convert_hf_to_gguf.py 287 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  260. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  261. )
  262. )
  263. or not new_name.endswith(".weight")
  264. ):
  265. data_qtype = gguf.GGMLQuantizationType.F32
  266. if data_qtype is False and any(
  267. self.match_model_tensor_name(new_name, key, bid)
  268. for key in (
  269. gguf.MODEL_TENSOR.TOKEN_EMBD,
  270. gguf.MODEL_TENSOR.OUTPUT,
  271. )
  272. ):
  273. if self.ftype in (
  274. gguf.LlamaFileType.MOSTLY_TQ1_0,
  275. gguf.LlamaFileType.MOSTLY_TQ2_0,
  276. ):
  277. # TODO: use Q4_K and Q6_K
  278. data_qtype = gguf.GGMLQuantizationType.F16
  279. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  280. if isinstance(data_qtype, bool):
  281. if self.ftype == gguf.LlamaFileType.ALL_F32:
  282. data_qtype = gguf.GGMLQuantizationType.F32
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  284. data_qtype = gguf.GGMLQuantizationType.F16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  286. data_qtype = gguf.GGMLQuantizationType.BF16
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  288. data_qtype = gguf.GGMLQuantizationType.Q8_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  291. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  292. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  293. else:
  294. raise ValueError(f"Unknown file type: {self.ftype.name}")
  295. try:
  296. data = gguf.quants.quantize(data, data_qtype)
  297. except gguf.QuantError as e:
  298. logger.warning("%s, %s", e, "falling back to F16")
  299. data_qtype = gguf.GGMLQuantizationType.F16
  300. data = gguf.quants.quantize(data, data_qtype)
  301. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  302. # reverse shape to make it similar to the internal ggml dimension order
  303. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  304. # n_dims is implicit in the shape
  305. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  306. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  307. def set_type(self):
  308. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  309. def prepare_metadata(self, vocab_only: bool):
  310. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  311. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  312. # If we are using HF model id, set the metadata name to the model id
  313. if self.remote_hf_model_id:
  314. self.metadata.name = self.remote_hf_model_id
  315. # Fallback to model directory name if metadata name is still missing
  316. if self.metadata.name is None:
  317. self.metadata.name = self.dir_model.name
  318. # Generate parameter weight class (useful for leader boards) if not yet determined
  319. if self.metadata.size_label is None and total_params > 0:
  320. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  321. self.set_type()
  322. logger.info("Set meta model")
  323. self.metadata.set_gguf_meta_model(self.gguf_writer)
  324. logger.info("Set model parameters")
  325. self.set_gguf_parameters()
  326. logger.info("Set model quantization version")
  327. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  328. def write_vocab(self):
  329. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  330. def write(self):
  331. self.prepare_tensors()
  332. self.prepare_metadata(vocab_only=False)
  333. self.gguf_writer.write_header_to_file(path=self.fname_out)
  334. self.gguf_writer.write_kv_data_to_file()
  335. self.gguf_writer.write_tensors_to_file(progress=True)
  336. self.gguf_writer.close()
  337. @staticmethod
  338. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  339. part_names: list[str] = []
  340. for filename in os.listdir(dir_model):
  341. if filename.startswith(prefix) and filename.endswith(suffix):
  342. part_names.append(filename)
  343. part_names.sort()
  344. return part_names
  345. @staticmethod
  346. def load_hparams(dir_model: Path):
  347. try:
  348. # for security reason, we don't allow loading remote code by default
  349. # if a model need remote code, we will fallback to config.json
  350. return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  351. except Exception as e:
  352. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  353. logger.warning("Trying to load config.json instead")
  354. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  355. config = json.load(f)
  356. if "llm_config" in config:
  357. # rename for InternVL
  358. config["text_config"] = config["llm_config"]
  359. return config
  360. @classmethod
  361. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  362. assert names
  363. def func(modelcls: AnyModel) -> AnyModel:
  364. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  365. for name in names:
  366. cls._model_classes[model_type][name] = modelcls
  367. return modelcls
  368. return func
  369. @classmethod
  370. def print_registered_models(cls):
  371. for model_type, model_classes in cls._model_classes.items():
  372. logger.error(f"{model_type.name} models:")
  373. for name in sorted(model_classes.keys()):
  374. logger.error(f" - {name}")
  375. @classmethod
  376. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  377. try:
  378. return cls._model_classes[model_type][arch]
  379. except KeyError:
  380. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  381. class TextModel(ModelBase):
  382. model_type = ModelType.TEXT
  383. hf_arch: str
  384. def __init__(self, *args, **kwargs):
  385. super().__init__(*args, **kwargs)
  386. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  387. if "text_config" in self.hparams:
  388. # move the text_config to the root level
  389. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  390. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  391. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  392. @classmethod
  393. def __init_subclass__(cls):
  394. # can't use an abstract property, because overriding it without type errors
  395. # would require using decorated functions instead of simply defining the property
  396. if "model_arch" not in cls.__dict__:
  397. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  398. def set_vocab(self):
  399. self._set_vocab_gpt2()
  400. def prepare_metadata(self, vocab_only: bool):
  401. super().prepare_metadata(vocab_only=vocab_only)
  402. total_params = self.gguf_writer.get_total_parameter_count()[0]
  403. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  404. output_type: str = self.ftype.name.partition("_")[2]
  405. # Filename Output
  406. if self.fname_out.is_dir():
  407. # Generate default filename based on model specification and available metadata
  408. if not vocab_only:
  409. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  410. else:
  411. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  412. # Use the default filename
  413. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  414. else:
  415. # Output path is a custom defined templated filename
  416. # Note: `not is_dir()` is used because `.is_file()` will not detect
  417. # file template strings as it doesn't actually exist as a file
  418. # Process templated file name with the output ftype, useful with the "auto" ftype
  419. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  420. logger.info("Set model tokenizer")
  421. self.set_vocab()
  422. def set_gguf_parameters(self):
  423. self.gguf_writer.add_block_count(self.block_count)
  424. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
  425. self.gguf_writer.add_context_length(n_ctx)
  426. logger.info(f"gguf: context length = {n_ctx}")
  427. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  428. self.gguf_writer.add_embedding_length(n_embd)
  429. logger.info(f"gguf: embedding length = {n_embd}")
  430. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  431. self.gguf_writer.add_feed_forward_length(n_ff)
  432. logger.info(f"gguf: feed forward length = {n_ff}")
  433. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  434. self.gguf_writer.add_head_count(n_head)
  435. logger.info(f"gguf: head count = {n_head}")
  436. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  437. self.gguf_writer.add_head_count_kv(n_head_kv)
  438. logger.info(f"gguf: key-value head count = {n_head_kv}")
  439. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  440. self.gguf_writer.add_rope_freq_base(rope_theta)
  441. logger.info(f"gguf: rope theta = {rope_theta}")
  442. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  443. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  444. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  445. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  446. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  447. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  448. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  449. self.gguf_writer.add_expert_count(n_experts)
  450. logger.info(f"gguf: expert count = {n_experts}")
  451. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  452. self.gguf_writer.add_expert_used_count(n_experts_used)
  453. logger.info(f"gguf: experts used count = {n_experts_used}")
  454. if (head_dim := self.hparams.get("head_dim")) is not None:
  455. self.gguf_writer.add_key_length(head_dim)
  456. self.gguf_writer.add_value_length(head_dim)
  457. self.gguf_writer.add_file_type(self.ftype)
  458. logger.info(f"gguf: file type = {self.ftype}")
  459. def write_vocab(self):
  460. if len(self.gguf_writer.tensors) != 1:
  461. raise ValueError('Splitting the vocabulary is not supported')
  462. self.prepare_metadata(vocab_only=True)
  463. self.gguf_writer.write_header_to_file(path=self.fname_out)
  464. self.gguf_writer.write_kv_data_to_file()
  465. self.gguf_writer.close()
  466. def does_token_look_special(self, token: str | bytes) -> bool:
  467. if isinstance(token, (bytes, bytearray)):
  468. token_text = token.decode(encoding="utf-8")
  469. elif isinstance(token, memoryview):
  470. token_text = token.tobytes().decode(encoding="utf-8")
  471. else:
  472. token_text = token
  473. # Some models mark some added tokens which ought to be control tokens as not special.
  474. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  475. seems_special = token_text in (
  476. "<pad>", # deepseek-coder
  477. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  478. )
  479. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  480. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  481. # TODO: should these be marked as UNUSED instead? (maybe not)
  482. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  483. return seems_special
  484. # used for GPT-2 BPE and WordPiece vocabs
  485. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  486. tokens: list[str] = []
  487. toktypes: list[int] = []
  488. from transformers import AutoTokenizer
  489. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  490. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  491. assert max(tokenizer.vocab.values()) < vocab_size
  492. tokpre = self.get_vocab_base_pre(tokenizer)
  493. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  494. added_vocab = tokenizer.get_added_vocab()
  495. added_tokens_decoder = tokenizer.added_tokens_decoder
  496. for i in range(vocab_size):
  497. if i not in reverse_vocab:
  498. tokens.append(f"[PAD{i}]")
  499. toktypes.append(gguf.TokenType.UNUSED)
  500. else:
  501. token: str = reverse_vocab[i]
  502. if token in added_vocab:
  503. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  504. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  505. if not added_tokens_decoder[i].normalized:
  506. previous_token = token
  507. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  508. if previous_token != token:
  509. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  510. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  511. toktypes.append(gguf.TokenType.CONTROL)
  512. else:
  513. # NOTE: this was added for Gemma.
  514. # Encoding and decoding the tokens above isn't sufficient for this case.
  515. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  516. toktypes.append(gguf.TokenType.USER_DEFINED)
  517. else:
  518. toktypes.append(gguf.TokenType.NORMAL)
  519. tokens.append(token)
  520. return tokens, toktypes, tokpre
  521. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  522. # do not modify it manually!
  523. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  524. # Marker: Start get_vocab_base_pre
  525. def get_vocab_base_pre(self, tokenizer) -> str:
  526. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  527. # is specific for the BPE pre-tokenizer used by the model
  528. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  529. # use in llama.cpp to implement the same pre-tokenizer
  530. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  531. chktok = tokenizer.encode(chktxt)
  532. chkhsh = sha256(str(chktok).encode()).hexdigest()
  533. logger.debug(f"chktok: {chktok}")
  534. logger.debug(f"chkhsh: {chkhsh}")
  535. res = None
  536. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  537. # or pull the latest version of the model from Huggingface
  538. # don't edit the hashes manually!
  539. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  540. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  541. res = "llama-bpe"
  542. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  543. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  544. res = "deepseek-llm"
  545. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  546. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  547. res = "deepseek-coder"
  548. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  549. # ref: https://huggingface.co/tiiuae/falcon-7b
  550. res = "falcon"
  551. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  552. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  553. res = "falcon3"
  554. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  555. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  556. res = "bert-bge"
  557. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  558. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  559. res = "bert-bge-large"
  560. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  561. # ref: https://huggingface.co/mosaicml/mpt-7b
  562. res = "mpt"
  563. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  564. # ref: https://huggingface.co/bigcode/starcoder2-3b
  565. res = "starcoder"
  566. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  567. # ref: https://huggingface.co/openai-community/gpt2
  568. res = "gpt-2"
  569. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  570. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  571. res = "stablelm2"
  572. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  573. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  574. res = "refact"
  575. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  576. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  577. res = "command-r"
  578. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  579. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  580. res = "qwen2"
  581. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  582. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  583. res = "olmo"
  584. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  585. # ref: https://huggingface.co/databricks/dbrx-base
  586. res = "dbrx"
  587. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  588. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  589. res = "jina-v1-en"
  590. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  591. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  592. res = "jina-v2-en"
  593. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  594. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  595. res = "jina-v2-es"
  596. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  597. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  598. res = "jina-v2-de"
  599. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  600. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  601. res = "smaug-bpe"
  602. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  603. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  604. res = "poro-chat"
  605. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  606. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  607. res = "jina-v2-code"
  608. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  609. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  610. res = "chatglm-bpe"
  611. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  612. # ref: https://huggingface.co/LumiOpen/Viking-7B
  613. res = "viking"
  614. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  615. # ref: https://huggingface.co/core42/jais-13b
  616. res = "jais"
  617. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  618. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  619. res = "codeshell"
  620. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  621. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  622. res = "tekken"
  623. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  624. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  625. res = "smollm"
  626. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  627. # ref: https://huggingface.co/bigscience/bloom
  628. res = "bloom"
  629. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  630. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  631. res = "gpt3-finnish"
  632. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  633. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  634. res = "exaone"
  635. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  636. # ref: https://huggingface.co/microsoft/phi-2
  637. res = "phi-2"
  638. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  639. # ref: https://huggingface.co/facebook/chameleon-7b
  640. res = "chameleon"
  641. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  642. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  643. res = "minerva-7b"
  644. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  645. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  646. res = "roberta-bpe"
  647. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  648. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  649. res = "gigachat"
  650. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  651. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  652. res = "megrez"
  653. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  654. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  655. res = "deepseek-v3"
  656. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  657. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  658. res = "deepseek-r1-qwen"
  659. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  660. # ref: https://huggingface.co/Xenova/gpt-4o
  661. res = "gpt-4o"
  662. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  663. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  664. res = "superbpe"
  665. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  666. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  667. res = "trillion"
  668. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  669. # ref: https://huggingface.co/inclusionAI/Ling-lite
  670. res = "bailingmoe"
  671. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  672. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  673. res = "llama4"
  674. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  675. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  676. res = "glm4"
  677. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  678. # ref: https://huggingface.co/mistral-community/pixtral-12b
  679. res = "pixtral"
  680. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  681. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  682. res = "seed-coder"
  683. if res is None:
  684. logger.warning("\n")
  685. logger.warning("**************************************************************************************")
  686. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  687. logger.warning("** There are 2 possible reasons for this:")
  688. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  689. logger.warning("** - the pre-tokenization config has changed upstream")
  690. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  691. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  692. logger.warning("**")
  693. logger.warning(f"** chkhsh: {chkhsh}")
  694. logger.warning("**************************************************************************************")
  695. logger.warning("\n")
  696. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  697. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  698. logger.debug(f"chkhsh: {chkhsh}")
  699. return res
  700. # Marker: End get_vocab_base_pre
  701. def _set_vocab_none(self) -> None:
  702. self.gguf_writer.add_tokenizer_model("none")
  703. def _set_vocab_gpt2(self) -> None:
  704. tokens, toktypes, tokpre = self.get_vocab_base()
  705. self.gguf_writer.add_tokenizer_model("gpt2")
  706. self.gguf_writer.add_tokenizer_pre(tokpre)
  707. self.gguf_writer.add_token_list(tokens)
  708. self.gguf_writer.add_token_types(toktypes)
  709. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  710. special_vocab.add_to_gguf(self.gguf_writer)
  711. def _set_vocab_qwen(self):
  712. dir_model = self.dir_model
  713. hparams = self.hparams
  714. tokens: list[str] = []
  715. toktypes: list[int] = []
  716. from transformers import AutoTokenizer
  717. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  718. vocab_size = hparams["vocab_size"]
  719. assert max(tokenizer.get_vocab().values()) < vocab_size
  720. tokpre = self.get_vocab_base_pre(tokenizer)
  721. merges = []
  722. vocab = {}
  723. mergeable_ranks = tokenizer.mergeable_ranks
  724. for token, rank in mergeable_ranks.items():
  725. vocab[QwenModel.token_bytes_to_string(token)] = rank
  726. if len(token) == 1:
  727. continue
  728. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  729. assert len(merged) == 2
  730. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  731. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  732. added_vocab = tokenizer.special_tokens
  733. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  734. for i in range(vocab_size):
  735. if i not in reverse_vocab:
  736. tokens.append(f"[PAD{i}]")
  737. toktypes.append(gguf.TokenType.UNUSED)
  738. elif reverse_vocab[i] in added_vocab:
  739. tokens.append(reverse_vocab[i])
  740. toktypes.append(gguf.TokenType.CONTROL)
  741. else:
  742. tokens.append(reverse_vocab[i])
  743. toktypes.append(gguf.TokenType.NORMAL)
  744. self.gguf_writer.add_tokenizer_model("gpt2")
  745. self.gguf_writer.add_tokenizer_pre(tokpre)
  746. self.gguf_writer.add_token_list(tokens)
  747. self.gguf_writer.add_token_types(toktypes)
  748. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  749. special_vocab.merges = merges
  750. # only add special tokens when they were not already loaded from config.json
  751. if len(special_vocab.special_token_ids) == 0:
  752. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  753. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  754. # this one is usually not in config.json anyway
  755. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  756. special_vocab.add_to_gguf(self.gguf_writer)
  757. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  758. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  759. self.gguf_writer.add_tokenizer_model("llama")
  760. self.gguf_writer.add_tokenizer_pre("default")
  761. self.gguf_writer.add_token_list(tokens)
  762. self.gguf_writer.add_token_scores(scores)
  763. self.gguf_writer.add_token_types(toktypes)
  764. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  765. special_vocab.add_to_gguf(self.gguf_writer)
  766. def _create_vocab_sentencepiece(self):
  767. from sentencepiece import SentencePieceProcessor
  768. tokenizer_path = self.dir_model / 'tokenizer.model'
  769. if not tokenizer_path.is_file():
  770. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  771. tokenizer = SentencePieceProcessor()
  772. tokenizer.LoadFromFile(str(tokenizer_path))
  773. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  774. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  775. scores: list[float] = [-10000.0] * vocab_size
  776. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  777. for token_id in range(tokenizer.vocab_size()):
  778. piece = tokenizer.IdToPiece(token_id)
  779. text = piece.encode("utf-8")
  780. score = tokenizer.GetScore(token_id)
  781. toktype = SentencePieceTokenTypes.NORMAL
  782. if tokenizer.IsUnknown(token_id):
  783. toktype = SentencePieceTokenTypes.UNKNOWN
  784. elif tokenizer.IsControl(token_id):
  785. toktype = SentencePieceTokenTypes.CONTROL
  786. elif tokenizer.IsUnused(token_id):
  787. toktype = SentencePieceTokenTypes.UNUSED
  788. elif tokenizer.IsByte(token_id):
  789. toktype = SentencePieceTokenTypes.BYTE
  790. tokens[token_id] = text
  791. scores[token_id] = score
  792. toktypes[token_id] = toktype
  793. added_tokens_file = self.dir_model / 'added_tokens.json'
  794. if added_tokens_file.is_file():
  795. with open(added_tokens_file, "r", encoding="utf-8") as f:
  796. added_tokens_json = json.load(f)
  797. for key in added_tokens_json:
  798. token_id = added_tokens_json[key]
  799. if token_id >= vocab_size:
  800. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  801. continue
  802. tokens[token_id] = key.encode("utf-8")
  803. scores[token_id] = -1000.0
  804. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  805. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  806. if tokenizer_config_file.is_file():
  807. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  808. tokenizer_config_json = json.load(f)
  809. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  810. for token_id, token_data in added_tokens_decoder.items():
  811. token_id = int(token_id)
  812. token: str = token_data["content"]
  813. if token_id >= vocab_size:
  814. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  815. continue
  816. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  817. if tokens[token_id] != token.encode("utf-8"):
  818. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  819. if token_data.get("special") or self.does_token_look_special(token):
  820. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  821. else:
  822. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  823. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  824. scores[token_id] = -1000.0
  825. tokens[token_id] = token.encode("utf-8")
  826. if vocab_size > len(tokens):
  827. pad_count = vocab_size - len(tokens)
  828. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  829. for i in range(1, pad_count + 1):
  830. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  831. scores.append(-1000.0)
