| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454 |
- // NOTE: This is modified from clip.cpp only for LLaVA,
- // so there might be still unnecessary artifacts hanging around
- // I'll gradually clean and extend it
- #include "clip.h"
- #include "ggml.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #ifdef GGML_USE_CUBLAS
- #include "ggml-cuda.h"
- #endif
- #ifdef GGML_USE_METAL
- #include "ggml-metal.h"
- #endif
- #define STB_IMAGE_IMPLEMENTATION
- #include "stb_image.h"
- #include <cassert>
- #include <cmath>
- #include <cstdlib>
- #include <cstring>
- #include <fstream>
- #include <iostream>
- #include <map>
- #include <regex>
- #include <stdexcept>
- #include <vector>
- #include <sstream>
- #include <cinttypes>
- static std::string format(const char * fmt, ...) {
- va_list ap;
- va_list ap2;
- va_start(ap, fmt);
- va_copy(ap2, ap);
- int size = vsnprintf(NULL, 0, fmt, ap);
- GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
- std::vector<char> buf(size + 1);
- int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
- GGML_ASSERT(size2 == size);
- va_end(ap2);
- va_end(ap);
- return std::string(buf.data(), buf.size());
- }
- //
- // key constants
- //
- #define KEY_FTYPE "general.file_type"
- #define KEY_NAME "general.name"
- #define KEY_DESCRIPTION "general.description"
- #define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
- #define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
- #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
- #define KEY_USE_GELU "clip.use_gelu"
- #define KEY_N_EMBD "clip.%s.embedding_length"
- #define KEY_N_FF "clip.%s.feed_forward_length"
- #define KEY_N_BLOCK "clip.%s.block_count"
- #define KEY_N_HEAD "clip.%s.attention.head_count"
- #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
- #define KEY_PROJ_DIM "clip.%s.projection_dim"
- #define KEY_TOKENS "tokenizer.ggml.tokens"
- #define KEY_N_POSITIONS "clip.text.context_length"
- #define KEY_IMAGE_SIZE "clip.vision.image_size"
- #define KEY_PATCH_SIZE "clip.vision.patch_size"
- #define KEY_IMAGE_MEAN "clip.vision.image_mean"
- #define KEY_IMAGE_STD "clip.vision.image_std"
- #define KEY_PROJ_TYPE "clip.projector_type"
- //
- // tensor name constants
- //
- #define TN_TOKEN_EMBD "%s.token_embd.weight"
- #define TN_POS_EMBD "%s.position_embd.weight"
- #define TN_CLASS_EMBD "v.class_embd"
- #define TN_PATCH_EMBD "v.patch_embd.weight"
- #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
- #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
- #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
- #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
- #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
- #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
- #define TN_LN_1 "%s.blk.%d.ln1.%s"
- #define TN_LN_2 "%s.blk.%d.ln2.%s"
- #define TN_LN_PRE "%s.pre_ln.%s"
- #define TN_LN_POST "%s.post_ln.%s"
- #define TN_TEXT_PROJ "text_projection.weight"
- #define TN_VIS_PROJ "visual_projection.weight"
- #define TN_LLAVA_PROJ "mm.%d.%s"
- #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
- #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
- enum projector_type {
- PROJECTOR_TYPE_MLP,
- PROJECTOR_TYPE_LDP,
- PROJECTOR_TYPE_UNKNOWN,
- };
- static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
- { PROJECTOR_TYPE_MLP, "mlp" },
- { PROJECTOR_TYPE_LDP, "ldp" },
- };
- //
- // utilities to get data from a gguf file
- //
- static int get_key_idx(const gguf_context * ctx, const char * key) {
- int i = gguf_find_key(ctx, key);
- if (i == -1) {
- fprintf(stderr, "key %s not found in file\n", key);
- throw std::runtime_error(format("Missing required key: %s", key));
- }
- return i;
- }
- static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
- const int i = get_key_idx(ctx, key.c_str());
- return gguf_get_val_u32(ctx, i);
- }
- static float get_f32(const gguf_context * ctx, const std::string & key) {
- const int i = get_key_idx(ctx, key.c_str());
- return gguf_get_val_f32(ctx, i);
- }
- static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
- if (!cur) {
- throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
- }
- return cur;
- }
- static std::string get_ftype(int ftype) {
- return ggml_type_name(static_cast<ggml_type>(ftype));
- }
- static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
- switch (type) {
- case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
- case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
- case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
- case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
- case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
- case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
- case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
- case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
- case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
- case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
