ggml-cpu.c 462 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-backend-impl.h"
  4. #include "ggml-backend.h"
  5. #include "ggml-cpu-aarch64.h"
  6. #include "ggml-cpu-impl.h"
  7. #include "ggml-cpu.h"
  8. #include "ggml-impl.h"
  9. #include "ggml-quants.h"
  10. #include "ggml-cpu-quants.h"
  11. #include "ggml-threading.h"
  12. #include "ggml.h"
  13. #if defined(_MSC_VER) || defined(__MINGW32__)
  14. #include <malloc.h> // using malloc.h with MSC/MINGW
  15. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  16. #include <alloca.h>
  17. #endif
  18. #include <assert.h>
  19. #include <errno.h>
  20. #include <time.h>
  21. #include <math.h>
  22. #include <stdlib.h>
  23. #include <string.h>
  24. #include <stdint.h>
  25. #include <inttypes.h>
  26. #include <stdio.h>
  27. #include <float.h>
  28. #include <limits.h>
  29. #include <stdarg.h>
  30. #include <signal.h>
  31. #if defined(__gnu_linux__)
  32. #include <syscall.h>
  33. #endif
  34. #ifdef GGML_USE_OPENMP
  35. #include <omp.h>
  36. #endif
  37. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  38. #undef GGML_USE_LLAMAFILE
  39. #endif
  40. #ifdef GGML_USE_LLAMAFILE
  41. #include "llamafile/sgemm.h"
  42. #endif
  43. #if defined(_MSC_VER)
  44. // disable "possible loss of data" to avoid hundreds of casts
  45. // we should just be careful :)
  46. #pragma warning(disable: 4244 4267)
  47. // disable POSIX deprecation warnings
  48. // these functions are never going away, anyway
  49. #pragma warning(disable: 4996)
  50. // unreachable code because of multiple instances of code after GGML_ABORT
  51. #pragma warning(disable: 4702)
  52. #endif
  53. // Note: once we move threading into a separate C++ file
  54. // will use std::hardware_destructive_interference_size instead of hardcoding it here
  55. // and we'll use C++ attribute syntax.
  56. #define GGML_CACHE_LINE 64
  57. #if defined(__clang__) || defined(__GNUC__)
  58. #define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE)))
  59. #endif
  60. #if defined(__has_feature)
  61. #if __has_feature(thread_sanitizer)
  62. #define GGML_TSAN_ENABLED 1
  63. #endif
  64. #else // __has_feature
  65. #if defined(__SANITIZE_THREAD__)
  66. #define GGML_TSAN_ENABLED 1
  67. #endif
  68. #endif // __has_feature
  69. #define UNUSED GGML_UNUSED
  70. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  71. #if defined(GGML_USE_ACCELERATE)
  72. #include <Accelerate/Accelerate.h>
  73. #endif
  74. // floating point type used to accumulate sums
  75. typedef double ggml_float;
  76. #define GGML_GELU_FP16
  77. #define GGML_GELU_QUICK_FP16
  78. #define GGML_SOFT_MAX_UNROLL 4
  79. #define GGML_VEC_DOT_UNROLL 2
  80. #define GGML_VEC_MAD_UNROLL 32
  81. //
  82. // global data
  83. //
  84. // precomputed gelu table for f16 (128 KB)
  85. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  86. // precomputed quick gelu table for f16 (128 KB)
  87. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  88. #if defined(__ARM_ARCH)
  89. struct ggml_arm_arch_features_type {
  90. int has_neon;
  91. int has_i8mm;
  92. int has_sve;
  93. int sve_cnt;
  94. } ggml_arm_arch_features = {-1, -1, -1, 0};
  95. #endif
  96. #if defined(_WIN32)
  97. #define WIN32_LEAN_AND_MEAN
  98. #ifndef NOMINMAX
  99. #define NOMINMAX
  100. #endif
  101. #include <windows.h>
  102. #if !defined(__clang__)
  103. #define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE))
  104. typedef volatile LONG atomic_int;
  105. typedef atomic_int atomic_bool;
  106. typedef atomic_int atomic_flag;
  107. #define ATOMIC_FLAG_INIT 0
  108. typedef enum {
  109. memory_order_relaxed,
  110. memory_order_consume,
  111. memory_order_acquire,
  112. memory_order_release,
  113. memory_order_acq_rel,
  114. memory_order_seq_cst
  115. } memory_order;
  116. static void atomic_store(atomic_int * ptr, LONG val) {
  117. InterlockedExchange(ptr, val);
  118. }
  119. static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) {
  120. // TODO: add support for explicit memory order
  121. InterlockedExchange(ptr, val);
  122. }
  123. static LONG atomic_load(atomic_int * ptr) {
  124. return InterlockedCompareExchange(ptr, 0, 0);
  125. }
  126. static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) {
  127. // TODO: add support for explicit memory order
  128. return InterlockedCompareExchange(ptr, 0, 0);
  129. }
  130. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  131. return InterlockedExchangeAdd(ptr, inc);
  132. }
  133. static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) {
  134. // TODO: add support for explicit memory order
  135. return InterlockedExchangeAdd(ptr, inc);
  136. }
  137. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  138. return InterlockedExchange(ptr, 1);
  139. }
  140. static void atomic_flag_clear(atomic_flag * ptr) {
  141. InterlockedExchange(ptr, 0);
  142. }
  143. static void atomic_thread_fence(memory_order mo) {
  144. MemoryBarrier();
  145. }
  146. #else // clang
  147. #include <stdatomic.h>
  148. #endif
  149. typedef HANDLE pthread_t;
  150. typedef DWORD thread_ret_t;
  151. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  152. (void) unused;
  153. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  154. if (handle == NULL)
  155. {
  156. return EAGAIN;
  157. }
  158. *out = handle;
  159. return 0;
  160. }
  161. static int pthread_join(pthread_t thread, void * unused) {
  162. (void) unused;
  163. int ret = (int) WaitForSingleObject(thread, INFINITE);
  164. CloseHandle(thread);
  165. return ret;
  166. }
  167. static int sched_yield (void) {
  168. Sleep (0);
  169. return 0;
  170. }
  171. #else
  172. #include <pthread.h>
  173. #include <stdatomic.h>
  174. #include <sched.h>
  175. #if defined(__FreeBSD__)
  176. #include <pthread_np.h>
  177. #endif
  178. typedef void * thread_ret_t;
  179. #include <sys/types.h>
  180. #include <sys/stat.h>
  181. #include <unistd.h>
  182. #endif
  183. typedef pthread_t ggml_thread_t;
  184. #ifdef GGML_USE_CPU_HBM
  185. #include <hbwmalloc.h>
  186. #endif
  187. #if defined(__APPLE__)
  188. #include <unistd.h>
  189. #include <mach/mach.h>
  190. #include <TargetConditionals.h>
  191. #endif
  192. //
  193. // cache line
  194. //
  195. #if defined(__cpp_lib_hardware_interference_size)
  196. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  197. #else
  198. #if defined(__POWER9_VECTOR__)
  199. #define CACHE_LINE_SIZE 128
  200. #else
  201. #define CACHE_LINE_SIZE 64
  202. #endif
  203. #endif
  204. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  205. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  206. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  207. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  208. static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
  209. [GGML_TYPE_F32] = {
  210. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  211. .vec_dot_type = GGML_TYPE_F32,
  212. .nrows = 1,
  213. },
  214. [GGML_TYPE_F16] = {
  215. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  216. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  217. .vec_dot_type = GGML_TYPE_F16,
  218. .nrows = 1,
  219. },
  220. [GGML_TYPE_Q4_0] = {
  221. .from_float = quantize_row_q4_0,
  222. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  223. .vec_dot_type = GGML_TYPE_Q8_0,
  224. #if defined (__ARM_FEATURE_MATMUL_INT8)
  225. .nrows = 2,
  226. #else
  227. .nrows = 1,
  228. #endif
  229. },
  230. [GGML_TYPE_Q4_1] = {
  231. .from_float = quantize_row_q4_1,
  232. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  233. .vec_dot_type = GGML_TYPE_Q8_1,
  234. #if defined (__ARM_FEATURE_MATMUL_INT8)
  235. .nrows = 2,
  236. #else
  237. .nrows = 1,
  238. #endif
  239. },
  240. [GGML_TYPE_Q5_0] = {
  241. .from_float = quantize_row_q5_0,
  242. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  243. .vec_dot_type = GGML_TYPE_Q8_0,
  244. .nrows = 1,
  245. },
  246. [GGML_TYPE_Q5_1] = {
  247. .from_float = quantize_row_q5_1,
  248. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  249. .vec_dot_type = GGML_TYPE_Q8_1,
  250. .nrows = 1,
  251. },
  252. [GGML_TYPE_Q8_0] = {
  253. .from_float = quantize_row_q8_0,
  254. .from_float_to_mat = quantize_mat_q8_0,
  255. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  256. .vec_dot_type = GGML_TYPE_Q8_0,
  257. #if defined (__ARM_FEATURE_MATMUL_INT8)
  258. .nrows = 2,
  259. #else
  260. .nrows = 1,
  261. #endif
  262. },
  263. [GGML_TYPE_Q8_1] = {
  264. .from_float = quantize_row_q8_1,
  265. .vec_dot_type = GGML_TYPE_Q8_1,
  266. .nrows = 1,
  267. },
  268. [GGML_TYPE_Q2_K] = {
  269. .from_float = quantize_row_q2_K,
  270. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  271. .vec_dot_type = GGML_TYPE_Q8_K,
  272. .nrows = 1,
  273. },
  274. [GGML_TYPE_Q3_K] = {
  275. .from_float = quantize_row_q3_K,
  276. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  277. .vec_dot_type = GGML_TYPE_Q8_K,
  278. .nrows = 1,
  279. },
  280. [GGML_TYPE_Q4_K] = {
  281. .from_float = quantize_row_q4_K,
  282. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  283. .vec_dot_type = GGML_TYPE_Q8_K,
  284. .nrows = 1,
  285. },
  286. [GGML_TYPE_Q5_K] = {
  287. .from_float = quantize_row_q5_K,
  288. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  289. .vec_dot_type = GGML_TYPE_Q8_K,
  290. .nrows = 1,
  291. },
  292. [GGML_TYPE_Q6_K] = {
  293. .from_float = quantize_row_q6_K,
  294. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  295. .vec_dot_type = GGML_TYPE_Q8_K,
  296. .nrows = 1,
  297. },
  298. [GGML_TYPE_IQ2_XXS] = {
  299. .from_float = NULL,
  300. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  301. .vec_dot_type = GGML_TYPE_Q8_K,
  302. .nrows = 1,
  303. },
  304. [GGML_TYPE_IQ2_XS] = {
  305. .from_float = NULL,
  306. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  307. .vec_dot_type = GGML_TYPE_Q8_K,
  308. .nrows = 1,
  309. },
  310. [GGML_TYPE_IQ3_XXS] = {
  311. // NOTE: from_float for iq3 and iq2_s was removed because these quants require initialization in ggml_quantize_init
  312. //.from_float = quantize_row_iq3_xxs,
  313. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  314. .vec_dot_type = GGML_TYPE_Q8_K,
  315. .nrows = 1,
  316. },
  317. [GGML_TYPE_IQ3_S] = {
  318. //.from_float = quantize_row_iq3_s,
  319. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  320. .vec_dot_type = GGML_TYPE_Q8_K,
  321. .nrows = 1,
  322. },
  323. [GGML_TYPE_IQ2_S] = {
  324. //.from_float = quantize_row_iq2_s,
  325. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  326. .vec_dot_type = GGML_TYPE_Q8_K,
  327. .nrows = 1,
  328. },
  329. [GGML_TYPE_IQ1_S] = {
  330. .from_float = NULL,
  331. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  332. .vec_dot_type = GGML_TYPE_Q8_K,
  333. .nrows = 1,
  334. },
  335. [GGML_TYPE_IQ1_M] = {
  336. .from_float = NULL,
  337. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  338. .vec_dot_type = GGML_TYPE_Q8_K,
  339. .nrows = 1,
  340. },
  341. [GGML_TYPE_IQ4_NL] = {
  342. .from_float = quantize_row_iq4_nl,
  343. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  344. .vec_dot_type = GGML_TYPE_Q8_0,
  345. .nrows = 1,
  346. },
  347. [GGML_TYPE_IQ4_XS] = {
  348. .from_float = quantize_row_iq4_xs,
  349. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  350. .vec_dot_type = GGML_TYPE_Q8_K,
  351. .nrows = 1,
  352. },
  353. [GGML_TYPE_Q8_K] = {
  354. .from_float = quantize_row_q8_K,