  832. toktypes.append(SentencePieceTokenTypes.UNUSED)
  833. return tokens, scores, toktypes
  834. def _set_vocab_llama_hf(self):
  835. vocab = gguf.LlamaHfVocab(self.dir_model)
  836. tokens = []
  837. scores = []
  838. toktypes = []
  839. for text, score, toktype in vocab.all_tokens():
  840. tokens.append(text)
  841. scores.append(score)
  842. toktypes.append(toktype)
  843. assert len(tokens) == vocab.vocab_size
  844. self.gguf_writer.add_tokenizer_model("llama")
  845. self.gguf_writer.add_tokenizer_pre("default")
  846. self.gguf_writer.add_token_list(tokens)
  847. self.gguf_writer.add_token_scores(scores)
  848. self.gguf_writer.add_token_types(toktypes)
  849. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  850. special_vocab.add_to_gguf(self.gguf_writer)
  851. def _set_vocab_rwkv_world(self):
  852. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  853. vocab_size = self.hparams.get("vocab_size", 65536)
  854. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  855. toktypes: list[int] = [gguf.TokenType.CONTROL]
  856. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  857. lines = f.readlines()
  858. for line in lines:
  859. parts = line.split(' ')
  860. assert len(parts) >= 3
  861. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  862. token = token.encode("utf-8") if isinstance(token, str) else token
  863. assert isinstance(token, bytes)
  864. assert len(token) == token_len
  865. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  866. tokens.append(token_text.encode("utf-8"))
  867. toktypes.append(gguf.TokenType.NORMAL)
  868. remainder = vocab_size - len(tokens)
  869. assert remainder >= 0
  870. for i in range(len(tokens), vocab_size):
  871. tokens.append(f"[PAD{i}]".encode("utf-8"))
  872. toktypes.append(gguf.TokenType.UNUSED)
  873. self.gguf_writer.add_tokenizer_model("rwkv")
  874. self.gguf_writer.add_token_list(tokens)
  875. self.gguf_writer.add_token_types(toktypes)
  876. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  877. special_vocab.chat_template = "rwkv-world"
  878. # hack: Add '\n\n' as the EOT token to make it chat normally
  879. special_vocab._set_special_token("eot", 261)
  880. special_vocab.add_to_gguf(self.gguf_writer)
  881. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  882. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  883. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  884. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  885. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  886. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  887. assert field # tokenizer model
  888. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  889. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  890. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  891. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  892. assert field # token list
  893. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  894. if model_name == "llama-spm":
  895. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  896. assert field # token scores
  897. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  898. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  899. assert field # token types
  900. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  901. if model_name != "llama-spm":
  902. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  903. assert field # token merges
  904. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  905. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  906. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  907. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  908. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  909. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  910. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  911. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  912. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  913. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  914. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  915. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  916. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  917. def _try_set_pooling_type(self) -> None:
  918. # get pooling path
  919. pooling_path = None
  920. module_path = self.dir_model / "modules.json"
  921. if module_path.is_file():
  922. with open(module_path, encoding="utf-8") as f:
  923. modules = json.load(f)
  924. for mod in modules:
  925. if mod["type"] == "sentence_transformers.models.Pooling":
  926. pooling_path = mod["path"]
  927. break
  928. # get pooling type
  929. if pooling_path is not None:
  930. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  931. pooling = json.load(f)
  932. if pooling["pooling_mode_mean_tokens"]:
  933. pooling_type = gguf.PoolingType.MEAN
  934. elif pooling["pooling_mode_cls_token"]:
  935. pooling_type = gguf.PoolingType.CLS
  936. elif pooling["pooling_mode_lasttoken"]:
  937. pooling_type = gguf.PoolingType.LAST
  938. else:
  939. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  940. self.gguf_writer.add_pooling_type(pooling_type)
  941. class MmprojModel(ModelBase):
  942. model_type = ModelType.MMPROJ
  943. model_arch = gguf.MODEL_ARCH.MMPROJ
  944. preprocessor_config: dict[str, Any]
  945. global_config: dict[str, Any]
  946. has_vision_encoder: bool = True # by default
  947. has_audio_encoder: bool = False
  948. def __init__(self, *args, **kwargs):
  949. super().__init__(*args, **kwargs)
  950. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  951. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  952. if self.has_vision_encoder and self.has_audio_encoder:
  953. raise NotImplementedError("both vision + audio not supported yet")
  954. # get n_embd of the text model
  955. if "text_config" not in self.hparams:
  956. self.hparams["text_config"] = {}
  957. if "audio_config" not in self.hparams:
  958. self.hparams["audio_config"] = {}
  959. text_config = {**self.hparams, **self.hparams["text_config"]}
  960. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  961. assert self.n_embd_text > 0, "n_embd not found in hparams"
  962. # move vision config to the top level, while preserving the original hparams in global_config
  963. self.global_config = self.hparams
  964. if "vision_config" in self.hparams:
  965. self.hparams = self.hparams["vision_config"]
  966. elif "audio_config" in self.hparams:
  967. self.hparams = self.hparams["audio_config"]
  968. else:
  969. raise ValueError("vision_config / audio_config not found in hparams")
  970. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
  971. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  972. # load preprocessor config
  973. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  974. self.preprocessor_config = json.load(f)
  975. def set_type(self):
  976. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  977. def set_gguf_parameters(self):
  978. self.gguf_writer.add_file_type(self.ftype)
  979. if self.has_vision_encoder:
  980. self.gguf_writer.add_clip_has_vision_encoder(True)
  981. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  982. # vision config
  983. self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
  984. self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
  985. self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
  986. self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
  987. self.gguf_writer.add_vision_block_count(self.block_count)
  988. self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
  989. # preprocessor config
  990. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  991. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  992. elif self.has_audio_encoder:
  993. self.gguf_writer.add_clip_has_audio_encoder(True)
  994. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  995. # audio config
  996. self.gguf_writer.add_audio_embedding_length(self.find_hparam(["hidden_size"]))
  997. self.gguf_writer.add_audio_feed_forward_length(self.find_hparam(["intermediate_size"]))
  998. self.gguf_writer.add_audio_block_count(self.block_count)
  999. self.gguf_writer.add_audio_head_count(self.find_hparam(["num_attention_heads"]))
  1000. else:
  1001. raise ValueError("MmprojModel must have either vision or audio encoder")
  1002. def write_vocab(self):
  1003. raise ValueError("MmprojModel does not support vocab writing")
  1004. @ModelBase.register("GPTNeoXForCausalLM")
  1005. class GPTNeoXModel(TextModel):
  1006. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1007. def set_gguf_parameters(self):
  1008. block_count = self.hparams["num_hidden_layers"]
  1009. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1010. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1011. self.gguf_writer.add_block_count(block_count)
  1012. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1013. self.gguf_writer.add_rope_dimension_count(
  1014. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1015. )
  1016. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1017. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1018. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1019. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1020. del bid # unused
  1021. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1022. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1023. tensors: list[tuple[str, Tensor]] = []
  1024. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1025. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1026. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1027. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1028. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1029. data_torch = torch.cat(
  1030. (
  1031. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1032. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1033. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1034. ),
  1035. dim=0,
  1036. )
  1037. logger.info("re-format attention.linear_qkv.weight")
  1038. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1039. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1040. data_torch = torch.cat(
  1041. (
  1042. qkv_bias[:, 0, :].reshape((n_embed,)),
  1043. qkv_bias[:, 1, :].reshape((n_embed,)),
  1044. qkv_bias[:, 2, :].reshape((n_embed,)),
  1045. ),
  1046. dim=0,
  1047. )
  1048. logger.info("re-format attention.linear_qkv.bias")
  1049. tensors.append((self.map_tensor_name(name), data_torch))
  1050. return tensors
  1051. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1052. class BloomModel(TextModel):
  1053. model_arch = gguf.MODEL_ARCH.BLOOM
  1054. def set_gguf_parameters(self):
  1055. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1056. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1057. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1058. self.gguf_writer.add_embedding_length(n_embed)
  1059. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1060. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1061. self.gguf_writer.add_head_count(n_head)
  1062. self.gguf_writer.add_head_count_kv(n_head)
  1063. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1064. self.gguf_writer.add_file_type(self.ftype)
  1065. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1066. del bid # unused
  1067. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1068. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1069. name = re.sub(r'transformer\.', '', name)
  1070. tensors: list[tuple[str, Tensor]] = []
  1071. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1072. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1073. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1074. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1075. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1076. data_torch = torch.cat(
  1077. (
  1078. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1079. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1080. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1081. ),
  1082. dim=0,
  1083. )
  1084. logger.info("re-format attention.linear_qkv.weight")
  1085. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1086. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1087. data_torch = torch.cat(
  1088. (
  1089. qkv_bias[:, 0, :].reshape((n_embed,)),
  1090. qkv_bias[:, 1, :].reshape((n_embed,)),
  1091. qkv_bias[:, 2, :].reshape((n_embed,)),
  1092. ),
  1093. dim=0,
  1094. )
  1095. logger.info("re-format attention.linear_qkv.bias")
  1096. tensors.append((self.map_tensor_name(name), data_torch))
  1097. return tensors
  1098. @ModelBase.register("MPTForCausalLM")
  1099. class MPTModel(TextModel):
  1100. model_arch = gguf.MODEL_ARCH.MPT
  1101. def set_vocab(self):
  1102. try:
  1103. self._set_vocab_gpt2()
  1104. except Exception:
  1105. # Fallback for SEA-LION model
  1106. self._set_vocab_sentencepiece()
  1107. self.gguf_writer.add_add_bos_token(False)
  1108. self.gguf_writer.add_pad_token_id(3)
  1109. self.gguf_writer.add_eos_token_id(1)
  1110. self.gguf_writer.add_unk_token_id(0)
  1111. def set_gguf_parameters(self):
  1112. block_count = self.hparams["n_layers"]
  1113. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1114. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1115. self.gguf_writer.add_block_count(block_count)
  1116. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1117. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1118. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1119. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1120. self.gguf_writer.add_layer_norm_eps(1e-5)
  1121. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1122. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1123. if self.hparams["attn_config"]["alibi"]:
  1124. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1125. else:
  1126. self.gguf_writer.add_max_alibi_bias(0.0)
  1127. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1128. del bid # unused
  1129. if "scales" in name:
  1130. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1131. new_name = new_name.replace("scales", "act.scales")
  1132. else:
  1133. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1134. return [(new_name, data_torch)]
  1135. @ModelBase.register("OrionForCausalLM")
  1136. class OrionModel(TextModel):
  1137. model_arch = gguf.MODEL_ARCH.ORION
  1138. def set_vocab(self):
  1139. self._set_vocab_sentencepiece()
  1140. def set_gguf_parameters(self):
  1141. block_count = self.hparams["num_hidden_layers"]
  1142. head_count = self.hparams["num_attention_heads"]
  1143. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1144. ctx_length = 0
  1145. if "max_sequence_length" in self.hparams:
  1146. ctx_length = self.hparams["max_sequence_length"]
  1147. elif "max_position_embeddings" in self.hparams:
  1148. ctx_length = self.hparams["max_position_embeddings"]
  1149. elif "model_max_length" in self.hparams:
  1150. ctx_length = self.hparams["model_max_length"]
  1151. else:
  1152. raise ValueError("gguf: can not find ctx length parameter.")
  1153. self.gguf_writer.add_file_type(self.ftype)
  1154. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1155. self.gguf_writer.add_context_length(ctx_length)
  1156. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1157. self.gguf_writer.add_block_count(block_count)
  1158. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1159. self.gguf_writer.add_head_count(head_count)
  1160. self.gguf_writer.add_head_count_kv(head_count_kv)
  1161. # note: config provides rms norm but it is actually layer norm
  1162. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1163. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1164. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1165. class BaichuanModel(TextModel):
  1166. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1167. def set_vocab(self):
  1168. self._set_vocab_sentencepiece()
  1169. def set_gguf_parameters(self):
  1170. block_count = self.hparams["num_hidden_layers"]
  1171. head_count = self.hparams["num_attention_heads"]
  1172. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1173. ctx_length = 0
  1174. if "max_sequence_length" in self.hparams:
  1175. ctx_length = self.hparams["max_sequence_length"]
  1176. elif "max_position_embeddings" in self.hparams:
  1177. ctx_length = self.hparams["max_position_embeddings"]
  1178. elif "model_max_length" in self.hparams:
  1179. ctx_length = self.hparams["model_max_length"]
  1180. else:
  1181. raise ValueError("gguf: can not find ctx length parameter.")
  1182. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1183. self.gguf_writer.add_context_length(ctx_length)
  1184. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1185. self.gguf_writer.add_block_count(block_count)
  1186. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1187. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1188. self.gguf_writer.add_head_count(head_count)
  1189. self.gguf_writer.add_head_count_kv(head_count_kv)
  1190. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1191. self.gguf_writer.add_file_type(self.ftype)
  1192. rope_scaling = self.hparams.get("rope_scaling") or {}
  1193. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1194. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1195. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1196. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1197. head_count = self.hparams["num_attention_heads"]
  1198. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1199. tensors: list[tuple[str, Tensor]] = []
  1200. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1201. logger.info(f"Unpacking and permuting layer {bid}")
  1202. tensors = [
  1203. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1204. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1205. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1206. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1207. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1208. self._reverse_hf_part(data_torch, 2)),
  1209. ]
  1210. else:
  1211. tensors = [(self.map_tensor_name(name), data_torch)]
  1212. return tensors
  1213. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1214. if n_kv_head is not None and n_head != n_kv_head:
  1215. n_head //= n_kv_head
  1216. return (
  1217. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1218. .swapaxes(1, 2)
  1219. .reshape(weights.shape)
  1220. )
  1221. def _reverse_hf_permute_part(
  1222. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1223. ) -> Tensor:
  1224. r = weights.shape[0] // 3
  1225. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1226. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1227. r = weights.shape[0] // 3
  1228. return weights[r * n_part:r * n_part + r, ...]
  1229. @ModelBase.register("XverseForCausalLM")
  1230. class XverseModel(TextModel):
  1231. model_arch = gguf.MODEL_ARCH.XVERSE
  1232. def set_vocab(self):
  1233. assert (self.dir_model / "tokenizer.json").is_file()
  1234. dir_model = self.dir_model
  1235. hparams = self.hparams
  1236. tokens: list[bytes] = []
  1237. toktypes: list[int] = []
  1238. from transformers import AutoTokenizer
  1239. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1240. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1241. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1242. # because vocab_size is the count of items, and indexes start at 0.
  1243. max_vocab_index = max(tokenizer.get_vocab().values())
  1244. if max_vocab_index >= vocab_size:
  1245. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1246. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1247. added_vocab = tokenizer.get_added_vocab()
  1248. for token_id in range(vocab_size):
  1249. token_text = reverse_vocab[token_id].encode('utf-8')
  1250. # replace "\x00" to string with length > 0
  1251. if token_text == b"\x00":
  1252. toktype = gguf.TokenType.BYTE # special
  1253. token_text = f"<{token_text}>".encode('utf-8')
  1254. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1255. toktype = gguf.TokenType.BYTE # special
  1256. elif reverse_vocab[token_id] in added_vocab:
  1257. if tokenizer.added_tokens_decoder[token_id].special:
  1258. toktype = gguf.TokenType.CONTROL
  1259. else:
  1260. toktype = gguf.TokenType.USER_DEFINED
  1261. else:
  1262. toktype = gguf.TokenType.NORMAL
  1263. tokens.append(token_text)
  1264. toktypes.append(toktype)
  1265. self.gguf_writer.add_tokenizer_model("llama")
  1266. self.gguf_writer.add_tokenizer_pre("default")
  1267. self.gguf_writer.add_token_list(tokens)
  1268. self.gguf_writer.add_token_types(toktypes)
  1269. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1270. special_vocab.add_to_gguf(self.gguf_writer)
  1271. def set_gguf_parameters(self):
  1272. block_count = self.hparams["num_hidden_layers"]
  1273. head_count = self.hparams["num_attention_heads"]
  1274. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1275. ctx_length = 0
  1276. if "max_sequence_length" in self.hparams:
  1277. ctx_length = self.hparams["max_sequence_length"]
  1278. elif "max_position_embeddings" in self.hparams:
  1279. ctx_length = self.hparams["max_position_embeddings"]
  1280. elif "model_max_length" in self.hparams:
  1281. ctx_length = self.hparams["model_max_length"]
  1282. else:
  1283. raise ValueError("gguf: can not find ctx length parameter.")
  1284. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1285. self.gguf_writer.add_context_length(ctx_length)
  1286. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1287. self.gguf_writer.add_block_count(block_count)
  1288. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1289. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1290. self.gguf_writer.add_head_count(head_count)
  1291. self.gguf_writer.add_head_count_kv(head_count_kv)
  1292. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1293. self.gguf_writer.add_file_type(self.ftype)
  1294. rope_scaling = self.hparams.get("rope_scaling") or {}
  1295. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1296. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1297. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1298. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1299. del bid # unused
  1300. head_count = self.hparams["num_attention_heads"]
  1301. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1302. # HF models permute some of the tensors, so we need to undo that
  1303. if name.endswith("q_proj.weight"):
  1304. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1305. if name.endswith("k_proj.weight"):
  1306. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1307. return [(self.map_tensor_name(name), data_torch)]
  1308. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1309. if n_kv_head is not None and n_head != n_kv_head:
  1310. n_head //= n_kv_head
  1311. return (
  1312. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1313. .swapaxes(1, 2)
  1314. .reshape(weights.shape)
  1315. )
  1316. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1317. class FalconModel(TextModel):
  1318. model_arch = gguf.MODEL_ARCH.FALCON
  1319. def set_gguf_parameters(self):
  1320. block_count = self.hparams.get("num_hidden_layers")
  1321. if block_count is None:
  1322. block_count = self.hparams["n_layer"] # old name
  1323. n_head = self.hparams.get("num_attention_heads")
  1324. if n_head is None:
  1325. n_head = self.hparams["n_head"] # old name
  1326. n_head_kv = self.hparams.get("num_kv_heads")
  1327. if n_head_kv is None:
  1328. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1329. self.gguf_writer.add_context_length(2048) # not in config.json
  1330. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1331. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1332. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1333. self.gguf_writer.add_block_count(block_count)
  1334. self.gguf_writer.add_head_count(n_head)
  1335. self.gguf_writer.add_head_count_kv(n_head_kv)
  1336. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1337. self.gguf_writer.add_file_type(self.ftype)
  1338. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1339. del bid # unused
  1340. # QKV tensor transform
  1341. # The original query_key_value tensor contains n_head_kv "kv groups",
  1342. # each consisting of n_head/n_head_kv query weights followed by one key
  1343. # and one value weight (shared by all query heads in the kv group).
  1344. # This layout makes it a big pain to work with in GGML.
  1345. # So we rearrange them here,, so that we have n_head query weights
  1346. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1347. # in contiguous fashion.
  1348. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1349. if "query_key_value" in name:
  1350. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1351. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1352. head_dim = self.hparams["hidden_size"] // n_head
  1353. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1354. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1355. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1356. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1357. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1358. return [(self.map_tensor_name(name), data_torch)]
  1359. @ModelBase.register("GPTBigCodeForCausalLM")
  1360. class StarCoderModel(TextModel):
  1361. model_arch = gguf.MODEL_ARCH.STARCODER
  1362. def set_gguf_parameters(self):
  1363. block_count = self.hparams["n_layer"]
  1364. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1365. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1366. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1367. self.gguf_writer.add_block_count(block_count)
  1368. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1369. self.gguf_writer.add_head_count_kv(1)
  1370. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1371. self.gguf_writer.add_file_type(self.ftype)
  1372. @ModelBase.register("GPTRefactForCausalLM")
  1373. class RefactModel(TextModel):
  1374. model_arch = gguf.MODEL_ARCH.REFACT
  1375. def set_vocab(self):
  1376. super().set_vocab()
  1377. # TODO: how to determine special FIM tokens automatically?
  1378. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1379. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1380. special_vocab._set_special_token("prefix", 1)
  1381. special_vocab._set_special_token("suffix", 3)
  1382. special_vocab._set_special_token("middle", 2)
  1383. special_vocab.chat_template = None # do not add it twice
  1384. special_vocab.add_to_gguf(self.gguf_writer)
  1385. def set_gguf_parameters(self):
  1386. hidden_dim = self.hparams["n_embd"]
  1387. inner_dim = 4 * hidden_dim
  1388. hidden_dim = int(2 * inner_dim / 3)
  1389. multiple_of = 256
  1390. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1391. block_count = self.hparams["n_layer"]
  1392. # refact uses Alibi. So this is from config.json which might be used by training.