- case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
- default: return format("unknown type %d", type);
- }
- }
- static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
- std::string result;
- for (size_t pos = 0; ; pos += search.length()) {
- auto new_pos = s.find(search, pos);
- if (new_pos == std::string::npos) {
- result += s.substr(pos, s.size() - pos);
- break;
- }
- result += s.substr(pos, new_pos - pos) + replace;
- pos = new_pos;
- }
- s = std::move(result);
- }
- static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
- const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
- switch (type) {
- case GGUF_TYPE_STRING:
- return gguf_get_val_str(ctx_gguf, i);
- case GGUF_TYPE_ARRAY:
- {
- const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
- int arr_n = gguf_get_arr_n(ctx_gguf, i);
- const void * data = gguf_get_arr_data(ctx_gguf, i);
- std::stringstream ss;
- ss << "[";
- for (int j = 0; j < arr_n; j++) {
- if (arr_type == GGUF_TYPE_STRING) {
- std::string val = gguf_get_arr_str(ctx_gguf, i, j);
- // escape quotes
- replace_all(val, "\\", "\\\\");
- replace_all(val, "\"", "\\\"");
- ss << '"' << val << '"';
- } else if (arr_type == GGUF_TYPE_ARRAY) {
- ss << "???";
- } else {
- ss << gguf_data_to_str(arr_type, data, j);
- }
- if (j < arr_n - 1) {
- ss << ", ";
- }
- }
- ss << "]";
- return ss.str();
- }
- default:
- return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
- }
- }
- static void print_tensor_info(const ggml_tensor* tensor, const char* prefix = "") {
- size_t tensor_size = ggml_nbytes(tensor);
- printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
- prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
- tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
- }
- static projector_type clip_projector_type_from_string(const std::string & name) {
- for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
- if (kv.second == name) {
- return kv.first;
- }
- }
- return PROJECTOR_TYPE_UNKNOWN;
- }
- //
- // image data
- //
- // RGB uint8 image
- struct clip_image_u8 {
- int nx;
- int ny;
- std::vector<uint8_t> buf;
- };
- // RGB float32 image (NHWC)
- // Memory layout: RGBRGBRGB...
- struct clip_image_f32 {
- int nx;
- int ny;
- std::vector<float> buf;
- };
- //
- // clip layers
- //
- struct clip_layer {
- // attention
- struct ggml_tensor * k_w;
- struct ggml_tensor * k_b;
- struct ggml_tensor * q_w;
- struct ggml_tensor * q_b;
- struct ggml_tensor * v_w;
- struct ggml_tensor * v_b;
- struct ggml_tensor * o_w;
- struct ggml_tensor * o_b;
- // layernorm 1
- struct ggml_tensor * ln_1_w;
- struct ggml_tensor * ln_1_b;
- // ff
- struct ggml_tensor * ff_i_w;
- struct ggml_tensor * ff_i_b;
- struct ggml_tensor * ff_o_w;
- struct ggml_tensor * ff_o_b;
- // layernorm 2
- struct ggml_tensor * ln_2_w;
- struct ggml_tensor * ln_2_b;
- };
- struct clip_vision_model {
- struct clip_vision_hparams hparams;
- // embeddings
- struct ggml_tensor * class_embedding;
- struct ggml_tensor * patch_embeddings;
- struct ggml_tensor * position_embeddings;
- struct ggml_tensor * pre_ln_w;
- struct ggml_tensor * pre_ln_b;
- std::vector<clip_layer> layers;
- struct ggml_tensor * post_ln_w;
- struct ggml_tensor * post_ln_b;
- struct ggml_tensor * projection;
- // LLaVA projection
- struct ggml_tensor * mm_0_w;
- struct ggml_tensor * mm_0_b;
- struct ggml_tensor * mm_2_w;
- struct ggml_tensor * mm_2_b;
- // MobileVLM projection
- struct ggml_tensor * mm_model_mlp_1_w;
- struct ggml_tensor * mm_model_mlp_1_b;
- struct ggml_tensor * mm_model_mlp_3_w;
- struct ggml_tensor * mm_model_mlp_3_b;
- struct ggml_tensor * mm_model_block_1_block_0_0_w;
- struct ggml_tensor * mm_model_block_1_block_0_1_w;
- struct ggml_tensor * mm_model_block_1_block_0_1_b;
- struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
- struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
- struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
- struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
- struct ggml_tensor * mm_model_block_1_block_2_0_w;
- struct ggml_tensor * mm_model_block_1_block_2_1_w;
- struct ggml_tensor * mm_model_block_1_block_2_1_b;
- struct ggml_tensor * mm_model_block_2_block_0_0_w;
- struct ggml_tensor * mm_model_block_2_block_0_1_w;
- struct ggml_tensor * mm_model_block_2_block_0_1_b;
- struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
- struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
- struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
- struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
- struct ggml_tensor * mm_model_block_2_block_2_0_w;
- struct ggml_tensor * mm_model_block_2_block_2_1_w;
- struct ggml_tensor * mm_model_block_2_block_2_1_b;
- };
- struct clip_ctx {
- bool has_text_encoder = false;
- bool has_vision_encoder = false;
- bool has_llava_projector = false;
- struct clip_vision_model vision_model;
- projector_type proj_type = PROJECTOR_TYPE_MLP;
- float image_mean[3];
- float image_std[3];
