml_compute_params * params,
  6934. const struct ggml_tensor * src0,
  6935. const struct ggml_tensor * src1,
  6936. struct ggml_tensor * dst) {
  6937. assert(params->ith == 0);
  6938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6939. return;
  6940. }
  6941. const int nc = src0->ne[0];
  6942. const int nr = ggml_nelements(src1);
  6943. assert( dst->ne[0] == nc);
  6944. assert( dst->ne[1] == nr);
  6945. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6946. for (int i = 0; i < nr; ++i) {
  6947. const int r = ((int32_t *) src1->data)[i];
  6948. for (int j = 0; j < nc; ++j) {
  6949. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6950. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6951. }
  6952. }
  6953. }
  6954. static void ggml_compute_forward_get_rows_f32(
  6955. const struct ggml_compute_params * params,
  6956. const struct ggml_tensor * src0,
  6957. const struct ggml_tensor * src1,
  6958. struct ggml_tensor * dst) {
  6959. assert(params->ith == 0);
  6960. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6961. return;
  6962. }
  6963. const int nc = src0->ne[0];
  6964. const int nr = ggml_nelements(src1);
  6965. assert( dst->ne[0] == nc);
  6966. assert( dst->ne[1] == nr);
  6967. assert(src0->nb[0] == sizeof(float));
  6968. for (int i = 0; i < nr; ++i) {
  6969. const int r = ((int32_t *) src1->data)[i];
  6970. ggml_vec_cpy_f32(nc,
  6971. (float *) ((char *) dst->data + i*dst->nb[1]),
  6972. (float *) ((char *) src0->data + r*src0->nb[1]));
  6973. }
  6974. }
  6975. static void ggml_compute_forward_get_rows(
  6976. const struct ggml_compute_params * params,
  6977. const struct ggml_tensor * src0,
  6978. const struct ggml_tensor * src1,
  6979. struct ggml_tensor * dst) {
  6980. switch (src0->type) {
  6981. case GGML_TYPE_Q4_0:
  6982. case GGML_TYPE_Q4_1:
  6983. case GGML_TYPE_Q4_2:
  6984. case GGML_TYPE_Q8_0:
  6985. {
  6986. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6987. } break;
  6988. case GGML_TYPE_F16:
  6989. {
  6990. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6991. } break;
  6992. case GGML_TYPE_F32:
  6993. {
  6994. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6995. } break;
  6996. default:
  6997. {
  6998. GGML_ASSERT(false);
  6999. } break;
  7000. }
  7001. //static bool first = true;
  7002. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7003. //if (first) {
  7004. // first = false;
  7005. //} else {
  7006. // for (int k = 0; k < dst->ne[1]; ++k) {
  7007. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7008. // for (int i = 0; i < 16; ++i) {
  7009. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7010. // }
  7011. // printf("\n");
  7012. // }
  7013. // printf("\n");
  7014. // }
  7015. // printf("\n");
  7016. // exit(0);
  7017. //}
  7018. }
  7019. // ggml_compute_forward_diag_mask_inf
  7020. static void ggml_compute_forward_diag_mask_inf_f32(
  7021. const struct ggml_compute_params * params,
  7022. const struct ggml_tensor * src0,
  7023. const struct ggml_tensor * src1,
  7024. struct ggml_tensor * dst) {
  7025. assert(params->ith == 0);
  7026. assert(src1->type == GGML_TYPE_I32);
  7027. assert(ggml_nelements(src1) == 1);
  7028. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7029. return;
  7030. }
  7031. const int n_past = ((int32_t *) src1->data)[0];
  7032. // TODO: handle transposed/permuted matrices
  7033. const int n = ggml_nrows(src0);
  7034. const int nc = src0->ne[0];
  7035. const int nr = src0->ne[1];
  7036. const int nz = n/nr;
  7037. assert( dst->nb[0] == sizeof(float));
  7038. assert(src0->nb[0] == sizeof(float));
  7039. for (int k = 0; k < nz; k++) {
  7040. for (int j = 0; j < nr; j++) {
  7041. for (int i = n_past; i < nc; i++) {
  7042. if (i > n_past + j) {
  7043. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7044. }
  7045. }
  7046. }
  7047. }
  7048. }
  7049. static void ggml_compute_forward_diag_mask_inf(
  7050. const struct ggml_compute_params * params,
  7051. const struct ggml_tensor * src0,
  7052. const struct ggml_tensor * src1,
  7053. struct ggml_tensor * dst) {
  7054. switch (src0->type) {
  7055. case GGML_TYPE_F32:
  7056. {
  7057. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7058. } break;
  7059. default:
  7060. {
  7061. GGML_ASSERT(false);
  7062. } break;
  7063. }
  7064. }
  7065. // ggml_compute_forward_soft_max
  7066. static void ggml_compute_forward_soft_max_f32(
  7067. const struct ggml_compute_params * params,
  7068. const struct ggml_tensor * src0,
  7069. struct ggml_tensor * dst) {
  7070. GGML_ASSERT(ggml_is_contiguous(src0));
  7071. GGML_ASSERT(ggml_is_contiguous(dst));
  7072. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7073. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7074. return;
  7075. }
  7076. // TODO: handle transposed/permuted matrices
  7077. const int ith = params->ith;
  7078. const int nth = params->nth;
  7079. const int nc = src0->ne[0];
  7080. const int nr = ggml_nrows(src0);
  7081. // rows per thread
  7082. const int dr = (nr + nth - 1)/nth;
  7083. // row range for this thread
  7084. const int ir0 = dr*ith;
  7085. const int ir1 = MIN(ir0 + dr, nr);
  7086. for (int i1 = ir0; i1 < ir1; i1++) {
  7087. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7088. #ifndef NDEBUG
  7089. for (int i = 0; i < nc; ++i) {
  7090. //printf("p[%d] = %f\n", i, p[i]);
  7091. assert(!isnan(p[i]));
  7092. }
  7093. #endif
  7094. float max = -INFINITY;
  7095. ggml_vec_max_f32(nc, &max, p);
  7096. ggml_float sum = 0.0;
  7097. uint16_t scvt;
  7098. for (int i = 0; i < nc; i++) {
  7099. if (p[i] == -INFINITY) {
  7100. p[i] = 0.0f;
  7101. } else {
  7102. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7103. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7104. memcpy(&scvt, &s, sizeof(scvt));
  7105. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7106. sum += (ggml_float)val;
  7107. p[i] = val;
  7108. }
  7109. }
  7110. assert(sum > 0.0);
  7111. sum = 1.0/sum;
  7112. ggml_vec_scale_f32(nc, p, sum);
  7113. #ifndef NDEBUG
  7114. for (int i = 0; i < nc; ++i) {
  7115. assert(!isnan(p[i]));
  7116. assert(!isinf(p[i]));
  7117. }
  7118. #endif
  7119. }
  7120. }
  7121. static void ggml_compute_forward_soft_max(
  7122. const struct ggml_compute_params * params,
  7123. const struct ggml_tensor * src0,
  7124. struct ggml_tensor * dst) {
  7125. switch (src0->type) {
  7126. case GGML_TYPE_F32:
  7127. {
  7128. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7129. } break;
  7130. default:
  7131. {
  7132. GGML_ASSERT(false);
  7133. } break;
  7134. }
  7135. }
  7136. // ggml_compute_forward_rope
  7137. static void ggml_compute_forward_rope_f32(
  7138. const struct ggml_compute_params * params,
  7139. const struct ggml_tensor * src0,
  7140. const struct ggml_tensor * src1,
  7141. struct ggml_tensor * dst) {
  7142. assert(src1->type == GGML_TYPE_I32);
  7143. assert(ggml_nelements(src1) == 3);
  7144. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7145. return;
  7146. }
  7147. const int n_past = ((int32_t *) src1->data)[0];
  7148. const int n_dims = ((int32_t *) src1->data)[1];
  7149. const int mode = ((int32_t *) src1->data)[2];
  7150. //const int64_t ne0 = src0->ne[0];
  7151. const int64_t ne1 = src0->ne[1];
  7152. const int64_t ne2 = src0->ne[2];
  7153. const int64_t ne3 = src0->ne[3];
  7154. const int nb0 = src0->nb[0];
  7155. const int nb1 = src0->nb[1];
  7156. const int nb2 = src0->nb[2];
  7157. const int nb3 = src0->nb[3];
  7158. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7159. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7160. assert(nb0 == sizeof(float));
  7161. const int ith = params->ith;
  7162. const int nth = params->nth;
  7163. const int nr = ggml_nrows(src0);
  7164. // rows per thread
  7165. const int dr = (nr + nth - 1)/nth;
  7166. // row range for this thread
  7167. const int ir0 = dr*ith;
  7168. const int ir1 = MIN(ir0 + dr, nr);
  7169. // row index used to determine which thread to use
  7170. int ir = 0;
  7171. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7172. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7173. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7174. const int p = (mode == 0 ? n_past + i2 : i2);
  7175. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7176. if (ir++ < ir0) continue;
  7177. if (ir > ir1) break;
  7178. float theta = (float)p;
  7179. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7180. const float cos_theta = cosf(theta);
  7181. const float sin_theta = sinf(theta);
  7182. theta *= theta_scale;
  7183. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7184. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7185. const float x0 = src[0];
  7186. const float x1 = src[1];
  7187. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7188. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7189. }
  7190. }
  7191. }
  7192. }
  7193. }
  7194. static void ggml_compute_forward_rope_f16(
  7195. const struct ggml_compute_params * params,
  7196. const struct ggml_tensor * src0,
  7197. const struct ggml_tensor * src1,
  7198. struct ggml_tensor * dst) {
  7199. assert(src1->type == GGML_TYPE_I32);
  7200. assert(ggml_nelements(src1) == 3);
  7201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7202. return;
  7203. }
  7204. const int n_past = ((int32_t *) src1->data)[0];
  7205. const int n_dims = ((int32_t *) src1->data)[1];
  7206. const int mode = ((int32_t *) src1->data)[2];
  7207. //const int64_t ne0 = src0->ne[0];
  7208. const int64_t ne1 = src0->ne[1];
  7209. const int64_t ne2 = src0->ne[2];
  7210. const int64_t ne3 = src0->ne[3];
  7211. const int nb0 = src0->nb[0];
  7212. const int nb1 = src0->nb[1];
  7213. const int nb2 = src0->nb[2];
  7214. const int nb3 = src0->nb[3];
  7215. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7216. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7217. assert(nb0 == sizeof(ggml_fp16_t));
  7218. const int ith = params->ith;
  7219. const int nth = params->nth;
  7220. const int nr = ggml_nrows(src0);
  7221. // rows per thread
  7222. const int dr = (nr + nth - 1)/nth;
  7223. // row range for this thread
  7224. const int ir0 = dr*ith;
  7225. const int ir1 = MIN(ir0 + dr, nr);
  7226. // row index used to determine which thread to use
  7227. int ir = 0;
  7228. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7229. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7230. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7231. const int p = (mode == 0 ? n_past + i2 : i2);
  7232. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7233. if (ir++ < ir0) continue;
  7234. if (ir > ir1) break;
  7235. float theta = (float)p;
  7236. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7237. const float cos_theta = cosf(theta);
  7238. const float sin_theta = sinf(theta);
  7239. theta *= theta_scale;
  7240. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7241. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7242. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7243. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7244. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7245. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7246. }
  7247. }
  7248. }
  7249. }
  7250. }
  7251. static void ggml_compute_forward_rope(
  7252. const struct ggml_compute_params * params,
  7253. const struct ggml_tensor * src0,
  7254. const struct ggml_tensor * src1,
  7255. struct ggml_tensor * dst) {
  7256. switch (src0->type) {
  7257. case GGML_TYPE_F16:
  7258. {
  7259. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7260. } break;
  7261. case GGML_TYPE_F32:
  7262. {
  7263. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7264. } break;
  7265. default:
  7266. {
  7267. GGML_ASSERT(false);
  7268. } break;
  7269. }
  7270. }
  7271. // ggml_compute_forward_conv_1d_1s
  7272. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7273. const struct ggml_compute_params * params,
  7274. const struct ggml_tensor * src0,
  7275. const struct ggml_tensor * src1,
  7276. struct ggml_tensor * dst) {
  7277. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7278. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7279. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7280. int64_t t0 = ggml_perf_time_us();
  7281. UNUSED(t0);
  7282. const int64_t ne00 = src0->ne[0];
  7283. const int64_t ne01 = src0->ne[1];
  7284. const int64_t ne02 = src0->ne[2];
  7285. //const int64_t ne03 = src0->ne[3];
  7286. const int64_t ne10 = src1->ne[0];
  7287. const int64_t ne11 = src1->ne[1];
  7288. //const int64_t ne12 = src1->ne[2];
  7289. //const int64_t ne13 = src1->ne[3];
  7290. //const int64_t ne0 = dst->ne[0];
  7291. //const int64_t ne1 = dst->ne[1];
  7292. //const int64_t ne2 = dst->ne[2];
  7293. //const int64_t ne3 = dst->ne[3];
  7294. //const int64_t ne = ne0*ne1*ne2*ne3;
  7295. const int nb00 = src0->nb[0];
  7296. const int nb01 = src0->nb[1];
  7297. const int nb02 = src0->nb[2];
  7298. //const int nb03 = src0->nb[3];
  7299. const int nb10 = src1->nb[0];
  7300. const int nb11 = src1->nb[1];
  7301. //const int nb12 = src1->nb[2];
  7302. //const int nb13 = src1->nb[3];
  7303. //const int nb0 = dst->nb[0];
  7304. const int nb1 = dst->nb[1];
  7305. //const int nb2 = dst->nb[2];
  7306. //const int nb3 = dst->nb[3];
  7307. const int ith = params->ith;
  7308. const int nth = params->nth;
  7309. const int nk = ne00;
  7310. const int nh = nk/2;
