| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- // This file contains functionality for training models using GGML.
- // It is not strictly needed vs. just vanilla GGML but it provides a more high-level interface for common needs such as datasets.
- // At the bottom of this file especially there are relatively high-level functions that are suitable use or adaptation in user code.
- //
- // Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de)
- #pragma once
- #include "ggml.h"
- #include "ggml-backend.h"
- #include <stdint.h>
- #ifdef __cplusplus
- extern "C" {
- #endif
- struct ggml_opt_dataset;
- struct ggml_opt_context;
- struct ggml_opt_result;
- typedef struct ggml_opt_dataset * ggml_opt_dataset_t;
- typedef struct ggml_opt_context * ggml_opt_context_t;
- typedef struct ggml_opt_result * ggml_opt_result_t;
- // ====== Loss ======
- // built-in loss types, i.e. the built-in quantities minimized by the optimizer
- // custom loss types can be defined via mean or sum which simply reduce the outputs for all datapoints to a single value
- enum ggml_opt_loss_type {
- GGML_OPT_LOSS_TYPE_MEAN,
- GGML_OPT_LOSS_TYPE_SUM,
- GGML_OPT_LOSS_TYPE_CROSS_ENTROPY,
- GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR,
- };
- // ====== Dataset ======
- GGML_API ggml_opt_dataset_t ggml_opt_dataset_init(
- int64_t ne_datapoint, // number of elements per datapoint
- int64_t ne_label, // number of elements per label
- int64_t ndata, // total number of datapoints/labels
- int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
- GGML_API void ggml_opt_dataset_free(ggml_opt_dataset_t dataset);
- // get underlying tensors that store the data
- GGML_API struct ggml_tensor * ggml_opt_dataset_data (ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata]
- GGML_API struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset); // shape = [nd_label, ndata]
- // shuffle idata first datapoints from dataset with RNG from opt_ctx, shuffle all datapoints if idata is negative
- GGML_API void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata);
- // get batch at position ibatch from dataset and copy the data to data_batch and labels_batch
- GGML_API void ggml_opt_dataset_get_batch(
- ggml_opt_dataset_t dataset,
- struct ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch]
- struct ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch]
- int64_t ibatch);
- // ====== Model / Context ======
- enum ggml_opt_build_type {
- GGML_OPT_BUILD_TYPE_FORWARD,
- GGML_OPT_BUILD_TYPE_GRAD,
- GGML_OPT_BUILD_TYPE_OPT,
- };
- // parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
- struct ggml_opt_optimizer_params {
- // AdamW optimizer parameters
- struct {
- float alpha; // learning rate
- float beta1;
- float beta2;
- float eps; // epsilon for numerical stability
- float wd; // weight decay for AdamW, use 0.0f to disable
- } adamw;
- };
- // callback to calculate optimizer parameters prior to a backward pass
- // userdata can be used to pass arbitrary data
- typedef struct ggml_opt_optimizer_params (*ggml_opt_get_optimizer_params)(void * userdata);
- // returns the default optimizer params (constant)
- // userdata is not used
- GGML_API struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata);
- // parameters for initializing a new optimization context
- struct ggml_opt_params {
- ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs
- struct ggml_context * ctx_compute; // created in user code, holds non-static tensors
- // the forward graph is defined by inputs and outputs
- // those tensors and all tensors inbetween are not intended to be reusable between multiple optimization contexts
- struct ggml_tensor * inputs;
- struct ggml_tensor * outputs;
- enum ggml_opt_loss_type loss_type;
- enum ggml_opt_build_type build_type;
- int32_t opt_period; // after how many gradient accumulation steps an optimizer step should be done
- ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
- void * get_opt_pars_ud; // userdata for calculating optimizer parameters
- };
- // get parameters for an optimization context with defaults set where possible
- // parameters for which no sensible defaults exist are supplied as arguments to this function
- GGML_API ggml_opt_params ggml_opt_default_params(
- ggml_backend_sched_t backend_sched,
- struct ggml_context * ctx_compute,
- struct ggml_tensor * inputs,
- struct ggml_tensor * outputs,
- enum ggml_opt_loss_type loss_type);
- GGML_API ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params);
- GGML_API void ggml_opt_free(ggml_opt_context_t opt_ctx);
- // set gradients to zero, initilize loss, and optionally reset the optimizer
- GGML_API void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer);
- // get underlying tensors that store data
- GGML_API struct ggml_tensor * ggml_opt_inputs( ggml_opt_context_t opt_ctx); // forward graph input tensor
- GGML_API struct ggml_tensor * ggml_opt_outputs( ggml_opt_context_t opt_ctx); // forward graph output tensor
