main.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619
  1. // Defines sigaction on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #endif
  5. #include "common.h"
  6. #include "llama.h"
  7. #include "build-info.h"
  8. #include <cassert>
  9. #include <cinttypes>
  10. #include <cmath>
  11. #include <cstdio>
  12. #include <cstring>
  13. #include <ctime>
  14. #include <fstream>
  15. #include <iostream>
  16. #include <string>
  17. #include <vector>
  18. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  19. #include <signal.h>
  20. #include <unistd.h>
  21. #elif defined (_WIN32)
  22. #define WIN32_LEAN_AND_MEAN
  23. #define NOMINMAX
  24. #include <windows.h>
  25. #include <signal.h>
  26. #endif
  27. static console_state con_st;
  28. static llama_context ** g_ctx;
  29. static bool is_interacting = false;
  30. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  31. void sigint_handler(int signo) {
  32. if (signo == SIGINT) {
  33. if (!is_interacting) {
  34. is_interacting=true;
  35. } else {
  36. console_cleanup(con_st);
  37. printf("\n");
  38. llama_print_timings(*g_ctx);
  39. _exit(130);
  40. }
  41. }
  42. }
  43. #endif
  44. int main(int argc, char ** argv) {
  45. gpt_params params;
  46. if (gpt_params_parse(argc, argv, params) == false) {
  47. return 1;
  48. }
  49. // save choice to use color for later
  50. // (note for later: this is a slightly awkward choice)
  51. con_st.use_color = params.use_color;
  52. con_st.multiline_input = params.multiline_input;
  53. console_init(con_st);
  54. atexit([]() { console_cleanup(con_st); });
  55. if (params.perplexity) {
  56. printf("\n************\n");
  57. printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
  58. printf("************\n\n");
  59. return 0;
  60. }
  61. if (params.embedding) {
  62. printf("\n************\n");
  63. printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
  64. printf("************\n\n");
  65. return 0;
  66. }
  67. if (params.n_ctx > 2048) {
  68. fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
  69. "expect poor results\n", __func__, params.n_ctx);
  70. }
  71. fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
  72. if (params.seed < 0) {
  73. params.seed = time(NULL);
  74. }
  75. fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
  76. std::mt19937 rng(params.seed);
  77. if (params.random_prompt) {
  78. params.prompt = gpt_random_prompt(rng);
  79. }
  80. // params.prompt = R"(// this function checks if the number n is prime
  81. //bool is_prime(int n) {)";
  82. llama_context * ctx;
  83. g_ctx = &ctx;
  84. // load the model and apply lora adapter, if any
  85. ctx = llama_init_from_gpt_params(params);
  86. if (ctx == NULL) {
  87. fprintf(stderr, "%s: error: unable to load model\n", __func__);
  88. return 1;
  89. }
  90. // print system information
  91. {
  92. fprintf(stderr, "\n");
  93. fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
  94. params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
  95. }
  96. // determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
  97. // uncomment the "used_mem" line in llama.cpp to see the results
  98. if (params.mem_test) {
  99. {
  100. const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
  101. llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
  102. }
  103. {
  104. const std::vector<llama_token> tmp = { 0, };
  105. llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
  106. }
  107. llama_print_timings(ctx);
  108. llama_free(ctx);
  109. return 0;
  110. }
  111. // Add a space in front of the first character to match OG llama tokenizer behavior
  112. params.prompt.insert(0, 1, ' ');
  113. std::string path_session = params.path_prompt_cache;
  114. std::vector<llama_token> session_tokens;
  115. if (!path_session.empty()) {
  116. fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
  117. // fopen to check for existing session
  118. FILE * fp = std::fopen(path_session.c_str(), "rb");
  119. if (fp != NULL) {
  120. std::fclose(fp);
  121. session_tokens.resize(params.n_ctx);
  122. size_t n_token_count_out = 0;
  123. if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
  124. fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
  125. return 1;
  126. }
  127. session_tokens.resize(n_token_count_out);
  128. fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
  129. } else {
  130. fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
  131. }
  132. }
  133. // tokenize the prompt
  134. auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
  135. const int n_ctx = llama_n_ctx(ctx);
  136. if ((int) embd_inp.size() > n_ctx - 4) {
  137. fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
  138. return 1;
  139. }
  140. // debug message about similarity of saved session, if applicable
  141. size_t n_matching_session_tokens = 0;
  142. if (session_tokens.size()) {
  143. for (llama_token id : session_tokens) {
  144. if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