  7311. const int ew0 = ggml_up32(ne01);
  7312. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7313. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7314. GGML_ASSERT(nb10 == sizeof(float));
  7315. if (params->type == GGML_TASK_INIT) {
  7316. // TODO: fix this memset (wsize is overestimated)
  7317. memset(params->wdata, 0, params->wsize);
  7318. // prepare kernel data (src0)
  7319. {
  7320. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7321. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7322. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7323. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7324. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7325. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7326. dst_data[i00*ew0 + i01] = src[i00];
  7327. }
  7328. }
  7329. }
  7330. }
  7331. // prepare source data (src1)
  7332. {
  7333. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7334. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7335. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7336. ggml_fp16_t * dst_data = wdata;
  7337. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7338. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7339. }
  7340. }
  7341. }
  7342. return;
  7343. }
  7344. if (params->type == GGML_TASK_FINALIZE) {
  7345. return;
  7346. }
  7347. // total rows in dst
  7348. const int nr = ne02;
  7349. // rows per thread
  7350. const int dr = (nr + nth - 1)/nth;
  7351. // row range for this thread
  7352. const int ir0 = dr*ith;
  7353. const int ir1 = MIN(ir0 + dr, nr);
  7354. for (int i1 = ir0; i1 < ir1; i1++) {
  7355. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7356. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7357. dst_data[i0] = 0;
  7358. for (int k = -nh; k <= nh; k++) {
  7359. float v = 0.0f;
  7360. ggml_vec_dot_f16(ew0, &v,
  7361. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7362. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7363. dst_data[i0] += v;
  7364. }
  7365. }
  7366. }
  7367. }
  7368. static void ggml_compute_forward_conv_1d_1s_f32(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * src0,
  7371. const struct ggml_tensor * src1,
  7372. struct ggml_tensor * dst) {
  7373. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7374. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7375. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7376. int64_t t0 = ggml_perf_time_us();
  7377. UNUSED(t0);
  7378. const int64_t ne00 = src0->ne[0];
  7379. const int64_t ne01 = src0->ne[1];
  7380. const int64_t ne02 = src0->ne[2];
  7381. //const int64_t ne03 = src0->ne[3];
  7382. const int64_t ne10 = src1->ne[0];
  7383. const int64_t ne11 = src1->ne[1];
  7384. //const int64_t ne12 = src1->ne[2];
  7385. //const int64_t ne13 = src1->ne[3];
  7386. //const int64_t ne0 = dst->ne[0];
  7387. //const int64_t ne1 = dst->ne[1];
  7388. //const int64_t ne2 = dst->ne[2];
  7389. //const int64_t ne3 = dst->ne[3];
  7390. //const int64_t ne = ne0*ne1*ne2*ne3;
  7391. const int nb00 = src0->nb[0];
  7392. const int nb01 = src0->nb[1];
  7393. const int nb02 = src0->nb[2];
  7394. //const int nb03 = src0->nb[3];
  7395. const int nb10 = src1->nb[0];
  7396. const int nb11 = src1->nb[1];
  7397. //const int nb12 = src1->nb[2];
  7398. //const int nb13 = src1->nb[3];
  7399. //const int nb0 = dst->nb[0];
  7400. const int nb1 = dst->nb[1];
  7401. //const int nb2 = dst->nb[2];
  7402. //const int nb3 = dst->nb[3];
  7403. const int ith = params->ith;
  7404. const int nth = params->nth;
  7405. const int nk = ne00;
  7406. const int nh = nk/2;
  7407. const int ew0 = ggml_up32(ne01);
  7408. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7409. GGML_ASSERT(nb00 == sizeof(float));
  7410. GGML_ASSERT(nb10 == sizeof(float));
  7411. if (params->type == GGML_TASK_INIT) {
  7412. // TODO: fix this memset (wsize is overestimated)
  7413. memset(params->wdata, 0, params->wsize);
  7414. // prepare kernel data (src0)
  7415. {
  7416. float * const wdata = (float *) params->wdata + 0;
  7417. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7418. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7419. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7420. float * dst_data = wdata + i02*ew0*ne00;
  7421. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7422. dst_data[i00*ew0 + i01] = src[i00];
  7423. }
  7424. }
  7425. }
  7426. }
  7427. // prepare source data (src1)
  7428. {
  7429. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7430. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7431. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7432. float * dst_data = wdata;
  7433. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7434. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7435. }
  7436. }
  7437. }
  7438. return;
  7439. }
  7440. if (params->type == GGML_TASK_FINALIZE) {
  7441. return;
  7442. }
  7443. // total rows in dst
  7444. const int nr = ne02;
  7445. // rows per thread
  7446. const int dr = (nr + nth - 1)/nth;
  7447. // row range for this thread
  7448. const int ir0 = dr*ith;
  7449. const int ir1 = MIN(ir0 + dr, nr);
  7450. for (int i1 = ir0; i1 < ir1; i1++) {
  7451. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7452. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7453. dst_data[i0] = 0;
  7454. for (int k = -nh; k <= nh; k++) {
  7455. float v = 0.0f;
  7456. ggml_vec_dot_f32(ew0, &v,
  7457. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7458. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7459. dst_data[i0] += v;
  7460. }
  7461. }
  7462. }
  7463. }
  7464. static void ggml_compute_forward_conv_1d_1s(
  7465. const struct ggml_compute_params * params,
  7466. const struct ggml_tensor * src0,
  7467. const struct ggml_tensor * src1,
  7468. struct ggml_tensor * dst) {
  7469. switch (src0->type) {
  7470. case GGML_TYPE_F16:
  7471. {
  7472. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7473. } break;
  7474. case GGML_TYPE_F32:
  7475. {
  7476. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7477. } break;
  7478. default:
  7479. {
  7480. GGML_ASSERT(false);
  7481. } break;
  7482. }
  7483. }
  7484. // ggml_compute_forward_conv_1d_2s
  7485. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7486. const struct ggml_compute_params * params,
  7487. const struct ggml_tensor * src0,
  7488. const struct ggml_tensor * src1,
  7489. struct ggml_tensor * dst) {
  7490. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7491. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7492. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7493. int64_t t0 = ggml_perf_time_us();
  7494. UNUSED(t0);
  7495. const int64_t ne00 = src0->ne[0];
  7496. const int64_t ne01 = src0->ne[1];
  7497. const int64_t ne02 = src0->ne[2];
  7498. //const int64_t ne03 = src0->ne[3];
  7499. const int64_t ne10 = src1->ne[0];
  7500. const int64_t ne11 = src1->ne[1];
  7501. //const int64_t ne12 = src1->ne[2];
  7502. //const int64_t ne13 = src1->ne[3];
  7503. //const int64_t ne0 = dst->ne[0];
  7504. //const int64_t ne1 = dst->ne[1];
  7505. //const int64_t ne2 = dst->ne[2];
  7506. //const int64_t ne3 = dst->ne[3];
  7507. //const int64_t ne = ne0*ne1*ne2*ne3;
  7508. const int nb00 = src0->nb[0];
  7509. const int nb01 = src0->nb[1];
  7510. const int nb02 = src0->nb[2];
  7511. //const int nb03 = src0->nb[3];
  7512. const int nb10 = src1->nb[0];
  7513. const int nb11 = src1->nb[1];
  7514. //const int nb12 = src1->nb[2];
  7515. //const int nb13 = src1->nb[3];
  7516. //const int nb0 = dst->nb[0];
  7517. const int nb1 = dst->nb[1];
  7518. //const int nb2 = dst->nb[2];
  7519. //const int nb3 = dst->nb[3];
  7520. const int ith = params->ith;
  7521. const int nth = params->nth;
  7522. const int nk = ne00;
  7523. const int nh = nk/2;
  7524. const int ew0 = ggml_up32(ne01);
  7525. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7526. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7527. GGML_ASSERT(nb10 == sizeof(float));
  7528. if (params->type == GGML_TASK_INIT) {
  7529. // TODO: fix this memset (wsize is overestimated)
  7530. memset(params->wdata, 0, params->wsize);
  7531. // prepare kernel data (src0)
  7532. {
  7533. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7534. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7535. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7536. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7537. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7538. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7539. dst_data[i00*ew0 + i01] = src[i00];
  7540. }
  7541. }
  7542. }
  7543. }
  7544. // prepare source data (src1)
  7545. {
  7546. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7547. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7548. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7549. ggml_fp16_t * dst_data = wdata;
  7550. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7551. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7552. }
  7553. }
  7554. }
  7555. return;
  7556. }
  7557. if (params->type == GGML_TASK_FINALIZE) {
  7558. return;
  7559. }
  7560. // total rows in dst
  7561. const int nr = ne02;
  7562. // rows per thread
  7563. const int dr = (nr + nth - 1)/nth;
  7564. // row range for this thread
  7565. const int ir0 = dr*ith;
  7566. const int ir1 = MIN(ir0 + dr, nr);
  7567. for (int i1 = ir0; i1 < ir1; i1++) {
  7568. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7569. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7570. dst_data[i0/2] = 0;
  7571. for (int k = -nh; k <= nh; k++) {
  7572. float v = 0.0f;
  7573. ggml_vec_dot_f16(ew0, &v,
  7574. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7575. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7576. dst_data[i0/2] += v;
  7577. }
  7578. }
  7579. }
  7580. }
  7581. static void ggml_compute_forward_conv_1d_2s_f32(
  7582. const struct ggml_compute_params * params,
  7583. const struct ggml_tensor * src0,
  7584. const struct ggml_tensor * src1,
  7585. struct ggml_tensor * dst) {
  7586. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7587. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7588. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7589. int64_t t0 = ggml_perf_time_us();
  7590. UNUSED(t0);
  7591. const int64_t ne00 = src0->ne[0];
  7592. const int64_t ne01 = src0->ne[1];
  7593. const int64_t ne02 = src0->ne[2];
  7594. //const int64_t ne03 = src0->ne[3];
  7595. const int64_t ne10 = src1->ne[0];
  7596. const int64_t ne11 = src1->ne[1];
  7597. //const int64_t ne12 = src1->ne[2];
  7598. //const int64_t ne13 = src1->ne[3];
  7599. //const int64_t ne0 = dst->ne[0];
  7600. //const int64_t ne1 = dst->ne[1];
  7601. //const int64_t ne2 = dst->ne[2];
  7602. //const int64_t ne3 = dst->ne[3];
  7603. //const int64_t ne = ne0*ne1*ne2*ne3;
  7604. const int nb00 = src0->nb[0];
  7605. const int nb01 = src0->nb[1];
  7606. const int nb02 = src0->nb[2];
  7607. //const int nb03 = src0->nb[3];
  7608. const int nb10 = src1->nb[0];
  7609. const int nb11 = src1->nb[1];
  7610. //const int nb12 = src1->nb[2];
  7611. //const int nb13 = src1->nb[3];
  7612. //const int nb0 = dst->nb[0];
  7613. const int nb1 = dst->nb[1];
  7614. //const int nb2 = dst->nb[2];
  7615. //const int nb3 = dst->nb[3];
  7616. const int ith = params->ith;
  7617. const int nth = params->nth;
  7618. const int nk = ne00;
  7619. const int nh = nk/2;
  7620. const int ew0 = ggml_up32(ne01);
  7621. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7622. GGML_ASSERT(nb00 == sizeof(float));
  7623. GGML_ASSERT(nb10 == sizeof(float));
  7624. if (params->type == GGML_TASK_INIT) {
  7625. // TODO: fix this memset (wsize is overestimated)
  7626. memset(params->wdata, 0, params->wsize);
  7627. // prepare kernel data (src0)
  7628. {
  7629. float * const wdata = (float *) params->wdata + 0;
  7630. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7631. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7632. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7633. float * dst_data = wdata + i02*ew0*ne00;
  7634. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7635. dst_data[i00*ew0 + i01] = src[i00];
  7636. }
  7637. }
  7638. }
  7639. }
  7640. // prepare source data (src1)
  7641. {
  7642. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7643. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7644. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7645. float * dst_data = wdata;
  7646. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7647. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7648. }
  7649. }
  7650. }
  7651. return;
  7652. }
  7653. if (params->type == GGML_TASK_FINALIZE) {
  7654. return;
  7655. }
  7656. // total rows in dst
  7657. const int nr = ne02;
  7658. // rows per thread
  7659. const int dr = (nr + nth - 1)/nth;
  7660. // row range for this thread
  7661. const int ir0 = dr*ith;
  7662. const int ir1 = MIN(ir0 + dr, nr);
  7663. for (int i1 = ir0; i1 < ir1; i1++) {
  7664. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7665. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7666. dst_data[i0/2] = 0;
  7667. for (int k = -nh; k <= nh; k++) {
  7668. float v = 0.0f;
  7669. ggml_vec_dot_f32(ew0, &v,
  7670. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7671. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7672. dst_data[i0/2] += v;
  7673. }
  7674. }
  7675. }