  1393. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1394. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1395. self.gguf_writer.add_feed_forward_length(ff_dim)
  1396. self.gguf_writer.add_block_count(block_count)
  1397. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1398. self.gguf_writer.add_head_count_kv(1)
  1399. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1400. self.gguf_writer.add_file_type(self.ftype)
  1401. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1402. hidden_dim = self.hparams["n_embd"]
  1403. inner_dim = 4 * hidden_dim
  1404. hidden_dim = int(2 * inner_dim / 3)
  1405. multiple_of = 256
  1406. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1407. n_head = self.hparams["n_head"]
  1408. n_head_kv = 1
  1409. head_dim = self.hparams["n_embd"] // n_head
  1410. tensors: list[tuple[str, Tensor]] = []
  1411. if bid is not None:
  1412. if name == f"transformer.h.{bid}.attn.kv.weight":
  1413. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1414. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1415. elif name == f"transformer.h.{bid}.attn.q.weight":
  1416. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1417. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1418. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1419. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1420. if len(tensors) == 0:
  1421. tensors.append((self.map_tensor_name(name), data_torch))
  1422. return tensors
  1423. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1424. class StableLMModel(TextModel):
  1425. model_arch = gguf.MODEL_ARCH.STABLELM
  1426. def set_vocab(self):
  1427. if (self.dir_model / "tokenizer.json").is_file():
  1428. self._set_vocab_gpt2()
  1429. else:
  1430. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1431. self._set_vocab_qwen()
  1432. def set_gguf_parameters(self):
  1433. hparams = self.hparams
  1434. block_count = hparams["num_hidden_layers"]
  1435. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1436. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1437. self.gguf_writer.add_block_count(block_count)
  1438. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1439. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1440. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1441. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1442. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1443. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1444. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1445. self.gguf_writer.add_file_type(self.ftype)
  1446. _q_norms: list[dict[str, Tensor]] | None = None
  1447. _k_norms: list[dict[str, Tensor]] | None = None
  1448. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1449. n_head = self.hparams["num_attention_heads"]
  1450. n_kv_head = self.hparams["num_key_value_heads"]
  1451. if name.find("q_layernorm.norms") != -1:
  1452. assert bid is not None
  1453. if self._q_norms is None:
  1454. self._q_norms = [{} for _ in range(self.block_count)]
  1455. self._q_norms[bid][name] = data_torch
  1456. if len(self._q_norms[bid]) >= n_head:
  1457. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1458. else:
  1459. return []
  1460. if name.find("k_layernorm.norms") != -1:
  1461. assert bid is not None
  1462. if self._k_norms is None:
  1463. self._k_norms = [{} for _ in range(self.block_count)]
  1464. self._k_norms[bid][name] = data_torch
  1465. if len(self._k_norms[bid]) >= n_kv_head:
  1466. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1467. else:
  1468. return []
  1469. return [(self.map_tensor_name(name), data_torch)]
  1470. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1471. datas: list[Tensor] = []
  1472. # extract the norms in order
  1473. for xid in range(n_head):
  1474. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1475. datas.append(norms[ename])
  1476. del norms[ename]
  1477. data_torch = torch.stack(datas, dim=0)
  1478. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1479. new_name = self.map_tensor_name(merged_name)
  1480. return [(new_name, data_torch)]
  1481. def prepare_tensors(self):
  1482. super().prepare_tensors()
  1483. if self._q_norms is not None or self._k_norms is not None:
  1484. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1485. norms = (
  1486. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1487. ) + (
  1488. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1489. )
  1490. if len(norms) > 0:
  1491. raise ValueError(f"Unprocessed norms: {norms}")
  1492. @ModelBase.register(
  1493. "LLaMAForCausalLM",
  1494. "LlamaForCausalLM",
  1495. "MistralForCausalLM",
  1496. "MixtralForCausalLM",
  1497. "VLlama3ForCausalLM",
  1498. "LlavaForConditionalGeneration")
  1499. class LlamaModel(TextModel):
  1500. model_arch = gguf.MODEL_ARCH.LLAMA
  1501. undo_permute = True
  1502. def __init__(self, *args, **kwargs):
  1503. super().__init__(*args, **kwargs)
  1504. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1505. if self.hf_arch == "VLlama3ForCausalLM":
  1506. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1507. def set_vocab(self):
  1508. try:
  1509. self._set_vocab_sentencepiece()
  1510. except FileNotFoundError:
  1511. try:
  1512. self._set_vocab_llama_hf()
  1513. except (FileNotFoundError, TypeError):
  1514. # Llama 3
  1515. self._set_vocab_gpt2()
  1516. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1517. if self.hparams.get("vocab_size", 32000) == 32016:
  1518. special_vocab = gguf.SpecialVocab(
  1519. self.dir_model, load_merges=False,
  1520. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1521. )
  1522. special_vocab._set_special_token("prefix", 32007)
  1523. special_vocab._set_special_token("suffix", 32008)
  1524. special_vocab._set_special_token("middle", 32009)
  1525. special_vocab._set_special_token("eot", 32010)
  1526. special_vocab.add_to_gguf(self.gguf_writer)
  1527. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1528. if tokenizer_config_file.is_file():
  1529. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1530. tokenizer_config_json = json.load(f)
  1531. if "add_prefix_space" in tokenizer_config_json:
  1532. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1533. # Apply to granite small models only
  1534. if self.hparams.get("vocab_size", 32000) == 49152:
  1535. self.gguf_writer.add_add_bos_token(False)
  1536. def set_gguf_parameters(self):
  1537. super().set_gguf_parameters()
  1538. hparams = self.hparams
  1539. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1540. if "head_dim" in hparams:
  1541. rope_dim = hparams["head_dim"]
  1542. else:
  1543. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1544. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1545. rope_scaling = self.hparams.get("rope_scaling") or {}
  1546. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1547. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1548. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1549. @staticmethod
  1550. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1551. if n_head_kv is not None and n_head != n_head_kv:
  1552. n_head = n_head_kv
  1553. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1554. .swapaxes(1, 2)
  1555. .reshape(weights.shape))
  1556. _experts: list[dict[str, Tensor]] | None = None
  1557. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1558. n_head = self.hparams["num_attention_heads"]
  1559. n_kv_head = self.hparams.get("num_key_value_heads")
  1560. is_vision_tensor = "vision_tower" in name \
  1561. or "vision_model" in name \
  1562. or "model.connector" in name \
  1563. or "multi_modal_projector" in name
  1564. if is_vision_tensor:
  1565. return [] # skip vision tensors
  1566. elif name.startswith("model.text_model"):
  1567. name = name.replace("text_model.", "") # for SmolVLM
  1568. elif name.startswith("language_model."):
  1569. name = name.replace("language_model.", "") # for the rest
  1570. if self.undo_permute:
  1571. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1572. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1573. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1574. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1575. # process the experts separately
  1576. if name.find("block_sparse_moe.experts") != -1:
  1577. n_experts = self.hparams["num_local_experts"]
  1578. assert bid is not None
  1579. if self._experts is None:
  1580. self._experts = [{} for _ in range(self.block_count)]
  1581. self._experts[bid][name] = data_torch
  1582. if len(self._experts[bid]) >= n_experts * 3:
  1583. tensors: list[tuple[str, Tensor]] = []
  1584. # merge the experts into a single 3d tensor
  1585. for wid in ["w1", "w2", "w3"]:
  1586. datas: list[Tensor] = []
  1587. for xid in range(n_experts):
  1588. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1589. datas.append(self._experts[bid][ename])
  1590. del self._experts[bid][ename]
  1591. data_torch = torch.stack(datas, dim=0)
  1592. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1593. new_name = self.map_tensor_name(merged_name)
  1594. tensors.append((new_name, data_torch))
  1595. return tensors
  1596. else:
  1597. return []
  1598. return [(self.map_tensor_name(name), data_torch)]
  1599. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1600. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1601. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1602. base = self.hparams.get("rope_theta", 10000.0)
  1603. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1604. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1605. factor = rope_scaling.get("factor", 8.0)
  1606. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1607. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1608. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1609. low_freq_wavelen = old_context_len / low_freq_factor
  1610. high_freq_wavelen = old_context_len / high_freq_factor
  1611. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1612. rope_factors = []
  1613. for freq in freqs:
  1614. wavelen = 2 * math.pi / freq
  1615. if wavelen < high_freq_wavelen:
  1616. rope_factors.append(1)
  1617. elif wavelen > low_freq_wavelen:
  1618. rope_factors.append(factor)
  1619. else:
  1620. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1621. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1622. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1623. def prepare_tensors(self):
  1624. super().prepare_tensors()
  1625. if self._experts is not None:
  1626. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1627. experts = [k for d in self._experts for k in d.keys()]
  1628. if len(experts) > 0:
  1629. raise ValueError(f"Unprocessed experts: {experts}")
  1630. @ModelBase.register(
  1631. "LlavaForConditionalGeneration", # pixtral
  1632. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1633. )
  1634. class LlavaVisionModel(MmprojModel):
  1635. img_break_tok_id = -1
  1636. def __init__(self, *args, **kwargs):
  1637. super().__init__(*args, **kwargs)
  1638. if self.hparams["model_type"] == "pixtral":
  1639. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1640. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1641. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1642. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1643. else:
  1644. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1645. def get_token_id(self, token: str) -> int:
  1646. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1647. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1648. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1649. for id_, token_data in added_tokens_decoder.items():
  1650. if token_data["content"] == token:
  1651. return int(id_)
  1652. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1653. def set_gguf_parameters(self):
  1654. super().set_gguf_parameters()
  1655. hparams = self.hparams
  1656. if hparams["model_type"] == "pixtral":
  1657. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1658. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1659. # hidden_act
  1660. if hparams["hidden_act"] == "silu":
  1661. self.gguf_writer.add_vision_use_silu(True)
  1662. elif hparams["hidden_act"] == "gelu":
  1663. self.gguf_writer.add_vision_use_gelu(True)
  1664. else:
  1665. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1666. # spatial_merge_size
  1667. if "spatial_merge_size" in self.global_config:
  1668. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1669. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1670. del bid # unused
  1671. n_head = self.hparams["num_attention_heads"]
  1672. n_kv_head = n_head
  1673. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1674. # process vision tensors
  1675. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1676. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1677. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1678. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1679. return [(self.map_tensor_name(name), data_torch)]
  1680. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1681. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1682. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1683. img_break_embd = data_torch[self.img_break_tok_id]
  1684. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1685. return [(self.map_tensor_name(name), img_break_embd)]
  1686. return [] # skip other tensors
  1687. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1688. class SmolVLMModel(MmprojModel):
  1689. def __init__(self, *args, **kwargs):
  1690. super().__init__(*args, **kwargs)
  1691. if self.hparams["model_type"] == "smolvlm_vision":
  1692. # fix for SmolVLM2, missing some keys in config.json
  1693. # default values are taken from transformers code
  1694. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1695. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1696. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1697. def set_gguf_parameters(self):
  1698. super().set_gguf_parameters()
  1699. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1700. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1701. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1702. self.gguf_writer.add_vision_use_gelu(True)
  1703. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1704. del bid, new_name, n_dims # unused
  1705. if ".embeddings." in name:
  1706. return gguf.GGMLQuantizationType.F32
  1707. return False
  1708. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1709. del bid # unused
  1710. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1711. if is_vision_tensor:
  1712. return [(self.map_tensor_name(name), data_torch)]
  1713. return [] # skip other tensors
  1714. @ModelBase.register("Llama4ForConditionalGeneration")
  1715. class Llama4Model(LlamaModel):
  1716. model_arch = gguf.MODEL_ARCH.LLAMA4
  1717. undo_permute = False
  1718. def __init__(self, *args, **kwargs):
  1719. super().__init__(*args, **kwargs)
  1720. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1721. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1722. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1723. def set_vocab(self):
  1724. self._set_vocab_gpt2()
  1725. self.gguf_writer.add_add_bos_token(True)
  1726. def set_gguf_parameters(self):
  1727. super().set_gguf_parameters()
  1728. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1729. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1730. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1731. if name.startswith("language_model."):
  1732. name = name.replace("language_model.", "")
  1733. # split the gate_up into gate and up
  1734. if "gate_up_proj" in name:
  1735. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1736. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1737. dim_half = data_torch.shape[-1] // 2
  1738. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1739. return [
  1740. (self.map_tensor_name(name_gate), gate_proj_weight),
  1741. (self.map_tensor_name(name_up), up_proj_weight)
  1742. ]
  1743. if name.endswith("down_proj"):
  1744. name += ".weight"
  1745. data_torch = data_torch.transpose(-1, -2)
  1746. if "multi_modal_projector" in name or "vision_model" in name:
  1747. return []
  1748. return super().modify_tensors(data_torch, name, bid)
  1749. @ModelBase.register("Llama4ForConditionalGeneration")
  1750. class Llama4VisionModel(MmprojModel):
  1751. def set_gguf_parameters(self):
  1752. super().set_gguf_parameters()
  1753. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1754. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1755. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1756. assert self.hparams["hidden_act"] == "gelu"
  1757. self.gguf_writer.add_vision_use_gelu(True)
  1758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1759. del bid # unused
  1760. if "multi_modal_projector" in name or "vision_model" in name:
  1761. # process vision tensors
  1762. if "positional_embedding_vlm" in name and ".weight" not in name:
  1763. name += ".weight"
  1764. return [(self.map_tensor_name(name), data_torch)]
  1765. return []
  1766. @ModelBase.register("Mistral3ForConditionalGeneration")
  1767. class Mistral3Model(LlamaModel):
  1768. model_arch = gguf.MODEL_ARCH.LLAMA
  1769. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1770. name = name.replace("language_model.", "")
  1771. if "multi_modal_projector" in name or "vision_tower" in name:
  1772. return []
  1773. return super().modify_tensors(data_torch, name, bid)
  1774. @ModelBase.register("DeciLMForCausalLM")
  1775. class DeciModel(TextModel):
  1776. model_arch = gguf.MODEL_ARCH.DECI
  1777. @staticmethod
  1778. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1779. # DeciLM-specific code
  1780. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1781. return DeciModel._find_multiple(intermediate_size, 256)
  1782. @staticmethod
  1783. def _find_multiple(n: int, k: int) -> int:
  1784. # DeciLM-specific code
  1785. if n % k == 0:
  1786. return n
  1787. return n + k - (n % k)
  1788. def __init__(self, *args, **kwargs):
  1789. super().__init__(*args, **kwargs)
  1790. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1791. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1792. assert self.block_count == len(_block_configs)
  1793. self._num_kv_heads = list()
  1794. self._num_heads = list()
  1795. _ffn_multipliers = list()
  1796. # ***linear attention layer***
  1797. # if n_heads_in_group is None and replace_with_linear is True
  1798. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1799. # ***attention-free layer***
  1800. # if n_heads_in_group is None and replace_with_linear is False
  1801. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1802. # ***normal attention-layer***
  1803. # if n_heads_in_group is not None, then
  1804. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1805. # _num_heads[il] is num_attention_head
  1806. # ***dummy layer*** for nemotron 253B
  1807. # if n_heads_in_group is None and ffn_mult is None
  1808. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1809. for il in range(len(_block_configs)):
  1810. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1811. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1812. self._num_kv_heads.append(0)
  1813. self._num_heads.append(self.hparams["num_attention_heads"])
  1814. else:
  1815. self._num_kv_heads.append(0)
  1816. self._num_heads.append(0)
  1817. else:
  1818. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1819. self._num_heads.append(self.hparams["num_attention_heads"])
  1820. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1821. _ffn_multipliers.append(0.0)
  1822. else:
  1823. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1824. assert self.block_count == len(self._num_kv_heads)
  1825. assert self.block_count == len(self._num_heads)
  1826. assert self.block_count == len(_ffn_multipliers)
  1827. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1828. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1829. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1830. self._ffn_dims: list[int] = [
  1831. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1832. for multiplier in _ffn_multipliers
  1833. ]
  1834. def set_vocab(self):
  1835. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1836. # eos_token from '|eot_id|' to '|end_of_text|'
  1837. if self.hparams.get("vocab_size", 128256) == 128256:
  1838. tokens, toktypes, tokpre = self.get_vocab_base()
  1839. self.gguf_writer.add_tokenizer_model("gpt2")
  1840. self.gguf_writer.add_tokenizer_pre(tokpre)
  1841. self.gguf_writer.add_token_list(tokens)
  1842. self.gguf_writer.add_token_types(toktypes)
  1843. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1844. special_vocab.add_to_gguf(self.gguf_writer)
  1845. else:
  1846. # DeciLM-7B
  1847. self._set_vocab_llama_hf()
  1848. def set_gguf_parameters(self):
  1849. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1850. assert self.block_count == len(self._num_kv_heads)
  1851. assert self.block_count == len(self._num_heads)
  1852. assert self.block_count == len(self._ffn_dims)
  1853. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1854. self.gguf_writer.add_rope_freq_base(rope_theta)
  1855. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1856. self.gguf_writer.add_head_count(self._num_heads)
  1857. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1858. self.gguf_writer.add_block_count(self.block_count)
  1859. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1860. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1861. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1862. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1863. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1864. self.gguf_writer.add_file_type(self.ftype)
  1865. else: # DeciLM-7B
  1866. super().set_gguf_parameters()
  1867. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1868. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1869. assert self.block_count == len(self._num_kv_heads)
  1870. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1871. hparams = self.hparams
  1872. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1873. if "head_dim" in hparams:
  1874. rope_dim = hparams["head_dim"]
  1875. else:
  1876. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1877. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1878. rope_scaling = self.hparams.get("rope_scaling") or {}
  1879. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1880. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1881. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1882. @staticmethod
  1883. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1884. if n_head_kv is not None and n_head != n_head_kv:
  1885. n_head = n_head_kv
  1886. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1887. .swapaxes(1, 2)
  1888. .reshape(weights.shape))
  1889. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1890. n_head = self.hparams["num_attention_heads"]
  1891. if bid is not None:
  1892. if "num_key_value_heads_per_layer" in self.hparams:
  1893. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1894. elif "block_configs" in self.hparams:
  1895. n_kv_head = self._num_kv_heads[bid]
  1896. n_head = self._num_heads[bid]
  1897. else:
  1898. n_kv_head = self.hparams.get("num_key_value_heads")
  1899. else:
  1900. n_kv_head = self.hparams.get("num_key_value_heads")
  1901. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1902. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1903. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1904. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1905. return [(self.map_tensor_name(name), data_torch)]
  1906. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1907. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1908. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1909. base = self.hparams.get("rope_theta", 10000.0)
  1910. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1911. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1912. factor = rope_scaling.get("factor", 8.0)
  1913. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1914. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1915. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1916. low_freq_wavelen = old_context_len / low_freq_factor
  1917. high_freq_wavelen = old_context_len / high_freq_factor
  1918. assert low_freq_wavelen != high_freq_wavelen
  1919. rope_factors = []
  1920. for freq in freqs:
  1921. wavelen = 2 * math.pi / freq
  1922. if wavelen < high_freq_wavelen:
  1923. rope_factors.append(1)
  1924. elif wavelen > low_freq_wavelen:
  1925. rope_factors.append(factor)
  1926. else:
  1927. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1928. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1929. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1930. def prepare_tensors(self):
  1931. super().prepare_tensors()
  1932. @ModelBase.register("BitnetForCausalLM")
  1933. class BitnetModel(TextModel):
  1934. model_arch = gguf.MODEL_ARCH.BITNET
  1935. def set_vocab(self):
  1936. self._set_vocab_sentencepiece()
  1937. def set_gguf_parameters(self):
  1938. super().set_gguf_parameters()
  1939. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1940. self.gguf_writer.add_rope_scaling_factor(1.0)
  1941. def weight_quant(self, weight: Tensor) -> Tensor:
  1942. dtype = weight.dtype
  1943. weight = weight.float()
  1944. scale = weight.abs().mean().clamp(min=1e-5)
  1945. iscale = 1 / scale
  1946. # TODO: multiply by the scale directly instead of inverting it twice
  1947. # (this is also unnecessarily doubly inverted upstream)
  1948. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1949. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1950. return result.type(dtype)
  1951. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1952. new_name = self.map_tensor_name(name)
  1953. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1954. gguf.MODEL_TENSOR.ATTN_Q,
  1955. gguf.MODEL_TENSOR.ATTN_K,
  1956. gguf.MODEL_TENSOR.ATTN_V,
  1957. gguf.MODEL_TENSOR.ATTN_OUT,
  1958. gguf.MODEL_TENSOR.FFN_UP,
  1959. gguf.MODEL_TENSOR.FFN_DOWN,
  1960. gguf.MODEL_TENSOR.FFN_GATE,
  1961. ]):
  1962. # transform weight into 1/0/-1 (in fp32)
  1963. data_torch = self.weight_quant(data_torch)
  1964. yield (new_name, data_torch)
  1965. @ModelBase.register("GrokForCausalLM")
  1966. class GrokModel(TextModel):
  1967. model_arch = gguf.MODEL_ARCH.GROK
  1968. def set_vocab(self):
  1969. self._set_vocab_sentencepiece()
  1970. def __init__(self, *args, **kwargs):
  1971. super().__init__(*args, **kwargs)
  1972. def set_gguf_parameters(self):
  1973. super().set_gguf_parameters()
  1974. _experts: list[dict[str, Tensor]] | None = None
  1975. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1976. # process the experts separately
  1977. if name.find(".moe.") != -1:
  1978. n_experts = self.hparams["num_local_experts"]
  1979. assert bid is not None
  1980. if self._experts is None:
  1981. self._experts = [{} for _ in range(self.block_count)]
  1982. self._experts[bid][name] = data_torch
  1983. if len(self._experts[bid]) >= n_experts * 3:
  1984. tensors: list[tuple[str, Tensor]] = []
  1985. # merge the experts into a single 3d tensor
  1986. for wid in ["linear", "linear_1", "linear_v"]:
  1987. datas: list[Tensor] = []
  1988. for xid in range(n_experts):
  1989. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1990. datas.append(self._experts[bid][ename])
  1991. del self._experts[bid][ename]
  1992. data_torch = torch.stack(datas, dim=0)
  1993. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1994. new_name = self.map_tensor_name(merged_name)
  1995. tensors.append((new_name, data_torch))
  1996. return tensors
  1997. else:
  1998. return []
  1999. return [(self.map_tensor_name(name), data_torch)]
  2000. @ModelBase.register("DbrxForCausalLM")
  2001. class DbrxModel(TextModel):
  2002. model_arch = gguf.MODEL_ARCH.DBRX
  2003. def set_gguf_parameters(self):
  2004. ffn_config = self.hparams["ffn_config"]
  2005. attn_config = self.hparams["attn_config"]
  2006. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2007. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2008. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2009. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2010. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2011. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2012. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2013. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2014. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2015. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2016. self.gguf_writer.add_layer_norm_eps(1e-5)
  2017. self.gguf_writer.add_file_type(self.ftype)
  2018. logger.info(f"gguf: file type = {self.ftype}")
  2019. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2020. del bid # unused
  2021. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2022. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2023. n_embd = self.hparams["d_model"]
  2024. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2025. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2026. # But llama.cpp moe graph works differently
  2027. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2028. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2029. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2030. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2031. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2032. experts = False
  2033. for exp_tensor_name in exp_tensor_names.keys():
  2034. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2035. experts = True
  2036. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2037. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2038. data_torch = data_torch.permute(*permute_tensor)
  2039. break
  2040. # map tensor names
  2041. # In MoE models the ffn tensors are typically most of the model weights,
  2042. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2043. # Every other model has the weight names ending in .weight,
  2044. # let's assume that is the convention which is not the case for dbrx:
  2045. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2046. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2047. return [(new_name, data_torch)]
  2048. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2049. del name, new_name, bid # unused
  2050. return n_dims > 1
  2051. @ModelBase.register("MiniCPMForCausalLM")
  2052. class MiniCPMModel(TextModel):
  2053. model_arch = gguf.MODEL_ARCH.MINICPM
  2054. def set_gguf_parameters(self):
  2055. super().set_gguf_parameters()
  2056. embedding_scale = float(self.hparams["scale_emb"])
  2057. self.gguf_writer.add_embedding_scale(embedding_scale)
  2058. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2059. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2060. self.gguf_writer.add_residual_scale(residual_scale)
  2061. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2062. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2063. self.gguf_writer.add_logit_scale(logit_scale)
  2064. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2065. rope_scaling = self.hparams.get("rope_scaling") or {}
  2066. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2067. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2068. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2069. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2070. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2071. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2072. if rope_scaling is not None:
  2073. long_factors = rope_scaling.get('long_factor', None)
  2074. short_factors = rope_scaling.get('short_factor', None)
  2075. if long_factors is None or short_factors is None:
  2076. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2077. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2078. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2079. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2080. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2081. def set_vocab(self):
  2082. self._set_vocab_sentencepiece()
  2083. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2084. del bid # unused
  2085. n_head = self.hparams["num_attention_heads"]
  2086. n_kv_head = self.hparams.get("num_key_value_heads")
  2087. # HF models permute some of the tensors, so we need to undo that
  2088. if name.endswith(("q_proj.weight")):
  2089. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2090. if name.endswith(("k_proj.weight")):
  2091. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2092. return [(self.map_tensor_name(name), data_torch)]
  2093. @ModelBase.register("MiniCPM3ForCausalLM")
  2094. class MiniCPM3Model(TextModel):
  2095. model_arch = gguf.MODEL_ARCH.MINICPM3
  2096. def set_gguf_parameters(self):
  2097. hparams = self.hparams
  2098. self.gguf_writer.add_file_type(self.ftype)
  2099. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2100. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2101. self.gguf_writer.add_block_count(self.block_count)
  2102. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2103. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2104. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2105. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2106. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2107. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2108. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2109. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2110. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2111. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2112. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2113. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2114. if rope_scaling is not None:
  2115. rope_dims = self.hparams["qk_rope_head_dim"]
  2116. long_factors = rope_scaling.get('long_factor', None)
  2117. short_factors = rope_scaling.get('short_factor', None)
  2118. if long_factors is None or short_factors is None:
  2119. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2120. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2121. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2122. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2123. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2124. def set_vocab(self):
  2125. self._set_vocab_sentencepiece()
  2126. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2127. if n_kv_head is not None and n_head != n_kv_head:
  2128. n_head //= n_kv_head
  2129. return (
  2130. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2131. .swapaxes(1, 2)
  2132. .reshape(weights.shape)
  2133. )
  2134. @ModelBase.register("QWenLMHeadModel")
  2135. class QwenModel(TextModel):
  2136. model_arch = gguf.MODEL_ARCH.QWEN
  2137. @staticmethod
  2138. def token_bytes_to_string(b):
  2139. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2140. byte_encoder = bytes_to_unicode()
  2141. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2142. @staticmethod
  2143. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2144. parts = [bytes([b]) for b in token]
  2145. while True:
  2146. min_idx = None
  2147. min_rank = None
  2148. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2149. rank = mergeable_ranks.get(pair[0] + pair[1])
  2150. if rank is not None and (min_rank is None or rank < min_rank):
  2151. min_idx = i
  2152. min_rank = rank
  2153. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2154. break
  2155. assert min_idx is not None
  2156. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2157. return parts
  2158. def set_vocab(self):
  2159. self._set_vocab_qwen()
  2160. def set_gguf_parameters(self):
  2161. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2162. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2163. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2164. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2165. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2166. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2167. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2168. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2169. self.gguf_writer.add_file_type(self.ftype)
  2170. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
  2171. class Qwen2Model(TextModel):
  2172. model_arch = gguf.MODEL_ARCH.QWEN2
  2173. def set_vocab(self):
  2174. try:
  2175. self._set_vocab_sentencepiece()
  2176. except FileNotFoundError:
  2177. self._set_vocab_gpt2()
  2178. def set_gguf_parameters(self):
  2179. super().set_gguf_parameters()
  2180. self._try_set_pooling_type()
  2181. rope_scaling = self.hparams.get("rope_scaling") or {}
  2182. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2183. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2184. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2185. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2186. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2187. if self.hf_arch == "Qwen2Model":
  2188. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2189. if "language_model." in name:
  2190. name = name.replace("language_model.", "") # for InternVL
  2191. if name.startswith("mlp") or name.startswith("vision_model"):
  2192. # skip visual tensors
  2193. return []
  2194. yield from super().modify_tensors(data_torch, name, bid)
  2195. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2196. class Qwen2VLModel(TextModel):
  2197. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2198. def set_gguf_parameters(self):
  2199. super().set_gguf_parameters()
  2200. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2201. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2202. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2203. def set_vocab(self):
  2204. try:
  2205. self._set_vocab_sentencepiece()
  2206. except FileNotFoundError:
  2207. self._set_vocab_gpt2()
  2208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2209. del bid # unused
  2210. if name.startswith("visual."):
  2211. # skip visual tensors
  2212. return []
  2213. return [(self.map_tensor_name(name), data_torch)]
  2214. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2215. class Qwen2VLVisionModel(MmprojModel):
  2216. def __init__(self, *args, **kwargs):
  2217. super().__init__(*args, **kwargs)
  2218. self.hparams["image_size"] = self.hparams.get("image_size", 560)
  2219. # rename config.json values
  2220. self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
  2221. self.hparams["num_hidden_layers"] = self.hparams.get("depth")
  2222. if "embed_dim" in self.hparams: # qwen2vl
  2223. self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
  2224. self.hparams["hidden_size"] = self.hparams.get("embed_dim")
  2225. def set_gguf_parameters(self):
  2226. super().set_gguf_parameters()
  2227. hparams = self.hparams
  2228. if self.global_config['model_type'] == 'qwen2_vl':
  2229. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2230. elif self.global_config['model_type'] == 'qwen2_5_vl':
  2231. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2232. self.gguf_writer.add_vision_use_silu(True)
  2233. # find n_wa_pattern (window attention pattern)
  2234. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2235. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2236. n_wa_pattern = fullatt_block_indexes[0] + 1
  2237. # validate n_wa_pattern
  2238. for i in range(1, len(fullatt_block_indexes)):
  2239. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2240. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2241. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2242. else:
  2243. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2244. # default values below are taken from HF tranformers code
  2245. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2246. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2247. del bid, name, n_dims # unused
  2248. if ".patch_embd." in new_name:
  2249. return gguf.GGMLQuantizationType.F16
  2250. if ".position_embd." in new_name:
  2251. return gguf.GGMLQuantizationType.F32
  2252. return False
  2253. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2254. del bid # unused
  2255. if name.startswith("visual."):
  2256. # process visual tensors
  2257. # split QKV tensors if needed
  2258. if ".qkv." in name:
  2259. if data_torch.ndim == 2: # weight
  2260. c3, _ = data_torch.shape
  2261. else: # bias
  2262. c3 = data_torch.shape[0]
  2263. assert c3 % 3 == 0
  2264. c = c3 // 3
  2265. wq = data_torch[:c]
  2266. wk = data_torch[c: c * 2]
  2267. wv = data_torch[c * 2:]
  2268. return [
  2269. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2270. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2271. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2272. ]
  2273. elif 'patch_embed.proj.weight' in name:
  2274. # split Conv3D into Conv2Ds
  2275. c1, c2, kt, kh, kw = data_torch.shape
  2276. del c1, c2, kh, kw # unused
  2277. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2278. return [
  2279. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2280. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2281. ]
  2282. else:
  2283. return [(self.map_tensor_name(name), data_torch)]
  2284. return [] # skip other tensors
  2285. @ModelBase.register("InternVisionModel")
  2286. class InternVisionModel(MmprojModel):
  2287. def set_gguf_parameters(self):
  2288. super().set_gguf_parameters()
  2289. hparams = self.hparams
  2290. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2291. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2292. # hidden_act
  2293. if hparams["hidden_act"] == "silu":
  2294. self.gguf_writer.add_vision_use_silu(True)
  2295. elif hparams["hidden_act"] == "gelu":
  2296. self.gguf_writer.add_vision_use_gelu(True)
  2297. else:
  2298. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2299. # downsample_ratio
  2300. downsample_ratio = self.global_config.get("downsample_ratio")
  2301. assert downsample_ratio is not None
  2302. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2303. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2304. del bid, name, n_dims # unused
  2305. if ".patch_embd." in new_name:
  2306. return gguf.GGMLQuantizationType.F16
  2307. if ".position_embd." in new_name:
  2308. return gguf.GGMLQuantizationType.F32
  2309. return False
  2310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2311. del bid # unused
  2312. if name.startswith("vision_model") or name.startswith("mlp"):
  2313. # process visual tensors
  2314. # correct name
  2315. if name.startswith("vision_model"):
  2316. name = "vision_tower." + name
  2317. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2318. name += ".weight"
  2319. # split QKV tensors if needed
  2320. if ".qkv." in name:
  2321. if data_torch.ndim == 2: # weight
  2322. c3, _ = data_torch.shape
  2323. else: # bias
  2324. c3 = data_torch.shape[0]
  2325. assert c3 % 3 == 0
  2326. c = c3 // 3
  2327. wq = data_torch[:c]
  2328. wk = data_torch[c: c * 2]
  2329. wv = data_torch[c * 2:]
  2330. return [
  2331. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2332. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2333. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2334. ]
  2335. return [(self.map_tensor_name(name), data_torch)]
  2336. return [] # skip other tensors
  2337. @ModelBase.register("WavTokenizerDec")
  2338. class WavTokenizerDecModel(TextModel):
  2339. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2340. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2341. del bid # unused
  2342. if \
  2343. name.endswith("codebook.cluster_size") or \
  2344. name.endswith("codebook.embed_avg") or \
  2345. name.endswith("codebook.inited"):
  2346. logger.debug(f"Skipping {name!r}")
  2347. return []
  2348. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2349. return [(self.map_tensor_name(name), data_torch)]
  2350. def set_vocab(self):
  2351. self._set_vocab_none()
  2352. def set_gguf_parameters(self):
  2353. super().set_gguf_parameters()
  2354. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2355. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2356. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2357. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2358. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2359. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2360. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2361. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2362. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2363. self.gguf_writer.add_causal_attention(False)
  2364. @ModelBase.register("Qwen2MoeForCausalLM")
  2365. class Qwen2MoeModel(TextModel):
  2366. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2367. def set_gguf_parameters(self):
  2368. super().set_gguf_parameters()
  2369. if (n_experts := self.hparams.get("num_experts")) is not None:
  2370. self.gguf_writer.add_expert_count(n_experts)
  2371. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2372. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2373. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2374. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2375. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2376. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2377. # YaRN is not enabled by default
  2378. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2379. rope_scaling = self.hparams.get("rope_scaling") or {}
  2380. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2381. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2382. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2383. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2384. _experts: list[dict[str, Tensor]] | None = None
  2385. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2386. # process the experts separately
  2387. if name.find("experts") != -1:
  2388. n_experts = self.hparams["num_experts"]
  2389. assert bid is not None
  2390. if self._experts is None:
  2391. self._experts = [{} for _ in range(self.block_count)]
  2392. self._experts[bid][name] = data_torch
  2393. if len(self._experts[bid]) >= n_experts * 3:
  2394. tensors: list[tuple[str, Tensor]] = []
  2395. # merge the experts into a single 3d tensor
  2396. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2397. datas: list[Tensor] = []
  2398. for xid in range(n_experts):
  2399. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2400. datas.append(self._experts[bid][ename])
  2401. del self._experts[bid][ename]
  2402. data_torch = torch.stack(datas, dim=0)
  2403. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2404. new_name = self.map_tensor_name(merged_name)
  2405. tensors.append((new_name, data_torch))
  2406. return tensors
  2407. else:
  2408. return []
  2409. return [(self.map_tensor_name(name), data_torch)]
  2410. def prepare_tensors(self):
  2411. super().prepare_tensors()
  2412. if self._experts is not None:
  2413. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2414. experts = [k for d in self._experts for k in d.keys()]
  2415. if len(experts) > 0:
  2416. raise ValueError(f"Unprocessed experts: {experts}")
  2417. @ModelBase.register("Qwen3ForCausalLM")
  2418. class Qwen3Model(Qwen2Model):
  2419. model_arch = gguf.MODEL_ARCH.QWEN3
  2420. @ModelBase.register("Qwen3MoeForCausalLM")
  2421. class Qwen3MoeModel(Qwen2MoeModel):
  2422. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2423. @ModelBase.register("GPT2LMHeadModel")
  2424. class GPT2Model(TextModel):
  2425. model_arch = gguf.MODEL_ARCH.GPT2
  2426. def set_gguf_parameters(self):
  2427. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2428. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2429. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2430. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2431. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2432. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2433. self.gguf_writer.add_file_type(self.ftype)
  2434. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2435. del bid # unused
  2436. tensors: list[tuple[str, Tensor]] = []
  2437. # we don't need these
  2438. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2439. return tensors
  2440. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2441. data_torch = data_torch.transpose(1, 0)
  2442. new_name = self.map_tensor_name(name)
  2443. tensors.append((new_name, data_torch))
  2444. return tensors
  2445. @ModelBase.register("PhiForCausalLM")
  2446. class Phi2Model(TextModel):
  2447. model_arch = gguf.MODEL_ARCH.PHI2
  2448. def set_gguf_parameters(self):
  2449. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2450. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2451. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2452. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2453. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2454. self.gguf_writer.add_embedding_length(n_embd)
  2455. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2456. self.gguf_writer.add_block_count(block_count)
  2457. self.gguf_writer.add_head_count(n_head)
  2458. self.gguf_writer.add_head_count_kv(n_head)
  2459. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2460. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2461. self.gguf_writer.add_file_type(self.ftype)
  2462. self.gguf_writer.add_add_bos_token(False)
  2463. @ModelBase.register("Phi3ForCausalLM")
  2464. class Phi3MiniModel(TextModel):
  2465. model_arch = gguf.MODEL_ARCH.PHI3
  2466. def set_vocab(self):
  2467. # Phi-4 model uses GPT2Tokenizer
  2468. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2469. if tokenizer_config_file.is_file():
  2470. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2471. tokenizer_config_json = json.load(f)
  2472. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2473. if tokenizer_class == 'GPT2Tokenizer':
  2474. return self._set_vocab_gpt2()
  2475. from sentencepiece import SentencePieceProcessor
  2476. tokenizer_path = self.dir_model / 'tokenizer.model'
  2477. if not tokenizer_path.is_file():
  2478. raise ValueError(f'Error: Missing {tokenizer_path}')
  2479. tokenizer = SentencePieceProcessor()
  2480. tokenizer.LoadFromFile(str(tokenizer_path))
  2481. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2482. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2483. scores: list[float] = [-10000.0] * vocab_size
  2484. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2485. for token_id in range(tokenizer.vocab_size()):
  2486. piece = tokenizer.IdToPiece(token_id)
  2487. text = piece.encode("utf-8")
  2488. score = tokenizer.GetScore(token_id)
  2489. toktype = SentencePieceTokenTypes.NORMAL
  2490. if tokenizer.IsUnknown(token_id):
  2491. toktype = SentencePieceTokenTypes.UNKNOWN
  2492. elif tokenizer.IsControl(token_id):
  2493. toktype = SentencePieceTokenTypes.CONTROL
  2494. elif tokenizer.IsUnused(token_id):
  2495. toktype = SentencePieceTokenTypes.UNUSED
  2496. elif tokenizer.IsByte(token_id):
  2497. toktype = SentencePieceTokenTypes.BYTE
  2498. tokens[token_id] = text
  2499. scores[token_id] = score
  2500. toktypes[token_id] = toktype
  2501. added_tokens_file = self.dir_model / 'added_tokens.json'
  2502. if added_tokens_file.is_file():
  2503. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2504. added_tokens_json = json.load(f)
  2505. for key in added_tokens_json:
  2506. token_id = added_tokens_json[key]
  2507. if token_id >= vocab_size:
  2508. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2509. continue
  2510. tokens[token_id] = key.encode("utf-8")
  2511. scores[token_id] = -1000.0
  2512. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2513. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2514. if tokenizer_config_file.is_file():
  2515. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2516. tokenizer_config_json = json.load(f)
  2517. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2518. for token_id, foken_data in added_tokens_decoder.items():
  2519. token_id = int(token_id)
  2520. token = foken_data["content"].encode("utf-8")
  2521. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2522. if tokens[token_id] != token:
  2523. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2524. tokens[token_id] = token
  2525. scores[token_id] = -1000.0
  2526. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2527. if foken_data.get("special"):
  2528. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2529. tokenizer_file = self.dir_model / 'tokenizer.json'
  2530. if tokenizer_file.is_file():
  2531. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2532. tokenizer_json = json.load(f)
  2533. added_tokens = tokenizer_json.get("added_tokens", [])
  2534. for foken_data in added_tokens:
  2535. token_id = int(foken_data["id"])
  2536. token = foken_data["content"].encode("utf-8")
  2537. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2538. if tokens[token_id] != token:
  2539. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2540. tokens[token_id] = token
  2541. scores[token_id] = -1000.0
  2542. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2543. if foken_data.get("special"):
  2544. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2545. self.gguf_writer.add_tokenizer_model("llama")
  2546. self.gguf_writer.add_tokenizer_pre("default")
  2547. self.gguf_writer.add_token_list(tokens)
  2548. self.gguf_writer.add_token_scores(scores)
  2549. self.gguf_writer.add_token_types(toktypes)
  2550. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2551. special_vocab.add_to_gguf(self.gguf_writer)
  2552. def set_gguf_parameters(self):
  2553. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2554. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2555. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2556. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2557. rms_eps = self.find_hparam(["rms_norm_eps"])
  2558. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2559. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2560. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2561. rope_dims = int(rot_pct * n_embd) // n_head
  2562. self.gguf_writer.add_context_length(max_pos_embds)
  2563. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2564. self.gguf_writer.add_embedding_length(n_embd)
  2565. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2566. self.gguf_writer.add_block_count(block_count)
  2567. self.gguf_writer.add_head_count(n_head)
  2568. self.gguf_writer.add_head_count_kv(n_head_kv)
  2569. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2570. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2571. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2572. self.gguf_writer.add_file_type(self.ftype)
  2573. sliding_window = self.hparams.get("sliding_window")
  2574. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2575. if sliding_window is None:
  2576. sliding_window = 0
  2577. self.gguf_writer.add_sliding_window(sliding_window)
  2578. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2579. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2580. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2581. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2582. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2583. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2584. rope_dims = int(rot_pct * n_embd) // n_head
  2585. # write rope scaling for long context (128k) model
  2586. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2587. if rope_scaling is None:
  2588. return
  2589. scale = max_pos_embds / orig_max_pos_embds
  2590. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2591. if len(rope_scaling_type) == 0:
  2592. raise KeyError('Missing the required key rope_scaling.type')
  2593. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2594. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2595. elif rope_scaling_type == 'yarn':
  2596. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2597. else:
  2598. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2599. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2600. long_factors = rope_scaling.get('long_factor', None)
  2601. short_factors = rope_scaling.get('short_factor', None)
  2602. if long_factors is None or short_factors is None:
  2603. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2604. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2605. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2606. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2607. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2608. @ModelBase.register("PhiMoEForCausalLM")
  2609. class PhiMoeModel(Phi3MiniModel):
  2610. model_arch = gguf.MODEL_ARCH.PHIMOE
  2611. _experts: list[dict[str, Tensor]] | None = None
  2612. def set_gguf_parameters(self):
  2613. super().set_gguf_parameters()
  2614. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2615. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2616. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2617. # process the experts separately
  2618. if name.find("block_sparse_moe.experts") != -1:
  2619. n_experts = self.hparams["num_local_experts"]
  2620. assert bid is not None
  2621. if self._experts is None:
  2622. self._experts = [{} for _ in range(self.block_count)]
  2623. self._experts[bid][name] = data_torch
  2624. if len(self._experts[bid]) >= n_experts * 3:
  2625. tensors: list[tuple[str, Tensor]] = []
  2626. # merge the experts into a single 3d tensor
  2627. for w_name in ["w1", "w2", "w3"]:
  2628. datas: list[Tensor] = []
  2629. for xid in range(n_experts):
  2630. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2631. datas.append(self._experts[bid][ename])
  2632. del self._experts[bid][ename]
  2633. data_torch = torch.stack(datas, dim=0)
  2634. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2635. new_name = self.map_tensor_name(merged_name)
  2636. tensors.append((new_name, data_torch))
  2637. return tensors
  2638. else:
  2639. return []
  2640. return [(self.map_tensor_name(name), data_torch)]
  2641. def prepare_tensors(self):
  2642. super().prepare_tensors()
  2643. if self._experts is not None:
  2644. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2645. experts = [k for d in self._experts for k in d.keys()]
  2646. if len(experts) > 0:
  2647. raise ValueError(f"Unprocessed experts: {experts}")
  2648. @ModelBase.register("PlamoForCausalLM")
  2649. class PlamoModel(TextModel):
  2650. model_arch = gguf.MODEL_ARCH.PLAMO
  2651. def set_vocab(self):
  2652. self._set_vocab_sentencepiece()
  2653. def set_gguf_parameters(self):
  2654. hparams = self.hparams
  2655. block_count = hparams["num_hidden_layers"]
  2656. self.gguf_writer.add_context_length(4096) # not in config.json
  2657. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2658. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2659. self.gguf_writer.add_block_count(block_count)
  2660. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2661. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2662. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2663. self.gguf_writer.add_file_type(self.ftype)
  2664. def shuffle_attn_q_weight(self, data_torch):
  2665. assert data_torch.size() == (5120, 5120)
  2666. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2667. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2668. data_torch = torch.reshape(data_torch, (5120, 5120))
  2669. return data_torch
  2670. def shuffle_attn_output_weight(self, data_torch):
  2671. assert data_torch.size() == (5120, 5120)
  2672. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2673. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2674. data_torch = torch.reshape(data_torch, (5120, 5120))
  2675. return data_torch
  2676. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2677. del bid # unused
  2678. new_name = self.map_tensor_name(name)
  2679. # shuffle for broadcasting of gqa in ggml_mul_mat
  2680. if new_name.endswith("attn_q.weight"):
  2681. data_torch = self.shuffle_attn_q_weight(data_torch)
  2682. elif new_name.endswith("attn_output.weight"):
  2683. data_torch = self.shuffle_attn_output_weight(data_torch)
  2684. return [(new_name, data_torch)]
  2685. @ModelBase.register("CodeShellForCausalLM")
  2686. class CodeShellModel(TextModel):
  2687. model_arch = gguf.MODEL_ARCH.CODESHELL
  2688. def set_gguf_parameters(self):
  2689. block_count = self.hparams["n_layer"]
  2690. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2691. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2692. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2693. self.gguf_writer.add_block_count(block_count)
  2694. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2695. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2696. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2697. self.gguf_writer.add_file_type(self.ftype)
  2698. self.gguf_writer.add_rope_freq_base(10000.0)
  2699. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2700. self.gguf_writer.add_rope_scaling_factor(1.0)
  2701. _has_tok_embd = False
  2702. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2703. del bid # unused
  2704. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2705. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2706. new_name = self.map_tensor_name(name)
  2707. # assuming token_embd.weight is seen before output.weight
  2708. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2709. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2710. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2711. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2712. self.tensor_names.remove("transformer.wte.weight")
  2713. elif new_name == tok_embd_name:
  2714. self._has_tok_embd = True
  2715. return [(new_name, data_torch)]
  2716. @ModelBase.register("InternLM2ForCausalLM")
  2717. class InternLM2Model(TextModel):
  2718. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2719. def set_vocab(self):
  2720. # (TODO): Is there a better way?
  2721. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2722. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2723. # recognized as an empty string in C++.
  2724. from sentencepiece import SentencePieceProcessor
  2725. from sentencepiece import sentencepiece_model_pb2 as model
  2726. tokenizer_path = self.dir_model / 'tokenizer.model'
  2727. tokens: list[bytes] = []
  2728. scores: list[float] = []
  2729. toktypes: list[int] = []
  2730. if not tokenizer_path.is_file():
  2731. logger.error(f'Error: Missing {tokenizer_path}')
  2732. sys.exit(1)
  2733. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2734. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2735. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2736. tokenizer = SentencePieceProcessor()
  2737. tokenizer.LoadFromFile(str(tokenizer_path))
  2738. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2739. for token_id in range(vocab_size):
  2740. piece = tokenizer.IdToPiece(token_id)
  2741. text = piece.encode("utf-8")
  2742. score = tokenizer.GetScore(token_id)
  2743. if text == b"\x00":
  2744. # (TODO): fixme
  2745. # Hack here and replace the \x00 characters.