  145. break;
  146. }
  147. n_matching_session_tokens++;
  148. }
  149. if (n_matching_session_tokens >= embd_inp.size()) {
  150. fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
  151. } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
  152. fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
  153. __func__, n_matching_session_tokens, embd_inp.size());
  154. } else {
  155. fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
  156. __func__, n_matching_session_tokens, embd_inp.size());
  157. }
  158. }
  159. // number of tokens to keep when resetting context
  160. if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
  161. params.n_keep = (int)embd_inp.size();
  162. }
  163. // prefix & suffix for instruct mode
  164. const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
  165. const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
  166. // in instruct mode, we inject a prefix and a suffix to each input by the user
  167. if (params.instruct) {
  168. params.interactive_first = true;
  169. params.antiprompt.push_back("### Instruction:\n\n");
  170. }
  171. // enable interactive mode if interactive start is specified
  172. if (params.interactive_first) {
  173. params.interactive = true;
  174. }
  175. // determine newline token
  176. auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
  177. if (params.verbose_prompt) {
  178. fprintf(stderr, "\n");
  179. fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
  180. fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  181. for (int i = 0; i < (int) embd_inp.size(); i++) {
  182. fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
  183. }
  184. if (params.n_keep > 0) {
  185. fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
  186. for (int i = 0; i < params.n_keep; i++) {
  187. fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
  188. }
  189. fprintf(stderr, "'\n");
  190. }
  191. fprintf(stderr, "\n");
  192. }
  193. if (params.interactive) {
  194. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  195. struct sigaction sigint_action;
  196. sigint_action.sa_handler = sigint_handler;
  197. sigemptyset (&sigint_action.sa_mask);
  198. sigint_action.sa_flags = 0;
  199. sigaction(SIGINT, &sigint_action, NULL);
  200. #elif defined (_WIN32)
  201. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  202. return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
  203. };
  204. SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  205. #endif
  206. fprintf(stderr, "%s: interactive mode on.\n", __func__);
  207. if (params.antiprompt.size()) {
  208. for (auto antiprompt : params.antiprompt) {
  209. fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
  210. }
  211. }
  212. if (!params.input_prefix.empty()) {
  213. fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
  214. }
  215. if (!params.input_suffix.empty()) {
  216. fprintf(stderr, "Input suffix: '%s'\n", params.input_suffix.c_str());
  217. }
  218. }
  219. fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
  220. params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
  221. fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
  222. fprintf(stderr, "\n\n");
  223. // TODO: replace with ring-buffer
  224. std::vector<llama_token> last_n_tokens(n_ctx);
  225. std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
  226. if (params.interactive) {
  227. const char *control_message;
  228. if (con_st.multiline_input) {
  229. control_message = " - To return control to LLaMa, end your input with '\\'.\n"
  230. " - To return control without starting a new line, end your input with '/'.\n";
  231. } else {
  232. control_message = " - Press Return to return control to LLaMa.\n"
  233. " - To return control without starting a new line, end your input with '/'.\n"
  234. " - If you want to submit another line, end your input with '\\'.\n";
  235. }
  236. fprintf(stderr, "== Running in interactive mode. ==\n"
  237. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  238. " - Press Ctrl+C to interject at any time.\n"
  239. #endif
  240. "%s\n", control_message);
  241. is_interacting = params.interactive_first;
  242. }
  243. bool is_antiprompt = false;
  244. bool input_echo = true;
  245. bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
  246. int n_past = 0;
  247. int n_remain = params.n_predict;
  248. int n_consumed = 0;
  249. int n_session_consumed = 0;
  250. // the first thing we will do is to output the prompt, so set color accordingly
  251. console_set_color(con_st, CONSOLE_COLOR_PROMPT);
  252. std::vector<llama_token> embd;
  253. while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
  254. // predict
  255. if (embd.size() > 0) {
  256. // infinite text generation via context swapping
  257. // if we run out of context:
  258. // - take the n_keep first tokens from the original prompt (via n_past)
  259. // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
  260. if (n_past + (int) embd.size() > n_ctx) {