  7676. }
  7677. static void ggml_compute_forward_conv_1d_2s(
  7678. const struct ggml_compute_params * params,
  7679. const struct ggml_tensor * src0,
  7680. const struct ggml_tensor * src1,
  7681. struct ggml_tensor * dst) {
  7682. switch (src0->type) {
  7683. case GGML_TYPE_F16:
  7684. {
  7685. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7686. } break;
  7687. case GGML_TYPE_F32:
  7688. {
  7689. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7690. } break;
  7691. default:
  7692. {
  7693. GGML_ASSERT(false);
  7694. } break;
  7695. }
  7696. }
  7697. // ggml_compute_forward_flash_attn
  7698. static void ggml_compute_forward_flash_attn_f32(
  7699. const struct ggml_compute_params * params,
  7700. const struct ggml_tensor * q,
  7701. const struct ggml_tensor * k,
  7702. const struct ggml_tensor * v,
  7703. const bool masked,
  7704. struct ggml_tensor * dst) {
  7705. int64_t t0 = ggml_perf_time_us();
  7706. UNUSED(t0);
  7707. const int64_t neq0 = q->ne[0];
  7708. const int64_t neq1 = q->ne[1];
  7709. const int64_t neq2 = q->ne[2];
  7710. const int64_t neq3 = q->ne[3];
  7711. const int64_t nek0 = k->ne[0];
  7712. const int64_t nek1 = k->ne[1];
  7713. //const int64_t nek2 = k->ne[2];
  7714. //const int64_t nek3 = k->ne[3];
  7715. //const int64_t nev0 = v->ne[0];
  7716. const int64_t nev1 = v->ne[1];
  7717. //const int64_t nev2 = v->ne[2];
  7718. //const int64_t nev3 = v->ne[3];
  7719. const int64_t ne0 = dst->ne[0];
  7720. const int64_t ne1 = dst->ne[1];
  7721. //const int64_t ne2 = dst->ne[2];
  7722. //const int64_t ne3 = dst->ne[3];
  7723. const int nbk0 = k->nb[0];
  7724. const int nbk1 = k->nb[1];
  7725. const int nbk2 = k->nb[2];
  7726. const int nbk3 = k->nb[3];
  7727. const int nbq0 = q->nb[0];
  7728. const int nbq1 = q->nb[1];
  7729. const int nbq2 = q->nb[2];
  7730. const int nbq3 = q->nb[3];
  7731. const int nbv0 = v->nb[0];
  7732. const int nbv1 = v->nb[1];
  7733. const int nbv2 = v->nb[2];
  7734. const int nbv3 = v->nb[3];
  7735. const int nb0 = dst->nb[0];
  7736. const int nb1 = dst->nb[1];
  7737. const int nb2 = dst->nb[2];
  7738. const int nb3 = dst->nb[3];
  7739. const int ith = params->ith;
  7740. const int nth = params->nth;
  7741. const int64_t D = neq0;
  7742. const int64_t N = neq1;
  7743. const int64_t P = nek1 - N;
  7744. const int64_t M = P + N;
  7745. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7746. GGML_ASSERT(ne0 == D);
  7747. GGML_ASSERT(ne1 == N);
  7748. GGML_ASSERT(P >= 0);
  7749. GGML_ASSERT(nbq0 == sizeof(float));
  7750. GGML_ASSERT(nbk0 == sizeof(float));
  7751. GGML_ASSERT(nbv0 == sizeof(float));
  7752. GGML_ASSERT(neq0 == D);
  7753. GGML_ASSERT(nek0 == D);
  7754. GGML_ASSERT(nev1 == D);
  7755. GGML_ASSERT(neq1 == N);
  7756. GGML_ASSERT(nek1 == N + P);
  7757. GGML_ASSERT(nev1 == D);
  7758. // dst cannot be transposed or permuted
  7759. GGML_ASSERT(nb0 == sizeof(float));
  7760. GGML_ASSERT(nb0 <= nb1);
  7761. GGML_ASSERT(nb1 <= nb2);
  7762. GGML_ASSERT(nb2 <= nb3);
  7763. if (params->type == GGML_TASK_INIT) {
  7764. return;
  7765. }
  7766. if (params->type == GGML_TASK_FINALIZE) {
  7767. return;
  7768. }
  7769. // parallelize by q rows using ggml_vec_dot_f32
  7770. // total rows in q
  7771. const int nr = neq1*neq2*neq3;
  7772. // rows per thread
  7773. const int dr = (nr + nth - 1)/nth;
  7774. // row range for this thread
  7775. const int ir0 = dr*ith;
  7776. const int ir1 = MIN(ir0 + dr, nr);
  7777. const float scale = 1.0f/sqrtf(D);
  7778. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7779. for (int ir = ir0; ir < ir1; ++ir) {
  7780. // q indices
  7781. const int iq3 = ir/(neq2*neq1);
  7782. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7783. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7784. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7785. for (int i = M; i < Mup; ++i) {
  7786. S[i] = -INFINITY;
  7787. }
  7788. for (int64_t ic = 0; ic < nek1; ++ic) {
  7789. // k indices
  7790. const int ik3 = iq3;
  7791. const int ik2 = iq2;
  7792. const int ik1 = ic;
  7793. // S indices
  7794. const int i1 = ik1;
  7795. ggml_vec_dot_f32(neq0,
  7796. S + i1,
  7797. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7798. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7799. }
  7800. // scale
  7801. ggml_vec_scale_f32(nek1, S, scale);
  7802. if (masked) {
  7803. for (int64_t i = P; i < M; i++) {
  7804. if (i > P + iq1) {
  7805. S[i] = -INFINITY;
  7806. }
  7807. }
  7808. }
  7809. // softmax
  7810. {
  7811. float max = -INFINITY;
  7812. ggml_vec_max_f32(M, &max, S);
  7813. ggml_float sum = 0.0;
  7814. {
  7815. #ifdef GGML_SOFT_MAX_ACCELERATE
  7816. max = -max;
  7817. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7818. vvexpf(S, S, &Mup);
  7819. ggml_vec_sum_f32(Mup, &sum, S);
  7820. #else
  7821. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7822. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7823. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7824. float * SS = S + i;
  7825. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7826. if (SS[j] == -INFINITY) {
  7827. SS[j] = 0.0f;
  7828. } else {
  7829. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7830. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7831. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7832. sump[j] += (ggml_float)val;
  7833. SS[j] = val;
  7834. }
  7835. }
  7836. }
  7837. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7838. sum += sump[i];
  7839. }
  7840. #endif
  7841. }
  7842. assert(sum > 0.0);
  7843. sum = 1.0/sum;
  7844. ggml_vec_scale_f32(M, S, sum);
  7845. #ifndef NDEBUG
  7846. for (int i = 0; i < M; ++i) {
  7847. assert(!isnan(S[i]));
  7848. assert(!isinf(S[i]));
  7849. }
  7850. #endif
  7851. }
  7852. for (int64_t ic = 0; ic < nev1; ++ic) {
  7853. // dst indices
  7854. const int i1 = iq1;
  7855. const int i2 = iq2;
  7856. const int i3 = iq3;
  7857. ggml_vec_dot_f32(nek1,
  7858. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7859. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7860. S);
  7861. }
  7862. }
  7863. }
  7864. static void ggml_compute_forward_flash_attn_f16(
  7865. const struct ggml_compute_params * params,
  7866. const struct ggml_tensor * q,
  7867. const struct ggml_tensor * k,
  7868. const struct ggml_tensor * v,
  7869. const bool masked,
  7870. struct ggml_tensor * dst) {
  7871. int64_t t0 = ggml_perf_time_us();
  7872. UNUSED(t0);
  7873. const int64_t neq0 = q->ne[0];
  7874. const int64_t neq1 = q->ne[1];
  7875. const int64_t neq2 = q->ne[2];
  7876. const int64_t neq3 = q->ne[3];
  7877. const int64_t nek0 = k->ne[0];
  7878. const int64_t nek1 = k->ne[1];
  7879. //const int64_t nek2 = k->ne[2];
  7880. //const int64_t nek3 = k->ne[3];
  7881. //const int64_t nev0 = v->ne[0];
  7882. const int64_t nev1 = v->ne[1];
  7883. //const int64_t nev2 = v->ne[2];
  7884. //const int64_t nev3 = v->ne[3];
  7885. const int64_t ne0 = dst->ne[0];
  7886. const int64_t ne1 = dst->ne[1];
  7887. //const int64_t ne2 = dst->ne[2];
  7888. //const int64_t ne3 = dst->ne[3];
  7889. const int nbk0 = k->nb[0];
  7890. const int nbk1 = k->nb[1];
  7891. const int nbk2 = k->nb[2];
  7892. const int nbk3 = k->nb[3];
  7893. const int nbq0 = q->nb[0];
  7894. const int nbq1 = q->nb[1];
  7895. const int nbq2 = q->nb[2];
  7896. const int nbq3 = q->nb[3];
  7897. const int nbv0 = v->nb[0];
  7898. const int nbv1 = v->nb[1];
  7899. const int nbv2 = v->nb[2];
  7900. const int nbv3 = v->nb[3];
  7901. const int nb0 = dst->nb[0];
  7902. const int nb1 = dst->nb[1];
  7903. const int nb2 = dst->nb[2];
  7904. const int nb3 = dst->nb[3];
  7905. const int ith = params->ith;
  7906. const int nth = params->nth;
  7907. const int64_t D = neq0;
  7908. const int64_t N = neq1;
  7909. const int64_t P = nek1 - N;
  7910. const int64_t M = P + N;
  7911. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7912. GGML_ASSERT(ne0 == D);
  7913. GGML_ASSERT(ne1 == N);
  7914. GGML_ASSERT(P >= 0);
  7915. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7916. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7917. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7918. GGML_ASSERT(neq0 == D);
  7919. GGML_ASSERT(nek0 == D);
  7920. GGML_ASSERT(nev1 == D);
  7921. GGML_ASSERT(neq1 == N);
  7922. GGML_ASSERT(nek1 == N + P);
  7923. GGML_ASSERT(nev1 == D);
  7924. // dst cannot be transposed or permuted
  7925. GGML_ASSERT(nb0 == sizeof(float));
  7926. GGML_ASSERT(nb0 <= nb1);
  7927. GGML_ASSERT(nb1 <= nb2);
  7928. GGML_ASSERT(nb2 <= nb3);
  7929. if (params->type == GGML_TASK_INIT) {
  7930. return;
  7931. }
  7932. if (params->type == GGML_TASK_FINALIZE) {
  7933. return;
  7934. }
  7935. // parallelize by q rows using ggml_vec_dot_f32
  7936. // total rows in q
  7937. const int nr = neq1*neq2*neq3;
  7938. // rows per thread
  7939. const int dr = (nr + nth - 1)/nth;
  7940. // row range for this thread
  7941. const int ir0 = dr*ith;
  7942. const int ir1 = MIN(ir0 + dr, nr);
  7943. const float scale = 1.0f/sqrtf(D);
  7944. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7945. for (int ir = ir0; ir < ir1; ++ir) {
  7946. // q indices
  7947. const int iq3 = ir/(neq2*neq1);
  7948. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7949. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7950. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7951. for (int i = M; i < Mup; ++i) {
  7952. S[i] = -INFINITY;
  7953. }
  7954. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7955. for (int64_t ic = 0; ic < nek1; ++ic) {
  7956. // k indices
  7957. const int ik3 = iq3;
  7958. const int ik2 = iq2;
  7959. const int ik1 = ic;
  7960. // S indices
  7961. const int i1 = ik1;
  7962. ggml_vec_dot_f16(neq0,
  7963. S + i1,
  7964. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7965. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7966. }
  7967. } else {
  7968. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7969. // k indices
  7970. const int ik3 = iq3;
  7971. const int ik2 = iq2;
  7972. const int ik1 = ic;
  7973. // S indices
  7974. const int i1 = ik1;
  7975. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7976. S + i1,
  7977. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7978. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7979. }
  7980. }
  7981. // scale
  7982. ggml_vec_scale_f32(nek1, S, scale);
  7983. if (masked) {
  7984. for (int64_t i = P; i < M; i++) {
  7985. if (i > P + iq1) {
  7986. S[i] = -INFINITY;
  7987. }
  7988. }
  7989. }
  7990. // softmax
  7991. {
  7992. float max = -INFINITY;
  7993. ggml_vec_max_f32(M, &max, S);
  7994. ggml_float sum = 0.0;
  7995. {
  7996. #ifdef GGML_SOFT_MAX_ACCELERATE
  7997. max = -max;
  7998. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7999. vvexpf(S, S, &Mup);
  8000. ggml_vec_sum_f32(Mup, &sum, S);
  8001. #else
  8002. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8003. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8004. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8005. float * SS = S + i;
  8006. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8007. if (SS[j] == -INFINITY) {
  8008. SS[j] = 0.0f;
  8009. } else {
  8010. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8011. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8012. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8013. sump[j] += (ggml_float)val;
  8014. SS[j] = val;
  8015. }
  8016. }
  8017. }
  8018. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8019. sum += sump[i];
  8020. }
  8021. #endif
  8022. }
  8023. assert(sum > 0.0);
  8024. sum = 1.0/sum;
  8025. ggml_vec_scale_f32(M, S, sum);
  8026. #ifndef NDEBUG
  8027. for (int i = 0; i < M; ++i) {
  8028. assert(!isnan(S[i]));
  8029. assert(!isinf(S[i]));
  8030. }
  8031. #endif
  8032. }
  8033. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8034. for (int64_t i = 0; i < M; i++) {
  8035. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8036. }
  8037. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8038. for (int64_t ic = 0; ic < nev1; ++ic) {
  8039. // dst indices
  8040. const int i1 = iq1;
  8041. const int i2 = iq2;
  8042. const int i3 = iq3;
  8043. ggml_vec_dot_f16(nek1,
  8044. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8045. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8046. S16);
  8047. }
  8048. } else {
  8049. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8050. // dst indices
  8051. const int i1 = iq1;
  8052. const int i2 = iq2;
  8053. const int i3 = iq3;
  8054. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8055. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8056. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8057. S16);
  8058. }
  8059. }
  8060. }
  8061. }
  8062. static void ggml_compute_forward_flash_attn(
  8063. const struct ggml_compute_params * params,
  8064. const struct ggml_tensor * q,
  8065. const struct ggml_tensor * k,
  8066. const struct ggml_tensor * v,
  8067. const bool masked,
  8068. struct ggml_tensor * dst) {
  8069. switch (q->type) {
  8070. case GGML_TYPE_F16:
  8071. {
  8072. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8073. } break;
  8074. case GGML_TYPE_F32:
  8075. {
  8076. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8077. } break;
  8078. default:
  8079. {
  8080. GGML_ASSERT(false);
  8081. } break;
  8082. }
  8083. }
  8084. // ggml_compute_forward_flash_ff