- bool use_gelu = false;
- int32_t ftype = 1;
- struct gguf_context * ctx_gguf;
- struct ggml_context * ctx_data;
- std::vector<uint8_t> buf_compute_meta;
- // memory buffers to evaluate the model
- ggml_backend_buffer_t params_buffer = NULL;
- ggml_backend_buffer_t compute_buffer = NULL;
- ggml_backend_t backend = NULL;
- ggml_allocr * compute_alloc = NULL;
- };
- static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
- if (!ctx->has_vision_encoder) {
- printf("This gguf file seems to have no vision encoder\n");
- return nullptr;
- }
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- const int image_size = hparams.image_size;
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
- const int num_positions = num_patches + 1;
- const int hidden_size = hparams.hidden_size;
- const int n_head = hparams.n_head;
- const int d_head = hidden_size / n_head;
- const int n_layer = hparams.n_layer;
- //const int n_intermediate = hparams.n_intermediate;
- //const int projection_dim = hparams.projection_dim;
- const float eps = hparams.eps;
- int batch_size = imgs->size;
- if (ctx->has_llava_projector) {
- GGML_ASSERT(batch_size == 1);
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
- ggml_allocr_alloc(ctx->compute_alloc, inp_raw);
- if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
- float * data = (float *)malloc(ggml_nbytes(inp_raw));
- for (size_t i = 0; i < imgs->size; i++) {
- const int nx = imgs->data[i].nx;
- const int ny = imgs->data[i].ny;
- GGML_ASSERT(nx == image_size && ny == image_size);
- const int n = nx * ny;
- for (int b = 0; b < batch_size; b++) {
- for (int k = 0; k < 3; k++) {
- for (int y = 0; y < ny; y++) {
- for (int x = 0; x < nx; x++) {
- data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
- }
- }
- }
- }
- }
- ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
- free(data);
- }
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
- // concat class_embeddings and patch_embeddings
- struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
- ggml_allocr_alloc(ctx->compute_alloc, embeddings);
- if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
- void* zero_mem = malloc(ggml_nbytes(embeddings));
- memset(zero_mem, 0, ggml_nbytes(embeddings));
- ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
- free(zero_mem);
- }
- embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
- embeddings = ggml_acc(ctx0, embeddings, inp,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
- struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
- ggml_allocr_alloc(ctx->compute_alloc, positions);
- if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
- int* positions_data = (int*)malloc(ggml_nbytes(positions));
- for (int i = 0; i < num_positions; i++) {
- positions_data[i] = i;
- }
- ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
- free(positions_data);
- }
- embeddings =
- ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
- // pre-layernorm
- {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
- }
- // loop over layers
- for (int il = 0; il < n_layer - 1; il++) {
- struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
- //const size_t nb_q_w = model.layers[il].q_w->nb[0];
- // layernorm1
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
- model.layers[il].ln_1_b);
- }
- // self-attention
- {
- struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
- Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * K =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * V =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_inplace(ctx0, KQ);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
- KQV = ggml_cont(ctx0, ggml_permute(ctx0, KQV, 0, 2, 1, 3));
- cur = ggml_cpy(ctx0, KQV, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size));
- }
- // attention output
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
- embeddings = cur; // embeddings = residual, cur = hidden_states
- // layernorm2
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
- if (ctx->use_gelu) {
- cur = ggml_gelu_inplace(ctx0, cur);
- } else {
- cur = ggml_gelu_quick_inplace(ctx0, cur);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
- embeddings = cur;
- }
- // llava projector
- {
- embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
- struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
- ggml_allocr_alloc(ctx->compute_alloc, patches);
- if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
- int* patches_data = (int*)malloc(ggml_nbytes(patches));
- for (int i = 0; i < num_patches; i++) {
- patches_data[i] = i + 1;
- }
- ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
- free(patches_data);
- }
- // shape [1, 576, 1024]
- // ne is whcn, ne = [1024, 576, 1, 1]
- embeddings = ggml_get_rows(ctx0, embeddings, patches);
- // print_tensor_info(embeddings, "embeddings");
- // llava projector
- if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- embeddings = ggml_gelu(ctx0, embeddings);