  355. },
  356. [GGML_TYPE_BF16] = {
  357. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  358. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  359. .vec_dot_type = GGML_TYPE_BF16,
  360. .nrows = 1,
  361. },
  362. [GGML_TYPE_Q4_0_4_4] = {
  363. .from_float = NULL,
  364. .vec_dot = NULL,
  365. .vec_dot_type = GGML_TYPE_Q8_0,
  366. .nrows = 1,
  367. .ncols = 4,
  368. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  369. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  370. },
  371. [GGML_TYPE_Q4_0_4_8] = {
  372. .from_float = NULL,
  373. .vec_dot = NULL,
  374. .vec_dot_type = GGML_TYPE_Q8_0,
  375. .nrows = 1,
  376. .ncols = 4,
  377. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  378. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  379. },
  380. [GGML_TYPE_Q4_0_8_8] = {
  381. .from_float = NULL,
  382. .vec_dot = NULL,
  383. .vec_dot_type = GGML_TYPE_Q8_0,
  384. .nrows = 1,
  385. .ncols = 8,
  386. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  387. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  388. },
  389. [GGML_TYPE_TQ1_0] = {
  390. .from_float = quantize_row_tq1_0,
  391. .vec_dot = ggml_vec_dot_tq1_0_q8_K,
  392. .vec_dot_type = GGML_TYPE_Q8_K,
  393. .nrows = 1,
  394. },
  395. [GGML_TYPE_TQ2_0] = {
  396. .from_float = quantize_row_tq2_0,
  397. .vec_dot = ggml_vec_dot_tq2_0_q8_K,
  398. .vec_dot_type = GGML_TYPE_Q8_K,
  399. .nrows = 1,
  400. },
  401. };
  402. const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
  403. return &type_traits_cpu[type];
  404. }
  405. //
  406. // simd mappings
  407. //
  408. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  409. // we then implement the fundamental computation operations below using only these macros
  410. // adding support for new architectures requires to define the corresponding SIMD macros
  411. //
  412. // GGML_F32_STEP / GGML_F16_STEP
  413. // number of elements to process in a single step
  414. //
  415. // GGML_F32_EPR / GGML_F16_EPR
  416. // number of elements to fit in a single register
  417. //
  418. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  419. #define GGML_SIMD
  420. // F32 NEON
  421. #define GGML_F32_STEP 16
  422. #define GGML_F32_EPR 4
  423. #define GGML_F32x4 float32x4_t
  424. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  425. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  426. #define GGML_F32x4_LOAD vld1q_f32
  427. #define GGML_F32x4_STORE vst1q_f32
  428. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  429. #define GGML_F32x4_ADD vaddq_f32
  430. #define GGML_F32x4_MUL vmulq_f32
  431. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  432. #define GGML_F32x4_REDUCE(res, x) \
  433. { \
  434. int offset = GGML_F32_ARR >> 1; \
  435. for (int i = 0; i < offset; ++i) { \
  436. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  437. } \
  438. offset >>= 1; \
  439. for (int i = 0; i < offset; ++i) { \
  440. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  441. } \
  442. offset >>= 1; \
  443. for (int i = 0; i < offset; ++i) { \
  444. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  445. } \
  446. (res) = GGML_F32x4_REDUCE_ONE((x)[0]); \
  447. }
  448. #define GGML_F32_VEC GGML_F32x4
  449. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  450. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  451. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  452. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  453. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  454. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  455. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  456. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  457. // F16 NEON
  458. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  459. #define GGML_F16_STEP 32
  460. #define GGML_F16_EPR 8
  461. #define GGML_F16x8 float16x8_t
  462. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  463. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  464. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  465. #define GGML_F16x8_STORE vst1q_f16
  466. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  467. #define GGML_F16x8_ADD vaddq_f16
  468. #define GGML_F16x8_MUL vmulq_f16
  469. #define GGML_F16x8_REDUCE(res, x) \
  470. do { \
  471. int offset = GGML_F16_ARR >> 1; \
  472. for (int i = 0; i < offset; ++i) { \
  473. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  474. } \
  475. offset >>= 1; \
  476. for (int i = 0; i < offset; ++i) { \
  477. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  478. } \
  479. offset >>= 1; \
  480. for (int i = 0; i < offset; ++i) { \
  481. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  482. } \
  483. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
  484. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
  485. (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  486. } while (0)
  487. #define GGML_F16_VEC GGML_F16x8
  488. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  489. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  490. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  491. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
  492. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  493. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  494. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  495. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  496. #else
  497. // if FP16 vector arithmetic is not supported, we use FP32 instead
  498. // and take advantage of the vcvt_ functions to convert to/from FP16
  499. #define GGML_F16_STEP 16
  500. #define GGML_F16_EPR 4
  501. #define GGML_F32Cx4 float32x4_t
  502. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  503. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  504. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  505. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  506. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  507. #define GGML_F32Cx4_ADD vaddq_f32
  508. #define GGML_F32Cx4_MUL vmulq_f32
  509. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  510. #define GGML_F16_VEC GGML_F32Cx4
  511. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  512. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  513. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  514. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  515. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  516. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  517. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  518. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  519. #endif
  520. #elif defined(__AVX512F__)
  521. #define GGML_SIMD
  522. // F32 AVX512
  523. #define GGML_F32_STEP 64
  524. #define GGML_F32_EPR 16
  525. #define GGML_F32x16 __m512
  526. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  527. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  528. #define GGML_F32x16_LOAD _mm512_loadu_ps
  529. #define GGML_F32x16_STORE _mm512_storeu_ps
  530. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  531. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  532. #define GGML_F32x16_ADD _mm512_add_ps
  533. #define GGML_F32x16_MUL _mm512_mul_ps
  534. #define GGML_F32x16_REDUCE(res, x) \
  535. do { \
  536. int offset = GGML_F32_ARR >> 1; \
  537. for (int i = 0; i < offset; ++i) { \
  538. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  539. } \
  540. offset >>= 1; \
  541. for (int i = 0; i < offset; ++i) { \
  542. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  543. } \
  544. offset >>= 1; \
  545. for (int i = 0; i < offset; ++i) { \
  546. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  547. } \
  548. res = _mm512_reduce_add_ps(x[0]); \
  549. } while (0)
  550. // TODO: is this optimal ?
  551. #define GGML_F32_VEC GGML_F32x16
  552. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  553. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  554. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  555. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  556. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  557. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  558. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  559. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  560. // F16 AVX512
  561. // F16 AVX
  562. #define GGML_F16_STEP 64
  563. #define GGML_F16_EPR 16
  564. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  565. #define GGML_F32Cx16 __m512
  566. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  567. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  568. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  569. // so F16C guard isn't required
  570. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  571. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  572. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  573. #define GGML_F32Cx16_ADD _mm512_add_ps
  574. #define GGML_F32Cx16_MUL _mm512_mul_ps
  575. #define GGML_F32Cx16_REDUCE(res, x) \
  576. do { \
  577. int offset = GGML_F32_ARR >> 1; \
  578. for (int i = 0; i < offset; ++i) { \
  579. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  580. } \
  581. offset >>= 1; \
  582. for (int i = 0; i < offset; ++i) { \
  583. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  584. } \
  585. offset >>= 1; \
  586. for (int i = 0; i < offset; ++i) { \
  587. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  588. } \
  589. res = _mm512_reduce_add_ps(x[0]); \
  590. } while (0)
  591. #define GGML_F16_VEC GGML_F32Cx16
  592. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  593. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  594. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  595. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  596. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  597. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  598. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  599. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  600. #elif defined(__AVX__)
  601. #define GGML_SIMD
  602. // F32 AVX
  603. #define GGML_F32_STEP 32
  604. #define GGML_F32_EPR 8
  605. #define GGML_F32x8 __m256
  606. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  607. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  608. #define GGML_F32x8_LOAD _mm256_loadu_ps
  609. #define GGML_F32x8_STORE _mm256_storeu_ps
  610. #if defined(__FMA__)
  611. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  612. #else
  613. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  614. #endif
  615. #define GGML_F32x8_ADD _mm256_add_ps
  616. #define GGML_F32x8_MUL _mm256_mul_ps
  617. #define GGML_F32x8_REDUCE(res, x) \
  618. do { \
  619. int offset = GGML_F32_ARR >> 1; \
  620. for (int i = 0; i < offset; ++i) { \
  621. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  622. } \
  623. offset >>= 1; \
  624. for (int i = 0; i < offset; ++i) { \
  625. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  626. } \
  627. offset >>= 1; \
  628. for (int i = 0; i < offset; ++i) { \
  629. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  630. } \
  631. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  632. _mm256_extractf128_ps(x[0], 1)); \
  633. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  634. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  635. } while (0)
  636. // TODO: is this optimal ?