  8085. static void ggml_compute_forward_flash_ff_f16(
  8086. const struct ggml_compute_params * params,
  8087. const struct ggml_tensor * a, // F16
  8088. const struct ggml_tensor * b0, // F16 fc_w
  8089. const struct ggml_tensor * b1, // F32 fc_b
  8090. const struct ggml_tensor * c0, // F16 proj_w
  8091. const struct ggml_tensor * c1, // F32 proj_b
  8092. struct ggml_tensor * dst) {
  8093. int64_t t0 = ggml_perf_time_us();
  8094. UNUSED(t0);
  8095. const int64_t nea0 = a->ne[0];
  8096. const int64_t nea1 = a->ne[1];
  8097. const int64_t nea2 = a->ne[2];
  8098. const int64_t nea3 = a->ne[3];
  8099. const int64_t neb00 = b0->ne[0];
  8100. const int64_t neb01 = b0->ne[1];
  8101. //const int64_t neb02 = b0->ne[2];
  8102. //const int64_t neb03 = b0->ne[3];
  8103. const int64_t neb10 = b1->ne[0];
  8104. const int64_t neb11 = b1->ne[1];
  8105. //const int64_t neb12 = b1->ne[2];
  8106. //const int64_t neb13 = b1->ne[3];
  8107. const int64_t nec00 = c0->ne[0];
  8108. const int64_t nec01 = c0->ne[1];
  8109. //const int64_t nec02 = c0->ne[2];
  8110. //const int64_t nec03 = c0->ne[3];
  8111. const int64_t nec10 = c1->ne[0];
  8112. const int64_t nec11 = c1->ne[1];
  8113. //const int64_t nec12 = c1->ne[2];
  8114. //const int64_t nec13 = c1->ne[3];
  8115. const int64_t ne0 = dst->ne[0];
  8116. const int64_t ne1 = dst->ne[1];
  8117. const int64_t ne2 = dst->ne[2];
  8118. //const int64_t ne3 = dst->ne[3];
  8119. const int nba0 = a->nb[0];
  8120. const int nba1 = a->nb[1];
  8121. const int nba2 = a->nb[2];
  8122. const int nba3 = a->nb[3];
  8123. const int nbb00 = b0->nb[0];
  8124. const int nbb01 = b0->nb[1];
  8125. const int nbb02 = b0->nb[2];
  8126. const int nbb03 = b0->nb[3];
  8127. const int nbb10 = b1->nb[0];
  8128. //const int nbb11 = b1->nb[1];
  8129. //const int nbb12 = b1->nb[2];
  8130. //const int nbb13 = b1->nb[3];
  8131. const int nbc00 = c0->nb[0];
  8132. const int nbc01 = c0->nb[1];
  8133. const int nbc02 = c0->nb[2];
  8134. const int nbc03 = c0->nb[3];
  8135. const int nbc10 = c1->nb[0];
  8136. //const int nbc11 = c1->nb[1];
  8137. //const int nbc12 = c1->nb[2];
  8138. //const int nbc13 = c1->nb[3];
  8139. const int nb0 = dst->nb[0];
  8140. const int nb1 = dst->nb[1];
  8141. const int nb2 = dst->nb[2];
  8142. const int nb3 = dst->nb[3];
  8143. const int ith = params->ith;
  8144. const int nth = params->nth;
  8145. const int64_t D = nea0;
  8146. //const int64_t N = nea1;
  8147. const int64_t M = neb01;
  8148. GGML_ASSERT(ne0 == nea0);
  8149. GGML_ASSERT(ne1 == nea1);
  8150. GGML_ASSERT(ne2 == nea2);
  8151. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8152. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8153. GGML_ASSERT(nbb10 == sizeof(float));
  8154. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8155. GGML_ASSERT(nbc10 == sizeof(float));
  8156. GGML_ASSERT(neb00 == D);
  8157. GGML_ASSERT(neb01 == M);
  8158. GGML_ASSERT(neb10 == M);
  8159. GGML_ASSERT(neb11 == 1);
  8160. GGML_ASSERT(nec00 == M);
  8161. GGML_ASSERT(nec01 == D);
  8162. GGML_ASSERT(nec10 == D);
  8163. GGML_ASSERT(nec11 == 1);
  8164. // dst cannot be transposed or permuted
  8165. GGML_ASSERT(nb0 == sizeof(float));
  8166. GGML_ASSERT(nb0 <= nb1);
  8167. GGML_ASSERT(nb1 <= nb2);
  8168. GGML_ASSERT(nb2 <= nb3);
  8169. if (params->type == GGML_TASK_INIT) {
  8170. return;
  8171. }
  8172. if (params->type == GGML_TASK_FINALIZE) {
  8173. return;
  8174. }
  8175. // parallelize by a rows using ggml_vec_dot_f32
  8176. // total rows in a
  8177. const int nr = nea1*nea2*nea3;
  8178. // rows per thread
  8179. const int dr = (nr + nth - 1)/nth;
  8180. // row range for this thread
  8181. const int ir0 = dr*ith;
  8182. const int ir1 = MIN(ir0 + dr, nr);
  8183. for (int ir = ir0; ir < ir1; ++ir) {
  8184. // a indices
  8185. const int ia3 = ir/(nea2*nea1);
  8186. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8187. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8188. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8189. for (int64_t ic = 0; ic < neb01; ++ic) {
  8190. // b0 indices
  8191. const int ib03 = ia3;
  8192. const int ib02 = ia2;
  8193. const int ib01 = ic;
  8194. // S indices
  8195. const int i1 = ib01;
  8196. ggml_vec_dot_f16(nea0,
  8197. S + i1,
  8198. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8199. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8200. }
  8201. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8202. //ggml_vec_gelu_f32(neb01, S, S);
  8203. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8204. for (int64_t i = 0; i < M; i++) {
  8205. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8206. }
  8207. ggml_vec_gelu_f16(neb01, S16, S16);
  8208. {
  8209. // dst indices
  8210. const int i1 = ia1;
  8211. const int i2 = ia2;
  8212. const int i3 = ia3;
  8213. for (int64_t ic = 0; ic < nec01; ++ic) {
  8214. ggml_vec_dot_f16(neb01,
  8215. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8216. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8217. S16);
  8218. }
  8219. ggml_vec_add_f32(nec01,
  8220. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8221. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8222. (float *) c1->data);
  8223. }
  8224. }
  8225. }
  8226. static void ggml_compute_forward_flash_ff(
  8227. const struct ggml_compute_params * params,
  8228. const struct ggml_tensor * a,
  8229. const struct ggml_tensor * b0,
  8230. const struct ggml_tensor * b1,
  8231. const struct ggml_tensor * c0,
  8232. const struct ggml_tensor * c1,
  8233. struct ggml_tensor * dst) {
  8234. switch (b0->type) {
  8235. case GGML_TYPE_F16:
  8236. {
  8237. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8238. } break;
  8239. case GGML_TYPE_F32:
  8240. {
  8241. GGML_ASSERT(false); // TODO
  8242. } break;
  8243. default:
  8244. {
  8245. GGML_ASSERT(false);
  8246. } break;
  8247. }
  8248. }
  8249. // ggml_compute_forward_map_unary
  8250. static void ggml_compute_forward_map_unary_f32(
  8251. const struct ggml_compute_params * params,
  8252. const struct ggml_tensor * src0,
  8253. struct ggml_tensor * dst,
  8254. const ggml_unary_op_f32_t fun) {
  8255. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8256. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8257. return;
  8258. }
  8259. const int n = ggml_nrows(src0);
  8260. const int nc = src0->ne[0];
  8261. assert( dst->nb[0] == sizeof(float));
  8262. assert(src0->nb[0] == sizeof(float));
  8263. for (int i = 0; i < n; i++) {
  8264. fun(nc,
  8265. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8266. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8267. }
  8268. }
  8269. static void ggml_compute_forward_map_unary(
  8270. const struct ggml_compute_params * params,
  8271. const struct ggml_tensor * src0,
  8272. struct ggml_tensor * dst,
  8273. const ggml_unary_op_f32_t fun) {
  8274. switch (src0->type) {
  8275. case GGML_TYPE_F32:
  8276. {
  8277. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8278. } break;
  8279. default:
  8280. {
  8281. GGML_ASSERT(false);
  8282. } break;
  8283. }
  8284. }
  8285. // ggml_compute_forward_map_binary
  8286. static void ggml_compute_forward_map_binary_f32(
  8287. const struct ggml_compute_params * params,
  8288. const struct ggml_tensor * src0,
  8289. const struct ggml_tensor * src1,
  8290. struct ggml_tensor * dst,
  8291. const ggml_binary_op_f32_t fun) {
  8292. assert(params->ith == 0);
  8293. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8294. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8295. return;
  8296. }
  8297. const int n = ggml_nrows(src0);
  8298. const int nc = src0->ne[0];
  8299. assert( dst->nb[0] == sizeof(float));
  8300. assert(src0->nb[0] == sizeof(float));
  8301. assert(src1->nb[0] == sizeof(float));
  8302. for (int i = 0; i < n; i++) {
  8303. fun(nc,
  8304. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8305. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8306. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8307. }
  8308. }
  8309. static void ggml_compute_forward_map_binary(
  8310. const struct ggml_compute_params * params,
  8311. const struct ggml_tensor * src0,
  8312. const struct ggml_tensor * src1,
  8313. struct ggml_tensor * dst,
  8314. const ggml_binary_op_f32_t fun) {
  8315. switch (src0->type) {
  8316. case GGML_TYPE_F32:
  8317. {
  8318. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8319. } break;
  8320. default:
  8321. {
  8322. GGML_ASSERT(false);
  8323. } break;
  8324. }
  8325. }
  8326. /////////////////////////////////
  8327. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8328. GGML_ASSERT(params);
  8329. switch (tensor->op) {
  8330. case GGML_OP_DUP:
  8331. {
  8332. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8333. } break;
  8334. case GGML_OP_ADD:
  8335. {
  8336. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8337. } break;
  8338. case GGML_OP_SUB:
  8339. {
  8340. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8341. } break;
  8342. case GGML_OP_MUL:
  8343. {
  8344. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8345. } break;
  8346. case GGML_OP_DIV:
  8347. {
  8348. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8349. } break;
  8350. case GGML_OP_SQR:
  8351. {
  8352. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8353. } break;
  8354. case GGML_OP_SQRT:
  8355. {
  8356. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8357. } break;
  8358. case GGML_OP_SUM:
  8359. {
  8360. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8361. } break;
  8362. case GGML_OP_MEAN:
  8363. {
  8364. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8365. } break;
  8366. case GGML_OP_REPEAT:
  8367. {
  8368. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8369. } break;
  8370. case GGML_OP_ABS:
  8371. {
  8372. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8373. } break;
  8374. case GGML_OP_SGN:
  8375. {
  8376. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8377. } break;
  8378. case GGML_OP_NEG:
  8379. {
  8380. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8381. } break;
  8382. case GGML_OP_STEP:
  8383. {
  8384. ggml_compute_forward_step(params, tensor->src0, tensor);
  8385. } break;
  8386. case GGML_OP_RELU:
  8387. {
  8388. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8389. } break;
  8390. case GGML_OP_GELU:
  8391. {
  8392. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8393. } break;
  8394. case GGML_OP_SILU:
  8395. {
  8396. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8397. } break;
  8398. case GGML_OP_NORM:
  8399. {
  8400. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8401. } break;
  8402. case GGML_OP_RMS_NORM:
  8403. {
  8404. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8405. } break;
  8406. case GGML_OP_MUL_MAT:
  8407. {
  8408. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8409. } break;
  8410. case GGML_OP_SCALE:
  8411. {
  8412. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8413. } break;
  8414. case GGML_OP_CPY:
  8415. {
  8416. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8417. } break;
  8418. case GGML_OP_CONT:
  8419. {
  8420. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8421. } break;
  8422. case GGML_OP_RESHAPE:
  8423. {
  8424. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8425. } break;
  8426. case GGML_OP_VIEW:
  8427. {
  8428. ggml_compute_forward_view(params, tensor->src0);
  8429. } break;
  8430. case GGML_OP_PERMUTE:
  8431. {
  8432. ggml_compute_forward_permute(params, tensor->src0);
  8433. } break;
  8434. case GGML_OP_TRANSPOSE:
  8435. {
  8436. ggml_compute_forward_transpose(params, tensor->src0);
  8437. } break;
  8438. case GGML_OP_GET_ROWS:
  8439. {
  8440. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8441. } break;
  8442. case GGML_OP_DIAG_MASK_INF:
  8443. {
  8444. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8445. } break;
  8446. case GGML_OP_SOFT_MAX:
  8447. {
  8448. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8449. } break;
  8450. case GGML_OP_ROPE:
  8451. {
  8452. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8453. } break;
  8454. case GGML_OP_CONV_1D_1S:
  8455. {
  8456. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8457. } break;
  8458. case GGML_OP_CONV_1D_2S:
  8459. {
  8460. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8461. } break;
  8462. case GGML_OP_FLASH_ATTN:
  8463. {
  8464. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8465. GGML_ASSERT(t == 0 || t == 1);
  8466. bool masked = t != 0;
  8467. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8468. } break;
  8469. case GGML_OP_FLASH_FF:
  8470. {
  8471. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8472. } break;
  8473. case GGML_OP_MAP_UNARY:
  8474. {
  8475. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8476. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8477. }
  8478. break;
  8479. case GGML_OP_MAP_BINARY:
  8480. {
  8481. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8482. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8483. }
  8484. break;
  8485. case GGML_OP_NONE:
  8486. {
  8487. // nop
  8488. } break;
  8489. case GGML_OP_COUNT:
  8490. {
  8491. GGML_ASSERT(false);
  8492. } break;
  8493. }
  8494. }
  8495. ////////////////////////////////////////////////////////////////////////////////
  8496. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8497. struct ggml_tensor * src0 = tensor->src0;