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
- // MobileVLM projector
- int n_patch = 24;
- struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
- mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
- mlp_1 = ggml_gelu(ctx0, mlp_1);
- struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
- mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
- // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
- // block 1
- struct ggml_tensor * block_1 = nullptr;
- {
- // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
- mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
- mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
- // stride = 1, padding = 1, bias is nullptr
- block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
- // layer norm
- // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // hardswish
- struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // residual
- block_1 = ggml_add(ctx0, mlp_3, block_1);
- }
- // block_2
- {
- // stride = 2
- block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // layer norm
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // hardswish
- struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- // not sure the parameters is right for globalAvgPooling
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
- block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
- // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
- }
- embeddings = block_1;
- }
- else {
- GGML_ASSERT(false);
- }
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- ggml_free(ctx0);
- return gf;
- }
- // read and create ggml_context containing the tensors and their data
- struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
- struct ggml_context * meta = NULL;
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &meta,
- };
- struct gguf_context * ctx = gguf_init_from_file(fname, params);
- if (!ctx) {
- throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
- }
- if (verbosity >= 1) {
- const int n_tensors = gguf_get_n_tensors(ctx);
- const int n_kv = gguf_get_n_kv(ctx);
- const int ftype = get_u32(ctx, KEY_FTYPE);
- const std::string ftype_str = get_ftype(ftype);
- const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
- const std::string description = gguf_get_val_str(ctx, idx_desc);
- const int idx_name = gguf_find_key(ctx, KEY_NAME);
- if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
- const std::string name = gguf_get_val_str(ctx, idx_name);
- printf("%s: model name: %s\n", __func__, name.c_str());
- }
- printf("%s: description: %s\n", __func__, description.c_str());
- printf("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
- printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
- printf("%s: n_tensors: %d\n", __func__, n_tensors);
- printf("%s: n_kv: %d\n", __func__, n_kv);
- printf("%s: ftype: %s\n", __func__, ftype_str.c_str());
- printf("\n");
- }
- const int n_tensors = gguf_get_n_tensors(ctx);
- // kv
- const int n_kv = gguf_get_n_kv(ctx);
- printf("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
- __func__, n_kv, n_tensors, fname);
- {
- std::map<enum ggml_type, uint32_t> n_type;
- for (int i = 0; i < n_tensors; i++) {
- enum ggml_type type = gguf_get_tensor_type(ctx, i);
- n_type[type]++;
- }
- printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
- for (int i = 0; i < n_kv; i++) {
- const char * name = gguf_get_key(ctx, i);
- const enum gguf_type type = gguf_get_kv_type(ctx, i);
- const std::string type_name =
- type == GGUF_TYPE_ARRAY
- ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
- : gguf_type_name(type);
- std::string value = gguf_kv_to_str(ctx, i);
- const size_t MAX_VALUE_LEN = 40;
- if (value.size() > MAX_VALUE_LEN) {
- value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
- }
- replace_all(value, "\n", "\\n");
- printf("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
- }
- // print type counts
- for (auto & kv : n_type) {
- if (kv.second == 0) {
- continue;
- }
- printf("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
- }
- }
- // data
- size_t buffer_size = 0;
- {
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx, i);
- const size_t offset = gguf_get_tensor_offset(ctx, i);
- enum ggml_type type = gguf_get_tensor_type(ctx, i);
- struct ggml_tensor * cur = ggml_get_tensor(meta, name);
- size_t tensor_size = ggml_nbytes(cur);
- buffer_size += tensor_size;
- if (verbosity >= 3) {
- printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
- __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
- }
- }
- }
- buffer_size += n_tensors * 128 /* CLIP PADDING */;
- clip_ctx * new_clip = new clip_ctx;
- // update projector type
- {
- int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
- if (idx != -1) {
- const std::string proj_type = gguf_get_val_str(ctx, idx);
- new_clip->proj_type = clip_projector_type_from_string(proj_type);
- }
- else {
- new_clip->proj_type = PROJECTOR_TYPE_MLP;
- }
- }
- #ifdef GGML_USE_CUBLAS