  261. const int n_left = n_past - params.n_keep;
  262. // always keep the first token - BOS
  263. n_past = std::max(1, params.n_keep);
  264. // insert n_left/2 tokens at the start of embd from last_n_tokens
  265. embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
  266. // stop saving session if we run out of context
  267. path_session.clear();
  268. //printf("\n---\n");
  269. //printf("resetting: '");
  270. //for (int i = 0; i < (int) embd.size(); i++) {
  271. // printf("%s", llama_token_to_str(ctx, embd[i]));
  272. //}
  273. //printf("'\n");
  274. //printf("\n---\n");
  275. }
  276. // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
  277. if (n_session_consumed < (int) session_tokens.size()) {
  278. size_t i = 0;
  279. for ( ; i < embd.size(); i++) {
  280. if (embd[i] != session_tokens[n_session_consumed]) {
  281. session_tokens.resize(n_session_consumed);
  282. break;
  283. }
  284. n_past++;
  285. n_session_consumed++;
  286. if (n_session_consumed >= (int) session_tokens.size()) {
  287. ++i;
  288. break;
  289. }
  290. }
  291. if (i > 0) {
  292. embd.erase(embd.begin(), embd.begin() + i);
  293. }
  294. }
  295. // evaluate tokens in batches
  296. // embd is typically prepared beforehand to fit within a batch, but not always
  297. for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
  298. int n_eval = (int) embd.size() - i;
  299. if (n_eval > params.n_batch) {
  300. n_eval = params.n_batch;
  301. }
  302. if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
  303. fprintf(stderr, "%s : failed to eval\n", __func__);
  304. return 1;
  305. }
  306. n_past += n_eval;
  307. }
  308. if (embd.size() > 0 && !path_session.empty()) {
  309. session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
  310. n_session_consumed = session_tokens.size();
  311. }
  312. }
  313. embd.clear();
  314. if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
  315. // out of user input, sample next token
  316. const float temp = params.temp;
  317. const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
  318. const float top_p = params.top_p;
  319. const float tfs_z = params.tfs_z;
  320. const float typical_p = params.typical_p;
  321. const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
  322. const float repeat_penalty = params.repeat_penalty;
  323. const float alpha_presence = params.presence_penalty;
  324. const float alpha_frequency = params.frequency_penalty;
  325. const int mirostat = params.mirostat;
  326. const float mirostat_tau = params.mirostat_tau;
  327. const float mirostat_eta = params.mirostat_eta;
  328. const bool penalize_nl = params.penalize_nl;
  329. // optionally save the session on first sample (for faster prompt loading next time)
  330. if (!path_session.empty() && need_to_save_session) {
  331. need_to_save_session = false;
  332. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  333. }
  334. llama_token id = 0;
  335. {
  336. auto logits = llama_get_logits(ctx);
  337. auto n_vocab = llama_n_vocab(ctx);
  338. // Apply params.logit_bias map
  339. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  340. logits[it->first] += it->second;
  341. }
  342. std::vector<llama_token_data> candidates;
  343. candidates.reserve(n_vocab);
  344. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  345. candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  346. }
  347. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  348. // Apply penalties
  349. float nl_logit = logits[llama_token_nl()];
  350. auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
  351. llama_sample_repetition_penalty(ctx, &candidates_p,
  352. last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  353. last_n_repeat, repeat_penalty);
  354. llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
  355. last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  356. last_n_repeat, alpha_frequency, alpha_presence);
  357. if (!penalize_nl) {
  358. logits[llama_token_nl()] = nl_logit;
  359. }
  360. if (temp <= 0) {
  361. // Greedy sampling
  362. id = llama_sample_token_greedy(ctx, &candidates_p);
  363. } else {
  364. if (mirostat == 1) {
  365. static float mirostat_mu = 2.0f * mirostat_tau;
  366. const int mirostat_m = 100;
  367. llama_sample_temperature(ctx, &candidates_p, temp);
  368. id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
  369. } else if (mirostat == 2) {
  370. static float mirostat_mu = 2.0f * mirostat_tau;
  371. llama_sample_temperature(ctx, &candidates_p, temp);
  372. id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
  373. } else {
  374. // Temperature sampling
  375. llama_sample_top_k(ctx, &candidates_p, top_k, 1);
  376. llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
  377. llama_sample_typical(ctx, &candidates_p, typical_p, 1);
  378. llama_sample_top_p(ctx, &candidates_p, top_p, 1);
  379. llama_sample_temperature(ctx, &candidates_p, temp);
  380. id = llama_sample_token(ctx, &candidates_p);
  381. }