  8498. struct ggml_tensor * src1 = tensor->src1;
  8499. switch (tensor->op) {
  8500. case GGML_OP_DUP:
  8501. {
  8502. if (src0->grad) {
  8503. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8504. }
  8505. } break;
  8506. case GGML_OP_ADD:
  8507. {
  8508. if (src0->grad) {
  8509. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8510. }
  8511. if (src1->grad) {
  8512. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8513. }
  8514. } break;
  8515. case GGML_OP_SUB:
  8516. {
  8517. if (src0->grad) {
  8518. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8519. }
  8520. if (src1->grad) {
  8521. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8522. }
  8523. } break;
  8524. case GGML_OP_MUL:
  8525. {
  8526. if (src0->grad) {
  8527. src0->grad =
  8528. ggml_add_impl(ctx,
  8529. src0->grad,
  8530. ggml_mul(ctx, src1, tensor->grad),
  8531. inplace);
  8532. }
  8533. if (src1->grad) {
  8534. src1->grad =
  8535. ggml_add_impl(ctx,
  8536. src1->grad,
  8537. ggml_mul(ctx, src0, tensor->grad),
  8538. inplace);
  8539. }
  8540. } break;
  8541. case GGML_OP_DIV:
  8542. {
  8543. if (src0->grad) {
  8544. src0->grad =
  8545. ggml_add_impl(ctx,
  8546. src0->grad,
  8547. ggml_div(ctx, tensor->grad, src1),
  8548. inplace);
  8549. }
  8550. if (src1->grad) {
  8551. src1->grad =
  8552. ggml_sub_impl(ctx,
  8553. src1->grad,
  8554. ggml_mul(ctx,
  8555. tensor->grad,
  8556. ggml_div(ctx, tensor, src1)),
  8557. inplace);
  8558. }
  8559. } break;
  8560. case GGML_OP_SQR:
  8561. {
  8562. if (src0->grad) {
  8563. src0->grad =
  8564. ggml_add_impl(ctx,
  8565. src0->grad,
  8566. ggml_mul(ctx,
  8567. ggml_mul(ctx, src0, tensor->grad),
  8568. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8569. inplace);
  8570. }
  8571. } break;
  8572. case GGML_OP_SQRT:
  8573. {
  8574. if (src0->grad) {
  8575. src0->grad =
  8576. ggml_add_impl(ctx,
  8577. src0->grad,
  8578. ggml_div(ctx,
  8579. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8580. tensor),
  8581. inplace);
  8582. }
  8583. } break;
  8584. case GGML_OP_SUM:
  8585. {
  8586. if (src0->grad) {
  8587. src0->grad =
  8588. ggml_add_impl(ctx,
  8589. src0->grad,
  8590. ggml_repeat(ctx, tensor->grad, src0->grad),
  8591. inplace);
  8592. }
  8593. } break;
  8594. case GGML_OP_MEAN:
  8595. {
  8596. GGML_ASSERT(false); // TODO: implement
  8597. } break;
  8598. case GGML_OP_REPEAT:
  8599. {
  8600. if (src0->grad) {
  8601. src0->grad =
  8602. ggml_add_impl(ctx,
  8603. src0->grad,
  8604. ggml_sum(ctx, tensor->grad),
  8605. inplace);
  8606. }
  8607. } break;
  8608. case GGML_OP_ABS:
  8609. {
  8610. if (src0->grad) {
  8611. src0->grad =
  8612. ggml_add_impl(ctx,
  8613. src0->grad,
  8614. ggml_mul(ctx,
  8615. ggml_sgn(ctx, src0),
  8616. tensor->grad),
  8617. inplace);
  8618. }
  8619. } break;
  8620. case GGML_OP_SGN:
  8621. {
  8622. if (src0->grad) {
  8623. // noop
  8624. }
  8625. } break;
  8626. case GGML_OP_NEG:
  8627. {
  8628. if (src0->grad) {
  8629. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8630. }
  8631. } break;
  8632. case GGML_OP_STEP:
  8633. {
  8634. if (src0->grad) {
  8635. // noop
  8636. }
  8637. } break;
  8638. case GGML_OP_RELU:
  8639. {
  8640. if (src0->grad) {
  8641. src0->grad = ggml_sub_impl(ctx,
  8642. src0->grad,
  8643. ggml_mul(ctx,
  8644. ggml_step(ctx, src0),
  8645. tensor->grad),
  8646. inplace);
  8647. }
  8648. } break;
  8649. case GGML_OP_GELU:
  8650. {
  8651. GGML_ASSERT(false); // TODO: not implemented
  8652. } break;
  8653. case GGML_OP_SILU:
  8654. {
  8655. GGML_ASSERT(false); // TODO: not implemented
  8656. } break;
  8657. case GGML_OP_NORM:
  8658. {
  8659. GGML_ASSERT(false); // TODO: not implemented
  8660. } break;
  8661. case GGML_OP_RMS_NORM:
  8662. {
  8663. GGML_ASSERT(false); // TODO: not implemented
  8664. } break;
  8665. case GGML_OP_MUL_MAT:
  8666. {
  8667. if (src0->grad) {
  8668. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8669. GGML_ASSERT(false);
  8670. }
  8671. if (src1->grad) {
  8672. src1->grad =
  8673. ggml_add_impl(ctx,
  8674. src1->grad,
  8675. ggml_mul_mat(ctx,
  8676. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8677. tensor->grad),
  8678. inplace);
  8679. }
  8680. } break;
  8681. case GGML_OP_SCALE:
  8682. {
  8683. GGML_ASSERT(false); // TODO: not implemented
  8684. } break;
  8685. case GGML_OP_CPY:
  8686. {
  8687. GGML_ASSERT(false); // TODO: not implemented
  8688. } break;
  8689. case GGML_OP_CONT:
  8690. {
  8691. GGML_ASSERT(false); // TODO: not implemented
  8692. } break;
  8693. case GGML_OP_RESHAPE:
  8694. {
  8695. GGML_ASSERT(false); // TODO: not implemented
  8696. } break;
  8697. case GGML_OP_VIEW:
  8698. {
  8699. GGML_ASSERT(false); // not supported
  8700. } break;
  8701. case GGML_OP_PERMUTE:
  8702. {
  8703. GGML_ASSERT(false); // TODO: not implemented
  8704. } break;
  8705. case GGML_OP_TRANSPOSE:
  8706. {
  8707. GGML_ASSERT(false); // TODO: not implemented
  8708. } break;
  8709. case GGML_OP_GET_ROWS:
  8710. {
  8711. GGML_ASSERT(false); // TODO: not implemented
  8712. } break;
  8713. case GGML_OP_DIAG_MASK_INF:
  8714. {
  8715. GGML_ASSERT(false); // TODO: not implemented
  8716. } break;
  8717. case GGML_OP_SOFT_MAX:
  8718. {
  8719. GGML_ASSERT(false); // TODO: not implemented
  8720. } break;
  8721. case GGML_OP_ROPE:
  8722. {
  8723. GGML_ASSERT(false); // TODO: not implemented
  8724. } break;
  8725. case GGML_OP_CONV_1D_1S:
  8726. {
  8727. GGML_ASSERT(false); // TODO: not implemented
  8728. } break;
  8729. case GGML_OP_CONV_1D_2S:
  8730. {
  8731. GGML_ASSERT(false); // TODO: not implemented
  8732. } break;
  8733. case GGML_OP_FLASH_ATTN:
  8734. {
  8735. GGML_ASSERT(false); // not supported
  8736. } break;
  8737. case GGML_OP_FLASH_FF:
  8738. {
  8739. GGML_ASSERT(false); // not supported
  8740. } break;
  8741. case GGML_OP_MAP_UNARY:
  8742. case GGML_OP_MAP_BINARY:
  8743. {
  8744. GGML_ASSERT(false); // not supported
  8745. } break;
  8746. case GGML_OP_NONE:
  8747. {
  8748. // nop
  8749. } break;
  8750. case GGML_OP_COUNT:
  8751. {
  8752. GGML_ASSERT(false);
  8753. } break;
  8754. }
  8755. }
  8756. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8757. if (node->grad == NULL) {
  8758. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8759. // it can also happen during forward pass, if the user performs computations with constants
  8760. if (node->op != GGML_OP_NONE) {
  8761. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8762. }
  8763. }
  8764. // check if already visited
  8765. for (int i = 0; i < cgraph->n_nodes; i++) {
  8766. if (cgraph->nodes[i] == node) {
  8767. return;
  8768. }
  8769. }
  8770. for (int i = 0; i < cgraph->n_leafs; i++) {
  8771. if (cgraph->leafs[i] == node) {
  8772. return;
  8773. }
  8774. }
  8775. if (node->src0) {
  8776. ggml_visit_parents(cgraph, node->src0);
  8777. }
  8778. if (node->src1) {
  8779. ggml_visit_parents(cgraph, node->src1);
  8780. }
  8781. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8782. if (node->opt[i]) {
  8783. ggml_visit_parents(cgraph, node->opt[i]);
  8784. }
  8785. }
  8786. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8787. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8788. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8789. cgraph->leafs[cgraph->n_leafs] = node;
  8790. cgraph->n_leafs++;
  8791. } else {
  8792. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8793. cgraph->nodes[cgraph->n_nodes] = node;
  8794. cgraph->grads[cgraph->n_nodes] = node->grad;
  8795. cgraph->n_nodes++;
  8796. }
  8797. }
  8798. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8799. if (!expand) {
  8800. cgraph->n_nodes = 0;
  8801. cgraph->n_leafs = 0;
  8802. }
  8803. const int n0 = cgraph->n_nodes;
  8804. UNUSED(n0);
  8805. ggml_visit_parents(cgraph, tensor);
  8806. const int n_new = cgraph->n_nodes - n0;
  8807. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8808. if (n_new > 0) {
  8809. // the last added node should always be starting point
  8810. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8811. }
  8812. }
  8813. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8814. ggml_build_forward_impl(cgraph, tensor, true);
  8815. }
  8816. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8817. struct ggml_cgraph result = {
  8818. /*.n_nodes =*/ 0,
  8819. /*.n_leafs =*/ 0,
  8820. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8821. /*.work_size =*/ 0,
  8822. /*.work =*/ NULL,
  8823. /*.nodes =*/ { NULL },
  8824. /*.grads =*/ { NULL },
  8825. /*.leafs =*/ { NULL },
  8826. /*.perf_runs =*/ 0,
  8827. /*.perf_cycles =*/ 0,
  8828. /*.perf_time_us =*/ 0,
  8829. };
  8830. ggml_build_forward_impl(&result, tensor, false);
  8831. return result;
  8832. }
  8833. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8834. struct ggml_cgraph result = *gf;
  8835. GGML_ASSERT(gf->n_nodes > 0);
  8836. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8837. if (keep) {
  8838. for (int i = 0; i < gf->n_nodes; i++) {
  8839. struct ggml_tensor * node = gf->nodes[i];
  8840. if (node->grad) {
  8841. node->grad = ggml_dup_tensor(ctx, node);
  8842. gf->grads[i] = node->grad;
  8843. }
  8844. }
  8845. }
  8846. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8847. struct ggml_tensor * node = gf->nodes[i];
  8848. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8849. if (node->grad) {
  8850. ggml_compute_backward(ctx, node, keep);
  8851. }
  8852. }
  8853. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8854. struct ggml_tensor * node = gf->nodes[i];
  8855. if (node->is_param) {
  8856. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8857. ggml_build_forward_impl(&result, node->grad, true);
  8858. }
  8859. }
  8860. return result;
  8861. }
  8862. //
  8863. // thread data
  8864. //
  8865. // synchronization is done via busy loops
  8866. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8867. //
  8868. #ifdef __APPLE__
  8869. //#include <os/lock.h>
  8870. //
  8871. //typedef os_unfair_lock ggml_lock_t;
  8872. //
  8873. //#define ggml_lock_init(x) UNUSED(x)
  8874. //#define ggml_lock_destroy(x) UNUSED(x)
  8875. //#define ggml_lock_lock os_unfair_lock_lock
  8876. //#define ggml_lock_unlock os_unfair_lock_unlock
  8877. //
  8878. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8879. typedef int ggml_lock_t;
  8880. #define ggml_lock_init(x) UNUSED(x)
  8881. #define ggml_lock_destroy(x) UNUSED(x)
  8882. #define ggml_lock_lock(x) UNUSED(x)
  8883. #define ggml_lock_unlock(x) UNUSED(x)
  8884. #define GGML_LOCK_INITIALIZER 0
  8885. typedef pthread_t ggml_thread_t;
  8886. #define ggml_thread_create pthread_create
  8887. #define ggml_thread_join pthread_join
  8888. #else
  8889. //typedef pthread_spinlock_t ggml_lock_t;
  8890. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8891. //#define ggml_lock_destroy pthread_spin_destroy
  8892. //#define ggml_lock_lock pthread_spin_lock
  8893. //#define ggml_lock_unlock pthread_spin_unlock
  8894. typedef int ggml_lock_t;
  8895. #define ggml_lock_init(x) UNUSED(x)
  8896. #define ggml_lock_destroy(x) UNUSED(x)
  8897. #define ggml_lock_lock(x) UNUSED(x)
  8898. #define ggml_lock_unlock(x) UNUSED(x)
  8899. #define GGML_LOCK_INITIALIZER 0
  8900. typedef pthread_t ggml_thread_t;
  8901. #define ggml_thread_create pthread_create
  8902. #define ggml_thread_join pthread_join
  8903. #endif
  8904. struct ggml_compute_state_shared {
  8905. ggml_lock_t spin;
  8906. int n_threads;
  8907. // synchronization primitives
  8908. atomic_int n_ready;
  8909. atomic_bool has_work;
  8910. atomic_bool stop; // stop all threads
  8911. };
  8912. struct ggml_compute_state {
  8913. ggml_thread_t thrd;
  8914. struct ggml_compute_params params;
  8915. struct ggml_tensor * node;
  8916. struct ggml_compute_state_shared * shared;
  8917. };
  8918. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8919. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8920. const int n_threads = state->shared->n_threads;
  8921. while (true) {
  8922. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8923. atomic_store(&state->shared->has_work, false);
  8924. } else {
  8925. while (atomic_load(&state->shared->has_work)) {
  8926. if (atomic_load(&state->shared->stop)) {
  8927. return 0;
  8928. }
  8929. ggml_lock_lock (&state->shared->spin);
  8930. ggml_lock_unlock(&state->shared->spin);
  8931. }
  8932. }
  8933. atomic_fetch_sub(&state->shared->n_ready, 1);
  8934. // wait for work
  8935. while (!atomic_load(&state->shared->has_work)) {
  8936. if (atomic_load(&state->shared->stop)) {
  8937. return 0;
  8938. }
  8939. ggml_lock_lock (&state->shared->spin);
  8940. ggml_lock_unlock(&state->shared->spin);
  8941. }
  8942. // check if we should stop
  8943. if (atomic_load(&state->shared->stop)) {
  8944. break;
  8945. }
  8946. if (state->node) {
  8947. if (state->params.ith < state->params.nth) {
  8948. ggml_compute_forward(&state->params, state->node);
  8949. }
  8950. state->node = NULL;
  8951. } else {
  8952. break;
  8953. }
  8954. }
  8955. return 0;
  8956. }
  8957. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8958. const int n_threads = cgraph->n_threads;
  8959. struct ggml_compute_state_shared state_shared = {
  8960. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8961. /*.n_threads =*/ n_threads,
  8962. /*.n_ready =*/ 0,