  637. #define GGML_F32_VEC GGML_F32x8
  638. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  639. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  640. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  641. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  642. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  643. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  644. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  645. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  646. // F16 AVX
  647. #define GGML_F16_STEP 32
  648. #define GGML_F16_EPR 8
  649. // F16 arithmetic is not supported by AVX, so we use F32 instead
  650. #define GGML_F32Cx8 __m256
  651. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  652. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  653. #if defined(__F16C__)
  654. // the _mm256_cvt intrinsics require F16C
  655. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  656. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  657. #else
  658. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  659. float tmp[8];
  660. for (int i = 0; i < 8; i++) {
  661. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  662. }
  663. return _mm256_loadu_ps(tmp);
  664. }
  665. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  666. float arr[8];
  667. _mm256_storeu_ps(arr, y);
  668. for (int i = 0; i < 8; i++)
  669. x[i] = GGML_FP32_TO_FP16(arr[i]);
  670. }
  671. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  672. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  673. #endif
  674. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  675. #define GGML_F32Cx8_ADD _mm256_add_ps
  676. #define GGML_F32Cx8_MUL _mm256_mul_ps
  677. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  678. #define GGML_F16_VEC GGML_F32Cx8
  679. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  680. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  681. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  682. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  683. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  684. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  685. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  686. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  687. #elif defined(__POWER9_VECTOR__)
  688. #define GGML_SIMD
  689. // F32 POWER9
  690. #define GGML_F32_STEP 32
  691. #define GGML_F32_EPR 4
  692. #define GGML_F32x4 vector float
  693. #define GGML_F32x4_ZERO 0.0f
  694. #define GGML_F32x4_SET1 vec_splats
  695. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  696. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  697. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  698. #define GGML_F32x4_ADD vec_add
  699. #define GGML_F32x4_MUL vec_mul
  700. #define GGML_F32x4_REDUCE(res, x) \
  701. { \
  702. int offset = GGML_F32_ARR >> 1; \
  703. for (int i = 0; i < offset; ++i) { \
  704. x[i] = vec_add(x[i], x[offset+i]); \
  705. } \
  706. offset >>= 1; \
  707. for (int i = 0; i < offset; ++i) { \
  708. x[i] = vec_add(x[i], x[offset+i]); \
  709. } \
  710. offset >>= 1; \
  711. for (int i = 0; i < offset; ++i) { \
  712. x[i] = vec_add(x[i], x[offset+i]); \
  713. } \
  714. res = vec_extract(x[0], 0) + \
  715. vec_extract(x[0], 1) + \
  716. vec_extract(x[0], 2) + \
  717. vec_extract(x[0], 3); \
  718. }
  719. #define GGML_F32_VEC GGML_F32x4
  720. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  721. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  722. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  723. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  724. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  725. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  726. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  727. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  728. // F16 POWER9
  729. #define GGML_F16_STEP GGML_F32_STEP
  730. #define GGML_F16_EPR GGML_F32_EPR
  731. #define GGML_F16_VEC GGML_F32x4
  732. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  733. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  734. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  735. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  736. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  737. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  738. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  739. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  740. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  741. vec_extract_fp32_from_shortl(vec_xl(0, p))
  742. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  743. #define GGML_F16_VEC_STORE(p, r, i) \
  744. if (i & 0x1) \
  745. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  746. r[i - GGML_ENDIAN_BYTE(0)]), \
  747. 0, p - GGML_F16_EPR)
  748. #elif defined(__wasm_simd128__)
  749. #define GGML_SIMD
  750. // F32 WASM
  751. #define GGML_F32_STEP 16
  752. #define GGML_F32_EPR 4
  753. #define GGML_F32x4 v128_t
  754. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  755. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  756. #define GGML_F32x4_LOAD wasm_v128_load
  757. #define GGML_F32x4_STORE wasm_v128_store
  758. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  759. #define GGML_F32x4_ADD wasm_f32x4_add
  760. #define GGML_F32x4_MUL wasm_f32x4_mul
  761. #define GGML_F32x4_REDUCE(res, x) \
  762. { \
  763. int offset = GGML_F32_ARR >> 1; \
  764. for (int i = 0; i < offset; ++i) { \
  765. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  766. } \
  767. offset >>= 1; \
  768. for (int i = 0; i < offset; ++i) { \
  769. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  770. } \
  771. offset >>= 1; \
  772. for (int i = 0; i < offset; ++i) { \
  773. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  774. } \
  775. res = wasm_f32x4_extract_lane(x[0], 0) + \
  776. wasm_f32x4_extract_lane(x[0], 1) + \
  777. wasm_f32x4_extract_lane(x[0], 2) + \
  778. wasm_f32x4_extract_lane(x[0], 3); \
  779. }
  780. #define GGML_F32_VEC GGML_F32x4
  781. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  782. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  783. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  784. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  785. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  786. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  787. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  788. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  789. // F16 WASM
  790. #define GGML_F16_STEP 16
  791. #define GGML_F16_EPR 4
  792. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  793. float tmp[4];
  794. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  795. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  796. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  797. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  798. return wasm_v128_load(tmp);
  799. }
  800. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  801. float tmp[4];
  802. wasm_v128_store(tmp, x);
  803. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  804. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  805. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  806. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  807. }
  808. #define GGML_F16x4 v128_t
  809. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  810. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  811. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  812. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  813. #define GGML_F16x4_FMA GGML_F32x4_FMA
  814. #define GGML_F16x4_ADD wasm_f32x4_add
  815. #define GGML_F16x4_MUL wasm_f32x4_mul
  816. #define GGML_F16x4_REDUCE(res, x) \
  817. { \
  818. int offset = GGML_F16_ARR >> 1; \
  819. for (int i = 0; i < offset; ++i) { \
  820. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  821. } \
  822. offset >>= 1; \
  823. for (int i = 0; i < offset; ++i) { \
  824. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  825. } \
  826. offset >>= 1; \
  827. for (int i = 0; i < offset; ++i) { \
  828. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  829. } \
  830. res = wasm_f32x4_extract_lane(x[0], 0) + \
  831. wasm_f32x4_extract_lane(x[0], 1) + \
  832. wasm_f32x4_extract_lane(x[0], 2) + \
  833. wasm_f32x4_extract_lane(x[0], 3); \
  834. }
  835. #define GGML_F16_VEC GGML_F16x4
  836. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  837. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  838. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  839. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  840. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  841. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  842. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  843. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  844. #elif defined(__SSE3__)
  845. #define GGML_SIMD
  846. // F32 SSE
  847. #define GGML_F32_STEP 32
  848. #define GGML_F32_EPR 4
  849. #define GGML_F32x4 __m128
  850. #define GGML_F32x4_ZERO _mm_setzero_ps()
  851. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  852. #define GGML_F32x4_LOAD _mm_loadu_ps
  853. #define GGML_F32x4_STORE _mm_storeu_ps
  854. #if defined(__FMA__)
  855. // TODO: Does this work?
  856. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  857. #else
  858. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  859. #endif
  860. #define GGML_F32x4_ADD _mm_add_ps
  861. #define GGML_F32x4_MUL _mm_mul_ps
  862. #define GGML_F32x4_REDUCE(res, x) \
  863. { \
  864. int offset = GGML_F32_ARR >> 1; \
  865. for (int i = 0; i < offset; ++i) { \
  866. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  867. } \
  868. offset >>= 1; \
  869. for (int i = 0; i < offset; ++i) { \
  870. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  871. } \
  872. offset >>= 1; \
  873. for (int i = 0; i < offset; ++i) { \
  874. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  875. } \
  876. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  877. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  878. }
  879. // TODO: is this optimal ?
  880. #define GGML_F32_VEC GGML_F32x4
  881. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  882. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  883. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  884. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  885. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  886. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  887. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  888. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  889. // F16 SSE
  890. #define GGML_F16_STEP 32
  891. #define GGML_F16_EPR 4
  892. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  893. float tmp[4];
  894. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  895. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  896. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  897. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  898. return _mm_loadu_ps(tmp);
  899. }
  900. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  901. float arr[4];
  902. _mm_storeu_ps(arr, y);
  903. x[0] = GGML_FP32_TO_FP16(arr[0]);
  904. x[1] = GGML_FP32_TO_FP16(arr[1]);
  905. x[2] = GGML_FP32_TO_FP16(arr[2]);
  906. x[3] = GGML_FP32_TO_FP16(arr[3]);
  907. }
  908. #define GGML_F32Cx4 __m128
  909. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  910. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  911. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  912. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  913. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  914. #define GGML_F32Cx4_ADD _mm_add_ps
  915. #define GGML_F32Cx4_MUL _mm_mul_ps
  916. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  917. #define GGML_F16_VEC GGML_F32Cx4
  918. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  919. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  920. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  921. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  922. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  923. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  924. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  925. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  926. #elif defined(__loongarch_asx)
  927. #define GGML_SIMD
  928. // F32 LASX
  929. #define GGML_F32_STEP 32
  930. #define GGML_F32_EPR 8
  931. #define GGML_F32x8 __m256
  932. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  933. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  934. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  935. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  936. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  937. #define GGML_F32x8_ADD __lasx_xvfadd_s
  938. #define GGML_F32x8_MUL __lasx_xvfmul_s
  939. #define GGML_F32x8_REDUCE(res, x) \
  940. do { \
  941. int offset = GGML_F32_ARR >> 1; \
  942. for (int i = 0; i < offset; ++i) { \
  943. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  944. } \
  945. offset >>= 1; \
  946. for (int i = 0; i < offset; ++i) { \
  947. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  948. } \
  949. offset >>= 1; \
  950. for (int i = 0; i < offset; ++i) { \
  951. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  952. } \
  953. float *tmp_p = (float *)&x[0]; \
  954. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  955. } while (0)
  956. // TODO: is this optimal ?