  2746. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2747. text = "🐉".encode("utf-8")
  2748. toktype = SentencePieceTokenTypes.NORMAL
  2749. if tokenizer.IsUnknown(token_id):
  2750. toktype = SentencePieceTokenTypes.UNKNOWN
  2751. elif tokenizer.IsControl(token_id):
  2752. toktype = SentencePieceTokenTypes.CONTROL
  2753. elif tokenizer.IsUnused(token_id):
  2754. toktype = SentencePieceTokenTypes.UNUSED
  2755. elif tokenizer.IsByte(token_id):
  2756. toktype = SentencePieceTokenTypes.BYTE
  2757. # take care of ununsed raw token
  2758. if piece.startswith('[UNUSED'):
  2759. toktype = SentencePieceTokenTypes.UNUSED
  2760. tokens.append(text)
  2761. scores.append(score)
  2762. toktypes.append(toktype)
  2763. added_tokens_file = self.dir_model / 'added_tokens.json'
  2764. if added_tokens_file.is_file():
  2765. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2766. added_tokens_json = json.load(f)
  2767. for key in added_tokens_json:
  2768. tokens.append(key.encode("utf-8"))
  2769. scores.append(-1000.0)
  2770. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2771. chat_eos_token = '<|im_end|>'
  2772. chat_eos_token_id = None
  2773. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2774. if tokenizer_config_file.is_file():
  2775. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2776. tokenizer_config_json = json.load(f)
  2777. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2778. for token_id, foken_data in added_tokens_decoder.items():
  2779. token_id = int(token_id)
  2780. token = foken_data["content"]
  2781. if token == chat_eos_token:
  2782. chat_eos_token_id = token_id
  2783. token = token.encode("utf-8")
  2784. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2785. if tokens[token_id] != token:
  2786. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2787. tokens[token_id] = token
  2788. scores[token_id] = -1000.0
  2789. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2790. if foken_data.get("special"):
  2791. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2792. tokenizer_file = self.dir_model / 'tokenizer.json'
  2793. if tokenizer_file.is_file():
  2794. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2795. tokenizer_json = json.load(f)
  2796. added_tokens = tokenizer_json.get("added_tokens", [])
  2797. for foken_data in added_tokens:
  2798. token_id = int(foken_data["id"])
  2799. token = foken_data["content"]
  2800. if token == chat_eos_token:
  2801. chat_eos_token_id = token_id
  2802. token = token.encode("utf-8")
  2803. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2804. if tokens[token_id] != token:
  2805. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2806. tokens[token_id] = token
  2807. scores[token_id] = -1000.0
  2808. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2809. if foken_data.get("special"):
  2810. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2811. self.gguf_writer.add_tokenizer_model("llama")
  2812. self.gguf_writer.add_tokenizer_pre("default")
  2813. self.gguf_writer.add_token_list(tokens)
  2814. self.gguf_writer.add_token_scores(scores)
  2815. self.gguf_writer.add_token_types(toktypes)
  2816. self.gguf_writer.add_add_space_prefix(add_prefix)
  2817. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2818. old_eos = special_vocab.special_token_ids["eos"]
  2819. if chat_eos_token_id is not None:
  2820. # For the chat model, we replace the eos with '<|im_end|>'.
  2821. # TODO: this is a hack, should be fixed
  2822. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2823. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2824. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2825. " in chat mode so that the conversation can end normally.")
  2826. special_vocab.add_to_gguf(self.gguf_writer)
  2827. def set_gguf_parameters(self):
  2828. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2829. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2830. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2831. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2832. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2833. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2834. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2835. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2836. self.gguf_writer.add_file_type(self.ftype)
  2837. rope_scaling = self.hparams.get("rope_scaling") or {}
  2838. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2839. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2840. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2841. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2842. num_heads = self.hparams["num_attention_heads"]
  2843. num_kv_heads = self.hparams["num_key_value_heads"]
  2844. n_embd = self.hparams["hidden_size"]
  2845. q_per_kv = num_heads // num_kv_heads
  2846. head_dim = n_embd // num_heads
  2847. num_groups = num_heads // q_per_kv
  2848. name = name.replace("language_model.", "") # InternVL
  2849. if name.startswith("mlp") or name.startswith("vision_model"):
  2850. # skip visual tensors
  2851. return []
  2852. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2853. qkv = data_torch
  2854. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2855. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2856. # The model weights of q and k equire additional reshape.
  2857. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2858. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2859. v = v.reshape((-1, v.shape[-1]))
  2860. return [
  2861. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2862. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2863. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2864. ]
  2865. else:
  2866. return [(self.map_tensor_name(name), data_torch)]
  2867. @ModelBase.register("InternLM3ForCausalLM")
  2868. class InternLM3Model(TextModel):
  2869. model_arch = gguf.MODEL_ARCH.LLAMA
  2870. def set_vocab(self):
  2871. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2872. self.gguf_writer.add_tokenizer_model("llama")
  2873. self.gguf_writer.add_tokenizer_pre("default")
  2874. self.gguf_writer.add_token_list(tokens)
  2875. self.gguf_writer.add_token_scores(scores)
  2876. self.gguf_writer.add_token_types(toktypes)
  2877. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2878. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2879. if tokenizer_config_file.is_file():
  2880. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2881. tokenizer_config_json = json.load(f)
  2882. if "add_prefix_space" in tokenizer_config_json:
  2883. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2884. if "added_tokens_decoder" in tokenizer_config_json:
  2885. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2886. if token_data.get("special"):
  2887. token_id = int(token_id)
  2888. token = token_data["content"]
  2889. special_vocab._set_special_token(token, token_id)
  2890. # update eos token
  2891. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2892. special_vocab.special_token_ids["eos"] = token_id
  2893. special_vocab.add_to_gguf(self.gguf_writer)
  2894. def set_gguf_parameters(self):
  2895. super().set_gguf_parameters()
  2896. hparams = self.hparams
  2897. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2898. if "head_dim" in hparams:
  2899. rope_dim = hparams["head_dim"]
  2900. else:
  2901. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2902. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2903. rope_scaling = self.hparams.get("rope_scaling") or {}
  2904. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2905. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2906. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2907. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2908. n_head = self.hparams["num_attention_heads"]
  2909. n_kv_head = self.hparams.get("num_key_value_heads")
  2910. name = name.replace("language_model.", "") # InternVL
  2911. if name.startswith("mlp") or name.startswith("vision_model"):
  2912. # skip visual tensors
  2913. return []
  2914. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2915. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2916. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2917. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2918. return [(self.map_tensor_name(name), data_torch)]
  2919. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2920. class BertModel(TextModel):
  2921. model_arch = gguf.MODEL_ARCH.BERT
  2922. def __init__(self, *args, **kwargs):
  2923. super().__init__(*args, **kwargs)
  2924. self.vocab_size = None
  2925. def set_gguf_parameters(self):
  2926. super().set_gguf_parameters()
  2927. self.gguf_writer.add_causal_attention(False)
  2928. self._try_set_pooling_type()
  2929. def set_vocab(self):
  2930. tokens, toktypes, tokpre = self.get_vocab_base()
  2931. self.vocab_size = len(tokens)
  2932. # we need this to validate the size of the token_type embeddings
  2933. # though currently we are passing all zeros to the token_type embeddings
  2934. # "Sequence A" or "Sequence B"
  2935. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2936. # convert to phantom space vocab
  2937. def phantom(tok):
  2938. if tok.startswith("[") and tok.endswith("]"):
  2939. return tok
  2940. if tok.startswith("##"):
  2941. return tok[2:]
  2942. return "\u2581" + tok
  2943. tokens = list(map(phantom, tokens))
  2944. # add vocab to gguf
  2945. self.gguf_writer.add_tokenizer_model("bert")
  2946. self.gguf_writer.add_tokenizer_pre(tokpre)
  2947. self.gguf_writer.add_token_list(tokens)
  2948. self.gguf_writer.add_token_types(toktypes)
  2949. # handle special tokens
  2950. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2951. special_vocab.add_to_gguf(self.gguf_writer)
  2952. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2953. del bid # unused
  2954. if name.startswith("bert."):
  2955. name = name[5:]
  2956. if name.endswith(".gamma"):
  2957. name = name[:-6] + ".weight"
  2958. if name.endswith(".beta"):
  2959. name = name[:-5] + ".bias"
  2960. # we are only using BERT for embeddings so we don't need the pooling layer
  2961. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2962. return [] # we don't need these
  2963. if name.startswith("cls.predictions"):
  2964. return []
  2965. if name.startswith("cls.seq_relationship"):
  2966. return []
  2967. return [(self.map_tensor_name(name), data_torch)]
  2968. def _xlmroberta_tokenizer_init(self) -> None:
  2969. # we need the pad_token_id to know how to chop down position_embd matrix
  2970. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2971. self._position_offset = 1 + pad_token_id
  2972. if "max_position_embeddings" in self.hparams:
  2973. self.hparams["max_position_embeddings"] -= self._position_offset
  2974. else:
  2975. self._position_offset = None
  2976. def _xlmroberta_set_vocab(self) -> None:
  2977. # to avoid TypeError: Descriptors cannot be created directly
  2978. # exception when importing sentencepiece_model_pb2
  2979. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2980. from sentencepiece import SentencePieceProcessor
  2981. from sentencepiece import sentencepiece_model_pb2 as model
  2982. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2983. if not tokenizer_path.is_file():
  2984. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2985. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2986. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2987. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2988. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2989. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2990. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2991. tokenizer = SentencePieceProcessor()
  2992. tokenizer.LoadFromFile(str(tokenizer_path))
  2993. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2994. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2995. scores: list[float] = [-10000.0] * vocab_size
  2996. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2997. for token_id in range(tokenizer.vocab_size()):
  2998. piece = tokenizer.IdToPiece(token_id)
  2999. text = piece.encode("utf-8")
  3000. score = tokenizer.GetScore(token_id)
  3001. toktype = SentencePieceTokenTypes.NORMAL
  3002. if tokenizer.IsUnknown(token_id):
  3003. toktype = SentencePieceTokenTypes.UNKNOWN
  3004. elif tokenizer.IsControl(token_id):
  3005. toktype = SentencePieceTokenTypes.CONTROL
  3006. elif tokenizer.IsUnused(token_id):
  3007. toktype = SentencePieceTokenTypes.UNUSED
  3008. elif tokenizer.IsByte(token_id):
  3009. toktype = SentencePieceTokenTypes.BYTE
  3010. tokens[token_id] = text
  3011. scores[token_id] = score
  3012. toktypes[token_id] = toktype
  3013. if vocab_size > len(tokens):
  3014. pad_count = vocab_size - len(tokens)
  3015. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3016. for i in range(1, pad_count + 1):
  3017. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3018. scores.append(-1000.0)
  3019. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3020. # realign tokens (see HF tokenizer code)
  3021. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3022. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3023. toktypes = [
  3024. SentencePieceTokenTypes.CONTROL,
  3025. SentencePieceTokenTypes.CONTROL,
  3026. SentencePieceTokenTypes.CONTROL,
  3027. SentencePieceTokenTypes.UNKNOWN,
  3028. ] + toktypes[3:-1]
  3029. self.gguf_writer.add_tokenizer_model("t5")
  3030. self.gguf_writer.add_tokenizer_pre("default")
  3031. self.gguf_writer.add_token_list(tokens)
  3032. self.gguf_writer.add_token_scores(scores)
  3033. self.gguf_writer.add_token_types(toktypes)
  3034. self.gguf_writer.add_add_space_prefix(add_prefix)
  3035. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3036. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3037. if precompiled_charsmap:
  3038. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3039. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3040. special_vocab.add_to_gguf(self.gguf_writer)
  3041. self.gguf_writer.add_add_bos_token(True)
  3042. self.gguf_writer.add_add_eos_token(True)
  3043. @ModelBase.register("RobertaModel")
  3044. class RobertaModel(BertModel):
  3045. model_arch = gguf.MODEL_ARCH.BERT
  3046. def __init__(self, *args, **kwargs):
  3047. super().__init__(*args, **kwargs)
  3048. # we need the pad_token_id to know how to chop down position_embd matrix
  3049. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3050. self._position_offset = 1 + pad_token_id
  3051. if "max_position_embeddings" in self.hparams:
  3052. self.hparams["max_position_embeddings"] -= self._position_offset
  3053. else:
  3054. self._position_offset = None
  3055. def set_vocab(self):
  3056. """Support BPE tokenizers for roberta models"""
  3057. bpe_tok_path = self.dir_model / "tokenizer.json"
  3058. if bpe_tok_path.exists():
  3059. self._set_vocab_gpt2()
  3060. self.gguf_writer.add_add_bos_token(True)
  3061. self.gguf_writer.add_add_eos_token(True)
  3062. # we need this to validate the size of the token_type embeddings
  3063. # though currently we are passing all zeros to the token_type embeddings
  3064. # "Sequence A" or "Sequence B"
  3065. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3066. else:
  3067. return super().set_vocab()
  3068. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3069. # if name starts with "roberta.", remove the prefix
  3070. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3071. if name.startswith("roberta."):
  3072. name = name[8:]
  3073. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3074. if name == "embeddings.position_embeddings.weight":
  3075. if self._position_offset is not None:
  3076. data_torch = data_torch[self._position_offset:,:]
  3077. return super().modify_tensors(data_torch, name, bid)
  3078. @ModelBase.register("NomicBertModel")
  3079. class NomicBertModel(BertModel):
  3080. model_arch = gguf.MODEL_ARCH.BERT
  3081. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3082. hparams = kwargs.pop("hparams", None)
  3083. if hparams is None:
  3084. hparams = ModelBase.load_hparams(dir_model)
  3085. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3086. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3087. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3088. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3089. if self._tokenizer_is_xlmroberta:
  3090. self._xlmroberta_tokenizer_init()
  3091. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3092. if npos == 8192 and mtp == 2048:
  3093. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3094. elif npos == 2048 and mtp == 2048:
  3095. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3096. else:
  3097. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3098. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3099. # this doesn't do anything in the HF version
  3100. assert self.hparams["causal"] is False
  3101. # no bias tensors unless MoE
  3102. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3103. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3104. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3105. # norm at end of layer
  3106. assert self.hparams["prenorm"] is False
  3107. # standard RoPE
  3108. assert self.hparams["rotary_emb_fraction"] == 1.0
  3109. assert self.hparams["rotary_emb_interleaved"] is False
  3110. assert self.hparams["rotary_emb_scale_base"] is None
  3111. def set_vocab(self) -> None:
  3112. if self._tokenizer_is_xlmroberta:
  3113. return self._xlmroberta_set_vocab()
  3114. return super().set_vocab()
  3115. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3116. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3117. if "mlp.experts.bias" in name:
  3118. return [] # Explicitly return an empty list.
  3119. if "mlp.experts.mlp.w1" in name:
  3120. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3121. name += ".weight"
  3122. if "mlp.experts.mlp.w2" in name:
  3123. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3124. data_torch = data_torch.transpose(1, 2)
  3125. name += ".weight"
  3126. return [(self.map_tensor_name(name), data_torch)]
  3127. def set_gguf_parameters(self):
  3128. super().set_gguf_parameters()
  3129. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3130. if self.is_moe:
  3131. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3132. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3133. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3134. def _is_tokenizer_xlmroberta(self) -> bool:
  3135. with open(self.dir_model / "tokenizer.json") as f:
  3136. tokenizer_json = json.load(f)
  3137. toktyp = tokenizer_json["model"]["type"]
  3138. if toktyp == "Unigram":
  3139. return True
  3140. if toktyp == "WordPiece":
  3141. return False
  3142. raise ValueError(f"unknown tokenizer: {toktyp}")
  3143. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3144. class XLMRobertaModel(BertModel):
  3145. model_arch = gguf.MODEL_ARCH.BERT
  3146. def __init__(self, *args, **kwargs):
  3147. super().__init__(*args, **kwargs)
  3148. self._xlmroberta_tokenizer_init()
  3149. def set_vocab(self):
  3150. self._xlmroberta_set_vocab()
  3151. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3152. # if name starts with "roberta.", remove the prefix
  3153. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3154. if name.startswith("roberta."):
  3155. name = name[8:]
  3156. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3157. if name == "embeddings.position_embeddings.weight":
  3158. if self._position_offset is not None:
  3159. data_torch = data_torch[self._position_offset:,:]
  3160. return super().modify_tensors(data_torch, name, bid)
  3161. @ModelBase.register("GemmaForCausalLM")
  3162. class GemmaModel(TextModel):
  3163. model_arch = gguf.MODEL_ARCH.GEMMA
  3164. def set_vocab(self):
  3165. self._set_vocab_sentencepiece()
  3166. # TODO: these special tokens should be exported only for the CodeGemma family
  3167. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3168. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3169. special_vocab._set_special_token("prefix", 67)
  3170. special_vocab._set_special_token("suffix", 69)
  3171. special_vocab._set_special_token("middle", 68)
  3172. special_vocab._set_special_token("fsep", 70)
  3173. special_vocab._set_special_token("eot", 107)
  3174. special_vocab.chat_template = None # do not add it twice
  3175. special_vocab.add_to_gguf(self.gguf_writer)
  3176. self.gguf_writer.add_add_space_prefix(False)
  3177. def set_gguf_parameters(self):
  3178. hparams = self.hparams
  3179. block_count = hparams["num_hidden_layers"]
  3180. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3181. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3182. self.gguf_writer.add_block_count(block_count)
  3183. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3184. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3185. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3186. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3187. self.gguf_writer.add_key_length(hparams["head_dim"])
  3188. self.gguf_writer.add_value_length(hparams["head_dim"])
  3189. self.gguf_writer.add_file_type(self.ftype)
  3190. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3191. del bid # unused
  3192. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3193. # To prevent errors, skip loading lm_head.weight.
  3194. if name == "lm_head.weight":
  3195. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3196. return []
  3197. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3198. if name.endswith("norm.weight"):
  3199. data_torch = data_torch + 1
  3200. return [(self.map_tensor_name(name), data_torch)]
  3201. @ModelBase.register("Gemma2ForCausalLM")
  3202. class Gemma2Model(TextModel):
  3203. model_arch = gguf.MODEL_ARCH.GEMMA2
  3204. def set_vocab(self):
  3205. self._set_vocab_sentencepiece()
  3206. self.gguf_writer.add_add_space_prefix(False)
  3207. def set_gguf_parameters(self):
  3208. hparams = self.hparams
  3209. block_count = hparams["num_hidden_layers"]
  3210. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3211. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3212. self.gguf_writer.add_block_count(block_count)
  3213. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3214. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3215. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3216. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3217. self.gguf_writer.add_key_length(hparams["head_dim"])
  3218. self.gguf_writer.add_value_length(hparams["head_dim"])
  3219. self.gguf_writer.add_file_type(self.ftype)
  3220. self.gguf_writer.add_attn_logit_softcapping(
  3221. self.hparams["attn_logit_softcapping"]
  3222. )
  3223. self.gguf_writer.add_final_logit_softcapping(
  3224. self.hparams["final_logit_softcapping"]
  3225. )
  3226. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3227. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3228. del bid # unused
  3229. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3230. # To prevent errors, skip loading lm_head.weight.