  8963. /*.has_work =*/ false,
  8964. /*.stop =*/ false,
  8965. };
  8966. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8967. // create thread pool
  8968. if (n_threads > 1) {
  8969. ggml_lock_init(&state_shared.spin);
  8970. atomic_store(&state_shared.has_work, true);
  8971. for (int j = 0; j < n_threads - 1; j++) {
  8972. workers[j] = (struct ggml_compute_state) {
  8973. .thrd = 0,
  8974. .params = {
  8975. .type = GGML_TASK_COMPUTE,
  8976. .ith = j + 1,
  8977. .nth = n_threads,
  8978. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8979. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8980. },
  8981. .node = NULL,
  8982. .shared = &state_shared,
  8983. };
  8984. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8985. GGML_ASSERT(rc == 0);
  8986. UNUSED(rc);
  8987. }
  8988. }
  8989. // initialize tasks + work buffer
  8990. {
  8991. size_t work_size = 0;
  8992. // thread scheduling for the different operations
  8993. for (int i = 0; i < cgraph->n_nodes; i++) {
  8994. struct ggml_tensor * node = cgraph->nodes[i];
  8995. switch (node->op) {
  8996. case GGML_OP_CPY:
  8997. case GGML_OP_DUP:
  8998. {
  8999. node->n_tasks = n_threads;
  9000. size_t cur = 0;
  9001. if (ggml_is_quantized(node->type)) {
  9002. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9003. }
  9004. work_size = MAX(work_size, cur);
  9005. } break;
  9006. case GGML_OP_ADD:
  9007. {
  9008. node->n_tasks = n_threads;
  9009. size_t cur = 0;
  9010. if (ggml_is_quantized(node->src0->type)) {
  9011. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9012. }
  9013. work_size = MAX(work_size, cur);
  9014. } break;
  9015. case GGML_OP_SUB:
  9016. case GGML_OP_MUL:
  9017. case GGML_OP_DIV:
  9018. case GGML_OP_SQR:
  9019. case GGML_OP_SQRT:
  9020. case GGML_OP_SUM:
  9021. case GGML_OP_MEAN:
  9022. case GGML_OP_REPEAT:
  9023. case GGML_OP_ABS:
  9024. case GGML_OP_SGN:
  9025. case GGML_OP_NEG:
  9026. case GGML_OP_STEP:
  9027. case GGML_OP_RELU:
  9028. {
  9029. node->n_tasks = 1;
  9030. } break;
  9031. case GGML_OP_GELU:
  9032. {
  9033. node->n_tasks = n_threads;
  9034. } break;
  9035. case GGML_OP_SILU:
  9036. {
  9037. node->n_tasks = n_threads;
  9038. } break;
  9039. case GGML_OP_NORM:
  9040. case GGML_OP_RMS_NORM:
  9041. {
  9042. node->n_tasks = n_threads;
  9043. } break;
  9044. case GGML_OP_MUL_MAT:
  9045. {
  9046. node->n_tasks = n_threads;
  9047. // TODO: use different scheduling for different matrix sizes
  9048. //const int nr0 = ggml_nrows(node->src0);
  9049. //const int nr1 = ggml_nrows(node->src1);
  9050. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9051. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9052. size_t cur = 0;
  9053. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9054. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9055. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9056. node->n_tasks = 1; // TODO: this actually is doing nothing
  9057. // the threads are still spinning
  9058. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9059. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  9060. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  9061. //printf("cur = %zu\n", cur);
  9062. } else {
  9063. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9064. }
  9065. #else
  9066. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9067. #endif
  9068. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9069. cur = 0;
  9070. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  9071. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9072. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9073. node->n_tasks = 1;
  9074. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9075. } else
  9076. #endif
  9077. {
  9078. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  9079. }
  9080. } else {
  9081. GGML_ASSERT(false);
  9082. }
  9083. work_size = MAX(work_size, cur);
  9084. } break;
  9085. case GGML_OP_SCALE:
  9086. {
  9087. node->n_tasks = n_threads;
  9088. } break;
  9089. case GGML_OP_CONT:
  9090. case GGML_OP_RESHAPE:
  9091. case GGML_OP_VIEW:
  9092. case GGML_OP_PERMUTE:
  9093. case GGML_OP_TRANSPOSE:
  9094. case GGML_OP_GET_ROWS:
  9095. case GGML_OP_DIAG_MASK_INF:
  9096. {
  9097. node->n_tasks = 1;
  9098. } break;
  9099. case GGML_OP_SOFT_MAX:
  9100. {
  9101. node->n_tasks = n_threads;
  9102. } break;
  9103. case GGML_OP_ROPE:
  9104. {
  9105. node->n_tasks = n_threads;
  9106. } break;
  9107. case GGML_OP_CONV_1D_1S:
  9108. case GGML_OP_CONV_1D_2S:
  9109. {
  9110. node->n_tasks = n_threads;
  9111. GGML_ASSERT(node->src0->ne[3] == 1);
  9112. GGML_ASSERT(node->src1->ne[2] == 1);
  9113. GGML_ASSERT(node->src1->ne[3] == 1);
  9114. size_t cur = 0;
  9115. const int nk = node->src0->ne[0];
  9116. if (node->src0->type == GGML_TYPE_F16 &&
  9117. node->src1->type == GGML_TYPE_F32) {
  9118. cur = sizeof(ggml_fp16_t)*(
  9119. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9120. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9121. );
  9122. } else if (node->src0->type == GGML_TYPE_F32 &&
  9123. node->src1->type == GGML_TYPE_F32) {
  9124. cur = sizeof(float)*(
  9125. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9126. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9127. );
  9128. } else {
  9129. GGML_ASSERT(false);
  9130. }
  9131. work_size = MAX(work_size, cur);
  9132. } break;
  9133. case GGML_OP_FLASH_ATTN:
  9134. {
  9135. node->n_tasks = n_threads;
  9136. size_t cur = 0;
  9137. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9138. if (node->src1->type == GGML_TYPE_F32) {
  9139. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9140. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9141. }
  9142. if (node->src1->type == GGML_TYPE_F16) {
  9143. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9144. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9145. }
  9146. work_size = MAX(work_size, cur);
  9147. } break;
  9148. case GGML_OP_FLASH_FF:
  9149. {
  9150. node->n_tasks = n_threads;
  9151. size_t cur = 0;
  9152. if (node->src1->type == GGML_TYPE_F32) {
  9153. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9154. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9155. }
  9156. if (node->src1->type == GGML_TYPE_F16) {
  9157. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9158. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9159. }
  9160. work_size = MAX(work_size, cur);
  9161. } break;
  9162. case GGML_OP_MAP_UNARY:
  9163. case GGML_OP_MAP_BINARY:
  9164. {
  9165. node->n_tasks = 1;
  9166. } break;
  9167. case GGML_OP_NONE:
  9168. {
  9169. node->n_tasks = 1;
  9170. } break;
  9171. case GGML_OP_COUNT:
  9172. {
  9173. GGML_ASSERT(false);
  9174. } break;
  9175. }
  9176. }
  9177. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9178. GGML_ASSERT(false); // TODO: better handling
  9179. }
  9180. if (work_size > 0 && cgraph->work == NULL) {
  9181. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9182. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9183. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9184. }
  9185. }
  9186. const int64_t perf_start_cycles = ggml_perf_cycles();
  9187. const int64_t perf_start_time_us = ggml_perf_time_us();
  9188. for (int i = 0; i < cgraph->n_nodes; i++) {
  9189. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9190. struct ggml_tensor * node = cgraph->nodes[i];
  9191. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9192. //if (node->grad == NULL && node->perf_runs > 0) {
  9193. // continue;
  9194. //}
  9195. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9196. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9197. // INIT
  9198. struct ggml_compute_params params = {
  9199. /*.type =*/ GGML_TASK_INIT,
  9200. /*.ith =*/ 0,
  9201. /*.nth =*/ node->n_tasks,
  9202. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9203. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9204. };
  9205. ggml_compute_forward(&params, node);
  9206. // COMPUTE
  9207. if (node->n_tasks > 1) {
  9208. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9209. atomic_store(&state_shared.has_work, false);
  9210. }
  9211. while (atomic_load(&state_shared.has_work)) {
  9212. ggml_lock_lock (&state_shared.spin);
  9213. ggml_lock_unlock(&state_shared.spin);
  9214. }
  9215. // launch thread pool
  9216. for (int j = 0; j < n_threads - 1; j++) {
  9217. workers[j].params = (struct ggml_compute_params) {
  9218. .type = GGML_TASK_COMPUTE,
  9219. .ith = j + 1,
  9220. .nth = node->n_tasks,
  9221. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9222. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9223. };
  9224. workers[j].node = node;
  9225. }
  9226. atomic_fetch_sub(&state_shared.n_ready, 1);
  9227. while (atomic_load(&state_shared.n_ready) > 0) {
  9228. ggml_lock_lock (&state_shared.spin);
  9229. ggml_lock_unlock(&state_shared.spin);
  9230. }
  9231. atomic_store(&state_shared.has_work, true);
  9232. }
  9233. params.type = GGML_TASK_COMPUTE;
  9234. ggml_compute_forward(&params, node);
  9235. // wait for thread pool
  9236. if (node->n_tasks > 1) {
  9237. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9238. atomic_store(&state_shared.has_work, false);
  9239. }
  9240. while (atomic_load(&state_shared.has_work)) {
  9241. ggml_lock_lock (&state_shared.spin);
  9242. ggml_lock_unlock(&state_shared.spin);
  9243. }
  9244. atomic_fetch_sub(&state_shared.n_ready, 1);
  9245. while (atomic_load(&state_shared.n_ready) != 0) {
  9246. ggml_lock_lock (&state_shared.spin);
  9247. ggml_lock_unlock(&state_shared.spin);
  9248. }
  9249. }
  9250. // FINALIZE
  9251. if (node->n_tasks > 1) {
  9252. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9253. atomic_store(&state_shared.has_work, false);
  9254. }
  9255. while (atomic_load(&state_shared.has_work)) {
  9256. ggml_lock_lock (&state_shared.spin);
  9257. ggml_lock_unlock(&state_shared.spin);
  9258. }
  9259. // launch thread pool
  9260. for (int j = 0; j < n_threads - 1; j++) {
  9261. workers[j].params = (struct ggml_compute_params) {
  9262. .type = GGML_TASK_FINALIZE,
  9263. .ith = j + 1,
  9264. .nth = node->n_tasks,
  9265. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9266. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9267. };
  9268. workers[j].node = node;
  9269. }
  9270. atomic_fetch_sub(&state_shared.n_ready, 1);
  9271. while (atomic_load(&state_shared.n_ready) > 0) {
  9272. ggml_lock_lock (&state_shared.spin);
  9273. ggml_lock_unlock(&state_shared.spin);
  9274. }
  9275. atomic_store(&state_shared.has_work, true);
  9276. }
  9277. params.type = GGML_TASK_FINALIZE;
  9278. ggml_compute_forward(&params, node);
  9279. // wait for thread pool
  9280. if (node->n_tasks > 1) {
  9281. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9282. atomic_store(&state_shared.has_work, false);
  9283. }
  9284. while (atomic_load(&state_shared.has_work)) {
  9285. ggml_lock_lock (&state_shared.spin);
  9286. ggml_lock_unlock(&state_shared.spin);
  9287. }
  9288. atomic_fetch_sub(&state_shared.n_ready, 1);
  9289. while (atomic_load(&state_shared.n_ready) != 0) {
  9290. ggml_lock_lock (&state_shared.spin);
  9291. ggml_lock_unlock(&state_shared.spin);
  9292. }
  9293. }
  9294. // performance stats (node)
  9295. {
  9296. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9297. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9298. node->perf_runs++;
  9299. node->perf_cycles += perf_cycles_cur;
  9300. node->perf_time_us += perf_time_us_cur;
  9301. }
  9302. }
  9303. // join thread pool
  9304. if (n_threads > 1) {
  9305. atomic_store(&state_shared.stop, true);
  9306. atomic_store(&state_shared.has_work, true);
  9307. for (int j = 0; j < n_threads - 1; j++) {
  9308. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9309. GGML_ASSERT(rc == 0);
  9310. UNUSED(rc);
  9311. }
  9312. ggml_lock_destroy(&state_shared.spin);
  9313. }
  9314. // performance stats (graph)
  9315. {
  9316. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9317. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9318. cgraph->perf_runs++;
  9319. cgraph->perf_cycles += perf_cycles_cur;
  9320. cgraph->perf_time_us += perf_time_us_cur;
  9321. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9322. __func__, cgraph->perf_runs,
  9323. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9324. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9325. (double) perf_time_us_cur / 1000.0,
  9326. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9327. }
  9328. }
  9329. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9330. for (int i = 0; i < cgraph->n_nodes; i++) {
  9331. struct ggml_tensor * grad = cgraph->grads[i];
  9332. if (grad) {
  9333. ggml_set_zero(grad);
  9334. }
  9335. }
  9336. }
  9337. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9338. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9339. GGML_PRINT("=== GRAPH ===\n");
  9340. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9341. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9342. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9343. for (int i = 0; i < cgraph->n_nodes; i++) {
  9344. struct ggml_tensor * node = cgraph->nodes[i];
  9345. perf_total_per_op_us[node->op] += node->perf_time_us;
  9346. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9347. i,
  9348. node->ne[0], node->ne[1], node->ne[2],
