convert.py 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import concurrent.futures
  5. import copy
  6. import enum
  7. import faulthandler
  8. import functools
  9. import io
  10. import itertools
  11. import json
  12. import math
  13. import mmap
  14. import pickle
  15. import re
  16. import signal
  17. import struct
  18. import sys
  19. import time
  20. import zipfile
  21. from abc import ABCMeta, abstractmethod
  22. from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
  23. from dataclasses import dataclass
  24. from pathlib import Path
  25. from typing import IO, TYPE_CHECKING, Any, Callable, Generator, Iterable, Literal, Sequence, TypeVar
  26. import numpy as np
  27. from sentencepiece import SentencePieceProcessor # type: ignore[import]
  28. import os
  29. if 'NO_LOCAL_GGUF' not in os.environ:
  30. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
  31. import gguf
  32. if TYPE_CHECKING:
  33. from typing import TypeAlias
  34. if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
  35. faulthandler.register(signal.SIGUSR1)
  36. NDArray: TypeAlias = 'np.ndarray[Any, Any]'
  37. ARCH = gguf.MODEL_ARCH.LLAMA
  38. DEFAULT_CONCURRENCY = 8
  39. #
  40. # data types
  41. #
  42. @dataclass(frozen=True)
  43. class DataType:
  44. name: str
  45. dtype: np.dtype[Any]
  46. valid_conversions: list[str]
  47. def elements_to_bytes(self, n_elements: int) -> int:
  48. return n_elements * self.dtype.itemsize
  49. @dataclass(frozen=True)
  50. class UnquantizedDataType(DataType):
  51. pass
  52. DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
  53. DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
  54. DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
  55. DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
  56. @dataclass(frozen=True)
  57. class QuantizedDataType(DataType):
  58. block_size: int
  59. quantized_dtype: np.dtype[Any]
  60. ggml_type: gguf.GGMLQuantizationType
  61. def quantize(self, arr: NDArray) -> NDArray:
  62. raise NotImplementedError(f'Quantization for {self.name} not implemented')
  63. def elements_to_bytes(self, n_elements: int) -> int:
  64. assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
  65. return self.quantized_dtype.itemsize * (n_elements // self.block_size)
  66. @dataclass(frozen=True)
  67. class Q8_0QuantizedDataType(QuantizedDataType):
  68. # Mini Q8_0 quantization in Python!
  69. def quantize(self, arr: NDArray) -> NDArray:
  70. assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
  71. assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
  72. n_blocks = arr.size // self.block_size
  73. blocks = arr.reshape((n_blocks, self.block_size))
  74. # Much faster implementation of block quantization contributed by @Cebtenzzre
  75. def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
  76. d = abs(blocks).max(axis = 1) / np.float32(127)
  77. with np.errstate(divide = 'ignore'):
  78. qs = (blocks / d[:, None]).round()
  79. qs[d == 0] = 0
  80. yield from zip(d, qs)
  81. return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
  82. DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
  83. dtype = np.dtype(np.float32), valid_conversions = [],
  84. ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
  85. quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
  86. # Quantized types skipped here because they may also map to np.float32
  87. NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
  88. for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
  89. if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
  90. raise ValueError(f'Invalid duplicate data type {dt}')
  91. NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
  92. SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
  93. 'BF16': DT_BF16,
  94. 'F16': DT_F16,
  95. 'F32': DT_F32,
  96. 'I32': DT_I32,
  97. }
  98. # TODO: match this with `llama_ftype`
  99. # TODO: rename to LLAMAFileType
  100. # TODO: move to `gguf.py`
  101. class GGMLFileType(enum.IntEnum):
  102. AllF32 = 0
  103. MostlyF16 = 1 # except 1d tensors
  104. MostlyQ8_0 = 7 # except 1d tensors
  105. def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
  106. dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
  107. if dt is None:
  108. raise ValueError(self)
  109. # 1D tensors are always F32.