  3231. if name == "lm_head.weight":
  3232. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3233. return []
  3234. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3235. if name.endswith("norm.weight"):
  3236. data_torch = data_torch + 1
  3237. return [(self.map_tensor_name(name), data_torch)]
  3238. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3239. class Gemma3Model(TextModel):
  3240. model_arch = gguf.MODEL_ARCH.GEMMA3
  3241. def set_vocab(self):
  3242. self._set_vocab_sentencepiece()
  3243. self.gguf_writer.add_add_space_prefix(False)
  3244. def set_gguf_parameters(self):
  3245. hparams = self.hparams
  3246. block_count = hparams["num_hidden_layers"]
  3247. # some default values are not specified in the hparams
  3248. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3249. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3250. self.gguf_writer.add_block_count(block_count)
  3251. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3252. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3253. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3254. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3255. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3256. self.gguf_writer.add_file_type(self.ftype)
  3257. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3258. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3259. assert hparams.get("attn_logit_softcapping") is None
  3260. assert hparams.get("final_logit_softcapping") is None
  3261. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3262. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3263. if hparams.get("rope_scaling") is not None:
  3264. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3265. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3266. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3267. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3269. del bid # unused
  3270. if name.startswith("language_model."):
  3271. name = name.replace("language_model.", "")
  3272. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3273. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3274. return [] # skip vision tensors
  3275. # remove OOV (out-of-vocabulary) rows in token_embd
  3276. if "embed_tokens.weight" in name:
  3277. vocab = self._create_vocab_sentencepiece()
  3278. tokens = vocab[0]
  3279. data_torch = data_torch[:len(tokens)]
  3280. # ref code in Gemma3RMSNorm
  3281. # output = output * (1.0 + self.weight.float())
  3282. if name.endswith("norm.weight"):
  3283. data_torch = data_torch + 1
  3284. return [(self.map_tensor_name(name), data_torch)]
  3285. @ModelBase.register("Gemma3ForConditionalGeneration")
  3286. class Gemma3VisionModel(MmprojModel):
  3287. def set_gguf_parameters(self):
  3288. super().set_gguf_parameters()
  3289. hparams = self.hparams
  3290. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3291. # default values below are taken from HF tranformers code
  3292. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3293. self.gguf_writer.add_vision_use_gelu(True)
  3294. # calculate proj_scale_factor (used by tinygemma3 test model)
  3295. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3296. n_per_side = int(image_seq_length ** 0.5)
  3297. image_size = self.hparams["image_size"]
  3298. patch_size = self.hparams["patch_size"]
  3299. proj_scale_factor = (image_size // patch_size) // n_per_side
  3300. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3301. # we only need to write this if it's not the default value
  3302. # in this case, we are converting a test model
  3303. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3304. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3305. del bid, new_name, n_dims # unused
  3306. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3307. if "input_projection" in name:
  3308. return gguf.GGMLQuantizationType.F16
  3309. if ".embeddings." in name:
  3310. return gguf.GGMLQuantizationType.F32
  3311. return False
  3312. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3313. del bid # unused
  3314. if "vision_model.head." in name:
  3315. return [] # skip redundant tensors for tinygemma3
  3316. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3317. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3318. # process vision tensors
  3319. name = name.replace("_weight", ".weight")
  3320. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3321. # the other norm values are part of SigLIP model, and they are already correct
  3322. # ref code: Gemma3RMSNorm
  3323. if "soft_emb_norm.weight" in name:
  3324. logger.info(f"Correcting norm value for '{name}'")
  3325. data_torch = data_torch + 1
  3326. return [(self.map_tensor_name(name), data_torch)]
  3327. return [] # skip other tensors
  3328. @ModelBase.register("Starcoder2ForCausalLM")
  3329. class StarCoder2Model(TextModel):
  3330. model_arch = gguf.MODEL_ARCH.STARCODER2
  3331. @ModelBase.register("Rwkv6ForCausalLM")
  3332. class Rwkv6Model(TextModel):
  3333. model_arch = gguf.MODEL_ARCH.RWKV6
  3334. def set_vocab(self):
  3335. self._set_vocab_rwkv_world()
  3336. def set_gguf_parameters(self):
  3337. block_count = self.hparams["num_hidden_layers"]
  3338. head_size = self.hparams["head_size"]
  3339. hidden_size = self.hparams["hidden_size"]
  3340. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3341. rescale_every_n_layers = self.hparams["rescale_every"]
  3342. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3343. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3344. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3345. # RWKV isn't context limited
  3346. self.gguf_writer.add_context_length(1048576)
  3347. self.gguf_writer.add_embedding_length(hidden_size)
  3348. self.gguf_writer.add_block_count(block_count)
  3349. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3350. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3351. self.gguf_writer.add_wkv_head_size(head_size)
  3352. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3353. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3354. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3355. self.gguf_writer.add_file_type(self.ftype)
  3356. # required by llama.cpp, unused
  3357. self.gguf_writer.add_head_count(0)
  3358. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3359. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3360. new_name = self.map_tensor_name(name)
  3361. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3362. new_name += ".weight"
  3363. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3364. data_torch = data_torch.transpose(0, 1)
  3365. if new_name.endswith("time_mix_w2.weight"):
  3366. data_torch = data_torch.permute(0, 2, 1)
  3367. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3368. data_torch = data_torch.squeeze()
  3369. try:
  3370. rescale_every_n_layers = self.hparams["rescale_every"]
  3371. if rescale_every_n_layers > 0:
  3372. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3373. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3374. except KeyError:
  3375. pass
  3376. # concat time_mix_lerp weights to reduce some cpu overhead
  3377. # also reduces the number of tensors in the model
  3378. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3379. try:
  3380. self.lerp_weights[bid][new_name] = data_torch
  3381. except KeyError:
  3382. self.lerp_weights[bid] = {new_name: data_torch}
  3383. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3384. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3385. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3386. yield (new_name, data)
  3387. return
  3388. yield (new_name, data_torch)
  3389. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3390. class RWKV6Qwen2Model(Rwkv6Model):
  3391. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3392. def set_vocab(self):
  3393. try:
  3394. self._set_vocab_sentencepiece()
  3395. except FileNotFoundError:
  3396. self._set_vocab_gpt2()
  3397. def set_gguf_parameters(self):
  3398. block_count = self.hparams["num_hidden_layers"]
  3399. num_attention_heads = self.hparams["num_attention_heads"]
  3400. num_key_value_heads = self.hparams["num_key_value_heads"]
  3401. hidden_size = self.hparams["hidden_size"]
  3402. head_size = hidden_size // num_attention_heads
  3403. rms_norm_eps = self.hparams["rms_norm_eps"]
  3404. intermediate_size = self.hparams["intermediate_size"]
  3405. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3406. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3407. # RWKV isn't context limited
  3408. self.gguf_writer.add_context_length(1048576)
  3409. self.gguf_writer.add_embedding_length(hidden_size)
  3410. self.gguf_writer.add_block_count(block_count)
  3411. self.gguf_writer.add_wkv_head_size(head_size)
  3412. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3413. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3414. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3415. self.gguf_writer.add_file_type(self.ftype)
  3416. # special parameters for time_mixing in RWKV6QWEN2
  3417. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3418. self.gguf_writer.add_token_shift_count(1)
  3419. # RWKV6QWEN2 use grouped key/value like GQA
  3420. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3421. # required by llama.cpp, unused
  3422. self.gguf_writer.add_head_count(0)
  3423. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3424. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3425. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3426. data = data.view(5, -1, data.shape[-1])
  3427. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3428. # permute them here to avoid code changes
  3429. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3430. if "w2" in new_name:
  3431. data = data.view(5, -1, data.shape[-1])
  3432. yield (new_name, data)
  3433. continue
  3434. yield (new_name, data)
  3435. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3436. class Rwkv7Model(TextModel):
  3437. model_arch = gguf.MODEL_ARCH.RWKV7
  3438. def set_vocab(self):
  3439. self._set_vocab_rwkv_world()
  3440. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3441. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3442. def set_gguf_parameters(self):
  3443. block_count = self.hparams["num_hidden_layers"]
  3444. try:
  3445. head_size = self.hparams["head_size"]
  3446. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3447. except KeyError:
  3448. head_size = self.hparams["head_dim"]
  3449. layer_norm_eps = self.hparams["norm_eps"]
  3450. hidden_size = self.hparams["hidden_size"]
  3451. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3452. # ICLR: In-Context-Learning-Rate
  3453. try:
  3454. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3455. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3456. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3457. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3458. except KeyError:
  3459. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3460. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3461. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3462. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3463. # RWKV isn't context limited
  3464. self.gguf_writer.add_context_length(1048576)
  3465. self.gguf_writer.add_embedding_length(hidden_size)
  3466. self.gguf_writer.add_block_count(block_count)
  3467. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3468. self.gguf_writer.add_wkv_head_size(head_size)
  3469. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3470. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3471. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3472. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3473. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3474. self.gguf_writer.add_file_type(self.ftype)
  3475. # required by llama.cpp, unused
  3476. self.gguf_writer.add_head_count(0)
  3477. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3478. lora_needs_transpose: bool = True
  3479. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3480. # unify tensor names here to make life easier
  3481. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3482. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3483. name = name.replace("time_mixer.", "")
  3484. # lora layer names in fla-hub's impl
  3485. if "_lora.lora" in name:
  3486. self.lora_needs_transpose = False
  3487. name = name.replace("_lora.lora.0.weight", "1.weight")
  3488. name = name.replace("_lora.lora.2.weight", "2.weight")
  3489. name = name.replace("_lora.lora.2.bias", "0.weight")
  3490. name = name.replace("feed_forward_norm", "ln2")
  3491. name = name.replace("g_norm", "ln_x")
  3492. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3493. # some models have dummy v0/v1/v2 on first layer while others don't
  3494. # ignore them all since they are not used
  3495. return
  3496. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3497. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3498. if bid is not None and "attention.x_" in name:
  3499. if "attention.x_x" in name:
  3500. # already concatenated
  3501. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3502. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3503. yield (new_name, data)
  3504. else:
  3505. try:
  3506. self.lerp_weights[bid][name] = data_torch
  3507. except KeyError:
  3508. self.lerp_weights[bid] = {name: data_torch}
  3509. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3510. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3511. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3512. yield (new_name, data)
  3513. return
  3514. else:
  3515. data_torch = data_torch.squeeze()
  3516. new_name = self.map_tensor_name(name)
  3517. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3518. new_name += ".weight"
  3519. if self.lora_needs_transpose and any(
  3520. new_name.endswith(t) for t in [
  3521. "time_mix_w1.weight", "time_mix_w2.weight",
  3522. "time_mix_a1.weight", "time_mix_a2.weight",
  3523. "time_mix_v1.weight", "time_mix_v2.weight",
  3524. "time_mix_g1.weight", "time_mix_g2.weight",
  3525. ]
  3526. ):
  3527. data_torch = data_torch.transpose(0, 1)
  3528. if 'r_k' in new_name:
  3529. data_torch = data_torch.flatten()
  3530. if bid == 0 and "time_mix_a" in new_name:
  3531. # dummy v0/v1/v2 on first layer
  3532. # easist way to make llama happy
  3533. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3534. yield (new_name, data_torch)
  3535. @ModelBase.register("RwkvHybridForCausalLM")
  3536. class ARwkv7Model(Rwkv7Model):
  3537. model_arch = gguf.MODEL_ARCH.ARWKV7
  3538. def set_vocab(self):
  3539. try:
  3540. self._set_vocab_sentencepiece()
  3541. except FileNotFoundError:
  3542. self._set_vocab_gpt2()
  3543. def set_gguf_parameters(self):
  3544. block_count = self.hparams["num_hidden_layers"]
  3545. hidden_size = self.hparams["hidden_size"]
  3546. head_size = self.hparams["head_size"]
  3547. rms_norm_eps = self.hparams["rms_norm_eps"]
  3548. intermediate_size = self.hparams["intermediate_size"]
  3549. wkv_has_gate = self.hparams["wkv_has_gate"]
  3550. assert self.hparams["wkv_version"] == 7
  3551. # ICLR: In-Context-Learning-Rate
  3552. lora_rank_decay = 64
  3553. lora_rank_iclr = 64
  3554. lora_rank_value_residual_mix = 32
  3555. lora_rank_gate = 128 if wkv_has_gate else 0
  3556. # RWKV isn't context limited
  3557. self.gguf_writer.add_context_length(1048576)
  3558. self.gguf_writer.add_embedding_length(hidden_size)
  3559. self.gguf_writer.add_block_count(block_count)
  3560. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3561. self.gguf_writer.add_wkv_head_size(head_size)
  3562. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3563. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3564. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3565. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3566. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3567. self.gguf_writer.add_file_type(self.ftype)
  3568. self.gguf_writer.add_token_shift_count(1)
  3569. # required by llama.cpp, unused
  3570. self.gguf_writer.add_head_count(0)
  3571. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3572. class MambaModel(TextModel):
  3573. model_arch = gguf.MODEL_ARCH.MAMBA
  3574. def set_vocab(self):
  3575. vocab_size = self.hparams["vocab_size"]
  3576. # Round vocab size to next multiple of 8
  3577. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3578. # pad using ceiling division
  3579. # ref: https://stackoverflow.com/a/17511341/22827863
  3580. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3581. self.hparams["vocab_size"] = vocab_size
  3582. if (self.dir_model / "tokenizer.json").is_file():
  3583. self._set_vocab_gpt2()
  3584. elif (self.dir_model / "tokenizer.model").is_file():
  3585. self._set_vocab_sentencepiece()
  3586. else:
  3587. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3588. self._set_vocab_builtin("gpt-neox", vocab_size)
  3589. def set_gguf_parameters(self):
  3590. d_model = self.find_hparam(["hidden_size", "d_model"])
  3591. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3592. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3593. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3594. # ceiling division
  3595. # ref: https://stackoverflow.com/a/17511341/22827863
  3596. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3597. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3598. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3599. use_dt_b_c_norm = False
  3600. # For falconmamba we do apply RMS norm on B / DT and C layers
  3601. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3602. use_dt_b_c_norm = True
  3603. # Fail early for models which don't have a block expansion factor of 2
  3604. assert d_inner == 2 * d_model
  3605. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3606. self.gguf_writer.add_embedding_length(d_model)
  3607. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3608. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3609. self.gguf_writer.add_block_count(self.block_count)
  3610. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3611. self.gguf_writer.add_ssm_inner_size(d_inner)
  3612. self.gguf_writer.add_ssm_state_size(d_state)
  3613. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3614. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3615. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3616. self.gguf_writer.add_file_type(self.ftype)
  3617. _tok_embd = None
  3618. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3619. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3620. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3621. new_name = self.map_tensor_name(name)
  3622. if name.endswith(".A_log"):
  3623. logger.debug("A_log --> A ==> " + new_name)
  3624. data_torch = -torch.exp(data_torch)
  3625. # [4 1 8192 1] -> [4 8192 1 1]
  3626. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3627. data_torch = data_torch.squeeze()
  3628. # assuming token_embd.weight is seen before output.weight
  3629. if self._tok_embd is not None and new_name == output_name:
  3630. if torch.equal(self._tok_embd, data_torch):
  3631. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3632. return []
  3633. elif new_name == tok_embd_name:
  3634. self._tok_embd = data_torch
  3635. return [(new_name, data_torch)]
  3636. @ModelBase.register("CohereForCausalLM")
  3637. class CommandR2Model(TextModel):
  3638. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3639. def __init__(self, *args, **kwargs):
  3640. super().__init__(*args, **kwargs)
  3641. # max_position_embeddings = 8192 in config.json but model was actually
  3642. # trained on 128k context length
  3643. # aya-23 models don't have model_max_length specified
  3644. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3645. def set_gguf_parameters(self):
  3646. super().set_gguf_parameters()
  3647. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3648. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3649. @ModelBase.register("Cohere2ForCausalLM")
  3650. class Cohere2Model(TextModel):
  3651. model_arch = gguf.MODEL_ARCH.COHERE2
  3652. def set_gguf_parameters(self):
  3653. super().set_gguf_parameters()
  3654. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3655. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3656. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3657. rotary_pct = self.hparams["rotary_pct"]
  3658. hidden_size = self.hparams["hidden_size"]
  3659. num_attention_heads = self.hparams["num_attention_heads"]
  3660. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3661. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3662. @ModelBase.register("OlmoForCausalLM")
  3663. @ModelBase.register("OLMoForCausalLM")
  3664. class OlmoModel(TextModel):
  3665. model_arch = gguf.MODEL_ARCH.OLMO
  3666. def set_gguf_parameters(self):
  3667. super().set_gguf_parameters()
  3668. self.gguf_writer.add_layer_norm_eps(1e-5)
  3669. clip_qkv = self.hparams.get("clip_qkv")
  3670. if clip_qkv is not None:
  3671. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3672. # Same as super class, but permuting q_proj, k_proj
  3673. # Copied from: LlamaModel
  3674. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3675. del bid # unused
  3676. n_head = self.hparams["num_attention_heads"]
  3677. n_kv_head = self.hparams.get("num_key_value_heads")
  3678. if name.endswith("q_proj.weight"):
  3679. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3680. if name.endswith("k_proj.weight"):
  3681. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3682. return [(self.map_tensor_name(name), data_torch)]
  3683. @ModelBase.register("Olmo2ForCausalLM")
  3684. class Olmo2Model(TextModel):
  3685. model_arch = gguf.MODEL_ARCH.OLMO2
  3686. @ModelBase.register("OlmoeForCausalLM")
  3687. class OlmoeModel(TextModel):
  3688. model_arch = gguf.MODEL_ARCH.OLMOE
  3689. def set_gguf_parameters(self):
  3690. super().set_gguf_parameters()
  3691. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3692. if (n_experts := self.hparams.get("num_experts")) is not None:
  3693. self.gguf_writer.add_expert_count(n_experts)
  3694. _experts: list[dict[str, Tensor]] | None = None
  3695. # Copied from: Qwen2MoeModel
  3696. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3697. # process the experts separately
  3698. if name.find("experts") != -1:
  3699. n_experts = self.hparams["num_experts"]
  3700. assert bid is not None
  3701. if self._experts is None:
  3702. self._experts = [{} for _ in range(self.block_count)]
  3703. self._experts[bid][name] = data_torch
  3704. if len(self._experts[bid]) >= n_experts * 3:
  3705. tensors: list[tuple[str, Tensor]] = []
  3706. # merge the experts into a single 3d tensor
  3707. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3708. datas: list[Tensor] = []
  3709. for xid in range(n_experts):
  3710. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3711. datas.append(self._experts[bid][ename])
  3712. del self._experts[bid][ename]
  3713. data_torch = torch.stack(datas, dim=0)
  3714. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3715. new_name = self.map_tensor_name(merged_name)
  3716. tensors.append((new_name, data_torch))
  3717. return tensors
  3718. else:
  3719. return []
  3720. return [(self.map_tensor_name(name), data_torch)]
  3721. # Copied from: Qwen2MoeModel
  3722. def prepare_tensors(self):
  3723. super().prepare_tensors()
  3724. if self._experts is not None:
  3725. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3726. experts = [k for d in self._experts for k in d.keys()]
  3727. if len(experts) > 0:
  3728. raise ValueError(f"Unprocessed experts: {experts}")
  3729. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3730. class JinaBertV2Model(BertModel):
  3731. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3732. def __init__(self, *args, **kwargs):
  3733. super().__init__(*args, **kwargs)
  3734. self.intermediate_size = self.hparams["intermediate_size"]
  3735. def get_tensors(self):
  3736. for name, data in super().get_tensors():
  3737. if 'gated_layer' in name:
  3738. d1 = data[:self.intermediate_size, :]
  3739. name1 = name.replace('gated_layers', 'gated_layers_w')
  3740. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3741. d2 = data[self.intermediate_size:, :]
  3742. name2 = name.replace('gated_layers', 'gated_layers_v')
  3743. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3744. yield name1, d1
  3745. yield name2, d2
  3746. continue
  3747. yield name, data
  3748. def set_vocab(self):
  3749. tokenizer_class = 'BertTokenizer'
  3750. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3751. tokenizer_class = json.load(f)['tokenizer_class']
  3752. if tokenizer_class == 'BertTokenizer':
  3753. super().set_vocab()
  3754. elif tokenizer_class == 'RobertaTokenizer':
  3755. self._set_vocab_gpt2()
  3756. self.gguf_writer.add_token_type_count(2)
  3757. else:
  3758. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3759. self.gguf_writer.add_add_bos_token(True)
  3760. self.gguf_writer.add_add_eos_token(True)
  3761. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3762. # if name starts with "bert.", remove the prefix
  3763. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3764. if name.startswith("bert."):
  3765. name = name[5:]
  3766. return super().modify_tensors(data_torch, name, bid)
  3767. @ModelBase.register("OpenELMForCausalLM")
  3768. class OpenELMModel(TextModel):
  3769. model_arch = gguf.MODEL_ARCH.OPENELM
  3770. @staticmethod
  3771. def _make_divisible(v: float | int, divisor: int) -> int:
  3772. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3773. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3774. # Make sure that round down does not go down by more than 10%.
  3775. if new_v < 0.9 * v:
  3776. new_v += divisor
  3777. return new_v
  3778. def __init__(self, *args, **kwargs):
  3779. super().__init__(*args, **kwargs)
  3780. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3781. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3782. self._n_embd: int = self.hparams["model_dim"]
  3783. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3784. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3785. self._ffn_dims: list[int] = [
  3786. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3787. for multiplier in ffn_multipliers
  3788. ]
  3789. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3790. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3791. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3792. def set_vocab(self):
  3793. try:
  3794. self._set_vocab_sentencepiece()
  3795. except FileNotFoundError:
  3796. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3797. def set_gguf_parameters(self):
  3798. n_embd = self._n_embd
  3799. head_dim = self.hparams["head_dim"]
  3800. rot_pct = 1.0
  3801. assert self.block_count == len(self._num_kv_heads)
  3802. assert self.block_count == len(self._num_query_heads)
  3803. assert self.block_count == len(self._ffn_dims)
  3804. self.gguf_writer.add_block_count(self.block_count)
  3805. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3806. self.gguf_writer.add_embedding_length(n_embd)
  3807. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3808. self.gguf_writer.add_head_count(self._num_query_heads)
  3809. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3810. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3811. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3812. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3813. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3814. self.gguf_writer.add_key_length(head_dim)
  3815. self.gguf_writer.add_value_length(head_dim)
  3816. self.gguf_writer.add_file_type(self.ftype)
  3817. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3818. if "n_layers" in keys:
  3819. return self.hparams["num_transformer_layers"]
  3820. return super().find_hparam(keys, optional)
  3821. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3822. # split ff
  3823. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3824. ff_dim = self._ffn_dims[bid]
  3825. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3826. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3827. return
  3828. yield (self.map_tensor_name(name), data_torch)
  3829. @ModelBase.register("ArcticForCausalLM")
  3830. class ArcticModel(TextModel):
  3831. model_arch = gguf.MODEL_ARCH.ARCTIC
  3832. def set_vocab(self):
  3833. # The reason for using a custom implementation here is that the
  3834. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3835. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3836. from sentencepiece import SentencePieceProcessor
  3837. tokenizer_path = self.dir_model / 'tokenizer.model'
  3838. if not tokenizer_path.is_file():
  3839. logger.error(f'Error: Missing {tokenizer_path}')
  3840. sys.exit(1)
  3841. # Read the whole vocabulary from the tokenizer.model file
  3842. tokenizer = SentencePieceProcessor()
  3843. tokenizer.LoadFromFile(str(tokenizer_path))
  3844. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3845. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3846. scores: list[float] = [-10000.0] * vocab_size
  3847. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3848. for token_id in range(tokenizer.vocab_size()):
  3849. piece = tokenizer.IdToPiece(token_id)
  3850. text = piece.encode("utf-8")
  3851. score = tokenizer.GetScore(token_id)
  3852. toktype = SentencePieceTokenTypes.NORMAL
  3853. if tokenizer.IsUnknown(token_id):
  3854. toktype = SentencePieceTokenTypes.UNKNOWN
  3855. elif tokenizer.IsControl(token_id):
  3856. toktype = SentencePieceTokenTypes.CONTROL
  3857. elif tokenizer.IsUnused(token_id):
  3858. toktype = SentencePieceTokenTypes.UNUSED
  3859. elif tokenizer.IsByte(token_id):
  3860. toktype = SentencePieceTokenTypes.BYTE
  3861. tokens[token_id] = text
  3862. scores[token_id] = score
  3863. toktypes[token_id] = toktype
  3864. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3865. # of information about added/redefined tokens and modify them accordingly.