  9349. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9350. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9351. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9352. (double) node->perf_time_us / 1000.0,
  9353. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9354. }
  9355. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9356. for (int i = 0; i < cgraph->n_leafs; i++) {
  9357. struct ggml_tensor * node = cgraph->leafs[i];
  9358. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  9359. i,
  9360. node->ne[0], node->ne[1],
  9361. GGML_OP_LABEL[node->op]);
  9362. }
  9363. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9364. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9365. }
  9366. GGML_PRINT("========================================\n");
  9367. }
  9368. // check if node is part of the graph
  9369. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9370. if (cgraph == NULL) {
  9371. return true;
  9372. }
  9373. for (int i = 0; i < cgraph->n_nodes; i++) {
  9374. if (cgraph->nodes[i] == node) {
  9375. return true;
  9376. }
  9377. }
  9378. return false;
  9379. }
  9380. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9381. for (int i = 0; i < cgraph->n_nodes; i++) {
  9382. struct ggml_tensor * parent = cgraph->nodes[i];
  9383. if (parent->grad == node) {
  9384. return parent;
  9385. }
  9386. }
  9387. return NULL;
  9388. }
  9389. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9390. char color[16];
  9391. FILE * fp = fopen(filename, "w");
  9392. GGML_ASSERT(fp);
  9393. fprintf(fp, "digraph G {\n");
  9394. fprintf(fp, " newrank = true;\n");
  9395. fprintf(fp, " rankdir = LR;\n");
  9396. for (int i = 0; i < gb->n_nodes; i++) {
  9397. struct ggml_tensor * node = gb->nodes[i];
  9398. if (ggml_graph_get_parent(gb, node) != NULL) {
  9399. continue;
  9400. }
  9401. if (node->is_param) {
  9402. snprintf(color, sizeof(color), "yellow");
  9403. } else if (node->grad) {
  9404. if (ggml_graph_find(gf, node)) {
  9405. snprintf(color, sizeof(color), "green");
  9406. } else {
  9407. snprintf(color, sizeof(color), "lightblue");
  9408. }
  9409. } else {
  9410. snprintf(color, sizeof(color), "white");
  9411. }
  9412. fprintf(fp, " \"%p\" [ \
  9413. style = filled; fillcolor = %s; shape = record; \
  9414. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9415. (void *) node, color,
  9416. i, node->ne[0], node->ne[1],
  9417. GGML_OP_SYMBOL[node->op]);
  9418. if (node->grad) {
  9419. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9420. } else {
  9421. fprintf(fp, "\"; ]\n");
  9422. }
  9423. }
  9424. for (int i = 0; i < gb->n_leafs; i++) {
  9425. struct ggml_tensor * node = gb->leafs[i];
  9426. snprintf(color, sizeof(color), "pink");
  9427. if (ggml_nelements(node) == 1) {
  9428. fprintf(fp, " \"%p\" [ \
  9429. style = filled; fillcolor = %s; shape = record; \
  9430. label=\"<x>%.1e\"; ]\n",
  9431. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9432. } else {
  9433. fprintf(fp, " \"%p\" [ \
  9434. style = filled; fillcolor = %s; shape = record; \
  9435. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9436. (void *) node, color,
  9437. i, node->ne[0], node->ne[1]);
  9438. }
  9439. }
  9440. for (int i = 0; i < gb->n_nodes; i++) {
  9441. struct ggml_tensor * node = gb->nodes[i];
  9442. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9443. if (node->src0) {
  9444. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9445. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9446. parent0 ? (void *) parent0 : (void *) node->src0,
  9447. parent0 ? "g" : "x",
  9448. parent ? (void *) parent : (void *) node,
  9449. parent ? "g" : "x",
  9450. parent ? "empty" : "vee",
  9451. parent ? "dashed" : "solid");
  9452. }
  9453. if (node->src1) {
  9454. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9455. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9456. parent1 ? (void *) parent1 : (void *) node->src1,
  9457. parent1 ? "g" : "x",
  9458. parent ? (void *) parent : (void *) node,
  9459. parent ? "g" : "x",
  9460. parent ? "empty" : "vee",
  9461. parent ? "dashed" : "solid");
  9462. }
  9463. }
  9464. for (int i = 0; i < gb->n_leafs; i++) {
  9465. struct ggml_tensor * node = gb->leafs[i];
  9466. if (node->src0) {
  9467. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9468. (void *) node->src0, "x",
  9469. (void *) node, "x");
  9470. }
  9471. if (node->src1) {
  9472. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9473. (void *) node->src1, "x",
  9474. (void *) node, "x");
  9475. }
  9476. }
  9477. fprintf(fp, "}\n");
  9478. fclose(fp);
  9479. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9480. }
  9481. ////////////////////////////////////////////////////////////////////////////////
  9482. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9483. int i = 0;
  9484. for (int p = 0; p < np; ++p) {
  9485. const int64_t ne = ggml_nelements(ps[p]) ;
  9486. // TODO: add function to set tensor from array
  9487. for (int64_t j = 0; j < ne; ++j) {
  9488. ggml_set_f32_1d(ps[p], j, x[i++]);
  9489. }
  9490. }
  9491. }
  9492. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9493. int i = 0;
  9494. for (int p = 0; p < np; ++p) {
  9495. const int64_t ne = ggml_nelements(ps[p]) ;
  9496. // TODO: add function to get all elements at once
  9497. for (int64_t j = 0; j < ne; ++j) {
  9498. x[i++] = ggml_get_f32_1d(ps[p], j);
  9499. }
  9500. }
  9501. }
  9502. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9503. int i = 0;
  9504. for (int p = 0; p < np; ++p) {
  9505. const int64_t ne = ggml_nelements(ps[p]) ;
  9506. // TODO: add function to get all elements at once
  9507. for (int64_t j = 0; j < ne; ++j) {
  9508. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9509. }
  9510. }
  9511. }
  9512. //
  9513. // ADAM
  9514. //
  9515. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9516. //
  9517. static enum ggml_opt_result ggml_opt_adam(
  9518. struct ggml_context * ctx,
  9519. struct ggml_opt_params params,
  9520. struct ggml_tensor * f,
  9521. struct ggml_cgraph * gf,
  9522. struct ggml_cgraph * gb) {
  9523. GGML_ASSERT(ggml_is_scalar(f));
  9524. gf->n_threads = params.n_threads;
  9525. gb->n_threads = params.n_threads;
  9526. // these will store the parameters we want to optimize
  9527. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9528. int np = 0;
  9529. int nx = 0;
  9530. for (int i = 0; i < gf->n_nodes; ++i) {
  9531. if (gf->nodes[i]->is_param) {
  9532. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9533. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9534. ps[np++] = gf->nodes[i];
  9535. nx += ggml_nelements(gf->nodes[i]);
  9536. }
  9537. }
  9538. // constants
  9539. const float alpha = params.adam.alpha;
  9540. const float beta1 = params.adam.beta1;
  9541. const float beta2 = params.adam.beta2;
  9542. const float eps = params.adam.eps;
  9543. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9544. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9545. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9546. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9547. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9548. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9549. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9550. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9551. // initialize
  9552. ggml_vec_set_f32(nx, m, 0.0f);
  9553. ggml_vec_set_f32(nx, v, 0.0f);
  9554. // update view
  9555. ggml_opt_get_params(np, ps, x);
  9556. // compute the function value
  9557. ggml_graph_reset (gf);
  9558. ggml_set_f32 (f->grad, 1.0f);
  9559. ggml_graph_compute(ctx, gb);
  9560. float fx_prev = ggml_get_f32_1d(f, 0);
  9561. if (pf) {
  9562. pf[0] = fx_prev;
  9563. }
  9564. int n_no_improvement = 0;
  9565. float fx_best = fx_prev;
  9566. // run the optimizer
  9567. for (int t = 0; t < params.adam.n_iter; ++t) {
  9568. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9569. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9570. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9571. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9572. for (int i = 0; i < np; ++i) {
  9573. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9574. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9575. }
  9576. const int64_t t_start_wall = ggml_time_us();
  9577. const int64_t t_start_cpu = ggml_cycles();
  9578. UNUSED(t_start_wall);
  9579. UNUSED(t_start_cpu);
  9580. {
  9581. // update the gradient
  9582. ggml_opt_get_grad(np, ps, g1);
  9583. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9584. ggml_vec_scale_f32(nx, m, beta1);
  9585. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9586. // g2 = g1^2
  9587. ggml_vec_sqr_f32 (nx, g2, g1);
  9588. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9589. ggml_vec_scale_f32(nx, v, beta2);
  9590. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9591. // m^hat = m_t / (1 - beta1^t)
  9592. // v^hat = v_t / (1 - beta2^t)
  9593. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9594. ggml_vec_cpy_f32 (nx, mh, m);
  9595. ggml_vec_cpy_f32 (nx, vh, v);
  9596. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9597. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9598. ggml_vec_sqrt_f32 (nx, vh, vh);
  9599. ggml_vec_acc1_f32 (nx, vh, eps);
  9600. ggml_vec_div_f32 (nx, mh, mh, vh);
  9601. ggml_vec_sub_f32 (nx, x, x, mh);
  9602. // update the parameters
  9603. ggml_opt_set_params(np, ps, x);
  9604. }
  9605. ggml_graph_reset (gf);
  9606. ggml_set_f32 (f->grad, 1.0f);
  9607. ggml_graph_compute(ctx, gb);
  9608. const float fx = ggml_get_f32_1d(f, 0);
  9609. // check convergence
  9610. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9611. GGML_PRINT_DEBUG("converged\n");
  9612. return GGML_OPT_OK;
  9613. }
  9614. // delta-based convergence test
  9615. if (pf != NULL) {
  9616. // need at least params.past iterations to start checking for convergence
  9617. if (params.past <= t) {
  9618. const float rate = (pf[t%params.past] - fx)/fx;
  9619. if (fabsf(rate) < params.delta) {
  9620. return GGML_OPT_OK;
  9621. }
  9622. }
  9623. pf[t%params.past] = fx;
  9624. }
  9625. // check for improvement
  9626. if (params.max_no_improvement > 0) {
  9627. if (fx_best > fx) {
  9628. fx_best = fx;
  9629. n_no_improvement = 0;
  9630. } else {
  9631. ++n_no_improvement;
  9632. if (n_no_improvement >= params.max_no_improvement) {
  9633. return GGML_OPT_OK;
  9634. }
  9635. }
  9636. }
  9637. fx_prev = fx;
  9638. {
  9639. const int64_t t_end_cpu = ggml_cycles();
  9640. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9641. UNUSED(t_end_cpu);
  9642. const int64_t t_end_wall = ggml_time_us();
  9643. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9644. UNUSED(t_end_wall);
  9645. }
  9646. }
  9647. return GGML_OPT_DID_NOT_CONVERGE;
  9648. }
  9649. //
  9650. // L-BFGS
  9651. //
  9652. // the L-BFGS implementation below is based on the following implementation:
  9653. //
  9654. // https://github.com/chokkan/liblbfgs
  9655. //
  9656. struct ggml_lbfgs_iteration_data {
  9657. float alpha;
  9658. float ys;
  9659. float * s;
  9660. float * y;
  9661. };
  9662. static enum ggml_opt_result linesearch_backtracking(
  9663. struct ggml_context * ctx,
  9664. const struct ggml_opt_params * params,
  9665. int nx,
  9666. float * x,
  9667. float * fx,
  9668. float * g,
  9669. float * d,
  9670. float * step,
  9671. const float * xp,
  9672. struct ggml_tensor * f,
  9673. struct ggml_cgraph * gf,
  9674. struct ggml_cgraph * gb,
  9675. const int np,
  9676. struct ggml_tensor * ps[]) {
  9677. int count = 0;
  9678. float width = 0.0f;
  9679. float dg = 0.0f;
  9680. float finit = 0.0f;
  9681. float dginit = 0.0f;
  9682. float dgtest = 0.0f;
  9683. const float dec = 0.5f;
  9684. const float inc = 2.1f;
  9685. if (*step <= 0.f) {
  9686. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9687. }
  9688. // compute the initial gradient in the search direction
  9689. ggml_vec_dot_f32(nx, &dginit, g, d);
  9690. // make sure that d points to a descent direction
  9691. if (0 < dginit) {
  9692. return GGML_LINESEARCH_FAIL;
  9693. }
  9694. // initialize local variables
  9695. finit = *fx;
  9696. dgtest = params->lbfgs.ftol*dginit;
  9697. while (true) {
  9698. ggml_vec_cpy_f32(nx, x, xp);
  9699. ggml_vec_mad_f32(nx, x, d, *step);
  9700. // evaluate the function and gradient values
  9701. {
  9702. ggml_opt_set_params(np, ps, x);
  9703. ggml_graph_reset (gf);
  9704. ggml_set_f32 (f->grad, 1.0f);
  9705. ggml_graph_compute(ctx, gb);
  9706. ggml_opt_get_grad(np, ps, g);
  9707. *fx = ggml_get_f32_1d(f, 0);
  9708. }
  9709. ++count;
  9710. if (*fx > finit + (*step)*dgtest) {
  9711. width = dec;
  9712. } else {
  9713. // Armijo condition is satisfied
  9714. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9715. return count;
  9716. }
  9717. ggml_vec_dot_f32(nx, &dg, g, d);
  9718. // check the Wolfe condition
  9719. if (dg < params->lbfgs.wolfe * dginit) {
  9720. width = inc;
  9721. } else {
  9722. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9723. // regular Wolfe conditions
  9724. return count;
  9725. }
  9726. if(dg > -params->lbfgs.wolfe*dginit) {
  9727. width = dec;
  9728. } else {
  9729. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9730. return count;
  9731. }
  9732. return count;
  9733. }
  9734. }
  9735. if (*step < params->lbfgs.min_step) {
  9736. return GGML_LINESEARCH_MINIMUM_STEP;