  110. return dt if len(tensor.shape) > 1 else DT_F32
  111. GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
  112. GGMLFileType.AllF32 : DT_F32,
  113. GGMLFileType.MostlyF16 : DT_F16,
  114. GGMLFileType.MostlyQ8_0: DT_Q8_0,
  115. }
  116. #
  117. # hparams loading
  118. #
  119. @dataclass
  120. class Params:
  121. n_vocab: int
  122. n_embd: int
  123. n_layer: int
  124. n_ctx: int
  125. n_ff: int
  126. n_head: int
  127. n_head_kv: int
  128. f_norm_eps: float
  129. rope_scaling_type: gguf.RopeScalingType | None = None
  130. f_rope_freq_base: float | None = None
  131. f_rope_scale: float | None = None
  132. n_orig_ctx: int | None = None
  133. rope_finetuned: bool | None = None
  134. ftype: GGMLFileType | None = None
  135. # path to the directory containing the model files
  136. path_model: Path | None = None
  137. @staticmethod
  138. def guessed(model: LazyModel) -> Params:
  139. # try transformer naming first
  140. n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
  141. # try transformer naming first
  142. if "model.layers.0.self_attn.q_proj.weight" in model:
  143. n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
  144. elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
  145. n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
  146. else:
  147. n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
  148. if n_layer < 1:
  149. raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
  150. "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
  151. n_head = n_embd // 128 # guessed
  152. n_mult = 256 # guessed
  153. # TODO: verify this
  154. n_ff = int(2 * (4 * n_embd) / 3)
  155. n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
  156. return Params(
  157. n_vocab = n_vocab,
  158. n_embd = n_embd,
  159. n_layer = n_layer,
  160. n_ctx = -1,
  161. n_ff = n_ff,
  162. n_head = n_head,
  163. n_head_kv = n_head,
  164. f_norm_eps = 1e-5,
  165. )
  166. @staticmethod
  167. def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
  168. config = json.load(open(config_path))
  169. rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
  170. rope_scaling = config.get("rope_scaling")
  171. if rope_scaling is not None and (typ := rope_scaling.get("type")):
  172. rope_factor = rope_scaling.get("factor")
  173. f_rope_scale = rope_factor
  174. if typ == "linear":
  175. rope_scaling_type = gguf.RopeScalingType.LINEAR
  176. elif typ == "yarn":
  177. rope_scaling_type = gguf.RopeScalingType.YARN
  178. n_orig_ctx = rope_scaling['original_max_position_embeddings']
  179. rope_finetuned = rope_scaling['finetuned']
  180. else:
  181. raise NotImplementedError(f'Unknown rope scaling type: {typ}')
  182. if "max_sequence_length" in config:
  183. n_ctx = config["max_sequence_length"]
  184. elif "max_position_embeddings" in config:
  185. n_ctx = config["max_position_embeddings"]
  186. else:
  187. raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
  188. "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
  189. return Params(
  190. n_vocab = config["vocab_size"],
  191. n_embd = config["hidden_size"],
  192. n_layer = config["num_hidden_layers"],
  193. n_ctx = n_ctx,
  194. n_ff = config["intermediate_size"],
  195. n_head = (n_head := config["num_attention_heads"]),
  196. n_head_kv = config.get("num_key_value_heads", n_head),
  197. f_norm_eps = config["rms_norm_eps"],
  198. f_rope_freq_base = config.get("rope_theta"),
  199. rope_scaling_type = rope_scaling_type,
  200. f_rope_scale = f_rope_scale,
  201. n_orig_ctx = n_orig_ctx,
  202. rope_finetuned = rope_finetuned,
  203. )
  204. # LLaMA v2 70B params.json
  205. # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
  206. @staticmethod
  207. def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
  208. config = json.load(open(config_path))
  209. # hack to determine LLaMA v1 vs v2 vs CodeLlama
  210. if config.get("rope_theta") == 1000000:
  211. # CodeLlama
  212. n_ctx = 16384
  213. elif config["norm_eps"] == 1e-05:
  214. # LLaMA v2
  215. n_ctx = 4096
  216. else:
  217. # LLaMA v1
  218. n_ctx = 2048
  219. return Params(
  220. n_vocab = config.get("vocab_size", model["tok_embeddings.weight"].shape[0]),
  221. n_embd = config["dim"],
  222. n_layer = config["n_layers"],
  223. n_ctx = n_ctx,
  224. n_ff = model["layers.0.feed_forward.w1.weight"].shape[0],
  225. n_head = (n_head := config["n_heads"]),
  226. n_head_kv = config.get("n_kv_heads", n_head),
  227. f_norm_eps = config["norm_eps"],
  228. f_rope_freq_base = config.get("rope_theta"),
  229. )
  230. @staticmethod
  231. def load(model_plus: ModelPlus) -> Params:
  232. hf_config_path = model_plus.paths[0].parent / "config.json"
  233. orig_config_path = model_plus.paths[0].parent / "params.json"
  234. if hf_config_path.exists():
  235. params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
  236. elif orig_config_path.exists():
  237. params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
  238. elif model_plus.format != 'none':
  239. params = Params.guessed(model_plus.model)
  240. else:
  241. raise ValueError('Cannot guess params when model format is none')
  242. params.path_model = model_plus.paths[0].parent
  243. return params
  244. #
  245. # vocab
  246. #
  247. class BpeVocab:
  248. def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
  249. self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
  250. added_tokens: dict[str, int]
  251. if fname_added_tokens is not None:
  252. # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
  253. added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
  254. else:
  255. # Fall back to trying to find the added tokens in tokenizer.json
  256. tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
  257. if not tokenizer_json_file.is_file():
  258. added_tokens = {}
  259. else:
  260. tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
  261. added_tokens = dict(
  262. (item['content'], item['id'])
  263. for item in tokenizer_json.get('added_tokens', [])
  264. # Added tokens here can be duplicates of the main vocabulary.