- new_clip->backend = ggml_backend_cuda_init(0);
- printf("%s: CLIP using CUDA backend\n", __func__);
- #endif
- #ifdef GGML_USE_METAL
- new_clip->backend = ggml_backend_metal_init();
- printf("%s: CLIP using Metal backend\n", __func__);
- #endif
- if (!new_clip->backend) {
- new_clip->backend = ggml_backend_cpu_init();
- printf("%s: CLIP using CPU backend\n", __func__);
- }
- // model size and capabilities
- {
- int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
- new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
- idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
- new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
- idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
- if (idx != -1) {
- new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
- }
- GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
- GGML_ASSERT(new_clip->has_vision_encoder);
- GGML_ASSERT(!new_clip->has_text_encoder);
- idx = get_key_idx(ctx, KEY_USE_GELU);
- new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
- if (verbosity >= 1) {
- printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
- printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
- printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
- printf("%s: model size: %.2f MB\n", __func__, buffer_size / 1024.0 / 1024.0);
- printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
- }
- }
- printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, buffer_size / (1024.0 * 1024.0), n_tensors);
- // load tensors
- {
- std::vector<uint8_t> read_buf;
- struct ggml_init_params params = {
- /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- new_clip->ctx_data = ggml_init(params);
- if (!new_clip->ctx_data) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- clip_free(new_clip);
- return nullptr;
- }
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- printf("cannot open model file for loading tensors\n");
- clip_free(new_clip);
- return nullptr;
- }
- // add tensors to context
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx, i);
- struct ggml_tensor * t = ggml_get_tensor(meta, name);
- struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
- ggml_set_name(cur, name);
- }
- // alloc memory and offload data
- new_clip->params_buffer = ggml_backend_alloc_buffer(new_clip->backend, buffer_size);
- ggml_allocr* alloc = ggml_allocr_new_from_buffer(new_clip->params_buffer);
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx, i);
- struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
- ggml_allocr_alloc(alloc, cur);
- const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
- fin.seekg(offset, std::ios::beg);
- if (!fin) {
- printf("%s: failed to seek for tensor %s\n", __func__, name);
- clip_free(new_clip);
- return nullptr;
- }
- int num_bytes = ggml_nbytes(cur);
- if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
- // for the CPU and Metal backend, we can read directly into the tensor
- fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
- } else {
- // read into a temporary buffer first, then copy to device memory
- read_buf.resize(num_bytes);
- fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
- ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
- }
- }
- ggml_allocr_free(alloc);
- fin.close();
- }
- // vision model
- if (new_clip->has_vision_encoder) {
- // load vision model
- auto & vision_model = new_clip->vision_model;
- auto & hparams = vision_model.hparams;
- hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
- hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
- hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
- hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
- hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
- hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
- hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
- hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
- int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
- int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
- for (int i = 0; i < 3; ++i) {
- new_clip->image_mean[i] = *((const float *)gguf_get_arr_data(ctx, idx_mean));
- new_clip->image_std[i] = *((const float *)gguf_get_arr_data(ctx, idx_std));
- }
- if (verbosity >= 2) {
- printf("\n%s: vision model hparams\n", __func__);
- printf("image_size %d\n", hparams.image_size);
- printf("patch_size %d\n", hparams.patch_size);
- printf("v_hidden_size %d\n", hparams.hidden_size);
- printf("v_n_intermediate %d\n", hparams.n_intermediate);
- printf("v_projection_dim %d\n", hparams.projection_dim);
- printf("v_n_head %d\n", hparams.n_head);
- printf("v_n_layer %d\n", hparams.n_layer);
- }
- vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
- vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
- vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
- vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
- vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
- // LLaVA projection
