ggml.c 487 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. #if __AVX__ || __AVX2__ || __AVX512F__
  410. // horizontally add 8 floats
  411. static inline float hsum_float_8(const __m256 x) {
  412. __m128 res = _mm256_extractf128_ps(x, 1);
  413. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  414. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  415. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  416. return _mm_cvtss_f32(res);
  417. }
  418. // horizontally add 8 int32_t
  419. static inline int hsum_i32_8(const __m256i a) {
  420. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  421. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  422. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  423. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  424. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  425. }
  426. // horizontally add 4 int32_t
  427. static inline int hsum_i32_4(const __m128i a) {
  428. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  429. const __m128i sum64 = _mm_add_epi32(hi64, a);
  430. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  431. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  432. }
  433. #if __AVX2__ || __AVX512F__
  434. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  435. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  436. uint32_t x32;
  437. memcpy(&x32, x, sizeof(uint32_t));
  438. const __m256i shuf_mask = _mm256_set_epi64x(
  439. 0x0303030303030303, 0x0202020202020202,
  440. 0x0101010101010101, 0x0000000000000000);
  441. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  442. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  443. bytes = _mm256_or_si256(bytes, bit_mask);
  444. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  445. }
  446. // Unpack 32 4-bit fields into 32 bytes
  447. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  448. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  449. {
  450. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  451. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  452. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  453. return _mm256_and_si256(lowMask, bytes);
  454. }
  455. // add int16_t pairwise and return as float vector
  456. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  457. const __m256i ones = _mm256_set1_epi16(1);
  458. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  459. return _mm256_cvtepi32_ps(summed_pairs);
  460. }
  461. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  462. #if __AVXVNNI__
  463. const __m256i zero = _mm256_setzero_si256();
  464. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  465. return _mm256_cvtepi32_ps(summed_pairs);
  466. #else
  467. // Perform multiplication and create 16-bit values
  468. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  469. return sum_i16_pairs_float(dot);
  470. #endif
  471. }
  472. // multiply int8_t, add results pairwise twice and return as float vector
  473. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  474. #if __AVXVNNIINT8__
  475. const __m256i zero = _mm256_setzero_si256();
  476. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  477. return _mm256_cvtepi32_ps(summed_pairs);
  478. #else
  479. // Get absolute values of x vectors
  480. const __m256i ax = _mm256_sign_epi8(x, x);
  481. // Sign the values of the y vectors
  482. const __m256i sy = _mm256_sign_epi8(y, x);
  483. return mul_sum_us8_pairs_float(ax, sy);
  484. #endif
  485. }
  486. static inline __m128i packNibbles( __m256i bytes )
  487. {
  488. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  489. #if __AVX512F__
  490. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  491. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  492. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  493. #else
  494. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  495. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  496. __m256i low = _mm256_and_si256( lowByte, bytes );
  497. high = _mm256_srli_epi16( high, 4 );
  498. bytes = _mm256_or_si256( low, high );
  499. // Compress uint16_t lanes into bytes
  500. __m128i r0 = _mm256_castsi256_si128( bytes );
  501. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  502. return _mm_packus_epi16( r0, r1 );
  503. #endif
  504. }
  505. #elif defined(__AVX__)
  506. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  507. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  508. uint32_t x32;
  509. memcpy(&x32, x, sizeof(uint32_t));
  510. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  511. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  512. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  513. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  514. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  515. bytesl = _mm_or_si128(bytesl, bit_mask);
  516. bytesh = _mm_or_si128(bytesh, bit_mask);
  517. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  518. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  519. return _mm256_set_m128i(bytesh, bytesl);
  520. }
  521. // Unpack 32 4-bit fields into 32 bytes
  522. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  523. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  524. {
  525. // Load 16 bytes from memory
  526. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  527. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  528. const __m128i lowMask = _mm_set1_epi8(0xF);
  529. tmpl = _mm_and_si128(lowMask, tmpl);
  530. tmph = _mm_and_si128(lowMask, tmph);
  531. return _mm256_set_m128i(tmph, tmpl);
  532. }
  533. // add int16_t pairwise and return as float vector
  534. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  535. const __m128i ones = _mm_set1_epi16(1);
  536. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  537. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  538. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  539. return _mm256_cvtepi32_ps(summed_pairs);
  540. }
  541. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  542. const __m128i axl = _mm256_castsi256_si128(ax);
  543. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  544. const __m128i syl = _mm256_castsi256_si128(sy);
  545. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  546. // Perform multiplication and create 16-bit values
  547. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  548. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  549. return sum_i16_pairs_float(doth, dotl);
  550. }
  551. // multiply int8_t, add results pairwise twice and return as float vector
  552. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  553. const __m128i xl = _mm256_castsi256_si128(x);
  554. const __m128i xh = _mm256_extractf128_si256(x, 1);
  555. const __m128i yl = _mm256_castsi256_si128(y);
  556. const __m128i yh = _mm256_extractf128_si256(y, 1);
  557. // Get absolute values of x vectors
  558. const __m128i axl = _mm_sign_epi8(xl, xl);
  559. const __m128i axh = _mm_sign_epi8(xh, xh);
  560. // Sign the values of the y vectors
  561. const __m128i syl = _mm_sign_epi8(yl, xl);
  562. const __m128i syh = _mm_sign_epi8(yh, xh);
  563. // Perform multiplication and create 16-bit values
  564. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  565. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  566. return sum_i16_pairs_float(doth, dotl);
  567. }
  568. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  569. {
  570. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  571. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  572. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  573. __m128i low = _mm_and_si128( lowByte, bytes1 );
  574. high = _mm_srli_epi16( high, 4 );
  575. bytes1 = _mm_or_si128( low, high );
  576. high = _mm_andnot_si128( lowByte, bytes2 );
  577. low = _mm_and_si128( lowByte, bytes2 );
  578. high = _mm_srli_epi16( high, 4 );
  579. bytes2 = _mm_or_si128( low, high );
  580. return _mm_packus_epi16( bytes1, bytes2);
  581. }
  582. #endif
  583. #elif defined(__SSSE3__)
  584. // horizontally add 4x4 floats
  585. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  586. __m128 res_0 =_mm_hadd_ps(a, b);
  587. __m128 res_1 =_mm_hadd_ps(c, d);
  588. __m128 res =_mm_hadd_ps(res_0, res_1);
  589. res =_mm_hadd_ps(res, res);
  590. res =_mm_hadd_ps(res, res);
  591. return _mm_cvtss_f32(res);
  592. }
  593. #endif // __AVX__ || __AVX2__ || __AVX512F__
  594. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  595. #if __ARM_NEON
  596. #if !defined(__aarch64__)
  597. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  598. return
  599. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  600. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  601. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  602. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  603. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  604. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  605. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  606. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  607. }
  608. inline static int16_t vaddvq_s8(int8x16_t v) {
  609. return
  610. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  611. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  612. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  613. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  614. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  615. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  616. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  617. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  618. }
  619. inline static int32_t vaddvq_s16(int16x8_t v) {
  620. return
  621. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  622. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  623. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  624. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  625. }
  626. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  627. return
  628. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  629. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  630. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  631. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  632. }
  633. inline static int32_t vaddvq_s32(int32x4_t v) {
  634. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  635. }
  636. inline static float vaddvq_f32(float32x4_t v) {
  637. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  638. }
  639. float vminvq_f32(float32x4_t v) {
  640. return
  641. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  642. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  643. }
  644. float vmaxvq_f32(float32x4_t v) {
  645. return
  646. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  647. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  648. }
  649. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  650. int32x4_t res;
  651. res[0] = roundf(vgetq_lane_f32(v, 0));
  652. res[1] = roundf(vgetq_lane_f32(v, 1));
  653. res[2] = roundf(vgetq_lane_f32(v, 2));
  654. res[3] = roundf(vgetq_lane_f32(v, 3));
  655. return res;
  656. }
  657. #endif
  658. #endif
  659. #define QK4_0 32
  660. typedef struct {
  661. ggml_fp16_t d; // delta
  662. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  663. } block_q4_0;
  664. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  665. #define QK4_1 32
  666. typedef struct {
  667. ggml_fp16_t d; // delta
  668. ggml_fp16_t m; // min
  669. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  670. } block_q4_1;
  671. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  672. #define QK5_0 32
  673. typedef struct {
  674. ggml_fp16_t d; // delta
  675. uint8_t qh[4]; // 5-th bit of quants
  676. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  677. } block_q5_0;
  678. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  679. #define QK5_1 32
  680. typedef struct {
  681. ggml_fp16_t d; // delta
  682. ggml_fp16_t m; // min
  683. uint8_t qh[4]; // 5-th bit of quants
  684. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  685. } block_q5_1;
  686. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  687. #define QK8_0 32
  688. typedef struct {
  689. ggml_fp16_t d; // delta
  690. int8_t qs[QK8_0]; // quants
  691. } block_q8_0;
  692. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  693. #define QK8_1 32
  694. typedef struct {
  695. float d; // delta
  696. float s; // d * sum(qs[i])
  697. int8_t qs[QK8_1]; // quants
  698. } block_q8_1;
  699. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  700. // reference implementation for deterministic creation of model files
  701. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  702. static const int qk = QK4_0;
  703. assert(k % qk == 0);
  704. const int nb = k / qk;
  705. for (int i = 0; i < nb; i++) {
  706. float amax = 0.0f; // absolute max
  707. float max = 0.0f;
  708. for (int j = 0; j < qk; j++) {
  709. const float v = x[i*qk + j];
  710. if (amax < fabsf(v)) {
  711. amax = fabsf(v);
  712. max = v;
  713. }
  714. }
  715. const float d = max / -8;
  716. const float id = d ? 1.0f/d : 0.0f;
  717. y[i].d = GGML_FP32_TO_FP16(d);
  718. for (int j = 0; j < qk/2; ++j) {
  719. const float x0 = x[i*qk + 0 + j]*id;
  720. const float x1 = x[i*qk + qk/2 + j]*id;
  721. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  722. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  723. y[i].qs[j] = xi0;
  724. y[i].qs[j] |= xi1 << 4;
  725. }
  726. }
  727. }
  728. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  729. quantize_row_q4_0_reference(x, y, k);
  730. }
  731. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  732. const int qk = QK4_1;
  733. assert(k % qk == 0);
  734. const int nb = k / qk;
  735. for (int i = 0; i < nb; i++) {
  736. float min = FLT_MAX;
  737. float max = -FLT_MAX;
  738. for (int j = 0; j < qk; j++) {
  739. const float v = x[i*qk + j];
  740. if (v < min) min = v;
  741. if (v > max) max = v;
  742. }
  743. const float d = (max - min) / ((1 << 4) - 1);
  744. const float id = d ? 1.0f/d : 0.0f;
  745. y[i].d = GGML_FP32_TO_FP16(d);
  746. y[i].m = GGML_FP32_TO_FP16(min);
  747. for (int j = 0; j < qk/2; ++j) {
  748. const float x0 = (x[i*qk + 0 + j] - min)*id;
  749. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  750. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  751. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  752. y[i].qs[j] = xi0;
  753. y[i].qs[j] |= xi1 << 4;
  754. }
  755. }
  756. }
  757. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  758. quantize_row_q4_1_reference(x, y, k);
  759. }
  760. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  761. static const int qk = QK5_0;
  762. assert(k % qk == 0);
  763. const int nb = k / qk;
  764. for (int i = 0; i < nb; i++) {
  765. float amax = 0.0f; // absolute max
  766. float max = 0.0f;
  767. for (int j = 0; j < qk; j++) {
  768. const float v = x[i*qk + j];
  769. if (amax < fabsf(v)) {
  770. amax = fabsf(v);
  771. max = v;
  772. }
  773. }
  774. const float d = max / -16;
  775. const float id = d ? 1.0f/d : 0.0f;
  776. y[i].d = GGML_FP32_TO_FP16(d);
  777. uint32_t qh = 0;
  778. for (int j = 0; j < qk/2; ++j) {
  779. const float x0 = x[i*qk + 0 + j]*id;
  780. const float x1 = x[i*qk + qk/2 + j]*id;
  781. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  782. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  783. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  784. // get the 5-th bit and store it in qh at the right position
  785. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  786. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  787. }
  788. memcpy(&y[i].qh, &qh, sizeof(qh));
  789. }
  790. }
  791. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  792. quantize_row_q5_0_reference(x, y, k);
  793. }
  794. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  795. const int qk = QK5_1;
  796. assert(k % qk == 0);
  797. const int nb = k / qk;
  798. for (int i = 0; i < nb; i++) {
  799. float min = FLT_MAX;
  800. float max = -FLT_MAX;
  801. for (int j = 0; j < qk; j++) {
  802. const float v = x[i*qk + j];
  803. if (v < min) min = v;
  804. if (v > max) max = v;
  805. }
  806. const float d = (max - min) / ((1 << 5) - 1);
  807. const float id = d ? 1.0f/d : 0.0f;
  808. y[i].d = GGML_FP32_TO_FP16(d);
  809. y[i].m = GGML_FP32_TO_FP16(min);
  810. uint32_t qh = 0;
  811. for (int j = 0; j < qk/2; ++j) {
  812. const float x0 = (x[i*qk + 0 + j] - min)*id;
  813. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  814. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  815. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  816. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  817. // get the 5-th bit and store it in qh at the right position
  818. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  819. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  820. }
  821. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  822. }
  823. }
  824. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  825. quantize_row_q5_1_reference(x, y, k);
  826. }
  827. // reference implementation for deterministic creation of model files
  828. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  829. assert(k % QK8_0 == 0);
  830. const int nb = k / QK8_0;
  831. for (int i = 0; i < nb; i++) {
  832. float amax = 0.0f; // absolute max
  833. for (int j = 0; j < QK8_0; j++) {
  834. const float v = x[i*QK8_0 + j];
  835. amax = MAX(amax, fabsf(v));
  836. }
  837. const float d = amax / ((1 << 7) - 1);
  838. const float id = d ? 1.0f/d : 0.0f;
  839. y[i].d = GGML_FP32_TO_FP16(d);
  840. for (int j = 0; j < QK8_0; ++j) {
  841. const float x0 = x[i*QK8_0 + j]*id;
  842. y[i].qs[j] = roundf(x0);
  843. }
  844. }
  845. }
  846. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  847. assert(QK8_0 == 32);
  848. assert(k % QK8_0 == 0);
  849. const int nb = k / QK8_0;
  850. block_q8_0 * restrict y = vy;
  851. #if defined(__ARM_NEON)
  852. for (int i = 0; i < nb; i++) {
  853. float32x4_t srcv [8];
  854. float32x4_t asrcv[8];
  855. float32x4_t amaxv[8];
  856. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  857. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  858. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  859. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  860. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  861. const float amax = vmaxvq_f32(amaxv[0]);
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = GGML_FP32_TO_FP16(d);
  865. for (int j = 0; j < 8; j++) {
  866. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  867. const int32x4_t vi = vcvtnq_s32_f32(v);
  868. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  869. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  870. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  871. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  872. }
  873. }
  874. #elif defined(__AVX2__) || defined(__AVX__)
  875. for (int i = 0; i < nb; i++) {
  876. // Load elements into 4 AVX vectors
  877. __m256 v0 = _mm256_loadu_ps( x );
  878. __m256 v1 = _mm256_loadu_ps( x + 8 );
  879. __m256 v2 = _mm256_loadu_ps( x + 16 );
  880. __m256 v3 = _mm256_loadu_ps( x + 24 );
  881. x += 32;
  882. // Compute max(abs(e)) for the block
  883. const __m256 signBit = _mm256_set1_ps( -0.0f );
  884. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  885. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  886. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  887. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  888. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  889. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  890. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  891. const float maxScalar = _mm_cvtss_f32( max4 );
  892. // Quantize these floats
  893. const float d = maxScalar / 127.f;
  894. y[i].d = GGML_FP32_TO_FP16(d);
  895. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  896. const __m256 mul = _mm256_set1_ps( id );
  897. // Apply the multiplier
  898. v0 = _mm256_mul_ps( v0, mul );
  899. v1 = _mm256_mul_ps( v1, mul );
  900. v2 = _mm256_mul_ps( v2, mul );
  901. v3 = _mm256_mul_ps( v3, mul );
  902. // Round to nearest integer
  903. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  904. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  905. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  906. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  907. // Convert floats to integers
  908. __m256i i0 = _mm256_cvtps_epi32( v0 );
  909. __m256i i1 = _mm256_cvtps_epi32( v1 );
  910. __m256i i2 = _mm256_cvtps_epi32( v2 );
  911. __m256i i3 = _mm256_cvtps_epi32( v3 );
  912. #if defined(__AVX2__)
  913. // Convert int32 to int16
  914. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  915. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  916. // Convert int16 to int8
  917. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  918. // We got our precious signed bytes, but the order is now wrong
  919. // These AVX2 pack instructions process 16-byte pieces independently
  920. // The following instruction is fixing the order
  921. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  922. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  923. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  924. #else
  925. // Since we don't have in AVX some necessary functions,
  926. // we split the registers in half and call AVX2 analogs from SSE
  927. __m128i ni0 = _mm256_castsi256_si128( i0 );
  928. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  929. __m128i ni2 = _mm256_castsi256_si128( i1 );
  930. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  931. __m128i ni4 = _mm256_castsi256_si128( i2 );
  932. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  933. __m128i ni6 = _mm256_castsi256_si128( i3 );
  934. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  935. // Convert int32 to int16
  936. ni0 = _mm_packs_epi32( ni0, ni1 );
  937. ni2 = _mm_packs_epi32( ni2, ni3 );
  938. ni4 = _mm_packs_epi32( ni4, ni5 );
  939. ni6 = _mm_packs_epi32( ni6, ni7 );
  940. // Convert int16 to int8
  941. ni0 = _mm_packs_epi16( ni0, ni2 );
  942. ni4 = _mm_packs_epi16( ni4, ni6 );
  943. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  944. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  945. #endif
  946. }
  947. #else
  948. // scalar
  949. quantize_row_q8_0_reference(x, y, k);
  950. #endif
  951. }
  952. // reference implementation for deterministic creation of model files
  953. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  954. assert(QK8_1 == 32);
  955. assert(k % QK8_1 == 0);
  956. const int nb = k / QK8_1;
  957. for (int i = 0; i < nb; i++) {
  958. float amax = 0.0f; // absolute max
  959. for (int j = 0; j < QK8_1; j++) {
  960. const float v = x[i*QK8_1 + j];
  961. amax = MAX(amax, fabsf(v));
  962. }
  963. const float d = amax / ((1 << 7) - 1);
  964. const float id = d ? 1.0f/d : 0.0f;
  965. y[i].d = d;
  966. int sum = 0;
  967. for (int j = 0; j < QK8_1/2; ++j) {
  968. const float v0 = x[i*QK8_1 + j]*id;
  969. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  970. y[i].qs[ j] = roundf(v0);
  971. y[i].qs[QK8_1/2 + j] = roundf(v1);
  972. sum += y[i].qs[ j];
  973. sum += y[i].qs[QK8_1/2 + j];
  974. }
  975. y[i].s = sum*d;
  976. }
  977. }
  978. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  979. assert(k % QK8_1 == 0);
  980. const int nb = k / QK8_1;
  981. block_q8_1 * restrict y = vy;
  982. #if defined(__ARM_NEON)
  983. for (int i = 0; i < nb; i++) {
  984. float32x4_t srcv [8];
  985. float32x4_t asrcv[8];
  986. float32x4_t amaxv[8];
  987. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  988. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  989. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  990. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  991. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  992. const float amax = vmaxvq_f32(amaxv[0]);
  993. const float d = amax / ((1 << 7) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].d = d;
  996. int32x4_t accv = vdupq_n_s32(0);
  997. for (int j = 0; j < 8; j++) {
  998. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  999. const int32x4_t vi = vcvtnq_s32_f32(v);
  1000. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1001. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1002. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1003. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1004. accv = vaddq_s32(accv, vi);
  1005. }
  1006. y[i].s = d * vaddvq_s32(accv);
  1007. }
  1008. #elif defined(__AVX2__) || defined(__AVX__)
  1009. for (int i = 0; i < nb; i++) {
  1010. // Load elements into 4 AVX vectors
  1011. __m256 v0 = _mm256_loadu_ps( x );
  1012. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1013. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1014. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1015. x += 32;
  1016. // Compute max(abs(e)) for the block
  1017. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1018. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1019. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1020. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1021. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1022. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1023. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1024. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1025. const float maxScalar = _mm_cvtss_f32( max4 );
  1026. // Quantize these floats
  1027. const float d = maxScalar / 127.f;
  1028. y[i].d = d;
  1029. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1030. const __m256 mul = _mm256_set1_ps( id );
  1031. // Apply the multiplier
  1032. v0 = _mm256_mul_ps( v0, mul );
  1033. v1 = _mm256_mul_ps( v1, mul );
  1034. v2 = _mm256_mul_ps( v2, mul );
  1035. v3 = _mm256_mul_ps( v3, mul );
  1036. // Round to nearest integer
  1037. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1038. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1039. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1040. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1041. // Convert floats to integers
  1042. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1043. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1044. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1045. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1046. #if defined(__AVX2__)
  1047. // Compute the sum of the quants and set y[i].s
  1048. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1049. // Convert int32 to int16
  1050. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1051. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1052. // Convert int16 to int8
  1053. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1054. // We got our precious signed bytes, but the order is now wrong
  1055. // These AVX2 pack instructions process 16-byte pieces independently
  1056. // The following instruction is fixing the order
  1057. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1058. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1059. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1060. #else
  1061. // Since we don't have in AVX some necessary functions,
  1062. // we split the registers in half and call AVX2 analogs from SSE
  1063. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1064. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1065. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1066. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1067. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1068. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1069. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1070. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1071. // Compute the sum of the quants and set y[i].s
  1072. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1073. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1074. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1075. // Convert int32 to int16
  1076. ni0 = _mm_packs_epi32( ni0, ni1 );
  1077. ni2 = _mm_packs_epi32( ni2, ni3 );
  1078. ni4 = _mm_packs_epi32( ni4, ni5 );
  1079. ni6 = _mm_packs_epi32( ni6, ni7 );
  1080. // Convert int16 to int8
  1081. ni0 = _mm_packs_epi16( ni0, ni2 );
  1082. ni4 = _mm_packs_epi16( ni4, ni6 );
  1083. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1084. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1085. #endif
  1086. }
  1087. #else
  1088. // scalar
  1089. quantize_row_q8_1_reference(x, y, k);
  1090. #endif
  1091. }
  1092. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1093. static const int qk = QK4_0;
  1094. assert(k % qk == 0);
  1095. const int nb = k / qk;
  1096. for (int i = 0; i < nb; i++) {
  1097. const float d = GGML_FP16_TO_FP32(x[i].d);
  1098. for (int j = 0; j < qk/2; ++j) {
  1099. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1100. const int x1 = (x[i].qs[j] >> 4) - 8;
  1101. y[i*qk + j + 0 ] = x0*d;
  1102. y[i*qk + j + qk/2] = x1*d;
  1103. }
  1104. }
  1105. }
  1106. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1107. static const int qk = QK4_1;
  1108. assert(k % qk == 0);
  1109. const int nb = k / qk;
  1110. for (int i = 0; i < nb; i++) {
  1111. const float d = GGML_FP16_TO_FP32(x[i].d);
  1112. const float m = GGML_FP16_TO_FP32(x[i].m);
  1113. for (int j = 0; j < qk/2; ++j) {
  1114. const int x0 = (x[i].qs[j] & 0x0F);
  1115. const int x1 = (x[i].qs[j] >> 4);
  1116. y[i*qk + j + 0 ] = x0*d + m;
  1117. y[i*qk + j + qk/2] = x1*d + m;
  1118. }
  1119. }
  1120. }
  1121. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1122. static const int qk = QK5_0;
  1123. assert(k % qk == 0);
  1124. const int nb = k / qk;
  1125. for (int i = 0; i < nb; i++) {
  1126. const float d = GGML_FP16_TO_FP32(x[i].d);
  1127. uint32_t qh;
  1128. memcpy(&qh, x[i].qh, sizeof(qh));
  1129. for (int j = 0; j < qk/2; ++j) {
  1130. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1131. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1132. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1133. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1134. y[i*qk + j + 0 ] = x0*d;
  1135. y[i*qk + j + qk/2] = x1*d;
  1136. }
  1137. }
  1138. }
  1139. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1140. static const int qk = QK5_1;
  1141. assert(k % qk == 0);
  1142. const int nb = k / qk;
  1143. for (int i = 0; i < nb; i++) {
  1144. const float d = GGML_FP16_TO_FP32(x[i].d);
  1145. const float m = GGML_FP16_TO_FP32(x[i].m);
  1146. uint32_t qh;
  1147. memcpy(&qh, x[i].qh, sizeof(qh));
  1148. for (int j = 0; j < qk/2; ++j) {
  1149. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1150. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1151. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1152. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1153. y[i*qk + j + 0 ] = x0*d + m;
  1154. y[i*qk + j + qk/2] = x1*d + m;
  1155. }
  1156. }
  1157. }
  1158. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1159. static const int qk = QK8_0;
  1160. assert(k % qk == 0);
  1161. const int nb = k / qk;
  1162. const block_q8_0 * restrict x = vx;
  1163. for (int i = 0; i < nb; i++) {
  1164. const float d = GGML_FP16_TO_FP32(x[i].d);
  1165. for (int j = 0; j < qk; ++j) {
  1166. y[i*qk + j] = x[i].qs[j]*d;
  1167. }
  1168. }
  1169. }
  1170. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1171. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1172. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1173. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1174. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1175. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1176. [GGML_TYPE_Q4_0] = {
  1177. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1178. .quantize_row_q = quantize_row_q4_0,
  1179. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1180. .quantize_row_q_dot = quantize_row_q8_0,
  1181. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1182. .vec_dot_type = GGML_TYPE_Q8_0,
  1183. },
  1184. [GGML_TYPE_Q4_1] = {
  1185. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1186. .quantize_row_q = quantize_row_q4_1,
  1187. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1188. .quantize_row_q_dot = quantize_row_q8_1,
  1189. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1190. .vec_dot_type = GGML_TYPE_Q8_1,
  1191. },
  1192. [GGML_TYPE_Q5_0] = {
  1193. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1194. .quantize_row_q = quantize_row_q5_0,
  1195. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1196. .quantize_row_q_dot = quantize_row_q8_0,
  1197. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1198. .vec_dot_type = GGML_TYPE_Q8_0,
  1199. },
  1200. [GGML_TYPE_Q5_1] = {
  1201. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1202. .quantize_row_q = quantize_row_q5_1,
  1203. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1204. .quantize_row_q_dot = quantize_row_q8_1,
  1205. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1206. .vec_dot_type = GGML_TYPE_Q8_1,
  1207. },
  1208. [GGML_TYPE_Q8_0] = {
  1209. .dequantize_row_q = dequantize_row_q8_0,
  1210. .quantize_row_q = quantize_row_q8_0,
  1211. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1212. .quantize_row_q_dot = quantize_row_q8_0,
  1213. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1214. .vec_dot_type = GGML_TYPE_Q8_0,
  1215. },
  1216. [GGML_TYPE_Q8_1] = {
  1217. .dequantize_row_q = NULL, // TODO
  1218. .quantize_row_q = quantize_row_q8_1,
  1219. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1220. .quantize_row_q_dot = quantize_row_q8_1,
  1221. .vec_dot_q = NULL, // TODO
  1222. .vec_dot_type = GGML_TYPE_Q8_1,
  1223. },
  1224. };
  1225. // For internal test use
  1226. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1227. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1228. return quantize_fns[i];
  1229. }
  1230. //
  1231. // simd mappings
  1232. //
  1233. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1234. // we then implement the fundamental computation operations below using only these macros
  1235. // adding support for new architectures requires to define the corresponding SIMD macros
  1236. //
  1237. // GGML_F32_STEP / GGML_F16_STEP
  1238. // number of elements to process in a single step
  1239. //
  1240. // GGML_F32_EPR / GGML_F16_EPR
  1241. // number of elements to fit in a single register
  1242. //
  1243. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1244. #define GGML_SIMD
  1245. // F32 NEON
  1246. #define GGML_F32_STEP 16
  1247. #define GGML_F32_EPR 4
  1248. #define GGML_F32x4 float32x4_t
  1249. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1250. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1251. #define GGML_F32x4_LOAD vld1q_f32
  1252. #define GGML_F32x4_STORE vst1q_f32
  1253. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1254. #define GGML_F32x4_ADD vaddq_f32
  1255. #define GGML_F32x4_MUL vmulq_f32
  1256. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1257. #define GGML_F32x4_REDUCE(res, x) \
  1258. { \
  1259. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1260. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1261. } \
  1262. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1263. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1264. } \
  1265. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1266. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1267. } \
  1268. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1269. }
  1270. #define GGML_F32_VEC GGML_F32x4
  1271. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1272. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1273. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1274. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1275. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1276. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1277. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1278. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1279. // F16 NEON
  1280. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1281. #define GGML_F16_STEP 32
  1282. #define GGML_F16_EPR 8
  1283. #define GGML_F16x8 float16x8_t
  1284. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1285. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1286. #define GGML_F16x8_LOAD vld1q_f16
  1287. #define GGML_F16x8_STORE vst1q_f16
  1288. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1289. #define GGML_F16x8_ADD vaddq_f16
  1290. #define GGML_F16x8_MUL vmulq_f16
  1291. #define GGML_F16x8_REDUCE(res, x) \
  1292. { \
  1293. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1294. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1295. } \
  1296. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1297. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1298. } \
  1299. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1300. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1301. } \
  1302. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1303. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1304. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1305. }
  1306. #define GGML_F16_VEC GGML_F16x8
  1307. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1308. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1309. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1310. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1311. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1312. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1313. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1314. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1315. #else
  1316. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1317. // and take advantage of the vcvt_ functions to convert to/from FP16
  1318. #define GGML_F16_STEP 16
  1319. #define GGML_F16_EPR 4
  1320. #define GGML_F32Cx4 float32x4_t
  1321. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1322. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1323. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1324. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1325. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1326. #define GGML_F32Cx4_ADD vaddq_f32
  1327. #define GGML_F32Cx4_MUL vmulq_f32
  1328. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1329. #define GGML_F16_VEC GGML_F32Cx4
  1330. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1331. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1332. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1333. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1334. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1335. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1336. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1337. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1338. #endif
  1339. #elif defined(__AVX__)
  1340. #define GGML_SIMD
  1341. // F32 AVX
  1342. #define GGML_F32_STEP 32
  1343. #define GGML_F32_EPR 8
  1344. #define GGML_F32x8 __m256
  1345. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1346. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1347. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1348. #define GGML_F32x8_STORE _mm256_storeu_ps
  1349. #if defined(__FMA__)
  1350. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1351. #else
  1352. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1353. #endif
  1354. #define GGML_F32x8_ADD _mm256_add_ps
  1355. #define GGML_F32x8_MUL _mm256_mul_ps
  1356. #define GGML_F32x8_REDUCE(res, x) \
  1357. { \
  1358. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1359. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1360. } \
  1361. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1362. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1363. } \
  1364. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1365. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1366. } \
  1367. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1368. _mm256_extractf128_ps(x[0], 1)); \
  1369. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1370. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1371. }
  1372. // TODO: is this optimal ?
  1373. #define GGML_F32_VEC GGML_F32x8
  1374. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1375. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1376. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1377. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1378. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1379. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1380. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1381. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1382. // F16 AVX
  1383. #define GGML_F16_STEP 32
  1384. #define GGML_F16_EPR 8
  1385. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1386. #define GGML_F32Cx8 __m256
  1387. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1388. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1389. #if defined(__F16C__)
  1390. // the _mm256_cvt intrinsics require F16C
  1391. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1392. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1393. #else
  1394. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1395. float tmp[8];
  1396. for (int i = 0; i < 8; i++) {
  1397. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1398. }
  1399. return _mm256_loadu_ps(tmp);
  1400. }
  1401. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1402. float arr[8];
  1403. _mm256_storeu_ps(arr, y);
  1404. for (int i = 0; i < 8; i++)
  1405. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1406. }
  1407. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1408. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1409. #endif
  1410. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1411. #define GGML_F32Cx8_ADD _mm256_add_ps
  1412. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1413. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1414. #define GGML_F16_VEC GGML_F32Cx8
  1415. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1416. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1417. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1418. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1419. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1420. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1421. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1422. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1423. #elif defined(__POWER9_VECTOR__)
  1424. #define GGML_SIMD
  1425. // F32 POWER9
  1426. #define GGML_F32_STEP 32
  1427. #define GGML_F32_EPR 4
  1428. #define GGML_F32x4 vector float
  1429. #define GGML_F32x4_ZERO 0.0f
  1430. #define GGML_F32x4_SET1 vec_splats
  1431. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1432. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1433. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1434. #define GGML_F32x4_ADD vec_add
  1435. #define GGML_F32x4_MUL vec_mul
  1436. #define GGML_F32x4_REDUCE(res, x) \
  1437. { \
  1438. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1439. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1440. } \
  1441. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1442. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1443. } \
  1444. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1445. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1446. } \
  1447. res = vec_extract(x[0], 0) + \
  1448. vec_extract(x[0], 1) + \
  1449. vec_extract(x[0], 2) + \
  1450. vec_extract(x[0], 3); \
  1451. }
  1452. #define GGML_F32_VEC GGML_F32x4
  1453. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1454. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1455. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1456. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1457. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1458. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1459. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1460. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1461. // F16 POWER9
  1462. #define GGML_F16_STEP GGML_F32_STEP
  1463. #define GGML_F16_EPR GGML_F32_EPR
  1464. #define GGML_F16_VEC GGML_F32x4
  1465. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1466. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1467. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1468. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1469. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1470. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1471. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1472. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1473. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1474. #define GGML_F16_VEC_STORE(p, r, i) \
  1475. if (i & 0x1) \
  1476. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1477. r[i - GGML_ENDIAN_BYTE(0)]), \
  1478. 0, p - GGML_F16_EPR)
  1479. #elif defined(__wasm_simd128__)
  1480. #define GGML_SIMD
  1481. // F32 WASM
  1482. #define GGML_F32_STEP 16
  1483. #define GGML_F32_EPR 4
  1484. #define GGML_F32x4 v128_t
  1485. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1486. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1487. #define GGML_F32x4_LOAD wasm_v128_load
  1488. #define GGML_F32x4_STORE wasm_v128_store
  1489. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1490. #define GGML_F32x4_ADD wasm_f32x4_add
  1491. #define GGML_F32x4_MUL wasm_f32x4_mul
  1492. #define GGML_F32x4_REDUCE(res, x) \
  1493. { \
  1494. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1495. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1496. } \
  1497. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1498. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1499. } \
  1500. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1501. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1502. } \
  1503. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1504. wasm_f32x4_extract_lane(x[0], 1) + \
  1505. wasm_f32x4_extract_lane(x[0], 2) + \
  1506. wasm_f32x4_extract_lane(x[0], 3); \
  1507. }
  1508. #define GGML_F32_VEC GGML_F32x4
  1509. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1510. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1511. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1512. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1513. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1514. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1515. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1516. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1517. // F16 WASM
  1518. #define GGML_F16_STEP 16
  1519. #define GGML_F16_EPR 4
  1520. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1521. float tmp[4];
  1522. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1523. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1524. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1525. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1526. return wasm_v128_load(tmp);
  1527. }
  1528. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1529. float tmp[4];
  1530. wasm_v128_store(tmp, x);
  1531. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1532. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1533. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1534. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1535. }
  1536. #define GGML_F16x4 v128_t
  1537. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1538. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1539. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1540. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1541. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1542. #define GGML_F16x4_ADD wasm_f32x4_add
  1543. #define GGML_F16x4_MUL wasm_f32x4_mul
  1544. #define GGML_F16x4_REDUCE(res, x) \
  1545. { \
  1546. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1547. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1548. } \
  1549. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1550. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1551. } \
  1552. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1553. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1554. } \
  1555. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1556. wasm_f32x4_extract_lane(x[0], 1) + \
  1557. wasm_f32x4_extract_lane(x[0], 2) + \
  1558. wasm_f32x4_extract_lane(x[0], 3); \
  1559. }
  1560. #define GGML_F16_VEC GGML_F16x4
  1561. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1562. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1563. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1564. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1565. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1566. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1567. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1568. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1569. #elif defined(__SSE3__)
  1570. #define GGML_SIMD
  1571. // F32 SSE
  1572. #define GGML_F32_STEP 32
  1573. #define GGML_F32_EPR 4
  1574. #define GGML_F32x4 __m128
  1575. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1576. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1577. #define GGML_F32x4_LOAD _mm_loadu_ps
  1578. #define GGML_F32x4_STORE _mm_storeu_ps
  1579. #if defined(__FMA__)
  1580. // TODO: Does this work?
  1581. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1582. #else
  1583. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1584. #endif
  1585. #define GGML_F32x4_ADD _mm_add_ps
  1586. #define GGML_F32x4_MUL _mm_mul_ps
  1587. #define GGML_F32x4_REDUCE(res, x) \
  1588. { \
  1589. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1590. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1591. } \
  1592. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1593. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1594. } \
  1595. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1596. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1597. } \
  1598. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1599. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1600. }
  1601. // TODO: is this optimal ?