  265. if item['content'] not in self.bpe_tokenizer )
  266. vocab_size: int = len(self.bpe_tokenizer)
  267. expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
  268. actual_ids = sorted(added_tokens.values())
  269. if expected_ids != actual_ids:
  270. expected_end_id = vocab_size + len(actual_ids) - 1
  271. raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}")
  272. items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
  273. self.added_tokens_list = [text for (text, idx) in items]
  274. self.vocab_size_base: int = vocab_size
  275. self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
  276. self.fname_tokenizer = fname_tokenizer
  277. self.fname_added_tokens = fname_added_tokens
  278. def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  279. tokenizer = self.bpe_tokenizer
  280. from transformers.models.gpt2 import tokenization_gpt2 # type: ignore[import]
  281. reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
  282. for i, _ in enumerate(tokenizer):
  283. yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
  284. def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  285. for text in self.added_tokens_list:
  286. score = -1000.0
  287. yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
  288. def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  289. yield from self.bpe_tokens()
  290. yield from self.added_tokens()
  291. def __repr__(self) -> str:
  292. return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
  293. class SentencePieceVocab:
  294. def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
  295. self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
  296. added_tokens: dict[str, int]
  297. if fname_added_tokens is not None:
  298. added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
  299. else:
  300. added_tokens = {}
  301. vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
  302. new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
  303. expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
  304. actual_new_ids = sorted(new_tokens.keys())
  305. if expected_new_ids != actual_new_ids:
  306. raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
  307. # Token pieces that were added to the base vocabulary.
  308. self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
  309. self.vocab_size_base = vocab_size
  310. self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
  311. self.fname_tokenizer = fname_tokenizer
  312. self.fname_added_tokens = fname_added_tokens
  313. def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  314. tokenizer = self.sentencepiece_tokenizer
  315. for i in range(tokenizer.vocab_size()):
  316. piece = tokenizer.id_to_piece(i)
  317. text: bytes = piece.encode("utf-8")
  318. score: float = tokenizer.get_score(i)
  319. toktype = gguf.TokenType.NORMAL
  320. if tokenizer.is_unknown(i):
  321. toktype = gguf.TokenType.UNKNOWN
  322. if tokenizer.is_control(i):
  323. toktype = gguf.TokenType.CONTROL
  324. # NOTE: I think added_tokens are user defined.
  325. # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
  326. # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
  327. if tokenizer.is_unused(i):
  328. toktype = gguf.TokenType.UNUSED
  329. if tokenizer.is_byte(i):
  330. toktype = gguf.TokenType.BYTE
  331. yield text, score, toktype
  332. def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  333. for text in self.added_tokens_list:
  334. score = -1000.0
  335. yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
  336. def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  337. yield from self.sentencepiece_tokens()
  338. yield from self.added_tokens()
  339. def __repr__(self) -> str:
  340. return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
  341. Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
  342. #
  343. # data loading
  344. # TODO: reuse (probably move to gguf.py?)
  345. #
  346. def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
  347. #print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
  348. if n_head_kv is not None and n_head != n_head_kv:
  349. n_head = n_head_kv
  350. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  351. .swapaxes(1, 2)
  352. .reshape(weights.shape))
  353. class Tensor(metaclass=ABCMeta):
  354. data_type: DataType
  355. @abstractmethod
  356. def astype(self, data_type: DataType) -> Tensor: ...
  357. @abstractmethod
  358. def permute(self, n_head: int, n_head_kv: int) -> Tensor: ...
  359. @abstractmethod
  360. def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: ...
  361. @abstractmethod
  362. def part(self, n_part: int) -> UnquantizedTensor: ...
  363. @abstractmethod
  364. def to_ggml(self) -> GGMLCompatibleTensor: ...
  365. def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
  366. assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
  367. fp32_arr = bf16_arr.astype(np.uint32) << 16
  368. return fp32_arr.view(np.float32)
  369. class UnquantizedTensor(Tensor):
  370. def __init__(self, ndarray: NDArray) -> None:
  371. assert isinstance(ndarray, np.ndarray)
  372. self.ndarray = ndarray
  373. self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
  374. def astype(self, data_type: DataType) -> Tensor:
  375. dtype = data_type.dtype
  376. if self.data_type == DT_BF16:
  377. self.ndarray = bf16_to_fp32(self.ndarray)
  378. return UnquantizedTensor(self.ndarray.astype(dtype))
  379. def to_ggml(self) -> UnquantizedTensor:
  380. return self
  381. def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
  382. r = self.ndarray.shape[0] // 3
  383. return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
  384. def part(self, n_part: int) -> UnquantizedTensor:
  385. r = self.ndarray.shape[0] // 3
  386. return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
  387. def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
  388. return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
  389. def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
  390. tensor = lazy_tensor.load()
  391. assert isinstance(tensor, UnquantizedTensor)
  392. # double-check:
  393. actual_shape = list(tensor.ndarray.shape)
  394. assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
  395. if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
  396. if convert:
  397. tensor.ndarray = tensor.ndarray.astype(expected_dtype)
  398. else:
  399. raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
  400. return tensor.ndarray
  401. GGMLCompatibleTensor = UnquantizedTensor
  402. @dataclass
  403. class LazyTensor:
  404. _load: Callable[[], Tensor]
  405. shape: list[int]
  406. data_type: DataType
  407. description: str
  408. def load(self) -> Tensor:
  409. ret = self._load()
  410. # Should be okay if it maps to the same numpy type?