- if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
- vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
- vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
- vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
- vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
- }
- else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
- // MobileVLM projection
- vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
- vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
- vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
- vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
- vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
- vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
- vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
- vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
- vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
- vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
- vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
- vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
- vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
- vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
- vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
- vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
- vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
- vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
- vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
- vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
- vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
- vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
- vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
- vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
- }
- else {
- std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
- throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
- }
- vision_model.layers.resize(hparams.n_layer);
- for (int il = 0; il < hparams.n_layer; ++il) {
- auto & layer = vision_model.layers[il];
- layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
- layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
- layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
- layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
- layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
- layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
- layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
- layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
- layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
- layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
- layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
- layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
- layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
- layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
- layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
- layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
- }
- }
- ggml_free(meta);
- new_clip->ctx_gguf = ctx;
- // measure mem requirement and allocate
- {
- new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
- new_clip->compute_alloc = ggml_allocr_new_measure_from_backend(new_clip->backend);
- clip_image_f32_batch batch;
- batch.size = 1;
- ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
- size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(new_clip->compute_alloc, gf);
- ggml_allocr_free(new_clip->compute_alloc);
- new_clip->compute_buffer = ggml_backend_alloc_buffer(new_clip->backend, compute_memory_buffer_size);
- new_clip->compute_alloc = ggml_allocr_new_from_buffer(new_clip->compute_buffer);
- printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
- }
- return new_clip;
- }
- struct clip_image_u8 * clip_image_u8_init() {
- return new clip_image_u8();
- }
- struct clip_image_f32 * clip_image_f32_init() {
- return new clip_image_f32();
- }
- void clip_image_u8_free (struct clip_image_u8 * img) { delete img; }
- void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
- static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
- img->nx = nx;
- img->ny = ny;
- img->buf.resize(3 * nx * ny);
- memcpy(img->buf.data(), data, img->buf.size());
- }
- bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
- int nx, ny, nc;
- auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
- if (!data) {
- fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname);
- return false;
- }
- build_clip_img_from_data(data, nx, ny, img);
- stbi_image_free(data);
- return true;
- }
- bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
- int nx, ny, nc;
- auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
- if (!data) {
- fprintf(stderr, "%s: failed to decode image bytes\n", __func__);
- return false;
- }
- build_clip_img_from_data(data, nx, ny, img);
- stbi_image_free(data);
- return true;
- }
- // normalize: x = (x - mean) / std
- // TODO: implement bicubic interpolation instead of linear.
- bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32 * res, const bool pad2square) {
- if (!ctx->has_vision_encoder) {
- printf("This gguf file seems to have no vision encoder\n");
- return false;
- }
- // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
- // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
- clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
- if (pad2square && img->nx != img->ny) {
- int longer_side = std::max(img->nx, img->ny);
- temp->nx = longer_side;
- temp->ny = longer_side;
- temp->buf.resize(3 * longer_side * longer_side);
- const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA
- // fill with background color
- for (size_t i = 0; i < temp->buf.size(); i++) {
- temp->buf[i] = bc[i % 3];
- }
- // copy from the input image
- for (int y = 0; y < img->ny; y++) {
- for (int x = 0; x < img->nx; x++) {
- const int i = 3 * (y * img->nx + x);
- const int j = 3 * (y * temp->nx + x);
- temp->buf[j] = img->buf[i];
- temp->buf[j+1] = img->buf[i+1];
- temp->buf[j+2] = img->buf[i+2];
- }
- }
- } else {
- temp->nx = img->nx;
- temp->ny = img->ny;
- temp->buf.resize(img->buf.size());
- memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
- }
- const int nx = temp->nx;
- const int ny = temp->ny;
- const int nx2 = ctx->vision_model.hparams.image_size;
- const int ny2 = ctx->vision_model.hparams.image_size;
- res->nx = nx2;
- res->ny = ny2;
- res->buf.resize(3 * nx2 * ny2);
- const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
- const int nx3 = int(nx / scale + 0.5f);
- const int ny3 = int(ny / scale + 0.5f);
- const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
- const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
- for (int y = 0; y < ny3; y++) {
- for (int x = 0; x < nx3; x++) {
- for (int c = 0; c < 3; c++) {
- // linear interpolation
- const float sx = (x + 0.5f) * scale - 0.5f;
- const float sy = (y + 0.5f) * scale - 0.5f;
- const int x0 = std::max(0, (int)std::floor(sx));
- const int y0 = std::max(0, (int)std::floor(sy));
- const int x1 = std::min(x0 + 1, nx - 1);
- const int y1 = std::min(y0 + 1, ny - 1);
- const float dx = sx - x0;
- const float dy = sy - y0;
- const int j00 = 3 * (y0 * nx + x0) + c;
- const int j01 = 3 * (y0 * nx + x1) + c;
- const int j10 = 3 * (y1 * nx + x0) + c;
- const int j11 = 3 * (y1 * nx + x1) + c;
- const float v00 = temp->buf[j00];
- const float v01 = temp->buf[j01];
- const float v10 = temp->buf[j10];
- const float v11 = temp->buf[j11];
- const float v0 = v00 * (1.0f - dx) + v01 * dx;
- const float v1 = v10 * (1.0f - dx) + v11 * dx;
- const float v = v0 * (1.0f - dy) + v1 * dy;
- const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
- const int i = 3 * (y * nx3 + x) + c;
- res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
- }
- }
- }
- clip_image_u8_free(temp);
- return true;
- }
- void clip_free(clip_ctx * ctx) {
- ggml_free(ctx->ctx_data);
- gguf_free(ctx->ctx_gguf);
- delete ctx;
- }
- bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
- if (!ctx->has_vision_encoder) {
- printf("This gguf file seems to have no vision encoder\n");
- return false;
- }
- clip_image_f32_batch imgs{};
- imgs.size = 1;
- imgs.data = img;
- return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
- }
- bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
- if (!ctx->has_vision_encoder) {
- printf("This gguf file seems to have no vision encoder\n");
- return false;
- }
- int batch_size = imgs->size;
- if(ctx->has_llava_projector) {
- GGML_ASSERT(batch_size == 1); // TODO: support multiple images
- }
- // reset alloc buffer to clean the memory from previous invocations
- ggml_allocr_reset(ctx->compute_alloc);
- // build the inference graph
- ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
- ggml_allocr_alloc_graph(ctx->compute_alloc, gf);
- if (ggml_backend_is_cpu(ctx->backend)) {
- ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
- }
- #ifdef GGML_USE_METAL
- if (ggml_backend_is_metal(ctx->backend)) {
- ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
- }
- #endif
- ggml_backend_graph_compute(ctx->backend, gf);
- // the last node is the embedding tensor
- struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
- // copy the embeddings to the location passed by the user
- ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
- return true;
- }
- bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
- ggml_type type = GGML_TYPE_Q4_1;
- assert(itype < GGML_TYPE_COUNT);
- type = static_cast<ggml_type>(itype);
- auto * ctx_clip = clip_model_load(fname_inp, 2);
- const auto & ctx_src = ctx_clip->ctx_gguf;
- const auto & ctx_data = ctx_clip->ctx_data;
- auto * ctx_out = gguf_init_empty();
- gguf_set_kv(ctx_out, ctx_src);
- gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
- gguf_set_val_u32(ctx_out, "general.file_type", itype);
- auto fout = std::ofstream(fname_out, std::ios::binary);