  1602. #define GGML_F32_VEC GGML_F32x4
  1603. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1604. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1605. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1606. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1607. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1608. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1609. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1610. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1611. // F16 SSE
  1612. #define GGML_F16_STEP 32
  1613. #define GGML_F16_EPR 4
  1614. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1615. float tmp[4];
  1616. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1617. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1618. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1619. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1620. return _mm_loadu_ps(tmp);
  1621. }
  1622. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1623. float arr[4];
  1624. _mm_storeu_ps(arr, y);
  1625. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1626. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1627. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1628. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1629. }
  1630. #define GGML_F32Cx4 __m128
  1631. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1632. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1633. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1634. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1635. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1636. #define GGML_F32Cx4_ADD _mm_add_ps
  1637. #define GGML_F32Cx4_MUL _mm_mul_ps
  1638. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1639. #define GGML_F16_VEC GGML_F32Cx4
  1640. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1641. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1642. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1643. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1644. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1645. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1646. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1647. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1648. #endif
  1649. // GGML_F32_ARR / GGML_F16_ARR
  1650. // number of registers to use per step
  1651. #ifdef GGML_SIMD
  1652. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1653. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1654. #endif
  1655. //
  1656. // fundamental operations
  1657. //
  1658. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1659. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1660. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1661. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1662. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1663. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1664. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1665. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1666. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1667. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1668. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1669. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1670. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1671. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1672. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1673. #ifdef GGML_SIMD
  1674. float sumf = 0.0f;
  1675. const int np = (n & ~(GGML_F32_STEP - 1));
  1676. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1677. GGML_F32_VEC ax[GGML_F32_ARR];
  1678. GGML_F32_VEC ay[GGML_F32_ARR];
  1679. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1680. for (int j = 0; j < GGML_F32_ARR; j++) {
  1681. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1682. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1683. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1684. }
  1685. }
  1686. // reduce sum0..sum3 to sum0
  1687. GGML_F32_VEC_REDUCE(sumf, sum);
  1688. // leftovers
  1689. for (int i = np; i < n; ++i) {
  1690. sumf += x[i]*y[i];
  1691. }
  1692. #else
  1693. // scalar
  1694. ggml_float sumf = 0.0;
  1695. for (int i = 0; i < n; ++i) {
  1696. sumf += (ggml_float)(x[i]*y[i]);
  1697. }
  1698. #endif
  1699. *s = sumf;
  1700. }
  1701. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1702. ggml_float sumf = 0.0;
  1703. #if defined(GGML_SIMD)
  1704. const int np = (n & ~(GGML_F16_STEP - 1));
  1705. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1706. GGML_F16_VEC ax[GGML_F16_ARR];
  1707. GGML_F16_VEC ay[GGML_F16_ARR];
  1708. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1709. for (int j = 0; j < GGML_F16_ARR; j++) {
  1710. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1711. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1712. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1713. }
  1714. }
  1715. // reduce sum0..sum3 to sum0
  1716. GGML_F16_VEC_REDUCE(sumf, sum);
  1717. // leftovers
  1718. for (int i = np; i < n; ++i) {
  1719. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1720. }
  1721. #else
  1722. for (int i = 0; i < n; ++i) {
  1723. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1724. }
  1725. #endif
  1726. *s = sumf;
  1727. }
  1728. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1729. const int qk = QK8_0;
  1730. const int nb = n / qk;
  1731. assert(n % qk == 0);
  1732. assert(nb % 2 == 0);
  1733. const block_q4_0 * restrict x = vx;
  1734. const block_q8_0 * restrict y = vy;
  1735. #if defined(__ARM_NEON)
  1736. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1737. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1738. for (int i = 0; i < nb; i += 2) {
  1739. const block_q4_0 * restrict x0 = &x[i + 0];
  1740. const block_q4_0 * restrict x1 = &x[i + 1];
  1741. const block_q8_0 * restrict y0 = &y[i + 0];
  1742. const block_q8_0 * restrict y1 = &y[i + 1];
  1743. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1744. const int8x16_t s8b = vdupq_n_s8(0x8);
  1745. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1746. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1747. // 4-bit -> 8-bit
  1748. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1749. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1750. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1751. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1752. // sub 8
  1753. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1754. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1755. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1756. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1757. // load y
  1758. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1759. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1760. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1761. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1762. #if defined(__ARM_FEATURE_DOTPROD)
  1763. // dot product into int32x4_t
  1764. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1765. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1766. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1767. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1768. #else
  1769. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1770. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1771. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1772. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1773. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1774. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1775. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1776. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1777. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1778. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1779. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1780. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1781. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1782. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1783. #endif
  1784. }
  1785. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1786. #elif defined(__AVX2__)
  1787. // Initialize accumulator with zeros
  1788. __m256 acc = _mm256_setzero_ps();
  1789. // Main loop
  1790. for (int i = 0; i < nb; ++i) {
  1791. /* Compute combined scale for the block */
  1792. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1793. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1794. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1795. const __m256i off = _mm256_set1_epi8( 8 );
  1796. bx = _mm256_sub_epi8( bx, off );
  1797. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1798. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1799. /* Multiply q with scale and accumulate */
  1800. acc = _mm256_fmadd_ps( d, q, acc );
  1801. }
  1802. *s = hsum_float_8(acc);
  1803. #elif defined(__AVX__)
  1804. // Initialize accumulator with zeros
  1805. __m256 acc = _mm256_setzero_ps();
  1806. // Main loop
  1807. for (int i = 0; i < nb; ++i) {
  1808. // Compute combined scale for the block
  1809. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1810. const __m128i lowMask = _mm_set1_epi8(0xF);
  1811. const __m128i off = _mm_set1_epi8(8);
  1812. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1813. __m128i bx = _mm_and_si128(lowMask, tmp);
  1814. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1815. bx = _mm_sub_epi8(bx, off);
  1816. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1817. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1818. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1819. bx = _mm_sub_epi8(bx, off);
  1820. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1821. // Convert int32_t to float
  1822. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1823. // Apply the scale, and accumulate
  1824. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1825. }
  1826. *s = hsum_float_8(acc);
  1827. #elif defined(__SSSE3__)
  1828. // set constants
  1829. const __m128i lowMask = _mm_set1_epi8(0xF);
  1830. const __m128i off = _mm_set1_epi8(8);
  1831. // Initialize accumulator with zeros
  1832. __m128 acc_0 = _mm_setzero_ps();
  1833. __m128 acc_1 = _mm_setzero_ps();
  1834. __m128 acc_2 = _mm_setzero_ps();
  1835. __m128 acc_3 = _mm_setzero_ps();
  1836. // First round without accumulation
  1837. {
  1838. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1839. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1840. // Compute combined scale for the block 0 and 1
  1841. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1842. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1843. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1844. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1845. bx_0 = _mm_sub_epi8(bx_0, off);
  1846. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1847. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1848. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1849. bx_1 = _mm_sub_epi8(bx_1, off);
  1850. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1851. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1852. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1853. // Compute combined scale for the block 2 and 3
  1854. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1855. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1856. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1857. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1858. bx_2 = _mm_sub_epi8(bx_2, off);
  1859. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1860. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1861. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1862. bx_3 = _mm_sub_epi8(bx_3, off);
  1863. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1864. // Convert int32_t to float
  1865. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1866. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1867. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1868. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1869. // Apply the scale
  1870. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1871. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1872. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1873. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1874. }
  1875. // Main loop
  1876. for (int i = 2; i < nb; i+=2) {
  1877. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1878. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1879. // Compute combined scale for the block 0 and 1
  1880. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1881. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1882. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1883. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1884. bx_0 = _mm_sub_epi8(bx_0, off);
  1885. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1886. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1887. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1888. bx_1 = _mm_sub_epi8(bx_1, off);
  1889. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1890. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1891. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1892. // Compute combined scale for the block 2 and 3
  1893. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  1894. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1895. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1896. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1897. bx_2 = _mm_sub_epi8(bx_2, off);
  1898. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1899. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1900. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1901. bx_3 = _mm_sub_epi8(bx_3, off);
  1902. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1903. // Convert int32_t to float
  1904. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1905. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1906. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1907. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1908. // Apply the scale
  1909. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1910. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1911. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1912. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1913. // Acummulate
  1914. acc_0 = _mm_add_ps(p0_d, acc_0);
  1915. acc_1 = _mm_add_ps(p1_d, acc_1);
  1916. acc_2 = _mm_add_ps(p2_d, acc_2);
  1917. acc_3 = _mm_add_ps(p3_d, acc_3);
  1918. }
  1919. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1920. #else
  1921. // scalar
  1922. float sumf = 0.0;
  1923. for (int i = 0; i < nb; i++) {
  1924. int sumi = 0;
  1925. for (int j = 0; j < qk/2; ++j) {
  1926. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1927. const int v1 = (x[i].qs[j] >> 4) - 8;
  1928. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1929. }
  1930. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  1931. }
  1932. *s = sumf;
  1933. #endif
  1934. }
  1935. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1936. const int qk = QK8_1;
  1937. const int nb = n / qk;
  1938. assert(n % qk == 0);
  1939. assert(nb % 2 == 0);
  1940. const block_q4_1 * restrict x = vx;
  1941. const block_q8_1 * restrict y = vy;
  1942. // TODO: add WASM SIMD
  1943. #if defined(__ARM_NEON)
  1944. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1945. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1946. float summs = 0;
  1947. for (int i = 0; i < nb; i += 2) {
  1948. const block_q4_1 * restrict x0 = &x[i + 0];
  1949. const block_q4_1 * restrict x1 = &x[i + 1];
  1950. const block_q8_1 * restrict y0 = &y[i + 0];
  1951. const block_q8_1 * restrict y1 = &y[i + 1];
  1952. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  1953. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1954. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1955. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1956. // 4-bit -> 8-bit
  1957. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1958. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1959. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1960. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1961. // load y
  1962. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1963. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1964. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1965. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1966. #if defined(__ARM_FEATURE_DOTPROD)
  1967. // dot product into int32x4_t
  1968. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  1969. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  1970. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  1971. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  1972. #else
  1973. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  1974. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  1975. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  1976. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  1977. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  1978. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  1979. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  1980. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  1981. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1982. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1983. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1984. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1985. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  1986. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  1987. #endif
  1988. }
  1989. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  1990. #elif defined(__AVX2__) || defined(__AVX__)
  1991. // Initialize accumulator with zeros
  1992. __m256 acc = _mm256_setzero_ps();
  1993. float summs = 0;
  1994. // Main loop
  1995. for (int i = 0; i < nb; ++i) {
  1996. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  1997. const float d1 = y[i].d;
  1998. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  1999. const __m256 d0v = _mm256_set1_ps( d0 );
  2000. const __m256 d1v = _mm256_set1_ps( d1 );
  2001. // Compute combined scales
  2002. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2003. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2004. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2005. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2006. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2007. // Accumulate d0*d1*x*y
  2008. #if defined(__AVX2__)
  2009. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2010. #else
  2011. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2012. #endif
  2013. }
  2014. *s = hsum_float_8(acc) + summs;
  2015. #else
  2016. // scalar
  2017. float sumf = 0.0;
  2018. for (int i = 0; i < nb; i++) {
  2019. int sumi = 0;
  2020. for (int j = 0; j < qk/2; ++j) {
  2021. const int v0 = (x[i].qs[j] & 0x0F);
  2022. const int v1 = (x[i].qs[j] >> 4);
  2023. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2024. }
  2025. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2026. }
  2027. *s = sumf;
  2028. #endif
  2029. }
  2030. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2031. const int qk = QK8_0;
  2032. const int nb = n / qk;
  2033. assert(n % qk == 0);
  2034. assert(nb % 2 == 0);
  2035. assert(qk == QK5_0);
  2036. const block_q5_0 * restrict x = vx;
  2037. const block_q8_0 * restrict y = vy;
  2038. #if defined(__ARM_NEON)
  2039. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2040. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2041. uint32_t qh0;
  2042. uint32_t qh1;
  2043. uint64_t tmp0[4];
  2044. uint64_t tmp1[4];
  2045. for (int i = 0; i < nb; i += 2) {
  2046. const block_q5_0 * restrict x0 = &x[i];
  2047. const block_q5_0 * restrict x1 = &x[i + 1];
  2048. const block_q8_0 * restrict y0 = &y[i];
  2049. const block_q8_0 * restrict y1 = &y[i + 1];
  2050. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2051. // extract the 5th bit via lookup table ((!b) << 4)
  2052. memcpy(&qh0, x0->qh, sizeof(qh0));
  2053. memcpy(&qh1, x1->qh, sizeof(qh1));
  2054. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2055. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2056. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2057. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2058. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2059. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2060. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2061. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2062. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2063. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2064. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2065. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2066. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2067. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2068. // 4-bit -> 8-bit
  2069. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2070. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2071. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2072. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2073. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2074. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2075. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2076. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2077. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2078. // load y
  2079. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2080. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2081. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2082. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2083. #if defined(__ARM_FEATURE_DOTPROD)
  2084. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2085. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2086. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2087. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2088. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2089. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2090. #else
  2091. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2092. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2093. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2094. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2095. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2096. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2097. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2098. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2099. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2100. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2101. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2102. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2103. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2104. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2105. #endif
  2106. }
  2107. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2108. #elif defined(__wasm_simd128__)
  2109. v128_t sumv = wasm_f32x4_splat(0.0f);
  2110. uint32_t qh;
  2111. uint64_t tmp[4];
  2112. // TODO: check if unrolling this is better
  2113. for (int i = 0; i < nb; ++i) {
  2114. const block_q5_0 * restrict x0 = &x[i];
  2115. const block_q8_0 * restrict y0 = &y[i];
  2116. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2117. const v128_t s16b = wasm_i8x16_splat(0x10);
  2118. // extract the 5th bit
  2119. memcpy(&qh, x0->qh, sizeof(qh));
  2120. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2121. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2122. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2123. tmp[3] = table_b2b_1[(qh >> 24) ];
  2124. const v128_t qhl = wasm_v128_load(tmp + 0);
  2125. const v128_t qhh = wasm_v128_load(tmp + 2);
  2126. const v128_t v0 = wasm_v128_load(x0->qs);
  2127. // 4-bit -> 8-bit
  2128. const v128_t v0l = wasm_v128_and (v0, m4b);
  2129. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2130. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2131. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2132. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2133. // load y
  2134. const v128_t v1l = wasm_v128_load(y0->qs);
  2135. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2136. // int8x16 -> int16x8
  2137. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2138. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2139. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2140. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2141. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2142. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2143. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2144. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2145. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2146. // dot product
  2147. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2148. wasm_i32x4_add(
  2149. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2150. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2151. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2152. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2153. }
  2154. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2155. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2156. #elif defined(__AVX2__)
  2157. // Initialize accumulator with zeros
  2158. __m256 acc = _mm256_setzero_ps();
  2159. // Main loop
  2160. for (int i = 0; i < nb; i++) {
  2161. /* Compute combined scale for the block */
  2162. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2163. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2164. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2165. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2166. bx = _mm256_or_si256(bx, bxhi);
  2167. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2168. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2169. /* Multiply q with scale and accumulate */
  2170. acc = _mm256_fmadd_ps(d, q, acc);
  2171. }
  2172. *s = hsum_float_8(acc);
  2173. #elif defined(__AVX__)
  2174. // Initialize accumulator with zeros
  2175. __m256 acc = _mm256_setzero_ps();
  2176. __m128i mask = _mm_set1_epi8((char)0xF0);
  2177. // Main loop
  2178. for (int i = 0; i < nb; i++) {
  2179. /* Compute combined scale for the block */
  2180. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2181. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2182. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2183. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2184. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2185. bxhil = _mm_andnot_si128(bxhil, mask);
  2186. bxhih = _mm_andnot_si128(bxhih, mask);
  2187. __m128i bxl = _mm256_castsi256_si128(bx);
  2188. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2189. bxl = _mm_or_si128(bxl, bxhil);
  2190. bxh = _mm_or_si128(bxh, bxhih);
  2191. bx = _mm256_set_m128i(bxh, bxl);
  2192. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2193. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2194. /* Multiply q with scale and accumulate */
  2195. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2196. }
  2197. *s = hsum_float_8(acc);
  2198. #else
  2199. // scalar
  2200. float sumf = 0.0;
  2201. for (int i = 0; i < nb; i++) {
  2202. uint32_t qh;
  2203. memcpy(&qh, x[i].qh, sizeof(qh));
  2204. int sumi = 0;
  2205. for (int j = 0; j < qk/2; ++j) {
  2206. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2207. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2208. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2209. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2210. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2211. }
  2212. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2213. }
  2214. *s = sumf;
  2215. #endif
  2216. }
  2217. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2218. const int qk = QK8_1;
  2219. const int nb = n / qk;
  2220. assert(n % qk == 0);
  2221. assert(nb % 2 == 0);
  2222. assert(qk == QK5_1);
  2223. const block_q5_1 * restrict x = vx;
  2224. const block_q8_1 * restrict y = vy;
  2225. #if defined(__ARM_NEON)
  2226. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2227. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2228. float summs0 = 0.0f;
  2229. float summs1 = 0.0f;
  2230. uint32_t qh0;
  2231. uint32_t qh1;
  2232. uint64_t tmp0[4];
  2233. uint64_t tmp1[4];
  2234. for (int i = 0; i < nb; i += 2) {
  2235. const block_q5_1 * restrict x0 = &x[i];
  2236. const block_q5_1 * restrict x1 = &x[i + 1];
  2237. const block_q8_1 * restrict y0 = &y[i];
  2238. const block_q8_1 * restrict y1 = &y[i + 1];
  2239. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2240. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2241. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2242. // extract the 5th bit via lookup table ((b) << 4)
  2243. memcpy(&qh0, x0->qh, sizeof(qh0));
  2244. memcpy(&qh1, x1->qh, sizeof(qh1));
  2245. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2246. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2247. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2248. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2249. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2250. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2251. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2252. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2253. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2254. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2255. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2256. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2257. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2258. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2259. // 4-bit -> 8-bit
  2260. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2261. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2262. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2263. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2264. // add high bit
  2265. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2266. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2267. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2268. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2269. // load y
  2270. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2271. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2272. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2273. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2274. #if defined(__ARM_FEATURE_DOTPROD)
  2275. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2276. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2277. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2278. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2279. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2280. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2281. #else
  2282. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2283. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2284. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2285. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2286. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2287. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2288. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2289. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2290. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2291. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2292. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2293. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2294. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2295. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2296. #endif
  2297. }
  2298. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2299. #elif defined(__wasm_simd128__)
  2300. v128_t sumv = wasm_f32x4_splat(0.0f);
  2301. float summs = 0.0f;
  2302. uint32_t qh;
  2303. uint64_t tmp[4];
  2304. // TODO: check if unrolling this is better
  2305. for (int i = 0; i < nb; ++i) {
  2306. const block_q5_1 * restrict x0 = &x[i];
  2307. const block_q8_1 * restrict y0 = &y[i];
  2308. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2309. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2310. // extract the 5th bit
  2311. memcpy(&qh, x0->qh, sizeof(qh));
  2312. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2313. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2314. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2315. tmp[3] = table_b2b_0[(qh >> 24) ];
  2316. const v128_t qhl = wasm_v128_load(tmp + 0);
  2317. const v128_t qhh = wasm_v128_load(tmp + 2);
  2318. const v128_t v0 = wasm_v128_load(x0->qs);
  2319. // 4-bit -> 8-bit
  2320. const v128_t v0l = wasm_v128_and (v0, m4b);
  2321. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2322. static bool x = true;
  2323. // add high bit
  2324. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2325. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2326. // load y
  2327. const v128_t v1l = wasm_v128_load(y0->qs);
  2328. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2329. // int8x16 -> int16x8
  2330. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2331. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2332. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2333. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2334. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2335. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2336. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2337. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2338. // dot product
  2339. sumv = wasm_f32x4_add(sumv,
  2340. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2341. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2342. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2343. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2344. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2345. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d));
  2346. }
  2347. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2348. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2349. #elif defined(__AVX2__)
  2350. // Initialize accumulator with zeros
  2351. __m256 acc = _mm256_setzero_ps();
  2352. float summs = 0.0f;
  2353. // Main loop
  2354. for (int i = 0; i < nb; i++) {
  2355. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2356. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2357. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2358. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2359. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2360. bx = _mm256_or_si256(bx, bxhi);
  2361. const __m256 dy = _mm256_set1_ps(y[i].d);
  2362. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2363. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2364. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2365. }
  2366. *s = hsum_float_8(acc) + summs;
  2367. #elif defined(__AVX__)
  2368. // Initialize accumulator with zeros
  2369. __m256 acc = _mm256_setzero_ps();
  2370. __m128i mask = _mm_set1_epi8(0x10);
  2371. float summs = 0.0f;
  2372. // Main loop
  2373. for (int i = 0; i < nb; i++) {
  2374. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2375. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2376. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2377. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2378. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2379. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2380. bxhil = _mm_and_si128(bxhil, mask);
  2381. bxhih = _mm_and_si128(bxhih, mask);
  2382. __m128i bxl = _mm256_castsi256_si128(bx);
  2383. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2384. bxl = _mm_or_si128(bxl, bxhil);
  2385. bxh = _mm_or_si128(bxh, bxhih);
  2386. bx = _mm256_set_m128i(bxh, bxl);
  2387. const __m256 dy = _mm256_set1_ps(y[i].d);
  2388. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2389. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2390. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2391. }
  2392. *s = hsum_float_8(acc) + summs;
  2393. #else
  2394. // scalar
  2395. float sumf = 0.0;
  2396. for (int i = 0; i < nb; i++) {
  2397. uint32_t qh;
  2398. memcpy(&qh, x[i].qh, sizeof(qh));
  2399. int sumi = 0;
  2400. for (int j = 0; j < qk/2; ++j) {
  2401. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2402. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2403. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2404. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2405. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2406. }
  2407. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2408. }
  2409. *s = sumf;
  2410. #endif
  2411. }
  2412. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2413. const int qk = QK8_0;
  2414. const int nb = n / qk;
  2415. assert(n % qk == 0);
  2416. assert(nb % 2 == 0);
  2417. const block_q8_0 * restrict x = vx;
  2418. const block_q8_0 * restrict y = vy;
  2419. #if defined(__ARM_NEON)
  2420. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2421. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2422. for (int i = 0; i < nb; i += 2) {
  2423. const block_q8_0 * restrict x0 = &x[i + 0];
  2424. const block_q8_0 * restrict x1 = &x[i + 1];
  2425. const block_q8_0 * restrict y0 = &y[i + 0];
  2426. const block_q8_0 * restrict y1 = &y[i + 1];
  2427. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2428. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2429. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2430. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2431. // load y
  2432. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2433. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2434. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2435. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2436. #if defined(__ARM_FEATURE_DOTPROD)
  2437. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2438. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2439. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2440. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2441. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2442. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2443. #else
  2444. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2445. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2446. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2447. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2448. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2449. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2450. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2451. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2452. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2453. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2454. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2455. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2456. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2457. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2458. #endif
  2459. }
  2460. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2461. #elif defined(__AVX2__) || defined(__AVX__)
  2462. // Initialize accumulator with zeros
  2463. __m256 acc = _mm256_setzero_ps();
  2464. // Main loop
  2465. for (int i = 0; i < nb; ++i) {
  2466. // Compute combined scale for the block
  2467. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2468. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2469. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2470. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2471. // Multiply q with scale and accumulate
  2472. #if defined(__AVX2__)
  2473. acc = _mm256_fmadd_ps( d, q, acc );
  2474. #else
  2475. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2476. #endif
  2477. }
  2478. *s = hsum_float_8(acc);
  2479. #else
  2480. // scalar
  2481. float sumf = 0.0;
  2482. for (int i = 0; i < nb; i++) {
  2483. int sumi = 0;
  2484. for (int j = 0; j < qk; j++) {
  2485. sumi += x[i].qs[j]*y[i].qs[j];
  2486. }
  2487. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2488. }
  2489. *s = sumf;
  2490. #endif
  2491. }
  2492. // compute GGML_VEC_DOT_UNROLL dot products at once
  2493. // xs - x row stride in bytes
  2494. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2495. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2496. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2497. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2498. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2499. }
  2500. #if defined(GGML_SIMD)
  2501. const int np = (n & ~(GGML_F16_STEP - 1));
  2502. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2503. GGML_F16_VEC ax[GGML_F16_ARR];
  2504. GGML_F16_VEC ay[GGML_F16_ARR];
  2505. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2506. for (int j = 0; j < GGML_F16_ARR; j++) {
  2507. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2508. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2509. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2510. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2511. }
  2512. }
  2513. }
  2514. // reduce sum0..sum3 to sum0
  2515. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2516. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2517. }
  2518. // leftovers
  2519. for (int i = np; i < n; ++i) {
  2520. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2521. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2522. }
  2523. }
  2524. #else
  2525. for (int i = 0; i < n; ++i) {
  2526. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2527. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2528. }
  2529. }
  2530. #endif
  2531. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2532. s[i] = sumf[i];
  2533. }
  2534. }
  2535. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2536. #if defined(GGML_SIMD)
  2537. const int np = (n & ~(GGML_F32_STEP - 1));
  2538. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2539. GGML_F32_VEC ax[GGML_F32_ARR];
  2540. GGML_F32_VEC ay[GGML_F32_ARR];
  2541. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2542. for (int j = 0; j < GGML_F32_ARR; j++) {
  2543. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2544. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2545. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2546. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2547. }
  2548. }
  2549. // leftovers
  2550. for (int i = np; i < n; ++i) {
  2551. y[i] += x[i]*v;
  2552. }
  2553. #else
  2554. // scalar
  2555. for (int i = 0; i < n; ++i) {
  2556. y[i] += x[i]*v;
  2557. }
  2558. #endif
  2559. }
  2560. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2561. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2562. #if defined(GGML_SIMD)
  2563. const int np = (n & ~(GGML_F32_STEP - 1));
  2564. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2565. GGML_F32_VEC ay[GGML_F32_ARR];
  2566. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2567. for (int j = 0; j < GGML_F32_ARR; j++) {
  2568. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2569. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2570. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2571. }
  2572. }
  2573. // leftovers
  2574. for (int i = np; i < n; ++i) {
  2575. y[i] *= v;
  2576. }
  2577. #else
  2578. // scalar
  2579. for (int i = 0; i < n; ++i) {
  2580. y[i] *= v;
  2581. }
  2582. #endif
  2583. }
  2584. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2585. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2586. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2587. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2588. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2589. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2590. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2591. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2592. static const float GELU_COEF_A = 0.044715f;
  2593. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2594. inline static float ggml_gelu_f32(float x) {
  2595. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2596. }
  2597. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2598. const uint16_t * i16 = (const uint16_t *) x;
  2599. for (int i = 0; i < n; ++i) {
  2600. y[i] = table_gelu_f16[i16[i]];
  2601. }
  2602. }
  2603. #ifdef GGML_GELU_FP16
  2604. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2605. uint16_t t;
  2606. for (int i = 0; i < n; ++i) {
  2607. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2608. memcpy(&t, &fp16, sizeof(uint16_t));
  2609. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2610. }
  2611. }
  2612. #else
  2613. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2614. for (int i = 0; i < n; ++i) {
  2615. y[i] = ggml_gelu_f32(x[i]);
  2616. }
  2617. }
  2618. #endif
  2619. // Sigmoid Linear Unit (SiLU) function
  2620. inline static float ggml_silu_f32(float x) {
  2621. return x/(1.0f + expf(-x));
  2622. }
  2623. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2624. // const uint16_t * i16 = (const uint16_t *) x;
  2625. // for (int i = 0; i < n; ++i) {
  2626. // y[i] = table_silu_f16[i16[i]];
  2627. // }
  2628. //}
  2629. #ifdef GGML_SILU_FP16
  2630. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2631. uint16_t t;
  2632. for (int i = 0; i < n; ++i) {
  2633. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2634. memcpy(&t, &fp16, sizeof(uint16_t));
  2635. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2636. }
  2637. }
  2638. #else
  2639. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2640. for (int i = 0; i < n; ++i) {
  2641. y[i] = ggml_silu_f32(x[i]);
  2642. }
  2643. }
  2644. #endif
  2645. inline static float ggml_silu_backward_f32(float x, float dy) {
  2646. const float s = 1.0f/(1.0f + expf(-x));
  2647. return dy*s*(1.0f + x*(1.0f - s));
  2648. }
  2649. #ifdef GGML_SILU_FP16
  2650. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2651. for (int i = 0; i < n; ++i) {
  2652. // we did not use x[i] to compute forward silu but its f16 equivalent
  2653. // take derivative at f16 of x[i]:
  2654. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2655. float usedx = GGML_FP16_TO_FP32(fp16);
  2656. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2657. }
  2658. }
  2659. #else
  2660. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2661. for (int i = 0; i < n; ++i) {
  2662. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2663. }
  2664. }
  2665. #endif
  2666. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2667. #ifndef GGML_USE_ACCELERATE
  2668. ggml_float sum = 0.0;
  2669. for (int i = 0; i < n; ++i) {
  2670. sum += (ggml_float)x[i];
  2671. }
  2672. *s = sum;
  2673. #else
  2674. vDSP_sve(x, 1, s, n);
  2675. #endif
  2676. }
  2677. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2678. ggml_float sum = 0.0;
  2679. for (int i = 0; i < n; ++i) {
  2680. sum += (ggml_float)x[i];
  2681. }
  2682. *s = sum;
  2683. }
  2684. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2685. #ifndef GGML_USE_ACCELERATE
  2686. float max = -INFINITY;
  2687. for (int i = 0; i < n; ++i) {
  2688. max = MAX(max, x[i]);
  2689. }
  2690. *s = max;
  2691. #else
  2692. vDSP_maxv(x, 1, s, n);
  2693. #endif
  2694. }
  2695. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2696. ggml_vec_norm_f32(n, s, x);
  2697. *s = 1.f/(*s);
  2698. }
  2699. //
  2700. // logging
  2701. //
  2702. #if (GGML_DEBUG >= 1)
  2703. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2704. #else
  2705. #define GGML_PRINT_DEBUG(...)
  2706. #endif
  2707. #if (GGML_DEBUG >= 5)
  2708. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2709. #else
  2710. #define GGML_PRINT_DEBUG_5(...)
  2711. #endif
  2712. #if (GGML_DEBUG >= 10)
  2713. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2714. #else
  2715. #define GGML_PRINT_DEBUG_10(...)
  2716. #endif
  2717. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2718. //
  2719. // data types
  2720. //
  2721. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2722. [GGML_TYPE_F32] = 1,
  2723. [GGML_TYPE_F16] = 1,
  2724. [GGML_TYPE_Q4_0] = QK4_0,
  2725. [GGML_TYPE_Q4_1] = QK4_1,
  2726. [GGML_TYPE_Q5_0] = QK5_0,
  2727. [GGML_TYPE_Q5_1] = QK5_1,
  2728. [GGML_TYPE_Q8_0] = QK8_0,
  2729. [GGML_TYPE_Q8_1] = QK8_1,
  2730. [GGML_TYPE_I8] = 1,
  2731. [GGML_TYPE_I16] = 1,
  2732. [GGML_TYPE_I32] = 1,
  2733. };
  2734. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2735. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2736. [GGML_TYPE_F32] = sizeof(float),
  2737. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2738. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2739. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2740. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2741. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2742. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2743. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2744. [GGML_TYPE_I8] = sizeof(int8_t),
  2745. [GGML_TYPE_I16] = sizeof(int16_t),
  2746. [GGML_TYPE_I32] = sizeof(int32_t),
  2747. };
  2748. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2749. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2750. [GGML_TYPE_F32] = "f32",
  2751. [GGML_TYPE_F16] = "f16",
  2752. [GGML_TYPE_Q4_0] = "q4_0",
  2753. [GGML_TYPE_Q4_1] = "q4_1",
  2754. [GGML_TYPE_Q5_0] = "q5_0",
  2755. [GGML_TYPE_Q5_1] = "q5_1",
  2756. [GGML_TYPE_Q8_0] = "q8_0",
  2757. [GGML_TYPE_Q8_1] = "q8_1",
  2758. [GGML_TYPE_I8] = "i8",
  2759. [GGML_TYPE_I16] = "i16",
  2760. [GGML_TYPE_I32] = "i32",
  2761. };
  2762. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2763. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2764. [GGML_TYPE_F32] = false,
  2765. [GGML_TYPE_F16] = false,
  2766. [GGML_TYPE_Q4_0] = true,
  2767. [GGML_TYPE_Q4_1] = true,
  2768. [GGML_TYPE_Q5_0] = true,
  2769. [GGML_TYPE_Q5_1] = true,
  2770. [GGML_TYPE_Q8_0] = true,
  2771. [GGML_TYPE_Q8_1] = true,
  2772. [GGML_TYPE_I8] = false,
  2773. [GGML_TYPE_I16] = false,
  2774. [GGML_TYPE_I32] = false,
  2775. };
  2776. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2777. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2778. "NONE",
  2779. "DUP",
  2780. "ADD",
  2781. "ADD1",
  2782. "ACC",
  2783. "SUB",
  2784. "MUL",
  2785. "DIV",
  2786. "SQR",
  2787. "SQRT",
  2788. "LOG",
  2789. "SUM",
  2790. "SUM_ROWS",
  2791. "MEAN",
  2792. "REPEAT",
  2793. "ABS",
  2794. "SGN",
  2795. "NEG",
  2796. "STEP",
  2797. "RELU",
  2798. "GELU",
  2799. "SILU",
  2800. "SILU_BACK",
  2801. "NORM",
  2802. "RMS_NORM",
  2803. "RMS_NORM_BACK",
  2804. "MUL_MAT",
  2805. "SCALE",
  2806. "SET",
  2807. "CPY",
  2808. "CONT",
  2809. "RESHAPE",
  2810. "VIEW",
  2811. "PERMUTE",
  2812. "TRANSPOSE",
  2813. "GET_ROWS",
  2814. "GET_ROWS_BACK",
  2815. "DIAG",
  2816. "DIAG_MASK_INF",
  2817. "DIAG_MASK_ZERO",
  2818. "SOFT_MAX",
  2819. "ROPE",
  2820. "ROPE_BACK",
  2821. "ALIBI",
  2822. "CONV_1D_1S",
  2823. "CONV_1D_2S",
  2824. "FLASH_ATTN",
  2825. "FLASH_FF",
  2826. "MAP_UNARY",
  2827. "MAP_BINARY",
  2828. };
  2829. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2830. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2831. "none",
  2832. "x",
  2833. "x+y",
  2834. "x+y",
  2835. "view(x,nb,offset)+=y->x",
  2836. "x-y",
  2837. "x*y",
  2838. "x/y",
  2839. "x^2",
  2840. "√x",
  2841. "log(x)",
  2842. "Σx",
  2843. "Σx_k",
  2844. "Σx/n",
  2845. "repeat(x)",
  2846. "abs(x)",
  2847. "sgn(x)",
  2848. "-x",
  2849. "step(x)",
  2850. "relu(x)",
  2851. "gelu(x)",
  2852. "silu(x)",
  2853. "silu_back(x)",
  2854. "norm(x)",
  2855. "rms_norm(x)",
  2856. "rms_norm_back(x)",
  2857. "X*Y",
  2858. "x*v",
  2859. "y-\\>view(x)",
  2860. "x-\\>y",
  2861. "cont(x)",
  2862. "reshape(x)",
  2863. "view(x)",
  2864. "permute(x)",
  2865. "transpose(x)",
  2866. "get_rows(x)",
  2867. "get_rows_back(x)",
  2868. "diag(x)",
  2869. "diag_mask_inf(x)",
  2870. "diag_mask_zero(x)",
  2871. "soft_max(x)",
  2872. "rope(x)",
  2873. "rope_back(x)",
  2874. "alibi(x)",
  2875. "conv_1d_1s(x)",
  2876. "conv_1d_2s(x)",
  2877. "flash_attn(x)",
  2878. "flash_ff(x)",
  2879. "f(x)",
  2880. "f(x,y)",
  2881. };
  2882. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2883. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2884. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2885. //
  2886. // ggml context
  2887. //
  2888. struct ggml_context {
  2889. size_t mem_size;
  2890. void * mem_buffer;
  2891. bool mem_buffer_owned;
  2892. bool no_alloc;
  2893. int n_objects;
  2894. struct ggml_object * objects_begin;
  2895. struct ggml_object * objects_end;
  2896. struct ggml_scratch scratch;
  2897. struct ggml_scratch scratch_save;
  2898. };
  2899. struct ggml_context_container {
  2900. bool used;
  2901. struct ggml_context context;
  2902. };
  2903. //
  2904. // compute types
  2905. //
  2906. enum ggml_task_type {
  2907. GGML_TASK_INIT = 0,
  2908. GGML_TASK_COMPUTE,
  2909. GGML_TASK_FINALIZE,
  2910. };
  2911. struct ggml_compute_params {
  2912. enum ggml_task_type type;
  2913. int ith, nth;
  2914. // work buffer for all threads
  2915. size_t wsize;
  2916. void * wdata;
  2917. };
  2918. //
  2919. // ggml state
  2920. //
  2921. struct ggml_state {
  2922. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2923. };
  2924. // global state
  2925. static struct ggml_state g_state;
  2926. static atomic_int g_state_barrier = 0;
  2927. // barrier via spin lock
  2928. inline static void ggml_critical_section_start(void) {
  2929. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2930. while (processing > 0) {
  2931. // wait for other threads to finish
  2932. atomic_fetch_sub(&g_state_barrier, 1);
  2933. sched_yield(); // TODO: reconsider this
  2934. processing = atomic_fetch_add(&g_state_barrier, 1);
  2935. }
  2936. }
  2937. // TODO: make this somehow automatically executed
  2938. // some sort of "sentry" mechanism
  2939. inline static void ggml_critical_section_end(void) {
  2940. atomic_fetch_sub(&g_state_barrier, 1);
  2941. }
  2942. ////////////////////////////////////////////////////////////////////////////////
  2943. void ggml_print_object(const struct ggml_object * obj) {
  2944. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2945. obj->offs, obj->size, (const void *) obj->next);
  2946. }
  2947. void ggml_print_objects(const struct ggml_context * ctx) {
  2948. struct ggml_object * obj = ctx->objects_begin;
  2949. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2950. while (obj != NULL) {
  2951. ggml_print_object(obj);
  2952. obj = obj->next;
  2953. }
  2954. GGML_PRINT("%s: --- end ---\n", __func__);
  2955. }
  2956. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2957. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2958. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2959. }
  2960. int ggml_nrows(const struct ggml_tensor * tensor) {
  2961. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2962. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2963. }
  2964. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2965. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2966. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2967. }
  2968. int ggml_blck_size(enum ggml_type type) {
  2969. return GGML_BLCK_SIZE[type];
  2970. }
  2971. size_t ggml_type_size(enum ggml_type type) {
  2972. return GGML_TYPE_SIZE[type];
  2973. }
  2974. float ggml_type_sizef(enum ggml_type type) {
  2975. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2976. }
  2977. const char * ggml_type_name(enum ggml_type type) {
  2978. return GGML_TYPE_NAME[type];
  2979. }
  2980. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2981. return GGML_TYPE_SIZE[tensor->type];
  2982. }
  2983. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2984. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2985. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2986. }
  2987. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2988. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2989. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2990. }
  2991. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2992. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2993. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2994. }
  2995. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2996. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2997. return
  2998. (t0->ne[0] == t1->ne[0]) &&
  2999. (t0->ne[2] == t1->ne[2]) &&
  3000. (t0->ne[3] == t1->ne[3]);
  3001. }
  3002. bool ggml_is_quantized(enum ggml_type type) {
  3003. return GGML_IS_QUANTIZED[type];
  3004. }
  3005. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3006. enum ggml_type wtype = GGML_TYPE_COUNT;
  3007. switch (ftype) {
  3008. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3009. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3010. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3011. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3012. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3013. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3014. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3015. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3016. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3017. }
  3018. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3019. return wtype;
  3020. }
  3021. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3022. return tensor->nb[0] > tensor->nb[1];
  3023. }
  3024. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3025. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3026. return
  3027. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3028. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3029. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3030. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3031. }
  3032. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3033. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3034. return
  3035. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3036. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3037. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3038. }
  3039. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3040. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3041. return
  3042. (t0->ne[0] == t1->ne[0] ) &&
  3043. (t0->ne[1] == t1->ne[1] ) &&
  3044. (t0->ne[2] == t1->ne[2] ) &&
  3045. (t0->ne[3] == t1->ne[3] );
  3046. }
  3047. // check if t1 can be represented as a repeatition of t0
  3048. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3049. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3050. return
  3051. (t1->ne[0]%t0->ne[0] == 0) &&
  3052. (t1->ne[1]%t0->ne[1] == 0) &&
  3053. (t1->ne[2]%t0->ne[2] == 0) &&
  3054. (t1->ne[3]%t0->ne[3] == 0);
  3055. }
  3056. static inline int ggml_up32(int n) {
  3057. return (n + 31) & ~31;
  3058. }
  3059. //static inline int ggml_up64(int n) {
  3060. // return (n + 63) & ~63;
  3061. //}
  3062. static inline int ggml_up(int n, int m) {
  3063. // assert m is a power of 2
  3064. GGML_ASSERT((m & (m - 1)) == 0);
  3065. return (n + m - 1) & ~(m - 1);
  3066. }
  3067. // assert that pointer is aligned to GGML_MEM_ALIGN
  3068. #define ggml_assert_aligned(ptr) \
  3069. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3070. ////////////////////////////////////////////////////////////////////////////////
  3071. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3072. // make this function thread safe
  3073. ggml_critical_section_start();
  3074. static bool is_first_call = true;
  3075. if (is_first_call) {
  3076. // initialize time system (required on Windows)
  3077. ggml_time_init();
  3078. // initialize GELU, SILU and EXP F32 tables
  3079. {
  3080. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3081. ggml_fp16_t ii;
  3082. for (int i = 0; i < (1 << 16); ++i) {
  3083. uint16_t ui = i;
  3084. memcpy(&ii, &ui, sizeof(ii));
  3085. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3086. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3087. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3088. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3089. }
  3090. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3091. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3092. }
  3093. // initialize g_state
  3094. {
  3095. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3096. g_state = (struct ggml_state) {
  3097. /*.contexts =*/ { { 0 } },
  3098. };
  3099. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3100. g_state.contexts[i].used = false;
  3101. }
  3102. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3103. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3104. }
  3105. #if defined(GGML_USE_CUBLAS)
  3106. ggml_init_cublas();
  3107. #elif defined(GGML_USE_CLBLAST)
  3108. ggml_cl_init();
  3109. #endif
  3110. is_first_call = false;
  3111. }
  3112. // find non-used context in g_state
  3113. struct ggml_context * ctx = NULL;
  3114. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3115. if (!g_state.contexts[i].used) {
  3116. g_state.contexts[i].used = true;
  3117. ctx = &g_state.contexts[i].context;
  3118. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3119. break;
  3120. }
  3121. }
  3122. if (ctx == NULL) {
  3123. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3124. ggml_critical_section_end();
  3125. return NULL;
  3126. }
  3127. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3128. *ctx = (struct ggml_context) {
  3129. /*.mem_size =*/ mem_size,
  3130. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3131. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3132. /*.no_alloc =*/ params.no_alloc,
  3133. /*.n_objects =*/ 0,
  3134. /*.objects_begin =*/ NULL,
  3135. /*.objects_end =*/ NULL,
  3136. /*.scratch =*/ { 0, 0, NULL, },
  3137. /*.scratch_save =*/ { 0, 0, NULL, },
  3138. };
  3139. GGML_ASSERT(ctx->mem_buffer != NULL);
  3140. ggml_assert_aligned(ctx->mem_buffer);
  3141. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3142. ggml_critical_section_end();
  3143. return ctx;
  3144. }
  3145. void ggml_free(struct ggml_context * ctx) {
  3146. // make this function thread safe
  3147. ggml_critical_section_start();
  3148. bool found = false;
  3149. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3150. if (&g_state.contexts[i].context == ctx) {
  3151. g_state.contexts[i].used = false;
  3152. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3153. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3154. if (ctx->mem_buffer_owned) {
  3155. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3156. }
  3157. found = true;
  3158. break;
  3159. }
  3160. }
  3161. if (!found) {
  3162. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3163. }
  3164. ggml_critical_section_end();
  3165. }
  3166. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3167. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3168. }
  3169. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3170. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3171. ctx->scratch = scratch;
  3172. return result;
  3173. }
  3174. // IMPORTANT:
  3175. // when creating "opt" tensors, always save and load the scratch buffer
  3176. // this is an error prone process, but it is necessary to support inplace
  3177. // operators when using scratch buffers
  3178. // TODO: implement a better way
  3179. void ggml_scratch_save(struct ggml_context * ctx) {
  3180. ctx->scratch_save = ctx->scratch;
  3181. ctx->scratch.data = NULL;
  3182. }
  3183. void ggml_scratch_load(struct ggml_context * ctx) {
  3184. ctx->scratch = ctx->scratch_save;
  3185. }
  3186. ////////////////////////////////////////////////////////////////////////////////
  3187. struct ggml_tensor * ggml_new_tensor_impl(
  3188. struct ggml_context * ctx,
  3189. enum ggml_type type,
  3190. int n_dims,
  3191. const int64_t* ne,
  3192. void* data) {
  3193. // always insert objects at the end of the context's memory pool
  3194. struct ggml_object * obj_cur = ctx->objects_end;
  3195. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3196. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3197. const size_t cur_end = cur_offs + cur_size;
  3198. size_t size_needed = 0;
  3199. if (data == NULL && !ctx->no_alloc) {
  3200. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3201. for (int i = 1; i < n_dims; i++) {
  3202. size_needed *= ne[i];
  3203. }
  3204. // align to GGML_MEM_ALIGN
  3205. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3206. }
  3207. char * const mem_buffer = ctx->mem_buffer;
  3208. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3209. if (ctx->scratch.data == NULL || data != NULL) {
  3210. size_needed += sizeof(struct ggml_tensor);
  3211. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3212. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3213. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3214. assert(false);
  3215. return NULL;
  3216. }
  3217. *obj_new = (struct ggml_object) {
  3218. .offs = cur_end + GGML_OBJECT_SIZE,
  3219. .size = size_needed,
  3220. .next = NULL,
  3221. };
  3222. } else {
  3223. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3224. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3225. assert(false);
  3226. return NULL;
  3227. }
  3228. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3229. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3230. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3231. assert(false);
  3232. return NULL;
  3233. }
  3234. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3235. *obj_new = (struct ggml_object) {
  3236. .offs = cur_end + GGML_OBJECT_SIZE,
  3237. .size = sizeof(struct ggml_tensor),
  3238. .next = NULL,
  3239. };
  3240. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3241. ctx->scratch.offs += size_needed;
  3242. }
  3243. if (obj_cur != NULL) {
  3244. obj_cur->next = obj_new;
  3245. } else {
  3246. // this is the first object in this context
  3247. ctx->objects_begin = obj_new;
  3248. }
  3249. ctx->objects_end = obj_new;
  3250. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3251. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3252. ggml_assert_aligned(result);
  3253. *result = (struct ggml_tensor) {
  3254. /*.type =*/ type,
  3255. /*.backend =*/ GGML_BACKEND_CPU,
  3256. /*.n_dims =*/ n_dims,
  3257. /*.ne =*/ { 1, 1, 1, 1 },
  3258. /*.nb =*/ { 0, 0, 0, 0 },
  3259. /*.op =*/ GGML_OP_NONE,
  3260. /*.is_param =*/ false,
  3261. /*.grad =*/ NULL,
  3262. /*.src0 =*/ NULL,
  3263. /*.src1 =*/ NULL,
  3264. /*.opt =*/ { NULL },
  3265. /*.n_tasks =*/ 0,
  3266. /*.perf_runs =*/ 0,
  3267. /*.perf_cycles =*/ 0,
  3268. /*.perf_time_us =*/ 0,
  3269. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3270. /*.name =*/ { 0 },
  3271. /*.pad =*/ { 0 },
  3272. };
  3273. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3274. //ggml_assert_aligned(result->data);
  3275. for (int i = 0; i < n_dims; i++) {
  3276. result->ne[i] = ne[i];
  3277. }
  3278. result->nb[0] = GGML_TYPE_SIZE[type];
  3279. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3280. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3281. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3282. }
  3283. ctx->n_objects++;
  3284. return result;
  3285. }
  3286. struct ggml_tensor * ggml_new_tensor(
  3287. struct ggml_context * ctx,
  3288. enum ggml_type type,
  3289. int n_dims,
  3290. const int64_t * ne) {
  3291. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3292. }
  3293. struct ggml_tensor * ggml_new_tensor_1d(
  3294. struct ggml_context * ctx,
  3295. enum ggml_type type,
  3296. int64_t ne0) {
  3297. return ggml_new_tensor(ctx, type, 1, &ne0);
  3298. }
  3299. struct ggml_tensor * ggml_new_tensor_2d(
  3300. struct ggml_context * ctx,
  3301. enum ggml_type type,
  3302. int64_t ne0,
  3303. int64_t ne1) {
  3304. const int64_t ne[2] = { ne0, ne1 };
  3305. return ggml_new_tensor(ctx, type, 2, ne);
  3306. }
  3307. struct ggml_tensor * ggml_new_tensor_3d(
  3308. struct ggml_context * ctx,
  3309. enum ggml_type type,
  3310. int64_t ne0,
  3311. int64_t ne1,
  3312. int64_t ne2) {
  3313. const int64_t ne[3] = { ne0, ne1, ne2 };
  3314. return ggml_new_tensor(ctx, type, 3, ne);
  3315. }
  3316. struct ggml_tensor * ggml_new_tensor_4d(
  3317. struct ggml_context * ctx,
  3318. enum ggml_type type,
  3319. int64_t ne0,
  3320. int64_t ne1,
  3321. int64_t ne2,
  3322. int64_t ne3) {
  3323. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3324. return ggml_new_tensor(ctx, type, 4, ne);
  3325. }
  3326. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3327. ggml_scratch_save(ctx);
  3328. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3329. ggml_scratch_load(ctx);
  3330. ggml_set_i32(result, value);
  3331. return result;
  3332. }
  3333. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3334. ggml_scratch_save(ctx);
  3335. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3336. ggml_scratch_load(ctx);
  3337. ggml_set_f32(result, value);
  3338. return result;
  3339. }
  3340. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3341. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3342. }
  3343. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3344. memset(tensor->data, 0, ggml_nbytes(tensor));
  3345. return tensor;
  3346. }
  3347. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3348. const int n = ggml_nrows(tensor);
  3349. const int nc = tensor->ne[0];
  3350. const size_t n1 = tensor->nb[1];
  3351. char * const data = tensor->data;
  3352. switch (tensor->type) {
  3353. case GGML_TYPE_I8:
  3354. {
  3355. assert(tensor->nb[0] == sizeof(int8_t));
  3356. for (int i = 0; i < n; i++) {
  3357. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3358. }
  3359. } break;
  3360. case GGML_TYPE_I16:
  3361. {
  3362. assert(tensor->nb[0] == sizeof(int16_t));
  3363. for (int i = 0; i < n; i++) {
  3364. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3365. }
  3366. } break;
  3367. case GGML_TYPE_I32:
  3368. {
  3369. assert(tensor->nb[0] == sizeof(int32_t));
  3370. for (int i = 0; i < n; i++) {
  3371. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3372. }
  3373. } break;
  3374. case GGML_TYPE_F16:
  3375. {
  3376. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3377. for (int i = 0; i < n; i++) {
  3378. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3379. }
  3380. } break;
  3381. case GGML_TYPE_F32:
  3382. {
  3383. assert(tensor->nb[0] == sizeof(float));
  3384. for (int i = 0; i < n; i++) {
  3385. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3386. }
  3387. } break;
  3388. default:
  3389. {
  3390. GGML_ASSERT(false);
  3391. } break;
  3392. }
  3393. return tensor;
  3394. }
  3395. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3396. const int n = ggml_nrows(tensor);
  3397. const int nc = tensor->ne[0];
  3398. const size_t n1 = tensor->nb[1];
  3399. char * const data = tensor->data;
  3400. switch (tensor->type) {
  3401. case GGML_TYPE_I8:
  3402. {
  3403. assert(tensor->nb[0] == sizeof(int8_t));
  3404. for (int i = 0; i < n; i++) {
  3405. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3406. }
  3407. } break;
  3408. case GGML_TYPE_I16:
  3409. {
  3410. assert(tensor->nb[0] == sizeof(int16_t));
  3411. for (int i = 0; i < n; i++) {
  3412. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3413. }
  3414. } break;
  3415. case GGML_TYPE_I32:
  3416. {
  3417. assert(tensor->nb[0] == sizeof(int32_t));
  3418. for (int i = 0; i < n; i++) {
  3419. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3420. }
  3421. } break;
  3422. case GGML_TYPE_F16:
  3423. {
  3424. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3425. for (int i = 0; i < n; i++) {
  3426. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3427. }
  3428. } break;
  3429. case GGML_TYPE_F32:
  3430. {
  3431. assert(tensor->nb[0] == sizeof(float));
  3432. for (int i = 0; i < n; i++) {
  3433. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3434. }
  3435. } break;
  3436. default:
  3437. {
  3438. GGML_ASSERT(false);
  3439. } break;
  3440. }
  3441. return tensor;
  3442. }
  3443. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3444. switch (tensor->type) {
  3445. case GGML_TYPE_I8:
  3446. {
  3447. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3448. return ((int8_t *)(tensor->data))[i];
  3449. } break;
  3450. case GGML_TYPE_I16:
  3451. {
  3452. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3453. return ((int16_t *)(tensor->data))[i];
  3454. } break;
  3455. case GGML_TYPE_I32:
  3456. {
  3457. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3458. return ((int32_t *)(tensor->data))[i];
  3459. } break;
  3460. case GGML_TYPE_F16:
  3461. {
  3462. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3463. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3464. } break;
  3465. case GGML_TYPE_F32:
  3466. {
  3467. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3468. return ((float *)(tensor->data))[i];
  3469. } break;
  3470. default:
  3471. {
  3472. GGML_ASSERT(false);
  3473. } break;
  3474. }
  3475. return 0.0f;
  3476. }
  3477. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3478. switch (tensor->type) {
  3479. case GGML_TYPE_I8:
  3480. {
  3481. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3482. ((int8_t *)(tensor->data))[i] = value;
  3483. } break;
  3484. case GGML_TYPE_I16:
  3485. {
  3486. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3487. ((int16_t *)(tensor->data))[i] = value;
  3488. } break;
  3489. case GGML_TYPE_I32:
  3490. {
  3491. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3492. ((int32_t *)(tensor->data))[i] = value;
  3493. } break;
  3494. case GGML_TYPE_F16:
  3495. {
  3496. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3497. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3498. } break;
  3499. case GGML_TYPE_F32:
  3500. {
  3501. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3502. ((float *)(tensor->data))[i] = value;
  3503. } break;
  3504. default:
  3505. {
  3506. GGML_ASSERT(false);
  3507. } break;
  3508. }
  3509. }
  3510. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3511. switch (tensor->type) {
  3512. case GGML_TYPE_I8:
  3513. {
  3514. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3515. return ((int8_t *)(tensor->data))[i];
  3516. } break;
  3517. case GGML_TYPE_I16:
  3518. {
  3519. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3520. return ((int16_t *)(tensor->data))[i];
  3521. } break;
  3522. case GGML_TYPE_I32:
  3523. {
  3524. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3525. return ((int32_t *)(tensor->data))[i];
  3526. } break;
  3527. case GGML_TYPE_F16:
  3528. {
  3529. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3530. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3531. } break;
  3532. case GGML_TYPE_F32:
  3533. {
  3534. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3535. return ((float *)(tensor->data))[i];
  3536. } break;
  3537. default:
  3538. {
  3539. GGML_ASSERT(false);
  3540. } break;
  3541. }
  3542. return 0.0f;
  3543. }
  3544. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3545. switch (tensor->type) {
  3546. case GGML_TYPE_I8:
  3547. {
  3548. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3549. ((int8_t *)(tensor->data))[i] = value;
  3550. } break;
  3551. case GGML_TYPE_I16:
  3552. {
  3553. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3554. ((int16_t *)(tensor->data))[i] = value;
  3555. } break;
  3556. case GGML_TYPE_I32:
  3557. {
  3558. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3559. ((int32_t *)(tensor->data))[i] = value;
  3560. } break;
  3561. case GGML_TYPE_F16:
  3562. {
  3563. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3564. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3565. } break;
  3566. case GGML_TYPE_F32:
  3567. {
  3568. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3569. ((float *)(tensor->data))[i] = value;
  3570. } break;
  3571. default:
  3572. {
  3573. GGML_ASSERT(false);
  3574. } break;
  3575. }
  3576. }
  3577. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3578. return tensor->data;
  3579. }
  3580. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3581. assert(tensor->type == GGML_TYPE_F32);
  3582. return (float *)(tensor->data);
  3583. }
  3584. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3585. return tensor->name;
  3586. }
  3587. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3588. strncpy(tensor->name, name, sizeof(tensor->name));
  3589. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3590. }
  3591. struct ggml_tensor * ggml_view_tensor(
  3592. struct ggml_context * ctx,
  3593. const struct ggml_tensor * src) {
  3594. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3595. result->nb[0] = src->nb[0];
  3596. result->nb[1] = src->nb[1];
  3597. result->nb[2] = src->nb[2];
  3598. result->nb[3] = src->nb[3];
  3599. return result;
  3600. }
  3601. ////////////////////////////////////////////////////////////////////////////////
  3602. // ggml_dup
  3603. struct ggml_tensor * ggml_dup_impl(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a,
  3606. bool inplace) {
  3607. bool is_node = false;
  3608. if (!inplace && (a->grad)) {
  3609. is_node = true;
  3610. }
  3611. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3612. result->op = GGML_OP_DUP;
  3613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3614. result->src0 = a;
  3615. result->src1 = NULL;
  3616. return result;
  3617. }
  3618. struct ggml_tensor * ggml_dup(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a) {
  3621. return ggml_dup_impl(ctx, a, false);
  3622. }
  3623. struct ggml_tensor * ggml_dup_inplace(
  3624. struct ggml_context * ctx,
  3625. struct ggml_tensor * a) {
  3626. return ggml_dup_impl(ctx, a, true);
  3627. }
  3628. // ggml_add
  3629. struct ggml_tensor * ggml_add_impl(
  3630. struct ggml_context * ctx,
  3631. struct ggml_tensor * a,
  3632. struct ggml_tensor * b,
  3633. bool inplace) {
  3634. GGML_ASSERT(ggml_are_same_shape(a, b));
  3635. bool is_node = false;
  3636. if (!inplace && (a->grad || b->grad)) {
  3637. is_node = true;
  3638. }
  3639. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3640. result->op = GGML_OP_ADD;
  3641. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3642. result->src0 = a;
  3643. result->src1 = b;
  3644. return result;
  3645. }
  3646. struct ggml_tensor * ggml_add(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * a,
  3649. struct ggml_tensor * b) {
  3650. return ggml_add_impl(ctx, a, b, false);
  3651. }
  3652. struct ggml_tensor * ggml_add_inplace(
  3653. struct ggml_context * ctx,
  3654. struct ggml_tensor * a,
  3655. struct ggml_tensor * b) {
  3656. return ggml_add_impl(ctx, a, b, true);
  3657. }
  3658. // ggml_add1
  3659. struct ggml_tensor * ggml_add1_impl(
  3660. struct ggml_context * ctx,
  3661. struct ggml_tensor * a,
  3662. struct ggml_tensor * b,
  3663. bool inplace) {
  3664. GGML_ASSERT(ggml_is_scalar(b));
  3665. GGML_ASSERT(ggml_is_padded_1d(a));
  3666. bool is_node = false;
  3667. if (!inplace && (a->grad || b->grad)) {
  3668. is_node = true;
  3669. }
  3670. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3671. result->op = GGML_OP_ADD1;
  3672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3673. result->src0 = a;
  3674. result->src1 = b;
  3675. return result;
  3676. }
  3677. struct ggml_tensor * ggml_add1(
  3678. struct ggml_context * ctx,
  3679. struct ggml_tensor * a,
  3680. struct ggml_tensor * b) {
  3681. return ggml_add1_impl(ctx, a, b, false);
  3682. }
  3683. struct ggml_tensor * ggml_add1_inplace(
  3684. struct ggml_context * ctx,
  3685. struct ggml_tensor * a,
  3686. struct ggml_tensor * b) {
  3687. return ggml_add1_impl(ctx, a, b, true);
  3688. }
  3689. // ggml_acc
  3690. struct ggml_tensor * ggml_acc_impl(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a,
  3693. struct ggml_tensor * b,
  3694. size_t nb1,
  3695. size_t nb2,
  3696. size_t nb3,
  3697. size_t offset,
  3698. bool inplace) {
  3699. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3700. GGML_ASSERT(ggml_is_contiguous(a));
  3701. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3702. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3703. bool is_node = false;
  3704. if (!inplace && (a->grad || b->grad)) {
  3705. is_node = true;
  3706. }
  3707. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3708. ggml_scratch_save(ctx);
  3709. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3710. ((int32_t *) c->data)[0] = nb1;
  3711. ((int32_t *) c->data)[1] = nb2;
  3712. ((int32_t *) c->data)[2] = nb3;
  3713. ((int32_t *) c->data)[3] = offset;
  3714. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3715. ggml_scratch_load(ctx);
  3716. result->op = GGML_OP_ACC;
  3717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3718. result->src0 = a;
  3719. result->src1 = b;
  3720. result->opt[0] = c;
  3721. return result;
  3722. }
  3723. struct ggml_tensor * ggml_acc(
  3724. struct ggml_context * ctx,
  3725. struct ggml_tensor * a,
  3726. struct ggml_tensor * b,
  3727. size_t nb1,
  3728. size_t nb2,
  3729. size_t nb3,
  3730. size_t offset) {
  3731. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3732. }
  3733. struct ggml_tensor * ggml_acc_inplace(
  3734. struct ggml_context * ctx,
  3735. struct ggml_tensor * a,
  3736. struct ggml_tensor * b,
  3737. size_t nb1,
  3738. size_t nb2,
  3739. size_t nb3,
  3740. size_t offset) {
  3741. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3742. }
  3743. // ggml_sub
  3744. struct ggml_tensor * ggml_sub_impl(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a,
  3747. struct ggml_tensor * b,
  3748. bool inplace) {
  3749. GGML_ASSERT(ggml_are_same_shape(a, b));
  3750. bool is_node = false;
  3751. if (!inplace && (a->grad || b->grad)) {
  3752. is_node = true;
  3753. }
  3754. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3755. result->op = GGML_OP_SUB;
  3756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3757. result->src0 = a;
  3758. result->src1 = b;
  3759. return result;
  3760. }
  3761. struct ggml_tensor * ggml_sub(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a,
  3764. struct ggml_tensor * b) {
  3765. return ggml_sub_impl(ctx, a, b, false);
  3766. }
  3767. struct ggml_tensor * ggml_sub_inplace(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a,
  3770. struct ggml_tensor * b) {
  3771. return ggml_sub_impl(ctx, a, b, true);
  3772. }
  3773. // ggml_mul
  3774. struct ggml_tensor * ggml_mul_impl(
  3775. struct ggml_context * ctx,
  3776. struct ggml_tensor * a,
  3777. struct ggml_tensor * b,
  3778. bool inplace) {
  3779. GGML_ASSERT(ggml_are_same_shape(a, b));
  3780. bool is_node = false;
  3781. if (!inplace && (a->grad || b->grad)) {
  3782. is_node = true;
  3783. }
  3784. if (inplace) {
  3785. GGML_ASSERT(is_node == false);
  3786. }
  3787. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3788. result->op = GGML_OP_MUL;
  3789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3790. result->src0 = a;
  3791. result->src1 = b;
  3792. return result;
  3793. }
  3794. struct ggml_tensor * ggml_mul(
  3795. struct ggml_context * ctx,
  3796. struct ggml_tensor * a,
  3797. struct ggml_tensor * b) {
  3798. return ggml_mul_impl(ctx, a, b, false);
  3799. }
  3800. struct ggml_tensor * ggml_mul_inplace(
  3801. struct ggml_context * ctx,
  3802. struct ggml_tensor * a,
  3803. struct ggml_tensor * b) {
  3804. return ggml_mul_impl(ctx, a, b, true);
  3805. }
  3806. // ggml_div
  3807. struct ggml_tensor * ggml_div_impl(
  3808. struct ggml_context * ctx,
  3809. struct ggml_tensor * a,
  3810. struct ggml_tensor * b,
  3811. bool inplace) {
  3812. GGML_ASSERT(ggml_are_same_shape(a, b));
  3813. bool is_node = false;
  3814. if (!inplace && (a->grad || b->grad)) {
  3815. is_node = true;
  3816. }
  3817. if (inplace) {
  3818. GGML_ASSERT(is_node == false);
  3819. }
  3820. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3821. result->op = GGML_OP_DIV;
  3822. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3823. result->src0 = a;
  3824. result->src1 = b;
  3825. return result;
  3826. }
  3827. struct ggml_tensor * ggml_div(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a,
  3830. struct ggml_tensor * b) {
  3831. return ggml_div_impl(ctx, a, b, false);
  3832. }
  3833. struct ggml_tensor * ggml_div_inplace(
  3834. struct ggml_context * ctx,
  3835. struct ggml_tensor * a,
  3836. struct ggml_tensor * b) {
  3837. return ggml_div_impl(ctx, a, b, true);
  3838. }
  3839. // ggml_sqr
  3840. struct ggml_tensor * ggml_sqr_impl(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * a,
  3843. bool inplace) {
  3844. bool is_node = false;
  3845. if (!inplace && (a->grad)) {
  3846. is_node = true;
  3847. }
  3848. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3849. result->op = GGML_OP_SQR;
  3850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3851. result->src0 = a;
  3852. result->src1 = NULL;
  3853. return result;
  3854. }
  3855. struct ggml_tensor * ggml_sqr(
  3856. struct ggml_context * ctx,
  3857. struct ggml_tensor * a) {
  3858. return ggml_sqr_impl(ctx, a, false);
  3859. }
  3860. struct ggml_tensor * ggml_sqr_inplace(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a) {
  3863. return ggml_sqr_impl(ctx, a, true);
  3864. }
  3865. // ggml_sqrt
  3866. struct ggml_tensor * ggml_sqrt_impl(
  3867. struct ggml_context * ctx,
  3868. struct ggml_tensor * a,
  3869. bool inplace) {
  3870. bool is_node = false;
  3871. if (!inplace && (a->grad)) {
  3872. is_node = true;
  3873. }
  3874. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3875. result->op = GGML_OP_SQRT;
  3876. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3877. result->src0 = a;
  3878. result->src1 = NULL;
  3879. return result;
  3880. }
  3881. struct ggml_tensor * ggml_sqrt(
  3882. struct ggml_context * ctx,
  3883. struct ggml_tensor * a) {
  3884. return ggml_sqrt_impl(ctx, a, false);
  3885. }
  3886. struct ggml_tensor * ggml_sqrt_inplace(
  3887. struct ggml_context * ctx,
  3888. struct ggml_tensor * a) {
  3889. return ggml_sqrt_impl(ctx, a, true);
  3890. }
  3891. // ggml_log
  3892. struct ggml_tensor * ggml_log_impl(
  3893. struct ggml_context * ctx,
  3894. struct ggml_tensor * a,
  3895. bool inplace) {
  3896. bool is_node = false;
  3897. if (!inplace && (a->grad)) {
  3898. is_node = true;
  3899. }
  3900. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3901. result->op = GGML_OP_LOG;
  3902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3903. result->src0 = a;
  3904. result->src1 = NULL;
  3905. return result;
  3906. }
  3907. struct ggml_tensor * ggml_log(
  3908. struct ggml_context * ctx,
  3909. struct ggml_tensor * a) {
  3910. return ggml_log_impl(ctx, a, false);
  3911. }
  3912. struct ggml_tensor * ggml_log_inplace(
  3913. struct ggml_context * ctx,
  3914. struct ggml_tensor * a) {
  3915. return ggml_log_impl(ctx, a, true);
  3916. }
  3917. // ggml_sum
  3918. struct ggml_tensor * ggml_sum(
  3919. struct ggml_context * ctx,
  3920. struct ggml_tensor * a) {
  3921. bool is_node = false;
  3922. if (a->grad) {
  3923. is_node = true;
  3924. }
  3925. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3926. result->op = GGML_OP_SUM;
  3927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3928. result->src0 = a;
  3929. result->src1 = NULL;
  3930. return result;
  3931. }
  3932. // ggml_sum_rows
  3933. struct ggml_tensor * ggml_sum_rows(
  3934. struct ggml_context * ctx,
  3935. struct ggml_tensor * a) {
  3936. bool is_node = false;
  3937. if (a->grad) {
  3938. is_node = true;
  3939. }
  3940. int64_t ne[4] = {1,1,1,1};
  3941. for (int i=1; i<a->n_dims; ++i) {
  3942. ne[i] = a->ne[i];
  3943. }
  3944. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  3945. result->op = GGML_OP_SUM_ROWS;
  3946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3947. result->src0 = a;
  3948. result->src1 = NULL;
  3949. return result;
  3950. }
  3951. // ggml_mean
  3952. struct ggml_tensor * ggml_mean(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a) {
  3955. bool is_node = false;
  3956. if (a->grad) {
  3957. GGML_ASSERT(false); // TODO: implement
  3958. is_node = true;
  3959. }
  3960. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3961. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3962. result->op = GGML_OP_MEAN;
  3963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3964. result->src0 = a;
  3965. result->src1 = NULL;
  3966. return result;
  3967. }
  3968. // ggml_repeat
  3969. struct ggml_tensor * ggml_repeat(
  3970. struct ggml_context * ctx,
  3971. struct ggml_tensor * a,
  3972. struct ggml_tensor * b) {
  3973. GGML_ASSERT(ggml_can_repeat(a, b));
  3974. bool is_node = false;
  3975. if (a->grad) {
  3976. is_node = true;
  3977. }
  3978. if (ggml_are_same_shape(a, b) && !is_node) {
  3979. return a;
  3980. }
  3981. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3982. result->op = GGML_OP_REPEAT;
  3983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3984. result->src0 = a;
  3985. result->src1 = b;
  3986. return result;
  3987. }
  3988. // ggml_abs
  3989. struct ggml_tensor * ggml_abs_impl(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a,
  3992. bool inplace) {
  3993. bool is_node = false;
  3994. if (!inplace && (a->grad)) {
  3995. is_node = true;
  3996. }
  3997. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3998. result->op = GGML_OP_ABS;
  3999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4000. result->src0 = a;
  4001. result->src1 = NULL;
  4002. return result;
  4003. }
  4004. struct ggml_tensor * ggml_abs(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a) {
  4007. return ggml_abs_impl(ctx, a, false);
  4008. }
  4009. struct ggml_tensor * ggml_abs_inplace(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a) {
  4012. return ggml_abs_impl(ctx, a, true);
  4013. }
  4014. // ggml_sgn
  4015. struct ggml_tensor * ggml_sgn_impl(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a,
  4018. bool inplace) {
  4019. bool is_node = false;
  4020. if (!inplace && (a->grad)) {
  4021. is_node = true;
  4022. }
  4023. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4024. result->op = GGML_OP_SGN;
  4025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4026. result->src0 = a;
  4027. result->src1 = NULL;
  4028. return result;
  4029. }
  4030. struct ggml_tensor * ggml_sgn(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a) {
  4033. return ggml_sgn_impl(ctx, a, false);
  4034. }
  4035. struct ggml_tensor * ggml_sgn_inplace(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a) {
  4038. return ggml_sgn_impl(ctx, a, true);
  4039. }
  4040. // ggml_neg
  4041. struct ggml_tensor * ggml_neg_impl(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a,
  4044. bool inplace) {
  4045. bool is_node = false;
  4046. if (!inplace && (a->grad)) {
  4047. is_node = true;
  4048. }
  4049. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4050. result->op = GGML_OP_NEG;
  4051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4052. result->src0 = a;
  4053. result->src1 = NULL;
  4054. return result;
  4055. }
  4056. struct ggml_tensor * ggml_neg(
  4057. struct ggml_context * ctx,
  4058. struct ggml_tensor * a) {
  4059. return ggml_neg_impl(ctx, a, false);
  4060. }
  4061. struct ggml_tensor * ggml_neg_inplace(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a) {
  4064. return ggml_neg_impl(ctx, a, true);
  4065. }
  4066. // ggml_step
  4067. struct ggml_tensor * ggml_step_impl(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a,
  4070. bool inplace) {
  4071. bool is_node = false;
  4072. if (!inplace && (a->grad)) {
  4073. is_node = true;
  4074. }
  4075. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4076. result->op = GGML_OP_STEP;
  4077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4078. result->src0 = a;
  4079. result->src1 = NULL;
  4080. return result;
  4081. }
  4082. struct ggml_tensor * ggml_step(
  4083. struct ggml_context * ctx,
  4084. struct ggml_tensor * a) {
  4085. return ggml_step_impl(ctx, a, false);
  4086. }
  4087. struct ggml_tensor * ggml_step_inplace(
  4088. struct ggml_context * ctx,
  4089. struct ggml_tensor * a) {
  4090. return ggml_step_impl(ctx, a, true);
  4091. }
  4092. // ggml_relu
  4093. struct ggml_tensor * ggml_relu_impl(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. bool inplace) {
  4097. bool is_node = false;
  4098. if (!inplace && (a->grad)) {
  4099. is_node = true;
  4100. }
  4101. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4102. result->op = GGML_OP_RELU;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src0 = a;
  4105. result->src1 = NULL;
  4106. return result;
  4107. }
  4108. struct ggml_tensor * ggml_relu(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a) {
  4111. return ggml_relu_impl(ctx, a, false);
  4112. }
  4113. struct ggml_tensor * ggml_relu_inplace(
  4114. struct ggml_context * ctx,
  4115. struct ggml_tensor * a) {
  4116. return ggml_relu_impl(ctx, a, true);
  4117. }
  4118. // ggml_gelu
  4119. struct ggml_tensor * ggml_gelu_impl(
  4120. struct ggml_context * ctx,
  4121. struct ggml_tensor * a,
  4122. bool inplace) {
  4123. bool is_node = false;
  4124. if (!inplace && (a->grad)) {
  4125. is_node = true;
  4126. }
  4127. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4128. result->op = GGML_OP_GELU;
  4129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4130. result->src0 = a;
  4131. result->src1 = NULL;
  4132. return result;
  4133. }
  4134. struct ggml_tensor * ggml_gelu(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a) {
  4137. return ggml_gelu_impl(ctx, a, false);
  4138. }
  4139. struct ggml_tensor * ggml_gelu_inplace(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a) {
  4142. return ggml_gelu_impl(ctx, a, true);
  4143. }
  4144. // ggml_silu
  4145. struct ggml_tensor * ggml_silu_impl(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. bool inplace) {
  4149. bool is_node = false;
  4150. if (!inplace && (a->grad)) {
  4151. is_node = true;
  4152. }
  4153. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4154. result->op = GGML_OP_SILU;
  4155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4156. result->src0 = a;
  4157. result->src1 = NULL;
  4158. return result;
  4159. }
  4160. struct ggml_tensor * ggml_silu(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a) {
  4163. return ggml_silu_impl(ctx, a, false);
  4164. }
  4165. struct ggml_tensor * ggml_silu_inplace(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a) {
  4168. return ggml_silu_impl(ctx, a, true);
  4169. }
  4170. // ggml_silu_back
  4171. struct ggml_tensor * ggml_silu_back(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. struct ggml_tensor * b) {
  4175. bool is_node = false;
  4176. if (a->grad || b->grad) {
  4177. // TODO: implement backward
  4178. is_node = true;
  4179. }
  4180. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4181. result->op = GGML_OP_SILU_BACK;
  4182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4183. result->src0 = a;
  4184. result->src1 = b;
  4185. return result;
  4186. }
  4187. // ggml_norm
  4188. struct ggml_tensor * ggml_norm_impl(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. bool inplace) {
  4192. bool is_node = false;
  4193. if (!inplace && (a->grad)) {
  4194. GGML_ASSERT(false); // TODO: implement backward
  4195. is_node = true;
  4196. }
  4197. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4198. result->op = GGML_OP_NORM;
  4199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4200. result->src0 = a;
  4201. result->src1 = NULL; // TODO: maybe store epsilon here?