  411. assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
  412. (self.data_type, ret.data_type, self.description)
  413. return ret
  414. def astype(self, data_type: DataType) -> LazyTensor:
  415. self.validate_conversion_to(data_type)
  416. def load() -> Tensor:
  417. return self.load().astype(data_type)
  418. return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
  419. def validate_conversion_to(self, data_type: DataType) -> None:
  420. if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
  421. raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
  422. LazyModel: TypeAlias = 'dict[str, LazyTensor]'
  423. @dataclass
  424. class ModelPlus:
  425. model: LazyModel
  426. paths: list[Path] # Where this was read from.
  427. format: Literal['ggml', 'torch', 'safetensors', 'none']
  428. vocab: Vocab | None # For GGML models (which have vocab built in), the vocab.
  429. def merge_sharded(models: list[LazyModel]) -> LazyModel:
  430. # Original LLaMA models have each file contain one part of each tensor.
  431. # Use a dict instead of a set to preserve order.
  432. names = {name: None for model in models for name in model}
  433. def convert(name: str) -> LazyTensor:
  434. lazy_tensors: list[LazyTensor] = [model[name] for model in models]
  435. if len(lazy_tensors) == 1:
  436. # only one file; don't go through this procedure since there might
  437. # be quantized tensors
  438. return lazy_tensors[0]
  439. if len(lazy_tensors[0].shape) == 1:
  440. # the tensor is just duplicated in every file
  441. return lazy_tensors[0]
  442. if name.startswith('tok_embeddings.') or \
  443. name.endswith('.attention.wo.weight') or \
  444. name.endswith('.feed_forward.w2.weight'):
  445. # split by columns
  446. axis = 1
  447. else:
  448. # split by rows
  449. axis = 0
  450. concatenated_shape = list(lazy_tensors[0].shape)
  451. concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
  452. def load() -> UnquantizedTensor:
  453. ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
  454. concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
  455. return UnquantizedTensor(concatenated)
  456. description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
  457. return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
  458. return {name: convert(name) for name in names}
  459. def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
  460. formats = set(mp.format for mp in models_plus)
  461. assert len(formats) == 1, "different formats?"
  462. format = formats.pop()
  463. paths = [path for mp in models_plus for path in mp.paths]
  464. # Use the first non-None vocab, if any.
  465. try:
  466. vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
  467. except StopIteration:
  468. vocab = None
  469. if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
  470. # Transformers models put different tensors in different files, but
  471. # don't split indivdual tensors between files.
  472. model: LazyModel = {}
  473. for mp in models_plus:
  474. model.update(mp.model)
  475. else:
  476. model = merge_sharded([mp.model for mp in models_plus])
  477. return ModelPlus(model, paths, format, vocab)
  478. def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
  479. def load() -> Tensor:
  480. return lazy_tensor.load().permute(n_head, n_head_kv)
  481. return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
  482. def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
  483. def load() -> Tensor:
  484. return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
  485. s = lazy_tensor.shape.copy()
  486. s[0] = s[0] // 3
  487. return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
  488. def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
  489. def load() -> Tensor:
  490. return lazy_tensor.load().part(n_part)
  491. s = lazy_tensor.shape.copy()
  492. s[0] = s[0] // 3
  493. return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
  494. # Functionality that simulates `torch.load` but where individual tensors are
  495. # only loaded into memory on demand, not all at once.
  496. # PyTorch can't do this natively as of time of writing:
  497. # - https://github.com/pytorch/pytorch/issues/64327
  498. # This allows us to de-shard without multiplying RAM usage, and also
  499. # conveniently drops the PyTorch dependency (though we still need numpy).