  957. #define GGML_F32_VEC GGML_F32x8
  958. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  959. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  960. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  961. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  962. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  963. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  964. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  965. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  966. // F16 LASX
  967. #define GGML_F16_STEP 32
  968. #define GGML_F16_EPR 8
  969. // F16 arithmetic is not supported by AVX, so we use F32 instead
  970. #define GGML_F32Cx8 __m256
  971. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  972. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  973. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  974. float tmp[8];
  975. for (int i = 0; i < 8; i++) {
  976. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  977. }
  978. return (__m256)__lasx_xvld(tmp, 0);
  979. }
  980. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  981. float arr[8];
  982. __lasx_xvst(y, arr, 0);
  983. for (int i = 0; i < 8; i++) {
  984. x[i] = GGML_FP32_TO_FP16(arr[i]);
  985. }
  986. }
  987. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  988. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  989. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  990. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  991. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  992. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  993. #define GGML_F16_VEC GGML_F32Cx8
  994. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  995. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  996. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  997. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  998. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  999. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1000. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1001. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1002. #elif defined(__loongarch_sx)
  1003. #define GGML_SIMD
  1004. // F32 LSX
  1005. #define GGML_F32_STEP 32
  1006. #define GGML_F32_EPR 4
  1007. #define GGML_F32x4 __m128
  1008. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1009. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1010. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1011. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1012. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1013. #define GGML_F32x4_ADD __lsx_vfadd_s
  1014. #define GGML_F32x4_MUL __lsx_vfmul_s
  1015. #define GGML_F32x4_REDUCE(res, x) \
  1016. { \
  1017. int offset = GGML_F32_ARR >> 1; \
  1018. for (int i = 0; i < offset; ++i) { \
  1019. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1020. } \
  1021. offset >>= 1; \
  1022. for (int i = 0; i < offset; ++i) { \
  1023. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1024. } \
  1025. offset >>= 1; \
  1026. for (int i = 0; i < offset; ++i) { \
  1027. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1028. } \
  1029. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1030. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1031. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1032. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1033. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1034. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1035. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1036. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1037. }
  1038. #define GGML_F32_VEC GGML_F32x4
  1039. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1040. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1041. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1042. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1043. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1044. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1045. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1046. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1047. // F16 LSX
  1048. #define GGML_F16_STEP 32
  1049. #define GGML_F16_EPR 4
  1050. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1051. float tmp[4];
  1052. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1053. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1054. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1055. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1056. return __lsx_vld(tmp, 0);
  1057. }
  1058. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1059. float arr[4];
  1060. __lsx_vst(y, arr, 0);
  1061. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1062. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1063. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1064. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1065. }
  1066. #define GGML_F32Cx4 __m128
  1067. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1068. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1069. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1070. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1071. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1072. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1073. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1074. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1075. #define GGML_F16_VEC GGML_F32Cx4
  1076. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1077. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1078. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1079. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1080. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1081. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1082. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1083. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1084. #endif
  1085. // GGML_F32_ARR / GGML_F16_ARR
  1086. // number of registers to use per step
  1087. #ifdef GGML_SIMD
  1088. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1089. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1090. #endif
  1091. //
  1092. // Threading defs
  1093. //
  1094. typedef pthread_t ggml_thread_t;
  1095. #if defined(_WIN32)
  1096. typedef CONDITION_VARIABLE ggml_cond_t;
  1097. typedef SRWLOCK ggml_mutex_t;
  1098. #define ggml_mutex_init(m) InitializeSRWLock(m)
  1099. #define ggml_mutex_destroy(m)
  1100. #define ggml_mutex_lock(m) AcquireSRWLockExclusive(m)
  1101. #define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m)
  1102. #define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m)
  1103. #define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m)
  1104. #define ggml_cond_init(c) InitializeConditionVariable(c)
  1105. #define ggml_cond_destroy(c)
  1106. #define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED)
  1107. #define ggml_cond_broadcast(c) WakeAllConditionVariable(c)
  1108. #define ggml_thread_create pthread_create
  1109. #define ggml_thread_join pthread_join
  1110. #else
  1111. typedef pthread_cond_t ggml_cond_t;
  1112. typedef pthread_mutex_t ggml_mutex_t;
  1113. #define ggml_mutex_init(m) pthread_mutex_init(m, NULL)
  1114. #define ggml_mutex_destroy(m) pthread_mutex_destroy(m)
  1115. #define ggml_mutex_lock(m) pthread_mutex_lock(m)
  1116. #define ggml_mutex_unlock(m) pthread_mutex_unlock(m)
  1117. #define ggml_mutex_lock_shared(m) pthread_mutex_lock(m)
  1118. #define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m)
  1119. #define ggml_lock_init(x) UNUSED(x)
  1120. #define ggml_lock_destroy(x) UNUSED(x)
  1121. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  1122. #define ggml_lock_lock(x) _mm_pause()
  1123. #else
  1124. #define ggml_lock_lock(x) UNUSED(x)
  1125. #endif
  1126. #define ggml_lock_unlock(x) UNUSED(x)
  1127. #define GGML_LOCK_INITIALIZER 0
  1128. #define ggml_cond_init(c) pthread_cond_init(c, NULL)
  1129. #define ggml_cond_destroy(c) pthread_cond_destroy(c)
  1130. #define ggml_cond_wait(c, m) pthread_cond_wait(c, m)
  1131. #define ggml_cond_broadcast(c) pthread_cond_broadcast(c)
  1132. #define ggml_thread_create pthread_create
  1133. #define ggml_thread_join pthread_join
  1134. #endif
  1135. // Threadpool def
  1136. struct ggml_threadpool {
  1137. ggml_mutex_t mutex; // mutex for cond.var
  1138. ggml_cond_t cond; // cond.var for waiting for new work
  1139. struct ggml_cgraph * cgraph;
  1140. struct ggml_cplan * cplan;
  1141. // synchronization primitives
  1142. atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
  1143. atomic_int GGML_CACHE_ALIGN n_barrier;
  1144. atomic_int GGML_CACHE_ALIGN n_barrier_passed;
  1145. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1146. // these are atomic as an annotation for thread-sanitizer
  1147. atomic_bool stop; // Used for stopping the threadpool altogether
  1148. atomic_bool pause; // Used for pausing the threadpool or individual threads
  1149. atomic_bool abort; // Used for aborting processing of a graph
  1150. struct ggml_compute_state * workers; // per thread state
  1151. int n_threads_max; // number of threads in the pool
  1152. atomic_int n_threads_cur; // number of threads used in the current graph
  1153. int32_t prio; // Scheduling priority
  1154. uint32_t poll; // Polling level (0 - no polling)
  1155. enum ggml_status ec;
  1156. };
  1157. // Per-thread state
  1158. struct ggml_compute_state {
  1159. #ifndef GGML_USE_OPENMP
  1160. ggml_thread_t thrd;
  1161. bool cpumask[GGML_MAX_N_THREADS];
  1162. int last_graph;
  1163. bool pending;
  1164. #endif
  1165. struct ggml_threadpool * threadpool;
  1166. int ith;
  1167. };
  1168. struct ggml_compute_params {
  1169. // ith = thread index, nth = number of threads
  1170. int ith, nth;
  1171. // work buffer for all threads
  1172. size_t wsize;
  1173. void * wdata;
  1174. struct ggml_threadpool * threadpool;
  1175. };
  1176. //
  1177. // fundamental operations
  1178. //
  1179. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1180. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1181. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1182. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1183. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1184. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1185. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1186. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1187. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1188. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1189. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1190. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1191. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1192. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1193. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1194. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1195. assert(nrc == 1);
  1196. UNUSED(nrc);
  1197. UNUSED(bx);
  1198. UNUSED(by);
  1199. UNUSED(bs);
  1200. #if defined(GGML_SIMD)
  1201. float sumf = 0.0f;
  1202. const int np = (n & ~(GGML_F32_STEP - 1));
  1203. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1204. GGML_F32_VEC ax[GGML_F32_ARR];
  1205. GGML_F32_VEC ay[GGML_F32_ARR];
  1206. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1207. for (int j = 0; j < GGML_F32_ARR; j++) {
  1208. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1209. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1210. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1211. }
  1212. }
  1213. // reduce sum0..sum3 to sum0
  1214. GGML_F32_VEC_REDUCE(sumf, sum);
  1215. // leftovers
  1216. for (int i = np; i < n; ++i) {
  1217. sumf += x[i]*y[i];
  1218. }
  1219. #else
  1220. // scalar
  1221. ggml_float sumf = 0.0;
  1222. for (int i = 0; i < n; ++i) {
  1223. sumf += (ggml_float)(x[i]*y[i]);
  1224. }
  1225. #endif
  1226. *s = sumf;
  1227. }
  1228. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1229. assert(nrc == 1);
  1230. UNUSED(nrc);
  1231. UNUSED(bx);
  1232. UNUSED(by);
  1233. UNUSED(bs);
  1234. int i = 0;
  1235. ggml_float sumf = 0;
  1236. #if defined(__AVX512BF16__)
  1237. __m512 c1 = _mm512_setzero_ps();
  1238. __m512 c2 = _mm512_setzero_ps();
  1239. for (; i + 64 <= n; i += 64) {
  1240. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1241. m512bh(_mm512_loadu_si512((y + i))));
  1242. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1243. m512bh(_mm512_loadu_si512((y + i + 32))));
  1244. }
  1245. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1246. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1247. #elif defined(__AVX512F__)
  1248. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1249. __m512 c1 = _mm512_setzero_ps();
  1250. __m512 c2 = _mm512_setzero_ps();
  1251. for (; i + 32 <= n; i += 32) {
  1252. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1253. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1254. }
  1255. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1256. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1257. #undef LOAD
  1258. #elif defined(__AVX2__) || defined(__AVX__)
  1259. #if defined(__AVX2__)
  1260. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1261. #else
  1262. #define LOAD(p) _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)), (_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_bsrli_si128(_mm_loadu_si128((const __m128i *)(p)), 8)), 16)), 1))