  4202. return result;
  4203. }
  4204. struct ggml_tensor * ggml_norm(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a) {
  4207. return ggml_norm_impl(ctx, a, false);
  4208. }
  4209. struct ggml_tensor * ggml_norm_inplace(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a) {
  4212. return ggml_norm_impl(ctx, a, true);
  4213. }
  4214. struct ggml_tensor * ggml_rms_norm_impl(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. bool inplace) {
  4218. bool is_node = false;
  4219. if (!inplace && (a->grad)) {
  4220. is_node = true;
  4221. }
  4222. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4223. result->op = GGML_OP_RMS_NORM;
  4224. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4225. result->src0 = a;
  4226. result->src1 = NULL; // TODO: maybe store epsilon here?
  4227. return result;
  4228. }
  4229. struct ggml_tensor * ggml_rms_norm(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a) {
  4232. return ggml_rms_norm_impl(ctx, a, false);
  4233. }
  4234. struct ggml_tensor * ggml_rms_norm_inplace(
  4235. struct ggml_context * ctx,
  4236. struct ggml_tensor * a) {
  4237. return ggml_rms_norm_impl(ctx, a, true);
  4238. }
  4239. struct ggml_tensor * ggml_rms_norm_back(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a,
  4242. struct ggml_tensor * b) {
  4243. bool is_node = false;
  4244. if (a->grad) {
  4245. // TODO: implement backward
  4246. is_node = true;
  4247. }
  4248. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4249. result->op = GGML_OP_RMS_NORM_BACK;
  4250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4251. result->src0 = a;
  4252. result->src1 = b;
  4253. return result;
  4254. }
  4255. // ggml_mul_mat
  4256. struct ggml_tensor * ggml_mul_mat(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a,
  4259. struct ggml_tensor * b) {
  4260. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4261. GGML_ASSERT(!ggml_is_transposed(a));
  4262. bool is_node = false;
  4263. if (a->grad || b->grad) {
  4264. is_node = true;
  4265. }
  4266. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4267. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4268. result->op = GGML_OP_MUL_MAT;
  4269. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4270. result->src0 = a;
  4271. result->src1 = b;
  4272. return result;
  4273. }
  4274. // ggml_scale
  4275. struct ggml_tensor * ggml_scale_impl(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a,
  4278. struct ggml_tensor * b,
  4279. bool inplace) {
  4280. GGML_ASSERT(ggml_is_scalar(b));
  4281. GGML_ASSERT(ggml_is_padded_1d(a));
  4282. bool is_node = false;
  4283. if (!inplace && (a->grad || b->grad)) {
  4284. is_node = true;
  4285. }
  4286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4287. result->op = GGML_OP_SCALE;
  4288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4289. result->src0 = a;
  4290. result->src1 = b;
  4291. return result;
  4292. }
  4293. struct ggml_tensor * ggml_scale(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a,
  4296. struct ggml_tensor * b) {
  4297. return ggml_scale_impl(ctx, a, b, false);
  4298. }
  4299. struct ggml_tensor * ggml_scale_inplace(
  4300. struct ggml_context * ctx,
  4301. struct ggml_tensor * a,
  4302. struct ggml_tensor * b) {
  4303. return ggml_scale_impl(ctx, a, b, true);
  4304. }
  4305. // ggml_set
  4306. struct ggml_tensor * ggml_set_impl(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a,
  4309. struct ggml_tensor * b,
  4310. size_t nb1,
  4311. size_t nb2,
  4312. size_t nb3,
  4313. size_t offset,
  4314. bool inplace) {
  4315. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4316. bool is_node = false;
  4317. if (!inplace && (a->grad || b->grad)) {
  4318. is_node = true;
  4319. }
  4320. // make a view of the destination
  4321. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4322. ggml_scratch_save(ctx);
  4323. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4324. (( int32_t * ) c->data)[0] = nb1;
  4325. (( int32_t * ) c->data)[1] = nb2;
  4326. (( int32_t * ) c->data)[2] = nb3;
  4327. (( int32_t * ) c->data)[3] = offset;
  4328. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4329. ggml_scratch_load(ctx);
  4330. result->op = GGML_OP_SET;
  4331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4332. result->src0 = a;
  4333. result->src1 = b;
  4334. result->opt[0] = c;
  4335. return result;
  4336. }
  4337. struct ggml_tensor * ggml_set(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b,
  4341. size_t nb1,
  4342. size_t nb2,
  4343. size_t nb3,
  4344. size_t offset) {
  4345. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4346. }
  4347. struct ggml_tensor * ggml_set_inplace(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. struct ggml_tensor * b,
  4351. size_t nb1,
  4352. size_t nb2,
  4353. size_t nb3,
  4354. size_t offset) {
  4355. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4356. }
  4357. struct ggml_tensor * ggml_set_1d(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. struct ggml_tensor * b,
  4361. size_t offset) {
  4362. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4363. }
  4364. struct ggml_tensor * ggml_set_1d_inplace(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a,
  4367. struct ggml_tensor * b,
  4368. size_t offset) {
  4369. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4370. }
  4371. struct ggml_tensor * ggml_set_2d(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. struct ggml_tensor * b,
  4375. size_t nb1,
  4376. size_t offset) {
  4377. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4378. }
  4379. struct ggml_tensor * ggml_set_2d_inplace(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a,
  4382. struct ggml_tensor * b,
  4383. size_t nb1,
  4384. size_t offset) {
  4385. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4386. }
  4387. // ggml_cpy
  4388. struct ggml_tensor * ggml_cpy_impl(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. struct ggml_tensor * b,
  4392. bool inplace) {
  4393. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4394. bool is_node = false;
  4395. if (!inplace && (a->grad || b->grad)) {
  4396. is_node = true;
  4397. }
  4398. // make a view of the destination
  4399. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4400. result->op = GGML_OP_CPY;
  4401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4402. result->src0 = a;
  4403. result->src1 = b;
  4404. return result;
  4405. }
  4406. struct ggml_tensor * ggml_cpy(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. struct ggml_tensor * b) {
  4410. return ggml_cpy_impl(ctx, a, b, false);
  4411. }
  4412. struct ggml_tensor * ggml_cpy_inplace(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a,
  4415. struct ggml_tensor * b) {
  4416. return ggml_cpy_impl(ctx, a, b, true);
  4417. }
  4418. // ggml_cont
  4419. struct ggml_tensor * ggml_cont_impl(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a,
  4422. bool inplace) {
  4423. bool is_node = false;
  4424. if (!inplace && a->grad) {
  4425. is_node = true;
  4426. }
  4427. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4428. result->op = GGML_OP_CONT;
  4429. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4430. result->src0 = a;
  4431. result->src1 = NULL;
  4432. return result;
  4433. }
  4434. struct ggml_tensor * ggml_cont(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a) {
  4437. return ggml_cont_impl(ctx, a, false);
  4438. }
  4439. struct ggml_tensor * ggml_cont_inplace(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a) {
  4442. return ggml_cont_impl(ctx, a, true);
  4443. }
  4444. // ggml_reshape
  4445. struct ggml_tensor * ggml_reshape(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a,
  4448. struct ggml_tensor * b) {
  4449. GGML_ASSERT(ggml_is_contiguous(a));
  4450. GGML_ASSERT(ggml_is_contiguous(b));
  4451. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4452. bool is_node = false;
  4453. if (a->grad) {
  4454. is_node = true;
  4455. }
  4456. if (b->grad) {
  4457. // gradient propagation is not supported
  4458. //GGML_ASSERT(false);
  4459. }
  4460. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4461. result->op = GGML_OP_RESHAPE;
  4462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4463. result->src0 = a;
  4464. result->src1 = NULL;
  4465. return result;
  4466. }
  4467. struct ggml_tensor * ggml_reshape_1d(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. int64_t ne0) {
  4471. GGML_ASSERT(ggml_is_contiguous(a));
  4472. GGML_ASSERT(ggml_nelements(a) == ne0);
  4473. bool is_node = false;
  4474. if (a->grad) {
  4475. is_node = true;
  4476. }
  4477. const int64_t ne[1] = { ne0 };
  4478. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4479. result->op = GGML_OP_RESHAPE;
  4480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4481. result->src0 = a;
  4482. result->src1 = NULL;
  4483. return result;
  4484. }
  4485. struct ggml_tensor * ggml_reshape_2d(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. int64_t ne0,
  4489. int64_t ne1) {
  4490. GGML_ASSERT(ggml_is_contiguous(a));
  4491. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4492. bool is_node = false;
  4493. if (a->grad) {
  4494. is_node = true;
  4495. }
  4496. const int64_t ne[2] = { ne0, ne1 };
  4497. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4498. result->op = GGML_OP_RESHAPE;
  4499. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4500. result->src0 = a;
  4501. result->src1 = NULL;
  4502. return result;
  4503. }
  4504. struct ggml_tensor * ggml_reshape_3d(
  4505. struct ggml_context * ctx,
  4506. struct ggml_tensor * a,
  4507. int64_t ne0,
  4508. int64_t ne1,
  4509. int64_t ne2) {
  4510. GGML_ASSERT(ggml_is_contiguous(a));
  4511. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4512. bool is_node = false;
  4513. if (a->grad) {
  4514. is_node = true;
  4515. }
  4516. const int64_t ne[3] = { ne0, ne1, ne2 };
  4517. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4518. result->op = GGML_OP_RESHAPE;
  4519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4520. result->src0 = a;
  4521. result->src1 = NULL;
  4522. return result;
  4523. }
  4524. struct ggml_tensor * ggml_reshape_4d(
  4525. struct ggml_context * ctx,
  4526. struct ggml_tensor * a,
  4527. int64_t ne0,
  4528. int64_t ne1,
  4529. int64_t ne2,
  4530. int64_t ne3) {
  4531. GGML_ASSERT(ggml_is_contiguous(a));
  4532. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4533. bool is_node = false;
  4534. if (a->grad) {
  4535. is_node = true;
  4536. }
  4537. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4538. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4539. result->op = GGML_OP_RESHAPE;
  4540. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4541. result->src0 = a;
  4542. result->src1 = NULL;
  4543. return result;
  4544. }
  4545. // ggml_view_1d
  4546. struct ggml_tensor * ggml_view_1d(
  4547. struct ggml_context * ctx,
  4548. struct ggml_tensor * a,
  4549. int64_t ne0,
  4550. size_t offset) {
  4551. bool is_node = false;
  4552. if (a->grad) {
  4553. is_node = true;
  4554. }
  4555. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4556. result->op = GGML_OP_VIEW;
  4557. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4558. result->src0 = a;
  4559. result->src1 = NULL;
  4560. if (is_node) {
  4561. memcpy(result->padding, &offset, sizeof(offset));
  4562. }
  4563. return result;
  4564. }
  4565. // ggml_view_2d
  4566. struct ggml_tensor * ggml_view_2d(
  4567. struct ggml_context * ctx,
  4568. struct ggml_tensor * a,
  4569. int64_t ne0,
  4570. int64_t ne1,
  4571. size_t nb1,
  4572. size_t offset) {
  4573. bool is_node = false;
  4574. if (a->grad) {
  4575. is_node = true;
  4576. }
  4577. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4578. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4579. result->nb[1] = nb1;
  4580. result->nb[2] = result->nb[1]*ne1;
  4581. result->nb[3] = result->nb[2];
  4582. result->op = GGML_OP_VIEW;
  4583. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4584. result->src0 = a;
  4585. result->src1 = NULL;
  4586. if (is_node) {
  4587. memcpy(result->padding, &offset, sizeof(offset));
  4588. }
  4589. return result;
  4590. }
  4591. // ggml_view_3d
  4592. struct ggml_tensor * ggml_view_3d(
  4593. struct ggml_context * ctx,
  4594. struct ggml_tensor * a,
  4595. int64_t ne0,
  4596. int64_t ne1,
  4597. int64_t ne2,
  4598. size_t nb1,
  4599. size_t nb2,
  4600. size_t offset) {
  4601. bool is_node = false;
  4602. if (a->grad) {
  4603. is_node = true;
  4604. }
  4605. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4606. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4607. result->nb[1] = nb1;
  4608. result->nb[2] = nb2;
  4609. result->nb[3] = result->nb[2]*ne2;
  4610. result->op = GGML_OP_VIEW;
  4611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4612. result->src0 = a;
  4613. result->src1 = NULL;
  4614. if (is_node) {
  4615. memcpy(result->padding, &offset, sizeof(offset));
  4616. }
  4617. return result;
  4618. }
  4619. // ggml_view_4d
  4620. struct ggml_tensor * ggml_view_4d(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. int64_t ne0,
  4624. int64_t ne1,
  4625. int64_t ne2,
  4626. int64_t ne3,
  4627. size_t nb1,
  4628. size_t nb2,
  4629. size_t nb3,
  4630. size_t offset) {
  4631. bool is_node = false;
  4632. if (a->grad) {
  4633. is_node = true;
  4634. }
  4635. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4636. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4637. result->nb[1] = nb1;
  4638. result->nb[2] = nb2;
  4639. result->nb[3] = nb3;
  4640. result->op = GGML_OP_VIEW;
  4641. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4642. result->src0 = a;
  4643. result->src1 = NULL;
  4644. if (is_node) {
  4645. memcpy(result->padding, &offset, sizeof(offset));
  4646. }
  4647. return result;
  4648. }
  4649. // ggml_permute
  4650. struct ggml_tensor * ggml_permute(
  4651. struct ggml_context * ctx,
  4652. struct ggml_tensor * a,
  4653. int axis0,
  4654. int axis1,
  4655. int axis2,
  4656. int axis3) {
  4657. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4658. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4659. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4660. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4661. GGML_ASSERT(axis0 != axis1);
  4662. GGML_ASSERT(axis0 != axis2);
  4663. GGML_ASSERT(axis0 != axis3);
  4664. GGML_ASSERT(axis1 != axis2);
  4665. GGML_ASSERT(axis1 != axis3);
  4666. GGML_ASSERT(axis2 != axis3);
  4667. bool is_node = false;
  4668. if (a->grad) {
  4669. is_node = true;
  4670. }
  4671. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4672. int ne[GGML_MAX_DIMS];
  4673. int nb[GGML_MAX_DIMS];
  4674. ne[axis0] = a->ne[0];
  4675. ne[axis1] = a->ne[1];
  4676. ne[axis2] = a->ne[2];
  4677. ne[axis3] = a->ne[3];
  4678. nb[axis0] = a->nb[0];
  4679. nb[axis1] = a->nb[1];
  4680. nb[axis2] = a->nb[2];
  4681. nb[axis3] = a->nb[3];
  4682. result->ne[0] = ne[0];
  4683. result->ne[1] = ne[1];
  4684. result->ne[2] = ne[2];
  4685. result->ne[3] = ne[3];
  4686. result->nb[0] = nb[0];
  4687. result->nb[1] = nb[1];
  4688. result->nb[2] = nb[2];
  4689. result->nb[3] = nb[3];
  4690. result->op = GGML_OP_PERMUTE;
  4691. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4692. result->src0 = a;
  4693. result->src1 = NULL;
  4694. if (is_node) {
  4695. result->padding[0] = axis0;
  4696. result->padding[1] = axis1;
  4697. result->padding[2] = axis2;
  4698. result->padding[3] = axis3;
  4699. }
  4700. return result;
  4701. }
  4702. // ggml_transpose
  4703. struct ggml_tensor * ggml_transpose(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a) {
  4706. bool is_node = false;
  4707. if (a->grad) {
  4708. is_node = true;
  4709. }
  4710. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4711. result->ne[0] = a->ne[1];
  4712. result->ne[1] = a->ne[0];
  4713. result->nb[0] = a->nb[1];
  4714. result->nb[1] = a->nb[0];
  4715. result->op = GGML_OP_TRANSPOSE;
  4716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4717. result->src0 = a;
  4718. result->src1 = NULL;
  4719. return result;
  4720. }
  4721. // ggml_get_rows
  4722. struct ggml_tensor * ggml_get_rows(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a,
  4725. struct ggml_tensor * b) {
  4726. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4727. bool is_node = false;
  4728. if (a->grad || b->grad) {
  4729. is_node = true;
  4730. }
  4731. // TODO: implement non F32 return
  4732. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4733. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4734. result->op = GGML_OP_GET_ROWS;
  4735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4736. result->src0 = a;
  4737. result->src1 = b;
  4738. return result;
  4739. }
  4740. // ggml_get_rows_back
  4741. struct ggml_tensor * ggml_get_rows_back(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. struct ggml_tensor * b,
  4745. struct ggml_tensor * c) {
  4746. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4747. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4748. bool is_node = false;
  4749. if (a->grad || b->grad) {
  4750. is_node = true;
  4751. }
  4752. // TODO: implement non F32 return
  4753. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4754. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4755. result->op = GGML_OP_GET_ROWS_BACK;
  4756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4757. result->src0 = a;
  4758. result->src1 = b;
  4759. result->opt[0] = c;
  4760. return result;
  4761. }
  4762. // ggml_diag
  4763. struct ggml_tensor * ggml_diag(
  4764. struct ggml_context * ctx,
  4765. struct ggml_tensor * a) {
  4766. GGML_ASSERT(a->ne[1] == 1);
  4767. bool is_node = false;
  4768. if (a->grad) {
  4769. is_node = true;
  4770. }
  4771. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4772. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4773. result->op = GGML_OP_DIAG;
  4774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4775. result->src0 = a;
  4776. result->src1 = NULL;
  4777. return result;
  4778. }
  4779. // ggml_diag_mask_inf
  4780. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4781. struct ggml_context * ctx,
  4782. struct ggml_tensor * a,
  4783. int n_past,
  4784. bool inplace) {
  4785. bool is_node = false;
  4786. if (a->grad) {
  4787. is_node = true;
  4788. }
  4789. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4790. ggml_scratch_save(ctx);
  4791. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4792. ((int32_t *) b->data)[0] = n_past;
  4793. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4794. ggml_scratch_load(ctx);
  4795. result->op = GGML_OP_DIAG_MASK_INF;
  4796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4797. result->src0 = a;
  4798. result->src1 = b;
  4799. return result;
  4800. }
  4801. struct ggml_tensor * ggml_diag_mask_inf(
  4802. struct ggml_context * ctx,
  4803. struct ggml_tensor * a,
  4804. int n_past) {
  4805. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4806. }
  4807. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a,
  4810. int n_past) {
  4811. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4812. }
  4813. // ggml_diag_mask_zero
  4814. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4815. struct ggml_context * ctx,
  4816. struct ggml_tensor * a,
  4817. int n_past,
  4818. bool inplace) {
  4819. bool is_node = false;
  4820. if (a->grad) {
  4821. is_node = true;
  4822. }
  4823. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4824. ggml_scratch_save(ctx);
  4825. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4826. ggml_set_name(b, "n_past, inplace");
  4827. ((int32_t *) b->data)[0] = n_past;
  4828. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4829. ggml_scratch_load(ctx);
  4830. result->op = GGML_OP_DIAG_MASK_ZERO;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src0 = a;
  4833. result->src1 = b;
  4834. return result;
  4835. }
  4836. struct ggml_tensor * ggml_diag_mask_zero(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. int n_past) {
  4840. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4841. }
  4842. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4843. struct ggml_context * ctx,
  4844. struct ggml_tensor * a,
  4845. int n_past) {
  4846. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4847. }
  4848. // ggml_soft_max
  4849. struct ggml_tensor * ggml_soft_max_impl(
  4850. struct ggml_context * ctx,
  4851. struct ggml_tensor * a,
  4852. bool inplace) {
  4853. bool is_node = false;
  4854. if (a->grad) {
  4855. is_node = true;
  4856. }
  4857. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4858. result->op = GGML_OP_SOFT_MAX;
  4859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4860. result->src0 = a;
  4861. result->src1 = NULL;
  4862. return result;
  4863. }
  4864. struct ggml_tensor * ggml_soft_max(
  4865. struct ggml_context * ctx,
  4866. struct ggml_tensor * a) {
  4867. return ggml_soft_max_impl(ctx, a, false);
  4868. }
  4869. struct ggml_tensor * ggml_soft_max_inplace(
  4870. struct ggml_context * ctx,
  4871. struct ggml_tensor * a) {
  4872. return ggml_soft_max_impl(ctx, a, true);
  4873. }
  4874. // ggml_rope
  4875. struct ggml_tensor * ggml_rope_impl(
  4876. struct ggml_context * ctx,
  4877. struct ggml_tensor * a,
  4878. int n_past,
  4879. int n_dims,
  4880. int mode,
  4881. bool inplace) {
  4882. GGML_ASSERT(n_past >= 0);
  4883. bool is_node = false;
  4884. if (!inplace && a->grad) {
  4885. is_node = true;
  4886. }
  4887. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4888. ggml_scratch_save(ctx);
  4889. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4890. ((int32_t *) b->data)[0] = n_past;
  4891. ((int32_t *) b->data)[1] = n_dims;
  4892. ((int32_t *) b->data)[2] = mode;
  4893. ggml_scratch_load(ctx);
  4894. result->op = GGML_OP_ROPE;
  4895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4896. result->src0 = a;
  4897. result->src1 = b;
  4898. return result;
  4899. }
  4900. struct ggml_tensor * ggml_rope(
  4901. struct ggml_context * ctx,
  4902. struct ggml_tensor * a,
  4903. int n_past,
  4904. int n_dims,
  4905. int mode) {
  4906. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  4907. }
  4908. struct ggml_tensor * ggml_rope_inplace(
  4909. struct ggml_context * ctx,
  4910. struct ggml_tensor * a,
  4911. int n_past,
  4912. int n_dims,
  4913. int mode) {
  4914. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  4915. }
  4916. // ggml_rope_back
  4917. struct ggml_tensor * ggml_rope_back(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. int n_past,
  4921. int n_dims,
  4922. int mode) {
  4923. GGML_ASSERT(n_past >= 0);
  4924. bool is_node = false;
  4925. if (a->grad) {
  4926. GGML_ASSERT(false); // TODO: implement backward
  4927. is_node = true;
  4928. }
  4929. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4930. ggml_scratch_save(ctx);
  4931. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4932. ggml_set_name(b, "n_past, n_dims, mode");
  4933. ((int32_t *) b->data)[0] = n_past;
  4934. ((int32_t *) b->data)[1] = n_dims;
  4935. ((int32_t *) b->data)[2] = mode;
  4936. ggml_scratch_load(ctx);
  4937. result->op = GGML_OP_ROPE_BACK;
  4938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4939. result->src0 = a;
  4940. result->src1 = b;
  4941. return result;
  4942. }
  4943. // ggml_alibi
  4944. struct ggml_tensor * ggml_alibi(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. int n_past,
  4948. int n_head) {
  4949. GGML_ASSERT(n_past >= 0);
  4950. bool is_node = false;
  4951. if (a->grad) {
  4952. GGML_ASSERT(false); // TODO: implement backward
  4953. is_node = true;
  4954. }
  4955. // TODO: when implement backward, fix this:
  4956. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4957. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4958. ggml_scratch_save(ctx);
  4959. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4960. ((int32_t *) b->data)[0] = n_past;
  4961. ((int32_t *) b->data)[1] = n_head;
  4962. ggml_scratch_load(ctx);
  4963. result->op = GGML_OP_ALIBI;
  4964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4965. result->src0 = a;
  4966. result->src1 = b;
  4967. return result;
  4968. }
  4969. // ggml_conv_1d_1s
  4970. struct ggml_tensor * ggml_conv_1d_1s(
  4971. struct ggml_context * ctx,
  4972. struct ggml_tensor * a,
  4973. struct ggml_tensor * b) {
  4974. GGML_ASSERT(ggml_is_matrix(b));
  4975. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4976. GGML_ASSERT(a->ne[3] == 1);
  4977. bool is_node = false;
  4978. if (a->grad || b->grad) {
  4979. GGML_ASSERT(false); // TODO: implement backward
  4980. is_node = true;
  4981. }
  4982. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4983. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4984. result->op = GGML_OP_CONV_1D_1S;
  4985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4986. result->src0 = a;
  4987. result->src1 = b;
  4988. return result;
  4989. }
  4990. // ggml_conv_1d_2s
  4991. struct ggml_tensor * ggml_conv_1d_2s(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a,
  4994. struct ggml_tensor * b) {
  4995. GGML_ASSERT(ggml_is_matrix(b));
  4996. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4997. GGML_ASSERT(a->ne[3] == 1);
  4998. bool is_node = false;
  4999. if (a->grad || b->grad) {
  5000. GGML_ASSERT(false); // TODO: implement backward
  5001. is_node = true;
  5002. }
  5003. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5004. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5005. result->op = GGML_OP_CONV_1D_2S;
  5006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5007. result->src0 = a;
  5008. result->src1 = b;
  5009. return result;
  5010. }
  5011. // ggml_flash_attn
  5012. struct ggml_tensor * ggml_flash_attn(
  5013. struct ggml_context * ctx,
  5014. struct ggml_tensor * q,
  5015. struct ggml_tensor * k,
  5016. struct ggml_tensor * v,
  5017. bool masked) {
  5018. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5019. // TODO: check if vT can be multiplied by (k*qT)
  5020. bool is_node = false;
  5021. if (q->grad || k->grad || v->grad) {
  5022. GGML_ASSERT(false); // TODO: implement backward
  5023. is_node = true;
  5024. }
  5025. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5026. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5027. result->op = GGML_OP_FLASH_ATTN;
  5028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5029. result->src0 = q;
  5030. result->src1 = k;
  5031. result->opt[0] = v;
  5032. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5033. return result;
  5034. }
  5035. // ggml_flash_ff
  5036. struct ggml_tensor * ggml_flash_ff(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a,
  5039. struct ggml_tensor * b0,
  5040. struct ggml_tensor * b1,
  5041. struct ggml_tensor * c0,
  5042. struct ggml_tensor * c1) {
  5043. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5044. // TODO: more checks
  5045. bool is_node = false;
  5046. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5047. GGML_ASSERT(false); // TODO: implement backward
  5048. is_node = true;
  5049. }
  5050. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5051. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5052. result->op = GGML_OP_FLASH_FF;
  5053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5054. result->src0 = a;
  5055. result->src1 = b0;
  5056. result->opt[0] = b1;
  5057. result->opt[1] = c0;
  5058. result->opt[2] = c1;
  5059. return result;
  5060. }
  5061. // ggml_map_unary
  5062. struct ggml_tensor * ggml_map_unary_impl_f32(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. const ggml_unary_op_f32_t fun,
  5066. bool inplace) {
  5067. bool is_node = false;
  5068. if (!inplace && a->grad) {
  5069. is_node = true;
  5070. }
  5071. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5072. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5073. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5074. result->op = GGML_OP_MAP_UNARY;
  5075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5076. result->src0 = a;
  5077. result->opt[0] = addr_tensor;
  5078. return result;
  5079. }
  5080. struct ggml_tensor * ggml_map_unary_f32(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. const ggml_unary_op_f32_t fun) {
  5084. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5085. }
  5086. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5087. struct ggml_context * ctx,
  5088. struct ggml_tensor * a,
  5089. const ggml_unary_op_f32_t fun) {
  5090. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5091. }
  5092. // ggml_map_binary
  5093. struct ggml_tensor * ggml_map_binary_impl_f32(
  5094. struct ggml_context * ctx,
  5095. struct ggml_tensor * a,
  5096. struct ggml_tensor * b,
  5097. const ggml_binary_op_f32_t fun,
  5098. bool inplace) {
  5099. GGML_ASSERT(ggml_are_same_shape(a, b));
  5100. bool is_node = false;
  5101. if (!inplace && (a->grad || b->grad)) {
  5102. is_node = true;
  5103. }
  5104. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5105. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5106. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5107. result->op = GGML_OP_MAP_BINARY;
  5108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5109. result->src0 = a;
  5110. result->src1 = b;
  5111. result->opt[0] = addr_tensor;
  5112. return result;
  5113. }
  5114. struct ggml_tensor * ggml_map_binary_f32(
  5115. struct ggml_context * ctx,
  5116. struct ggml_tensor * a,
  5117. struct ggml_tensor * b,
  5118. const ggml_binary_op_f32_t fun) {
  5119. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5120. }
  5121. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5122. struct ggml_context * ctx,
  5123. struct ggml_tensor * a,
  5124. struct ggml_tensor * b,
  5125. const ggml_binary_op_f32_t fun) {
  5126. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5127. }
  5128. ////////////////////////////////////////////////////////////////////////////////
  5129. void ggml_set_param(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * tensor) {
  5132. tensor->is_param = true;
  5133. GGML_ASSERT(tensor->grad == NULL);
  5134. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5135. }
  5136. // ggml_compute_forward_dup
  5137. static void ggml_compute_forward_dup_same_cont(
  5138. const struct ggml_compute_params * params,
  5139. const struct ggml_tensor * src0,
  5140. struct ggml_tensor * dst) {
  5141. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5142. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5143. GGML_ASSERT(src0->type == dst->type);
  5144. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5145. return;
  5146. }
  5147. const size_t nb00 = src0->nb[0];
  5148. const size_t nb0 = dst->nb[0];
  5149. const int ith = params->ith; // thread index
  5150. const int nth = params->nth; // number of threads
  5151. // parallelize by elements
  5152. const int ne = ggml_nelements(dst);
  5153. const int dr = (ne + nth - 1) / nth;
  5154. const int ie0 = dr * ith;
  5155. const int ie1 = MIN(ie0 + dr, ne);
  5156. if (ie0 < ie1) {
  5157. memcpy(
  5158. ((char *) dst->data + ie0*nb0),
  5159. ((char *) src0->data + ie0*nb00),
  5160. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5161. }
  5162. }
  5163. static void ggml_compute_forward_dup_f16(
  5164. const struct ggml_compute_params * params,
  5165. const struct ggml_tensor * src0,
  5166. struct ggml_tensor * dst) {
  5167. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5168. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5169. return;
  5170. }
  5171. const int64_t ne00 = src0->ne[0];
  5172. const int64_t ne01 = src0->ne[1];
  5173. const int64_t ne02 = src0->ne[2];
  5174. const int64_t ne03 = src0->ne[3];
  5175. const int64_t ne0 = dst->ne[0];
  5176. const int64_t ne1 = dst->ne[1];
  5177. const int64_t ne2 = dst->ne[2];
  5178. const int64_t ne3 = dst->ne[3];
  5179. const size_t nb00 = src0->nb[0];
  5180. const size_t nb01 = src0->nb[1];
  5181. const size_t nb02 = src0->nb[2];
  5182. const size_t nb03 = src0->nb[3];
  5183. const size_t nb0 = dst->nb[0];
  5184. const size_t nb1 = dst->nb[1];
  5185. const size_t nb2 = dst->nb[2];
  5186. const size_t nb3 = dst->nb[3];
  5187. const int ith = params->ith; // thread index
  5188. const int nth = params->nth; // number of threads
  5189. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5190. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5191. return;
  5192. }
  5193. // parallelize by rows
  5194. const int nr = ne01;
  5195. // number of rows per thread
  5196. const int dr = (nr + nth - 1) / nth;
  5197. // row range for this thread
  5198. const int ir0 = dr * ith;
  5199. const int ir1 = MIN(ir0 + dr, nr);
  5200. if (src0->type == dst->type &&
  5201. ne00 == ne0 &&
  5202. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5203. // copy by rows
  5204. const size_t rs = ne00*nb00;
  5205. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5206. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5207. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5208. memcpy(
  5209. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5210. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5211. rs);
  5212. }
  5213. }
  5214. }
  5215. return;
  5216. }
  5217. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5218. if (ggml_is_contiguous(dst)) {
  5219. if (nb00 == sizeof(ggml_fp16_t)) {
  5220. if (dst->type == GGML_TYPE_F16) {
  5221. size_t id = 0;
  5222. const size_t rs = ne00 * nb00;
  5223. char * dst_ptr = (char *) dst->data;
  5224. for (int i03 = 0; i03 < ne03; i03++) {
  5225. for (int i02 = 0; i02 < ne02; i02++) {
  5226. id += rs * ir0;
  5227. for (int i01 = ir0; i01 < ir1; i01++) {
  5228. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5229. memcpy(dst_ptr + id, src0_ptr, rs);
  5230. id += rs;
  5231. }
  5232. id += rs * (ne01 - ir1);
  5233. }
  5234. }
  5235. } else if (dst->type == GGML_TYPE_F32) {
  5236. size_t id = 0;
  5237. float * dst_ptr = (float *) dst->data;
  5238. for (int i03 = 0; i03 < ne03; i03++) {
  5239. for (int i02 = 0; i02 < ne02; i02++) {
  5240. id += ne00 * ir0;
  5241. for (int i01 = ir0; i01 < ir1; i01++) {
  5242. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5243. for (int i00 = 0; i00 < ne00; i00++) {
  5244. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5245. id++;
  5246. }
  5247. }
  5248. id += ne00 * (ne01 - ir1);
  5249. }
  5250. }
  5251. } else if (ggml_is_quantized(dst->type)) {
  5252. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5253. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5254. size_t id = 0;
  5255. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5256. char * dst_ptr = (char *) dst->data;
  5257. for (int i03 = 0; i03 < ne03; i03++) {
  5258. for (int i02 = 0; i02 < ne02; i02++) {
  5259. id += rs * ir0;
  5260. for (int i01 = ir0; i01 < ir1; i01++) {
  5261. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5262. for (int i00 = 0; i00 < ne00; i00++) {
  5263. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5264. }
  5265. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5266. id += rs;
  5267. }
  5268. id += rs * (ne01 - ir1);
  5269. }
  5270. }
  5271. } else {
  5272. GGML_ASSERT(false); // TODO: implement
  5273. }
  5274. } else {
  5275. //printf("%s: this is not optimal - fix me\n", __func__);
  5276. if (dst->type == GGML_TYPE_F32) {
  5277. size_t id = 0;
  5278. float * dst_ptr = (float *) dst->data;
  5279. for (int i03 = 0; i03 < ne03; i03++) {
  5280. for (int i02 = 0; i02 < ne02; i02++) {
  5281. id += ne00 * ir0;
  5282. for (int i01 = ir0; i01 < ir1; i01++) {
  5283. for (int i00 = 0; i00 < ne00; i00++) {
  5284. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5285. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5286. id++;
  5287. }
  5288. }
  5289. id += ne00 * (ne01 - ir1);
  5290. }
  5291. }
  5292. } else if (dst->type == GGML_TYPE_F16) {
  5293. size_t id = 0;
  5294. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5295. for (int i03 = 0; i03 < ne03; i03++) {
  5296. for (int i02 = 0; i02 < ne02; i02++) {
  5297. id += ne00 * ir0;
  5298. for (int i01 = ir0; i01 < ir1; i01++) {
  5299. for (int i00 = 0; i00 < ne00; i00++) {
  5300. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5301. dst_ptr[id] = *src0_ptr;
  5302. id++;
  5303. }
  5304. }
  5305. id += ne00 * (ne01 - ir1);
  5306. }
  5307. }
  5308. } else {
  5309. GGML_ASSERT(false); // TODO: implement
  5310. }
  5311. }
  5312. return;
  5313. }
  5314. // dst counters
  5315. int64_t i10 = 0;
  5316. int64_t i11 = 0;
  5317. int64_t i12 = 0;
  5318. int64_t i13 = 0;
  5319. if (dst->type == GGML_TYPE_F16) {
  5320. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5321. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5322. i10 += ne00 * ir0;
  5323. while (i10 >= ne0) {
  5324. i10 -= ne0;
  5325. if (++i11 == ne1) {
  5326. i11 = 0;
  5327. if (++i12 == ne2) {
  5328. i12 = 0;
  5329. if (++i13 == ne3) {
  5330. i13 = 0;
  5331. }
  5332. }
  5333. }
  5334. }
  5335. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5336. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5337. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5338. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5339. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5340. if (++i10 == ne00) {
  5341. i10 = 0;
  5342. if (++i11 == ne01) {
  5343. i11 = 0;
  5344. if (++i12 == ne02) {
  5345. i12 = 0;
  5346. if (++i13 == ne03) {
  5347. i13 = 0;
  5348. }
  5349. }
  5350. }
  5351. }
  5352. }
  5353. }
  5354. i10 += ne00 * (ne01 - ir1);
  5355. while (i10 >= ne0) {
  5356. i10 -= ne0;
  5357. if (++i11 == ne1) {
  5358. i11 = 0;
  5359. if (++i12 == ne2) {
  5360. i12 = 0;
  5361. if (++i13 == ne3) {
  5362. i13 = 0;
  5363. }
  5364. }
  5365. }
  5366. }
  5367. }
  5368. }
  5369. } else if (dst->type == GGML_TYPE_F32) {
  5370. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5371. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5372. i10 += ne00 * ir0;
  5373. while (i10 >= ne0) {
  5374. i10 -= ne0;
  5375. if (++i11 == ne1) {
  5376. i11 = 0;
  5377. if (++i12 == ne2) {
  5378. i12 = 0;
  5379. if (++i13 == ne3) {
  5380. i13 = 0;
  5381. }
  5382. }
  5383. }
  5384. }
  5385. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5386. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5387. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5388. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5389. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5390. if (++i10 == ne0) {
  5391. i10 = 0;
  5392. if (++i11 == ne1) {
  5393. i11 = 0;
  5394. if (++i12 == ne2) {
  5395. i12 = 0;
  5396. if (++i13 == ne3) {
  5397. i13 = 0;
  5398. }
  5399. }
  5400. }
  5401. }
  5402. }
  5403. }
  5404. i10 += ne00 * (ne01 - ir1);
  5405. while (i10 >= ne0) {
  5406. i10 -= ne0;
  5407. if (++i11 == ne1) {
  5408. i11 = 0;
  5409. if (++i12 == ne2) {
  5410. i12 = 0;
  5411. if (++i13 == ne3) {
  5412. i13 = 0;
  5413. }
  5414. }
  5415. }
  5416. }
  5417. }
  5418. }
  5419. } else {
  5420. GGML_ASSERT(false); // TODO: implement
  5421. }
  5422. }
  5423. static void ggml_compute_forward_dup_f32(
  5424. const struct ggml_compute_params * params,
  5425. const struct ggml_tensor * src0,
  5426. struct ggml_tensor * dst) {
  5427. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5428. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5429. return;
  5430. }
  5431. const int64_t ne00 = src0->ne[0];
  5432. const int64_t ne01 = src0->ne[1];
  5433. const int64_t ne02 = src0->ne[2];
  5434. const int64_t ne03 = src0->ne[3];
  5435. const int64_t ne0 = dst->ne[0];
  5436. const int64_t ne1 = dst->ne[1];
  5437. const int64_t ne2 = dst->ne[2];
  5438. const int64_t ne3 = dst->ne[3];
  5439. const size_t nb00 = src0->nb[0];
  5440. const size_t nb01 = src0->nb[1];
  5441. const size_t nb02 = src0->nb[2];
  5442. const size_t nb03 = src0->nb[3];
  5443. const size_t nb0 = dst->nb[0];
  5444. const size_t nb1 = dst->nb[1];
  5445. const size_t nb2 = dst->nb[2];
  5446. const size_t nb3 = dst->nb[3];
  5447. const int ith = params->ith; // thread index
  5448. const int nth = params->nth; // number of threads
  5449. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5450. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5451. return;
  5452. }
  5453. // parallelize by rows
  5454. const int nr = ne01;
  5455. // number of rows per thread
  5456. const int dr = (nr + nth - 1) / nth;
  5457. // row range for this thread
  5458. const int ir0 = dr * ith;
  5459. const int ir1 = MIN(ir0 + dr, nr);
  5460. if (src0->type == dst->type &&
  5461. ne00 == ne0 &&
  5462. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5463. // copy by rows
  5464. const size_t rs = ne00*nb00;
  5465. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5466. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5467. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5468. memcpy(
  5469. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5470. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5471. rs);
  5472. }
  5473. }
  5474. }
  5475. return;
  5476. }
  5477. if (ggml_is_contiguous(dst)) {
  5478. // TODO: simplify
  5479. if (nb00 == sizeof(float)) {
  5480. if (dst->type == GGML_TYPE_F32) {
  5481. size_t id = 0;
  5482. const size_t rs = ne00 * nb00;
  5483. char * dst_ptr = (char *) dst->data;
  5484. for (int i03 = 0; i03 < ne03; i03++) {
  5485. for (int i02 = 0; i02 < ne02; i02++) {
  5486. id += rs * ir0;
  5487. for (int i01 = ir0; i01 < ir1; i01++) {
  5488. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5489. memcpy(dst_ptr + id, src0_ptr, rs);
  5490. id += rs;
  5491. }
  5492. id += rs * (ne01 - ir1);
  5493. }
  5494. }
  5495. } else if (dst->type == GGML_TYPE_F16) {
  5496. size_t id = 0;
  5497. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5498. for (int i03 = 0; i03 < ne03; i03++) {
  5499. for (int i02 = 0; i02 < ne02; i02++) {
  5500. id += ne00 * ir0;
  5501. for (int i01 = ir0; i01 < ir1; i01++) {
  5502. for (int i00 = 0; i00 < ne00; i00++) {
  5503. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5504. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5505. id++;
  5506. }
  5507. }
  5508. id += ne00 * (ne01 - ir1);
  5509. }
  5510. }
  5511. } else if (ggml_is_quantized(dst->type)) {
  5512. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5513. size_t id = 0;
  5514. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5515. char * dst_ptr = (char *) dst->data;
  5516. for (int i03 = 0; i03 < ne03; i03++) {
  5517. for (int i02 = 0; i02 < ne02; i02++) {
  5518. id += rs * ir0;
  5519. for (int i01 = ir0; i01 < ir1; i01++) {
  5520. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5521. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5522. id += rs;
  5523. }
  5524. id += rs * (ne01 - ir1);
  5525. }
  5526. }
  5527. } else {
  5528. GGML_ASSERT(false); // TODO: implement
  5529. }
  5530. } else {
  5531. //printf("%s: this is not optimal - fix me\n", __func__);
  5532. if (dst->type == GGML_TYPE_F32) {
  5533. size_t id = 0;
  5534. float * dst_ptr = (float *) dst->data;
  5535. for (int i03 = 0; i03 < ne03; i03++) {
  5536. for (int i02 = 0; i02 < ne02; i02++) {
  5537. id += ne00 * ir0;
  5538. for (int i01 = ir0; i01 < ir1; i01++) {
  5539. for (int i00 = 0; i00 < ne00; i00++) {
  5540. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5541. dst_ptr[id] = *src0_ptr;
  5542. id++;
  5543. }
  5544. }
  5545. id += ne00 * (ne01 - ir1);
  5546. }
  5547. }
  5548. } else if (dst->type == GGML_TYPE_F16) {
  5549. size_t id = 0;
  5550. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5551. for (int i03 = 0; i03 < ne03; i03++) {
  5552. for (int i02 = 0; i02 < ne02; i02++) {
  5553. id += ne00 * ir0;
  5554. for (int i01 = ir0; i01 < ir1; i01++) {
  5555. for (int i00 = 0; i00 < ne00; i00++) {
  5556. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5557. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5558. id++;
  5559. }
  5560. }
  5561. id += ne00 * (ne01 - ir1);
  5562. }
  5563. }
  5564. } else {
  5565. GGML_ASSERT(false); // TODO: implement
  5566. }
  5567. }
  5568. return;
  5569. }
  5570. // dst counters
  5571. int64_t i10 = 0;
  5572. int64_t i11 = 0;
  5573. int64_t i12 = 0;
  5574. int64_t i13 = 0;
  5575. if (dst->type == GGML_TYPE_F32) {
  5576. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5577. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5578. i10 += ne00 * ir0;
  5579. while (i10 >= ne0) {
  5580. i10 -= ne0;
  5581. if (++i11 == ne1) {
  5582. i11 = 0;
  5583. if (++i12 == ne2) {
  5584. i12 = 0;
  5585. if (++i13 == ne3) {
  5586. i13 = 0;
  5587. }
  5588. }
  5589. }
  5590. }
  5591. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5592. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5593. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5594. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5595. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5596. if (++i10 == ne0) {
  5597. i10 = 0;
  5598. if (++i11 == ne1) {
  5599. i11 = 0;
  5600. if (++i12 == ne2) {
  5601. i12 = 0;
  5602. if (++i13 == ne3) {
  5603. i13 = 0;
  5604. }
  5605. }
  5606. }
  5607. }
  5608. }
  5609. }
  5610. i10 += ne00 * (ne01 - ir1);
  5611. while (i10 >= ne0) {
  5612. i10 -= ne0;
  5613. if (++i11 == ne1) {
  5614. i11 = 0;
  5615. if (++i12 == ne2) {
  5616. i12 = 0;
  5617. if (++i13 == ne3) {
  5618. i13 = 0;
  5619. }
  5620. }
  5621. }
  5622. }
  5623. }
  5624. }
  5625. } else if (dst->type == GGML_TYPE_F16) {
  5626. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5627. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5628. i10 += ne00 * ir0;
  5629. while (i10 >= ne0) {