  500. @dataclass
  501. class LazyStorageKind:
  502. data_type: DataType
  503. @dataclass
  504. class LazyStorage:
  505. load: Callable[[int, int], NDArray]
  506. kind: LazyStorageKind
  507. description: str
  508. class LazyUnpickler(pickle.Unpickler):
  509. def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
  510. super().__init__(fp)
  511. self.data_base_path = data_base_path
  512. self.zip_file = zip_file
  513. def persistent_load(self, pid: Any) -> Any:
  514. assert pid[0] == 'storage'
  515. assert isinstance(pid[1], LazyStorageKind)
  516. data_type = pid[1].data_type
  517. filename_stem = pid[2]
  518. filename = f'{self.data_base_path}/{filename_stem}'
  519. info = self.zip_file.getinfo(filename)
  520. def load(offset: int, elm_count: int) -> NDArray:
  521. dtype = data_type.dtype
  522. fp = self.zip_file.open(info)
  523. fp.seek(offset * dtype.itemsize)
  524. size = elm_count * dtype.itemsize
  525. data = fp.read(size)
  526. assert len(data) == size
  527. return np.frombuffer(data, dtype)
  528. description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
  529. return LazyStorage(load=load, kind=pid[1], description=description)
  530. @staticmethod
  531. def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
  532. requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
  533. assert isinstance(storage, LazyStorage)
  534. def load() -> UnquantizedTensor:
  535. elm_count = stride[0] * size[0]
  536. return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
  537. description = f'pickled storage_offset={storage_offset} in {storage.description}'
  538. return LazyTensor(load, list(size), storage.kind.data_type, description)
  539. @staticmethod
  540. def rebuild_from_type_v2(func, new_type, args, state):
  541. return func(*args)
  542. CLASSES: dict[tuple[str, str], Any] = {
  543. # getattr used here as a workaround for mypy not being smart enough to detrmine
  544. # the staticmethods have a __func__ attribute.
  545. ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
  546. ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
  547. ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
  548. ('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
  549. ('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
  550. ('torch', 'IntStorage'): LazyStorageKind(DT_I32),
  551. ('torch', 'Tensor'): LazyTensor,
  552. }
  553. def find_class(self, module: str, name: str) -> Any:
  554. if not module.startswith('torch'):
  555. return super().find_class(module, name)
  556. return self.CLASSES[(module, name)]
  557. def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
  558. zf = zipfile.ZipFile(outer_fp)
  559. pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
  560. assert len(pickle_paths) == 1, pickle_paths
  561. pickle_fp = zf.open(pickle_paths[0], 'r')
  562. unpickler = LazyUnpickler(pickle_fp,
  563. data_base_path=pickle_paths[0][:-4],
  564. zip_file=zf)
  565. model = unpickler.load()
  566. as_dict = dict(model.items())
  567. return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
  568. def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
  569. header_size, = struct.unpack('<Q', fp.read(8))
  570. header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
  571. # Use mmap for the actual data to avoid race conditions with the file offset.
  572. mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
  573. byte_buf = mapped[8 + header_size:]
  574. def convert(info: dict[str, Any]) -> LazyTensor:
  575. data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
  576. numpy_dtype = data_type.dtype
  577. shape: list[int] = info['shape']
  578. begin, end = info['data_offsets']
  579. assert 0 <= begin <= end <= len(byte_buf)
  580. assert end - begin == math.prod(shape) * numpy_dtype.itemsize
  581. buf = byte_buf[begin:end]
  582. def load() -> UnquantizedTensor:
  583. return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
  584. description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
  585. return LazyTensor(load, shape, data_type, description)
  586. model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
  587. return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
  588. def must_read(fp: IO[bytes], length: int) -> bytes:
  589. ret = fp.read(length)
  590. if len(ret) < length:
  591. raise Exception("unexpectedly reached end of file")
  592. return ret
  593. @functools.lru_cache(maxsize=None)
  594. def lazy_load_file(path: Path) -> ModelPlus:
  595. fp = open(path, 'rb')
  596. first8 = fp.read(8)
  597. fp.seek(0)
  598. if first8[:2] == b'PK':
  599. # A zip file, i.e. PyTorch format
  600. return lazy_load_torch_file(fp, path)
  601. elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
  602. # Probably safetensors
  603. return lazy_load_safetensors_file(fp, path)
  604. else:
  605. raise ValueError(f"unknown format: {path}")
  606. In = TypeVar('In')
  607. Out = TypeVar('Out')
  608. def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
  609. '''Parallel map, but with backpressure. If the caller doesn't call `next`
  610. fast enough, this will stop calling `func` at some point rather than
  611. letting results pile up in memory. Specifically, there is a max of one
  612. output value buffered per thread.'''
  613. if concurrency < 2:
  614. yield from map(func, iterable)
  615. # Not reached.