  382. }
  383. // printf("`%d`", candidates_p.size);
  384. last_n_tokens.erase(last_n_tokens.begin());
  385. last_n_tokens.push_back(id);
  386. }
  387. // replace end of text token with newline token when in interactive mode
  388. if (id == llama_token_eos() && params.interactive && !params.instruct) {
  389. id = llama_token_newline.front();
  390. if (params.antiprompt.size() != 0) {
  391. // tokenize and inject first reverse prompt
  392. const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
  393. embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
  394. }
  395. }
  396. // add it to the context
  397. embd.push_back(id);
  398. // echo this to console
  399. input_echo = true;
  400. // decrement remaining sampling budget
  401. --n_remain;
  402. } else {
  403. // some user input remains from prompt or interaction, forward it to processing
  404. while ((int) embd_inp.size() > n_consumed) {
  405. embd.push_back(embd_inp[n_consumed]);
  406. last_n_tokens.erase(last_n_tokens.begin());
  407. last_n_tokens.push_back(embd_inp[n_consumed]);
  408. ++n_consumed;
  409. if ((int) embd.size() >= params.n_batch) {
  410. break;
  411. }
  412. }
  413. }
  414. // display text
  415. if (input_echo) {
  416. for (auto id : embd) {
  417. printf("%s", llama_token_to_str(ctx, id));
  418. }
  419. fflush(stdout);
  420. }
  421. // reset color to default if we there is no pending user input
  422. if (input_echo && (int)embd_inp.size() == n_consumed) {
  423. console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
  424. }
  425. // if not currently processing queued inputs;
  426. if ((int) embd_inp.size() <= n_consumed) {
  427. // check for reverse prompt
  428. if (params.antiprompt.size()) {
  429. std::string last_output;
  430. for (auto id : last_n_tokens) {
  431. last_output += llama_token_to_str(ctx, id);
  432. }
  433. is_antiprompt = false;
  434. // Check if each of the reverse prompts appears at the end of the output.
  435. // If we're not running interactively, the reverse prompt might be tokenized with some following characters
  436. // so we'll compensate for that by widening the search window a bit.
  437. for (std::string & antiprompt : params.antiprompt) {
  438. size_t extra_padding = params.interactive ? 0 : 2;
  439. size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
  440. ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
  441. : 0;
  442. if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos) {
  443. if (params.interactive) {
  444. is_interacting = true;
  445. console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
  446. }
  447. is_antiprompt = true;
  448. fflush(stdout);
  449. break;
  450. }
  451. }
  452. }
  453. if (n_past > 0 && is_interacting) {
  454. if (params.instruct) {
  455. printf("\n> ");
  456. }
  457. std::string buffer;
  458. if (!params.input_prefix.empty()) {
  459. buffer += params.input_prefix;
  460. printf("%s", buffer.c_str());
  461. }
  462. std::string line;
  463. bool another_line = true;
  464. do {
  465. another_line = console_readline(con_st, line);
  466. buffer += line;
  467. } while (another_line);
  468. // done taking input, reset color
  469. console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
  470. // Add tokens to embd only if the input buffer is non-empty
  471. // Entering a empty line lets the user pass control back
  472. if (buffer.length() > 1) {
  473. // append input suffix if any
  474. if (!params.input_suffix.empty()) {
  475. buffer += params.input_suffix;
  476. printf("%s", params.input_suffix.c_str());
  477. }
  478. // instruct mode: insert instruction prefix
  479. if (params.instruct && !is_antiprompt) {
  480. n_consumed = embd_inp.size();
  481. embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
  482. }
  483. auto line_inp = ::llama_tokenize(ctx, buffer, false);
  484. embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
  485. // instruct mode: insert response suffix
  486. if (params.instruct) {
  487. embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
  488. }
  489. n_remain -= line_inp.size();
  490. }
  491. input_echo = false; // do not echo this again
  492. }
  493. if (n_past > 0) {
  494. is_interacting = false;
  495. }
  496. }
  497. // end of text token
  498. if (!embd.empty() && embd.back() == llama_token_eos()) {
  499. if (params.instruct) {
  500. is_interacting = true;
  501. } else {
  502. fprintf(stderr, " [end of text]\n");
  503. break;
  504. }
  505. }
  506. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
  507. if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
  508. n_remain = params.n_predict;
  509. is_interacting = true;
  510. }
  511. }
  512. if (!path_session.empty() && params.prompt_cache_all) {
  513. fprintf(stderr, "\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
  514. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  515. }
  516. llama_print_timings(ctx);
  517. llama_free(ctx);
  518. return 0;
  519. }