  5630. i10 -= ne0;
  5631. if (++i11 == ne1) {
  5632. i11 = 0;
  5633. if (++i12 == ne2) {
  5634. i12 = 0;
  5635. if (++i13 == ne3) {
  5636. i13 = 0;
  5637. }
  5638. }
  5639. }
  5640. }
  5641. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5642. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5643. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5644. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5645. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5646. if (++i10 == ne0) {
  5647. i10 = 0;
  5648. if (++i11 == ne1) {
  5649. i11 = 0;
  5650. if (++i12 == ne2) {
  5651. i12 = 0;
  5652. if (++i13 == ne3) {
  5653. i13 = 0;
  5654. }
  5655. }
  5656. }
  5657. }
  5658. }
  5659. }
  5660. i10 += ne00 * (ne01 - ir1);
  5661. while (i10 >= ne0) {
  5662. i10 -= ne0;
  5663. if (++i11 == ne1) {
  5664. i11 = 0;
  5665. if (++i12 == ne2) {
  5666. i12 = 0;
  5667. if (++i13 == ne3) {
  5668. i13 = 0;
  5669. }
  5670. }
  5671. }
  5672. }
  5673. }
  5674. }
  5675. } else {
  5676. GGML_ASSERT(false); // TODO: implement
  5677. }
  5678. }
  5679. static void ggml_compute_forward_dup(
  5680. const struct ggml_compute_params * params,
  5681. const struct ggml_tensor * src0,
  5682. struct ggml_tensor * dst) {
  5683. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5684. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5685. return;
  5686. }
  5687. switch (src0->type) {
  5688. case GGML_TYPE_F16:
  5689. {
  5690. ggml_compute_forward_dup_f16(params, src0, dst);
  5691. } break;
  5692. case GGML_TYPE_F32:
  5693. {
  5694. ggml_compute_forward_dup_f32(params, src0, dst);
  5695. } break;
  5696. default:
  5697. {
  5698. GGML_ASSERT(false);
  5699. } break;
  5700. }
  5701. }
  5702. // ggml_compute_forward_add
  5703. static void ggml_compute_forward_add_f32(
  5704. const struct ggml_compute_params * params,
  5705. const struct ggml_tensor * src0,
  5706. const struct ggml_tensor * src1,
  5707. struct ggml_tensor * dst) {
  5708. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5709. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5710. return;
  5711. }
  5712. const int ith = params->ith;
  5713. const int nth = params->nth;
  5714. const int nr = ggml_nrows(src0);
  5715. const int64_t ne0 = src0->ne[0];
  5716. const int64_t ne1 = src0->ne[1];
  5717. const int64_t ne2 = src0->ne[2];
  5718. const size_t nb00 = src0->nb[0];
  5719. const size_t nb01 = src0->nb[1];
  5720. const size_t nb02 = src0->nb[2];
  5721. const size_t nb03 = src0->nb[3];
  5722. const size_t nb10 = src1->nb[0];
  5723. const size_t nb11 = src1->nb[1];
  5724. const size_t nb12 = src1->nb[2];
  5725. const size_t nb13 = src1->nb[3];
  5726. const size_t nb0 = dst->nb[0];
  5727. const size_t nb1 = dst->nb[1];
  5728. const size_t nb2 = dst->nb[2];
  5729. const size_t nb3 = dst->nb[3];
  5730. GGML_ASSERT( nb0 == sizeof(float));
  5731. GGML_ASSERT(nb00 == sizeof(float));
  5732. // rows per thread
  5733. const int dr = (nr + nth - 1)/nth;
  5734. // row range for this thread
  5735. const int ir0 = dr*ith;
  5736. const int ir1 = MIN(ir0 + dr, nr);
  5737. if (nb10 == sizeof(float)) {
  5738. for (int ir = ir0; ir < ir1; ++ir) {
  5739. // src0, src1 and dst are same shape => same indices
  5740. const int i3 = ir/(ne2*ne1);
  5741. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5742. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5743. #ifdef GGML_USE_ACCELERATE
  5744. vDSP_vadd(
  5745. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5746. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5747. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5748. ne0);
  5749. #else
  5750. ggml_vec_add_f32(ne0,
  5751. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5752. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5753. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5754. #endif
  5755. // }
  5756. // }
  5757. }
  5758. } else {
  5759. // src1 is not contiguous
  5760. for (int ir = ir0; ir < ir1; ++ir) {
  5761. // src0, src1 and dst are same shape => same indices
  5762. const int i3 = ir/(ne2*ne1);
  5763. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5764. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5765. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5766. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5767. for (int i0 = 0; i0 < ne0; i0++) {
  5768. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5769. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5770. }
  5771. }
  5772. }
  5773. }
  5774. static void ggml_compute_forward_add_f16_f32(
  5775. const struct ggml_compute_params * params,
  5776. const struct ggml_tensor * src0,
  5777. const struct ggml_tensor * src1,
  5778. struct ggml_tensor * dst) {
  5779. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5780. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5781. return;
  5782. }
  5783. const int ith = params->ith;
  5784. const int nth = params->nth;
  5785. const int nr = ggml_nrows(src0);
  5786. const int64_t ne0 = src0->ne[0];
  5787. const int64_t ne1 = src0->ne[1];
  5788. const int64_t ne2 = src0->ne[2];
  5789. const size_t nb00 = src0->nb[0];
  5790. const size_t nb01 = src0->nb[1];
  5791. const size_t nb02 = src0->nb[2];
  5792. const size_t nb03 = src0->nb[3];
  5793. const size_t nb10 = src1->nb[0];
  5794. const size_t nb11 = src1->nb[1];
  5795. const size_t nb12 = src1->nb[2];
  5796. const size_t nb13 = src1->nb[3];
  5797. const size_t nb0 = dst->nb[0];
  5798. const size_t nb1 = dst->nb[1];
  5799. const size_t nb2 = dst->nb[2];
  5800. const size_t nb3 = dst->nb[3];
  5801. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5802. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5803. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5804. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5805. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5806. // rows per thread
  5807. const int dr = (nr + nth - 1)/nth;
  5808. // row range for this thread
  5809. const int ir0 = dr*ith;
  5810. const int ir1 = MIN(ir0 + dr, nr);
  5811. if (nb10 == sizeof(float)) {
  5812. for (int ir = ir0; ir < ir1; ++ir) {
  5813. // src0, src1 and dst are same shape => same indices
  5814. const int i3 = ir/(ne2*ne1);
  5815. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5816. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5817. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5818. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5819. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5820. for (int i = 0; i < ne0; i++) {
  5821. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5822. }
  5823. }
  5824. }
  5825. else {
  5826. // src1 is not contiguous
  5827. GGML_ASSERT(false);
  5828. }
  5829. }
  5830. static void ggml_compute_forward_add_f16_f16(
  5831. const struct ggml_compute_params * params,
  5832. const struct ggml_tensor * src0,
  5833. const struct ggml_tensor * src1,
  5834. struct ggml_tensor * dst) {
  5835. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5836. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5837. return;
  5838. }
  5839. const int ith = params->ith;
  5840. const int nth = params->nth;
  5841. const int nr = ggml_nrows(src0);
  5842. const int64_t ne0 = src0->ne[0];
  5843. const int64_t ne1 = src0->ne[1];
  5844. const int64_t ne2 = src0->ne[2];
  5845. const size_t nb00 = src0->nb[0];
  5846. const size_t nb01 = src0->nb[1];
  5847. const size_t nb02 = src0->nb[2];
  5848. const size_t nb03 = src0->nb[3];
  5849. const size_t nb10 = src1->nb[0];
  5850. const size_t nb11 = src1->nb[1];
  5851. const size_t nb12 = src1->nb[2];
  5852. const size_t nb13 = src1->nb[3];
  5853. const size_t nb0 = dst->nb[0];
  5854. const size_t nb1 = dst->nb[1];
  5855. const size_t nb2 = dst->nb[2];
  5856. const size_t nb3 = dst->nb[3];
  5857. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5858. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5859. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5860. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5861. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5862. // rows per thread
  5863. const int dr = (nr + nth - 1)/nth;
  5864. // row range for this thread
  5865. const int ir0 = dr*ith;
  5866. const int ir1 = MIN(ir0 + dr, nr);
  5867. if (nb10 == sizeof(ggml_fp16_t)) {
  5868. for (int ir = ir0; ir < ir1; ++ir) {
  5869. // src0, src1 and dst are same shape => same indices
  5870. const int i3 = ir/(ne2*ne1);
  5871. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5872. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5873. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5874. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5875. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5876. for (int i = 0; i < ne0; i++) {
  5877. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5878. }
  5879. }
  5880. }
  5881. else {
  5882. // src1 is not contiguous
  5883. GGML_ASSERT(false);
  5884. }
  5885. }
  5886. static void ggml_compute_forward_add_q_f32(
  5887. const struct ggml_compute_params * params,
  5888. const struct ggml_tensor * src0,
  5889. const struct ggml_tensor * src1,
  5890. struct ggml_tensor * dst) {
  5891. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5892. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5893. return;
  5894. }
  5895. const int nr = ggml_nrows(src0);
  5896. const int64_t ne00 = src0->ne[0];
  5897. const int64_t ne01 = src0->ne[1];
  5898. const int64_t ne02 = src0->ne[2];
  5899. //const int64_t ne03 = src0->ne[3];
  5900. const size_t nb00 = src0->nb[0];
  5901. const size_t nb01 = src0->nb[1];
  5902. const size_t nb02 = src0->nb[2];
  5903. const size_t nb03 = src0->nb[3];
  5904. const size_t nb10 = src1->nb[0];
  5905. const size_t nb11 = src1->nb[1];
  5906. const size_t nb12 = src1->nb[2];
  5907. const size_t nb13 = src1->nb[3];
  5908. const size_t nb0 = dst->nb[0];
  5909. const size_t nb1 = dst->nb[1];
  5910. const size_t nb2 = dst->nb[2];
  5911. const size_t nb3 = dst->nb[3];
  5912. const int ith = params->ith;
  5913. const int nth = params->nth;
  5914. const enum ggml_type type = src0->type;
  5915. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5916. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5917. // we don't support permuted src0 or src1
  5918. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  5919. GGML_ASSERT(nb10 == sizeof(float));
  5920. // dst cannot be transposed or permuted
  5921. GGML_ASSERT(nb0 <= nb1);
  5922. GGML_ASSERT(nb1 <= nb2);
  5923. GGML_ASSERT(nb2 <= nb3);
  5924. GGML_ASSERT(ggml_is_quantized(src0->type));
  5925. GGML_ASSERT(dst->type == src0->type);
  5926. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5927. // rows per thread
  5928. const int dr = (nr + nth - 1)/nth;
  5929. // row range for this thread
  5930. const int ir0 = dr*ith;
  5931. const int ir1 = MIN(ir0 + dr, nr);
  5932. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5933. for (int ir = ir0; ir < ir1; ++ir) {
  5934. // src0 indices
  5935. const int i03 = ir/(ne02*ne01);
  5936. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5937. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5938. // src1 and dst are same shape as src0 => same indices
  5939. const int i13 = i03;
  5940. const int i12 = i02;
  5941. const int i11 = i01;
  5942. const int i3 = i03;
  5943. const int i2 = i02;
  5944. const int i1 = i01;
  5945. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5946. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5947. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5948. assert(ne00 % 32 == 0);
  5949. // unquantize row from src0 to temp buffer
  5950. dequantize_row_q(src0_row, wdata, ne00);
  5951. // add src1
  5952. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5953. // quantize row to dst
  5954. quantize_row_q(wdata, dst_row, ne00);
  5955. }
  5956. }
  5957. static void ggml_compute_forward_add(
  5958. const struct ggml_compute_params * params,
  5959. const struct ggml_tensor * src0,
  5960. const struct ggml_tensor * src1,
  5961. struct ggml_tensor * dst) {
  5962. switch (src0->type) {
  5963. case GGML_TYPE_F32:
  5964. {
  5965. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5966. } break;
  5967. case GGML_TYPE_F16:
  5968. {
  5969. if (src1->type == GGML_TYPE_F16) {
  5970. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5971. }
  5972. else if (src1->type == GGML_TYPE_F32) {
  5973. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5974. }
  5975. else {
  5976. GGML_ASSERT(false);
  5977. }
  5978. } break;
  5979. case GGML_TYPE_Q4_0:
  5980. case GGML_TYPE_Q4_1:
  5981. case GGML_TYPE_Q5_0:
  5982. case GGML_TYPE_Q5_1:
  5983. case GGML_TYPE_Q8_0:
  5984. {
  5985. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5986. } break;
  5987. default:
  5988. {
  5989. GGML_ASSERT(false);
  5990. } break;
  5991. }
  5992. }
  5993. // ggml_compute_forward_add1
  5994. static void ggml_compute_forward_add1_f32(
  5995. const struct ggml_compute_params * params,
  5996. const struct ggml_tensor * src0,
  5997. const struct ggml_tensor * src1,
  5998. struct ggml_tensor * dst) {
  5999. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6000. GGML_ASSERT(ggml_is_scalar(src1));
  6001. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6002. return;
  6003. }
  6004. const int ith = params->ith;
  6005. const int nth = params->nth;
  6006. const int nr = ggml_nrows(src0);
  6007. const int64_t ne0 = src0->ne[0];
  6008. const int64_t ne1 = src0->ne[1];
  6009. const int64_t ne2 = src0->ne[2];
  6010. const size_t nb00 = src0->nb[0];
  6011. const size_t nb01 = src0->nb[1];
  6012. const size_t nb02 = src0->nb[2];
  6013. const size_t nb03 = src0->nb[3];
  6014. const size_t nb0 = dst->nb[0];
  6015. const size_t nb1 = dst->nb[1];
  6016. const size_t nb2 = dst->nb[2];
  6017. const size_t nb3 = dst->nb[3];
  6018. GGML_ASSERT( nb0 == sizeof(float));
  6019. GGML_ASSERT(nb00 == sizeof(float));
  6020. // rows per thread
  6021. const int dr = (nr + nth - 1)/nth;
  6022. // row range for this thread
  6023. const int ir0 = dr*ith;
  6024. const int ir1 = MIN(ir0 + dr, nr);
  6025. for (int ir = ir0; ir < ir1; ++ir) {
  6026. // src0 and dst are same shape => same indices
  6027. const int i3 = ir/(ne2*ne1);
  6028. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6029. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6030. #ifdef GGML_USE_ACCELERATE
  6031. UNUSED(ggml_vec_add1_f32);
  6032. vDSP_vadd(
  6033. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6034. (float *) ((char *) src1->data), 0,
  6035. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6036. ne0);
  6037. #else
  6038. ggml_vec_add1_f32(ne0,
  6039. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6040. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6041. *(float *) src1->data);
  6042. #endif
  6043. }
  6044. }
  6045. static void ggml_compute_forward_add1_f16_f32(
  6046. const struct ggml_compute_params * params,
  6047. const struct ggml_tensor * src0,
  6048. const struct ggml_tensor * src1,
  6049. struct ggml_tensor * dst) {
  6050. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6051. GGML_ASSERT(ggml_is_scalar(src1));
  6052. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6053. return;
  6054. }
  6055. // scalar to add
  6056. const float v = *(float *) src1->data;
  6057. const int ith = params->ith;
  6058. const int nth = params->nth;
  6059. const int nr = ggml_nrows(src0);
  6060. const int64_t ne0 = src0->ne[0];
  6061. const int64_t ne1 = src0->ne[1];
  6062. const int64_t ne2 = src0->ne[2];
  6063. const size_t nb00 = src0->nb[0];
  6064. const size_t nb01 = src0->nb[1];
  6065. const size_t nb02 = src0->nb[2];
  6066. const size_t nb03 = src0->nb[3];
  6067. const size_t nb0 = dst->nb[0];
  6068. const size_t nb1 = dst->nb[1];
  6069. const size_t nb2 = dst->nb[2];
  6070. const size_t nb3 = dst->nb[3];
  6071. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6072. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6073. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6074. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6075. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6076. // rows per thread
  6077. const int dr = (nr + nth - 1)/nth;
  6078. // row range for this thread
  6079. const int ir0 = dr*ith;
  6080. const int ir1 = MIN(ir0 + dr, nr);
  6081. for (int ir = ir0; ir < ir1; ++ir) {
  6082. // src0 and dst are same shape => same indices
  6083. const int i3 = ir/(ne2*ne1);
  6084. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6085. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6086. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6087. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6088. for (int i = 0; i < ne0; i++) {
  6089. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6090. }
  6091. }
  6092. }
  6093. static void ggml_compute_forward_add1_f16_f16(
  6094. const struct ggml_compute_params * params,
  6095. const struct ggml_tensor * src0,
  6096. const struct ggml_tensor * src1,
  6097. struct ggml_tensor * dst) {
  6098. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6099. GGML_ASSERT(ggml_is_scalar(src1));
  6100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6101. return;
  6102. }
  6103. // scalar to add
  6104. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6105. const int ith = params->ith;
  6106. const int nth = params->nth;
  6107. const int nr = ggml_nrows(src0);
  6108. const int64_t ne0 = src0->ne[0];
  6109. const int64_t ne1 = src0->ne[1];
  6110. const int64_t ne2 = src0->ne[2];
  6111. const size_t nb00 = src0->nb[0];
  6112. const size_t nb01 = src0->nb[1];
  6113. const size_t nb02 = src0->nb[2];
  6114. const size_t nb03 = src0->nb[3];
  6115. const size_t nb0 = dst->nb[0];
  6116. const size_t nb1 = dst->nb[1];
  6117. const size_t nb2 = dst->nb[2];
  6118. const size_t nb3 = dst->nb[3];
  6119. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6120. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6121. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6122. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6123. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6124. // rows per thread
  6125. const int dr = (nr + nth - 1)/nth;
  6126. // row range for this thread
  6127. const int ir0 = dr*ith;
  6128. const int ir1 = MIN(ir0 + dr, nr);
  6129. for (int ir = ir0; ir < ir1; ++ir) {
  6130. // src0 and dst are same shape => same indices
  6131. const int i3 = ir/(ne2*ne1);
  6132. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6133. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6134. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6135. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6136. for (int i = 0; i < ne0; i++) {
  6137. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6138. }
  6139. }
  6140. }
  6141. static void ggml_compute_forward_add1_q_f32(
  6142. const struct ggml_compute_params * params,
  6143. const struct ggml_tensor * src0,
  6144. const struct ggml_tensor * src1,
  6145. struct ggml_tensor * dst) {
  6146. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6147. GGML_ASSERT(ggml_is_scalar(src1));
  6148. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6149. return;
  6150. }
  6151. // scalar to add
  6152. const float v = *(float *) src1->data;
  6153. const int ith = params->ith;
  6154. const int nth = params->nth;
  6155. const int nr = ggml_nrows(src0);
  6156. const int64_t ne0 = src0->ne[0];
  6157. const int64_t ne1 = src0->ne[1];
  6158. const int64_t ne2 = src0->ne[2];
  6159. const size_t nb00 = src0->nb[0];
  6160. const size_t nb01 = src0->nb[1];
  6161. const size_t nb02 = src0->nb[2];
  6162. const size_t nb03 = src0->nb[3];
  6163. const size_t nb0 = dst->nb[0];
  6164. const size_t nb1 = dst->nb[1];
  6165. const size_t nb2 = dst->nb[2];
  6166. const size_t nb3 = dst->nb[3];
  6167. const enum ggml_type type = src0->type;
  6168. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6169. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6170. // we don't support permuted src0
  6171. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6172. // dst cannot be transposed or permuted
  6173. GGML_ASSERT(nb0 <= nb1);
  6174. GGML_ASSERT(nb1 <= nb2);
  6175. GGML_ASSERT(nb2 <= nb3);
  6176. GGML_ASSERT(ggml_is_quantized(src0->type));
  6177. GGML_ASSERT(dst->type == src0->type);
  6178. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6179. // rows per thread
  6180. const int dr = (nr + nth - 1)/nth;
  6181. // row range for this thread
  6182. const int ir0 = dr*ith;
  6183. const int ir1 = MIN(ir0 + dr, nr);
  6184. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6185. for (int ir = ir0; ir < ir1; ++ir) {
  6186. // src0 and dst are same shape => same indices
  6187. const int i3 = ir/(ne2*ne1);
  6188. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6189. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6190. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6191. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6192. assert(ne0 % 32 == 0);
  6193. // unquantize row from src0 to temp buffer
  6194. dequantize_row_q(src0_row, wdata, ne0);
  6195. // add src1
  6196. ggml_vec_acc1_f32(ne0, wdata, v);
  6197. // quantize row to dst
  6198. quantize_row_q(wdata, dst_row, ne0);
  6199. }
  6200. }
  6201. static void ggml_compute_forward_add1(
  6202. const struct ggml_compute_params * params,
  6203. const struct ggml_tensor * src0,
  6204. const struct ggml_tensor * src1,
  6205. struct ggml_tensor * dst) {
  6206. switch (src0->type) {
  6207. case GGML_TYPE_F32:
  6208. {
  6209. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6210. } break;
  6211. case GGML_TYPE_F16:
  6212. {
  6213. if (src1->type == GGML_TYPE_F16) {
  6214. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6215. }
  6216. else if (src1->type == GGML_TYPE_F32) {
  6217. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6218. }
  6219. else {
  6220. GGML_ASSERT(false);
  6221. }
  6222. } break;
  6223. case GGML_TYPE_Q4_0:
  6224. case GGML_TYPE_Q4_1:
  6225. case GGML_TYPE_Q5_0:
  6226. case GGML_TYPE_Q5_1:
  6227. case GGML_TYPE_Q8_0:
  6228. case GGML_TYPE_Q8_1:
  6229. {
  6230. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6231. } break;
  6232. default:
  6233. {
  6234. GGML_ASSERT(false);
  6235. } break;
  6236. }
  6237. }
  6238. // ggml_compute_forward_acc
  6239. static void ggml_compute_forward_acc_f32(
  6240. const struct ggml_compute_params * params,
  6241. const struct ggml_tensor * src0,
  6242. const struct ggml_tensor * src1,
  6243. const struct ggml_tensor * opt0,
  6244. struct ggml_tensor * dst) {
  6245. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6246. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6247. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6248. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6249. // view src0 and dst with these strides and data offset inbytes during acc
  6250. // nb0 is implicitely element_size because src0 and dst are contiguous
  6251. size_t nb1 = ((int32_t *) opt0->data)[0];
  6252. size_t nb2 = ((int32_t *) opt0->data)[1];
  6253. size_t nb3 = ((int32_t *) opt0->data)[2];
  6254. size_t offset = ((int32_t *) opt0->data)[3];
  6255. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6256. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6257. // memcpy needs to be synchronized across threads to avoid race conditions.
  6258. // => do it in INIT phase
  6259. memcpy(
  6260. ((char *) dst->data),
  6261. ((char *) src0->data),
  6262. ggml_nbytes(dst));
  6263. }
  6264. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6265. return;
  6266. }
  6267. const int ith = params->ith;
  6268. const int nth = params->nth;
  6269. const int nr = ggml_nrows(src1);
  6270. const int nc = src1->ne[0];
  6271. const int64_t ne10 = src1->ne[0];
  6272. const int64_t ne11 = src1->ne[1];
  6273. const int64_t ne12 = src1->ne[2];
  6274. const int64_t ne13 = src1->ne[3];
  6275. const size_t nb10 = src1->nb[0];
  6276. const size_t nb11 = src1->nb[1];
  6277. const size_t nb12 = src1->nb[2];
  6278. const size_t nb13 = src1->nb[3];
  6279. // src0 and dst as viewed during acc
  6280. const size_t nb0 = ggml_element_size(src0);
  6281. const size_t nb00 = nb0;
  6282. const size_t nb01 = nb1;
  6283. const size_t nb02 = nb2;
  6284. const size_t nb03 = nb3;
  6285. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6286. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6287. GGML_ASSERT(nb10 == sizeof(float));
  6288. // rows per thread
  6289. const int dr = (nr + nth - 1)/nth;
  6290. // row range for this thread
  6291. const int ir0 = dr*ith;
  6292. const int ir1 = MIN(ir0 + dr, nr);
  6293. for (int ir = ir0; ir < ir1; ++ir) {
  6294. // src0 and dst are viewed with shape of src1 and offset
  6295. // => same indices
  6296. const int i3 = ir/(ne12*ne11);
  6297. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6298. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6299. #ifdef GGML_USE_ACCELERATE
  6300. vDSP_vadd(
  6301. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6302. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6303. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6304. #else
  6305. ggml_vec_add_f32(nc,
  6306. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6307. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6308. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6309. #endif
  6310. }
  6311. }
  6312. static void ggml_compute_forward_acc(
  6313. const struct ggml_compute_params * params,
  6314. const struct ggml_tensor * src0,
  6315. const struct ggml_tensor * src1,
  6316. const struct ggml_tensor * opt0,
  6317. struct ggml_tensor * dst) {
  6318. switch (src0->type) {
  6319. case GGML_TYPE_F32:
  6320. {
  6321. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6322. } break;
  6323. case GGML_TYPE_F16:
  6324. case GGML_TYPE_Q4_0:
  6325. case GGML_TYPE_Q4_1:
  6326. case GGML_TYPE_Q5_0:
  6327. case GGML_TYPE_Q5_1:
  6328. case GGML_TYPE_Q8_0:
  6329. case GGML_TYPE_Q8_1:
  6330. default:
  6331. {
  6332. GGML_ASSERT(false);
  6333. } break;
  6334. }
  6335. }
  6336. // ggml_compute_forward_sub
  6337. static void ggml_compute_forward_sub_f32(
  6338. const struct ggml_compute_params * params,
  6339. const struct ggml_tensor * src0,
  6340. const struct ggml_tensor * src1,
  6341. struct ggml_tensor * dst) {
  6342. assert(params->ith == 0);
  6343. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6344. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6345. return;
  6346. }
  6347. const int nr = ggml_nrows(src0);
  6348. const int64_t ne0 = src0->ne[0];
  6349. const int64_t ne1 = src0->ne[1];
  6350. const int64_t ne2 = src0->ne[2];
  6351. const size_t nb00 = src0->nb[0];
  6352. const size_t nb01 = src0->nb[1];
  6353. const size_t nb02 = src0->nb[2];
  6354. const size_t nb03 = src0->nb[3];
  6355. const size_t nb10 = src1->nb[0];
  6356. const size_t nb11 = src1->nb[1];
  6357. const size_t nb12 = src1->nb[2];
  6358. const size_t nb13 = src1->nb[3];
  6359. const size_t nb0 = dst->nb[0];
  6360. const size_t nb1 = dst->nb[1];
  6361. const size_t nb2 = dst->nb[2];
  6362. const size_t nb3 = dst->nb[3];
  6363. GGML_ASSERT( nb0 == sizeof(float));
  6364. GGML_ASSERT(nb00 == sizeof(float));
  6365. if (nb10 == sizeof(float)) {
  6366. for (int ir = 0; ir < nr; ++ir) {
  6367. // src0, src1 and dst are same shape => same indices
  6368. const int i3 = ir/(ne2*ne1);
  6369. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6370. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6371. #ifdef GGML_USE_ACCELERATE
  6372. vDSP_vsub(
  6373. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6374. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6375. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6376. ne0);
  6377. #else
  6378. ggml_vec_sub_f32(ne0,
  6379. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6380. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6381. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6382. #endif
  6383. // }
  6384. // }
  6385. }
  6386. } else {
  6387. // src1 is not contiguous
  6388. for (int ir = 0; ir < nr; ++ir) {
  6389. // src0, src1 and dst are same shape => same indices
  6390. const int i3 = ir/(ne2*ne1);
  6391. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6392. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6393. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6394. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6395. for (int i0 = 0; i0 < ne0; i0++) {
  6396. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6397. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6398. }
  6399. }
  6400. }
  6401. }
  6402. static void ggml_compute_forward_sub(
  6403. const struct ggml_compute_params * params,
  6404. const struct ggml_tensor * src0,
  6405. const struct ggml_tensor * src1,
  6406. struct ggml_tensor * dst) {
  6407. switch (src0->type) {
  6408. case GGML_TYPE_F32:
  6409. {
  6410. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6411. } break;
  6412. default:
  6413. {
  6414. GGML_ASSERT(false);
  6415. } break;
  6416. }
  6417. }
  6418. // ggml_compute_forward_mul
  6419. static void ggml_compute_forward_mul_f32(
  6420. const struct ggml_compute_params * params,
  6421. const struct ggml_tensor * src0,
  6422. const struct ggml_tensor * src1,
  6423. struct ggml_tensor * dst) {
  6424. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6425. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6426. return;
  6427. }
  6428. const int ith = params->ith;
  6429. const int nth = params->nth;
  6430. const int nr = ggml_nrows(src0);
  6431. const int64_t ne0 = src0->ne[0];
  6432. const int64_t ne1 = src0->ne[1];
  6433. const int64_t ne2 = src0->ne[2];
  6434. const size_t nb00 = src0->nb[0];
  6435. const size_t nb01 = src0->nb[1];
  6436. const size_t nb02 = src0->nb[2];
  6437. const size_t nb03 = src0->nb[3];
  6438. const size_t nb10 = src1->nb[0];
  6439. const size_t nb11 = src1->nb[1];
  6440. const size_t nb12 = src1->nb[2];
  6441. const size_t nb13 = src1->nb[3];
  6442. const size_t nb0 = dst->nb[0];
  6443. const size_t nb1 = dst->nb[1];
  6444. const size_t nb2 = dst->nb[2];
  6445. const size_t nb3 = dst->nb[3];
  6446. GGML_ASSERT( nb0 == sizeof(float));
  6447. GGML_ASSERT(nb00 == sizeof(float));
  6448. if (nb10 == sizeof(float)) {
  6449. for (int ir = ith; ir < nr; ir += nth) {
  6450. // src0, src1 and dst are same shape => same indices
  6451. const int i3 = ir/(ne2*ne1);
  6452. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6453. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6454. #ifdef GGML_USE_ACCELERATE
  6455. UNUSED(ggml_vec_mul_f32);
  6456. vDSP_vmul(
  6457. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6458. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6459. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6460. ne0);
  6461. #else
  6462. ggml_vec_mul_f32(ne0,
  6463. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6464. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6465. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6466. #endif
  6467. // }
  6468. // }
  6469. }
  6470. } else {
  6471. // src1 is not contiguous
  6472. for (int ir = ith; ir < nr; ir += nth) {
  6473. // src0, src1 and dst are same shape => same indices
  6474. const int i3 = ir/(ne2*ne1);
  6475. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6476. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6477. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6478. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6479. for (int i0 = 0; i0 < ne0; i0++) {
  6480. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6481. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6482. }
  6483. }
  6484. }
  6485. }
  6486. static void ggml_compute_forward_mul(
  6487. const struct ggml_compute_params * params,
  6488. const struct ggml_tensor * src0,
  6489. const struct ggml_tensor * src1,
  6490. struct ggml_tensor * dst) {
  6491. switch (src0->type) {
  6492. case GGML_TYPE_F32:
  6493. {
  6494. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6495. } break;
  6496. default:
  6497. {
  6498. GGML_ASSERT(false);
  6499. } break;
  6500. }
  6501. }
  6502. // ggml_compute_forward_div
  6503. static void ggml_compute_forward_div_f32(
  6504. const struct ggml_compute_params * params,
  6505. const struct ggml_tensor * src0,
  6506. const struct ggml_tensor * src1,
  6507. struct ggml_tensor * dst) {
  6508. assert(params->ith == 0);
  6509. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6510. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6511. return;
  6512. }
  6513. const int nr = ggml_nrows(src0);
  6514. const int64_t ne0 = src0->ne[0];
  6515. const int64_t ne1 = src0->ne[1];
  6516. const int64_t ne2 = src0->ne[2];
  6517. const size_t nb00 = src0->nb[0];
  6518. const size_t nb01 = src0->nb[1];
  6519. const size_t nb02 = src0->nb[2];
  6520. const size_t nb03 = src0->nb[3];
  6521. const size_t nb10 = src1->nb[0];
  6522. const size_t nb11 = src1->nb[1];
  6523. const size_t nb12 = src1->nb[2];
  6524. const size_t nb13 = src1->nb[3];
  6525. const size_t nb0 = dst->nb[0];
  6526. const size_t nb1 = dst->nb[1];
  6527. const size_t nb2 = dst->nb[2];
  6528. const size_t nb3 = dst->nb[3];
  6529. GGML_ASSERT( nb0 == sizeof(float));
  6530. GGML_ASSERT(nb00 == sizeof(float));
  6531. if (nb10 == sizeof(float)) {
  6532. for (int ir = 0; ir < nr; ++ir) {
  6533. // src0, src1 and dst are same shape => same indices
  6534. const int i3 = ir/(ne2*ne1);
  6535. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6536. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6537. #ifdef GGML_USE_ACCELERATE
  6538. vDSP_vdiv(
  6539. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6540. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6541. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6542. ne0);
  6543. #else
  6544. ggml_vec_div_f32(ne0,
  6545. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6546. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6547. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6548. #endif
  6549. // }
  6550. // }
  6551. }
  6552. } else {
  6553. // src1 is not contiguous
  6554. for (int ir = 0; ir < nr; ++ir) {
  6555. // src0, src1 and dst are same shape => same indices
  6556. const int i3 = ir/(ne2*ne1);
  6557. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6558. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6559. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6560. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6561. for (int i0 = 0; i0 < ne0; i0++) {
  6562. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6563. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6564. }
  6565. }
  6566. }
  6567. }
  6568. static void ggml_compute_forward_div(
  6569. const struct ggml_compute_params * params,
  6570. const struct ggml_tensor * src0,
  6571. const struct ggml_tensor * src1,
  6572. struct ggml_tensor * dst) {
  6573. switch (src0->type) {
  6574. case GGML_TYPE_F32:
  6575. {
  6576. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6577. } break;
  6578. default:
  6579. {
  6580. GGML_ASSERT(false);
  6581. } break;
  6582. }
  6583. }
  6584. // ggml_compute_forward_sqr
  6585. static void ggml_compute_forward_sqr_f32(
  6586. const struct ggml_compute_params * params,
  6587. const struct ggml_tensor * src0,
  6588. struct ggml_tensor * dst) {
  6589. assert(params->ith == 0);
  6590. assert(ggml_are_same_shape(src0, dst));
  6591. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6592. return;
  6593. }
  6594. const int n = ggml_nrows(src0);
  6595. const int nc = src0->ne[0];
  6596. assert( dst->nb[0] == sizeof(float));
  6597. assert(src0->nb[0] == sizeof(float));
  6598. for (int i = 0; i < n; i++) {
  6599. ggml_vec_sqr_f32(nc,
  6600. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6601. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6602. }
  6603. }
  6604. static void ggml_compute_forward_sqr(
  6605. const struct ggml_compute_params * params,
  6606. const struct ggml_tensor * src0,
  6607. struct ggml_tensor * dst) {
  6608. switch (src0->type) {
  6609. case GGML_TYPE_F32:
  6610. {
  6611. ggml_compute_forward_sqr_f32(params, src0, dst);
  6612. } break;
  6613. default:
  6614. {
  6615. GGML_ASSERT(false);
  6616. } break;
  6617. }
  6618. }
  6619. // ggml_compute_forward_sqrt
  6620. static void ggml_compute_forward_sqrt_f32(
  6621. const struct ggml_compute_params * params,
  6622. const struct ggml_tensor * src0,
  6623. struct ggml_tensor * dst) {
  6624. assert(params->ith == 0);
  6625. assert(ggml_are_same_shape(src0, dst));
  6626. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6627. return;
  6628. }
  6629. const int n = ggml_nrows(src0);
  6630. const int nc = src0->ne[0];
  6631. assert( dst->nb[0] == sizeof(float));
  6632. assert(src0->nb[0] == sizeof(float));
  6633. for (int i = 0; i < n; i++) {
  6634. ggml_vec_sqrt_f32(nc,
  6635. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6636. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6637. }
  6638. }
  6639. static void ggml_compute_forward_sqrt(
  6640. const struct ggml_compute_params * params,
  6641. const struct ggml_tensor * src0,
  6642. struct ggml_tensor * dst) {
  6643. switch (src0->type) {
  6644. case GGML_TYPE_F32:
  6645. {
  6646. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6647. } break;
  6648. default:
  6649. {
  6650. GGML_ASSERT(false);
  6651. } break;
  6652. }
  6653. }
  6654. // ggml_compute_forward_log
  6655. static void ggml_compute_forward_log_f32(
  6656. const struct ggml_compute_params * params,
  6657. const struct ggml_tensor * src0,
  6658. struct ggml_tensor * dst) {
  6659. GGML_ASSERT(params->ith == 0);
  6660. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6661. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6662. return;
  6663. }
  6664. const int n = ggml_nrows(src0);
  6665. const int nc = src0->ne[0];
  6666. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6667. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6668. for (int i = 0; i < n; i++) {
  6669. ggml_vec_log_f32(nc,
  6670. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6671. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6672. }
  6673. }
  6674. static void ggml_compute_forward_log(
  6675. const struct ggml_compute_params * params,
  6676. const struct ggml_tensor * src0,
  6677. struct ggml_tensor * dst) {
  6678. switch (src0->type) {
  6679. case GGML_TYPE_F32:
  6680. {
  6681. ggml_compute_forward_log_f32(params, src0, dst);
  6682. } break;
  6683. default:
  6684. {
  6685. GGML_ASSERT(false);
  6686. } break;
  6687. }
  6688. }
  6689. // ggml_compute_forward_sum
  6690. static void ggml_compute_forward_sum_f32(
  6691. const struct ggml_compute_params * params,
  6692. const struct ggml_tensor * src0,
  6693. struct ggml_tensor * dst) {
  6694. assert(params->ith == 0);
  6695. assert(ggml_is_scalar(dst));
  6696. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6697. return;
  6698. }
  6699. assert(ggml_is_scalar(dst));
  6700. assert(src0->nb[0] == sizeof(float));
  6701. const int64_t ne00 = src0->ne[0];
  6702. const int64_t ne01 = src0->ne[1];
  6703. const int64_t ne02 = src0->ne[2];
  6704. const int64_t ne03 = src0->ne[3];
  6705. const size_t nb01 = src0->nb[1];
  6706. const size_t nb02 = src0->nb[2];
  6707. const size_t nb03 = src0->nb[3];
  6708. ggml_float sum = 0;
  6709. ggml_float row_sum = 0;
  6710. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6711. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6712. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6713. ggml_vec_sum_ggf(ne00,
  6714. &row_sum,
  6715. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6716. sum += row_sum;
  6717. }
  6718. }
  6719. }
  6720. ((float *) dst->data)[0] = sum;
  6721. }
  6722. static void ggml_compute_forward_sum(
  6723. const struct ggml_compute_params * params,
  6724. const struct ggml_tensor * src0,
  6725. struct ggml_tensor * dst) {
  6726. switch (src0->type) {
  6727. case GGML_TYPE_F32:
  6728. {
  6729. ggml_compute_forward_sum_f32(params, src0, dst);
  6730. } break;
  6731. default:
  6732. {
  6733. GGML_ASSERT(false);
  6734. } break;
  6735. }
  6736. }
  6737. // ggml_compute_forward_sum_rows
  6738. static void ggml_compute_forward_sum_rows_f32(
  6739. const struct ggml_compute_params * params,
  6740. const struct ggml_tensor * src0,
  6741. struct ggml_tensor * dst) {
  6742. GGML_ASSERT(params->ith == 0);
  6743. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6744. return;
  6745. }
  6746. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6747. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6748. const int64_t ne00 = src0->ne[0];
  6749. const int64_t ne01 = src0->ne[1];
  6750. const int64_t ne02 = src0->ne[2];
  6751. const int64_t ne03 = src0->ne[3];
  6752. const int64_t ne0 = dst->ne[0];
  6753. const int64_t ne1 = dst->ne[1];
  6754. const int64_t ne2 = dst->ne[2];
  6755. const int64_t ne3 = dst->ne[3];
  6756. GGML_ASSERT(ne0 == 1);
  6757. GGML_ASSERT(ne1 == ne01);
  6758. GGML_ASSERT(ne2 == ne02);
  6759. GGML_ASSERT(ne3 == ne03);
  6760. const size_t nb01 = src0->nb[1];
  6761. const size_t nb02 = src0->nb[2];
  6762. const size_t nb03 = src0->nb[3];
  6763. const size_t nb1 = dst->nb[1];
  6764. const size_t nb2 = dst->nb[2];
  6765. const size_t nb3 = dst->nb[3];
  6766. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6767. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6768. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6769. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6770. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6771. float row_sum = 0;
  6772. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6773. dst_row[0] = row_sum;
  6774. }
  6775. }
  6776. }
  6777. }
  6778. static void ggml_compute_forward_sum_rows(
  6779. const struct ggml_compute_params * params,
  6780. const struct ggml_tensor * src0,
  6781. struct ggml_tensor * dst) {
  6782. switch (src0->type) {
  6783. case GGML_TYPE_F32:
  6784. {
  6785. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6786. } break;
  6787. default:
  6788. {
  6789. GGML_ASSERT(false);
  6790. } break;
  6791. }
  6792. }
  6793. // ggml_compute_forward_mean
  6794. static void ggml_compute_forward_mean_f32(
  6795. const struct ggml_compute_params * params,
  6796. const struct ggml_tensor * src0,
  6797. struct ggml_tensor * dst) {
  6798. assert(params->ith == 0);
  6799. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6800. return;
  6801. }
  6802. assert(src0->nb[0] == sizeof(float));
  6803. const int64_t ne00 = src0->ne[0];
  6804. const int64_t ne01 = src0->ne[1];
  6805. const int64_t ne02 = src0->ne[2];
  6806. const int64_t ne03 = src0->ne[3];
  6807. const size_t nb01 = src0->nb[1];
  6808. const size_t nb02 = src0->nb[2];
  6809. const size_t nb03 = src0->nb[3];
  6810. const int64_t ne0 = dst->ne[0];
  6811. const int64_t ne1 = dst->ne[1];
  6812. const int64_t ne2 = dst->ne[2];
  6813. const int64_t ne3 = dst->ne[3];
  6814. assert(ne0 == 1);
  6815. assert(ne1 == ne01);
  6816. assert(ne2 == ne02);
  6817. assert(ne3 == ne03);
  6818. UNUSED(ne0);
  6819. UNUSED(ne1);
  6820. UNUSED(ne2);
  6821. UNUSED(ne3);
  6822. const size_t nb1 = dst->nb[1];
  6823. const size_t nb2 = dst->nb[2];
  6824. const size_t nb3 = dst->nb[3];
  6825. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6826. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6827. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6828. ggml_vec_sum_f32(ne00,
  6829. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6830. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6831. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6832. }
  6833. }
  6834. }
  6835. }
  6836. static void ggml_compute_forward_mean(
  6837. const struct ggml_compute_params * params,
  6838. const struct ggml_tensor * src0,
  6839. struct ggml_tensor * dst) {
  6840. switch (src0->type) {
  6841. case GGML_TYPE_F32:
  6842. {
  6843. ggml_compute_forward_mean_f32(params, src0, dst);
  6844. } break;
  6845. default:
  6846. {
  6847. GGML_ASSERT(false);
  6848. } break;
  6849. }
  6850. }
  6851. // ggml_compute_forward_repeat
  6852. static void ggml_compute_forward_repeat_f32(
  6853. const struct ggml_compute_params * params,
  6854. const struct ggml_tensor * src0,
  6855. struct ggml_tensor * dst) {
  6856. GGML_ASSERT(params->ith == 0);
  6857. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6858. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6859. return;
  6860. }
  6861. const int64_t ne0 = dst->ne[0];
  6862. const int64_t ne1 = dst->ne[1];
  6863. const int64_t ne2 = dst->ne[2];
  6864. const int64_t ne3 = dst->ne[3];
  6865. const int64_t ne00 = src0->ne[0];
  6866. const int64_t ne01 = src0->ne[1];
  6867. const int64_t ne02 = src0->ne[2];
  6868. const int64_t ne03 = src0->ne[3];
  6869. const size_t nb0 = dst->nb[0];
  6870. const size_t nb1 = dst->nb[1];
  6871. const size_t nb2 = dst->nb[2];
  6872. const size_t nb3 = dst->nb[3];
  6873. const size_t nb00 = src0->nb[0];
  6874. const size_t nb01 = src0->nb[1];
  6875. const size_t nb02 = src0->nb[2];
  6876. const size_t nb03 = src0->nb[3];
  6877. // guaranteed to be an integer due to the check in ggml_can_repeat
  6878. const int nr0 = (int)(ne0/ne00);
  6879. const int nr1 = (int)(ne1/ne01);
  6880. const int nr2 = (int)(ne2/ne02);
  6881. const int nr3 = (int)(ne3/ne03);
  6882. // TODO: support for transposed / permuted tensors
  6883. GGML_ASSERT(nb0 == sizeof(float));
  6884. GGML_ASSERT(nb00 == sizeof(float));
  6885. // TODO: maybe this is not optimal?