  1263. #endif
  1264. __m256 c1 = _mm256_setzero_ps();
  1265. __m256 c2 = _mm256_setzero_ps();
  1266. __m256 c3 = _mm256_setzero_ps();
  1267. __m256 c4 = _mm256_setzero_ps();
  1268. for (; i + 32 <= n; i += 32) {
  1269. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1270. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1271. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1272. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1273. }
  1274. __m128 g;
  1275. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1276. _mm256_add_ps(c2, c4));
  1277. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1278. _mm256_castps256_ps128(c1));
  1279. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1280. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1281. sumf += (ggml_float)_mm_cvtss_f32(g);
  1282. #undef LOAD
  1283. #endif
  1284. for (; i < n; ++i) {
  1285. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1286. GGML_BF16_TO_FP32(y[i]));
  1287. }
  1288. *s = sumf;
  1289. }
  1290. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1291. assert(nrc == 1);
  1292. UNUSED(nrc);
  1293. UNUSED(bx);
  1294. UNUSED(by);
  1295. UNUSED(bs);
  1296. ggml_float sumf = 0.0;
  1297. #if defined(GGML_SIMD)
  1298. const int np = (n & ~(GGML_F16_STEP - 1));
  1299. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1300. GGML_F16_VEC ax[GGML_F16_ARR];
  1301. GGML_F16_VEC ay[GGML_F16_ARR];
  1302. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1303. for (int j = 0; j < GGML_F16_ARR; j++) {
  1304. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1305. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1306. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1307. }
  1308. }
  1309. // reduce sum0..sum3 to sum0
  1310. GGML_F16_VEC_REDUCE(sumf, sum);
  1311. // leftovers
  1312. for (int i = np; i < n; ++i) {
  1313. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1314. }
  1315. #else
  1316. for (int i = 0; i < n; ++i) {
  1317. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1318. }
  1319. #endif
  1320. *s = sumf;
  1321. }
  1322. // compute GGML_VEC_DOT_UNROLL dot products at once
  1323. // xs - x row stride in bytes
  1324. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1325. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1326. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1327. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1328. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1329. }
  1330. #if defined(GGML_SIMD)
  1331. const int np = (n & ~(GGML_F16_STEP - 1));
  1332. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1333. GGML_F16_VEC ax[GGML_F16_ARR];
  1334. GGML_F16_VEC ay[GGML_F16_ARR];
  1335. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1336. for (int j = 0; j < GGML_F16_ARR; j++) {
  1337. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1338. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1339. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1340. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1341. }
  1342. }
  1343. }
  1344. // reduce sum0..sum3 to sum0
  1345. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1346. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1347. }
  1348. // leftovers
  1349. for (int i = np; i < n; ++i) {
  1350. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1351. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1352. }
  1353. }
  1354. #else
  1355. for (int i = 0; i < n; ++i) {
  1356. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1357. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1358. }
  1359. }
  1360. #endif
  1361. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1362. s[i] = sumf[i];
  1363. }
  1364. }
  1365. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1366. #if defined(GGML_SIMD)
  1367. const int np = (n & ~(GGML_F32_STEP - 1));
  1368. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1369. GGML_F32_VEC ax[GGML_F32_ARR];
  1370. GGML_F32_VEC ay[GGML_F32_ARR];
  1371. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1372. for (int j = 0; j < GGML_F32_ARR; j++) {
  1373. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1374. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1375. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1376. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1377. }
  1378. }
  1379. // leftovers
  1380. for (int i = np; i < n; ++i) {
  1381. y[i] += x[i]*v;
  1382. }
  1383. #else
  1384. // scalar
  1385. for (int i = 0; i < n; ++i) {
  1386. y[i] += x[i]*v;
  1387. }
  1388. #endif
  1389. }
  1390. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1391. #if defined(GGML_SIMD)
  1392. const int np = (n & ~(GGML_F16_STEP - 1));
  1393. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1394. GGML_F16_VEC ax[GGML_F16_ARR];
  1395. GGML_F16_VEC ay[GGML_F16_ARR];
  1396. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1397. for (int j = 0; j < GGML_F16_ARR; j++) {
  1398. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1399. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1400. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1401. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1402. }
  1403. }
  1404. // leftovers
  1405. for (int i = np; i < n; ++i) {
  1406. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1407. }
  1408. #else
  1409. // scalar
  1410. for (int i = 0; i < n; ++i) {
  1411. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1412. }
  1413. #endif
  1414. }
  1415. // xs and vs are byte strides of x and v
  1416. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1417. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1418. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1419. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1420. x[i] = (const float *) ((const char *) xv + i*xs);
  1421. v[i] = (const float *) ((const char *) vv + i*vs);
  1422. }
  1423. #if defined(GGML_SIMD)
  1424. const int np = (n & ~(GGML_F32_STEP - 1));
  1425. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1426. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1427. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1428. }
  1429. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1430. GGML_F32_VEC ay[GGML_F32_ARR];
  1431. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1432. for (int j = 0; j < GGML_F32_ARR; j++) {
  1433. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1434. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1435. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1436. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1437. }
  1438. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1439. }
  1440. }
  1441. // leftovers
  1442. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1443. for (int i = np; i < n; ++i) {
  1444. y[i] += x[k][i]*v[k][0];
  1445. }
  1446. }
  1447. #else
  1448. // scalar
  1449. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1450. for (int i = 0; i < n; ++i) {
  1451. y[i] += x[k][i]*v[k][0];
  1452. }
  1453. }
  1454. #endif
  1455. }
  1456. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1457. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1458. #if defined(GGML_USE_ACCELERATE)
  1459. vDSP_vsmul(y, 1, &v, y, 1, n);
  1460. #elif defined(GGML_SIMD)
  1461. const int np = (n & ~(GGML_F32_STEP - 1));
  1462. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1463. GGML_F32_VEC ay[GGML_F32_ARR];
  1464. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1465. for (int j = 0; j < GGML_F32_ARR; j++) {
  1466. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1467. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1468. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1469. }
  1470. }
  1471. // leftovers
  1472. for (int i = np; i < n; ++i) {
  1473. y[i] *= v;
  1474. }
  1475. #else
  1476. // scalar
  1477. for (int i = 0; i < n; ++i) {
  1478. y[i] *= v;
  1479. }
  1480. #endif
  1481. }
  1482. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1483. #if defined(GGML_SIMD)
  1484. const int np = (n & ~(GGML_F16_STEP - 1));
  1485. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1486. GGML_F16_VEC ay[GGML_F16_ARR];
  1487. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1488. for (int j = 0; j < GGML_F16_ARR; j++) {
  1489. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1490. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1491. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1492. }
  1493. }
  1494. // leftovers
  1495. for (int i = np; i < n; ++i) {
  1496. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1497. }
  1498. #else
  1499. // scalar
  1500. for (int i = 0; i < n; ++i) {
  1501. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1502. }
  1503. #endif
  1504. }
  1505. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1506. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1507. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1508. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1509. inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
  1510. inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
  1511. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1512. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1513. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1514. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1515. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
  1516. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1517. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1518. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1519. // TODO: optimize performance
  1520. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1521. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1522. inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
  1523. static const float GELU_COEF_A = 0.044715f;
  1524. static const float GELU_QUICK_COEF = -1.702f;
  1525. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1526. inline static float ggml_gelu_f32(float x) {
  1527. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1528. }
  1529. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1530. const uint16_t * i16 = (const uint16_t *) x;
  1531. for (int i = 0; i < n; ++i) {
  1532. y[i] = ggml_table_gelu_f16[i16[i]];
  1533. }
  1534. }
  1535. #ifdef GGML_GELU_FP16
  1536. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1537. uint16_t t;
  1538. for (int i = 0; i < n; ++i) {
  1539. if (x[i] <= -10.0f) {
  1540. y[i] = 0.0f;
  1541. } else if (x[i] >= 10.0f) {
  1542. y[i] = x[i];
  1543. } else {
  1544. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1545. memcpy(&t, &fp16, sizeof(uint16_t));
  1546. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1547. }
  1548. }
  1549. }
  1550. #else
  1551. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1552. for (int i = 0; i < n; ++i) {
  1553. y[i] = ggml_gelu_f32(x[i]);
  1554. }
  1555. }
  1556. #endif
  1557. inline static float ggml_gelu_quick_f32(float x) {
  1558. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1559. }
  1560. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1561. // const uint16_t * i16 = (const uint16_t *) x;
  1562. // for (int i = 0; i < n; ++i) {
  1563. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1564. // }
  1565. //}
  1566. #ifdef GGML_GELU_QUICK_FP16
  1567. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1568. uint16_t t;
  1569. for (int i = 0; i < n; ++i) {
  1570. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1571. memcpy(&t, &fp16, sizeof(uint16_t));
  1572. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1573. }
  1574. }
  1575. #else
  1576. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1577. for (int i = 0; i < n; ++i) {
  1578. y[i] = ggml_gelu_quick_f32(x[i]);
  1579. }
  1580. }
  1581. #endif
  1582. // Sigmoid Linear Unit (SiLU) function
  1583. inline static float ggml_silu_f32(float x) {
  1584. return x/(1.0f + expf(-x));
  1585. }
  1586. #if __FINITE_MATH_ONLY__
  1587. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  1588. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  1589. #endif
  1590. #if defined(__ARM_NEON) && defined(__aarch64__)
  1591. // adapted from arm limited optimized routine
  1592. // the maximum error is 1.45358 plus 0.5 ulps
  1593. // numbers above 88.38 will flush to infinity
  1594. // numbers beneath -103.97 will flush to zero
  1595. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1596. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1597. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1598. const float32x4_t n = vsubq_f32(z, r);
  1599. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1600. vdupq_n_f32(0x1.7f7d1cp-20f));
  1601. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1602. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1603. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1604. const float32x4_t u = vmulq_f32(b, b);
  1605. const float32x4_t j = vfmaq_f32(
  1606. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1607. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1608. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1609. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1610. return vfmaq_f32(k, j, k);