- const int n_tensors = gguf_get_n_tensors(ctx_src);
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
- gguf_add_tensor(ctx_out, cur);
- }
- const size_t meta_size = gguf_get_meta_size(ctx_out);
- for (size_t i = 0; i < meta_size; ++i) {
- fout.put(0);
- }
- // regexes of tensor names to be quantized
- const std::vector<std::string> k_names = {
- ".*weight",
- };
- std::vector<uint8_t> read_data(512);
- std::vector<uint8_t> work(512);
- std::vector<float> conv_buf(512);
- std::vector<int64_t> hist_all(1 << 4, 0);
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- for (int i = 0; i < n_tensors; ++i) {
- const std::string name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- bool quantize = false;
- for (const auto & s : k_names) {
- if (std::regex_match(name, std::regex(s))) {
- quantize = true;
- break;
- }
- }
- // quantize only 2D tensors
- quantize &= (ggml_n_dims(cur) == 2);
- if (quantize) {
- new_type = type;
- if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
- new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
- // fprintf(stderr, "%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
- }
- const size_t n_elms = ggml_nelements(cur);
- float * f32_data;
- switch (cur->type) {
- case GGML_TYPE_F32:
- f32_data = (float *)cur->data;
- break;
- case GGML_TYPE_F16:
- if (conv_buf.size() < n_elms) {
- conv_buf.resize(n_elms);
- }
- for (size_t j = 0; j < n_elms; ++j) {
- conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
- }
- f32_data = (float *)conv_buf.data();
- break;
- default:
- printf("Please use an input file in f32 or f16\n");
- return false;
- }
- if (work.size() < n_elms * 4) {
- work.resize(n_elms * 4);
- }
- new_data = work.data();
- std::vector<int64_t> hist_cur(1 << 4, 0);
- switch (new_type) {
- case GGML_TYPE_Q4_0: {
- new_size = ggml_quantize_q4_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q4_1: {
- new_size = ggml_quantize_q4_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q5_0: {
- new_size = ggml_quantize_q5_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q5_1: {
- new_size = ggml_quantize_q5_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q8_0: {
- new_size = ggml_quantize_q8_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q2_K: {
- new_size = ggml_quantize_q2_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q3_K: {
- new_size = ggml_quantize_q3_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q4_K: {
- new_size = ggml_quantize_q4_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q5_K: {
- new_size = ggml_quantize_q5_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q6_K: {
- new_size = ggml_quantize_q6_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- default: {
- fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, new_type);
- return false;
- }
- }
- for (size_t j = 0; j < hist_cur.size(); ++j) {
- hist_all[j] += hist_cur[j];
- }
- } else {
- new_type = cur->type;
- new_data = cur->data;
- new_size = ggml_nbytes(cur);
- }
- const size_t orig_size = ggml_nbytes(cur);
- total_size_org += orig_size;
- total_size_new += new_size;
- gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
- gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
- fout.write((const char *)new_data, new_size);
- size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
- for (size_t j = 0; j < pad; ++j) {
- fout.put(0);
- }
- printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
- orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
- }
- // go back to beginning of file and write the updated metadata
- fout.seekp(0, std::ios::beg);
- std::vector<uint8_t> meta(meta_size);
- gguf_get_meta_data(ctx_out, meta.data());
- fout.write((const char *)meta.data(), meta_size);
- fout.close();
- clip_free(ctx_clip);
- gguf_free(ctx_out);
- {
- printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
- printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
- int64_t sum_all = 0;
- for (size_t i = 0; i < hist_all.size(); ++i) {
- sum_all += hist_all[i];
- }
- printf("%s: hist: ", __func__);
- for (size_t i = 0; i < hist_all.size(); ++i) {
- printf("%5.3f ", hist_all[i] / (float)sum_all);
- }
- printf("\n");
- }
- return true;
- }
- int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
- if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
- return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- return ctx->vision_model.mm_2_b->ne[0];
- }
- else {
- std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
- throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
- }
- }
- int clip_n_patches(const struct clip_ctx * ctx) {
- auto & params = ctx->vision_model.hparams;
- int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
- if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
- n_patches /= 4;
- }
- return n_patches;
- }
- size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
- return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
- }
|