  6886. for (int i3 = 0; i3 < nr3; i3++) {
  6887. for (int k3 = 0; k3 < ne03; k3++) {
  6888. for (int i2 = 0; i2 < nr2; i2++) {
  6889. for (int k2 = 0; k2 < ne02; k2++) {
  6890. for (int i1 = 0; i1 < nr1; i1++) {
  6891. for (int k1 = 0; k1 < ne01; k1++) {
  6892. for (int i0 = 0; i0 < nr0; i0++) {
  6893. ggml_vec_cpy_f32(ne00,
  6894. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6895. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6896. }
  6897. }
  6898. }
  6899. }
  6900. }
  6901. }
  6902. }
  6903. }
  6904. static void ggml_compute_forward_repeat(
  6905. const struct ggml_compute_params * params,
  6906. const struct ggml_tensor * src0,
  6907. struct ggml_tensor * dst) {
  6908. switch (src0->type) {
  6909. case GGML_TYPE_F32:
  6910. {
  6911. ggml_compute_forward_repeat_f32(params, src0, dst);
  6912. } break;
  6913. default:
  6914. {
  6915. GGML_ASSERT(false);
  6916. } break;
  6917. }
  6918. }
  6919. // ggml_compute_forward_abs
  6920. static void ggml_compute_forward_abs_f32(
  6921. const struct ggml_compute_params * params,
  6922. const struct ggml_tensor * src0,
  6923. struct ggml_tensor * dst) {
  6924. assert(params->ith == 0);
  6925. assert(ggml_are_same_shape(src0, dst));
  6926. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6927. return;
  6928. }
  6929. const int n = ggml_nrows(src0);
  6930. const int nc = src0->ne[0];
  6931. assert(dst->nb[0] == sizeof(float));
  6932. assert(src0->nb[0] == sizeof(float));
  6933. for (int i = 0; i < n; i++) {
  6934. ggml_vec_abs_f32(nc,
  6935. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6936. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6937. }
  6938. }
  6939. static void ggml_compute_forward_abs(
  6940. const struct ggml_compute_params * params,
  6941. const struct ggml_tensor * src0,
  6942. struct ggml_tensor * dst) {
  6943. switch (src0->type) {
  6944. case GGML_TYPE_F32:
  6945. {
  6946. ggml_compute_forward_abs_f32(params, src0, dst);
  6947. } break;
  6948. default:
  6949. {
  6950. GGML_ASSERT(false);
  6951. } break;
  6952. }
  6953. }
  6954. // ggml_compute_forward_sgn
  6955. static void ggml_compute_forward_sgn_f32(
  6956. const struct ggml_compute_params * params,
  6957. const struct ggml_tensor * src0,
  6958. struct ggml_tensor * dst) {
  6959. assert(params->ith == 0);
  6960. assert(ggml_are_same_shape(src0, dst));
  6961. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6962. return;
  6963. }
  6964. const int n = ggml_nrows(src0);
  6965. const int nc = src0->ne[0];
  6966. assert(dst->nb[0] == sizeof(float));
  6967. assert(src0->nb[0] == sizeof(float));
  6968. for (int i = 0; i < n; i++) {
  6969. ggml_vec_sgn_f32(nc,
  6970. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6971. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6972. }
  6973. }
  6974. static void ggml_compute_forward_sgn(
  6975. const struct ggml_compute_params * params,
  6976. const struct ggml_tensor * src0,
  6977. struct ggml_tensor * dst) {
  6978. switch (src0->type) {
  6979. case GGML_TYPE_F32:
  6980. {
  6981. ggml_compute_forward_sgn_f32(params, src0, dst);
  6982. } break;
  6983. default:
  6984. {
  6985. GGML_ASSERT(false);
  6986. } break;
  6987. }
  6988. }
  6989. // ggml_compute_forward_neg
  6990. static void ggml_compute_forward_neg_f32(
  6991. const struct ggml_compute_params * params,
  6992. const struct ggml_tensor * src0,
  6993. struct ggml_tensor * dst) {
  6994. assert(params->ith == 0);
  6995. assert(ggml_are_same_shape(src0, dst));
  6996. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6997. return;
  6998. }
  6999. const int n = ggml_nrows(src0);
  7000. const int nc = src0->ne[0];
  7001. assert(dst->nb[0] == sizeof(float));
  7002. assert(src0->nb[0] == sizeof(float));
  7003. for (int i = 0; i < n; i++) {
  7004. ggml_vec_neg_f32(nc,
  7005. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7006. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7007. }
  7008. }
  7009. static void ggml_compute_forward_neg(
  7010. const struct ggml_compute_params * params,
  7011. const struct ggml_tensor * src0,
  7012. struct ggml_tensor * dst) {
  7013. switch (src0->type) {
  7014. case GGML_TYPE_F32:
  7015. {
  7016. ggml_compute_forward_neg_f32(params, src0, dst);
  7017. } break;
  7018. default:
  7019. {
  7020. GGML_ASSERT(false);
  7021. } break;
  7022. }
  7023. }
  7024. // ggml_compute_forward_step
  7025. static void ggml_compute_forward_step_f32(
  7026. const struct ggml_compute_params * params,
  7027. const struct ggml_tensor * src0,
  7028. struct ggml_tensor * dst) {
  7029. assert(params->ith == 0);
  7030. assert(ggml_are_same_shape(src0, dst));
  7031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7032. return;
  7033. }
  7034. const int n = ggml_nrows(src0);
  7035. const int nc = src0->ne[0];
  7036. assert(dst->nb[0] == sizeof(float));
  7037. assert(src0->nb[0] == sizeof(float));
  7038. for (int i = 0; i < n; i++) {
  7039. ggml_vec_step_f32(nc,
  7040. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7041. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7042. }
  7043. }
  7044. static void ggml_compute_forward_step(
  7045. const struct ggml_compute_params * params,
  7046. const struct ggml_tensor * src0,
  7047. struct ggml_tensor * dst) {
  7048. switch (src0->type) {
  7049. case GGML_TYPE_F32:
  7050. {
  7051. ggml_compute_forward_step_f32(params, src0, dst);
  7052. } break;
  7053. default:
  7054. {
  7055. GGML_ASSERT(false);
  7056. } break;
  7057. }
  7058. }
  7059. // ggml_compute_forward_relu
  7060. static void ggml_compute_forward_relu_f32(
  7061. const struct ggml_compute_params * params,
  7062. const struct ggml_tensor * src0,
  7063. struct ggml_tensor * dst) {
  7064. assert(params->ith == 0);
  7065. assert(ggml_are_same_shape(src0, dst));
  7066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7067. return;
  7068. }
  7069. const int n = ggml_nrows(src0);
  7070. const int nc = src0->ne[0];
  7071. assert(dst->nb[0] == sizeof(float));
  7072. assert(src0->nb[0] == sizeof(float));
  7073. for (int i = 0; i < n; i++) {
  7074. ggml_vec_relu_f32(nc,
  7075. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7076. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7077. }
  7078. }
  7079. static void ggml_compute_forward_relu(
  7080. const struct ggml_compute_params * params,
  7081. const struct ggml_tensor * src0,
  7082. struct ggml_tensor * dst) {
  7083. switch (src0->type) {
  7084. case GGML_TYPE_F32:
  7085. {
  7086. ggml_compute_forward_relu_f32(params, src0, dst);
  7087. } break;
  7088. default:
  7089. {
  7090. GGML_ASSERT(false);
  7091. } break;
  7092. }
  7093. }
  7094. // ggml_compute_forward_gelu
  7095. static void ggml_compute_forward_gelu_f32(
  7096. const struct ggml_compute_params * params,
  7097. const struct ggml_tensor * src0,
  7098. struct ggml_tensor * dst) {
  7099. GGML_ASSERT(ggml_is_contiguous(src0));
  7100. GGML_ASSERT(ggml_is_contiguous(dst));
  7101. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7102. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7103. return;
  7104. }
  7105. const int ith = params->ith;
  7106. const int nth = params->nth;
  7107. const int nc = src0->ne[0];
  7108. const int nr = ggml_nrows(src0);
  7109. // rows per thread
  7110. const int dr = (nr + nth - 1)/nth;
  7111. // row range for this thread
  7112. const int ir0 = dr*ith;
  7113. const int ir1 = MIN(ir0 + dr, nr);
  7114. for (int i1 = ir0; i1 < ir1; i1++) {
  7115. ggml_vec_gelu_f32(nc,
  7116. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7117. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7118. #ifndef NDEBUG
  7119. for (int k = 0; k < nc; k++) {
  7120. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7121. UNUSED(x);
  7122. assert(!isnan(x));
  7123. assert(!isinf(x));
  7124. }
  7125. #endif
  7126. }
  7127. }
  7128. static void ggml_compute_forward_gelu(
  7129. const struct ggml_compute_params * params,
  7130. const struct ggml_tensor * src0,
  7131. struct ggml_tensor * dst) {
  7132. switch (src0->type) {
  7133. case GGML_TYPE_F32:
  7134. {
  7135. ggml_compute_forward_gelu_f32(params, src0, dst);
  7136. } break;
  7137. default:
  7138. {
  7139. GGML_ASSERT(false);
  7140. } break;
  7141. }
  7142. //printf("XXXXXXXX gelu\n");
  7143. }
  7144. // ggml_compute_forward_silu
  7145. static void ggml_compute_forward_silu_f32(
  7146. const struct ggml_compute_params * params,
  7147. const struct ggml_tensor * src0,
  7148. struct ggml_tensor * dst) {
  7149. GGML_ASSERT(ggml_is_contiguous(src0));
  7150. GGML_ASSERT(ggml_is_contiguous(dst));
  7151. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7153. return;
  7154. }
  7155. const int ith = params->ith;
  7156. const int nth = params->nth;
  7157. const int nc = src0->ne[0];
  7158. const int nr = ggml_nrows(src0);
  7159. // rows per thread
  7160. const int dr = (nr + nth - 1)/nth;
  7161. // row range for this thread
  7162. const int ir0 = dr*ith;
  7163. const int ir1 = MIN(ir0 + dr, nr);
  7164. for (int i1 = ir0; i1 < ir1; i1++) {
  7165. ggml_vec_silu_f32(nc,
  7166. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7167. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7168. #ifndef NDEBUG
  7169. for (int k = 0; k < nc; k++) {
  7170. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7171. UNUSED(x);
  7172. assert(!isnan(x));
  7173. assert(!isinf(x));
  7174. }
  7175. #endif
  7176. }
  7177. }
  7178. static void ggml_compute_forward_silu(
  7179. const struct ggml_compute_params * params,
  7180. const struct ggml_tensor * src0,
  7181. struct ggml_tensor * dst) {
  7182. switch (src0->type) {
  7183. case GGML_TYPE_F32:
  7184. {
  7185. ggml_compute_forward_silu_f32(params, src0, dst);
  7186. } break;
  7187. default:
  7188. {
  7189. GGML_ASSERT(false);
  7190. } break;
  7191. }
  7192. }
  7193. // ggml_compute_forward_silu_back
  7194. static void ggml_compute_forward_silu_back_f32(
  7195. const struct ggml_compute_params * params,
  7196. const struct ggml_tensor * src0,
  7197. const struct ggml_tensor * grad,
  7198. struct ggml_tensor * dst) {
  7199. GGML_ASSERT(ggml_is_contiguous(grad));
  7200. GGML_ASSERT(ggml_is_contiguous(src0));
  7201. GGML_ASSERT(ggml_is_contiguous(dst));
  7202. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7203. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7204. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7205. return;
  7206. }
  7207. const int ith = params->ith;
  7208. const int nth = params->nth;
  7209. const int nc = src0->ne[0];
  7210. const int nr = ggml_nrows(src0);
  7211. // rows per thread
  7212. const int dr = (nr + nth - 1)/nth;
  7213. // row range for this thread
  7214. const int ir0 = dr*ith;
  7215. const int ir1 = MIN(ir0 + dr, nr);
  7216. for (int i1 = ir0; i1 < ir1; i1++) {
  7217. ggml_vec_silu_backward_f32(nc,
  7218. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7219. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7220. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7221. #ifndef NDEBUG
  7222. for (int k = 0; k < nc; k++) {
  7223. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7224. UNUSED(x);
  7225. assert(!isnan(x));
  7226. assert(!isinf(x));
  7227. }
  7228. #endif
  7229. }
  7230. }
  7231. static void ggml_compute_forward_silu_back(
  7232. const struct ggml_compute_params * params,
  7233. const struct ggml_tensor * src0,
  7234. const struct ggml_tensor * grad,
  7235. struct ggml_tensor * dst) {
  7236. switch (src0->type) {
  7237. case GGML_TYPE_F32:
  7238. {
  7239. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7240. } break;
  7241. default:
  7242. {
  7243. GGML_ASSERT(false);
  7244. } break;
  7245. }
  7246. }
  7247. // ggml_compute_forward_norm
  7248. static void ggml_compute_forward_norm_f32(
  7249. const struct ggml_compute_params * params,
  7250. const struct ggml_tensor * src0,
  7251. struct ggml_tensor * dst) {
  7252. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7253. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7254. return;
  7255. }
  7256. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7257. const int ith = params->ith;
  7258. const int nth = params->nth;
  7259. const int64_t ne00 = src0->ne[0];
  7260. const int64_t ne01 = src0->ne[1];
  7261. const int64_t ne02 = src0->ne[2];
  7262. const int64_t ne03 = src0->ne[3];
  7263. const size_t nb01 = src0->nb[1];
  7264. const size_t nb02 = src0->nb[2];
  7265. const size_t nb03 = src0->nb[3];
  7266. const size_t nb1 = dst->nb[1];
  7267. const size_t nb2 = dst->nb[2];
  7268. const size_t nb3 = dst->nb[3];
  7269. const float eps = 1e-5f; // TODO: make this a parameter
  7270. // TODO: optimize
  7271. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7272. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7273. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7274. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7275. ggml_float sum = 0.0;
  7276. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7277. sum += (ggml_float)x[i00];
  7278. }
  7279. float mean = sum/ne00;
  7280. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7281. ggml_float sum2 = 0.0;
  7282. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7283. float v = x[i00] - mean;
  7284. y[i00] = v;
  7285. sum2 += (ggml_float)(v*v);
  7286. }
  7287. float variance = sum2/ne00;
  7288. const float scale = 1.0f/sqrtf(variance + eps);
  7289. ggml_vec_scale_f32(ne00, y, scale);
  7290. }
  7291. }
  7292. }
  7293. }
  7294. static void ggml_compute_forward_norm(
  7295. const struct ggml_compute_params * params,
  7296. const struct ggml_tensor * src0,
  7297. struct ggml_tensor * dst) {
  7298. switch (src0->type) {
  7299. case GGML_TYPE_F32:
  7300. {
  7301. ggml_compute_forward_norm_f32(params, src0, dst);
  7302. } break;
  7303. default:
  7304. {
  7305. GGML_ASSERT(false);
  7306. } break;
  7307. }
  7308. }
  7309. static void ggml_compute_forward_rms_norm_f32(
  7310. const struct ggml_compute_params * params,
  7311. const struct ggml_tensor * src0,
  7312. struct ggml_tensor * dst) {
  7313. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7314. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7315. return;
  7316. }
  7317. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7318. const int ith = params->ith;
  7319. const int nth = params->nth;
  7320. const int64_t ne00 = src0->ne[0];
  7321. const int64_t ne01 = src0->ne[1];
  7322. const int64_t ne02 = src0->ne[2];
  7323. const int64_t ne03 = src0->ne[3];
  7324. const size_t nb01 = src0->nb[1];
  7325. const size_t nb02 = src0->nb[2];
  7326. const size_t nb03 = src0->nb[3];
  7327. const size_t nb1 = dst->nb[1];
  7328. const size_t nb2 = dst->nb[2];
  7329. const size_t nb3 = dst->nb[3];
  7330. const float eps = 1e-6f; // TODO: make this a parameter
  7331. // TODO: optimize
  7332. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7333. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7334. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7335. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7336. ggml_float sum = 0.0;
  7337. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7338. sum += (ggml_float)(x[i00] * x[i00]);
  7339. }
  7340. float mean = sum/ne00;
  7341. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7342. memcpy(y, x, ne00 * sizeof(float));
  7343. // for (int i00 = 0; i00 < ne00; i00++) {
  7344. // y[i00] = x[i00];
  7345. // }
  7346. const float scale = 1.0f/sqrtf(mean + eps);
  7347. ggml_vec_scale_f32(ne00, y, scale);
  7348. }
  7349. }
  7350. }
  7351. }
  7352. static void ggml_compute_forward_rms_norm(
  7353. const struct ggml_compute_params * params,
  7354. const struct ggml_tensor * src0,
  7355. struct ggml_tensor * dst) {
  7356. switch (src0->type) {
  7357. case GGML_TYPE_F32:
  7358. {
  7359. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7360. } break;
  7361. default:
  7362. {
  7363. GGML_ASSERT(false);
  7364. } break;
  7365. }
  7366. }
  7367. static void ggml_compute_forward_rms_norm_back_f32(
  7368. const struct ggml_compute_params * params,
  7369. const struct ggml_tensor * src0,
  7370. const struct ggml_tensor * src1,
  7371. struct ggml_tensor * dst) {
  7372. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7373. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7374. return;
  7375. }
  7376. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7377. const int ith = params->ith;
  7378. const int nth = params->nth;
  7379. const int64_t ne00 = src0->ne[0];
  7380. const int64_t ne01 = src0->ne[1];
  7381. const int64_t ne02 = src0->ne[2];
  7382. const int64_t ne03 = src0->ne[3];
  7383. const size_t nb01 = src0->nb[1];
  7384. const size_t nb02 = src0->nb[2];
  7385. const size_t nb03 = src0->nb[3];
  7386. const size_t nb11 = src1->nb[1];
  7387. const size_t nb12 = src1->nb[2];
  7388. const size_t nb13 = src1->nb[3];
  7389. const size_t nb1 = dst->nb[1];
  7390. const size_t nb2 = dst->nb[2];
  7391. const size_t nb3 = dst->nb[3];
  7392. const float eps = 1e-6f; // TODO: make this a parameter
  7393. // TODO: optimize
  7394. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7395. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7396. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7397. // src1 is same shape as src0 => same indices
  7398. const int64_t i11 = i01;
  7399. const int64_t i12 = i02;
  7400. const int64_t i13 = i03;
  7401. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7402. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7403. ggml_float sum_xx = 0.0;
  7404. ggml_float sum_xdz = 0.0;
  7405. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7406. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7407. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7408. }
  7409. //const float mean = (float)(sum_xx)/ne00;
  7410. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7411. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7412. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7413. // we could cache rms from forward pass to improve performance.
  7414. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7415. //const float rms = sqrtf(mean_eps);
  7416. const float rrms = 1.0f / sqrtf(mean_eps);
  7417. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7418. {
  7419. // z = rms_norm(x)
  7420. //
  7421. // rms_norm(src0) =
  7422. // scale(
  7423. // src0,
  7424. // div(
  7425. // 1,
  7426. // sqrt(
  7427. // add(
  7428. // scale(
  7429. // sum(
  7430. // sqr(
  7431. // src0)),
  7432. // (1.0/N)),
  7433. // eps))));
  7434. // postorder:
  7435. // ## op args grad
  7436. // 00 param src0 grad[#00]
  7437. // 01 const 1
  7438. // 02 sqr (#00) grad[#02]
  7439. // 03 sum (#02) grad[#03]
  7440. // 04 const 1/N
  7441. // 05 scale (#03, #04) grad[#05]
  7442. // 06 const eps
  7443. // 07 add (#05, #06) grad[#07]
  7444. // 08 sqrt (#07) grad[#08]
  7445. // 09 div (#01,#08) grad[#09]
  7446. // 10 scale (#00,#09) grad[#10]
  7447. //
  7448. // backward pass, given grad[#10]
  7449. // #10: scale
  7450. // grad[#00] += scale(grad[#10],#09)
  7451. // grad[#09] += sum(mul(grad[#10],#00))
  7452. // #09: div
  7453. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7454. // #08: sqrt
  7455. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7456. // #07: add
  7457. // grad[#05] += grad[#07]
  7458. // #05: scale
  7459. // grad[#03] += scale(grad[#05],#04)
  7460. // #03: sum
  7461. // grad[#02] += repeat(grad[#03], #02)
  7462. // #02:
  7463. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7464. //
  7465. // substitute and simplify:
  7466. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7467. // grad[#02] = repeat(grad[#03], #02)
  7468. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7469. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7470. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7471. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7472. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7473. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7474. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7475. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7476. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7477. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7478. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7479. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7480. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7481. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7482. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7483. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7484. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7485. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7486. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7487. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7488. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7489. // a = b*c + d*e
  7490. // a = b*c*f/f + d*e*f/f
  7491. // a = (b*c*f + d*e*f)*(1/f)
  7492. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7493. // a = (b + d*e/c)*c
  7494. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7495. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7496. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7497. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7498. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7499. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7500. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7501. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7502. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7503. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7504. }
  7505. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7506. // post-order:
  7507. // dx := x
  7508. // dx := scale(dx,-mean_xdz/mean_eps)
  7509. // dx := add(dx, dz)
  7510. // dx := scale(dx, rrms)
  7511. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7512. ggml_vec_cpy_f32 (ne00, dx, x);
  7513. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7514. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7515. ggml_vec_acc_f32 (ne00, dx, dz);
  7516. ggml_vec_scale_f32(ne00, dx, rrms);
  7517. }
  7518. }
  7519. }
  7520. }
  7521. static void ggml_compute_forward_rms_norm_back(
  7522. const struct ggml_compute_params * params,
  7523. const struct ggml_tensor * src0,
  7524. const struct ggml_tensor * src1,
  7525. struct ggml_tensor * dst) {
  7526. switch (src0->type) {
  7527. case GGML_TYPE_F32:
  7528. {
  7529. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7530. } break;
  7531. default:
  7532. {
  7533. GGML_ASSERT(false);
  7534. } break;
  7535. }
  7536. }
  7537. // ggml_compute_forward_mul_mat
  7538. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7539. // helper function to determine if it is better to use BLAS or not
  7540. // for large matrices, BLAS is faster
  7541. static bool ggml_compute_forward_mul_mat_use_blas(
  7542. const struct ggml_tensor * src0,
  7543. const struct ggml_tensor * src1,
  7544. struct ggml_tensor * dst) {
  7545. //const int64_t ne00 = src0->ne[0];
  7546. //const int64_t ne01 = src0->ne[1];
  7547. const int64_t ne10 = src1->ne[0];
  7548. const int64_t ne0 = dst->ne[0];
  7549. const int64_t ne1 = dst->ne[1];
  7550. // TODO: find the optimal values for these
  7551. if (ggml_is_contiguous(src0) &&
  7552. ggml_is_contiguous(src1) &&
  7553. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7554. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7555. return true;
  7556. }
  7557. return false;
  7558. }
  7559. #endif
  7560. static void ggml_compute_forward_mul_mat_f32(
  7561. const struct ggml_compute_params * params,
  7562. const struct ggml_tensor * src0,
  7563. const struct ggml_tensor * src1,
  7564. struct ggml_tensor * dst) {
  7565. int64_t t0 = ggml_perf_time_us();
  7566. UNUSED(t0);
  7567. const int64_t ne00 = src0->ne[0];
  7568. const int64_t ne01 = src0->ne[1];
  7569. const int64_t ne02 = src0->ne[2];
  7570. const int64_t ne03 = src0->ne[3];
  7571. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7572. const int64_t ne10 = src1->ne[0];
  7573. #endif
  7574. const int64_t ne11 = src1->ne[1];
  7575. #ifndef NDEBUG
  7576. const int64_t ne12 = src1->ne[2];
  7577. const int64_t ne13 = src1->ne[3];
  7578. const int64_t ne0 = dst->ne[0];
  7579. const int64_t ne1 = dst->ne[1];
  7580. const int64_t ne2 = dst->ne[2];
  7581. const int64_t ne3 = dst->ne[3];
  7582. const int nb00 = src0->nb[0];
  7583. #endif
  7584. const int nb01 = src0->nb[1];
  7585. const int nb02 = src0->nb[2];
  7586. const int nb03 = src0->nb[3];
  7587. #ifndef NDEBUG
  7588. const int nb10 = src1->nb[0];
  7589. #endif
  7590. const int nb11 = src1->nb[1];
  7591. const int nb12 = src1->nb[2];
  7592. const int nb13 = src1->nb[3];
  7593. const int nb0 = dst->nb[0];
  7594. const int nb1 = dst->nb[1];
  7595. const int nb2 = dst->nb[2];
  7596. const int nb3 = dst->nb[3];
  7597. const int ith = params->ith;
  7598. const int nth = params->nth;
  7599. assert(ne02 == ne12);
  7600. assert(ne03 == ne13);
  7601. assert(ne2 == ne12);
  7602. assert(ne3 == ne13);
  7603. // we don't support permuted src0 or src1
  7604. assert(nb00 == sizeof(float));
  7605. assert(nb10 == sizeof(float));
  7606. // dst cannot be transposed or permuted
  7607. assert(nb0 == sizeof(float));
  7608. assert(nb0 <= nb1);
  7609. assert(nb1 <= nb2);
  7610. assert(nb2 <= nb3);
  7611. assert(ne0 == ne01);
  7612. assert(ne1 == ne11);
  7613. assert(ne2 == ne02);
  7614. assert(ne3 == ne03);
  7615. // nb01 >= nb00 - src0 is not transposed
  7616. // compute by src0 rows
  7617. #if defined(GGML_USE_CUBLAS)
  7618. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7619. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7620. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7621. }
  7622. return;
  7623. }
  7624. #endif
  7625. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7626. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7627. if (params->ith != 0) {
  7628. return;
  7629. }
  7630. if (params->type == GGML_TASK_INIT) {
  7631. return;
  7632. }
  7633. if (params->type == GGML_TASK_FINALIZE) {
  7634. return;
  7635. }
  7636. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7637. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7638. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7639. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7640. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7641. #if defined(GGML_USE_CLBLAST)
  7642. // zT = y * xT
  7643. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7644. ne11, ne01, ne10,
  7645. 1.0f, y, ne10,
  7646. x, ne10,
  7647. 0.0f, d, ne01,
  7648. GGML_TYPE_F32);
  7649. #else
  7650. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7651. ne11, ne01, ne10,
  7652. 1.0f, y, ne10,
  7653. x, ne00,
  7654. 0.0f, d, ne01);
  7655. #endif
  7656. }
  7657. }
  7658. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7659. return;
  7660. }
  7661. #endif
  7662. if (params->type == GGML_TASK_INIT) {
  7663. return;
  7664. }
  7665. if (params->type == GGML_TASK_FINALIZE) {
  7666. return;
  7667. }
  7668. // parallelize by src0 rows using ggml_vec_dot_f32
  7669. // total rows in src0
  7670. const int nr = ne01*ne02*ne03;
  7671. // rows per thread
  7672. const int dr = (nr + nth - 1)/nth;
  7673. // row range for this thread
  7674. const int ir0 = dr*ith;
  7675. const int ir1 = MIN(ir0 + dr, nr);
  7676. for (int ir = ir0; ir < ir1; ++ir) {
  7677. // src0 indices
  7678. const int i03 = ir/(ne02*ne01);
  7679. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7680. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7681. for (int64_t ic = 0; ic < ne11; ++ic) {
  7682. // src1 indices
  7683. const int i13 = i03;
  7684. const int i12 = i02;
  7685. const int i11 = ic;
  7686. // dst indices
  7687. const int i0 = i01;
  7688. const int i1 = i11;
  7689. const int i2 = i02;
  7690. const int i3 = i03;
  7691. ggml_vec_dot_f32(ne00,
  7692. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7693. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7694. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7695. }
  7696. }
  7697. //int64_t t1 = ggml_perf_time_us();
  7698. //static int64_t acc = 0;
  7699. //acc += t1 - t0;
  7700. //if (t1 - t0 > 10) {
  7701. // printf("\n");
  7702. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7703. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7704. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7705. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7706. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7707. //}
  7708. }
  7709. static void ggml_compute_forward_mul_mat_f16_f32(
  7710. const struct ggml_compute_params * params,
  7711. const struct ggml_tensor * src0,
  7712. const struct ggml_tensor * src1,
  7713. struct ggml_tensor * dst) {
  7714. int64_t t0 = ggml_perf_time_us();
  7715. UNUSED(t0);
  7716. const int64_t ne00 = src0->ne[0];
  7717. const int64_t ne01 = src0->ne[1];
  7718. const int64_t ne02 = src0->ne[2];
  7719. const int64_t ne03 = src0->ne[3];
  7720. const int64_t ne10 = src1->ne[0];
  7721. const int64_t ne11 = src1->ne[1];
  7722. const int64_t ne12 = src1->ne[2];
  7723. const int64_t ne13 = src1->ne[3];
  7724. const int64_t ne0 = dst->ne[0];
  7725. const int64_t ne1 = dst->ne[1];
  7726. const int64_t ne2 = dst->ne[2];
  7727. const int64_t ne3 = dst->ne[3];
  7728. //const int64_t ne = ne0*ne1*ne2*ne3;
  7729. const int nb00 = src0->nb[0];
  7730. const int nb01 = src0->nb[1];
  7731. const int nb02 = src0->nb[2];
  7732. const int nb03 = src0->nb[3];
  7733. const int nb10 = src1->nb[0];
  7734. const int nb11 = src1->nb[1];
  7735. const int nb12 = src1->nb[2];
  7736. const int nb13 = src1->nb[3];
  7737. const int nb0 = dst->nb[0];
  7738. const int nb1 = dst->nb[1];
  7739. const int nb2 = dst->nb[2];
  7740. const int nb3 = dst->nb[3];
  7741. const int ith = params->ith;
  7742. const int nth = params->nth;
  7743. GGML_ASSERT(ne02 == ne12);
  7744. GGML_ASSERT(ne03 == ne13);
  7745. GGML_ASSERT(ne2 == ne12);
  7746. GGML_ASSERT(ne3 == ne13);
  7747. // TODO: we don't support permuted src0
  7748. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7749. // dst cannot be transposed or permuted
  7750. GGML_ASSERT(nb0 == sizeof(float));
  7751. GGML_ASSERT(nb0 <= nb1);
  7752. GGML_ASSERT(nb1 <= nb2);
  7753. GGML_ASSERT(nb2 <= nb3);
  7754. GGML_ASSERT(ne0 == ne01);
  7755. GGML_ASSERT(ne1 == ne11);
  7756. GGML_ASSERT(ne2 == ne02);
  7757. GGML_ASSERT(ne3 == ne03);
  7758. // nb01 >= nb00 - src0 is not transposed
  7759. // compute by src0 rows
  7760. #if defined(GGML_USE_CUBLAS)
  7761. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7762. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7763. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7764. }
  7765. return;
  7766. }
  7767. #endif
  7768. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7769. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7770. GGML_ASSERT(nb10 == sizeof(float));
  7771. if (params->ith != 0) {
  7772. return;
  7773. }
  7774. if (params->type == GGML_TASK_INIT) {
  7775. return;
  7776. }
  7777. if (params->type == GGML_TASK_FINALIZE) {
  7778. return;
  7779. }
  7780. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7781. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7782. float * const wdata = params->wdata;
  7783. {
  7784. size_t id = 0;
  7785. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7786. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7787. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7788. }
  7789. }
  7790. assert(id*sizeof(float) <= params->wsize);
  7791. }
  7792. #if defined(GGML_USE_CLBLAST)
  7793. const float * x = wdata;
  7794. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7795. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7796. // zT = y * xT
  7797. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7798. ne11, ne01, ne10,
  7799. 1.0f, y, ne10,
  7800. x, ne10,
  7801. 0.0f, d, ne01,
  7802. GGML_TYPE_F32);
  7803. #else
  7804. const float * x = wdata;
  7805. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7806. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7807. // zT = y * xT
  7808. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7809. ne11, ne01, ne10,
  7810. 1.0f, y, ne10,
  7811. x, ne00,
  7812. 0.0f, d, ne01);
  7813. #endif
  7814. }
  7815. }
  7816. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7817. return;
  7818. }
  7819. #endif
  7820. if (params->type == GGML_TASK_INIT) {
  7821. ggml_fp16_t * const wdata = params->wdata;
  7822. size_t id = 0;
  7823. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7824. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7825. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7826. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7827. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7828. }
  7829. }
  7830. }
  7831. }
  7832. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7833. return;
  7834. }
  7835. if (params->type == GGML_TASK_FINALIZE) {
  7836. return;
  7837. }
  7838. // fp16 -> half the size, so divide by 2
  7839. // TODO: do not support transposed src1
  7840. assert(nb10/2 == sizeof(ggml_fp16_t));
  7841. // parallelize by src0 rows using ggml_vec_dot_f16
  7842. // total rows in src0
  7843. const int nr = ne01*ne02*ne03;
  7844. // rows per thread
  7845. const int dr = (nr + nth - 1)/nth;
  7846. // row range for this thread
  7847. const int ir0 = dr*ith;
  7848. const int ir1 = MIN(ir0 + dr, nr);
  7849. ggml_fp16_t * wdata = params->wdata;
  7850. for (int ir = ir0; ir < ir1; ++ir) {
  7851. // src0 indices
  7852. const int i03 = ir/(ne02*ne01);
  7853. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7854. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7855. const int i13 = i03;
  7856. const int i12 = i02;
  7857. const int i0 = i01;
  7858. const int i2 = i02;
  7859. const int i3 = i03;
  7860. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7861. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7862. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7863. for (int64_t ic = 0; ic < ne11; ++ic) {
  7864. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7865. }
  7866. }
  7867. //int64_t t1 = ggml_time_us();
  7868. //static int64_t acc = 0;
  7869. //acc += t1 - t0;
  7870. //if (t1 - t0 > 10) {
  7871. // printf("\n");
  7872. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7873. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7874. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7875. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7876. //}
  7877. }
  7878. static void ggml_compute_forward_mul_mat_q_f32(
  7879. const struct ggml_compute_params * params,
  7880. const struct ggml_tensor * src0,
  7881. const struct ggml_tensor * src1,
  7882. struct ggml_tensor * dst) {
  7883. int64_t t0 = ggml_perf_time_us();
  7884. UNUSED(t0);
  7885. const int64_t ne00 = src0->ne[0];
  7886. const int64_t ne01 = src0->ne[1];
  7887. const int64_t ne02 = src0->ne[2];
  7888. const int64_t ne03 = src0->ne[3];
  7889. const int64_t ne10 = src1->ne[0];
  7890. const int64_t ne11 = src1->ne[1];
  7891. const int64_t ne12 = src1->ne[2];
  7892. const int64_t ne13 = src1->ne[3];
  7893. const int64_t ne0 = dst->ne[0];
  7894. const int64_t ne1 = dst->ne[1];
  7895. const int64_t ne2 = dst->ne[2];
  7896. const int64_t ne3 = dst->ne[3];
  7897. const int nb00 = src0->nb[0];
  7898. const int nb01 = src0->nb[1];
  7899. const int nb02 = src0->nb[2];
  7900. const int nb03 = src0->nb[3];
  7901. const int nb10 = src1->nb[0];
  7902. const int nb11 = src1->nb[1];
  7903. const int nb12 = src1->nb[2];
  7904. const int nb13 = src1->nb[3];
  7905. const int nb0 = dst->nb[0];
  7906. const int nb1 = dst->nb[1];
  7907. const int nb2 = dst->nb[2];
  7908. const int nb3 = dst->nb[3];
  7909. const int ith = params->ith;
  7910. const int nth = params->nth;
  7911. GGML_ASSERT(ne02 == ne12);
  7912. GGML_ASSERT(ne03 == ne13);
  7913. GGML_ASSERT(ne2 == ne12);
  7914. GGML_ASSERT(ne3 == ne13);
  7915. const enum ggml_type type = src0->type;
  7916. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  7917. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  7918. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  7919. // we don't support permuted src0 or src1
  7920. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  7921. GGML_ASSERT(nb10 == sizeof(float));
  7922. // dst cannot be transposed or permuted
  7923. GGML_ASSERT(nb0 == sizeof(float));
  7924. GGML_ASSERT(nb0 <= nb1);
  7925. GGML_ASSERT(nb1 <= nb2);
  7926. GGML_ASSERT(nb2 <= nb3);
  7927. GGML_ASSERT(ne0 == ne01);
  7928. GGML_ASSERT(ne1 == ne11);
  7929. GGML_ASSERT(ne2 == ne02);
  7930. GGML_ASSERT(ne3 == ne03);
  7931. // nb01 >= nb00 - src0 is not transposed
  7932. // compute by src0 rows
  7933. #if defined(GGML_USE_CUBLAS)
  7934. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7935. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7936. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7937. }
  7938. return;
  7939. }
  7940. #endif
  7941. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7942. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7943. if (params->ith != 0) {
  7944. return;
  7945. }
  7946. if (params->type == GGML_TASK_INIT) {
  7947. return;
  7948. }
  7949. if (params->type == GGML_TASK_FINALIZE) {
  7950. return;
  7951. }
  7952. float * const wdata = params->wdata;
  7953. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7954. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7955. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7956. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7957. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7958. #if defined(GGML_USE_CLBLAST)
  7959. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7960. #else
  7961. {
  7962. size_t id = 0;
  7963. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7964. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7965. id += ne00;
  7966. }
  7967. assert(id*sizeof(float) <= params->wsize);
  7968. }
  7969. const float * x = wdata;
  7970. #endif
  7971. #if defined(GGML_USE_CLBLAST)
  7972. // zT = y * xT
  7973. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7974. ne11, ne01, ne10,
  7975. 1.0f, y, ne10,
  7976. x, ne10,
  7977. 0.0f, d, ne01,
  7978. type);
  7979. #else
  7980. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7981. ne11, ne01, ne10,
  7982. 1.0f, y, ne10,
  7983. x, ne00,
  7984. 0.0f, d, ne01);
  7985. #endif
  7986. }
  7987. }
  7988. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7989. return;
  7990. }
  7991. #endif
  7992. if (params->type == GGML_TASK_INIT) {
  7993. char * wdata = params->wdata;
  7994. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7995. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7996. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7997. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7998. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7999. wdata += row_size;
  8000. }
  8001. }
  8002. }
  8003. return;
  8004. }
  8005. if (params->type == GGML_TASK_FINALIZE) {
  8006. return;
  8007. }
  8008. // parallelize by src0 rows using ggml_vec_dot_q
  8009. // total rows in src0
  8010. const int nr = ne01*ne02*ne03;
  8011. // rows per thread
  8012. const int dr = (nr + nth - 1)/nth;
  8013. // row range for this thread
  8014. const int ir0 = dr*ith;
  8015. const int ir1 = MIN(ir0 + dr, nr);
  8016. void * wdata = params->wdata;
  8017. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8018. for (int ir = ir0; ir < ir1; ++ir) {
  8019. // src0 indices
  8020. const int i03 = ir/(ne02*ne01);
  8021. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8022. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8023. const int i13 = i03;
  8024. const int i12 = i02;
  8025. const int i0 = i01;
  8026. const int i2 = i02;
  8027. const int i3 = i03;
  8028. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8029. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8030. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8031. assert(ne00 % 32 == 0);
  8032. for (int64_t ic = 0; ic < ne11; ++ic) {
  8033. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8034. }
  8035. }
  8036. //int64_t t1 = ggml_time_us();
  8037. //static int64_t acc = 0;
  8038. //acc += t1 - t0;
  8039. //if (t1 - t0 > 10) {
  8040. // printf("\n");
  8041. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8042. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8043. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8044. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8045. //}
  8046. }
  8047. static void ggml_compute_forward_mul_mat(
  8048. const struct ggml_compute_params * params,
  8049. const struct ggml_tensor * src0,
  8050. const struct ggml_tensor * src1,
  8051. struct ggml_tensor * dst) {
  8052. switch (src0->type) {
  8053. case GGML_TYPE_Q4_0:
  8054. case GGML_TYPE_Q4_1:
  8055. case GGML_TYPE_Q5_0:
  8056. case GGML_TYPE_Q5_1:
  8057. case GGML_TYPE_Q8_0:
  8058. case GGML_TYPE_Q8_1:
  8059. {
  8060. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8061. } break;
  8062. case GGML_TYPE_F16:
  8063. {
  8064. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8065. } break;
  8066. case GGML_TYPE_F32:
  8067. {
  8068. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8069. } break;
  8070. default:
  8071. {
  8072. GGML_ASSERT(false);
  8073. } break;
  8074. }
  8075. }
  8076. // ggml_compute_forward_scale
  8077. static void ggml_compute_forward_scale_f32(
  8078. const struct ggml_compute_params * params,
  8079. const struct ggml_tensor * src0,
  8080. const struct ggml_tensor * src1,
  8081. struct ggml_tensor * dst) {
  8082. GGML_ASSERT(ggml_is_contiguous(src0));
  8083. GGML_ASSERT(ggml_is_contiguous(dst));
  8084. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8085. GGML_ASSERT(ggml_is_scalar(src1));
  8086. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8087. return;
  8088. }
  8089. // scale factor
  8090. const float v = *(float *) src1->data;
  8091. const int ith = params->ith;
  8092. const int nth = params->nth;
  8093. const int nc = src0->ne[0];
  8094. const int nr = ggml_nrows(src0);
  8095. // rows per thread
  8096. const int dr = (nr + nth - 1)/nth;
  8097. // row range for this thread
  8098. const int ir0 = dr*ith;
  8099. const int ir1 = MIN(ir0 + dr, nr);
  8100. const size_t nb01 = src0->nb[1];
  8101. const size_t nb1 = dst->nb[1];
  8102. for (int i1 = ir0; i1 < ir1; i1++) {
  8103. if (dst->data != src0->data) {
  8104. // src0 is same shape as dst => same indices
  8105. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8106. }
  8107. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8108. }
  8109. }
  8110. static void ggml_compute_forward_scale(
  8111. const struct ggml_compute_params * params,
  8112. const struct ggml_tensor * src0,
  8113. const struct ggml_tensor * src1,
  8114. struct ggml_tensor * dst) {
  8115. switch (src0->type) {
  8116. case GGML_TYPE_F32:
  8117. {
  8118. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8119. } break;
  8120. default:
  8121. {
  8122. GGML_ASSERT(false);
  8123. } break;
  8124. }
  8125. }
  8126. // ggml_compute_forward_set
  8127. static void ggml_compute_forward_set_f32(
  8128. const struct ggml_compute_params * params,
  8129. const struct ggml_tensor * src0,
  8130. const struct ggml_tensor * src1,
  8131. const struct ggml_tensor * opt0,
  8132. struct ggml_tensor * dst) {
  8133. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8134. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8135. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8136. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8137. // view src0 and dst with these strides and data offset inbytes during set
  8138. // nb0 is implicitely element_size because src0 and dst are contiguous
  8139. size_t nb1 = ((int32_t *) opt0->data)[0];
  8140. size_t nb2 = ((int32_t *) opt0->data)[1];
  8141. size_t nb3 = ((int32_t *) opt0->data)[2];
  8142. size_t offset = ((int32_t *) opt0->data)[3];
  8143. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8144. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8145. // memcpy needs to be synchronized across threads to avoid race conditions.