  3866. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3867. if tokenizer_config_file.is_file():
  3868. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3869. tokenizer_config_json = json.load(f)
  3870. if "added_tokens_decoder" in tokenizer_config_json:
  3871. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3872. for token_id, token_json in added_tokens_decoder.items():
  3873. token_id = int(token_id)
  3874. if token_id >= vocab_size:
  3875. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3876. continue
  3877. token_content = token_json["content"]
  3878. token_type = SentencePieceTokenTypes.USER_DEFINED
  3879. token_score = -10000.0
  3880. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3881. # Set the score to 0.0 as in the original tokenizer.model
  3882. if ("special" in token_json) and token_json["special"]:
  3883. if token_content == tokenizer_config_json["unk_token"]:
  3884. token_type = SentencePieceTokenTypes.UNKNOWN
  3885. else:
  3886. token_type = SentencePieceTokenTypes.CONTROL
  3887. token_score = 0.0
  3888. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3889. tokens[token_id] = token_content.encode("utf-8")
  3890. toktypes[token_id] = token_type
  3891. scores[token_id] = token_score
  3892. self.gguf_writer.add_tokenizer_model("llama")
  3893. self.gguf_writer.add_tokenizer_pre("default")
  3894. self.gguf_writer.add_token_list(tokens)
  3895. self.gguf_writer.add_token_scores(scores)
  3896. self.gguf_writer.add_token_types(toktypes)
  3897. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3898. special_vocab.add_to_gguf(self.gguf_writer)
  3899. def set_gguf_parameters(self):
  3900. super().set_gguf_parameters()
  3901. hparams = self.hparams
  3902. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3903. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3904. _experts: list[dict[str, Tensor]] | None = None
  3905. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3906. n_head = self.hparams["num_attention_heads"]
  3907. n_kv_head = self.hparams.get("num_key_value_heads")
  3908. if name.endswith("q_proj.weight"):
  3909. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3910. if name.endswith("k_proj.weight"):
  3911. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3912. # process the experts separately
  3913. if name.find("block_sparse_moe.experts") != -1:
  3914. n_experts = self.hparams["num_local_experts"]
  3915. assert bid is not None
  3916. if self._experts is None:
  3917. self._experts = [{} for _ in range(self.block_count)]
  3918. self._experts[bid][name] = data_torch
  3919. if len(self._experts[bid]) >= n_experts * 3:
  3920. tensors: list[tuple[str, Tensor]] = []
  3921. # merge the experts into a single 3d tensor
  3922. for wid in ["w1", "w2", "w3"]:
  3923. datas: list[Tensor] = []
  3924. for xid in range(n_experts):
  3925. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3926. datas.append(self._experts[bid][ename])
  3927. del self._experts[bid][ename]
  3928. data_torch = torch.stack(datas, dim=0)
  3929. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3930. new_name = self.map_tensor_name(merged_name)
  3931. tensors.append((new_name, data_torch))
  3932. return tensors
  3933. else:
  3934. return []
  3935. return [(self.map_tensor_name(name), data_torch)]
  3936. def prepare_tensors(self):
  3937. super().prepare_tensors()
  3938. if self._experts is not None:
  3939. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3940. experts = [k for d in self._experts for k in d.keys()]
  3941. if len(experts) > 0:
  3942. raise ValueError(f"Unprocessed experts: {experts}")
  3943. @ModelBase.register("DeepseekForCausalLM")
  3944. class DeepseekModel(TextModel):
  3945. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3946. def set_vocab(self):
  3947. try:
  3948. self._set_vocab_sentencepiece()
  3949. except FileNotFoundError:
  3950. self._set_vocab_gpt2()
  3951. def set_gguf_parameters(self):
  3952. super().set_gguf_parameters()
  3953. hparams = self.hparams
  3954. if "head_dim" in hparams:
  3955. rope_dim = hparams["head_dim"]
  3956. else:
  3957. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3958. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3959. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3960. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3961. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3962. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3963. self.gguf_writer.add_expert_weights_scale(1.0)
  3964. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3965. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3966. _experts: list[dict[str, Tensor]] | None = None
  3967. @staticmethod
  3968. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3969. if n_head_kv is not None and n_head != n_head_kv:
  3970. n_head = n_head_kv
  3971. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3972. .swapaxes(1, 2)
  3973. .reshape(weights.shape))
  3974. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3975. n_head = self.hparams["num_attention_heads"]
  3976. n_kv_head = self.hparams.get("num_key_value_heads")
  3977. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3978. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3979. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3980. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3981. # process the experts separately
  3982. if name.find("mlp.experts") != -1:
  3983. n_experts = self.hparams["n_routed_experts"]
  3984. assert bid is not None
  3985. if self._experts is None:
  3986. self._experts = [{} for _ in range(self.block_count)]
  3987. self._experts[bid][name] = data_torch
  3988. if len(self._experts[bid]) >= n_experts * 3:
  3989. tensors: list[tuple[str, Tensor]] = []
  3990. # merge the experts into a single 3d tensor
  3991. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3992. datas: list[Tensor] = []
  3993. for xid in range(n_experts):
  3994. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3995. datas.append(self._experts[bid][ename])
  3996. del self._experts[bid][ename]
  3997. data_torch = torch.stack(datas, dim=0)
  3998. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3999. new_name = self.map_tensor_name(merged_name)
  4000. tensors.append((new_name, data_torch))
  4001. return tensors
  4002. else:
  4003. return []
  4004. return [(self.map_tensor_name(name), data_torch)]
  4005. def prepare_tensors(self):
  4006. super().prepare_tensors()
  4007. if self._experts is not None:
  4008. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4009. experts = [k for d in self._experts for k in d.keys()]
  4010. if len(experts) > 0:
  4011. raise ValueError(f"Unprocessed experts: {experts}")
  4012. @ModelBase.register("DeepseekV2ForCausalLM")
  4013. @ModelBase.register("DeepseekV3ForCausalLM")
  4014. class DeepseekV2Model(TextModel):
  4015. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4016. def set_vocab(self):
  4017. self._set_vocab_gpt2()
  4018. def set_gguf_parameters(self):
  4019. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4020. self.hparams["num_key_value_heads"] = 1
  4021. super().set_gguf_parameters()
  4022. hparams = self.hparams
  4023. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4024. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4025. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4026. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4027. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4028. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4029. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4030. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4031. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4032. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4033. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4034. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4035. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4036. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4037. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4038. if hparams["scoring_func"] == "sigmoid":
  4039. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4040. elif hparams["scoring_func"] == "softmax":
  4041. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4042. else:
  4043. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4044. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4045. rope_scaling = self.hparams.get("rope_scaling") or {}
  4046. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4047. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4048. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4049. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4050. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4051. _experts: list[dict[str, Tensor]] | None = None
  4052. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4053. # rename e_score_correction_bias tensors
  4054. if name.endswith("e_score_correction_bias"):
  4055. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4056. # skip Multi-Token Prediction (MTP) layers
  4057. block_count = self.hparams["num_hidden_layers"]
  4058. match = re.match(r"model.layers.(\d+)", name)
  4059. if match and int(match.group(1)) >= block_count:
  4060. return []
  4061. # process the experts separately
  4062. if name.find("mlp.experts") != -1:
  4063. n_experts = self.hparams["n_routed_experts"]
  4064. assert bid is not None
  4065. if self._experts is None:
  4066. self._experts = [{} for _ in range(self.block_count)]
  4067. self._experts[bid][name] = data_torch
  4068. if len(self._experts[bid]) >= n_experts * 3:
  4069. tensors: list[tuple[str, Tensor]] = []
  4070. # merge the experts into a single 3d tensor
  4071. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4072. datas: list[Tensor] = []
  4073. for xid in range(n_experts):
  4074. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4075. datas.append(self._experts[bid][ename])
  4076. del self._experts[bid][ename]
  4077. data_torch = torch.stack(datas, dim=0)
  4078. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4079. new_name = self.map_tensor_name(merged_name)
  4080. tensors.append((new_name, data_torch))
  4081. return tensors
  4082. else:
  4083. return []
  4084. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4085. if name.endswith("kv_b_proj.weight"):
  4086. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4087. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4088. n_head_kv = self.hparams["num_key_value_heads"]
  4089. v_head_dim = self.hparams["v_head_dim"]
  4090. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4091. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4092. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4093. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4094. k_b = k_b.transpose(1, 2)
  4095. return [
  4096. (self.map_tensor_name(name_kb), k_b),
  4097. (self.map_tensor_name(name_vb), v_b)
  4098. ]
  4099. return [(self.map_tensor_name(name), data_torch)]
  4100. def prepare_tensors(self):
  4101. super().prepare_tensors()
  4102. if self._experts is not None:
  4103. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4104. experts = [k for d in self._experts for k in d.keys()]
  4105. if len(experts) > 0:
  4106. raise ValueError(f"Unprocessed experts: {experts}")
  4107. @ModelBase.register("PLMForCausalLM")
  4108. class PLMModel(TextModel):
  4109. model_arch = gguf.MODEL_ARCH.PLM
  4110. def set_vocab(self):
  4111. self._set_vocab_gpt2()
  4112. def set_gguf_parameters(self):
  4113. super().set_gguf_parameters()
  4114. hparams = self.hparams
  4115. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4116. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4117. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4118. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4119. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4120. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4121. return [(self.map_tensor_name(name), data_torch)]
  4122. def prepare_tensors(self):
  4123. super().prepare_tensors()
  4124. @ModelBase.register("T5WithLMHeadModel")
  4125. @ModelBase.register("T5ForConditionalGeneration")
  4126. @ModelBase.register("MT5ForConditionalGeneration")
  4127. @ModelBase.register("UMT5ForConditionalGeneration")
  4128. class T5Model(TextModel):
  4129. model_arch = gguf.MODEL_ARCH.T5
  4130. def __init__(self, *args, **kwargs):
  4131. super().__init__(*args, **kwargs)
  4132. self.shared_token_embeddings_found = False
  4133. def set_vocab(self):
  4134. # to avoid TypeError: Descriptors cannot be created directly
  4135. # exception when importing sentencepiece_model_pb2
  4136. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4137. from sentencepiece import SentencePieceProcessor
  4138. from sentencepiece import sentencepiece_model_pb2 as model
  4139. tokenizer_path = self.dir_model / 'tokenizer.model'
  4140. # many older models use spiece.model tokenizer model filename
  4141. if not tokenizer_path.is_file():
  4142. tokenizer_path = self.dir_model / 'spiece.model'
  4143. if not tokenizer_path.is_file():
  4144. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4145. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4146. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4147. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4148. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4149. # assure the tokenizer model file name is correct
  4150. assert tokenizer_path.name == 'tokenizer.model'
  4151. return self._set_vocab_sentencepiece()
  4152. else:
  4153. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4154. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4155. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4156. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4157. tokenizer = SentencePieceProcessor()
  4158. tokenizer.LoadFromFile(str(tokenizer_path))
  4159. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4160. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4161. scores: list[float] = [-10000.0] * vocab_size
  4162. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4163. for token_id in range(tokenizer.vocab_size()):
  4164. piece = tokenizer.IdToPiece(token_id)
  4165. text = piece.encode("utf-8")
  4166. score = tokenizer.GetScore(token_id)
  4167. toktype = SentencePieceTokenTypes.NORMAL
  4168. if tokenizer.IsUnknown(token_id):
  4169. toktype = SentencePieceTokenTypes.UNKNOWN
  4170. elif tokenizer.IsControl(token_id):
  4171. toktype = SentencePieceTokenTypes.CONTROL
  4172. elif tokenizer.IsUnused(token_id):
  4173. toktype = SentencePieceTokenTypes.UNUSED
  4174. elif tokenizer.IsByte(token_id):
  4175. toktype = SentencePieceTokenTypes.BYTE
  4176. tokens[token_id] = text
  4177. scores[token_id] = score
  4178. toktypes[token_id] = toktype
  4179. added_tokens_file = self.dir_model / 'added_tokens.json'
  4180. if added_tokens_file.is_file():
  4181. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4182. added_tokens_json = json.load(f)
  4183. for key in added_tokens_json:
  4184. token_id = added_tokens_json[key]
  4185. if token_id >= vocab_size:
  4186. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4187. continue
  4188. tokens[token_id] = key.encode("utf-8")
  4189. scores[token_id] = -1000.0
  4190. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4191. if vocab_size > len(tokens):
  4192. pad_count = vocab_size - len(tokens)
  4193. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4194. for i in range(1, pad_count + 1):
  4195. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4196. scores.append(-1000.0)
  4197. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4198. self.gguf_writer.add_tokenizer_model("t5")
  4199. self.gguf_writer.add_tokenizer_pre("default")
  4200. self.gguf_writer.add_token_list(tokens)
  4201. self.gguf_writer.add_token_scores(scores)
  4202. self.gguf_writer.add_token_types(toktypes)
  4203. self.gguf_writer.add_add_space_prefix(add_prefix)
  4204. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4205. if precompiled_charsmap:
  4206. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4207. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4208. special_vocab.add_to_gguf(self.gguf_writer)
  4209. self.gguf_writer.add_add_bos_token(False)
  4210. self.gguf_writer.add_add_eos_token(True)
  4211. def set_gguf_parameters(self):
  4212. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4213. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4214. n_ctx = 512
  4215. self.gguf_writer.add_context_length(n_ctx)
  4216. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4217. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4218. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4219. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4220. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4221. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4222. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4223. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4224. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4225. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4226. self.gguf_writer.add_file_type(self.ftype)
  4227. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4228. del bid # unused
  4229. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4230. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4231. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4232. # and decoder and ignore the remaining ones.
  4233. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4234. if not self.shared_token_embeddings_found:
  4235. name = "shared.weight"
  4236. self.shared_token_embeddings_found = True
  4237. else:
  4238. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4239. return []
  4240. return [(self.map_tensor_name(name), data_torch)]
  4241. @ModelBase.register("T5EncoderModel")
  4242. class T5EncoderModel(TextModel):
  4243. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4244. def __init__(self, *args, **kwargs):
  4245. super().__init__(*args, **kwargs)
  4246. self.shared_token_embeddings_found = False
  4247. def set_vocab(self):
  4248. # to avoid TypeError: Descriptors cannot be created directly
  4249. # exception when importing sentencepiece_model_pb2
  4250. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4251. from sentencepiece import SentencePieceProcessor
  4252. from sentencepiece import sentencepiece_model_pb2 as model
  4253. tokenizer_path = self.dir_model / 'tokenizer.model'
  4254. # many older models use spiece.model tokenizer model filename
  4255. if not tokenizer_path.is_file():
  4256. tokenizer_path = self.dir_model / 'spiece.model'
  4257. if not tokenizer_path.is_file():
  4258. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4259. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4260. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4261. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4262. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4263. # assure the tokenizer model file name is correct
  4264. assert tokenizer_path.name == 'tokenizer.model'
  4265. return self._set_vocab_sentencepiece()
  4266. else:
  4267. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4268. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4269. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4270. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4271. tokenizer = SentencePieceProcessor()
  4272. tokenizer.LoadFromFile(str(tokenizer_path))
  4273. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4274. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4275. scores: list[float] = [-10000.0] * vocab_size
  4276. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4277. for token_id in range(tokenizer.vocab_size()):
  4278. piece = tokenizer.IdToPiece(token_id)
  4279. text = piece.encode("utf-8")
  4280. score = tokenizer.GetScore(token_id)
  4281. toktype = SentencePieceTokenTypes.NORMAL
  4282. if tokenizer.IsUnknown(token_id):
  4283. toktype = SentencePieceTokenTypes.UNKNOWN
  4284. elif tokenizer.IsControl(token_id):
  4285. toktype = SentencePieceTokenTypes.CONTROL
  4286. elif tokenizer.IsUnused(token_id):
  4287. toktype = SentencePieceTokenTypes.UNUSED
  4288. elif tokenizer.IsByte(token_id):
  4289. toktype = SentencePieceTokenTypes.BYTE
  4290. tokens[token_id] = text
  4291. scores[token_id] = score
  4292. toktypes[token_id] = toktype
  4293. added_tokens_file = self.dir_model / 'added_tokens.json'
  4294. if added_tokens_file.is_file():
  4295. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4296. added_tokens_json = json.load(f)
  4297. for key in added_tokens_json:
  4298. token_id = added_tokens_json[key]
  4299. if token_id >= vocab_size:
  4300. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4301. continue
  4302. tokens[token_id] = key.encode("utf-8")
  4303. scores[token_id] = -1000.0
  4304. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4305. if vocab_size > len(tokens):
  4306. pad_count = vocab_size - len(tokens)
  4307. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4308. for i in range(1, pad_count + 1):
  4309. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4310. scores.append(-1000.0)
  4311. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4312. self.gguf_writer.add_tokenizer_model("t5")
  4313. self.gguf_writer.add_tokenizer_pre("default")
  4314. self.gguf_writer.add_token_list(tokens)
  4315. self.gguf_writer.add_token_scores(scores)
  4316. self.gguf_writer.add_token_types(toktypes)
  4317. self.gguf_writer.add_add_space_prefix(add_prefix)
  4318. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4319. if precompiled_charsmap:
  4320. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4321. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4322. special_vocab.add_to_gguf(self.gguf_writer)
  4323. self.gguf_writer.add_add_bos_token(False)
  4324. self.gguf_writer.add_add_eos_token(True)
  4325. def set_gguf_parameters(self):
  4326. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4327. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4328. n_ctx = 512
  4329. self.gguf_writer.add_context_length(n_ctx)
  4330. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4331. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4332. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4333. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4334. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4335. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4336. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4337. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4338. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4339. self.gguf_writer.add_file_type(self.ftype)
  4340. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4341. del bid # unused
  4342. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4343. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4344. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4345. # and decoder and ignore the remaining ones.
  4346. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4347. if not self.shared_token_embeddings_found:
  4348. name = "shared.weight"
  4349. self.shared_token_embeddings_found = True
  4350. else:
  4351. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4352. return []
  4353. return [(self.map_tensor_name(name), data_torch)]
  4354. @ModelBase.register("JAISLMHeadModel")
  4355. class JaisModel(TextModel):
  4356. model_arch = gguf.MODEL_ARCH.JAIS
  4357. def __init__(self, *args, **kwargs):
  4358. super().__init__(*args, **kwargs)
  4359. # SwigLU activation
  4360. assert self.hparams["activation_function"] == "swiglu"
  4361. # ALiBi position embedding
  4362. assert self.hparams["position_embedding_type"] == "alibi"
  4363. # Embeddings scale
  4364. self.embeddings_scale = 1.0
  4365. if 'mup_embeddings_scale' in self.hparams:
  4366. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4367. elif 'embeddings_scale' in self.hparams:
  4368. self.embeddings_scale = self.hparams['embeddings_scale']
  4369. else:
  4370. assert False
  4371. self.width_scale = 1.0
  4372. if 'mup_output_alpha' in self.hparams:
  4373. assert 'mup_width_scale' in self.hparams
  4374. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4375. elif 'width_scale' in self.hparams:
  4376. self.width_scale = self.hparams['width_scale']
  4377. else:
  4378. assert False
  4379. self.max_alibi_bias = 8.0
  4380. def set_vocab(self):
  4381. self._set_vocab_gpt2()
  4382. def set_gguf_parameters(self):
  4383. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4384. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4385. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4386. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4387. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4388. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4389. self.gguf_writer.add_file_type(self.ftype)
  4390. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4391. del bid # unused
  4392. tensors: list[tuple[str, Tensor]] = []
  4393. # we don't need these
  4394. if name.endswith((".attn.bias")):
  4395. return tensors
  4396. if name.endswith(("relative_pe.slopes")):
  4397. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4398. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4399. # but Jais's PyTorch model simply precalculates the slope values and places them
  4400. # in relative_pes.slopes
  4401. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4402. first_val = float(data_torch[0].item())
  4403. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4404. return tensors
  4405. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4406. data_torch = data_torch.transpose(1, 0)
  4407. new_name = self.map_tensor_name(name)
  4408. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4409. tensors.append((new_name, data_torch * self.embeddings_scale))
  4410. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4411. tensors.append((new_name, data_torch * self.width_scale))
  4412. else:
  4413. tensors.append((new_name, data_torch))
  4414. return tensors
  4415. def prepare_tensors(self):
  4416. super().prepare_tensors()
  4417. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4418. @ModelBase.register("Glm4ForCausalLM")
  4419. class Glm4Model(TextModel):
  4420. model_arch = gguf.MODEL_ARCH.GLM4
  4421. def set_vocab(self):
  4422. from transformers import AutoTokenizer
  4423. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4424. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4425. tokens, toktypes, tokpre = self.get_vocab_base()
  4426. self.gguf_writer.add_tokenizer_model("gpt2")
  4427. self.gguf_writer.add_tokenizer_pre(tokpre)
  4428. self.gguf_writer.add_token_list(tokens)
  4429. self.gguf_writer.add_token_types(toktypes)
  4430. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4431. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4432. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4433. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4434. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4435. special_vocab.add_to_gguf(self.gguf_writer)
  4436. def set_gguf_parameters(self):
  4437. super().set_gguf_parameters()
  4438. rope_dim = self.hparams["head_dim"]
  4439. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4440. rope_scaling = self.hparams.get("rope_scaling") or {}
  4441. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4442. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4443. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4444. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4445. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4446. class ChatGLMModel(TextModel):
  4447. model_arch = gguf.MODEL_ARCH.CHATGLM
  4448. def set_vocab_chatglm3(self):
  4449. dir_model = self.dir_model
  4450. hparams = self.hparams
  4451. tokens: list[bytes] = []
  4452. toktypes: list[int] = []
  4453. scores: list[float] = []
  4454. from transformers import AutoTokenizer
  4455. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4456. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4457. assert max(tokenizer.get_vocab().values()) < vocab_size
  4458. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4459. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4460. for token_id in range(vocab_size):
  4461. piece = tokenizer._convert_id_to_token(token_id)
  4462. if token_id == 0:
  4463. piece = "<unk>"
  4464. elif token_id == 1:
  4465. piece = "<bos>"
  4466. elif token_id == 2:
  4467. piece = "<eos>"
  4468. text = piece.encode("utf-8")
  4469. score = 0.0
  4470. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4471. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4472. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4473. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4474. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4475. if piece in special_tokens:
  4476. toktype = SentencePieceTokenTypes.CONTROL
  4477. elif len(piece) == 0:
  4478. text = f"[PAD{token_id}]".encode("utf-8")
  4479. toktype = SentencePieceTokenTypes.UNUSED
  4480. else:
  4481. toktype = SentencePieceTokenTypes.USER_DEFINED
  4482. tokens.append(text)
  4483. scores.append(score)
  4484. toktypes.append(toktype)
  4485. continue
  4486. toktype = SentencePieceTokenTypes.NORMAL
  4487. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4488. toktype = SentencePieceTokenTypes.UNKNOWN
  4489. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4490. toktype = SentencePieceTokenTypes.CONTROL
  4491. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4492. toktype = SentencePieceTokenTypes.UNUSED
  4493. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4494. toktype = SentencePieceTokenTypes.BYTE
  4495. tokens.append(text)
  4496. scores.append(score)
  4497. toktypes.append(toktype)
  4498. self.gguf_writer.add_tokenizer_model("llama")
  4499. # glm3 needs prefix and suffix formatted as:
  4500. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4501. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4502. self.gguf_writer.add_token_list(tokens)
  4503. self.gguf_writer.add_token_scores(scores)
  4504. self.gguf_writer.add_token_types(toktypes)
  4505. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4506. special_vocab.add_to_gguf(self.gguf_writer)
  4507. @staticmethod
  4508. def token_bytes_to_string(b):
  4509. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4510. byte_encoder = bytes_to_unicode()
  4511. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4512. @staticmethod
  4513. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4514. parts = [bytes([b]) for b in token]
  4515. while True:
  4516. min_idx = None
  4517. min_rank = None
  4518. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4519. rank = mergeable_ranks.get(pair[0] + pair[1])
  4520. if rank is not None and (min_rank is None or rank < min_rank):
  4521. min_idx = i
  4522. min_rank = rank
  4523. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4524. break
  4525. assert min_idx is not None
  4526. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4527. return parts
  4528. def set_vocab(self):
  4529. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4530. self.set_vocab_chatglm3()
  4531. return
  4532. dir_model = self.dir_model
  4533. hparams = self.hparams
  4534. tokens: list[str] = []
  4535. toktypes: list[int] = []
  4536. from transformers import AutoTokenizer
  4537. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4538. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4539. assert max(tokenizer.get_vocab().values()) < vocab_size
  4540. tokens, toktypes, tokpre = self.get_vocab_base()
  4541. self.gguf_writer.add_tokenizer_model("gpt2")
  4542. self.gguf_writer.add_tokenizer_pre(tokpre)
  4543. self.gguf_writer.add_token_list(tokens)
  4544. self.gguf_writer.add_token_types(toktypes)
  4545. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4546. # only add special tokens when they were not already loaded from config.json
  4547. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4548. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4549. # this one is usually not in config.json anyway
  4550. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4551. special_vocab.add_to_gguf(self.gguf_writer)
  4552. def set_gguf_parameters(self):
  4553. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4554. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4555. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4556. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4557. self.gguf_writer.add_embedding_length(n_embed)
  4558. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4559. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4560. self.gguf_writer.add_head_count(n_head)
  4561. self.gguf_writer.add_head_count_kv(n_head_kv)
  4562. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4563. self.gguf_writer.add_file_type(self.ftype)
  4564. if "attention_dim" in self.hparams:
  4565. rope_dim = self.hparams["attention_dim"]
  4566. else:
  4567. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4568. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4569. self.gguf_writer.add_add_bos_token(False)
  4570. rope_freq = 10000
  4571. if "rope_ratio" in self.hparams:
  4572. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4573. self.gguf_writer.add_rope_freq_base(rope_freq)
  4574. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4575. del bid # unused
  4576. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4577. return []
  4578. name = name.removeprefix("transformer.")