  616. iterable = iter(iterable)
  617. executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
  618. if use_processpool_executor:
  619. executor_class = ProcessPoolExecutor
  620. else:
  621. executor_class = ThreadPoolExecutor
  622. with executor_class(max_workers = max_workers) as executor:
  623. futures: list[concurrent.futures.Future[Out]] = []
  624. done = False
  625. for _ in range(concurrency):
  626. try:
  627. futures.append(executor.submit(func, next(iterable)))
  628. except StopIteration:
  629. done = True
  630. break
  631. while futures:
  632. result = futures.pop(0).result()
  633. while not done and len(futures) < concurrency:
  634. try:
  635. futures.append(executor.submit(func, next(iterable)))
  636. except StopIteration:
  637. done = True
  638. break
  639. yield result
  640. def check_vocab_size(params: Params, vocab: Vocab) -> None:
  641. if params.n_vocab != vocab.vocab_size:
  642. assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
  643. if params.n_vocab == vocab.vocab_size_base:
  644. print("Ignoring added_tokens.json since model matches vocab size without it.")
  645. vocab.added_tokens_list = []
  646. vocab.vocab_size = vocab.vocab_size_base
  647. return
  648. msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
  649. if vocab.fname_added_tokens is not None:
  650. msg += f" combined with {vocab.fname_added_tokens}"
  651. msg += f" has {vocab.vocab_size})."
  652. if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None:
  653. msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
  654. raise Exception(msg)
  655. class OutputFile:
  656. def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
  657. self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
  658. def add_meta_arch(self, params: Params) -> None:
  659. name = "LLaMA"
  660. # TODO: better logic to determine model name
  661. if params.n_ctx == 4096:
  662. name = "LLaMA v2"
  663. elif params.path_model is not None:
  664. name = str(params.path_model.parent).split('/')[-1]
  665. self.gguf.add_name (name)
  666. self.gguf.add_context_length (params.n_ctx)
  667. self.gguf.add_embedding_length (params.n_embd)
  668. self.gguf.add_block_count (params.n_layer)
  669. self.gguf.add_feed_forward_length (params.n_ff)
  670. self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
  671. self.gguf.add_head_count (params.n_head)
  672. self.gguf.add_head_count_kv (params.n_head_kv)
  673. self.gguf.add_layer_norm_rms_eps (params.f_norm_eps)
  674. if params.f_rope_freq_base is not None:
  675. self.gguf.add_rope_freq_base(params.f_rope_freq_base)
  676. if params.rope_scaling_type:
  677. assert params.f_rope_scale is not None
  678. self.gguf.add_rope_scaling_type(params.rope_scaling_type)
  679. self.gguf.add_rope_scaling_factor(params.f_rope_scale)
  680. if params.n_orig_ctx is not None:
  681. self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx)
  682. if params.rope_finetuned is not None:
  683. self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
  684. if params.ftype is not None:
  685. self.gguf.add_file_type(params.ftype)
  686. def add_meta_vocab(self, vocab: Vocab) -> None:
  687. tokens = []
  688. scores = []
  689. toktypes = []
  690. # NOTE: `all_tokens` returns the base vocabulary and added tokens
  691. for text, score, toktype in vocab.all_tokens():
  692. tokens.append(text)
  693. scores.append(score)
  694. toktypes.append(toktype)
  695. if isinstance(vocab, SentencePieceVocab):
  696. self.gguf.add_tokenizer_model("llama")
  697. elif isinstance(vocab, BpeVocab):
  698. self.gguf.add_tokenizer_model("gpt2")
  699. else:
  700. raise ValueError(f'Unknown vocab type: Not BpeVocab or SentencePieceVocab')
  701. self.gguf.add_token_list(tokens)
  702. self.gguf.add_token_scores(scores)
  703. self.gguf.add_token_types(toktypes)
  704. def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
  705. svocab.add_to_gguf(self.gguf)
  706. def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
  707. n_elements = int(np.prod(tensor.shape))
  708. raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
  709. data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
  710. data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
  711. self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype = raw_dtype)
  712. def write_meta(self) -> None:
  713. self.gguf.write_header_to_file()
  714. self.gguf.write_kv_data_to_file()
  715. def write_tensor_info(self) -> None:
  716. self.gguf.write_ti_data_to_file()
  717. def close(self) -> None:
  718. self.gguf.close()
  719. @staticmethod
  720. def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
  721. check_vocab_size(params, vocab)
  722. of = OutputFile(fname_out, endianess=endianess)
  723. # meta data
  724. of.add_meta_arch(params)
  725. of.add_meta_vocab(vocab)
  726. of.add_meta_special_vocab(svocab)
  727. of.write_meta()
  728. of.close()
  729. @staticmethod
  730. def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
  731. name, lazy_tensor = item
  732. tensor = lazy_tensor.load().to_ggml()
  733. return (lazy_tensor.data_type, tensor.ndarray)
  734. @staticmethod
  735. def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
  736. dt, arr = item
  737. if not isinstance(dt, QuantizedDataType):
  738. return arr
  739. return dt.quantize(arr)
  740. @staticmethod
  741. def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess=gguf.GGUFEndian.LITTLE) -> None:
  742. check_vocab_size(params, vocab)
  743. of = OutputFile(fname_out, endianess=endianess)
  744. # meta data
  745. of.add_meta_arch(params)
  746. of.add_meta_vocab(vocab)
  747. of.add_meta_special_vocab(svocab)
  748. # tensor info