  8146. // => do it in INIT phase
  8147. memcpy(
  8148. ((char *) dst->data),
  8149. ((char *) src0->data),
  8150. ggml_nbytes(dst));
  8151. }
  8152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8153. return;
  8154. }
  8155. const int ith = params->ith;
  8156. const int nth = params->nth;
  8157. const int nr = ggml_nrows(src1);
  8158. const int nc = src1->ne[0];
  8159. const int64_t ne10 = src1->ne[0];
  8160. const int64_t ne11 = src1->ne[1];
  8161. const int64_t ne12 = src1->ne[2];
  8162. const int64_t ne13 = src1->ne[3];
  8163. const size_t nb10 = src1->nb[0];
  8164. const size_t nb11 = src1->nb[1];
  8165. const size_t nb12 = src1->nb[2];
  8166. const size_t nb13 = src1->nb[3];
  8167. // src0 and dst as viewed during set
  8168. const size_t nb0 = ggml_element_size(src0);
  8169. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8170. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8171. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8172. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8173. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8174. GGML_ASSERT(nb10 == sizeof(float));
  8175. // rows per thread
  8176. const int dr = (nr + nth - 1)/nth;
  8177. // row range for this thread
  8178. const int ir0 = dr*ith;
  8179. const int ir1 = MIN(ir0 + dr, nr);
  8180. for (int ir = ir0; ir < ir1; ++ir) {
  8181. // src0 and dst are viewed with shape of src1 and offset
  8182. // => same indices
  8183. const int i3 = ir/(ne12*ne11);
  8184. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8185. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8186. ggml_vec_cpy_f32(nc,
  8187. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8188. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8189. }
  8190. }
  8191. static void ggml_compute_forward_set(
  8192. const struct ggml_compute_params * params,
  8193. const struct ggml_tensor * src0,
  8194. const struct ggml_tensor * src1,
  8195. const struct ggml_tensor * opt0,
  8196. struct ggml_tensor * dst) {
  8197. switch (src0->type) {
  8198. case GGML_TYPE_F32:
  8199. {
  8200. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8201. } break;
  8202. case GGML_TYPE_F16:
  8203. case GGML_TYPE_Q4_0:
  8204. case GGML_TYPE_Q4_1:
  8205. case GGML_TYPE_Q5_0:
  8206. case GGML_TYPE_Q5_1:
  8207. case GGML_TYPE_Q8_0:
  8208. case GGML_TYPE_Q8_1:
  8209. default:
  8210. {
  8211. GGML_ASSERT(false);
  8212. } break;
  8213. }
  8214. }
  8215. // ggml_compute_forward_cpy
  8216. static void ggml_compute_forward_cpy(
  8217. const struct ggml_compute_params * params,
  8218. const struct ggml_tensor * src0,
  8219. struct ggml_tensor * dst) {
  8220. ggml_compute_forward_dup(params, src0, dst);
  8221. }
  8222. // ggml_compute_forward_cont
  8223. static void ggml_compute_forward_cont(
  8224. const struct ggml_compute_params * params,
  8225. const struct ggml_tensor * src0,
  8226. struct ggml_tensor * dst) {
  8227. ggml_compute_forward_dup(params, src0, dst);
  8228. }
  8229. // ggml_compute_forward_reshape
  8230. static void ggml_compute_forward_reshape(
  8231. const struct ggml_compute_params * params,
  8232. const struct ggml_tensor * src0,
  8233. struct ggml_tensor * dst) {
  8234. // NOP
  8235. UNUSED(params);
  8236. UNUSED(src0);
  8237. UNUSED(dst);
  8238. }
  8239. // ggml_compute_forward_view
  8240. static void ggml_compute_forward_view(
  8241. const struct ggml_compute_params * params,
  8242. const struct ggml_tensor * src0) {
  8243. // NOP
  8244. UNUSED(params);
  8245. UNUSED(src0);
  8246. }
  8247. // ggml_compute_forward_permute
  8248. static void ggml_compute_forward_permute(
  8249. const struct ggml_compute_params * params,
  8250. const struct ggml_tensor * src0) {
  8251. // NOP
  8252. UNUSED(params);
  8253. UNUSED(src0);
  8254. }
  8255. // ggml_compute_forward_transpose
  8256. static void ggml_compute_forward_transpose(
  8257. const struct ggml_compute_params * params,
  8258. const struct ggml_tensor * src0) {
  8259. // NOP
  8260. UNUSED(params);
  8261. UNUSED(src0);
  8262. }
  8263. // ggml_compute_forward_get_rows
  8264. static void ggml_compute_forward_get_rows_q(
  8265. const struct ggml_compute_params * params,
  8266. const struct ggml_tensor * src0,
  8267. const struct ggml_tensor * src1,
  8268. struct ggml_tensor * dst) {
  8269. assert(params->ith == 0);
  8270. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8271. return;
  8272. }
  8273. const int nc = src0->ne[0];
  8274. const int nr = ggml_nelements(src1);
  8275. const enum ggml_type type = src0->type;
  8276. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8277. assert( dst->ne[0] == nc);
  8278. assert( dst->ne[1] == nr);
  8279. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8280. for (int i = 0; i < nr; ++i) {
  8281. const int r = ((int32_t *) src1->data)[i];
  8282. dequantize_row_q(
  8283. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8284. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8285. }
  8286. }
  8287. static void ggml_compute_forward_get_rows_f16(
  8288. const struct ggml_compute_params * params,
  8289. const struct ggml_tensor * src0,
  8290. const struct ggml_tensor * src1,
  8291. struct ggml_tensor * dst) {
  8292. assert(params->ith == 0);
  8293. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8294. return;
  8295. }
  8296. const int nc = src0->ne[0];
  8297. const int nr = ggml_nelements(src1);
  8298. assert( dst->ne[0] == nc);
  8299. assert( dst->ne[1] == nr);
  8300. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8301. for (int i = 0; i < nr; ++i) {
  8302. const int r = ((int32_t *) src1->data)[i];
  8303. for (int j = 0; j < nc; ++j) {
  8304. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8305. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8306. }
  8307. }
  8308. }
  8309. static void ggml_compute_forward_get_rows_f32(
  8310. const struct ggml_compute_params * params,
  8311. const struct ggml_tensor * src0,
  8312. const struct ggml_tensor * src1,
  8313. struct ggml_tensor * dst) {
  8314. assert(params->ith == 0);
  8315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8316. return;
  8317. }
  8318. const int nc = src0->ne[0];
  8319. const int nr = ggml_nelements(src1);
  8320. assert( dst->ne[0] == nc);
  8321. assert( dst->ne[1] == nr);
  8322. assert(src0->nb[0] == sizeof(float));
  8323. for (int i = 0; i < nr; ++i) {
  8324. const int r = ((int32_t *) src1->data)[i];
  8325. ggml_vec_cpy_f32(nc,
  8326. (float *) ((char *) dst->data + i*dst->nb[1]),
  8327. (float *) ((char *) src0->data + r*src0->nb[1]));
  8328. }
  8329. }
  8330. static void ggml_compute_forward_get_rows(
  8331. const struct ggml_compute_params * params,
  8332. const struct ggml_tensor * src0,
  8333. const struct ggml_tensor * src1,
  8334. struct ggml_tensor * dst) {
  8335. switch (src0->type) {
  8336. case GGML_TYPE_Q4_0:
  8337. case GGML_TYPE_Q4_1:
  8338. case GGML_TYPE_Q5_0:
  8339. case GGML_TYPE_Q5_1:
  8340. case GGML_TYPE_Q8_0:
  8341. case GGML_TYPE_Q8_1:
  8342. {
  8343. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8344. } break;
  8345. case GGML_TYPE_F16:
  8346. {
  8347. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8348. } break;
  8349. case GGML_TYPE_F32:
  8350. {
  8351. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8352. } break;
  8353. default:
  8354. {
  8355. GGML_ASSERT(false);
  8356. } break;
  8357. }
  8358. //static bool first = true;
  8359. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8360. //if (first) {
  8361. // first = false;
  8362. //} else {
  8363. // for (int k = 0; k < dst->ne[1]; ++k) {
  8364. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8365. // for (int i = 0; i < 16; ++i) {
  8366. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8367. // }
  8368. // printf("\n");
  8369. // }
  8370. // printf("\n");
  8371. // }
  8372. // printf("\n");
  8373. // exit(0);
  8374. //}
  8375. }
  8376. // ggml_compute_forward_get_rows_back
  8377. static void ggml_compute_forward_get_rows_back_f32_f16(
  8378. const struct ggml_compute_params * params,
  8379. const struct ggml_tensor * src0,
  8380. const struct ggml_tensor * src1,
  8381. const struct ggml_tensor * opt0,
  8382. struct ggml_tensor * dst) {
  8383. GGML_ASSERT(params->ith == 0);
  8384. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8385. GGML_ASSERT(ggml_is_contiguous(opt0));
  8386. GGML_ASSERT(ggml_is_contiguous(dst));
  8387. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8388. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8389. return;
  8390. }
  8391. const int nc = src0->ne[0];
  8392. const int nr = ggml_nelements(src1);
  8393. GGML_ASSERT( dst->ne[0] == nc);
  8394. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8395. for (int i = 0; i < nr; ++i) {
  8396. const int r = ((int32_t *) src1->data)[i];
  8397. for (int j = 0; j < nc; ++j) {
  8398. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8399. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8400. }
  8401. }
  8402. }
  8403. static void ggml_compute_forward_get_rows_back_f32(
  8404. const struct ggml_compute_params * params,
  8405. const struct ggml_tensor * src0,
  8406. const struct ggml_tensor * src1,
  8407. const struct ggml_tensor * opt0,
  8408. struct ggml_tensor * dst) {
  8409. GGML_ASSERT(params->ith == 0);
  8410. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8411. GGML_ASSERT(ggml_is_contiguous(opt0));
  8412. GGML_ASSERT(ggml_is_contiguous(dst));
  8413. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8414. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8415. return;
  8416. }
  8417. const int nc = src0->ne[0];
  8418. const int nr = ggml_nelements(src1);
  8419. GGML_ASSERT( dst->ne[0] == nc);
  8420. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8421. for (int i = 0; i < nr; ++i) {
  8422. const int r = ((int32_t *) src1->data)[i];
  8423. ggml_vec_add_f32(nc,
  8424. (float *) ((char *) dst->data + r*dst->nb[1]),
  8425. (float *) ((char *) dst->data + r*dst->nb[1]),
  8426. (float *) ((char *) src0->data + i*src0->nb[1]));
  8427. }
  8428. }
  8429. static void ggml_compute_forward_get_rows_back(
  8430. const struct ggml_compute_params * params,
  8431. const struct ggml_tensor * src0,
  8432. const struct ggml_tensor * src1,
  8433. const struct ggml_tensor * opt0,
  8434. struct ggml_tensor * dst) {
  8435. switch (src0->type) {
  8436. case GGML_TYPE_F16:
  8437. {
  8438. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8439. } break;
  8440. case GGML_TYPE_F32:
  8441. {
  8442. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8443. } break;
  8444. default:
  8445. {
  8446. GGML_ASSERT(false);
  8447. } break;
  8448. }
  8449. //static bool first = true;
  8450. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8451. //if (first) {
  8452. // first = false;
  8453. //} else {
  8454. // for (int k = 0; k < dst->ne[1]; ++k) {
  8455. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8456. // for (int i = 0; i < 16; ++i) {
  8457. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8458. // }
  8459. // printf("\n");
  8460. // }
  8461. // printf("\n");
  8462. // }
  8463. // printf("\n");
  8464. // exit(0);
  8465. //}
  8466. }
  8467. // ggml_compute_forward_diag
  8468. static void ggml_compute_forward_diag_f32(
  8469. const struct ggml_compute_params * params,
  8470. const struct ggml_tensor * src0,
  8471. struct ggml_tensor * dst) {
  8472. GGML_ASSERT(params->ith == 0);
  8473. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8474. return;
  8475. }
  8476. // TODO: handle transposed/permuted matrices
  8477. const int ne00 = src0->ne[0];
  8478. const int ne01 = src0->ne[1];
  8479. const int ne02 = src0->ne[2];
  8480. const int ne03 = src0->ne[3];
  8481. const int ne0 = dst->ne[0];
  8482. const int ne1 = dst->ne[1];
  8483. const int ne2 = dst->ne[2];
  8484. const int ne3 = dst->ne[3];
  8485. GGML_ASSERT(ne00 == ne0);
  8486. GGML_ASSERT(ne00 == ne1);
  8487. GGML_ASSERT(ne01 == 1);
  8488. GGML_ASSERT(ne02 == ne2);
  8489. GGML_ASSERT(ne03 == ne3);
  8490. const int nb00 = src0->nb[0];
  8491. //const int nb01 = src0->nb[1];
  8492. const int nb02 = src0->nb[2];
  8493. const int nb03 = src0->nb[3];
  8494. const int nb0 = dst->nb[0];
  8495. const int nb1 = dst->nb[1];
  8496. const int nb2 = dst->nb[2];
  8497. const int nb3 = dst->nb[3];
  8498. GGML_ASSERT(nb00 == sizeof(float));
  8499. GGML_ASSERT(nb0 == sizeof(float));
  8500. for (int i3 = 0; i3 < ne3; i3++) {
  8501. for (int i2 = 0; i2 < ne2; i2++) {
  8502. for (int i1 = 0; i1 < ne1; i1++) {
  8503. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8504. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8505. for (int i0 = 0; i0 < i1; i0++) {
  8506. d[i0] = 0;
  8507. }
  8508. d[i1] = s[i1];
  8509. for (int i0 = i1+1; i0 < ne0; i0++) {
  8510. d[i0] = 0;
  8511. }
  8512. }
  8513. }
  8514. }
  8515. }
  8516. static void ggml_compute_forward_diag(
  8517. const struct ggml_compute_params * params,
  8518. const struct ggml_tensor * src0,
  8519. struct ggml_tensor * dst) {
  8520. switch (src0->type) {
  8521. case GGML_TYPE_F32:
  8522. {
  8523. ggml_compute_forward_diag_f32(params, src0, dst);
  8524. } break;
  8525. default:
  8526. {
  8527. GGML_ASSERT(false);
  8528. } break;
  8529. }
  8530. }
  8531. // ggml_compute_forward_diag_mask_inf
  8532. static void ggml_compute_forward_diag_mask_f32(
  8533. const struct ggml_compute_params * params,
  8534. const struct ggml_tensor * src0,
  8535. const struct ggml_tensor * src1,
  8536. struct ggml_tensor * dst,
  8537. const float value) {
  8538. assert(src1->type == GGML_TYPE_I32);
  8539. assert(ggml_nelements(src1) == 2);
  8540. const int ith = params->ith;
  8541. const int nth = params->nth;
  8542. const int n_past = ((int32_t *) src1->data)[0];
  8543. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8544. assert(n_past >= 0);
  8545. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8546. // memcpy needs to be synchronized across threads to avoid race conditions.
  8547. // => do it in INIT phase
  8548. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8549. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8550. memcpy(
  8551. ((char *) dst->data),
  8552. ((char *) src0->data),
  8553. ggml_nbytes(dst));
  8554. }
  8555. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8556. return;
  8557. }
  8558. // TODO: handle transposed/permuted matrices
  8559. const int n = ggml_nrows(src0);
  8560. const int nc = src0->ne[0];
  8561. const int nr = src0->ne[1];
  8562. const int nz = n/nr;
  8563. assert( dst->nb[0] == sizeof(float));
  8564. assert(src0->nb[0] == sizeof(float));
  8565. for (int k = 0; k < nz; k++) {
  8566. for (int j = ith; j < nr; j += nth) {
  8567. for (int i = n_past; i < nc; i++) {
  8568. if (i > n_past + j) {
  8569. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8570. }
  8571. }
  8572. }
  8573. }
  8574. }
  8575. static void ggml_compute_forward_diag_mask_inf(
  8576. const struct ggml_compute_params * params,
  8577. const struct ggml_tensor * src0,
  8578. const struct ggml_tensor * src1,
  8579. struct ggml_tensor * dst) {
  8580. switch (src0->type) {
  8581. case GGML_TYPE_F32:
  8582. {
  8583. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8584. } break;
  8585. default:
  8586. {
  8587. GGML_ASSERT(false);
  8588. } break;
  8589. }
  8590. }
  8591. static void ggml_compute_forward_diag_mask_zero(
  8592. const struct ggml_compute_params * params,
  8593. const struct ggml_tensor * src0,
  8594. const struct ggml_tensor * src1,
  8595. struct ggml_tensor * dst) {
  8596. switch (src0->type) {
  8597. case GGML_TYPE_F32:
  8598. {
  8599. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8600. } break;
  8601. default:
  8602. {
  8603. GGML_ASSERT(false);
  8604. } break;
  8605. }
  8606. }
  8607. // ggml_compute_forward_soft_max
  8608. static void ggml_compute_forward_soft_max_f32(
  8609. const struct ggml_compute_params * params,
  8610. const struct ggml_tensor * src0,
  8611. struct ggml_tensor * dst) {
  8612. GGML_ASSERT(ggml_is_contiguous(src0));
  8613. GGML_ASSERT(ggml_is_contiguous(dst));
  8614. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8615. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8616. return;
  8617. }
  8618. // TODO: handle transposed/permuted matrices
  8619. const int ith = params->ith;
  8620. const int nth = params->nth;
  8621. const int nc = src0->ne[0];
  8622. const int nr = ggml_nrows(src0);
  8623. // rows per thread
  8624. const int dr = (nr + nth - 1)/nth;
  8625. // row range for this thread
  8626. const int ir0 = dr*ith;
  8627. const int ir1 = MIN(ir0 + dr, nr);
  8628. for (int i1 = ir0; i1 < ir1; i1++) {
  8629. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8630. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8631. #ifndef NDEBUG
  8632. for (int i = 0; i < nc; ++i) {
  8633. //printf("p[%d] = %f\n", i, p[i]);
  8634. assert(!isnan(sp[i]));
  8635. }
  8636. #endif
  8637. float max = -INFINITY;
  8638. ggml_vec_max_f32(nc, &max, sp);
  8639. ggml_float sum = 0.0;
  8640. uint16_t scvt;
  8641. for (int i = 0; i < nc; i++) {
  8642. if (sp[i] == -INFINITY) {
  8643. dp[i] = 0.0f;
  8644. } else {
  8645. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8646. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8647. memcpy(&scvt, &s, sizeof(scvt));
  8648. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8649. sum += (ggml_float)val;
  8650. dp[i] = val;
  8651. }
  8652. }
  8653. assert(sum > 0.0);
  8654. sum = 1.0/sum;
  8655. ggml_vec_scale_f32(nc, dp, sum);
  8656. #ifndef NDEBUG
  8657. for (int i = 0; i < nc; ++i) {
  8658. assert(!isnan(dp[i]));
  8659. assert(!isinf(dp[i]));
  8660. }
  8661. #endif
  8662. }
  8663. }
  8664. static void ggml_compute_forward_soft_max(
  8665. const struct ggml_compute_params * params,
  8666. const struct ggml_tensor * src0,
  8667. struct ggml_tensor * dst) {
  8668. switch (src0->type) {
  8669. case GGML_TYPE_F32:
  8670. {
  8671. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8672. } break;
  8673. default:
  8674. {
  8675. GGML_ASSERT(false);
  8676. } break;
  8677. }
  8678. }
  8679. // ggml_compute_forward_alibi
  8680. static void ggml_compute_forward_alibi_f32(
  8681. const struct ggml_compute_params * params,
  8682. const struct ggml_tensor * src0,
  8683. const struct ggml_tensor * src1,
  8684. struct ggml_tensor * dst) {
  8685. assert(params->ith == 0);
  8686. assert(src1->type == GGML_TYPE_I32);
  8687. assert(ggml_nelements(src1) == 2);
  8688. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8689. return;
  8690. }
  8691. const int n_past = ((int32_t *) src1->data)[0];
  8692. const int n_head = ((int32_t *) src1->data)[1];
  8693. assert(n_past >= 0);
  8694. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8695. const int ne1 = src0->ne[1]; // seq_len_without_past
  8696. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8697. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8698. const int n = ggml_nrows(src0);
  8699. const int ne2_ne3 = n/ne1; // ne2*ne3
  8700. const int nb0 = src0->nb[0];
  8701. const int nb1 = src0->nb[1];
  8702. const int nb2 = src0->nb[2];
  8703. //const int nb3 = src0->nb[3];
  8704. assert(nb0 == sizeof(float));
  8705. assert(ne1 + n_past == ne0); (void) n_past;
  8706. // add alibi to src0 (KQ_scaled)
  8707. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8708. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8709. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8710. for (int i = 0; i < ne0; i++) {
  8711. for (int j = 0; j < ne1; j++) {
  8712. for (int k = 0; k < ne2_ne3; k++) {
  8713. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8714. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8715. // TODO: k*nb2 or k*nb3
  8716. float m_k;
  8717. if (k < n_heads_log2_floor) {
  8718. m_k = powf(m0, k + 1);
  8719. } else {
  8720. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8721. }
  8722. pdst[0] = i * m_k + src[0];
  8723. }
  8724. }
  8725. }
  8726. }
  8727. static void ggml_compute_forward_alibi_f16(
  8728. const struct ggml_compute_params * params,
  8729. const struct ggml_tensor * src0,
  8730. const struct ggml_tensor * src1,
  8731. struct ggml_tensor * dst) {
  8732. assert(params->ith == 0);
  8733. assert(src1->type == GGML_TYPE_I32);
  8734. assert(ggml_nelements(src1) == 2);
  8735. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8736. return;
  8737. }
  8738. const int n_past = ((int32_t *) src1->data)[0];
  8739. const int n_head = ((int32_t *) src1->data)[1];
  8740. assert(n_past >= 0);
  8741. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8742. const int ne1 = src0->ne[1]; // seq_len_without_past
  8743. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8744. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8745. const int n = ggml_nrows(src0);
  8746. const int ne2_ne3 = n/ne1; // ne2*ne3
  8747. const int nb0 = src0->nb[0];
  8748. const int nb1 = src0->nb[1];
  8749. const int nb2 = src0->nb[2];
  8750. //const int nb3 = src0->nb[3];
  8751. assert(nb0 == sizeof(ggml_fp16_t));
  8752. assert(ne1 + n_past == ne0); (void) n_past;
  8753. // add alibi to src0 (KQ_scaled)
  8754. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8755. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8756. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8757. for (int i = 0; i < ne0; i++) {
  8758. for (int j = 0; j < ne1; j++) {
  8759. for (int k = 0; k < ne2_ne3; k++) {
  8760. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8761. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8762. // TODO: k*nb2 or k*nb3
  8763. float m_k;
  8764. if (k < n_heads_log2_floor) {
  8765. m_k = powf(m0, k + 1);
  8766. } else {
  8767. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8768. }
  8769. // we return F32
  8770. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8771. }
  8772. }
  8773. }
  8774. }
  8775. static void ggml_compute_forward_alibi(
  8776. const struct ggml_compute_params * params,
  8777. const struct ggml_tensor * src0,
  8778. const struct ggml_tensor * src1,
  8779. struct ggml_tensor * dst) {
  8780. switch (src0->type) {
  8781. case GGML_TYPE_F16:
  8782. {
  8783. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8784. } break;
  8785. case GGML_TYPE_F32:
  8786. {
  8787. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8788. } break;
  8789. case GGML_TYPE_Q4_0:
  8790. case GGML_TYPE_Q4_1:
  8791. case GGML_TYPE_Q5_0:
  8792. case GGML_TYPE_Q5_1:
  8793. case GGML_TYPE_Q8_0:
  8794. case GGML_TYPE_Q8_1:
  8795. case GGML_TYPE_I8:
  8796. case GGML_TYPE_I16:
  8797. case GGML_TYPE_I32:
  8798. case GGML_TYPE_COUNT:
  8799. {
  8800. GGML_ASSERT(false);
  8801. } break;
  8802. }
  8803. }
  8804. // ggml_compute_forward_rope
  8805. static void ggml_compute_forward_rope_f32(
  8806. const struct ggml_compute_params * params,
  8807. const struct ggml_tensor * src0,
  8808. const struct ggml_tensor * src1,
  8809. struct ggml_tensor * dst) {
  8810. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8811. GGML_ASSERT(ggml_nelements(src1) == 3);
  8812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8813. return;
  8814. }
  8815. const int n_past = ((int32_t *) src1->data)[0];
  8816. const int n_dims = ((int32_t *) src1->data)[1];
  8817. const int mode = ((int32_t *) src1->data)[2];
  8818. assert(n_past >= 0);
  8819. const size_t nb00 = src0->nb[0];
  8820. const size_t nb01 = src0->nb[1];
  8821. const size_t nb02 = src0->nb[2];
  8822. const size_t nb03 = src0->nb[3];
  8823. const int64_t ne0 = dst->ne[0];
  8824. const int64_t ne1 = dst->ne[1];
  8825. const int64_t ne2 = dst->ne[2];
  8826. const int64_t ne3 = dst->ne[3];
  8827. const size_t nb0 = dst->nb[0];
  8828. const size_t nb1 = dst->nb[1];
  8829. const size_t nb2 = dst->nb[2];
  8830. const size_t nb3 = dst->nb[3];
  8831. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8832. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8833. GGML_ASSERT(nb00 == sizeof(float));
  8834. const int ith = params->ith;
  8835. const int nth = params->nth;
  8836. const int nr = ggml_nrows(dst);
  8837. GGML_ASSERT(n_dims <= ne0);
  8838. GGML_ASSERT(n_dims % 2 == 0);
  8839. // rows per thread
  8840. const int dr = (nr + nth - 1)/nth;
  8841. // row range for this thread
  8842. const int ir0 = dr*ith;
  8843. const int ir1 = MIN(ir0 + dr, nr);
  8844. // row index used to determine which thread to use
  8845. int ir = 0;
  8846. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8847. const bool is_neox = mode & 2;
  8848. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8849. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8850. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8851. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8852. if (ir++ < ir0) continue;
  8853. if (ir > ir1) break;
  8854. float theta = (float)p;
  8855. if (!is_neox) {
  8856. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  8857. const float cos_theta = cosf(theta);
  8858. const float sin_theta = sinf(theta);
  8859. theta *= theta_scale;
  8860. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8861. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8862. const float x0 = src[0];
  8863. const float x1 = src[1];
  8864. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8865. dst_data[1] = x0*sin_theta + x1*cos_theta;
  8866. }
  8867. } else {
  8868. // TODO: this is probably wrong, but I can't figure it out ..
  8869. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  8870. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  8871. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  8872. const float cos_theta = cosf(theta);
  8873. const float sin_theta = sinf(theta);
  8874. theta *= theta_scale;
  8875. const int64_t i0 = ib*n_dims + ic/2;
  8876. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8877. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8878. const float x0 = src[0];
  8879. const float x1 = src[n_dims/2];
  8880. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8881. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  8882. }
  8883. }
  8884. }
  8885. }
  8886. }
  8887. }
  8888. }
  8889. static void ggml_compute_forward_rope_f16(
  8890. const struct ggml_compute_params * params,
  8891. const struct ggml_tensor * src0,
  8892. const struct ggml_tensor * src1,
  8893. struct ggml_tensor * dst) {
  8894. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8895. GGML_ASSERT(ggml_nelements(src1) == 3);
  8896. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8897. return;
  8898. }
  8899. const int n_past = ((int32_t *) src1->data)[0];
  8900. const int n_dims = ((int32_t *) src1->data)[1];
  8901. const int mode = ((int32_t *) src1->data)[2];
  8902. assert(n_past >= 0);
  8903. const size_t nb00 = src0->nb[0];
  8904. const size_t nb01 = src0->nb[1];
  8905. const size_t nb02 = src0->nb[2];
  8906. const size_t nb03 = src0->nb[3];
  8907. const int64_t ne0 = dst->ne[0];
  8908. const int64_t ne1 = dst->ne[1];
  8909. const int64_t ne2 = dst->ne[2];
  8910. const int64_t ne3 = dst->ne[3];
  8911. const size_t nb0 = dst->nb[0];
  8912. const size_t nb1 = dst->nb[1];
  8913. const size_t nb2 = dst->nb[2];
  8914. const size_t nb3 = dst->nb[3];
  8915. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8916. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8917. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8918. const int ith = params->ith;
  8919. const int nth = params->nth;
  8920. const int nr = ggml_nrows(dst);
  8921. GGML_ASSERT(n_dims <= ne0);
  8922. GGML_ASSERT(n_dims % 2 == 0);
  8923. // rows per thread
  8924. const int dr = (nr + nth - 1)/nth;
  8925. // row range for this thread
  8926. const int ir0 = dr*ith;
  8927. const int ir1 = MIN(ir0 + dr, nr);
  8928. // row index used to determine which thread to use
  8929. int ir = 0;
  8930. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8931. const bool is_neox = mode & 2;
  8932. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8933. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8934. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8935. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8936. if (ir++ < ir0) continue;
  8937. if (ir > ir1) break;
  8938. float theta = (float)p;
  8939. if (!is_neox) {
  8940. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  8941. const float cos_theta = cosf(theta);
  8942. const float sin_theta = sinf(theta);
  8943. theta *= theta_scale;
  8944. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8945. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8946. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8947. const float x1 = GGML_FP16_TO_FP32(src[1]);
  8948. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8949. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8950. }
  8951. } else {
  8952. // TODO: this is probably wrong, but I can't figure it out ..
  8953. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  8954. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  8955. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  8956. const float cos_theta = cosf(theta);
  8957. const float sin_theta = sinf(theta);
  8958. theta *= theta_scale;
  8959. const int64_t i0 = ib*n_dims + ic/2;
  8960. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8961. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8962. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8963. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  8964. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8965. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8966. }
  8967. }
  8968. }
  8969. }
  8970. }
  8971. }
  8972. }
  8973. static void ggml_compute_forward_rope(
  8974. const struct ggml_compute_params * params,
  8975. const struct ggml_tensor * src0,
  8976. const struct ggml_tensor * src1,
  8977. struct ggml_tensor * dst) {
  8978. switch (src0->type) {
  8979. case GGML_TYPE_F16:
  8980. {
  8981. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  8982. } break;
  8983. case GGML_TYPE_F32:
  8984. {
  8985. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  8986. } break;
  8987. default:
  8988. {
  8989. GGML_ASSERT(false);
  8990. } break;
  8991. }
  8992. }
  8993. // ggml_compute_forward_rope_back
  8994. static void ggml_compute_forward_rope_back_f32(
  8995. const struct ggml_compute_params * params,
  8996. const struct ggml_tensor * src0,
  8997. const struct ggml_tensor * src1,
  8998. struct ggml_tensor * dst) {
  8999. assert(src1->type == GGML_TYPE_I32);
  9000. assert(ggml_nelements(src1) == 3);
  9001. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9002. return;
  9003. }
  9004. // y = rope(x, src1)
  9005. // dx = rope_back(dy, src1)
  9006. // src0 is dy, src1 contains options
  9007. const int n_past = ((int32_t *) src1->data)[0];
  9008. const int n_dims = ((int32_t *) src1->data)[1];
  9009. const int mode = ((int32_t *) src1->data)[2];
  9010. assert(n_past >= 0);
  9011. const size_t nb00 = src0->nb[0];
  9012. const size_t nb01 = src0->nb[1];
  9013. const size_t nb02 = src0->nb[2];
  9014. const size_t nb03 = src0->nb[3];
  9015. const int64_t ne0 = dst->ne[0];
  9016. const int64_t ne1 = dst->ne[1];
  9017. const int64_t ne2 = dst->ne[2];
  9018. const int64_t ne3 = dst->ne[3];
  9019. const size_t nb0 = dst->nb[0];
  9020. const size_t nb1 = dst->nb[1];
  9021. const size_t nb2 = dst->nb[2];
  9022. const size_t nb3 = dst->nb[3];
  9023. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9024. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9025. assert(nb0 == sizeof(float));
  9026. const int ith = params->ith;
  9027. const int nth = params->nth;
  9028. const int nr = ggml_nrows(dst);
  9029. // rows per thread
  9030. const int dr = (nr + nth - 1)/nth;
  9031. // row range for this thread
  9032. const int ir0 = dr*ith;
  9033. const int ir1 = MIN(ir0 + dr, nr);
  9034. // row index used to determine which thread to use
  9035. int ir = 0;
  9036. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9037. const bool is_neox = mode & 2;
  9038. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9039. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9040. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9041. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9042. if (ir++ < ir0) continue;
  9043. if (ir > ir1) break;
  9044. float theta = (float)p;
  9045. if (!is_neox) {
  9046. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9047. const float cos_theta = cosf(theta);
  9048. const float sin_theta = sinf(theta);
  9049. theta *= theta_scale;
  9050. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9051. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9052. const float dy0 = dy[0];
  9053. const float dy1 = dy[1];
  9054. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9055. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9056. }
  9057. } else {
  9058. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9059. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9060. const float cos_theta = cosf(theta);
  9061. const float sin_theta = sinf(theta);
  9062. theta *= theta_scale;
  9063. const int64_t i0 = ib*n_dims + ic/2;
  9064. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9065. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9066. const float dy0 = dy[0];
  9067. const float dy1 = dy[n_dims/2];
  9068. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9069. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9070. }
  9071. }
  9072. }
  9073. }
  9074. }
  9075. }
  9076. }
  9077. static void ggml_compute_forward_rope_back_f16(
  9078. const struct ggml_compute_params * params,
  9079. const struct ggml_tensor * src0,
  9080. const struct ggml_tensor * src1,
  9081. struct ggml_tensor * dst) {
  9082. assert(src1->type == GGML_TYPE_I32);
  9083. assert(ggml_nelements(src1) == 3);
  9084. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9085. return;
  9086. }
  9087. // y = rope(x, src1)
  9088. // dx = rope_back(dy, src1)
  9089. // src0 is dy, src1 contains options
  9090. const int n_past = ((int32_t *) src1->data)[0];
  9091. const int n_dims = ((int32_t *) src1->data)[1];
  9092. const int mode = ((int32_t *) src1->data)[2];
  9093. assert(n_past >= 0);
  9094. const size_t nb00 = src0->nb[0];
  9095. const size_t nb01 = src0->nb[1];
  9096. const size_t nb02 = src0->nb[2];
  9097. const size_t nb03 = src0->nb[3];
  9098. const int64_t ne0 = dst->ne[0];
  9099. const int64_t ne1 = dst->ne[1];
  9100. const int64_t ne2 = dst->ne[2];
  9101. const int64_t ne3 = dst->ne[3];
  9102. const size_t nb0 = dst->nb[0];
  9103. const size_t nb1 = dst->nb[1];
  9104. const size_t nb2 = dst->nb[2];
  9105. const size_t nb3 = dst->nb[3];
  9106. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9107. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9108. assert(nb0 == sizeof(ggml_fp16_t));
  9109. const int ith = params->ith;
  9110. const int nth = params->nth;
  9111. const int nr = ggml_nrows(dst);
  9112. // rows per thread
  9113. const int dr = (nr + nth - 1)/nth;
  9114. // row range for this thread
  9115. const int ir0 = dr*ith;
  9116. const int ir1 = MIN(ir0 + dr, nr);
  9117. // row index used to determine which thread to use
  9118. int ir = 0;
  9119. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9120. const bool is_neox = mode & 2;
  9121. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9122. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9123. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9124. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9125. if (ir++ < ir0) continue;
  9126. if (ir > ir1) break;
  9127. float theta = (float)p;
  9128. if (!is_neox) {
  9129. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9130. const float cos_theta = cosf(theta);
  9131. const float sin_theta = sinf(theta);
  9132. theta *= theta_scale;
  9133. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9134. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9135. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9136. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9137. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9138. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9139. }
  9140. } else {
  9141. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9142. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9143. const float cos_theta = cosf(theta);
  9144. const float sin_theta = sinf(theta);
  9145. theta *= theta_scale;
  9146. const int64_t i0 = ib*n_dims + ic/2;
  9147. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9148. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9149. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9150. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9151. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9152. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9153. }
  9154. }
  9155. }
  9156. }
  9157. }
  9158. }
  9159. }
  9160. static void ggml_compute_forward_rope_back(
  9161. const struct ggml_compute_params * params,
  9162. const struct ggml_tensor * src0,
  9163. const struct ggml_tensor * src1,
  9164. struct ggml_tensor * dst) {
  9165. switch (src0->type) {
  9166. case GGML_TYPE_F16:
  9167. {
  9168. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9169. } break;
  9170. case GGML_TYPE_F32:
  9171. {
  9172. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9173. } break;
  9174. default:
  9175. {
  9176. GGML_ASSERT(false);
  9177. } break;
  9178. }
  9179. }
  9180. // ggml_compute_forward_conv_1d_1s
  9181. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9182. const struct ggml_compute_params * params,
  9183. const struct ggml_tensor * src0,
  9184. const struct ggml_tensor * src1,
  9185. struct ggml_tensor * dst) {
  9186. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9187. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9188. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9189. int64_t t0 = ggml_perf_time_us();
  9190. UNUSED(t0);
  9191. const int64_t ne00 = src0->ne[0];
  9192. const int64_t ne01 = src0->ne[1];
  9193. const int64_t ne02 = src0->ne[2];
  9194. //const int64_t ne03 = src0->ne[3];
  9195. const int64_t ne10 = src1->ne[0];
  9196. const int64_t ne11 = src1->ne[1];
  9197. //const int64_t ne12 = src1->ne[2];
  9198. //const int64_t ne13 = src1->ne[3];
  9199. //const int64_t ne0 = dst->ne[0];
  9200. //const int64_t ne1 = dst->ne[1];
  9201. //const int64_t ne2 = dst->ne[2];
  9202. //const int64_t ne3 = dst->ne[3];
  9203. //const int64_t ne = ne0*ne1*ne2*ne3;
  9204. const int nb00 = src0->nb[0];
  9205. const int nb01 = src0->nb[1];
  9206. const int nb02 = src0->nb[2];
  9207. //const int nb03 = src0->nb[3];
  9208. const int nb10 = src1->nb[0];
  9209. const int nb11 = src1->nb[1];
  9210. //const int nb12 = src1->nb[2];
  9211. //const int nb13 = src1->nb[3];
  9212. //const int nb0 = dst->nb[0];
  9213. const int nb1 = dst->nb[1];
  9214. //const int nb2 = dst->nb[2];
  9215. //const int nb3 = dst->nb[3];
  9216. const int ith = params->ith;
  9217. const int nth = params->nth;
  9218. const int nk = ne00;
  9219. const int nh = nk/2;
  9220. const int ew0 = ggml_up32(ne01);
  9221. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9222. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9223. GGML_ASSERT(nb10 == sizeof(float));
  9224. if (params->type == GGML_TASK_INIT) {
  9225. // TODO: fix this memset (wsize is overestimated)
  9226. memset(params->wdata, 0, params->wsize);
  9227. // prepare kernel data (src0)
  9228. {
  9229. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9230. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9231. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9232. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9233. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9234. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9235. dst_data[i00*ew0 + i01] = src[i00];
  9236. }
  9237. }
  9238. }
  9239. }
  9240. // prepare source data (src1)
  9241. {
  9242. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9243. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9244. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9245. ggml_fp16_t * dst_data = wdata;
  9246. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9247. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9248. }
  9249. }
  9250. }
  9251. return;
  9252. }
  9253. if (params->type == GGML_TASK_FINALIZE) {
  9254. return;
  9255. }
  9256. // total rows in dst
  9257. const int nr = ne02;
  9258. // rows per thread
  9259. const int dr = (nr + nth - 1)/nth;
  9260. // row range for this thread
  9261. const int ir0 = dr*ith;
  9262. const int ir1 = MIN(ir0 + dr, nr);
  9263. for (int i1 = ir0; i1 < ir1; i1++) {
  9264. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9265. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9266. dst_data[i0] = 0;
  9267. for (int k = -nh; k <= nh; k++) {
  9268. float v = 0.0f;
  9269. ggml_vec_dot_f16(ew0, &v,
  9270. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9271. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9272. dst_data[i0] += v;
  9273. }
  9274. }
  9275. }
  9276. }
  9277. static void ggml_compute_forward_conv_1d_1s_f32(
  9278. const struct ggml_compute_params * params,
  9279. const struct ggml_tensor * src0,
  9280. const struct ggml_tensor * src1,
  9281. struct ggml_tensor * dst) {
  9282. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9283. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9284. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9285. int64_t t0 = ggml_perf_time_us();
  9286. UNUSED(t0);
  9287. const int64_t ne00 = src0->ne[0];
  9288. const int64_t ne01 = src0->ne[1];
  9289. const int64_t ne02 = src0->ne[2];
  9290. //const int64_t ne03 = src0->ne[3];
  9291. const int64_t ne10 = src1->ne[0];
  9292. const int64_t ne11 = src1->ne[1];
  9293. //const int64_t ne12 = src1->ne[2];
  9294. //const int64_t ne13 = src1->ne[3];
  9295. //const int64_t ne0 = dst->ne[0];
  9296. //const int64_t ne1 = dst->ne[1];
  9297. //const int64_t ne2 = dst->ne[2];
  9298. //const int64_t ne3 = dst->ne[3];
  9299. //const int64_t ne = ne0*ne1*ne2*ne3;
  9300. const int nb00 = src0->nb[0];
  9301. const int nb01 = src0->nb[1];
  9302. const int nb02 = src0->nb[2];
  9303. //const int nb03 = src0->nb[3];
  9304. const int nb10 = src1->nb[0];
  9305. const int nb11 = src1->nb[1];
  9306. //const int nb12 = src1->nb[2];
  9307. //const int nb13 = src1->nb[3];
  9308. //const int nb0 = dst->nb[0];
  9309. const int nb1 = dst->nb[1];
  9310. //const int nb2 = dst->nb[2];
  9311. //const int nb3 = dst->nb[3];
  9312. const int ith = params->ith;
  9313. const int nth = params->nth;
  9314. const int nk = ne00;
  9315. const int nh = nk/2;
  9316. const int ew0 = ggml_up32(ne01);
  9317. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9318. GGML_ASSERT(nb00 == sizeof(float));
  9319. GGML_ASSERT(nb10 == sizeof(float));
  9320. if (params->type == GGML_TASK_INIT) {
  9321. // TODO: fix this memset (wsize is overestimated)
  9322. memset(params->wdata, 0, params->wsize);
  9323. // prepare kernel data (src0)
  9324. {
  9325. float * const wdata = (float *) params->wdata + 0;
  9326. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9327. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9328. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9329. float * dst_data = wdata + i02*ew0*ne00;
  9330. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9331. dst_data[i00*ew0 + i01] = src[i00];
  9332. }
  9333. }
  9334. }
  9335. }
  9336. // prepare source data (src1)
  9337. {
  9338. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9339. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9340. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9341. float * dst_data = wdata;
  9342. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9343. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9344. }
  9345. }
  9346. }
  9347. return;
  9348. }
  9349. if (params->type == GGML_TASK_FINALIZE) {
  9350. return;
  9351. }
  9352. // total rows in dst
  9353. const int nr = ne02;
  9354. // rows per thread
  9355. const int dr = (nr + nth - 1)/nth;
  9356. // row range for this thread
  9357. const int ir0 = dr*ith;
  9358. const int ir1 = MIN(ir0 + dr, nr);
  9359. for (int i1 = ir0; i1 < ir1; i1++) {
  9360. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9361. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9362. dst_data[i0] = 0;
  9363. for (int k = -nh; k <= nh; k++) {
  9364. float v = 0.0f;
  9365. ggml_vec_dot_f32(ew0, &v,
  9366. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9367. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9368. dst_data[i0] += v;
  9369. }
  9370. }
  9371. }
  9372. }
  9373. static void ggml_compute_forward_conv_1d_1s(
  9374. const struct ggml_compute_params * params,
  9375. const struct ggml_tensor * src0,
  9376. const struct ggml_tensor * src1,
  9377. struct ggml_tensor * dst) {
  9378. switch (src0->type) {
  9379. case GGML_TYPE_F16:
  9380. {
  9381. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9382. } break;
  9383. case GGML_TYPE_F32:
  9384. {
  9385. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9386. } break;
  9387. default:
  9388. {
  9389. GGML_ASSERT(false);
  9390. } break;
  9391. }
  9392. }
  9393. // ggml_compute_forward_conv_1d_2s
  9394. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9395. const struct ggml_compute_params * params,
  9396. const struct ggml_tensor * src0,
  9397. const struct ggml_tensor * src1,
  9398. struct ggml_tensor * dst) {
  9399. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9400. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9401. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9402. int64_t t0 = ggml_perf_time_us();
  9403. UNUSED(t0);
  9404. const int64_t ne00 = src0->ne[0];
  9405. const int64_t ne01 = src0->ne[1];
  9406. const int64_t ne02 = src0->ne[2];
  9407. //const int64_t ne03 = src0->ne[3];
  9408. const int64_t ne10 = src1->ne[0];
  9409. const int64_t ne11 = src1->ne[1];
  9410. //const int64_t ne12 = src1->ne[2];
  9411. //const int64_t ne13 = src1->ne[3];
  9412. //const int64_t ne0 = dst->ne[0];
  9413. //const int64_t ne1 = dst->ne[1];
  9414. //const int64_t ne2 = dst->ne[2];
  9415. //const int64_t ne3 = dst->ne[3];
  9416. //const int64_t ne = ne0*ne1*ne2*ne3;
  9417. const int nb00 = src0->nb[0];
  9418. const int nb01 = src0->nb[1];
  9419. const int nb02 = src0->nb[2];
  9420. //const int nb03 = src0->nb[3];
  9421. const int nb10 = src1->nb[0];
  9422. const int nb11 = src1->nb[1];
  9423. //const int nb12 = src1->nb[2];
  9424. //const int nb13 = src1->nb[3];
  9425. //const int nb0 = dst->nb[0];
  9426. const int nb1 = dst->nb[1];
  9427. //const int nb2 = dst->nb[2];
  9428. //const int nb3 = dst->nb[3];
  9429. const int ith = params->ith;
  9430. const int nth = params->nth;
  9431. const int nk = ne00;
  9432. const int nh = nk/2;
  9433. const int ew0 = ggml_up32(ne01);
  9434. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9435. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9436. GGML_ASSERT(nb10 == sizeof(float));
  9437. if (params->type == GGML_TASK_INIT) {
  9438. // TODO: fix this memset (wsize is overestimated)
  9439. memset(params->wdata, 0, params->wsize);
  9440. // prepare kernel data (src0)
  9441. {
  9442. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9443. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9444. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9445. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9446. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9447. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9448. dst_data[i00*ew0 + i01] = src[i00];
  9449. }
  9450. }
  9451. }
  9452. }
  9453. // prepare source data (src1)
  9454. {
  9455. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9456. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9457. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9458. ggml_fp16_t * dst_data = wdata;
  9459. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9460. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9461. }
  9462. }
  9463. }
  9464. return;
  9465. }
  9466. if (params->type == GGML_TASK_FINALIZE) {
  9467. return;
  9468. }
  9469. // total rows in dst
  9470. const int nr = ne02;
  9471. // rows per thread
  9472. const int dr = (nr + nth - 1)/nth;
  9473. // row range for this thread
  9474. const int ir0 = dr*ith;
  9475. const int ir1 = MIN(ir0 + dr, nr);
  9476. for (int i1 = ir0; i1 < ir1; i1++) {
  9477. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9478. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9479. dst_data[i0/2] = 0;
  9480. for (int k = -nh; k <= nh; k++) {
  9481. float v = 0.0f;
  9482. ggml_vec_dot_f16(ew0, &v,
  9483. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9484. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9485. dst_data[i0/2] += v;
  9486. }
  9487. }
  9488. }
  9489. }
  9490. static void ggml_compute_forward_conv_1d_2s_f32(
  9491. const struct ggml_compute_params * params,
  9492. const struct ggml_tensor * src0,
  9493. const struct ggml_tensor * src1,
  9494. struct ggml_tensor * dst) {
  9495. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9496. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9497. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9498. int64_t t0 = ggml_perf_time_us();
  9499. UNUSED(t0);
  9500. const int64_t ne00 = src0->ne[0];
  9501. const int64_t ne01 = src0->ne[1];
  9502. const int64_t ne02 = src0->ne[2];
  9503. //const int64_t ne03 = src0->ne[3];
  9504. const int64_t ne10 = src1->ne[0];
  9505. const int64_t ne11 = src1->ne[1];
  9506. //const int64_t ne12 = src1->ne[2];
  9507. //const int64_t ne13 = src1->ne[3];
  9508. //const int64_t ne0 = dst->ne[0];
  9509. //const int64_t ne1 = dst->ne[1];
  9510. //const int64_t ne2 = dst->ne[2];
  9511. //const int64_t ne3 = dst->ne[3];
  9512. //const int64_t ne = ne0*ne1*ne2*ne3;
  9513. const int nb00 = src0->nb[0];
  9514. const int nb01 = src0->nb[1];
  9515. const int nb02 = src0->nb[2];
  9516. //const int nb03 = src0->nb[3];
  9517. const int nb10 = src1->nb[0];
  9518. const int nb11 = src1->nb[1];
  9519. //const int nb12 = src1->nb[2];
  9520. //const int nb13 = src1->nb[3];
  9521. //const int nb0 = dst->nb[0];
  9522. const int nb1 = dst->nb[1];
  9523. //const int nb2 = dst->nb[2];
  9524. //const int nb3 = dst->nb[3];
  9525. const int ith = params->ith;
  9526. const int nth = params->nth;
  9527. const int nk = ne00;
  9528. const int nh = nk/2;
  9529. const int ew0 = ggml_up32(ne01);
  9530. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9531. GGML_ASSERT(nb00 == sizeof(float));
  9532. GGML_ASSERT(nb10 == sizeof(float));
  9533. if (params->type == GGML_TASK_INIT) {
  9534. // TODO: fix this memset (wsize is overestimated)
  9535. memset(params->wdata, 0, params->wsize);
  9536. // prepare kernel data (src0)
  9537. {
  9538. float * const wdata = (float *) params->wdata + 0;
  9539. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9540. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9541. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9542. float * dst_data = wdata + i02*ew0*ne00;