  9737. }
  9738. if (*step > params->lbfgs.max_step) {
  9739. return GGML_LINESEARCH_MAXIMUM_STEP;
  9740. }
  9741. if (params->lbfgs.max_linesearch <= count) {
  9742. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9743. }
  9744. (*step) *= width;
  9745. }
  9746. return GGML_LINESEARCH_FAIL;
  9747. }
  9748. static enum ggml_opt_result ggml_opt_lbfgs(
  9749. struct ggml_context * ctx,
  9750. struct ggml_opt_params params,
  9751. struct ggml_tensor * f,
  9752. struct ggml_cgraph * gf,
  9753. struct ggml_cgraph * gb) {
  9754. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9755. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9756. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9757. return GGML_OPT_INVALID_WOLFE;
  9758. }
  9759. }
  9760. gf->n_threads = params.n_threads;
  9761. gb->n_threads = params.n_threads;
  9762. const int m = params.lbfgs.m;
  9763. // these will store the parameters we want to optimize
  9764. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9765. int np = 0;
  9766. int nx = 0;
  9767. for (int i = 0; i < gf->n_nodes; ++i) {
  9768. if (gf->nodes[i]->is_param) {
  9769. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9770. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9771. ps[np++] = gf->nodes[i];
  9772. nx += ggml_nelements(gf->nodes[i]);
  9773. }
  9774. }
  9775. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9776. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9777. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9778. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9779. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9780. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9781. float fx = 0.0f; // cost function value
  9782. float xnorm = 0.0f; // ||x||
  9783. float gnorm = 0.0f; // ||g||
  9784. float step = 0.0f;
  9785. // initialize x from the graph nodes
  9786. ggml_opt_get_params(np, ps, x);
  9787. // the L-BFGS memory
  9788. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9789. for (int i = 0; i < m; ++i) {
  9790. lm[i].alpha = 0.0f;
  9791. lm[i].ys = 0.0f;
  9792. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9793. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9794. }
  9795. // evaluate the function value and its gradient
  9796. {
  9797. ggml_opt_set_params(np, ps, x);
  9798. ggml_graph_reset (gf);
  9799. ggml_set_f32 (f->grad, 1.0f);
  9800. ggml_graph_compute(ctx, gb);
  9801. ggml_opt_get_grad(np, ps, g);
  9802. fx = ggml_get_f32_1d(f, 0);
  9803. }
  9804. if (pf) {
  9805. pf[0] = fx;
  9806. }
  9807. float fx_best = fx;
  9808. // search direction = -gradient
  9809. ggml_vec_neg_f32(nx, d, g);
  9810. // ||x||, ||g||
  9811. ggml_vec_norm_f32(nx, &xnorm, x);
  9812. ggml_vec_norm_f32(nx, &gnorm, g);
  9813. if (xnorm < 1.0f) {
  9814. xnorm = 1.0f;
  9815. }
  9816. // already optimized
  9817. if (gnorm/xnorm <= params.lbfgs.eps) {
  9818. return GGML_OPT_OK;
  9819. }
  9820. // initial step
  9821. ggml_vec_norm_inv_f32(nx, &step, d);
  9822. int j = 0;
  9823. int k = 1;
  9824. int ls = 0;
  9825. int end = 0;
  9826. int bound = 0;
  9827. int n_no_improvement = 0;
  9828. float ys = 0.0f;
  9829. float yy = 0.0f;
  9830. float beta = 0.0f;
  9831. while (true) {
  9832. // store the current position and gradient vectors
  9833. ggml_vec_cpy_f32(nx, xp, x);
  9834. ggml_vec_cpy_f32(nx, gp, g);
  9835. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9836. if (ls < 0) {
  9837. // linesearch failed - go back to the previous point and return
  9838. ggml_vec_cpy_f32(nx, x, xp);
  9839. ggml_vec_cpy_f32(nx, g, gp);
  9840. return ls;
  9841. }
  9842. ggml_vec_norm_f32(nx, &xnorm, x);
  9843. ggml_vec_norm_f32(nx, &gnorm, g);
  9844. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9845. if (xnorm < 1.0f) {
  9846. xnorm = 1.0f;
  9847. }
  9848. if (gnorm/xnorm <= params.lbfgs.eps) {
  9849. // converged
  9850. return GGML_OPT_OK;
  9851. }
  9852. // delta-based convergence test
  9853. if (pf != NULL) {
  9854. // need at least params.past iterations to start checking for convergence
  9855. if (params.past <= k) {
  9856. const float rate = (pf[k%params.past] - fx)/fx;
  9857. if (fabsf(rate) < params.delta) {
  9858. return GGML_OPT_OK;
  9859. }
  9860. }
  9861. pf[k%params.past] = fx;
  9862. }
  9863. // check for improvement
  9864. if (params.max_no_improvement > 0) {
  9865. if (fx < fx_best) {
  9866. fx_best = fx;
  9867. n_no_improvement = 0;
  9868. } else {
  9869. n_no_improvement++;
  9870. if (n_no_improvement >= params.max_no_improvement) {
  9871. return GGML_OPT_OK;
  9872. }
  9873. }
  9874. }
  9875. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9876. // reached the maximum number of iterations
  9877. return GGML_OPT_DID_NOT_CONVERGE;
  9878. }
  9879. // update vectors s and y:
  9880. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9881. // y_{k+1} = g_{k+1} - g_{k}.
  9882. //
  9883. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9884. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9885. // compute scalars ys and yy:
  9886. // ys = y^t \cdot s -> 1 / \rho.
  9887. // yy = y^t \cdot y.
  9888. //
  9889. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9890. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9891. lm[end].ys = ys;
  9892. // find new search direction
  9893. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9894. bound = (m <= k) ? m : k;
  9895. k++;
  9896. end = (end + 1)%m;
  9897. // initialize search direction with -g
  9898. ggml_vec_neg_f32(nx, d, g);
  9899. j = end;
  9900. for (int i = 0; i < bound; ++i) {
  9901. j = (j + m - 1) % m;
  9902. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9903. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9904. lm[j].alpha /= lm[j].ys;
  9905. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9906. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9907. }
  9908. ggml_vec_scale_f32(nx, d, ys/yy);
  9909. for (int i = 0; i < bound; ++i) {
  9910. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9911. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9912. beta /= lm[j].ys;
  9913. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9914. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9915. j = (j + 1)%m;
  9916. }
  9917. step = 1.0;
  9918. }
  9919. return GGML_OPT_DID_NOT_CONVERGE;
  9920. }
  9921. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9922. struct ggml_opt_params result;
  9923. switch (type) {
  9924. case GGML_OPT_ADAM:
  9925. {
  9926. result = (struct ggml_opt_params) {
  9927. .type = GGML_OPT_ADAM,
  9928. .n_threads = 1,
  9929. .past = 0,
  9930. .delta = 1e-5f,
  9931. .max_no_improvement = 100,
  9932. .print_forward_graph = true,
  9933. .print_backward_graph = true,
  9934. .adam = {
  9935. .n_iter = 10000,
  9936. .alpha = 0.001f,
  9937. .beta1 = 0.9f,
  9938. .beta2 = 0.999f,
  9939. .eps = 1e-8f,
  9940. .eps_f = 1e-5f,
  9941. .eps_g = 1e-3f,
  9942. },
  9943. };
  9944. } break;
  9945. case GGML_OPT_LBFGS:
  9946. {
  9947. result = (struct ggml_opt_params) {
  9948. .type = GGML_OPT_LBFGS,
  9949. .n_threads = 1,
  9950. .past = 0,
  9951. .delta = 1e-5f,
  9952. .max_no_improvement = 0,
  9953. .print_forward_graph = true,
  9954. .print_backward_graph = true,
  9955. .lbfgs = {
  9956. .m = 6,
  9957. .n_iter = 100,
  9958. .max_linesearch = 20,
  9959. .eps = 1e-5f,
  9960. .ftol = 1e-4f,
  9961. .wolfe = 0.9f,
  9962. .min_step = 1e-20f,
  9963. .max_step = 1e+20f,
  9964. .linesearch = GGML_LINESEARCH_DEFAULT,
  9965. },
  9966. };
  9967. } break;
  9968. }
  9969. return result;
  9970. }
  9971. enum ggml_opt_result ggml_opt(
  9972. struct ggml_context * ctx,
  9973. struct ggml_opt_params params,
  9974. struct ggml_tensor * f) {
  9975. bool free_ctx = false;
  9976. if (ctx == NULL) {
  9977. struct ggml_init_params params_ctx = {
  9978. .mem_size = 16*1024*1024,
  9979. .mem_buffer = NULL,
  9980. .no_alloc = false,
  9981. };
  9982. ctx = ggml_init(params_ctx);
  9983. if (ctx == NULL) {
  9984. return GGML_OPT_NO_CONTEXT;
  9985. }
  9986. free_ctx = true;
  9987. }
  9988. enum ggml_opt_result result = GGML_OPT_OK;
  9989. // build forward + backward compute graphs
  9990. struct ggml_cgraph gf = ggml_build_forward (f);
  9991. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9992. switch (params.type) {
  9993. case GGML_OPT_ADAM:
  9994. {
  9995. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9996. } break;
  9997. case GGML_OPT_LBFGS:
  9998. {
  9999. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10000. } break;
  10001. }
  10002. if (params.print_forward_graph) {
  10003. ggml_graph_print (&gf);
  10004. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10005. }
  10006. if (params.print_backward_graph) {
  10007. ggml_graph_print (&gb);
  10008. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10009. }
  10010. if (free_ctx) {
  10011. ggml_free(ctx);
  10012. }
  10013. return result;
  10014. }
  10015. ////////////////////////////////////////////////////////////////////////////////
  10016. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10017. assert(k % QK4_0 == 0);
  10018. const int nb = k / QK4_0;
  10019. for (int j = 0; j < n; j += k) {
  10020. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10021. quantize_row_q4_0_reference(src + j, y, k);
  10022. for (int i = 0; i < nb; i++) {
  10023. for (int l = 0; l < QK4_0; l += 2) {
  10024. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  10025. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10026. hist[vi0]++;
  10027. hist[vi1]++;
  10028. }
  10029. }
  10030. }
  10031. return (n/QK4_0*sizeof(block_q4_0));
  10032. }
  10033. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10034. assert(k % QK4_1 == 0);
  10035. const int nb = k / QK4_1;
  10036. for (int j = 0; j < n; j += k) {
  10037. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10038. quantize_row_q4_1_reference(src + j, y, k);
  10039. for (int i = 0; i < nb; i++) {
  10040. for (int l = 0; l < QK4_1; l += 2) {
  10041. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  10042. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10043. hist[vi0]++;
  10044. hist[vi1]++;
  10045. }
  10046. }
  10047. }
  10048. return (n/QK4_1*sizeof(block_q4_1));
  10049. }
  10050. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10051. assert(k % QK4_2 == 0);
  10052. const int nb = k / QK4_2;
  10053. for (int j = 0; j < n; j += k) {
  10054. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10055. quantize_row_q4_2_reference(src + j, y, k);
  10056. for (int i = 0; i < nb; i++) {
  10057. for (int l = 0; l < QK4_2; l += 2) {
  10058. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  10059. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10060. hist[vi0]++;
  10061. hist[vi1]++;
  10062. }
  10063. }
  10064. }
  10065. return (n/QK4_2*sizeof(block_q4_2));
  10066. }
  10067. ////////////////////////////////////////////////////////////////////////////////
  10068. int ggml_cpu_has_avx(void) {
  10069. #if defined(__AVX__)
  10070. return 1;
  10071. #else
  10072. return 0;
  10073. #endif
  10074. }
  10075. int ggml_cpu_has_avx2(void) {
  10076. #if defined(__AVX2__)
  10077. return 1;
  10078. #else
  10079. return 0;
  10080. #endif
  10081. }
  10082. int ggml_cpu_has_avx512(void) {
  10083. #if defined(__AVX512F__)
  10084. return 1;
  10085. #else
  10086. return 0;
  10087. #endif
  10088. }
  10089. int ggml_cpu_has_avx512_vbmi(void) {
  10090. #if defined(__AVX512VBMI__)
  10091. return 1;
  10092. #else
  10093. return 0;
  10094. #endif
  10095. }
  10096. int ggml_cpu_has_avx512_vnni(void) {
  10097. #if defined(__AVX512VNNI__)
  10098. return 1;
  10099. #else
  10100. return 0;
  10101. #endif
  10102. }
  10103. int ggml_cpu_has_fma(void) {
  10104. #if defined(__FMA__)
  10105. return 1;
  10106. #else
  10107. return 0;
  10108. #endif
  10109. }
  10110. int ggml_cpu_has_neon(void) {
  10111. #if defined(__ARM_NEON)
  10112. return 1;
  10113. #else
  10114. return 0;
  10115. #endif
  10116. }
  10117. int ggml_cpu_has_arm_fma(void) {
  10118. #if defined(__ARM_FEATURE_FMA)
  10119. return 1;
  10120. #else
  10121. return 0;
  10122. #endif
  10123. }
  10124. int ggml_cpu_has_f16c(void) {
  10125. #if defined(__F16C__)
  10126. return 1;
  10127. #else
  10128. return 0;
  10129. #endif
  10130. }
  10131. int ggml_cpu_has_fp16_va(void) {
  10132. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10133. return 1;
  10134. #else
  10135. return 0;
  10136. #endif
  10137. }
  10138. int ggml_cpu_has_wasm_simd(void) {
  10139. #if defined(__wasm_simd128__)
  10140. return 1;
  10141. #else
  10142. return 0;
  10143. #endif
  10144. }
  10145. int ggml_cpu_has_blas(void) {
  10146. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10147. return 1;
  10148. #else
  10149. return 0;
  10150. #endif
  10151. }
  10152. int ggml_cpu_has_cublas(void) {
  10153. #if defined(GGML_USE_CUBLAS)
  10154. return 1;
  10155. #else
  10156. return 0;
  10157. #endif
  10158. }
  10159. int ggml_cpu_has_sse3(void) {
  10160. #if defined(__SSE3__)
  10161. return 1;
  10162. #else
  10163. return 0;
  10164. #endif
  10165. }
  10166. int ggml_cpu_has_vsx(void) {
  10167. #if defined(__POWER9_VECTOR__)
  10168. return 1;
  10169. #else
  10170. return 0;
  10171. #endif
  10172. }
  10173. ////////////////////////////////////////////////////////////////////////////////