  1611. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1612. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1613. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1614. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1615. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1616. }
  1617. // computes silu x/(1+exp(-x)) in single precision vector
  1618. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1619. const float32x4_t one = vdupq_n_f32(1.0f);
  1620. const float32x4_t zero = vdupq_n_f32(0.0f);
  1621. const float32x4_t neg_x = vsubq_f32(zero, x);
  1622. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1623. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1624. return vdivq_f32(x, one_plus_exp_neg_x);
  1625. }
  1626. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1627. // adapted from arm limited optimized routine
  1628. // the maximum error is 1.45358 plus 0.5 ulps
  1629. // numbers above 88.38 will flush to infinity
  1630. // numbers beneath -103.97 will flush to zero
  1631. inline static __m512 ggml_v_expf(__m512 x) {
  1632. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  1633. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  1634. const __m512 n = _mm512_sub_ps(z, r);
  1635. const __m512 b =
  1636. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  1637. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  1638. const __mmask16 d =
  1639. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  1640. const __m512 u = _mm512_mul_ps(b, b);
  1641. const __m512 j = _mm512_fmadd_ps(
  1642. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  1643. _mm512_set1_ps(0x1.573e2ep-5f)),
  1644. u,
  1645. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  1646. _mm512_set1_ps(0x1.fffdb6p-2f))),
  1647. u,
  1648. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  1649. const __m512 res = _mm512_scalef_ps(j, n);
  1650. if (_mm512_kortestz(d, d))
  1651. return res;
  1652. const __m512 zero = _mm512_setzero_ps();
  1653. const __m512 alt = _mm512_mask_blend_ps(
  1654. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  1655. return _mm512_mask_blend_ps(d, res, alt);
  1656. }
  1657. // computes silu x/(1+exp(-x)) in single precision vector
  1658. inline static __m512 ggml_v_silu(__m512 x) {
  1659. const __m512 one = _mm512_set1_ps(1);
  1660. const __m512 zero = _mm512_setzero_ps();
  1661. const __m512 neg_x = _mm512_sub_ps(zero, x);
  1662. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  1663. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  1664. return _mm512_div_ps(x, one_plus_exp_neg_x);
  1665. }
  1666. #elif defined(__AVX2__) && defined(__FMA__)
  1667. // adapted from arm limited optimized routine
  1668. // the maximum error is 1.45358 plus 0.5 ulps
  1669. // numbers above 88.38 will flush to infinity
  1670. // numbers beneath -103.97 will flush to zero
  1671. inline static __m256 ggml_v_expf(__m256 x) {
  1672. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  1673. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  1674. const __m256 n = _mm256_sub_ps(z, r);
  1675. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  1676. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  1677. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  1678. const __m256 k = _mm256_castsi256_ps(
  1679. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  1680. const __m256i c = _mm256_castps_si256(
  1681. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  1682. _mm256_set1_ps(126), _CMP_GT_OQ));
  1683. const __m256 u = _mm256_mul_ps(b, b);
  1684. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  1685. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  1686. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  1687. _mm256_set1_ps(0x1.fffdb6p-2f))),
  1688. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  1689. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  1690. return _mm256_fmadd_ps(j, k, k);
  1691. const __m256i g = _mm256_and_si256(
  1692. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  1693. _mm256_set1_epi32(0x82000000u));
  1694. const __m256 s1 =
  1695. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  1696. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  1697. const __m256i d = _mm256_castps_si256(
  1698. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  1699. _mm256_set1_ps(192), _CMP_GT_OQ));
  1700. return _mm256_or_ps(
  1701. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  1702. _mm256_andnot_ps(
  1703. _mm256_castsi256_ps(d),
  1704. _mm256_or_ps(
  1705. _mm256_and_ps(_mm256_castsi256_ps(c),
  1706. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  1707. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  1708. }
  1709. // computes silu x/(1+exp(-x)) in single precision vector
  1710. inline static __m256 ggml_v_silu(__m256 x) {
  1711. const __m256 one = _mm256_set1_ps(1);
  1712. const __m256 zero = _mm256_setzero_ps();
  1713. const __m256 neg_x = _mm256_sub_ps(zero, x);
  1714. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  1715. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  1716. return _mm256_div_ps(x, one_plus_exp_neg_x);
  1717. }
  1718. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  1719. #if defined(__FMA__)
  1720. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  1721. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  1722. #else
  1723. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  1724. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  1725. #endif
  1726. // adapted from arm limited optimized routine
  1727. // the maximum error is 1.45358 plus 0.5 ulps
  1728. // numbers above 88.38 will flush to infinity
  1729. // numbers beneath -103.97 will flush to zero
  1730. inline static __m128 ggml_v_expf(__m128 x) {
  1731. const __m128 r = _mm_set1_ps(0x1.8p23f);
  1732. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  1733. const __m128 n = _mm_sub_ps(z, r);
  1734. const __m128 b =
  1735. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  1736. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  1737. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  1738. const __m128i c =
  1739. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  1740. const __m128 u = _mm_mul_ps(b, b);
  1741. const __m128 j =
  1742. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  1743. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  1744. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  1745. if (!_mm_movemask_epi8(c))
  1746. return MADD128(j, k, k);
  1747. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  1748. _mm_set1_epi32(0x82000000u));
  1749. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  1750. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  1751. const __m128i d =
  1752. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  1753. return _mm_or_ps(
  1754. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  1755. _mm_andnot_ps(_mm_castsi128_ps(d),
  1756. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  1757. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  1758. }
  1759. // computes silu x/(1+exp(-x)) in single precision vector
  1760. inline static __m128 ggml_v_silu(__m128 x) {
  1761. const __m128 one = _mm_set1_ps(1);
  1762. const __m128 zero = _mm_setzero_ps();
  1763. const __m128 neg_x = _mm_sub_ps(zero, x);
  1764. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  1765. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  1766. return _mm_div_ps(x, one_plus_exp_neg_x);
  1767. }
  1768. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  1769. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1770. int i = 0;
  1771. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  1772. for (; i + 15 < n; i += 16) {
  1773. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  1774. }
  1775. #elif defined(__AVX2__) && defined(__FMA__)
  1776. for (; i + 7 < n; i += 8) {
  1777. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  1778. }
  1779. #elif defined(__SSE2__)
  1780. for (; i + 3 < n; i += 4) {
  1781. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  1782. }
  1783. #elif defined(__ARM_NEON) && defined(__aarch64__)
  1784. for (; i + 3 < n; i += 4) {
  1785. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  1786. }
  1787. #endif
  1788. for (; i < n; ++i) {
  1789. y[i] = ggml_silu_f32(x[i]);
  1790. }
  1791. }
  1792. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  1793. int i = 0;
  1794. ggml_float sum = 0;
  1795. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  1796. for (; i + 15 < n; i += 16) {
  1797. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  1798. _mm512_set1_ps(max)));
  1799. _mm512_storeu_ps(y + i, val);
  1800. sum += (ggml_float)_mm512_reduce_add_ps(val);
  1801. }
  1802. #elif defined(__AVX2__) && defined(__FMA__)
  1803. for (; i + 7 < n; i += 8) {
  1804. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  1805. _mm256_set1_ps(max)));
  1806. _mm256_storeu_ps(y + i, val);
  1807. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  1808. _mm256_castps256_ps128(val));
  1809. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  1810. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  1811. sum += (ggml_float)_mm_cvtss_f32(val2);
  1812. }
  1813. #elif defined(__SSE2__)
  1814. for (; i + 3 < n; i += 4) {
  1815. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  1816. _mm_set1_ps(max)));
  1817. _mm_storeu_ps(y + i, val);
  1818. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  1819. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  1820. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  1821. #else
  1822. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  1823. val = _mm_add_ps(val, tmp);
  1824. tmp = _mm_movehl_ps(tmp, val);
  1825. val = _mm_add_ss(val, tmp);
  1826. #endif
  1827. sum += (ggml_float)_mm_cvtss_f32(val);
  1828. }
  1829. #elif defined(__ARM_NEON) && defined(__aarch64__)
  1830. for (; i + 3 < n; i += 4) {
  1831. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  1832. vdupq_n_f32(max)));
  1833. vst1q_f32(y + i, val);
  1834. sum += (ggml_float)vaddvq_f32(val);
  1835. }
  1836. #endif
  1837. for (; i < n; ++i) {
  1838. float val = expf(x[i] - max);
  1839. sum += (ggml_float)val;
  1840. y[i] = val;
  1841. }
  1842. return sum;
  1843. }
  1844. static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
  1845. // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
  1846. int i = 0;
  1847. ggml_float sum = 0;
  1848. for (; i < n; ++i) {
  1849. float val = x[i] - max;
  1850. y[i] = val;
  1851. sum += (ggml_float)expf(val);
  1852. }
  1853. return sum = (ggml_float)logf(sum);
  1854. }
  1855. inline static float ggml_silu_backward_f32(float x, float dy) {
  1856. const float s = 1.0f/(1.0f + expf(-x));
  1857. return dy*s*(1.0f + x*(1.0f - s));
  1858. }
  1859. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1860. for (int i = 0; i < n; ++i) {
  1861. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1862. }
  1863. }
  1864. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1865. #ifndef GGML_USE_ACCELERATE
  1866. ggml_float sum = 0.0;
  1867. for (int i = 0; i < n; ++i) {
  1868. sum += (ggml_float)x[i];
  1869. }
  1870. *s = sum;
  1871. #else
  1872. vDSP_sve(x, 1, s, n);
  1873. #endif
  1874. }
  1875. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1876. ggml_float sum = 0.0;
  1877. for (int i = 0; i < n; ++i) {
  1878. sum += (ggml_float)x[i];
  1879. }
  1880. *s = sum;
  1881. }
  1882. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1883. float sum = 0.0f;
  1884. for (int i = 0; i < n; ++i) {
  1885. sum += GGML_FP16_TO_FP32(x[i]);
  1886. }
  1887. *s = sum;
  1888. }
  1889. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  1890. float sum = 0.0f;
  1891. for (int i = 0; i < n; ++i) {
  1892. sum += GGML_BF16_TO_FP32(x[i]);
  1893. }
  1894. *s = sum;
  1895. }
  1896. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1897. #ifndef GGML_USE_ACCELERATE
  1898. float max = -INFINITY;
  1899. for (int i = 0; i < n; ++i) {
  1900. max = MAX(max, x[i]);
  1901. }
  1902. *s = max;
  1903. #else
  1904. vDSP_maxv(x, 1, s, n);
  1905. #endif
  1906. }
  1907. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1908. ggml_vec_norm_f32(n, s, x);
  1909. *s = 1.f/(*s);
  1910. }
  1911. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1912. float max = -INFINITY;
  1913. int idx = 0;
  1914. for (int i = 0; i < n; ++i) {
  1915. max = MAX(max, x[i]);
  1916. if (max == x[i]) { idx = i; }
  1917. }
  1918. *s = idx;
  1919. }
  1920. // Helpers for polling loops
  1921. #if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
  1922. static inline void ggml_thread_cpu_relax(void) {
  1923. __asm__ volatile("yield" ::: "memory");
  1924. }
  1925. #elif defined(__x86_64__)
  1926. static inline void ggml_thread_cpu_relax(void) {
  1927. _mm_pause();
  1928. }
  1929. #else
  1930. static inline void ggml_thread_cpu_relax(void) {;}
  1931. #endif
  1932. //
  1933. // NUMA support
  1934. //
  1935. #define GGML_NUMA_MAX_NODES 8
  1936. #define GGML_NUMA_MAX_CPUS 512
  1937. struct ggml_numa_node {
  1938. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1939. uint32_t n_cpus;
  1940. };
  1941. struct ggml_numa_nodes {
  1942. enum ggml_numa_strategy numa_strategy;
  1943. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1944. uint32_t n_nodes;
  1945. uint32_t total_cpus; // hardware threads on system
  1946. uint32_t current_node; // node on which main process is execting