  9543. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9544. dst_data[i00*ew0 + i01] = src[i00];
  9545. }
  9546. }
  9547. }
  9548. }
  9549. // prepare source data (src1)
  9550. {
  9551. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9552. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9553. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9554. float * dst_data = wdata;
  9555. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9556. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9557. }
  9558. }
  9559. }
  9560. return;
  9561. }
  9562. if (params->type == GGML_TASK_FINALIZE) {
  9563. return;
  9564. }
  9565. // total rows in dst
  9566. const int nr = ne02;
  9567. // rows per thread
  9568. const int dr = (nr + nth - 1)/nth;
  9569. // row range for this thread
  9570. const int ir0 = dr*ith;
  9571. const int ir1 = MIN(ir0 + dr, nr);
  9572. for (int i1 = ir0; i1 < ir1; i1++) {
  9573. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9574. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9575. dst_data[i0/2] = 0;
  9576. for (int k = -nh; k <= nh; k++) {
  9577. float v = 0.0f;
  9578. ggml_vec_dot_f32(ew0, &v,
  9579. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9580. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9581. dst_data[i0/2] += v;
  9582. }
  9583. }
  9584. }
  9585. }
  9586. static void ggml_compute_forward_conv_1d_2s(
  9587. const struct ggml_compute_params * params,
  9588. const struct ggml_tensor * src0,
  9589. const struct ggml_tensor * src1,
  9590. struct ggml_tensor * dst) {
  9591. switch (src0->type) {
  9592. case GGML_TYPE_F16:
  9593. {
  9594. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9595. } break;
  9596. case GGML_TYPE_F32:
  9597. {
  9598. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9599. } break;
  9600. default:
  9601. {
  9602. GGML_ASSERT(false);
  9603. } break;
  9604. }
  9605. }
  9606. // ggml_compute_forward_flash_attn
  9607. static void ggml_compute_forward_flash_attn_f32(
  9608. const struct ggml_compute_params * params,
  9609. const struct ggml_tensor * q,
  9610. const struct ggml_tensor * k,
  9611. const struct ggml_tensor * v,
  9612. const bool masked,
  9613. struct ggml_tensor * dst) {
  9614. int64_t t0 = ggml_perf_time_us();
  9615. UNUSED(t0);
  9616. const int64_t neq0 = q->ne[0];
  9617. const int64_t neq1 = q->ne[1];
  9618. const int64_t neq2 = q->ne[2];
  9619. const int64_t neq3 = q->ne[3];
  9620. const int64_t nek0 = k->ne[0];
  9621. const int64_t nek1 = k->ne[1];
  9622. //const int64_t nek2 = k->ne[2];
  9623. //const int64_t nek3 = k->ne[3];
  9624. //const int64_t nev0 = v->ne[0];
  9625. const int64_t nev1 = v->ne[1];
  9626. //const int64_t nev2 = v->ne[2];
  9627. //const int64_t nev3 = v->ne[3];
  9628. const int64_t ne0 = dst->ne[0];
  9629. const int64_t ne1 = dst->ne[1];
  9630. //const int64_t ne2 = dst->ne[2];
  9631. //const int64_t ne3 = dst->ne[3];
  9632. const int nbk0 = k->nb[0];
  9633. const int nbk1 = k->nb[1];
  9634. const int nbk2 = k->nb[2];
  9635. const int nbk3 = k->nb[3];
  9636. const int nbq0 = q->nb[0];
  9637. const int nbq1 = q->nb[1];
  9638. const int nbq2 = q->nb[2];
  9639. const int nbq3 = q->nb[3];
  9640. const int nbv0 = v->nb[0];
  9641. const int nbv1 = v->nb[1];
  9642. const int nbv2 = v->nb[2];
  9643. const int nbv3 = v->nb[3];
  9644. const int nb0 = dst->nb[0];
  9645. const int nb1 = dst->nb[1];
  9646. const int nb2 = dst->nb[2];
  9647. const int nb3 = dst->nb[3];
  9648. const int ith = params->ith;
  9649. const int nth = params->nth;
  9650. const int64_t D = neq0;
  9651. const int64_t N = neq1;
  9652. const int64_t P = nek1 - N;
  9653. const int64_t M = P + N;
  9654. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9655. GGML_ASSERT(ne0 == D);
  9656. GGML_ASSERT(ne1 == N);
  9657. GGML_ASSERT(P >= 0);
  9658. GGML_ASSERT(nbq0 == sizeof(float));
  9659. GGML_ASSERT(nbk0 == sizeof(float));
  9660. GGML_ASSERT(nbv0 == sizeof(float));
  9661. GGML_ASSERT(neq0 == D);
  9662. GGML_ASSERT(nek0 == D);
  9663. GGML_ASSERT(nev1 == D);
  9664. GGML_ASSERT(neq1 == N);
  9665. GGML_ASSERT(nek1 == N + P);
  9666. GGML_ASSERT(nev1 == D);
  9667. // dst cannot be transposed or permuted
  9668. GGML_ASSERT(nb0 == sizeof(float));
  9669. GGML_ASSERT(nb0 <= nb1);
  9670. GGML_ASSERT(nb1 <= nb2);
  9671. GGML_ASSERT(nb2 <= nb3);
  9672. if (params->type == GGML_TASK_INIT) {
  9673. return;
  9674. }
  9675. if (params->type == GGML_TASK_FINALIZE) {
  9676. return;
  9677. }
  9678. // parallelize by q rows using ggml_vec_dot_f32
  9679. // total rows in q
  9680. const int nr = neq1*neq2*neq3;
  9681. // rows per thread
  9682. const int dr = (nr + nth - 1)/nth;
  9683. // row range for this thread
  9684. const int ir0 = dr*ith;
  9685. const int ir1 = MIN(ir0 + dr, nr);
  9686. const float scale = 1.0f/sqrtf(D);
  9687. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9688. for (int ir = ir0; ir < ir1; ++ir) {
  9689. // q indices
  9690. const int iq3 = ir/(neq2*neq1);
  9691. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9692. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9693. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9694. for (int i = M; i < Mup; ++i) {
  9695. S[i] = -INFINITY;
  9696. }
  9697. for (int64_t ic = 0; ic < nek1; ++ic) {
  9698. // k indices
  9699. const int ik3 = iq3;
  9700. const int ik2 = iq2;
  9701. const int ik1 = ic;
  9702. // S indices
  9703. const int i1 = ik1;
  9704. ggml_vec_dot_f32(neq0,
  9705. S + i1,
  9706. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9707. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9708. }
  9709. // scale
  9710. ggml_vec_scale_f32(nek1, S, scale);
  9711. if (masked) {
  9712. for (int64_t i = P; i < M; i++) {
  9713. if (i > P + iq1) {
  9714. S[i] = -INFINITY;
  9715. }
  9716. }
  9717. }
  9718. // softmax
  9719. {
  9720. float max = -INFINITY;
  9721. ggml_vec_max_f32(M, &max, S);
  9722. ggml_float sum = 0.0;
  9723. {
  9724. #ifdef GGML_SOFT_MAX_ACCELERATE
  9725. max = -max;
  9726. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9727. vvexpf(S, S, &Mup);
  9728. ggml_vec_sum_f32(Mup, &sum, S);
  9729. #else
  9730. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9731. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9732. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9733. float * SS = S + i;
  9734. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9735. if (SS[j] == -INFINITY) {
  9736. SS[j] = 0.0f;
  9737. } else {
  9738. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9739. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9740. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9741. sump[j] += (ggml_float)val;
  9742. SS[j] = val;
  9743. }
  9744. }
  9745. }
  9746. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9747. sum += sump[i];
  9748. }
  9749. #endif
  9750. }
  9751. assert(sum > 0.0);
  9752. sum = 1.0/sum;
  9753. ggml_vec_scale_f32(M, S, sum);
  9754. #ifndef NDEBUG
  9755. for (int i = 0; i < M; ++i) {
  9756. assert(!isnan(S[i]));
  9757. assert(!isinf(S[i]));
  9758. }
  9759. #endif
  9760. }
  9761. for (int64_t ic = 0; ic < nev1; ++ic) {
  9762. // dst indices
  9763. const int i1 = iq1;
  9764. const int i2 = iq2;
  9765. const int i3 = iq3;
  9766. ggml_vec_dot_f32(nek1,
  9767. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9768. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9769. S);
  9770. }
  9771. }
  9772. }
  9773. static void ggml_compute_forward_flash_attn_f16(
  9774. const struct ggml_compute_params * params,
  9775. const struct ggml_tensor * q,
  9776. const struct ggml_tensor * k,
  9777. const struct ggml_tensor * v,
  9778. const bool masked,
  9779. struct ggml_tensor * dst) {
  9780. int64_t t0 = ggml_perf_time_us();
  9781. UNUSED(t0);
  9782. const int64_t neq0 = q->ne[0];
  9783. const int64_t neq1 = q->ne[1];
  9784. const int64_t neq2 = q->ne[2];
  9785. const int64_t neq3 = q->ne[3];
  9786. const int64_t nek0 = k->ne[0];
  9787. const int64_t nek1 = k->ne[1];
  9788. //const int64_t nek2 = k->ne[2];
  9789. //const int64_t nek3 = k->ne[3];
  9790. //const int64_t nev0 = v->ne[0];
  9791. const int64_t nev1 = v->ne[1];
  9792. //const int64_t nev2 = v->ne[2];
  9793. //const int64_t nev3 = v->ne[3];
  9794. const int64_t ne0 = dst->ne[0];
  9795. const int64_t ne1 = dst->ne[1];
  9796. //const int64_t ne2 = dst->ne[2];
  9797. //const int64_t ne3 = dst->ne[3];
  9798. const int nbk0 = k->nb[0];
  9799. const int nbk1 = k->nb[1];
  9800. const int nbk2 = k->nb[2];
  9801. const int nbk3 = k->nb[3];
  9802. const int nbq0 = q->nb[0];
  9803. const int nbq1 = q->nb[1];
  9804. const int nbq2 = q->nb[2];
  9805. const int nbq3 = q->nb[3];
  9806. const int nbv0 = v->nb[0];
  9807. const int nbv1 = v->nb[1];
  9808. const int nbv2 = v->nb[2];
  9809. const int nbv3 = v->nb[3];
  9810. const int nb0 = dst->nb[0];
  9811. const int nb1 = dst->nb[1];
  9812. const int nb2 = dst->nb[2];
  9813. const int nb3 = dst->nb[3];
  9814. const int ith = params->ith;
  9815. const int nth = params->nth;
  9816. const int64_t D = neq0;
  9817. const int64_t N = neq1;
  9818. const int64_t P = nek1 - N;
  9819. const int64_t M = P + N;
  9820. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9821. GGML_ASSERT(ne0 == D);
  9822. GGML_ASSERT(ne1 == N);
  9823. GGML_ASSERT(P >= 0);
  9824. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9825. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9826. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9827. GGML_ASSERT(neq0 == D);
  9828. GGML_ASSERT(nek0 == D);
  9829. GGML_ASSERT(nev1 == D);
  9830. GGML_ASSERT(neq1 == N);
  9831. GGML_ASSERT(nek1 == N + P);
  9832. GGML_ASSERT(nev1 == D);
  9833. // dst cannot be transposed or permuted
  9834. GGML_ASSERT(nb0 == sizeof(float));
  9835. GGML_ASSERT(nb0 <= nb1);
  9836. GGML_ASSERT(nb1 <= nb2);
  9837. GGML_ASSERT(nb2 <= nb3);
  9838. if (params->type == GGML_TASK_INIT) {
  9839. return;
  9840. }
  9841. if (params->type == GGML_TASK_FINALIZE) {
  9842. return;
  9843. }
  9844. // parallelize by q rows using ggml_vec_dot_f32
  9845. // total rows in q
  9846. const int nr = neq1*neq2*neq3;
  9847. // rows per thread
  9848. const int dr = (nr + nth - 1)/nth;
  9849. // row range for this thread
  9850. const int ir0 = dr*ith;
  9851. const int ir1 = MIN(ir0 + dr, nr);
  9852. const float scale = 1.0f/sqrtf(D);
  9853. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9854. for (int ir = ir0; ir < ir1; ++ir) {
  9855. // q indices
  9856. const int iq3 = ir/(neq2*neq1);
  9857. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9858. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9859. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  9860. for (int i = M; i < Mup; ++i) {
  9861. S[i] = -INFINITY;
  9862. }
  9863. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  9864. for (int64_t ic = 0; ic < nek1; ++ic) {
  9865. // k indices
  9866. const int ik3 = iq3;
  9867. const int ik2 = iq2;
  9868. const int ik1 = ic;
  9869. // S indices
  9870. const int i1 = ik1;
  9871. ggml_vec_dot_f16(neq0,
  9872. S + i1,
  9873. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9874. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9875. }
  9876. } else {
  9877. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  9878. // k indices
  9879. const int ik3 = iq3;
  9880. const int ik2 = iq2;
  9881. const int ik1 = ic;
  9882. // S indices
  9883. const int i1 = ik1;
  9884. ggml_vec_dot_f16_unroll(neq0, nbk1,
  9885. S + i1,
  9886. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9887. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9888. }
  9889. }
  9890. // scale
  9891. ggml_vec_scale_f32(nek1, S, scale);
  9892. if (masked) {
  9893. for (int64_t i = P; i < M; i++) {
  9894. if (i > P + iq1) {
  9895. S[i] = -INFINITY;
  9896. }
  9897. }
  9898. }
  9899. // softmax
  9900. {
  9901. float max = -INFINITY;
  9902. ggml_vec_max_f32(M, &max, S);
  9903. ggml_float sum = 0.0;
  9904. {
  9905. #ifdef GGML_SOFT_MAX_ACCELERATE
  9906. max = -max;
  9907. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9908. vvexpf(S, S, &Mup);
  9909. ggml_vec_sum_f32(Mup, &sum, S);
  9910. #else
  9911. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9912. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9913. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9914. float * SS = S + i;
  9915. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9916. if (SS[j] == -INFINITY) {
  9917. SS[j] = 0.0f;
  9918. } else {
  9919. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9920. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9921. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9922. sump[j] += (ggml_float)val;
  9923. SS[j] = val;
  9924. }
  9925. }
  9926. }
  9927. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9928. sum += sump[i];
  9929. }
  9930. #endif
  9931. }
  9932. assert(sum > 0.0);
  9933. sum = 1.0/sum;
  9934. ggml_vec_scale_f32(M, S, sum);
  9935. #ifndef NDEBUG
  9936. for (int i = 0; i < M; ++i) {
  9937. assert(!isnan(S[i]));
  9938. assert(!isinf(S[i]));
  9939. }
  9940. #endif
  9941. }
  9942. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  9943. for (int64_t i = 0; i < M; i++) {
  9944. S16[i] = GGML_FP32_TO_FP16(S[i]);
  9945. }
  9946. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  9947. for (int64_t ic = 0; ic < nev1; ++ic) {
  9948. // dst indices
  9949. const int i1 = iq1;
  9950. const int i2 = iq2;
  9951. const int i3 = iq3;
  9952. ggml_vec_dot_f16(nek1,
  9953. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9954. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9955. S16);
  9956. }
  9957. } else {
  9958. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  9959. // dst indices
  9960. const int i1 = iq1;
  9961. const int i2 = iq2;
  9962. const int i3 = iq3;
  9963. ggml_vec_dot_f16_unroll(nek1, nbv1,
  9964. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9965. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9966. S16);
  9967. }
  9968. }
  9969. }
  9970. }
  9971. static void ggml_compute_forward_flash_attn(
  9972. const struct ggml_compute_params * params,
  9973. const struct ggml_tensor * q,
  9974. const struct ggml_tensor * k,
  9975. const struct ggml_tensor * v,
  9976. const bool masked,
  9977. struct ggml_tensor * dst) {
  9978. switch (q->type) {
  9979. case GGML_TYPE_F16:
  9980. {
  9981. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  9982. } break;
  9983. case GGML_TYPE_F32:
  9984. {
  9985. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  9986. } break;
  9987. default:
  9988. {
  9989. GGML_ASSERT(false);
  9990. } break;
  9991. }
  9992. }
  9993. // ggml_compute_forward_flash_ff
  9994. static void ggml_compute_forward_flash_ff_f16(
  9995. const struct ggml_compute_params * params,
  9996. const struct ggml_tensor * a, // F16
  9997. const struct ggml_tensor * b0, // F16 fc_w
  9998. const struct ggml_tensor * b1, // F32 fc_b
  9999. const struct ggml_tensor * c0, // F16 proj_w
  10000. const struct ggml_tensor * c1, // F32 proj_b
  10001. struct ggml_tensor * dst) {
  10002. int64_t t0 = ggml_perf_time_us();
  10003. UNUSED(t0);
  10004. const int64_t nea0 = a->ne[0];
  10005. const int64_t nea1 = a->ne[1];
  10006. const int64_t nea2 = a->ne[2];
  10007. const int64_t nea3 = a->ne[3];
  10008. const int64_t neb00 = b0->ne[0];
  10009. const int64_t neb01 = b0->ne[1];
  10010. //const int64_t neb02 = b0->ne[2];
  10011. //const int64_t neb03 = b0->ne[3];
  10012. const int64_t neb10 = b1->ne[0];
  10013. const int64_t neb11 = b1->ne[1];
  10014. //const int64_t neb12 = b1->ne[2];
  10015. //const int64_t neb13 = b1->ne[3];
  10016. const int64_t nec00 = c0->ne[0];
  10017. const int64_t nec01 = c0->ne[1];
  10018. //const int64_t nec02 = c0->ne[2];
  10019. //const int64_t nec03 = c0->ne[3];
  10020. const int64_t nec10 = c1->ne[0];
  10021. const int64_t nec11 = c1->ne[1];
  10022. //const int64_t nec12 = c1->ne[2];
  10023. //const int64_t nec13 = c1->ne[3];
  10024. const int64_t ne0 = dst->ne[0];
  10025. const int64_t ne1 = dst->ne[1];
  10026. const int64_t ne2 = dst->ne[2];
  10027. //const int64_t ne3 = dst->ne[3];
  10028. const int nba0 = a->nb[0];
  10029. const int nba1 = a->nb[1];
  10030. const int nba2 = a->nb[2];
  10031. const int nba3 = a->nb[3];
  10032. const int nbb00 = b0->nb[0];
  10033. const int nbb01 = b0->nb[1];
  10034. const int nbb02 = b0->nb[2];
  10035. const int nbb03 = b0->nb[3];
  10036. const int nbb10 = b1->nb[0];
  10037. //const int nbb11 = b1->nb[1];
  10038. //const int nbb12 = b1->nb[2];
  10039. //const int nbb13 = b1->nb[3];
  10040. const int nbc00 = c0->nb[0];
  10041. const int nbc01 = c0->nb[1];
  10042. const int nbc02 = c0->nb[2];
  10043. const int nbc03 = c0->nb[3];
  10044. const int nbc10 = c1->nb[0];
  10045. //const int nbc11 = c1->nb[1];
  10046. //const int nbc12 = c1->nb[2];
  10047. //const int nbc13 = c1->nb[3];
  10048. const int nb0 = dst->nb[0];
  10049. const int nb1 = dst->nb[1];
  10050. const int nb2 = dst->nb[2];
  10051. const int nb3 = dst->nb[3];
  10052. const int ith = params->ith;
  10053. const int nth = params->nth;
  10054. const int64_t D = nea0;
  10055. //const int64_t N = nea1;
  10056. const int64_t M = neb01;
  10057. GGML_ASSERT(ne0 == nea0);
  10058. GGML_ASSERT(ne1 == nea1);
  10059. GGML_ASSERT(ne2 == nea2);
  10060. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10061. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10062. GGML_ASSERT(nbb10 == sizeof(float));
  10063. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10064. GGML_ASSERT(nbc10 == sizeof(float));
  10065. GGML_ASSERT(neb00 == D);
  10066. GGML_ASSERT(neb01 == M);
  10067. GGML_ASSERT(neb10 == M);
  10068. GGML_ASSERT(neb11 == 1);
  10069. GGML_ASSERT(nec00 == M);
  10070. GGML_ASSERT(nec01 == D);
  10071. GGML_ASSERT(nec10 == D);
  10072. GGML_ASSERT(nec11 == 1);
  10073. // dst cannot be transposed or permuted
  10074. GGML_ASSERT(nb0 == sizeof(float));
  10075. GGML_ASSERT(nb0 <= nb1);
  10076. GGML_ASSERT(nb1 <= nb2);
  10077. GGML_ASSERT(nb2 <= nb3);
  10078. if (params->type == GGML_TASK_INIT) {
  10079. return;
  10080. }
  10081. if (params->type == GGML_TASK_FINALIZE) {
  10082. return;
  10083. }
  10084. // parallelize by a rows using ggml_vec_dot_f32
  10085. // total rows in a
  10086. const int nr = nea1*nea2*nea3;
  10087. // rows per thread
  10088. const int dr = (nr + nth - 1)/nth;
  10089. // row range for this thread
  10090. const int ir0 = dr*ith;
  10091. const int ir1 = MIN(ir0 + dr, nr);
  10092. for (int ir = ir0; ir < ir1; ++ir) {
  10093. // a indices
  10094. const int ia3 = ir/(nea2*nea1);
  10095. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10096. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10097. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10098. for (int64_t ic = 0; ic < neb01; ++ic) {
  10099. // b0 indices
  10100. const int ib03 = ia3;
  10101. const int ib02 = ia2;
  10102. const int ib01 = ic;
  10103. // S indices
  10104. const int i1 = ib01;
  10105. ggml_vec_dot_f16(nea0,
  10106. S + i1,
  10107. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10108. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10109. }
  10110. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10111. //ggml_vec_gelu_f32(neb01, S, S);
  10112. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10113. for (int64_t i = 0; i < M; i++) {
  10114. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10115. }
  10116. ggml_vec_gelu_f16(neb01, S16, S16);
  10117. {
  10118. // dst indices
  10119. const int i1 = ia1;
  10120. const int i2 = ia2;
  10121. const int i3 = ia3;
  10122. for (int64_t ic = 0; ic < nec01; ++ic) {
  10123. ggml_vec_dot_f16(neb01,
  10124. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10125. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10126. S16);
  10127. }
  10128. ggml_vec_add_f32(nec01,
  10129. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10130. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10131. (float *) c1->data);
  10132. }
  10133. }
  10134. }
  10135. static void ggml_compute_forward_flash_ff(
  10136. const struct ggml_compute_params * params,
  10137. const struct ggml_tensor * a,
  10138. const struct ggml_tensor * b0,
  10139. const struct ggml_tensor * b1,
  10140. const struct ggml_tensor * c0,
  10141. const struct ggml_tensor * c1,
  10142. struct ggml_tensor * dst) {
  10143. switch (b0->type) {
  10144. case GGML_TYPE_F16:
  10145. {
  10146. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10147. } break;
  10148. case GGML_TYPE_F32:
  10149. {
  10150. GGML_ASSERT(false); // TODO
  10151. } break;
  10152. default:
  10153. {
  10154. GGML_ASSERT(false);
  10155. } break;
  10156. }
  10157. }
  10158. // ggml_compute_forward_map_unary
  10159. static void ggml_compute_forward_map_unary_f32(
  10160. const struct ggml_compute_params * params,
  10161. const struct ggml_tensor * src0,
  10162. struct ggml_tensor * dst,
  10163. const ggml_unary_op_f32_t fun) {
  10164. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10166. return;
  10167. }
  10168. const int n = ggml_nrows(src0);
  10169. const int nc = src0->ne[0];
  10170. assert( dst->nb[0] == sizeof(float));
  10171. assert(src0->nb[0] == sizeof(float));
  10172. for (int i = 0; i < n; i++) {
  10173. fun(nc,
  10174. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10175. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10176. }
  10177. }
  10178. static void ggml_compute_forward_map_unary(
  10179. const struct ggml_compute_params * params,
  10180. const struct ggml_tensor * src0,
  10181. struct ggml_tensor * dst,
  10182. const ggml_unary_op_f32_t fun) {
  10183. switch (src0->type) {
  10184. case GGML_TYPE_F32:
  10185. {
  10186. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10187. } break;
  10188. default:
  10189. {
  10190. GGML_ASSERT(false);
  10191. } break;
  10192. }
  10193. }
  10194. // ggml_compute_forward_map_binary
  10195. static void ggml_compute_forward_map_binary_f32(
  10196. const struct ggml_compute_params * params,
  10197. const struct ggml_tensor * src0,
  10198. const struct ggml_tensor * src1,
  10199. struct ggml_tensor * dst,
  10200. const ggml_binary_op_f32_t fun) {
  10201. assert(params->ith == 0);
  10202. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10203. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10204. return;
  10205. }
  10206. const int n = ggml_nrows(src0);
  10207. const int nc = src0->ne[0];
  10208. assert( dst->nb[0] == sizeof(float));
  10209. assert(src0->nb[0] == sizeof(float));
  10210. assert(src1->nb[0] == sizeof(float));
  10211. for (int i = 0; i < n; i++) {
  10212. fun(nc,
  10213. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10214. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10215. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10216. }
  10217. }
  10218. static void ggml_compute_forward_map_binary(
  10219. const struct ggml_compute_params * params,
  10220. const struct ggml_tensor * src0,
  10221. const struct ggml_tensor * src1,
  10222. struct ggml_tensor * dst,
  10223. const ggml_binary_op_f32_t fun) {
  10224. switch (src0->type) {
  10225. case GGML_TYPE_F32:
  10226. {
  10227. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10228. } break;
  10229. default:
  10230. {
  10231. GGML_ASSERT(false);
  10232. } break;
  10233. }
  10234. }
  10235. /////////////////////////////////
  10236. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10237. GGML_ASSERT(params);
  10238. switch (tensor->op) {
  10239. case GGML_OP_DUP:
  10240. {
  10241. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10242. } break;
  10243. case GGML_OP_ADD:
  10244. {
  10245. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10246. } break;
  10247. case GGML_OP_ADD1:
  10248. {
  10249. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10250. } break;
  10251. case GGML_OP_ACC:
  10252. {
  10253. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10254. } break;
  10255. case GGML_OP_SUB:
  10256. {
  10257. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10258. } break;
  10259. case GGML_OP_MUL:
  10260. {
  10261. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10262. } break;
  10263. case GGML_OP_DIV:
  10264. {
  10265. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10266. } break;
  10267. case GGML_OP_SQR:
  10268. {
  10269. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10270. } break;
  10271. case GGML_OP_SQRT:
  10272. {
  10273. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10274. } break;
  10275. case GGML_OP_LOG:
  10276. {
  10277. ggml_compute_forward_log(params, tensor->src0, tensor);
  10278. } break;
  10279. case GGML_OP_SUM:
  10280. {
  10281. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10282. } break;
  10283. case GGML_OP_SUM_ROWS:
  10284. {
  10285. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10286. } break;
  10287. case GGML_OP_MEAN:
  10288. {
  10289. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10290. } break;
  10291. case GGML_OP_REPEAT:
  10292. {
  10293. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10294. } break;
  10295. case GGML_OP_ABS:
  10296. {
  10297. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10298. } break;
  10299. case GGML_OP_SGN:
  10300. {
  10301. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10302. } break;
  10303. case GGML_OP_NEG:
  10304. {
  10305. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10306. } break;
  10307. case GGML_OP_STEP:
  10308. {
  10309. ggml_compute_forward_step(params, tensor->src0, tensor);
  10310. } break;
  10311. case GGML_OP_RELU:
  10312. {
  10313. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10314. } break;
  10315. case GGML_OP_GELU:
  10316. {
  10317. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10318. } break;
  10319. case GGML_OP_SILU:
  10320. {
  10321. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10322. } break;
  10323. case GGML_OP_SILU_BACK:
  10324. {
  10325. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10326. } break;
  10327. case GGML_OP_NORM:
  10328. {
  10329. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10330. } break;
  10331. case GGML_OP_RMS_NORM:
  10332. {
  10333. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10334. } break;
  10335. case GGML_OP_RMS_NORM_BACK:
  10336. {
  10337. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10338. } break;
  10339. case GGML_OP_MUL_MAT:
  10340. {
  10341. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10342. } break;
  10343. case GGML_OP_SCALE:
  10344. {
  10345. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10346. } break;
  10347. case GGML_OP_SET:
  10348. {
  10349. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10350. } break;
  10351. case GGML_OP_CPY:
  10352. {
  10353. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10354. } break;
  10355. case GGML_OP_CONT:
  10356. {
  10357. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10358. } break;
  10359. case GGML_OP_RESHAPE:
  10360. {
  10361. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10362. } break;
  10363. case GGML_OP_VIEW:
  10364. {
  10365. ggml_compute_forward_view(params, tensor->src0);
  10366. } break;
  10367. case GGML_OP_PERMUTE:
  10368. {
  10369. ggml_compute_forward_permute(params, tensor->src0);
  10370. } break;
  10371. case GGML_OP_TRANSPOSE:
  10372. {
  10373. ggml_compute_forward_transpose(params, tensor->src0);
  10374. } break;
  10375. case GGML_OP_GET_ROWS:
  10376. {
  10377. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10378. } break;
  10379. case GGML_OP_GET_ROWS_BACK:
  10380. {
  10381. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10382. } break;
  10383. case GGML_OP_DIAG:
  10384. {
  10385. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10386. } break;
  10387. case GGML_OP_DIAG_MASK_INF:
  10388. {
  10389. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10390. } break;
  10391. case GGML_OP_DIAG_MASK_ZERO:
  10392. {
  10393. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10394. } break;
  10395. case GGML_OP_SOFT_MAX:
  10396. {
  10397. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10398. } break;
  10399. case GGML_OP_ROPE:
  10400. {
  10401. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10402. } break;
  10403. case GGML_OP_ROPE_BACK:
  10404. {
  10405. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10406. } break;
  10407. case GGML_OP_ALIBI:
  10408. {
  10409. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10410. } break;
  10411. case GGML_OP_CONV_1D_1S:
  10412. {
  10413. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10414. } break;
  10415. case GGML_OP_CONV_1D_2S:
  10416. {
  10417. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10418. } break;
  10419. case GGML_OP_FLASH_ATTN:
  10420. {
  10421. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10422. GGML_ASSERT(t == 0 || t == 1);
  10423. bool masked = t != 0;
  10424. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10425. } break;
  10426. case GGML_OP_FLASH_FF:
  10427. {
  10428. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10429. } break;
  10430. case GGML_OP_MAP_UNARY:
  10431. {
  10432. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10433. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10434. }
  10435. break;
  10436. case GGML_OP_MAP_BINARY:
  10437. {
  10438. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10439. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10440. }
  10441. break;
  10442. case GGML_OP_NONE:
  10443. {
  10444. // nop
  10445. } break;
  10446. case GGML_OP_COUNT:
  10447. {
  10448. GGML_ASSERT(false);
  10449. } break;
  10450. }
  10451. }
  10452. ////////////////////////////////////////////////////////////////////////////////
  10453. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10454. struct ggml_tensor * src0 = tensor->src0;
  10455. struct ggml_tensor * src1 = tensor->src1;
  10456. switch (tensor->op) {
  10457. case GGML_OP_DUP:
  10458. {
  10459. if (src0->grad) {
  10460. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10461. }
  10462. } break;
  10463. case GGML_OP_ADD:
  10464. {
  10465. if (src0->grad) {
  10466. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10467. }
  10468. if (src1->grad) {
  10469. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10470. }
  10471. } break;
  10472. case GGML_OP_ADD1:
  10473. {
  10474. if (src0->grad) {
  10475. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10476. }
  10477. if (src1->grad) {
  10478. src1->grad = ggml_add_impl(ctx,
  10479. src1->grad,
  10480. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10481. inplace);
  10482. }
  10483. } break;
  10484. case GGML_OP_ACC:
  10485. {
  10486. if (src0->grad) {
  10487. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10488. }
  10489. if (src1->grad) {
  10490. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10491. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10492. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10493. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10494. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10495. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10496. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10497. tensor->grad,
  10498. src1->grad->ne[0],
  10499. src1->grad->ne[1],
  10500. src1->grad->ne[2],
  10501. src1->grad->ne[3],
  10502. nb1, nb2, nb3, offset);
  10503. src1->grad =
  10504. ggml_add_impl(ctx,
  10505. src1->grad,
  10506. ggml_reshape(ctx,
  10507. ggml_cont(ctx, tensor_grad_view),
  10508. src1->grad),
  10509. inplace);
  10510. }
  10511. } break;
  10512. case GGML_OP_SUB:
  10513. {
  10514. if (src0->grad) {
  10515. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10516. }
  10517. if (src1->grad) {
  10518. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10519. }
  10520. } break;
  10521. case GGML_OP_MUL:
  10522. {
  10523. if (src0->grad) {
  10524. src0->grad =
  10525. ggml_add_impl(ctx,
  10526. src0->grad,
  10527. ggml_mul(ctx, src1, tensor->grad),
  10528. inplace);
  10529. }
  10530. if (src1->grad) {
  10531. src1->grad =
  10532. ggml_add_impl(ctx,
  10533. src1->grad,
  10534. ggml_mul(ctx, src0, tensor->grad),
  10535. inplace);
  10536. }
  10537. } break;
  10538. case GGML_OP_DIV:
  10539. {
  10540. if (src0->grad) {
  10541. src0->grad =
  10542. ggml_add_impl(ctx,
  10543. src0->grad,
  10544. ggml_div(ctx, tensor->grad, src1),
  10545. inplace);
  10546. }
  10547. if (src1->grad) {
  10548. src1->grad =
  10549. ggml_sub_impl(ctx,
  10550. src1->grad,
  10551. ggml_mul(ctx,
  10552. tensor->grad,
  10553. ggml_div(ctx, tensor, src1)),
  10554. inplace);
  10555. }
  10556. } break;
  10557. case GGML_OP_SQR:
  10558. {
  10559. if (src0->grad) {
  10560. src0->grad =
  10561. ggml_add_impl(ctx,
  10562. src0->grad,
  10563. ggml_scale(ctx,
  10564. ggml_mul(ctx, src0, tensor->grad),
  10565. ggml_new_f32(ctx, 2.0f)),
  10566. inplace);
  10567. }
  10568. } break;
  10569. case GGML_OP_SQRT:
  10570. {
  10571. if (src0->grad) {
  10572. src0->grad =
  10573. ggml_add_impl(ctx,
  10574. src0->grad,
  10575. ggml_mul(ctx,
  10576. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10577. ggml_div(ctx,
  10578. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10579. tensor)),
  10580. inplace);
  10581. }
  10582. } break;
  10583. case GGML_OP_LOG:
  10584. {
  10585. if (src0->grad) {
  10586. src0->grad =
  10587. ggml_add_impl(ctx,
  10588. src0->grad,
  10589. ggml_div(ctx,
  10590. tensor->grad,
  10591. src0),
  10592. inplace);
  10593. }
  10594. } break;
  10595. case GGML_OP_SUM:
  10596. {
  10597. if (src0->grad) {
  10598. src0->grad =
  10599. ggml_add1_impl(ctx,
  10600. src0->grad,
  10601. tensor->grad,
  10602. inplace);
  10603. }
  10604. } break;
  10605. case GGML_OP_SUM_ROWS:
  10606. {
  10607. if (src0->grad) {
  10608. src0->grad =
  10609. ggml_add_impl(ctx,
  10610. src0->grad,
  10611. ggml_repeat(ctx,
  10612. tensor->grad,
  10613. src0->grad),
  10614. inplace);
  10615. }
  10616. } break;
  10617. case GGML_OP_MEAN:
  10618. {
  10619. GGML_ASSERT(false); // TODO: implement
  10620. } break;
  10621. case GGML_OP_REPEAT:
  10622. {
  10623. // necessary for llama
  10624. if (src0->grad) {
  10625. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10626. const int nc = tensor->ne[0];
  10627. const int nr = tensor->ne[1];
  10628. const int nc0 = src0->ne[0];
  10629. const int nr0 = src0->ne[1];
  10630. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10631. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10632. // tensor->grad [nc,nr,1,1]
  10633. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10634. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10635. // substitute [nc0,nr0,ncr,nrr]
  10636. // reshape [nc0*nr0,ncr*nrr,1,1]
  10637. // transpose [ncr*nrr,nc0*nr0,1,1]
  10638. // sum rows [1,nc0*nr0,1,1]
  10639. // transpose [nc0*nr0,1,1]
  10640. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10641. // add to src0->grad
  10642. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10643. struct ggml_tensor* F00 = tensor->grad;
  10644. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10645. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10646. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10647. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10648. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10649. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10650. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10651. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10652. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10653. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10654. src0->grad =
  10655. ggml_add_impl(ctx,
  10656. src0->grad,
  10657. F10,
  10658. inplace);
  10659. }
  10660. } break;
  10661. case GGML_OP_ABS:
  10662. {
  10663. if (src0->grad) {
  10664. src0->grad =
  10665. ggml_add_impl(ctx,
  10666. src0->grad,
  10667. ggml_mul(ctx,
  10668. ggml_sgn(ctx, src0),
  10669. tensor->grad),
  10670. inplace);
  10671. }
  10672. } break;
  10673. case GGML_OP_SGN:
  10674. {
  10675. if (src0->grad) {
  10676. // noop
  10677. }
  10678. } break;
  10679. case GGML_OP_NEG:
  10680. {
  10681. if (src0->grad) {
  10682. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10683. }
  10684. } break;
  10685. case GGML_OP_STEP:
  10686. {
  10687. if (src0->grad) {
  10688. // noop
  10689. }
  10690. } break;
  10691. case GGML_OP_RELU:
  10692. {
  10693. if (src0->grad) {
  10694. src0->grad = ggml_sub_impl(ctx,
  10695. src0->grad,
  10696. ggml_mul(ctx,
  10697. ggml_step(ctx, src0),
  10698. tensor->grad),
  10699. inplace);
  10700. }
  10701. } break;
  10702. case GGML_OP_GELU:
  10703. {
  10704. GGML_ASSERT(false); // TODO: not implemented
  10705. } break;
  10706. case GGML_OP_ALIBI:
  10707. {
  10708. GGML_ASSERT(false); // TODO: not implemented
  10709. } break;
  10710. case GGML_OP_SILU:
  10711. {
  10712. // necessary for llama
  10713. if (src0->grad) {
  10714. src0->grad = ggml_add_impl(ctx,
  10715. src0->grad,
  10716. ggml_silu_back(ctx, src0, tensor->grad),
  10717. inplace);
  10718. }
  10719. } break;
  10720. case GGML_OP_SILU_BACK:
  10721. {
  10722. GGML_ASSERT(false); // TODO: not implemented
  10723. } break;
  10724. case GGML_OP_NORM:
  10725. {
  10726. GGML_ASSERT(false); // TODO: not implemented
  10727. } break;
  10728. case GGML_OP_RMS_NORM:
  10729. {
  10730. // necessary for llama
  10731. if (src0->grad) {
  10732. src0->grad = ggml_add_impl(ctx,
  10733. src0->grad,
  10734. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10735. inplace);
  10736. }
  10737. } break;
  10738. case GGML_OP_RMS_NORM_BACK:
  10739. {
  10740. GGML_ASSERT(false); // TODO: not implemented
  10741. } break;
  10742. case GGML_OP_MUL_MAT:
  10743. {
  10744. // https://cs231n.github.io/optimization-2/#staged
  10745. // # forward pass
  10746. // s0 = np.random.randn(5, 10)
  10747. // s1 = np.random.randn(10, 3)
  10748. // t = s0.dot(s1)
  10749. // # now suppose we had the gradient on t from above in the circuit
  10750. // dt = np.random.randn(*t.shape) # same shape as t
  10751. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10752. // ds1 = t.T.dot(dt)
  10753. // tensor.shape [m,p]
  10754. // src0.shape [n,m]
  10755. // src1.shape [n,p]
  10756. // necessary for llama
  10757. if (src0->grad) {
  10758. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10759. src0->grad =
  10760. ggml_add_impl(ctx,
  10761. src0->grad,
  10762. // ds0 = dt.dot(s1.T)
  10763. // ggml_out_prod(ctx, // [n,m]
  10764. // src1, // [n,p]
  10765. // tensor->grad), // [m,p]
  10766. // for now just using A*B==(B.T*A.T).T
  10767. ggml_cont(ctx, // [n,m]
  10768. ggml_transpose(ctx, // [n,m]
  10769. ggml_mul_mat(ctx, // [m,n]
  10770. ggml_cont(ctx, // [p,m]
  10771. ggml_transpose(ctx, // [p,m]
  10772. tensor->grad)), // [m,p]
  10773. ggml_cont(ctx, // [p,n]
  10774. ggml_transpose(ctx, // [p,n]
  10775. src1))))), // [n,p]
  10776. inplace);
  10777. }
  10778. if (src1->grad) {
  10779. src1->grad =
  10780. ggml_add_impl(ctx,
  10781. src1->grad,
  10782. // ds1 = s0.T.dot(dt):
  10783. ggml_mul_mat(ctx, // [n,p]
  10784. ggml_cont(ctx, // [m,n]
  10785. ggml_transpose(ctx, src0)), // [m,n]
  10786. tensor->grad), // [m,p]
  10787. inplace);
  10788. }
  10789. } break;
  10790. case GGML_OP_SCALE:
  10791. {
  10792. // necessary for llama
  10793. if (src0->grad) {
  10794. src0->grad =
  10795. ggml_add_impl(ctx,
  10796. src0->grad,
  10797. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10798. inplace);
  10799. }
  10800. if (src1->grad) {
  10801. src1->grad =
  10802. ggml_add_impl(ctx,
  10803. src1->grad,
  10804. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10805. inplace);
  10806. }
  10807. } break;
  10808. case GGML_OP_SET:
  10809. {
  10810. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10811. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10812. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10813. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10814. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10815. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10816. struct ggml_tensor * tensor_grad_view = NULL;
  10817. if (src0->grad || src1->grad) {
  10818. GGML_ASSERT(src0->type == tensor->type);
  10819. GGML_ASSERT(tensor->grad->type == tensor->type);
  10820. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  10821. tensor_grad_view = ggml_view_4d(ctx,
  10822. tensor->grad,
  10823. src1->grad->ne[0],
  10824. src1->grad->ne[1],
  10825. src1->grad->ne[2],
  10826. src1->grad->ne[3],
  10827. nb1, nb2, nb3, offset);
  10828. }
  10829. if (src0->grad) {
  10830. src0->grad = ggml_add_impl(ctx,
  10831. src0->grad,
  10832. ggml_acc_impl(ctx,
  10833. tensor->grad,
  10834. ggml_neg(ctx, tensor_grad_view),
  10835. nb1, nb2, nb3, offset, false),
  10836. inplace);
  10837. }
  10838. if (src1->grad) {
  10839. src1->grad =
  10840. ggml_add_impl(ctx,
  10841. src1->grad,
  10842. ggml_reshape(ctx,
  10843. ggml_cont(ctx, tensor_grad_view),
  10844. src1->grad),
  10845. inplace);
  10846. }
  10847. } break;
  10848. case GGML_OP_CPY:
  10849. {
  10850. // necessary for llama
  10851. // cpy overwrites value of src1 by src0 and returns view(src1)
  10852. // the overwriting is mathematically equivalent to:
  10853. // tensor = src0 * 1 + src1 * 0
  10854. if (src0->grad) {
  10855. // dsrc0 = dtensor * 1
  10856. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10857. }
  10858. if (src1->grad) {
  10859. // dsrc1 = dtensor * 0 -> noop
  10860. }
  10861. } break;
  10862. case GGML_OP_CONT:
  10863. {
  10864. // same as cpy
  10865. if (src0->grad) {
  10866. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  10867. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  10868. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10869. }
  10870. } break;
  10871. case GGML_OP_RESHAPE:
  10872. {
  10873. // necessary for llama
  10874. if (src0->grad) {
  10875. src0->grad =
  10876. ggml_add_impl(ctx, src0->grad,
  10877. ggml_reshape(ctx, tensor->grad, src0->grad),
  10878. inplace);
  10879. }
  10880. } break;
  10881. case GGML_OP_VIEW:
  10882. {
  10883. // necessary for llama
  10884. if (src0->grad) {
  10885. size_t offset;
  10886. memcpy(&offset, tensor->padding, sizeof(offset));
  10887. size_t nb1 = tensor->nb[1];
  10888. size_t nb2 = tensor->nb[2];
  10889. size_t nb3 = tensor->nb[3];
  10890. if (src0->type != src0->grad->type) {
  10891. // gradient is typically F32, but src0 could be other type
  10892. size_t ng = ggml_element_size(src0->grad);
  10893. size_t n0 = ggml_element_size(src0);
  10894. GGML_ASSERT(offset % n0 == 0);
  10895. GGML_ASSERT(nb1 % n0 == 0);
  10896. GGML_ASSERT(nb2 % n0 == 0);
  10897. GGML_ASSERT(nb3 % n0 == 0);
  10898. offset = (offset / n0) * ng;
  10899. nb1 = (nb1 / n0) * ng;
  10900. nb2 = (nb2 / n0) * ng;
  10901. nb3 = (nb3 / n0) * ng;
  10902. }
  10903. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  10904. }
  10905. } break;
  10906. case GGML_OP_PERMUTE:
  10907. {
  10908. // necessary for llama
  10909. if (src0->grad) {
  10910. int axis0 = tensor->padding[0] & 0x3;
  10911. int axis1 = tensor->padding[1] & 0x3;
  10912. int axis2 = tensor->padding[2] & 0x3;
  10913. int axis3 = tensor->padding[3] & 0x3;
  10914. int axes_backward[4] = {0,0,0,0};
  10915. axes_backward[axis0] = 0;
  10916. axes_backward[axis1] = 1;
  10917. axes_backward[axis2] = 2;
  10918. axes_backward[axis3] = 3;
  10919. src0->grad =
  10920. ggml_add_impl(ctx, src0->grad,
  10921. ggml_permute(ctx,
  10922. tensor->grad,
  10923. axes_backward[0],
  10924. axes_backward[1],
  10925. axes_backward[2],
  10926. axes_backward[3]),
  10927. inplace);
  10928. }
  10929. } break;
  10930. case GGML_OP_TRANSPOSE:
  10931. {
  10932. // necessary for llama
  10933. if (src0->grad) {
  10934. src0->grad =
  10935. ggml_add_impl(ctx, src0->grad,
  10936. ggml_transpose(ctx, tensor->grad),
  10937. inplace);
  10938. }
  10939. } break;
  10940. case GGML_OP_GET_ROWS:
  10941. {
  10942. // necessary for llama (only for tokenizer)
  10943. if (src0->grad) {
  10944. src0->grad =
  10945. ggml_add_impl(ctx, src0->grad,
  10946. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  10947. inplace);
  10948. }
  10949. if (src1->grad) {
  10950. // noop
  10951. }
  10952. } break;
  10953. case GGML_OP_GET_ROWS_BACK:
  10954. {
  10955. GGML_ASSERT(false); // TODO: not implemented
  10956. } break;
  10957. case GGML_OP_DIAG:
  10958. {
  10959. GGML_ASSERT(false); // TODO: not implemented
  10960. } break;
  10961. case GGML_OP_DIAG_MASK_INF:
  10962. {
  10963. // necessary for llama
  10964. if (src0->grad) {
  10965. assert(src1->type == GGML_TYPE_I32);
  10966. assert(ggml_nelements(src1) == 2);
  10967. const int n_past = ((int32_t *) src1->data)[0];
  10968. src0->grad =
  10969. ggml_add_impl(ctx, src0->grad,
  10970. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10971. inplace);
  10972. }
  10973. if (src1->grad) {
  10974. // noop
  10975. }
  10976. } break;
  10977. case GGML_OP_DIAG_MASK_ZERO:
  10978. {
  10979. // necessary for llama
  10980. if (src0->grad) {
  10981. assert(src1->type == GGML_TYPE_I32);
  10982. assert(ggml_nelements(src1) == 2);
  10983. const int n_past = ((int32_t *) src1->data)[0];
  10984. src0->grad =
  10985. ggml_add_impl(ctx, src0->grad,
  10986. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10987. inplace);
  10988. }
  10989. if (src1->grad) {
  10990. // noop
  10991. }
  10992. } break;
  10993. case GGML_OP_SOFT_MAX:
  10994. {
  10995. // necessary for llama
  10996. if (src0->grad) {
  10997. // y = softmax(x)
  10998. //
  10999. // Jii = yi - yi*yi
  11000. // Jij = -yi*yj
  11001. // J = diag(y)-y.*y
  11002. // dx = J * dy
  11003. // dxk = sum(Jkj * dyk)
  11004. int64_t ne2[4] = {
  11005. tensor->ne[0],
  11006. 1,
  11007. tensor->ne[1]*tensor->ne[2],
  11008. tensor->ne[3]
  11009. };
  11010. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11011. ggml_reshape_4d(ctx,
  11012. ggml_cont(ctx, tensor),
  11013. ne2[0], ne2[1], ne2[2], ne2[3]));
  11014. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11015. ggml_reshape_4d(ctx,
  11016. ggml_cont(ctx, tensor->grad),
  11017. ne2[0], ne2[1], ne2[2], ne2[3]));
  11018. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11019. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11020. tensor2, // [ne0,1,ne1*ne2,ne3]
  11021. 1, 0, 2, 3));
  11022. src0->grad =
  11023. ggml_add_impl(ctx,
  11024. src0->grad, // [ne0,ne1,ne2,ne3]
  11025. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11026. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11027. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11028. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11029. tensor2), // [ne0,1,ne1*ne2,ne3]
  11030. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11031. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11032. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11033. grad2), // [ne0,1,ne1*ne2,ne3]
  11034. src0->grad),
  11035. inplace);
  11036. }
  11037. } break;
  11038. case GGML_OP_ROPE:
  11039. {
  11040. // necessary for llama
  11041. if (src0->grad) {
  11042. assert(src1->type == GGML_TYPE_I32);
  11043. assert(ggml_nelements(src1) == 3);
  11044. const int n_past = ((int32_t *) src1->data)[0];
  11045. const int n_dims = ((int32_t *) src1->data)[1];
  11046. const int mode = ((int32_t *) src1->data)[2];
  11047. src0->grad = ggml_add_impl(ctx,
  11048. src0->grad,
  11049. ggml_rope_back(ctx,
  11050. tensor->grad,
  11051. n_past,
  11052. n_dims,
  11053. mode),
  11054. inplace);
  11055. }
  11056. if (src1->grad) {
  11057. // noop
  11058. }
  11059. } break;
  11060. case GGML_OP_ROPE_BACK:
  11061. {
  11062. if (src0->grad) {
  11063. assert(src1->type == GGML_TYPE_I32);
  11064. assert(ggml_nelements(src1) == 3);
  11065. const int n_past = ((int32_t *) src1->data)[0];
  11066. const int n_dims = ((int32_t *) src1->data)[1];
  11067. const int mode = ((int32_t *) src1->data)[2];
  11068. src0->grad = ggml_add_impl(ctx,
  11069. src0->grad,
  11070. ggml_rope(ctx,
  11071. tensor->grad,
  11072. n_past,
  11073. n_dims,
  11074. mode),
  11075. inplace);
  11076. }
  11077. if (src1->grad) {
  11078. // noop
  11079. }
  11080. } break;
  11081. case GGML_OP_CONV_1D_1S:
  11082. {
  11083. GGML_ASSERT(false); // TODO: not implemented
  11084. } break;
  11085. case GGML_OP_CONV_1D_2S:
  11086. {
  11087. GGML_ASSERT(false); // TODO: not implemented
  11088. } break;
  11089. case GGML_OP_FLASH_ATTN:
  11090. {
  11091. GGML_ASSERT(false); // not supported
  11092. } break;
  11093. case GGML_OP_FLASH_FF:
  11094. {
  11095. GGML_ASSERT(false); // not supported
  11096. } break;
  11097. case GGML_OP_MAP_UNARY:
  11098. case GGML_OP_MAP_BINARY:
  11099. {
  11100. GGML_ASSERT(false); // not supported
  11101. } break;
  11102. case GGML_OP_NONE:
  11103. {
  11104. // nop
  11105. } break;
  11106. case GGML_OP_COUNT:
  11107. {
  11108. GGML_ASSERT(false);
  11109. } break;
  11110. }
  11111. }
  11112. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11113. if (node->grad == NULL) {
  11114. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11115. // it can also happen during forward pass, if the user performs computations with constants
  11116. if (node->op != GGML_OP_NONE) {
  11117. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11118. }
  11119. }
  11120. // check if already visited
  11121. for (int i = 0; i < cgraph->n_nodes; i++) {
  11122. if (cgraph->nodes[i] == node) {
  11123. return;
  11124. }
  11125. }
  11126. for (int i = 0; i < cgraph->n_leafs; i++) {
  11127. if (cgraph->leafs[i] == node) {
  11128. return;
  11129. }
  11130. }
  11131. if (node->src0) {
  11132. ggml_visit_parents(cgraph, node->src0);
  11133. }
  11134. if (node->src1) {
  11135. ggml_visit_parents(cgraph, node->src1);
  11136. }
  11137. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11138. if (node->opt[i]) {
  11139. ggml_visit_parents(cgraph, node->opt[i]);
  11140. }
  11141. }
  11142. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11143. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11144. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11145. cgraph->leafs[cgraph->n_leafs] = node;
  11146. cgraph->n_leafs++;
  11147. } else {
  11148. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11149. cgraph->nodes[cgraph->n_nodes] = node;
  11150. cgraph->grads[cgraph->n_nodes] = node->grad;
  11151. cgraph->n_nodes++;
  11152. }
  11153. }
  11154. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11155. if (!expand) {
  11156. cgraph->n_nodes = 0;
  11157. cgraph->n_leafs = 0;
  11158. }
  11159. const int n0 = cgraph->n_nodes;
  11160. UNUSED(n0);
  11161. ggml_visit_parents(cgraph, tensor);
  11162. const int n_new = cgraph->n_nodes - n0;
  11163. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11164. if (n_new > 0) {
  11165. // the last added node should always be starting point
  11166. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11167. }
  11168. }