  749. for name, lazy_tensor in model.items():
  750. of.add_tensor_info(name, lazy_tensor)
  751. of.write_meta()
  752. of.write_tensor_info()
  753. # tensor data
  754. ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency)
  755. if ftype == GGMLFileType.MostlyQ8_0:
  756. ndarrays = bounded_parallel_map(OutputFile.maybe_do_quantize, ndarrays_inner, concurrency = concurrency, max_workers = concurrency, use_processpool_executor = True)
  757. else:
  758. ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
  759. start = time.time()
  760. for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
  761. elapsed = time.time() - start
  762. size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
  763. padi = len(str(len(model)))
  764. print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}")
  765. of.gguf.write_tensor_data(ndarray)
  766. of.close()
  767. def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
  768. wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
  769. if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
  770. return GGMLFileType.AllF32
  771. if output_type_str == "f16" or (output_type_str is None and wq_type in (DT_F16, DT_BF16)):
  772. return GGMLFileType.MostlyF16
  773. if output_type_str == "q8_0":
  774. return GGMLFileType.MostlyQ8_0
  775. name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
  776. raise Exception(f"Unexpected combination of types: {name_to_type}")
  777. def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
  778. return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
  779. for (name, tensor) in model.items()}
  780. def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
  781. tmap = gguf.TensorNameMap(ARCH, params.n_layer)
  782. should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
  783. tmp = model
  784. # HF models permut or pack some of the tensors, so we need to undo that
  785. for i in itertools.count():
  786. if f"model.layers.{i}.self_attn.q_proj.weight" in model:
  787. print(f"Permuting layer {i}")
  788. tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
  789. tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
  790. #tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
  791. elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
  792. print(f"Unpacking and permuting layer {i}")
  793. tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
  794. tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
  795. tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
  796. del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
  797. else:
  798. break
  799. out: LazyModel = {}
  800. for name, lazy_tensor in model.items():
  801. tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
  802. if name_new is None:
  803. raise Exception(f"Unexpected tensor name: {name}")
  804. if tensor_type in should_skip:
  805. print(f"skipping tensor {name_new}")
  806. continue
  807. print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
  808. out[name_new] = lazy_tensor
  809. return out
  810. def nth_multifile_path(path: Path, n: int) -> Path | None:
  811. '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
  812. the nth path in the model.
  813. '''
  814. # Support the following patterns:
  815. patterns: list[tuple[str, str]] = [
  816. # - x.00.pth, x.01.pth, etc.
  817. (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
  818. # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
  819. (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
  820. # x.bin, x.bin.1, etc.
  821. (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
  822. ]
  823. for regex, replacement in patterns:
  824. if re.search(regex, path.name):
  825. new_path = path.with_name(re.sub(regex, replacement, path.name))
  826. if new_path.exists():
  827. return new_path
  828. return None
  829. def find_multifile_paths(path: Path) -> list[Path]:
  830. '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
  831. the whole list of paths in the model.
  832. '''
  833. ret: list[Path] = []
  834. for i in itertools.count():
  835. nth_path = nth_multifile_path(path, i)
  836. if nth_path is None:
  837. break
  838. ret.append(nth_path)
  839. if not ret:
  840. # No matches. This should only happen if the file was named, e.g.,
  841. # foo.0, and there was no file named foo. Oh well, try to process it
  842. # as a single file.
  843. return [path]
  844. return ret
  845. def load_some_model(path: Path) -> ModelPlus:
  846. '''Load a model of any supported format.'''
  847. # Be extra-friendly and accept either a file or a directory:
  848. if path.is_dir():
  849. # Check if it's a set of safetensors files first
  850. files = list(path.glob("model-00001-of-*.safetensors"))
  851. if not files:
  852. # Try the PyTorch patterns too, with lower priority
  853. globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
  854. files = [file for glob in globs for file in path.glob(glob)]
  855. if not files:
  856. raise Exception(f"Can't find model in directory {path}")
  857. if len(files) > 1:
  858. raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
  859. path = files[0]
  860. paths = find_multifile_paths(path)
  861. models_plus: list[ModelPlus] = []
  862. for path in paths:
  863. print(f"Loading model file {path}")
  864. models_plus.append(lazy_load_file(path))
  865. model_plus = merge_multifile_models(models_plus)
  866. return model_plus
  867. def load_vocab(path: Path, vocabtype: str | None) -> Vocab:
  868. # Be extra-friendly and accept either a file or a directory. Also, if it's
  869. # a directory, it might be the model directory, and tokenizer.model might
  870. # be in the parent of that.