  1947. #if defined(__gnu_linux__)
  1948. cpu_set_t cpuset; // cpuset from numactl
  1949. #else
  1950. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1951. #endif
  1952. };
  1953. //
  1954. // ggml state
  1955. //
  1956. struct ggml_state {
  1957. struct ggml_numa_nodes numa;
  1958. };
  1959. static struct ggml_state g_state = {0};
  1960. static void ggml_barrier(struct ggml_threadpool * tp) {
  1961. int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
  1962. if (n_threads == 1) {
  1963. return;
  1964. }
  1965. #ifdef GGML_USE_OPENMP
  1966. #pragma omp barrier
  1967. #else
  1968. int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
  1969. // enter barrier (full seq-cst fence)
  1970. int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
  1971. if (n_barrier == (n_threads - 1)) {
  1972. // last thread
  1973. atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
  1974. // exit barrier (fill seq-cst fence)
  1975. atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
  1976. return;
  1977. }
  1978. // wait for other threads
  1979. while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
  1980. ggml_thread_cpu_relax();
  1981. }
  1982. // exit barrier (full seq-cst fence)
  1983. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  1984. #ifdef GGML_TSAN_ENABLED
  1985. atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
  1986. #else
  1987. atomic_thread_fence(memory_order_seq_cst);
  1988. #endif
  1989. #endif
  1990. }
  1991. #if defined(__gnu_linux__)
  1992. static cpu_set_t ggml_get_numa_affinity(void) {
  1993. cpu_set_t cpuset;
  1994. pthread_t thread;
  1995. thread = pthread_self();
  1996. CPU_ZERO(&cpuset);
  1997. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1998. return cpuset;
  1999. }
  2000. #else
  2001. static uint32_t ggml_get_numa_affinity(void) {
  2002. return 0; // no NUMA support
  2003. }
  2004. #endif
  2005. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2006. if (g_state.numa.n_nodes > 0) {
  2007. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2008. return;
  2009. }
  2010. #if defined(__gnu_linux__)
  2011. struct stat st;
  2012. char path[256];
  2013. int rv;
  2014. // set numa scheme
  2015. g_state.numa.numa_strategy = numa_flag;
  2016. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2017. g_state.numa.cpuset = ggml_get_numa_affinity();
  2018. // enumerate nodes
  2019. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2020. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2021. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2022. if (stat(path, &st) != 0) { break; }
  2023. ++g_state.numa.n_nodes;
  2024. }
  2025. // enumerate CPUs
  2026. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2027. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2028. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2029. if (stat(path, &st) != 0) { break; }
  2030. ++g_state.numa.total_cpus;
  2031. }
  2032. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2033. // figure out which node we're on
  2034. uint current_cpu;
  2035. int getcpu_ret = 0;
  2036. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2037. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2038. #else
  2039. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2040. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2041. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2042. # endif
  2043. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2044. #endif
  2045. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2046. g_state.numa.n_nodes = 0;
  2047. return;
  2048. }
  2049. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2050. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2051. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2052. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2053. node->n_cpus = 0;
  2054. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2055. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2056. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2057. if (stat(path, &st) == 0) {
  2058. node->cpus[node->n_cpus++] = c;
  2059. GGML_PRINT_DEBUG(" %u", c);
  2060. }
  2061. }
  2062. GGML_PRINT_DEBUG("\n");
  2063. }
  2064. if (ggml_is_numa()) {
  2065. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2066. if (fptr != NULL) {
  2067. char buf[42];
  2068. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2069. GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2070. }
  2071. fclose(fptr);
  2072. }
  2073. }
  2074. #else
  2075. UNUSED(numa_flag);
  2076. // TODO
  2077. #endif
  2078. }
  2079. bool ggml_is_numa(void) {
  2080. return g_state.numa.n_nodes > 1;
  2081. }
  2082. #if defined(__ARM_ARCH)
  2083. #if defined(__linux__) && defined(__aarch64__)
  2084. #include <sys/auxv.h>
  2085. #elif defined(__APPLE__)
  2086. #include <sys/sysctl.h>
  2087. #endif
  2088. #if !defined(HWCAP2_I8MM)
  2089. #define HWCAP2_I8MM 0
  2090. #endif
  2091. static void ggml_init_arm_arch_features(void) {
  2092. #if defined(__linux__) && defined(__aarch64__)
  2093. uint32_t hwcap = getauxval(AT_HWCAP);
  2094. uint32_t hwcap2 = getauxval(AT_HWCAP2);
  2095. ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
  2096. ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
  2097. ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
  2098. #if defined(__ARM_FEATURE_SVE)
  2099. ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
  2100. #endif
  2101. #elif defined(__APPLE__)
  2102. int oldp = 0;
  2103. size_t size = sizeof(oldp);
  2104. if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
  2105. oldp = 0;
  2106. }
  2107. ggml_arm_arch_features.has_neon = oldp;
  2108. if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
  2109. oldp = 0;
  2110. }
  2111. ggml_arm_arch_features.has_i8mm = oldp;
  2112. ggml_arm_arch_features.has_sve = 0;
  2113. ggml_arm_arch_features.sve_cnt = 0;
  2114. #else
  2115. // Run-time CPU feature detection not implemented for this platform, fallback to compile time
  2116. #if defined(__ARM_NEON)
  2117. ggml_arm_arch_features.has_neon = 1;
  2118. #else
  2119. ggml_arm_arch_features.has_neon = 0;
  2120. #endif
  2121. #if defined(__ARM_FEATURE_MATMUL_INT8)
  2122. ggml_arm_arch_features.has_i8mm = 1;
  2123. #else
  2124. ggml_arm_arch_features.has_i8mm = 0;
  2125. #endif
  2126. #if defined(__ARM_FEATURE_SVE)
  2127. ggml_arm_arch_features.has_sve = 1;
  2128. ggml_arm_arch_features.sve_cnt = 16;
  2129. #else
  2130. ggml_arm_arch_features.has_sve = 0;
  2131. ggml_arm_arch_features.sve_cnt = 0;
  2132. #endif
  2133. #endif
  2134. }
  2135. #endif
  2136. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2137. GGML_ASSERT(!ggml_get_no_alloc(ctx));
  2138. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2139. ggml_set_i32(result, value);
  2140. return result;
  2141. }
  2142. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2143. GGML_ASSERT(!ggml_get_no_alloc(ctx));
  2144. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2145. ggml_set_f32(result, value);
  2146. return result;
  2147. }
  2148. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2149. const int n = ggml_nrows(tensor);
  2150. const int nc = tensor->ne[0];
  2151. const size_t n1 = tensor->nb[1];
  2152. char * const data = tensor->data;
  2153. switch (tensor->type) {
  2154. case GGML_TYPE_I8:
  2155. {
  2156. assert(tensor->nb[0] == sizeof(int8_t));
  2157. for (int i = 0; i < n; i++) {
  2158. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2159. }
  2160. } break;
  2161. case GGML_TYPE_I16:
  2162. {
  2163. assert(tensor->nb[0] == sizeof(int16_t));
  2164. for (int i = 0; i < n; i++) {
  2165. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2166. }
  2167. } break;
  2168. case GGML_TYPE_I32:
  2169. {
  2170. assert(tensor->nb[0] == sizeof(int32_t));
  2171. for (int i = 0; i < n; i++) {
  2172. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2173. }
  2174. } break;
  2175. case GGML_TYPE_F16:
  2176. {
  2177. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2178. for (int i = 0; i < n; i++) {
  2179. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2180. }
  2181. } break;
  2182. case GGML_TYPE_BF16:
  2183. {
  2184. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2185. for (int i = 0; i < n; i++) {
  2186. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2187. }
  2188. } break;
  2189. case GGML_TYPE_F32:
  2190. {
  2191. assert(tensor->nb[0] == sizeof(float));
  2192. for (int i = 0; i < n; i++) {
  2193. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2194. }
  2195. } break;
  2196. default:
  2197. {
  2198. GGML_ABORT("fatal error");
  2199. }
  2200. }
  2201. return tensor;
  2202. }
  2203. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2204. const int n = ggml_nrows(tensor);
  2205. const int nc = tensor->ne[0];
  2206. const size_t n1 = tensor->nb[1];
  2207. char * const data = tensor->data;
  2208. switch (tensor->type) {
  2209. case GGML_TYPE_I8:
  2210. {
  2211. assert(tensor->nb[0] == sizeof(int8_t));
  2212. for (int i = 0; i < n; i++) {
  2213. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2214. }
  2215. } break;
  2216. case GGML_TYPE_I16:
  2217. {
  2218. assert(tensor->nb[0] == sizeof(int16_t));
  2219. for (int i = 0; i < n; i++) {
  2220. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2221. }
  2222. } break;
  2223. case GGML_TYPE_I32:
  2224. {
  2225. assert(tensor->nb[0] == sizeof(int32_t));
  2226. for (int i = 0; i < n; i++) {
  2227. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2228. }
  2229. } break;
  2230. case GGML_TYPE_F16:
  2231. {
  2232. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2233. for (int i = 0; i < n; i++) {
  2234. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2235. }
  2236. } break;
  2237. case GGML_TYPE_BF16:
  2238. {
  2239. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  2240. for (int i = 0; i < n; i++) {
  2241. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2242. }
  2243. } break;
  2244. case GGML_TYPE_F32:
  2245. {
  2246. assert(tensor->nb[0] == sizeof(float));
  2247. for (int i = 0; i < n; i++) {
  2248. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2249. }
  2250. } break;
  2251. default:
  2252. {
  2253. GGML_ABORT("fatal error");
  2254. }
  2255. }
  2256. return tensor;
  2257. }
  2258. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2259. if (!ggml_is_contiguous(tensor)) {
  2260. int64_t id[4] = { 0, 0, 0, 0 };
  2261. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2262. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2263. }
  2264. switch (tensor->type) {
  2265. case GGML_TYPE_I8:
  2266. {
  2267. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2268. return ((int8_t *)(tensor->data))[i];
  2269. }
  2270. case GGML_TYPE_I16:
  2271. {
  2272. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2273. return ((int16_t *)(tensor->data))[i];
  2274. }
  2275. case GGML_TYPE_I32:
  2276. {
  2277. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2278. return ((int32_t *)(tensor->data))[i];
  2279. }
  2280. case GGML_TYPE_F16:
  2281. {
  2282. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2283. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2284. }
  2285. case GGML_TYPE_BF16:
  2286. {
  2287. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  2288. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  2289. }
  2290. case GGML_TYPE_F32:
  2291. {
  2292. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2293. return ((float *)(tensor->data))[i];
  2294. }
  2295. default:
  2296. {
  2297. GGML_ABORT("fatal error");
  2298. }
  2299. }
  2300. }
  2301. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2302. if (!ggml_is_contiguous(tensor)) {
  2303. int64_t id[4] = { 0, 0, 0, 0 };
  2304. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2305. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2306. return;
  2307. }
  2308. switch (tensor->type) {
  2309. case GGML_TYPE_I8:
  2310. {
  2311. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2312. ((int8_t *)(tensor->data))[i] = value;
  2313. } break;
  2314. case GGML_TYPE_I16:
  2315. {
  2316. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2317. ((int16_t *)(tensor->data))[i] = value;
  2318. } break;
  2319. case GGML_TYPE_I32:
  2320. {
  2321. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2322. ((int32_t *)(tensor->data))[i] = value;
  2323. } break;
  2324. case GGML_TYPE_F16:
  2325. {
  2326. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2327. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2328. } break;
  2329. case GGML_TYPE_BF16:
  2330. {
  2331. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  2332. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  2333. } break;
  2334. case GGML_TYPE_F32:
  2335. {
  2336. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2337. ((float *)(tensor->data))[i] = value;
  2338. } break;
  2339. default:
  2340. {
  2341. GGML_ABORT("fatal error");
  2342. }
  2343. }
  2344. }
  2345. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2346. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2347. switch (tensor->type) {
  2348. case GGML_TYPE_I8:
  2349. return ((int8_t *) data)[0];
  2350. case GGML_TYPE_I16:
  2351. return ((int16_t *) data)[0];
  2352. case GGML_TYPE_I32:
  2353. return ((int32_t *) data)[0];