  11169. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11170. ggml_build_forward_impl(cgraph, tensor, true);
  11171. }
  11172. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11173. struct ggml_cgraph result = {
  11174. /*.n_nodes =*/ 0,
  11175. /*.n_leafs =*/ 0,
  11176. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11177. /*.work_size =*/ 0,
  11178. /*.work =*/ NULL,
  11179. /*.nodes =*/ { NULL },
  11180. /*.grads =*/ { NULL },
  11181. /*.leafs =*/ { NULL },
  11182. /*.perf_runs =*/ 0,
  11183. /*.perf_cycles =*/ 0,
  11184. /*.perf_time_us =*/ 0,
  11185. };
  11186. ggml_build_forward_impl(&result, tensor, false);
  11187. return result;
  11188. }
  11189. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11190. struct ggml_cgraph result = *gf;
  11191. GGML_ASSERT(gf->n_nodes > 0);
  11192. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11193. if (keep) {
  11194. for (int i = 0; i < gf->n_nodes; i++) {
  11195. struct ggml_tensor * node = gf->nodes[i];
  11196. if (node->grad) {
  11197. node->grad = ggml_dup_tensor(ctx, node);
  11198. gf->grads[i] = node->grad;
  11199. }
  11200. }
  11201. }
  11202. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11203. struct ggml_tensor * node = gf->nodes[i];
  11204. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11205. if (node->grad) {
  11206. ggml_compute_backward(ctx, node, keep);
  11207. }
  11208. }
  11209. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11210. struct ggml_tensor * node = gf->nodes[i];
  11211. if (node->is_param) {
  11212. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11213. ggml_build_forward_impl(&result, node->grad, true);
  11214. }
  11215. }
  11216. return result;
  11217. }
  11218. //
  11219. // thread data
  11220. //
  11221. // synchronization is done via busy loops
  11222. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11223. //
  11224. #ifdef __APPLE__
  11225. //#include <os/lock.h>
  11226. //
  11227. //typedef os_unfair_lock ggml_lock_t;
  11228. //
  11229. //#define ggml_lock_init(x) UNUSED(x)
  11230. //#define ggml_lock_destroy(x) UNUSED(x)
  11231. //#define ggml_lock_lock os_unfair_lock_lock
  11232. //#define ggml_lock_unlock os_unfair_lock_unlock
  11233. //
  11234. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11235. typedef int ggml_lock_t;
  11236. #define ggml_lock_init(x) UNUSED(x)
  11237. #define ggml_lock_destroy(x) UNUSED(x)
  11238. #define ggml_lock_lock(x) UNUSED(x)
  11239. #define ggml_lock_unlock(x) UNUSED(x)
  11240. #define GGML_LOCK_INITIALIZER 0
  11241. typedef pthread_t ggml_thread_t;
  11242. #define ggml_thread_create pthread_create
  11243. #define ggml_thread_join pthread_join
  11244. #else
  11245. //typedef pthread_spinlock_t ggml_lock_t;
  11246. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11247. //#define ggml_lock_destroy pthread_spin_destroy
  11248. //#define ggml_lock_lock pthread_spin_lock
  11249. //#define ggml_lock_unlock pthread_spin_unlock
  11250. typedef int ggml_lock_t;
  11251. #define ggml_lock_init(x) UNUSED(x)
  11252. #define ggml_lock_destroy(x) UNUSED(x)
  11253. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11254. #define ggml_lock_lock(x) _mm_pause()
  11255. #else
  11256. #define ggml_lock_lock(x) UNUSED(x)
  11257. #endif
  11258. #define ggml_lock_unlock(x) UNUSED(x)
  11259. #define GGML_LOCK_INITIALIZER 0
  11260. typedef pthread_t ggml_thread_t;
  11261. #define ggml_thread_create pthread_create
  11262. #define ggml_thread_join pthread_join
  11263. #endif
  11264. struct ggml_compute_state_shared {
  11265. ggml_lock_t spin;
  11266. int n_threads;
  11267. // synchronization primitives
  11268. atomic_int n_ready;
  11269. atomic_bool has_work;
  11270. atomic_bool stop; // stop all threads
  11271. };
  11272. struct ggml_compute_state {
  11273. ggml_thread_t thrd;
  11274. struct ggml_compute_params params;
  11275. struct ggml_tensor * node;
  11276. struct ggml_compute_state_shared * shared;
  11277. };
  11278. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11279. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11280. const int n_threads = state->shared->n_threads;
  11281. while (true) {
  11282. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11283. atomic_store(&state->shared->has_work, false);
  11284. } else {
  11285. while (atomic_load(&state->shared->has_work)) {
  11286. if (atomic_load(&state->shared->stop)) {
  11287. return 0;
  11288. }
  11289. ggml_lock_lock (&state->shared->spin);
  11290. ggml_lock_unlock(&state->shared->spin);
  11291. }
  11292. }
  11293. atomic_fetch_sub(&state->shared->n_ready, 1);
  11294. // wait for work
  11295. while (!atomic_load(&state->shared->has_work)) {
  11296. if (atomic_load(&state->shared->stop)) {
  11297. return 0;
  11298. }
  11299. ggml_lock_lock (&state->shared->spin);
  11300. ggml_lock_unlock(&state->shared->spin);
  11301. }
  11302. // check if we should stop
  11303. if (atomic_load(&state->shared->stop)) {
  11304. break;
  11305. }
  11306. if (state->node) {
  11307. if (state->params.ith < state->params.nth) {
  11308. ggml_compute_forward(&state->params, state->node);
  11309. }
  11310. state->node = NULL;
  11311. } else {
  11312. break;
  11313. }
  11314. }
  11315. return 0;
  11316. }
  11317. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11318. const int n_threads = cgraph->n_threads;
  11319. struct ggml_compute_state_shared state_shared = {
  11320. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11321. /*.n_threads =*/ n_threads,
  11322. /*.n_ready =*/ 0,
  11323. /*.has_work =*/ false,
  11324. /*.stop =*/ false,
  11325. };
  11326. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11327. // create thread pool
  11328. if (n_threads > 1) {
  11329. ggml_lock_init(&state_shared.spin);
  11330. atomic_store(&state_shared.has_work, true);
  11331. for (int j = 0; j < n_threads - 1; j++) {
  11332. workers[j] = (struct ggml_compute_state) {
  11333. .thrd = 0,
  11334. .params = {
  11335. .type = GGML_TASK_COMPUTE,
  11336. .ith = j + 1,
  11337. .nth = n_threads,
  11338. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11339. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11340. },
  11341. .node = NULL,
  11342. .shared = &state_shared,
  11343. };
  11344. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11345. GGML_ASSERT(rc == 0);
  11346. UNUSED(rc);
  11347. }
  11348. }
  11349. // initialize tasks + work buffer
  11350. {
  11351. size_t work_size = 0;
  11352. // thread scheduling for the different operations
  11353. for (int i = 0; i < cgraph->n_nodes; i++) {
  11354. struct ggml_tensor * node = cgraph->nodes[i];
  11355. switch (node->op) {
  11356. case GGML_OP_CPY:
  11357. case GGML_OP_DUP:
  11358. {
  11359. node->n_tasks = n_threads;
  11360. size_t cur = 0;
  11361. if (ggml_is_quantized(node->type)) {
  11362. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11363. }
  11364. work_size = MAX(work_size, cur);
  11365. } break;
  11366. case GGML_OP_ADD:
  11367. case GGML_OP_ADD1:
  11368. {
  11369. node->n_tasks = n_threads;
  11370. size_t cur = 0;
  11371. if (ggml_is_quantized(node->src0->type)) {
  11372. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11373. }
  11374. work_size = MAX(work_size, cur);
  11375. } break;
  11376. case GGML_OP_ACC:
  11377. {
  11378. node->n_tasks = n_threads;
  11379. size_t cur = 0;
  11380. if (ggml_is_quantized(node->src0->type)) {
  11381. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11382. }
  11383. work_size = MAX(work_size, cur);
  11384. } break;
  11385. case GGML_OP_SUB:
  11386. case GGML_OP_DIV:
  11387. case GGML_OP_SQR:
  11388. case GGML_OP_SQRT:
  11389. case GGML_OP_LOG:
  11390. case GGML_OP_SUM:
  11391. case GGML_OP_SUM_ROWS:
  11392. case GGML_OP_MEAN:
  11393. case GGML_OP_REPEAT:
  11394. case GGML_OP_ABS:
  11395. case GGML_OP_SGN:
  11396. case GGML_OP_NEG:
  11397. case GGML_OP_STEP:
  11398. case GGML_OP_RELU:
  11399. {
  11400. node->n_tasks = 1;
  11401. } break;
  11402. case GGML_OP_MUL:
  11403. case GGML_OP_GELU:
  11404. case GGML_OP_SILU:
  11405. case GGML_OP_SILU_BACK:
  11406. case GGML_OP_NORM:
  11407. case GGML_OP_RMS_NORM:
  11408. case GGML_OP_RMS_NORM_BACK:
  11409. {
  11410. node->n_tasks = n_threads;
  11411. } break;
  11412. case GGML_OP_MUL_MAT:
  11413. {
  11414. node->n_tasks = n_threads;
  11415. // TODO: use different scheduling for different matrix sizes
  11416. //const int nr0 = ggml_nrows(node->src0);
  11417. //const int nr1 = ggml_nrows(node->src1);
  11418. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11419. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11420. size_t cur = 0;
  11421. #if defined(GGML_USE_CUBLAS)
  11422. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11423. node->n_tasks = 1; // TODO: this actually is doing nothing
  11424. // the threads are still spinning
  11425. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11426. }
  11427. else
  11428. #endif
  11429. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11430. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11431. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11432. node->n_tasks = 1; // TODO: this actually is doing nothing
  11433. // the threads are still spinning
  11434. // here we need memory just for single 2D matrix from src0
  11435. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11436. } else {
  11437. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11438. }
  11439. #else
  11440. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11441. #endif
  11442. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11443. cur = 0;
  11444. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11445. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11446. node->n_tasks = 1;
  11447. }
  11448. #endif
  11449. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11450. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11451. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11452. node->n_tasks = 1;
  11453. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11454. } else
  11455. #endif
  11456. {
  11457. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11458. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11459. }
  11460. } else {
  11461. GGML_ASSERT(false);
  11462. }
  11463. work_size = MAX(work_size, cur);
  11464. } break;
  11465. case GGML_OP_SCALE:
  11466. {
  11467. node->n_tasks = n_threads;
  11468. } break;
  11469. case GGML_OP_SET:
  11470. case GGML_OP_CONT:
  11471. case GGML_OP_RESHAPE:
  11472. case GGML_OP_VIEW:
  11473. case GGML_OP_PERMUTE:
  11474. case GGML_OP_TRANSPOSE:
  11475. case GGML_OP_GET_ROWS:
  11476. case GGML_OP_GET_ROWS_BACK:
  11477. case GGML_OP_DIAG:
  11478. case GGML_OP_DIAG_MASK_ZERO:
  11479. {
  11480. node->n_tasks = 1;
  11481. } break;
  11482. case GGML_OP_DIAG_MASK_INF:
  11483. case GGML_OP_SOFT_MAX:
  11484. case GGML_OP_ROPE:
  11485. case GGML_OP_ROPE_BACK:
  11486. {
  11487. node->n_tasks = n_threads;
  11488. } break;
  11489. case GGML_OP_ALIBI:
  11490. {
  11491. node->n_tasks = 1; //TODO
  11492. } break;
  11493. case GGML_OP_CONV_1D_1S:
  11494. case GGML_OP_CONV_1D_2S:
  11495. {
  11496. node->n_tasks = n_threads;
  11497. GGML_ASSERT(node->src0->ne[3] == 1);
  11498. GGML_ASSERT(node->src1->ne[2] == 1);
  11499. GGML_ASSERT(node->src1->ne[3] == 1);
  11500. size_t cur = 0;
  11501. const int nk = node->src0->ne[0];
  11502. if (node->src0->type == GGML_TYPE_F16 &&
  11503. node->src1->type == GGML_TYPE_F32) {
  11504. cur = sizeof(ggml_fp16_t)*(
  11505. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11506. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11507. );
  11508. } else if (node->src0->type == GGML_TYPE_F32 &&
  11509. node->src1->type == GGML_TYPE_F32) {
  11510. cur = sizeof(float)*(
  11511. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11512. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11513. );
  11514. } else {
  11515. GGML_ASSERT(false);
  11516. }
  11517. work_size = MAX(work_size, cur);
  11518. } break;
  11519. case GGML_OP_FLASH_ATTN:
  11520. {
  11521. node->n_tasks = n_threads;
  11522. size_t cur = 0;
  11523. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11524. if (node->src1->type == GGML_TYPE_F32) {
  11525. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11526. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11527. }
  11528. if (node->src1->type == GGML_TYPE_F16) {
  11529. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11530. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11531. }
  11532. work_size = MAX(work_size, cur);
  11533. } break;
  11534. case GGML_OP_FLASH_FF:
  11535. {
  11536. node->n_tasks = n_threads;
  11537. size_t cur = 0;
  11538. if (node->src1->type == GGML_TYPE_F32) {
  11539. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11540. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11541. }
  11542. if (node->src1->type == GGML_TYPE_F16) {
  11543. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11544. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11545. }
  11546. work_size = MAX(work_size, cur);
  11547. } break;
  11548. case GGML_OP_MAP_UNARY:
  11549. case GGML_OP_MAP_BINARY:
  11550. {
  11551. node->n_tasks = 1;
  11552. } break;
  11553. case GGML_OP_NONE:
  11554. {
  11555. node->n_tasks = 1;
  11556. } break;
  11557. case GGML_OP_COUNT:
  11558. {
  11559. GGML_ASSERT(false);
  11560. } break;
  11561. }
  11562. }
  11563. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11564. GGML_ASSERT(false); // TODO: better handling
  11565. }
  11566. if (work_size > 0 && cgraph->work == NULL) {
  11567. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11568. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11569. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11570. }
  11571. }
  11572. const int64_t perf_start_cycles = ggml_perf_cycles();
  11573. const int64_t perf_start_time_us = ggml_perf_time_us();
  11574. for (int i = 0; i < cgraph->n_nodes; i++) {
  11575. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11576. struct ggml_tensor * node = cgraph->nodes[i];
  11577. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11578. //if (node->grad == NULL && node->perf_runs > 0) {
  11579. // continue;
  11580. //}
  11581. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11582. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11583. // INIT
  11584. struct ggml_compute_params params = {
  11585. /*.type =*/ GGML_TASK_INIT,
  11586. /*.ith =*/ 0,
  11587. /*.nth =*/ node->n_tasks,
  11588. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11589. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11590. };
  11591. ggml_compute_forward(&params, node);
  11592. // COMPUTE
  11593. if (node->n_tasks > 1) {
  11594. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11595. atomic_store(&state_shared.has_work, false);
  11596. }
  11597. while (atomic_load(&state_shared.has_work)) {
  11598. ggml_lock_lock (&state_shared.spin);
  11599. ggml_lock_unlock(&state_shared.spin);
  11600. }
  11601. // launch thread pool
  11602. for (int j = 0; j < n_threads - 1; j++) {
  11603. workers[j].params = (struct ggml_compute_params) {
  11604. .type = GGML_TASK_COMPUTE,
  11605. .ith = j + 1,
  11606. .nth = node->n_tasks,
  11607. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11608. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11609. };
  11610. workers[j].node = node;
  11611. }
  11612. atomic_fetch_sub(&state_shared.n_ready, 1);
  11613. while (atomic_load(&state_shared.n_ready) > 0) {
  11614. ggml_lock_lock (&state_shared.spin);
  11615. ggml_lock_unlock(&state_shared.spin);
  11616. }
  11617. atomic_store(&state_shared.has_work, true);
  11618. }
  11619. params.type = GGML_TASK_COMPUTE;
  11620. ggml_compute_forward(&params, node);
  11621. // wait for thread pool
  11622. if (node->n_tasks > 1) {
  11623. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11624. atomic_store(&state_shared.has_work, false);
  11625. }
  11626. while (atomic_load(&state_shared.has_work)) {
  11627. ggml_lock_lock (&state_shared.spin);
  11628. ggml_lock_unlock(&state_shared.spin);
  11629. }
  11630. atomic_fetch_sub(&state_shared.n_ready, 1);
  11631. while (atomic_load(&state_shared.n_ready) != 0) {
  11632. ggml_lock_lock (&state_shared.spin);
  11633. ggml_lock_unlock(&state_shared.spin);
  11634. }
  11635. }
  11636. // FINALIZE
  11637. if (node->n_tasks > 1) {
  11638. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11639. atomic_store(&state_shared.has_work, false);
  11640. }
  11641. while (atomic_load(&state_shared.has_work)) {
  11642. ggml_lock_lock (&state_shared.spin);
  11643. ggml_lock_unlock(&state_shared.spin);
  11644. }
  11645. // launch thread pool
  11646. for (int j = 0; j < n_threads - 1; j++) {
  11647. workers[j].params = (struct ggml_compute_params) {
  11648. .type = GGML_TASK_FINALIZE,
  11649. .ith = j + 1,
  11650. .nth = node->n_tasks,
  11651. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11652. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11653. };
  11654. workers[j].node = node;
  11655. }
  11656. atomic_fetch_sub(&state_shared.n_ready, 1);
  11657. while (atomic_load(&state_shared.n_ready) > 0) {
  11658. ggml_lock_lock (&state_shared.spin);
  11659. ggml_lock_unlock(&state_shared.spin);
  11660. }
  11661. atomic_store(&state_shared.has_work, true);
  11662. }
  11663. params.type = GGML_TASK_FINALIZE;
  11664. ggml_compute_forward(&params, node);
  11665. // wait for thread pool
  11666. if (node->n_tasks > 1) {
  11667. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11668. atomic_store(&state_shared.has_work, false);
  11669. }
  11670. while (atomic_load(&state_shared.has_work)) {
  11671. ggml_lock_lock (&state_shared.spin);
  11672. ggml_lock_unlock(&state_shared.spin);
  11673. }
  11674. atomic_fetch_sub(&state_shared.n_ready, 1);
  11675. while (atomic_load(&state_shared.n_ready) != 0) {
  11676. ggml_lock_lock (&state_shared.spin);
  11677. ggml_lock_unlock(&state_shared.spin);
  11678. }
  11679. }
  11680. // performance stats (node)
  11681. {
  11682. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11683. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11684. node->perf_runs++;
  11685. node->perf_cycles += perf_cycles_cur;
  11686. node->perf_time_us += perf_time_us_cur;
  11687. }
  11688. }
  11689. // join thread pool
  11690. if (n_threads > 1) {
  11691. atomic_store(&state_shared.stop, true);
  11692. atomic_store(&state_shared.has_work, true);
  11693. for (int j = 0; j < n_threads - 1; j++) {
  11694. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11695. GGML_ASSERT(rc == 0);
  11696. UNUSED(rc);
  11697. }
  11698. ggml_lock_destroy(&state_shared.spin);
  11699. }
  11700. // performance stats (graph)
  11701. {
  11702. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11703. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11704. cgraph->perf_runs++;
  11705. cgraph->perf_cycles += perf_cycles_cur;
  11706. cgraph->perf_time_us += perf_time_us_cur;
  11707. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11708. __func__, cgraph->perf_runs,
  11709. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11710. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11711. (double) perf_time_us_cur / 1000.0,
  11712. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11713. }
  11714. }
  11715. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11716. for (int i = 0; i < cgraph->n_nodes; i++) {
  11717. struct ggml_tensor * grad = cgraph->grads[i];
  11718. if (grad) {
  11719. ggml_set_zero(grad);
  11720. }
  11721. }
  11722. }
  11723. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  11724. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  11725. GGML_PRINT("=== GRAPH ===\n");
  11726. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  11727. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  11728. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  11729. for (int i = 0; i < cgraph->n_nodes; i++) {
  11730. struct ggml_tensor * node = cgraph->nodes[i];
  11731. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  11732. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  11733. i,
  11734. node->ne[0], node->ne[1], node->ne[2],
  11735. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  11736. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  11737. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  11738. (double) node->perf_time_us / 1000.0,
  11739. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  11740. }
  11741. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  11742. for (int i = 0; i < cgraph->n_leafs; i++) {
  11743. struct ggml_tensor * node = cgraph->leafs[i];
  11744. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  11745. i,
  11746. node->ne[0], node->ne[1],
  11747. GGML_OP_LABEL[node->op]);
  11748. }
  11749. for (int i = 0; i < GGML_OP_COUNT; i++) {
  11750. if (perf_total_per_op_us[i] == 0) {
  11751. continue;
  11752. }
  11753. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  11754. }
  11755. GGML_PRINT("========================================\n");
  11756. }
  11757. // check if node is part of the graph
  11758. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11759. if (cgraph == NULL) {
  11760. return true;
  11761. }
  11762. for (int i = 0; i < cgraph->n_nodes; i++) {
  11763. if (cgraph->nodes[i] == node) {
  11764. return true;
  11765. }
  11766. }
  11767. return false;
  11768. }
  11769. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11770. for (int i = 0; i < cgraph->n_nodes; i++) {
  11771. struct ggml_tensor * parent = cgraph->nodes[i];
  11772. if (parent->grad == node) {
  11773. return parent;
  11774. }
  11775. }
  11776. return NULL;
  11777. }
  11778. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  11779. char color[16];
  11780. FILE * fp = fopen(filename, "w");
  11781. GGML_ASSERT(fp);
  11782. fprintf(fp, "digraph G {\n");
  11783. fprintf(fp, " newrank = true;\n");
  11784. fprintf(fp, " rankdir = LR;\n");
  11785. for (int i = 0; i < gb->n_nodes; i++) {
  11786. struct ggml_tensor * node = gb->nodes[i];
  11787. if (ggml_graph_get_parent(gb, node) != NULL) {
  11788. continue;
  11789. }
  11790. if (node->is_param) {
  11791. snprintf(color, sizeof(color), "yellow");
  11792. } else if (node->grad) {
  11793. if (ggml_graph_find(gf, node)) {
  11794. snprintf(color, sizeof(color), "green");
  11795. } else {
  11796. snprintf(color, sizeof(color), "lightblue");
  11797. }
  11798. } else {
  11799. snprintf(color, sizeof(color), "white");
  11800. }
  11801. fprintf(fp, " \"%p\" [ "
  11802. "style = filled; fillcolor = %s; shape = record; "
  11803. "label=\"",
  11804. (void *) node, color);
  11805. if (strlen(node->name) > 0) {
  11806. fprintf(fp, "%s |", node->name);
  11807. }
  11808. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  11809. i, node->ne[0], node->ne[1],
  11810. GGML_OP_SYMBOL[node->op]);
  11811. if (node->grad) {
  11812. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  11813. } else {
  11814. fprintf(fp, "\"; ]\n");
  11815. }
  11816. }
  11817. for (int i = 0; i < gb->n_leafs; i++) {
  11818. struct ggml_tensor * node = gb->leafs[i];
  11819. snprintf(color, sizeof(color), "pink");
  11820. fprintf(fp, " \"%p\" [ "
  11821. "style = filled; fillcolor = %s; shape = record; "
  11822. "label=\"<x>",
  11823. (void *) node, color);
  11824. if (strlen(node->name) > 0) {
  11825. fprintf(fp, "%s | ", node->name);
  11826. }
  11827. if (ggml_nelements(node) == 1) {
  11828. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  11829. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  11830. }
  11831. else {
  11832. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  11833. }
  11834. }
  11835. else {
  11836. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  11837. }
  11838. fprintf(fp, "\"; ]\n");
  11839. }
  11840. for (int i = 0; i < gb->n_nodes; i++) {
  11841. struct ggml_tensor * node = gb->nodes[i];
  11842. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  11843. if (node->src0) {
  11844. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  11845. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  11846. parent0 ? (void *) parent0 : (void *) node->src0,
  11847. parent0 ? "g" : "x",
  11848. parent ? (void *) parent : (void *) node,
  11849. parent ? "g" : "x",
  11850. parent ? "empty" : "vee",
  11851. parent ? "dashed" : "solid");
  11852. }
  11853. if (node->src1) {
  11854. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  11855. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  11856. parent1 ? (void *) parent1 : (void *) node->src1,
  11857. parent1 ? "g" : "x",
  11858. parent ? (void *) parent : (void *) node,
  11859. parent ? "g" : "x",
  11860. parent ? "empty" : "vee",
  11861. parent ? "dashed" : "solid");
  11862. }
  11863. }
  11864. for (int i = 0; i < gb->n_leafs; i++) {
  11865. struct ggml_tensor * node = gb->leafs[i];
  11866. if (node->src0) {
  11867. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  11868. (void *) node->src0, "x",
  11869. (void *) node, "x");
  11870. }
  11871. if (node->src1) {
  11872. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  11873. (void *) node->src1, "x",
  11874. (void *) node, "x");
  11875. }
  11876. }
  11877. fprintf(fp, "}\n");
  11878. fclose(fp);
  11879. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  11880. }
  11881. ////////////////////////////////////////////////////////////////////////////////
  11882. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  11883. int i = 0;
  11884. for (int p = 0; p < np; ++p) {
  11885. const int64_t ne = ggml_nelements(ps[p]) ;
  11886. // TODO: add function to set tensor from array
  11887. for (int64_t j = 0; j < ne; ++j) {
  11888. ggml_set_f32_1d(ps[p], j, x[i++]);
  11889. }
  11890. }
  11891. }
  11892. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  11893. int i = 0;
  11894. for (int p = 0; p < np; ++p) {
  11895. const int64_t ne = ggml_nelements(ps[p]) ;
  11896. // TODO: add function to get all elements at once
  11897. for (int64_t j = 0; j < ne; ++j) {
  11898. x[i++] = ggml_get_f32_1d(ps[p], j);
  11899. }
  11900. }
  11901. }
  11902. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  11903. int i = 0;
  11904. for (int p = 0; p < np; ++p) {
  11905. const int64_t ne = ggml_nelements(ps[p]) ;
  11906. // TODO: add function to get all elements at once
  11907. for (int64_t j = 0; j < ne; ++j) {
  11908. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  11909. }
  11910. }
  11911. }
  11912. //
  11913. // ADAM
  11914. //
  11915. // ref: https://arxiv.org/pdf/1412.6980.pdf
  11916. //
  11917. static enum ggml_opt_result ggml_opt_adam(
  11918. struct ggml_context * ctx,
  11919. struct ggml_opt_params params,
  11920. struct ggml_tensor * f,
  11921. struct ggml_cgraph * gf,
  11922. struct ggml_cgraph * gb) {
  11923. GGML_ASSERT(ggml_is_scalar(f));
  11924. gf->n_threads = params.n_threads;
  11925. gb->n_threads = params.n_threads;
  11926. // these will store the parameters we want to optimize
  11927. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  11928. int np = 0;
  11929. int nx = 0;
  11930. for (int i = 0; i < gf->n_nodes; ++i) {
  11931. if (gf->nodes[i]->is_param) {
  11932. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  11933. GGML_ASSERT(np < GGML_MAX_PARAMS);
  11934. ps[np++] = gf->nodes[i];
  11935. nx += ggml_nelements(gf->nodes[i]);
  11936. }
  11937. }
  11938. // constants
  11939. const float alpha = params.adam.alpha;
  11940. const float beta1 = params.adam.beta1;
  11941. const float beta2 = params.adam.beta2;
  11942. const float eps = params.adam.eps;
  11943. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  11944. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  11945. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  11946. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  11947. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  11948. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  11949. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  11950. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  11951. // initialize
  11952. ggml_vec_set_f32(nx, m, 0.0f);
  11953. ggml_vec_set_f32(nx, v, 0.0f);
  11954. // update view
  11955. ggml_opt_get_params(np, ps, x);
  11956. // compute the function value
  11957. ggml_graph_reset (gf);
  11958. ggml_set_f32 (f->grad, 1.0f);
  11959. ggml_graph_compute(ctx, gb);
  11960. float fx_prev = ggml_get_f32_1d(f, 0);
  11961. if (pf) {
  11962. pf[0] = fx_prev;
  11963. }
  11964. int n_no_improvement = 0;
  11965. float fx_best = fx_prev;
  11966. // run the optimizer
  11967. for (int t = 0; t < params.adam.n_iter; ++t) {
  11968. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  11969. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  11970. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  11971. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  11972. for (int i = 0; i < np; ++i) {
  11973. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  11974. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  11975. }
  11976. const int64_t t_start_wall = ggml_time_us();
  11977. const int64_t t_start_cpu = ggml_cycles();
  11978. UNUSED(t_start_wall);
  11979. UNUSED(t_start_cpu);
  11980. {
  11981. // update the gradient
  11982. ggml_opt_get_grad(np, ps, g1);
  11983. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  11984. ggml_vec_scale_f32(nx, m, beta1);
  11985. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  11986. // g2 = g1^2
  11987. ggml_vec_sqr_f32 (nx, g2, g1);
  11988. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  11989. ggml_vec_scale_f32(nx, v, beta2);
  11990. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  11991. // m^hat = m_t / (1 - beta1^t)
  11992. // v^hat = v_t / (1 - beta2^t)
  11993. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  11994. ggml_vec_cpy_f32 (nx, mh, m);
  11995. ggml_vec_cpy_f32 (nx, vh, v);
  11996. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  11997. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  11998. ggml_vec_sqrt_f32 (nx, vh, vh);
  11999. ggml_vec_acc1_f32 (nx, vh, eps);
  12000. ggml_vec_div_f32 (nx, mh, mh, vh);
  12001. ggml_vec_sub_f32 (nx, x, x, mh);
  12002. // update the parameters
  12003. ggml_opt_set_params(np, ps, x);
  12004. }
  12005. ggml_graph_reset (gf);
  12006. ggml_set_f32 (f->grad, 1.0f);
  12007. ggml_graph_compute(ctx, gb);
  12008. const float fx = ggml_get_f32_1d(f, 0);
  12009. // check convergence
  12010. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12011. GGML_PRINT_DEBUG("converged\n");
  12012. return GGML_OPT_OK;
  12013. }
  12014. // delta-based convergence test
  12015. if (pf != NULL) {
  12016. // need at least params.past iterations to start checking for convergence
  12017. if (params.past <= t) {
  12018. const float rate = (pf[t%params.past] - fx)/fx;
  12019. if (fabsf(rate) < params.delta) {
  12020. return GGML_OPT_OK;
  12021. }
  12022. }
  12023. pf[t%params.past] = fx;
  12024. }
  12025. // check for improvement
  12026. if (params.max_no_improvement > 0) {
  12027. if (fx_best > fx) {
  12028. fx_best = fx;
  12029. n_no_improvement = 0;
  12030. } else {
  12031. ++n_no_improvement;
  12032. if (n_no_improvement >= params.max_no_improvement) {
  12033. return GGML_OPT_OK;
  12034. }
  12035. }
  12036. }
  12037. fx_prev = fx;
  12038. {
  12039. const int64_t t_end_cpu = ggml_cycles();
  12040. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12041. UNUSED(t_end_cpu);
  12042. const int64_t t_end_wall = ggml_time_us();
  12043. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12044. UNUSED(t_end_wall);
  12045. }
  12046. }
  12047. return GGML_OPT_DID_NOT_CONVERGE;
  12048. }
  12049. //
  12050. // L-BFGS
  12051. //
  12052. // the L-BFGS implementation below is based on the following implementation:
  12053. //
  12054. // https://github.com/chokkan/liblbfgs
  12055. //
  12056. struct ggml_lbfgs_iteration_data {
  12057. float alpha;
  12058. float ys;
  12059. float * s;
  12060. float * y;
  12061. };
  12062. static enum ggml_opt_result linesearch_backtracking(
  12063. struct ggml_context * ctx,
  12064. const struct ggml_opt_params * params,
  12065. int nx,
  12066. float * x,
  12067. float * fx,
  12068. float * g,
  12069. float * d,
  12070. float * step,
  12071. const float * xp,
  12072. struct ggml_tensor * f,
  12073. struct ggml_cgraph * gf,
  12074. struct ggml_cgraph * gb,
  12075. const int np,
  12076. struct ggml_tensor * ps[]) {
  12077. int count = 0;
  12078. float width = 0.0f;
  12079. float dg = 0.0f;
  12080. float finit = 0.0f;
  12081. float dginit = 0.0f;
  12082. float dgtest = 0.0f;
  12083. const float dec = 0.5f;
  12084. const float inc = 2.1f;
  12085. if (*step <= 0.f) {
  12086. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12087. }
  12088. // compute the initial gradient in the search direction
  12089. ggml_vec_dot_f32(nx, &dginit, g, d);
  12090. // make sure that d points to a descent direction
  12091. if (0 < dginit) {
  12092. return GGML_LINESEARCH_FAIL;
  12093. }
  12094. // initialize local variables
  12095. finit = *fx;
  12096. dgtest = params->lbfgs.ftol*dginit;
  12097. while (true) {
  12098. ggml_vec_cpy_f32(nx, x, xp);
  12099. ggml_vec_mad_f32(nx, x, d, *step);
  12100. // evaluate the function and gradient values
  12101. {
  12102. ggml_opt_set_params(np, ps, x);
  12103. ggml_graph_reset (gf);
  12104. ggml_set_f32 (f->grad, 1.0f);
  12105. ggml_graph_compute(ctx, gb);
  12106. ggml_opt_get_grad(np, ps, g);
  12107. *fx = ggml_get_f32_1d(f, 0);
  12108. }
  12109. ++count;
  12110. if (*fx > finit + (*step)*dgtest) {
  12111. width = dec;
  12112. } else {
  12113. // Armijo condition is satisfied
  12114. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12115. return count;
  12116. }
  12117. ggml_vec_dot_f32(nx, &dg, g, d);
  12118. // check the Wolfe condition
  12119. if (dg < params->lbfgs.wolfe * dginit) {
  12120. width = inc;
  12121. } else {
  12122. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12123. // regular Wolfe conditions
  12124. return count;
  12125. }
  12126. if(dg > -params->lbfgs.wolfe*dginit) {
  12127. width = dec;
  12128. } else {
  12129. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12130. return count;
  12131. }
  12132. return count;
  12133. }
  12134. }
  12135. if (*step < params->lbfgs.min_step) {
  12136. return GGML_LINESEARCH_MINIMUM_STEP;
  12137. }
  12138. if (*step > params->lbfgs.max_step) {
  12139. return GGML_LINESEARCH_MAXIMUM_STEP;
  12140. }
  12141. if (params->lbfgs.max_linesearch <= count) {
  12142. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12143. }
  12144. (*step) *= width;
  12145. }
  12146. return GGML_LINESEARCH_FAIL;
  12147. }
  12148. static enum ggml_opt_result ggml_opt_lbfgs(
  12149. struct ggml_context * ctx,
  12150. struct ggml_opt_params params,
  12151. struct ggml_tensor * f,
  12152. struct ggml_cgraph * gf,
  12153. struct ggml_cgraph * gb) {
  12154. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12155. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12156. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12157. return GGML_OPT_INVALID_WOLFE;
  12158. }
  12159. }
  12160. gf->n_threads = params.n_threads;
  12161. gb->n_threads = params.n_threads;
  12162. const int m = params.lbfgs.m;
  12163. // these will store the parameters we want to optimize
  12164. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12165. int np = 0;
  12166. int nx = 0;
  12167. for (int i = 0; i < gf->n_nodes; ++i) {
  12168. if (gf->nodes[i]->is_param) {
  12169. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12170. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12171. ps[np++] = gf->nodes[i];
  12172. nx += ggml_nelements(gf->nodes[i]);
  12173. }
  12174. }
  12175. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12176. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12177. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12178. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12179. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12180. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12181. float fx = 0.0f; // cost function value
  12182. float xnorm = 0.0f; // ||x||
  12183. float gnorm = 0.0f; // ||g||
  12184. float step = 0.0f;
  12185. // initialize x from the graph nodes
  12186. ggml_opt_get_params(np, ps, x);
  12187. // the L-BFGS memory
  12188. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12189. for (int i = 0; i < m; ++i) {
  12190. lm[i].alpha = 0.0f;
  12191. lm[i].ys = 0.0f;
  12192. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12193. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12194. }
  12195. // evaluate the function value and its gradient
  12196. {
  12197. ggml_opt_set_params(np, ps, x);
  12198. ggml_graph_reset (gf);
  12199. ggml_set_f32 (f->grad, 1.0f);
  12200. ggml_graph_compute(ctx, gb);
  12201. ggml_opt_get_grad(np, ps, g);
  12202. fx = ggml_get_f32_1d(f, 0);
  12203. }
  12204. if (pf) {
  12205. pf[0] = fx;
  12206. }
  12207. float fx_best = fx;
  12208. // search direction = -gradient
  12209. ggml_vec_neg_f32(nx, d, g);
  12210. // ||x||, ||g||
  12211. ggml_vec_norm_f32(nx, &xnorm, x);
  12212. ggml_vec_norm_f32(nx, &gnorm, g);
  12213. if (xnorm < 1.0f) {
  12214. xnorm = 1.0f;
  12215. }
  12216. // already optimized
  12217. if (gnorm/xnorm <= params.lbfgs.eps) {
  12218. return GGML_OPT_OK;
  12219. }
  12220. // initial step
  12221. ggml_vec_norm_inv_f32(nx, &step, d);
  12222. int j = 0;
  12223. int k = 1;
  12224. int ls = 0;
  12225. int end = 0;
  12226. int bound = 0;
  12227. int n_no_improvement = 0;
  12228. float ys = 0.0f;
  12229. float yy = 0.0f;
  12230. float beta = 0.0f;
  12231. while (true) {
  12232. // store the current position and gradient vectors
  12233. ggml_vec_cpy_f32(nx, xp, x);
  12234. ggml_vec_cpy_f32(nx, gp, g);
  12235. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12236. if (ls < 0) {
  12237. // linesearch failed - go back to the previous point and return
  12238. ggml_vec_cpy_f32(nx, x, xp);
  12239. ggml_vec_cpy_f32(nx, g, gp);
  12240. return ls;
  12241. }
  12242. ggml_vec_norm_f32(nx, &xnorm, x);
  12243. ggml_vec_norm_f32(nx, &gnorm, g);
  12244. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12245. if (xnorm < 1.0f) {
  12246. xnorm = 1.0f;
  12247. }
  12248. if (gnorm/xnorm <= params.lbfgs.eps) {
  12249. // converged
  12250. return GGML_OPT_OK;
  12251. }
  12252. // delta-based convergence test
  12253. if (pf != NULL) {
  12254. // need at least params.past iterations to start checking for convergence
  12255. if (params.past <= k) {
  12256. const float rate = (pf[k%params.past] - fx)/fx;
  12257. if (fabsf(rate) < params.delta) {
  12258. return GGML_OPT_OK;
  12259. }
  12260. }
  12261. pf[k%params.past] = fx;
  12262. }
  12263. // check for improvement
  12264. if (params.max_no_improvement > 0) {
  12265. if (fx < fx_best) {
  12266. fx_best = fx;
  12267. n_no_improvement = 0;
  12268. } else {
  12269. n_no_improvement++;
  12270. if (n_no_improvement >= params.max_no_improvement) {
  12271. return GGML_OPT_OK;
  12272. }
  12273. }
  12274. }
  12275. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12276. // reached the maximum number of iterations
  12277. return GGML_OPT_DID_NOT_CONVERGE;
  12278. }
  12279. // update vectors s and y:
  12280. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12281. // y_{k+1} = g_{k+1} - g_{k}.
  12282. //
  12283. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12284. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12285. // compute scalars ys and yy:
  12286. // ys = y^t \cdot s -> 1 / \rho.
  12287. // yy = y^t \cdot y.
  12288. //
  12289. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12290. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12291. lm[end].ys = ys;
  12292. // find new search direction
  12293. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12294. bound = (m <= k) ? m : k;
  12295. k++;
  12296. end = (end + 1)%m;
  12297. // initialize search direction with -g
  12298. ggml_vec_neg_f32(nx, d, g);
  12299. j = end;
  12300. for (int i = 0; i < bound; ++i) {
  12301. j = (j + m - 1) % m;
  12302. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12303. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12304. lm[j].alpha /= lm[j].ys;
  12305. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12306. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12307. }
  12308. ggml_vec_scale_f32(nx, d, ys/yy);
  12309. for (int i = 0; i < bound; ++i) {
  12310. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12311. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12312. beta /= lm[j].ys;
  12313. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12314. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12315. j = (j + 1)%m;
  12316. }
  12317. step = 1.0;
  12318. }
  12319. return GGML_OPT_DID_NOT_CONVERGE;
  12320. }
  12321. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12322. struct ggml_opt_params result;
  12323. switch (type) {
  12324. case GGML_OPT_ADAM:
  12325. {
  12326. result = (struct ggml_opt_params) {
  12327. .type = GGML_OPT_ADAM,
  12328. .n_threads = 1,
  12329. .past = 0,
  12330. .delta = 1e-5f,
  12331. .max_no_improvement = 100,
  12332. .print_forward_graph = true,
  12333. .print_backward_graph = true,
  12334. .adam = {
  12335. .n_iter = 10000,
  12336. .alpha = 0.001f,
  12337. .beta1 = 0.9f,
  12338. .beta2 = 0.999f,
  12339. .eps = 1e-8f,
  12340. .eps_f = 1e-5f,
  12341. .eps_g = 1e-3f,
  12342. },
  12343. };
  12344. } break;
  12345. case GGML_OPT_LBFGS:
  12346. {
  12347. result = (struct ggml_opt_params) {
  12348. .type = GGML_OPT_LBFGS,
  12349. .n_threads = 1,
  12350. .past = 0,
  12351. .delta = 1e-5f,
  12352. .max_no_improvement = 0,
  12353. .print_forward_graph = true,
  12354. .print_backward_graph = true,
  12355. .lbfgs = {
  12356. .m = 6,
  12357. .n_iter = 100,
  12358. .max_linesearch = 20,
  12359. .eps = 1e-5f,
  12360. .ftol = 1e-4f,
  12361. .wolfe = 0.9f,
  12362. .min_step = 1e-20f,
  12363. .max_step = 1e+20f,
  12364. .linesearch = GGML_LINESEARCH_DEFAULT,
  12365. },
  12366. };
  12367. } break;
  12368. }
  12369. return result;
  12370. }
  12371. enum ggml_opt_result ggml_opt(
  12372. struct ggml_context * ctx,
  12373. struct ggml_opt_params params,
  12374. struct ggml_tensor * f) {
  12375. bool free_ctx = false;
  12376. if (ctx == NULL) {
  12377. struct ggml_init_params params_ctx = {
  12378. .mem_size = 16*1024*1024,
  12379. .mem_buffer = NULL,
  12380. .no_alloc = false,
  12381. };
  12382. ctx = ggml_init(params_ctx);
  12383. if (ctx == NULL) {
  12384. return GGML_OPT_NO_CONTEXT;
  12385. }
  12386. free_ctx = true;
  12387. }
  12388. enum ggml_opt_result result = GGML_OPT_OK;
  12389. // build forward + backward compute graphs
  12390. struct ggml_cgraph gf = ggml_build_forward (f);
  12391. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12392. switch (params.type) {
  12393. case GGML_OPT_ADAM:
  12394. {
  12395. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12396. } break;
  12397. case GGML_OPT_LBFGS:
  12398. {
  12399. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12400. } break;
  12401. }
  12402. if (params.print_forward_graph) {
  12403. ggml_graph_print (&gf);
  12404. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12405. }
  12406. if (params.print_backward_graph) {
  12407. ggml_graph_print (&gb);
  12408. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12409. }
  12410. if (free_ctx) {
  12411. ggml_free(ctx);
  12412. }
  12413. return result;
  12414. }
  12415. ////////////////////////////////////////////////////////////////////////////////
  12416. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12417. assert(k % QK4_0 == 0);
  12418. const int nb = k / QK4_0;
  12419. for (int b = 0; b < n; b += k) {
  12420. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12421. quantize_row_q4_0_reference(src + b, y, k);
  12422. for (int i = 0; i < nb; i++) {
  12423. for (int j = 0; j < QK4_0; j += 2) {
  12424. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12425. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12426. hist[vi0]++;
  12427. hist[vi1]++;
  12428. }
  12429. }
  12430. }
  12431. return (n/QK4_0*sizeof(block_q4_0));
  12432. }
  12433. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12434. assert(k % QK4_1 == 0);
  12435. const int nb = k / QK4_1;
  12436. for (int b = 0; b < n; b += k) {
  12437. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  12438. quantize_row_q4_1_reference(src + b, y, k);
  12439. for (int i = 0; i < nb; i++) {
  12440. for (int j = 0; j < QK4_1; j += 2) {
  12441. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12442. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12443. hist[vi0]++;
  12444. hist[vi1]++;
  12445. }
  12446. }
  12447. }
  12448. return (n/QK4_1*sizeof(block_q4_1));
  12449. }
  12450. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12451. assert(k % QK5_0 == 0);
  12452. const int nb = k / QK5_0;
  12453. for (int b = 0; b < n; b += k) {
  12454. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  12455. quantize_row_q5_0_reference(src + b, y, k);
  12456. for (int i = 0; i < nb; i++) {
  12457. uint32_t qh;
  12458. memcpy(&qh, &y[i].qh, sizeof(qh));
  12459. for (int j = 0; j < QK5_0; j += 2) {
  12460. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12461. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12462. // cast to 16 bins
  12463. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12464. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12465. hist[vi0]++;
  12466. hist[vi1]++;
  12467. }
  12468. }
  12469. }
  12470. return (n/QK5_0*sizeof(block_q5_0));
  12471. }
  12472. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12473. assert(k % QK5_1 == 0);
  12474. const int nb = k / QK5_1;
  12475. for (int b = 0; b < n; b += k) {
  12476. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  12477. quantize_row_q5_1_reference(src + b, y, k);
  12478. for (int i = 0; i < nb; i++) {
  12479. uint32_t qh;
  12480. memcpy(&qh, &y[i].qh, sizeof(qh));
  12481. for (int j = 0; j < QK5_1; j += 2) {
  12482. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12483. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12484. // cast to 16 bins
  12485. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12486. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12487. hist[vi0]++;
  12488. hist[vi1]++;
  12489. }
  12490. }
  12491. }
  12492. return (n/QK5_1*sizeof(block_q5_1));
  12493. }
  12494. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12495. assert(k % QK8_0 == 0);
  12496. const int nb = k / QK8_0;
  12497. for (int b = 0; b < n; b += k) {
  12498. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  12499. quantize_row_q8_0_reference(src + b, y, k);
  12500. for (int i = 0; i < nb; i++) {
  12501. for (int j = 0; j < QK8_0; ++j) {
  12502. const int8_t vi = y[i].qs[j];
  12503. hist[vi/16 + 8]++;
  12504. }
  12505. }
  12506. }
  12507. return (n/QK8_0*sizeof(block_q8_0));
  12508. }
  12509. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  12510. size_t result = 0;
  12511. switch (type) {
  12512. case GGML_TYPE_Q4_0:
  12513. {
  12514. GGML_ASSERT(start % QK4_0 == 0);
  12515. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  12516. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  12517. } break;
  12518. case GGML_TYPE_Q4_1:
  12519. {
  12520. GGML_ASSERT(start % QK4_1 == 0);
  12521. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  12522. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  12523. } break;
  12524. case GGML_TYPE_Q5_0:
  12525. {
  12526. GGML_ASSERT(start % QK5_0 == 0);
  12527. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  12528. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  12529. } break;
  12530. case GGML_TYPE_Q5_1:
  12531. {
  12532. GGML_ASSERT(start % QK5_1 == 0);
  12533. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  12534. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  12535. } break;
  12536. case GGML_TYPE_Q8_0:
  12537. {
  12538. GGML_ASSERT(start % QK8_0 == 0);
  12539. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  12540. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  12541. } break;
  12542. default:
  12543. assert(false);
  12544. }
  12545. return result;
  12546. }
  12547. ////////////////////////////////////////////////////////////////////////////////
  12548. int ggml_cpu_has_avx(void) {
  12549. #if defined(__AVX__)
  12550. return 1;
  12551. #else
  12552. return 0;
  12553. #endif
  12554. }
  12555. int ggml_cpu_has_avx2(void) {
  12556. #if defined(__AVX2__)
  12557. return 1;
  12558. #else
  12559. return 0;
  12560. #endif
  12561. }
  12562. int ggml_cpu_has_avx512(void) {
  12563. #if defined(__AVX512F__)
  12564. return 1;
  12565. #else
  12566. return 0;
  12567. #endif
  12568. }
  12569. int ggml_cpu_has_avx512_vbmi(void) {
  12570. #if defined(__AVX512VBMI__)
  12571. return 1;
  12572. #else
  12573. return 0;
  12574. #endif
  12575. }
  12576. int ggml_cpu_has_avx512_vnni(void) {
  12577. #if defined(__AVX512VNNI__)
  12578. return 1;
  12579. #else
  12580. return 0;
  12581. #endif
  12582. }
  12583. int ggml_cpu_has_fma(void) {
  12584. #if defined(__FMA__)
  12585. return 1;
  12586. #else
  12587. return 0;
  12588. #endif
  12589. }
  12590. int ggml_cpu_has_neon(void) {
  12591. #if defined(__ARM_NEON)
  12592. return 1;
  12593. #else
  12594. return 0;
  12595. #endif
  12596. }
  12597. int ggml_cpu_has_arm_fma(void) {
  12598. #if defined(__ARM_FEATURE_FMA)
  12599. return 1;
  12600. #else
  12601. return 0;
  12602. #endif
  12603. }
  12604. int ggml_cpu_has_f16c(void) {
  12605. #if defined(__F16C__)
  12606. return 1;
  12607. #else
  12608. return 0;
  12609. #endif
  12610. }
  12611. int ggml_cpu_has_fp16_va(void) {
  12612. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  12613. return 1;
  12614. #else
  12615. return 0;
  12616. #endif
  12617. }
  12618. int ggml_cpu_has_wasm_simd(void) {
  12619. #if defined(__wasm_simd128__)
  12620. return 1;
  12621. #else
  12622. return 0;
  12623. #endif
  12624. }
  12625. int ggml_cpu_has_blas(void) {
  12626. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  12627. return 1;
  12628. #else
  12629. return 0;
  12630. #endif
  12631. }
  12632. int ggml_cpu_has_cublas(void) {
  12633. #if defined(GGML_USE_CUBLAS)
  12634. return 1;
  12635. #else
  12636. return 0;
  12637. #endif
  12638. }
  12639. int ggml_cpu_has_clblast(void) {
  12640. #if defined(GGML_USE_CLBLAST)
  12641. return 1;
  12642. #else
  12643. return 0;
  12644. #endif
  12645. }
  12646. int ggml_cpu_has_gpublas(void) {
  12647. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  12648. }
  12649. int ggml_cpu_has_sse3(void) {
  12650. #if defined(__SSE3__)
  12651. return 1;
  12652. #else
  12653. return 0;
  12654. #endif
  12655. }
  12656. int ggml_cpu_has_vsx(void) {
  12657. #if defined(__POWER9_VECTOR__)
  12658. return 1;
  12659. #else
  12660. return 0;
  12661. #endif
  12662. }
  12663. ////////////////////////////////////////////////////////////////////////////////