  871. if path.is_dir():
  872. vocab_file = "tokenizer.model"
  873. if vocabtype == 'bpe':
  874. vocab_file = "vocab.json"
  875. path2 = path / vocab_file
  876. # Use `.parent` instead of /.. to handle the symlink case better.
  877. path3 = path.parent / vocab_file
  878. if path2.exists():
  879. path = path2
  880. elif path3.exists():
  881. path = path3
  882. else:
  883. raise FileNotFoundError(
  884. f"Could not find {vocab_file} in {path} or its parent; "
  885. "if it's in another directory, pass the directory as --vocab-dir")
  886. print(f"Loading vocab file '{path}', type '{vocabtype}'")
  887. added_tokens_path = path.parent / "added_tokens.json"
  888. if vocabtype == "bpe":
  889. return BpeVocab(path, added_tokens_path if added_tokens_path.exists() else None)
  890. elif vocabtype == "spm":
  891. return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
  892. else:
  893. raise ValueError(f"Unsupported vocabulary type {vocabtype}")
  894. def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
  895. namestr = {
  896. GGMLFileType.AllF32: "f32",
  897. GGMLFileType.MostlyF16: "f16",
  898. GGMLFileType.MostlyQ8_0:"q8_0",
  899. }[file_type]
  900. ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
  901. if ret in model_paths:
  902. sys.stderr.write(
  903. f"Error: Default output path ({ret}) would overwrite the input. "
  904. "Please explicitly specify a path using --outfile.\n")
  905. sys.exit(1)
  906. return ret
  907. def do_dump_model(model_plus: ModelPlus) -> None:
  908. print(f"model_plus.paths = {model_plus.paths!r}")
  909. print(f"model_plus.format = {model_plus.format!r}")
  910. print(f"model_plus.vocab = {model_plus.vocab!r}")
  911. for name, lazy_tensor in model_plus.model.items():
  912. print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
  913. def main(args_in: list[str] | None = None) -> None:
  914. parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
  915. parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
  916. parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
  917. parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
  918. parser.add_argument("--outtype", choices=["f32", "f16", "q8_0"], help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
  919. parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
  920. parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
  921. parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
  922. parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
  923. parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
  924. parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
  925. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  926. args = parser.parse_args(args_in)
  927. if args.dump_single:
  928. model_plus = lazy_load_file(args.model)
  929. do_dump_model(model_plus)
  930. return
  931. if not args.vocab_only:
  932. model_plus = load_some_model(args.model)
  933. else:
  934. model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
  935. if args.dump:
  936. do_dump_model(model_plus)
  937. return
  938. endianess = gguf.GGUFEndian.LITTLE
  939. if args.bigendian:
  940. endianess = gguf.GGUFEndian.BIG
  941. params = Params.load(model_plus)
  942. if params.n_ctx == -1:
  943. if args.ctx is None:
  944. raise Exception("The model doesn't have a context size, and you didn't specify one with --ctx\n"
  945. "Please specify one with --ctx:\n"
  946. " - LLaMA v1: --ctx 2048\n"
  947. " - LLaMA v2: --ctx 4096\n")
  948. params.n_ctx = args.ctx
  949. if args.outtype:
  950. params.ftype = {
  951. "f32": GGMLFileType.AllF32,
  952. "f16": GGMLFileType.MostlyF16,
  953. "q8_0": GGMLFileType.MostlyQ8_0,
  954. }[args.outtype]
  955. print(f"params = {params}")
  956. vocab: Vocab
  957. if args.vocab_only:
  958. if not args.outfile:
  959. raise ValueError("need --outfile if using --vocab-only")
  960. # FIXME: Try to respect vocab_dir somehow?
  961. vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
  962. special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
  963. load_merges = args.vocabtype == 'bpe',
  964. n_vocab = vocab.vocab_size)
  965. outfile = args.outfile
  966. OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
  967. print(f"Wrote {outfile}")
  968. return
  969. if model_plus.vocab is not None and args.vocab_dir is None:
  970. vocab = model_plus.vocab
  971. else:
  972. vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
  973. vocab = load_vocab(vocab_dir, args.vocabtype)
  974. # FIXME: Try to respect vocab_dir somehow?
  975. special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
  976. load_merges = args.vocabtype == 'bpe',
  977. n_vocab = vocab.vocab_size)
  978. model = model_plus.model
  979. model = convert_model_names(model, params)
  980. ftype = pick_output_type(model, args.outtype)
  981. model = convert_to_output_type(model, ftype)
  982. outfile = args.outfile or default_outfile(model_plus.paths, ftype)
  983. params.ftype = ftype
  984. print(f"Writing {outfile}, format {ftype}")
  985. OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency, endianess=endianess)
  986. print(f"Wrote {outfile}")
  987. if __name__ == '__main__':
  988. main()