  4579. return [(self.map_tensor_name(name), data_torch)]
  4580. @ModelBase.register("NemotronForCausalLM")
  4581. class NemotronModel(TextModel):
  4582. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4583. def set_vocab(self):
  4584. self._set_vocab_sentencepiece()
  4585. self.gguf_writer.add_pad_token_id(0)
  4586. self.gguf_writer.add_unk_token_id(1)
  4587. def set_gguf_parameters(self):
  4588. super().set_gguf_parameters()
  4589. hparams = self.hparams
  4590. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4591. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4592. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4593. # * Partial RoPE
  4594. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4595. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4596. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4597. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4598. # * RopeScaling for Nemotron
  4599. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4600. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4601. else:
  4602. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4603. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4604. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4605. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4606. # model.layers.{l}.input_layernorm.weight
  4607. # model.layers.{l}.post_attention_layernorm.weight
  4608. # model.norm.weight
  4609. if name.endswith("norm.weight"):
  4610. data_torch = data_torch + 1
  4611. return [(self.map_tensor_name(name), data_torch)]
  4612. @ModelBase.register("ExaoneForCausalLM")
  4613. class ExaoneModel(TextModel):
  4614. model_arch = gguf.MODEL_ARCH.EXAONE
  4615. def set_gguf_parameters(self):
  4616. hparams = self.hparams
  4617. assert (hparams["activation_function"] == "silu")
  4618. max_position_embeddings = hparams["max_position_embeddings"]
  4619. embed_dim = hparams["hidden_size"]
  4620. num_heads = hparams["num_attention_heads"]
  4621. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4622. layer_norm_eps = hparams["layer_norm_epsilon"]
  4623. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4624. num_layers = hparams["num_layers"]
  4625. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4626. # attention_dropout_rate = hparams["attention_dropout"]
  4627. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4628. # embed_dropout_rate = hparams["embed_dropout"]
  4629. self.gguf_writer.add_embedding_length(embed_dim)
  4630. self.gguf_writer.add_head_count(num_heads)
  4631. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4632. self.gguf_writer.add_context_length(max_position_embeddings)
  4633. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4634. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4635. self.gguf_writer.add_block_count(num_layers)
  4636. self.gguf_writer.add_file_type(self.ftype)
  4637. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4638. self.gguf_writer.add_rope_freq_base(rope_theta)
  4639. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4640. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4641. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4642. rope_scaling = self.hparams.get("rope_scaling") or {}
  4643. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4644. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4645. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4646. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4647. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4648. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4649. base = self.hparams.get("rope_theta", 10000.0)
  4650. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4651. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4652. factor = rope_scaling.get("factor", 8.0)
  4653. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4654. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4655. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4656. low_freq_wavelen = old_context_len / low_freq_factor
  4657. high_freq_wavelen = old_context_len / high_freq_factor
  4658. assert low_freq_wavelen != high_freq_wavelen
  4659. rope_factors = []
  4660. for freq in freqs:
  4661. wavelen = 2 * math.pi / freq
  4662. if wavelen < high_freq_wavelen:
  4663. rope_factors.append(1)
  4664. elif wavelen > low_freq_wavelen:
  4665. rope_factors.append(factor)
  4666. else:
  4667. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4668. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4669. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4670. @ModelBase.register("GraniteForCausalLM")
  4671. class GraniteModel(LlamaModel):
  4672. """Conversion for IBM's GraniteForCausalLM"""
  4673. model_arch = gguf.MODEL_ARCH.GRANITE
  4674. def set_gguf_parameters(self):
  4675. """Granite uses standard llama parameters with the following differences:
  4676. - No head_dim support
  4677. - New multiplier params:
  4678. - attention_scale
  4679. - embedding_scale
  4680. - residual_scale
  4681. - logits_scaling
  4682. """
  4683. if head_dim := self.hparams.pop("head_dim", None):
  4684. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4685. super().set_gguf_parameters()
  4686. # NOTE: Convert _multiplier params to _scale params for naming
  4687. # consistency
  4688. if attention_scale := self.hparams.get("attention_multiplier"):
  4689. self.gguf_writer.add_attention_scale(attention_scale)
  4690. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4691. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4692. self.gguf_writer.add_embedding_scale(embedding_scale)
  4693. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4694. if residual_scale := self.hparams.get("residual_multiplier"):
  4695. self.gguf_writer.add_residual_scale(residual_scale)
  4696. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4697. if logits_scale := self.hparams.get("logits_scaling"):
  4698. self.gguf_writer.add_logit_scale(logits_scale)
  4699. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4700. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  4701. class GraniteMoeModel(GraniteModel):
  4702. """Conversion for IBM's GraniteMoeForCausalLM"""
  4703. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4704. def set_gguf_parameters(self):
  4705. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  4706. - shared_intermediate_size
  4707. """
  4708. super().set_gguf_parameters()
  4709. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  4710. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  4711. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  4712. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4713. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4714. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4715. the hidden size that is then split during forward. To keep compatibility
  4716. with existing mixtral support, we pull them apart here.
  4717. """
  4718. if name.endswith("block_sparse_moe.input_linear.weight"):
  4719. ffn_dim = self.hparams["intermediate_size"]
  4720. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4721. gate, up = data_torch.split(ffn_dim, dim=-2)
  4722. return [
  4723. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4724. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4725. ]
  4726. if name.endswith("shared_mlp.input_linear.weight"):
  4727. ffn_dim = self.hparams["shared_intermediate_size"]
  4728. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  4729. gate, up = data_torch.split(ffn_dim, dim=-2)
  4730. return [
  4731. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  4732. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  4733. ]
  4734. return super().modify_tensors(data_torch, name, bid)
  4735. @ModelBase.register("BailingMoeForCausalLM")
  4736. class BailingMoeModel(TextModel):
  4737. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4738. def set_vocab(self):
  4739. self._set_vocab_gpt2()
  4740. def set_gguf_parameters(self):
  4741. super().set_gguf_parameters()
  4742. hparams = self.hparams
  4743. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4744. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4745. rope_scaling = self.hparams.get("rope_scaling") or {}
  4746. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4747. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4748. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4749. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4750. else:
  4751. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4752. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4753. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4754. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4755. self.gguf_writer.add_expert_weights_scale(1.0)
  4756. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4757. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4758. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4759. _experts: list[dict[str, Tensor]] | None = None
  4760. @staticmethod
  4761. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4762. if n_head_kv is not None and n_head != n_head_kv:
  4763. n_head = n_head_kv
  4764. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4765. .swapaxes(1, 2)
  4766. .reshape(weights.shape))
  4767. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4768. n_head = self.hparams["num_attention_heads"]
  4769. n_kv_head = self.hparams.get("num_key_value_heads")
  4770. n_embd = self.hparams["hidden_size"]
  4771. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4772. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4773. if name.endswith("attention.dense.weight"):
  4774. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4775. elif name.endswith("query_key_value.weight"):
  4776. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4777. return [
  4778. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4779. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4780. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4781. ]
  4782. elif name.find("mlp.experts") != -1:
  4783. n_experts = self.hparams["num_experts"]
  4784. assert bid is not None
  4785. tensors: list[tuple[str, Tensor]] = []
  4786. if self._experts is None:
  4787. self._experts = [{} for _ in range(self.block_count)]
  4788. self._experts[bid][name] = data_torch
  4789. if len(self._experts[bid]) >= n_experts * 3:
  4790. # merge the experts into a single 3d tensor
  4791. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4792. datas: list[Tensor] = []
  4793. for xid in range(n_experts):
  4794. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4795. datas.append(self._experts[bid][ename])
  4796. del self._experts[bid][ename]
  4797. data_torch = torch.stack(datas, dim=0)
  4798. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4799. new_name = self.map_tensor_name(merged_name)
  4800. tensors.append((new_name, data_torch))
  4801. return tensors
  4802. new_name = self.map_tensor_name(name)
  4803. if new_name == output_name and self.hparams.get("norm_head"):
  4804. data_torch = data_torch.float()
  4805. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4806. return [(new_name, data_torch)]
  4807. def prepare_tensors(self):
  4808. super().prepare_tensors()
  4809. if self._experts is not None:
  4810. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4811. experts = [k for d in self._experts for k in d.keys()]
  4812. if len(experts) > 0:
  4813. raise ValueError(f"Unprocessed experts: {experts}")
  4814. @ModelBase.register("ChameleonForConditionalGeneration")
  4815. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4816. class ChameleonModel(TextModel):
  4817. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4818. def set_gguf_parameters(self):
  4819. super().set_gguf_parameters()
  4820. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4821. def set_vocab(self):
  4822. self._set_vocab_gpt2()
  4823. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4824. # ignore image tokenizer for now
  4825. # TODO: remove this once image support is implemented for Chameleon
  4826. if name.startswith("model.vqmodel"):
  4827. return []
  4828. n_head = self.hparams["num_attention_heads"]
  4829. n_kv_head = self.hparams.get("num_key_value_heads")
  4830. hidden_dim = self.hparams.get("hidden_size")
  4831. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4832. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4833. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4834. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4835. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4836. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4837. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4838. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4839. return [(self.map_tensor_name(name), data_torch)]
  4840. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4841. @staticmethod
  4842. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4843. head_dim = hidden_dim // n_heads
  4844. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4845. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4846. return data_torch
  4847. @ModelBase.register("UltravoxModel")
  4848. class UltravoxModel(TextModel):
  4849. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  4850. def __init__(self, *args, **kwargs):
  4851. super().__init__(*args, **kwargs)
  4852. raise NotImplementedError("Ultravox does not have text decoder. Please use --mmproj argument")
  4853. @ModelBase.register("UltravoxModel")
  4854. class UltravoxAudioModel(MmprojModel):
  4855. has_vision_encoder = False # no vision encoder
  4856. has_audio_encoder = True
  4857. def __init__(self, *args, **kwargs):
  4858. super().__init__(*args, **kwargs)
  4859. self.hparams["hidden_size"] = self.hparams["d_model"]
  4860. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  4861. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  4862. def set_gguf_parameters(self):
  4863. super().set_gguf_parameters()
  4864. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  4865. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  4866. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  4867. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  4868. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4869. del bid, new_name, n_dims # unused
  4870. if ".conv" in name and ".weight" in name:
  4871. return gguf.GGMLQuantizationType.F16
  4872. return False
  4873. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4874. del bid # unused
  4875. # prevent clash naming with vision tensors
  4876. if name.startswith("multi_modal_projector"):
  4877. name = "audio." + name
  4878. if "conv1.bias" in name or "conv2.bias" in name:
  4879. # transpose conv1 and conv2 bias
  4880. data_torch = data_torch.unsqueeze(-1)
  4881. return [(self.map_tensor_name(name), data_torch)]
  4882. ###### CONVERSION LOGIC ######
  4883. # tree of lazy tensors
  4884. class LazyTorchTensor(gguf.LazyBase):
  4885. _tensor_type = torch.Tensor
  4886. # to keep the type-checker happy
  4887. dtype: torch.dtype
  4888. shape: torch.Size
  4889. # only used when converting a torch.Tensor to a np.ndarray
  4890. _dtype_map: dict[torch.dtype, type] = {
  4891. torch.float16: np.float16,
  4892. torch.float32: np.float32,
  4893. }
  4894. # used for safetensors slices
  4895. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4896. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4897. _dtype_str_map: dict[str, torch.dtype] = {
  4898. "F64": torch.float64,
  4899. "F32": torch.float32,
  4900. "BF16": torch.bfloat16,
  4901. "F16": torch.float16,
  4902. # "U64": torch.uint64,
  4903. "I64": torch.int64,
  4904. # "U32": torch.uint32,
  4905. "I32": torch.int32,
  4906. # "U16": torch.uint16,
  4907. "I16": torch.int16,
  4908. "U8": torch.uint8,
  4909. "I8": torch.int8,
  4910. "BOOL": torch.bool,
  4911. "F8_E4M3": torch.float8_e4m3fn,
  4912. "F8_E5M2": torch.float8_e5m2,
  4913. }
  4914. def numpy(self) -> gguf.LazyNumpyTensor:
  4915. dtype = self._dtype_map[self.dtype]
  4916. return gguf.LazyNumpyTensor(
  4917. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4918. args=(self,),
  4919. func=(lambda s: s.numpy())
  4920. )
  4921. @classmethod
  4922. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4923. return torch.empty(size=shape, dtype=dtype, device="meta")
  4924. @classmethod
  4925. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4926. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4927. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4928. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4929. return cast(torch.Tensor, lazy)
  4930. @classmethod
  4931. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4932. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4933. shape = remote_tensor.shape
  4934. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4935. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4936. return cast(torch.Tensor, lazy)
  4937. @classmethod
  4938. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4939. del types # unused
  4940. if kwargs is None:
  4941. kwargs = {}
  4942. if func is torch.Tensor.numpy:
  4943. return args[0].numpy()
  4944. return cls._wrap_fn(func)(*args, **kwargs)
  4945. def parse_args() -> argparse.Namespace:
  4946. parser = argparse.ArgumentParser(
  4947. description="Convert a huggingface model to a GGML compatible file")
  4948. parser.add_argument(
  4949. "--vocab-only", action="store_true",
  4950. help="extract only the vocab",
  4951. )
  4952. parser.add_argument(
  4953. "--outfile", type=Path,
  4954. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4955. )
  4956. parser.add_argument(
  4957. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4958. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4959. )
  4960. parser.add_argument(
  4961. "--bigendian", action="store_true",
  4962. help="model is executed on big endian machine",
  4963. )
  4964. parser.add_argument(
  4965. "model", type=Path,
  4966. help="directory containing model file",
  4967. nargs="?",
  4968. )
  4969. parser.add_argument(
  4970. "--use-temp-file", action="store_true",
  4971. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4972. )
  4973. parser.add_argument(
  4974. "--no-lazy", action="store_true",
  4975. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4976. )
  4977. parser.add_argument(
  4978. "--model-name", type=str, default=None,
  4979. help="name of the model",
  4980. )
  4981. parser.add_argument(
  4982. "--verbose", action="store_true",
  4983. help="increase output verbosity",
  4984. )
  4985. parser.add_argument(
  4986. "--split-max-tensors", type=int, default=0,
  4987. help="max tensors in each split",
  4988. )
  4989. parser.add_argument(
  4990. "--split-max-size", type=str, default="0",
  4991. help="max size per split N(M|G)",
  4992. )
  4993. parser.add_argument(
  4994. "--dry-run", action="store_true",
  4995. help="only print out a split plan and exit, without writing any new files",
  4996. )
  4997. parser.add_argument(
  4998. "--no-tensor-first-split", action="store_true",
  4999. help="do not add tensors to the first split (disabled by default)"
  5000. )
  5001. parser.add_argument(
  5002. "--metadata", type=Path,
  5003. help="Specify the path for an authorship metadata override file"
  5004. )
  5005. parser.add_argument(
  5006. "--print-supported-models", action="store_true",
  5007. help="Print the supported models"
  5008. )
  5009. parser.add_argument(
  5010. "--remote", action="store_true",
  5011. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  5012. )
  5013. parser.add_argument(
  5014. "--mmproj", action="store_true",
  5015. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  5016. )
  5017. args = parser.parse_args()
  5018. if not args.print_supported_models and args.model is None:
  5019. parser.error("the following arguments are required: model")
  5020. return args
  5021. def split_str_to_n_bytes(split_str: str) -> int:
  5022. if split_str.endswith("K"):
  5023. n = int(split_str[:-1]) * 1000
  5024. elif split_str.endswith("M"):
  5025. n = int(split_str[:-1]) * 1000 * 1000
  5026. elif split_str.endswith("G"):
  5027. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  5028. elif split_str.isnumeric():
  5029. n = int(split_str)
  5030. else:
  5031. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  5032. if n < 0:
  5033. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  5034. return n
  5035. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  5036. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  5037. # maybe we should fallback to text model's arch in that case, since not many models have both
  5038. text_config = hparams.get("text_config", {})
  5039. vision_config = hparams.get("vision_config", {})
  5040. arch = hparams["architectures"][0]
  5041. # if "architectures" is found in the sub-config, use that instead
  5042. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  5043. arch = text_config["architectures"][0]
  5044. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  5045. arch = vision_config["architectures"][0]
  5046. return arch
  5047. def main() -> None:
  5048. args = parse_args()
  5049. if args.print_supported_models:
  5050. logger.error("Supported models:")
  5051. ModelBase.print_registered_models()
  5052. sys.exit(0)
  5053. if args.verbose:
  5054. logging.basicConfig(level=logging.DEBUG)
  5055. else:
  5056. logging.basicConfig(level=logging.INFO)
  5057. dir_model = args.model
  5058. if args.remote:
  5059. from huggingface_hub import snapshot_download
  5060. local_dir = snapshot_download(
  5061. repo_id=str(dir_model),
  5062. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  5063. dir_model = Path(local_dir)
  5064. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  5065. if not dir_model.is_dir():
  5066. logger.error(f'Error: {args.model} is not a directory')
  5067. sys.exit(1)
  5068. ftype_map: dict[str, gguf.LlamaFileType] = {
  5069. "f32": gguf.LlamaFileType.ALL_F32,
  5070. "f16": gguf.LlamaFileType.MOSTLY_F16,
  5071. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  5072. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  5073. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  5074. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  5075. "auto": gguf.LlamaFileType.GUESSED,
  5076. }
  5077. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  5078. if args.use_temp_file and is_split:
  5079. logger.error("Error: Cannot use temp file when splitting")
  5080. sys.exit(1)
  5081. if args.outfile is not None:
  5082. fname_out = args.outfile
  5083. elif args.remote:
  5084. # if remote, use the model ID as the output file name
  5085. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  5086. else:
  5087. fname_out = dir_model
  5088. logger.info(f"Loading model: {dir_model.name}")
  5089. if args.mmproj:
  5090. if "mmproj" not in fname_out.name:
  5091. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  5092. with torch.inference_mode():
  5093. output_type = ftype_map[args.outtype]
  5094. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  5095. hparams = ModelBase.load_hparams(dir_model)
  5096. model_architecture = get_model_architecture(hparams, model_type)
  5097. logger.info(f"Model architecture: {model_architecture}")
  5098. try:
  5099. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  5100. except NotImplementedError:
  5101. logger.error(f"Model {model_architecture} is not supported")
  5102. sys.exit(1)
  5103. model_instance = model_class(dir_model, output_type, fname_out,
  5104. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  5105. eager=args.no_lazy,
  5106. metadata_override=args.metadata, model_name=args.model_name,
  5107. split_max_tensors=args.split_max_tensors,
  5108. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  5109. small_first_shard=args.no_tensor_first_split,
  5110. remote_hf_model_id=str(args.model) if args.remote else None)
  5111. if args.vocab_only:
  5112. logger.info("Exporting model vocab...")
  5113. model_instance.write_vocab()
  5114. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  5115. else:
  5116. logger.info("Exporting model...")
  5117. model_instance.write()
  5118. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  5119. logger.info(f"Model successfully exported to {out_path}")
  5120. if __name__ == '__main__':
  5121. main()