- GGML_API struct ggml_tensor * ggml_opt_labels( ggml_opt_context_t opt_ctx); // labels to compare outputs against
- GGML_API struct ggml_tensor * ggml_opt_loss( ggml_opt_context_t opt_ctx); // scalar tensor that contains the loss
- GGML_API struct ggml_tensor * ggml_opt_pred( ggml_opt_context_t opt_ctx); // predictions made by outputs
- GGML_API struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels
- GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node);
- // ====== Optimization Result ======
- GGML_API ggml_opt_result_t ggml_opt_result_init();
- GGML_API void ggml_opt_result_free(ggml_opt_result_t result);
- GGML_API void ggml_opt_result_reset(ggml_opt_result_t result);
- // get data from result, uncertainties are optional and can be ignored by passing NULL
- GGML_API void ggml_opt_result_ndata( ggml_opt_result_t result, int64_t * ndata); // writes 1 value, number of datapoints
- GGML_API void ggml_opt_result_loss( ggml_opt_result_t result, double * loss, double * unc); // writes 1 value
- GGML_API void ggml_opt_result_pred( ggml_opt_result_t result, int32_t * pred); // writes ndata values
- GGML_API void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc); // writes 1 value
- // ====== Computation ======
- // do forward pass, increment result if not NULL
- GGML_API void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
- // do forward pass, increment result if not NULL, do backward pass
- GGML_API void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
- // ############################################################################
- // ## The high-level functions start here. They do not depend on any private ##
- // ## functions or structs and can be copied to and adapted for user code. ##
- // ############################################################################
- // ====== Intended Usage ======
- //
- // 1. Select the appropriate loss for your problem.
- // 2. Create a dataset and set the data for the "data" tensor. Also set the "labels" tensor if your loss needs them.
- // Setting the shard size to 1 will be fine, it's the granularity with which data is shuffled/loaded (bigger values are faster).
- // 3. Create a GGML graph for your model with no_alloc == true. Use two separate contexts for the tensors.
- // The first context should contain the model parameters and inputs and be allocated statically in user code.
- // The second context should contain all other tensors and will be (re)allocated automatically.
- // Due to this automated allocation the data of the second context is not defined when accessed in user code.
- // Note that the second dimension of the inputs/outputs are interpreted as the number of datapoints in those tensors.
- // 4. Call ggml_opt_fit. If you need more control you can use ggml_opt_epoch instead.
- // signature for a callback while evaluating opt_ctx on dataset, called after an evaluation
- typedef void (*ggml_opt_epoch_callback)(
- bool train, // true after training evaluation, false after validation evaluation
- ggml_opt_context_t opt_ctx,
- ggml_opt_dataset_t dataset,
- ggml_opt_result_t result, // result associated with the dataset subsection
- int64_t ibatch, // number of batches that have been evaluated so far
- int64_t ibatch_max, // total number of batches in this dataset subsection
- int64_t t_start_us); // time at which the evaluation on the dataset subsection was started
- // do training on front of dataset, do evaluation only on back of dataset
- GGML_API void ggml_opt_epoch(
- ggml_opt_context_t opt_ctx,
- ggml_opt_dataset_t dataset,
- ggml_opt_result_t result_train, // result to increment during training, ignored if NULL
- ggml_opt_result_t result_eval, // result to increment during evaluation, ignored if NULL
- int64_t idata_split, // data index at which to split training and evaluation
- ggml_opt_epoch_callback callback_train,
- ggml_opt_epoch_callback callback_eval);
- // callback that prints a progress bar on stderr
- GGML_API void ggml_opt_epoch_callback_progress_bar(
- bool train,
- ggml_opt_context_t opt_ctx,
- ggml_opt_dataset_t dataset,
- ggml_opt_result_t result,
- int64_t ibatch,
- int64_t ibatch_max,
- int64_t t_start_us);
- // fit model defined by inputs and outputs to dataset
- GGML_API void ggml_opt_fit(
- ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs
- ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
- ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
- ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
- ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
- enum ggml_opt_loss_type loss_type, // loss to minimize
- ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
- int64_t nepoch, // how many times the dataset should be iterated over
- int64_t nbatch_logical, // datapoints optimizer step, must be a multiple of ndata_batch in inputs/outputs
- float val_split, // fraction of the dataset to use for validation, must be in [0.0f, 1.0f)
- bool silent); // whether or not info prints to stderr should be suppressed
- #ifdef __cplusplus
- }
- #endif
|