  2354. case GGML_TYPE_F16:
  2355. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2356. case GGML_TYPE_BF16:
  2357. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  2358. case GGML_TYPE_F32:
  2359. return ((float *) data)[0];
  2360. default:
  2361. GGML_ABORT("fatal error");
  2362. }
  2363. }
  2364. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2365. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2366. switch (tensor->type) {
  2367. case GGML_TYPE_I8:
  2368. {
  2369. ((int8_t *)(data))[0] = value;
  2370. } break;
  2371. case GGML_TYPE_I16:
  2372. {
  2373. ((int16_t *)(data))[0] = value;
  2374. } break;
  2375. case GGML_TYPE_I32:
  2376. {
  2377. ((int32_t *)(data))[0] = value;
  2378. } break;
  2379. case GGML_TYPE_F16:
  2380. {
  2381. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2382. } break;
  2383. case GGML_TYPE_BF16:
  2384. {
  2385. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  2386. } break;
  2387. case GGML_TYPE_F32:
  2388. {
  2389. ((float *)(data))[0] = value;
  2390. } break;
  2391. default:
  2392. {
  2393. GGML_ABORT("fatal error");
  2394. }
  2395. }
  2396. }
  2397. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2398. if (!ggml_is_contiguous(tensor)) {
  2399. int64_t id[4] = { 0, 0, 0, 0 };
  2400. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2401. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2402. }
  2403. switch (tensor->type) {
  2404. case GGML_TYPE_I8:
  2405. {
  2406. return ((int8_t *)(tensor->data))[i];
  2407. }
  2408. case GGML_TYPE_I16:
  2409. {
  2410. return ((int16_t *)(tensor->data))[i];
  2411. }
  2412. case GGML_TYPE_I32:
  2413. {
  2414. return ((int32_t *)(tensor->data))[i];
  2415. }
  2416. case GGML_TYPE_F16:
  2417. {
  2418. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2419. }
  2420. case GGML_TYPE_BF16:
  2421. {
  2422. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  2423. }
  2424. case GGML_TYPE_F32:
  2425. {
  2426. return ((float *)(tensor->data))[i];
  2427. }
  2428. default:
  2429. {
  2430. GGML_ABORT("fatal error");
  2431. }
  2432. }
  2433. }
  2434. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2435. if (!ggml_is_contiguous(tensor)) {
  2436. int64_t id[4] = { 0, 0, 0, 0 };
  2437. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2438. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2439. return;
  2440. }
  2441. switch (tensor->type) {
  2442. case GGML_TYPE_I8:
  2443. {
  2444. ((int8_t *)(tensor->data))[i] = value;
  2445. } break;
  2446. case GGML_TYPE_I16:
  2447. {
  2448. ((int16_t *)(tensor->data))[i] = value;
  2449. } break;
  2450. case GGML_TYPE_I32:
  2451. {
  2452. ((int32_t *)(tensor->data))[i] = value;
  2453. } break;
  2454. case GGML_TYPE_F16:
  2455. {
  2456. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2457. } break;
  2458. case GGML_TYPE_BF16:
  2459. {
  2460. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  2461. } break;
  2462. case GGML_TYPE_F32:
  2463. {
  2464. ((float *)(tensor->data))[i] = value;
  2465. } break;
  2466. default:
  2467. {
  2468. GGML_ABORT("fatal error");
  2469. }
  2470. }
  2471. }
  2472. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2473. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2474. switch (tensor->type) {
  2475. case GGML_TYPE_I8:
  2476. return ((int8_t *) data)[0];
  2477. case GGML_TYPE_I16:
  2478. return ((int16_t *) data)[0];
  2479. case GGML_TYPE_I32:
  2480. return ((int32_t *) data)[0];
  2481. case GGML_TYPE_F16:
  2482. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2483. case GGML_TYPE_BF16:
  2484. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  2485. case GGML_TYPE_F32:
  2486. return ((float *) data)[0];
  2487. default:
  2488. GGML_ABORT("fatal error");
  2489. }
  2490. }
  2491. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2492. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2493. switch (tensor->type) {
  2494. case GGML_TYPE_I8:
  2495. {
  2496. ((int8_t *)(data))[0] = value;
  2497. } break;
  2498. case GGML_TYPE_I16:
  2499. {
  2500. ((int16_t *)(data))[0] = value;
  2501. } break;
  2502. case GGML_TYPE_I32:
  2503. {
  2504. ((int32_t *)(data))[0] = value;
  2505. } break;
  2506. case GGML_TYPE_F16:
  2507. {
  2508. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2509. } break;
  2510. case GGML_TYPE_BF16:
  2511. {
  2512. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  2513. } break;
  2514. case GGML_TYPE_F32:
  2515. {
  2516. ((float *)(data))[0] = value;
  2517. } break;
  2518. default:
  2519. {
  2520. GGML_ABORT("fatal error");
  2521. }
  2522. }
  2523. }
  2524. ////////////////////////////////////////////////////////////////////////////////
  2525. // ggml_compute_forward_dup
  2526. static void ggml_compute_forward_dup_same_cont(
  2527. const struct ggml_compute_params * params,
  2528. struct ggml_tensor * dst) {
  2529. const struct ggml_tensor * src0 = dst->src[0];
  2530. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  2531. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  2532. GGML_ASSERT(src0->type == dst->type);
  2533. const size_t nb0 = ggml_type_size(src0->type);
  2534. const int ith = params->ith; // thread index
  2535. const int nth = params->nth; // number of threads
  2536. // parallelize by elements
  2537. const int ne = ggml_nelements(dst);
  2538. const int dr = (ne + nth - 1) / nth;
  2539. const int ie0 = dr * ith;
  2540. const int ie1 = MIN(ie0 + dr, ne);
  2541. if (ie0 < ie1) {
  2542. memcpy(
  2543. ((char *) dst->data + ie0*nb0),
  2544. ((char *) src0->data + ie0*nb0),
  2545. (ie1 - ie0) * nb0);
  2546. }
  2547. }
  2548. static void ggml_compute_forward_dup_f16(
  2549. const struct ggml_compute_params * params,
  2550. struct ggml_tensor * dst) {
  2551. const struct ggml_tensor * src0 = dst->src[0];
  2552. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  2553. GGML_TENSOR_UNARY_OP_LOCALS
  2554. const int ith = params->ith; // thread index
  2555. const int nth = params->nth; // number of threads
  2556. // parallelize by rows
  2557. const int nr = ne01;
  2558. // number of rows per thread
  2559. const int dr = (nr + nth - 1) / nth;
  2560. // row range for this thread
  2561. const int ir0 = dr * ith;
  2562. const int ir1 = MIN(ir0 + dr, nr);
  2563. if (src0->type == dst->type &&
  2564. ne00 == ne0 &&
  2565. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  2566. // copy by rows
  2567. const size_t rs = ne00*nb00;
  2568. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2569. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2570. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2571. memcpy(
  2572. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  2573. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  2574. rs);
  2575. }
  2576. }
  2577. }
  2578. return;
  2579. }
  2580. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  2581. if (ggml_is_contiguous(dst)) {
  2582. if (nb00 == sizeof(ggml_fp16_t)) {
  2583. if (dst->type == GGML_TYPE_F16) {
  2584. size_t id = 0;
  2585. const size_t rs = ne00 * nb00;
  2586. char * dst_ptr = (char *) dst->data;
  2587. for (int i03 = 0; i03 < ne03; i03++) {
  2588. for (int i02 = 0; i02 < ne02; i02++) {
  2589. id += rs * ir0;
  2590. for (int i01 = ir0; i01 < ir1; i01++) {
  2591. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  2592. memcpy(dst_ptr + id, src0_ptr, rs);
  2593. id += rs;
  2594. }
  2595. id += rs * (ne01 - ir1);
  2596. }
  2597. }
  2598. } else if (dst->type == GGML_TYPE_F32) {
  2599. size_t id = 0;
  2600. float * dst_ptr = (float *) dst->data;
  2601. for (int i03 = 0; i03 < ne03; i03++) {
  2602. for (int i02 = 0; i02 < ne02; i02++) {
  2603. id += ne00 * ir0;
  2604. for (int i01 = ir0; i01 < ir1; i01++) {
  2605. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2606. for (int i00 = 0; i00 < ne00; i00++) {
  2607. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  2608. id++;
  2609. }
  2610. }
  2611. id += ne00 * (ne01 - ir1);
  2612. }
  2613. }
  2614. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  2615. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  2616. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  2617. size_t id = 0;
  2618. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  2619. char * dst_ptr = (char *) dst->data;
  2620. for (int i03 = 0; i03 < ne03; i03++) {
  2621. for (int i02 = 0; i02 < ne02; i02++) {
  2622. id += rs * ir0;
  2623. for (int i01 = ir0; i01 < ir1; i01++) {
  2624. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2625. for (int i00 = 0; i00 < ne00; i00++) {
  2626. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  2627. }
  2628. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  2629. id += rs;
  2630. }
  2631. id += rs * (ne01 - ir1);
  2632. }
  2633. }
  2634. } else {
  2635. GGML_ABORT("fatal error"); // TODO: implement
  2636. }
  2637. } else {
  2638. //printf("%s: this is not optimal - fix me\n", __func__);
  2639. if (dst->type == GGML_TYPE_F32) {
  2640. size_t id = 0;
  2641. float * dst_ptr = (float *) dst->data;
  2642. for (int i03 = 0; i03 < ne03; i03++) {
  2643. for (int i02 = 0; i02 < ne02; i02++) {
  2644. id += ne00 * ir0;
  2645. for (int i01 = ir0; i01 < ir1; i01++) {
  2646. for (int i00 = 0; i00 < ne00; i00++) {
  2647. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2648. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  2649. id++;
  2650. }
  2651. }
  2652. id += ne00 * (ne01 - ir1);
  2653. }
  2654. }
  2655. } else if (dst->type == GGML_TYPE_F16) {
  2656. size_t id = 0;
  2657. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  2658. for (int i03 = 0; i03 < ne03; i03++) {
  2659. for (int i02 = 0; i02 < ne02; i02++) {
  2660. id += ne00 * ir0;
  2661. for (int i01 = ir0; i01 < ir1; i01++) {
  2662. for (int i00 = 0; i00 < ne00; i00++) {
  2663. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2664. dst_ptr[id] = *src0_ptr;
  2665. id++;
  2666. }
  2667. }
  2668. id += ne00 * (ne01 - ir1);
  2669. }
  2670. }
  2671. } else {
  2672. GGML_ABORT("fatal error"); // TODO: implement
  2673. }
  2674. }
  2675. return;
  2676. }
  2677. // dst counters
  2678. int64_t i10 = 0;
  2679. int64_t i11 = 0;
  2680. int64_t i12 = 0;
  2681. int64_t i13 = 0;
  2682. if (dst->type == GGML_TYPE_F16) {
  2683. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2684. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2685. i10 += ne00 * ir0;
  2686. while (i10 >= ne0) {
  2687. i10 -= ne0;
  2688. if (++i11 == ne1) {
  2689. i11 = 0;
  2690. if (++i12 == ne2) {
  2691. i12 = 0;
  2692. if (++i13 == ne3) {
  2693. i13 = 0;
  2694. }
  2695. }
  2696. }
  2697. }
  2698. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2699. for (int64_t i00 = 0; i00 < ne00; i00++) {
  2700. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2701. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  2702. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  2703. if (++i10 == ne00) {
  2704. i10 = 0;
  2705. if (++i11 == ne01) {
  2706. i11 = 0;
  2707. if (++i12 == ne02) {
  2708. i12 = 0;
  2709. if (++i13 == ne03) {
  2710. i13 = 0;
  2711. }
  2712. }
  2713. }
  2714. }
  2715. }
  2716. }
  2717. i10 += ne00 * (ne01 - ir1);
  2718. while (i10 >= ne0) {
  2719. i10 -= ne0;
  2720. if (++i11 == ne1) {
  2721. i11 = 0;
  2722. if (++i12 == ne2) {
  2723. i12 = 0;
  2724. if (++i13 == ne3) {
  2725. i13 = 0;
  2726. }
  2727. }
  2728. }
  2729. }
  2730. }
  2731. }
  2732. } else if (dst->type == GGML_TYPE_F32) {
  2733. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2734. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2735. i10 += ne00 * ir0;
  2736. while (i10 >= ne0) {
  2737. i10 -= ne0;
  2738. if (++i11 == ne1) {
  2739. i11 = 0;
  2740. if (++i12 == ne2) {
  2741. i12 = 0;
  2742. if (++i13 == ne3) {
  2743. i13 = 0;
  2744. }
  2745. }
  2746. }
  2747. }
  2748. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2749. for (int64_t i00 = 0; i00 < ne00; i00++) {
  2750. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2751. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  2752. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  2753. if (++i10 == ne0) {
  2754. i10 = 0;
  2755. if (++i11 == ne1) {
  2756. i11 = 0;
  2757. if (++i12 == ne2) {
  2758. i12 = 0;
  2759. if (++i13 == ne3) {
  2760. i13 = 0;
  2761. }
  2762. }
  2763. }
  2764. }
  2765. }
  2766. }
  2767. i10 += ne00 * (ne01 - ir1);
  2768. while (i10 >= ne0) {
  2769. i10 -= ne0;
  2770. if (++i11 == ne1) {
  2771. i11 = 0;
  2772. if (++i12 == ne2) {
  2773. i12 = 0;
  2774. if (++i13 == ne3) {
  2775. i13 = 0;
  2776. }
  2777. }
  2778. }
  2779. }
  2780. }
  2781. }
  2782. } else {
  2783. GGML_ABORT("fatal error"); // TODO: implement
  2784. }
  2785. }
  2786. static void ggml_compute_forward_dup_bf16(
  2787. const struct ggml_compute_params * params,
  2788. struct ggml_tensor * dst) {
  2789. const struct ggml_tensor * src0 = dst->src[0];
  2790. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  2791. GGML_TENSOR_UNARY_OP_LOCALS
  2792. const int ith = params->ith; // thread index
  2793. const int nth = params->nth; // number of threads
  2794. // parallelize by rows
  2795. const int nr = ne01;
  2796. // number of rows per thread
  2797. const int dr = (nr + nth - 1) / nth;
  2798. // row range for this thread
  2799. const int ir0 = dr * ith;
  2800. const int ir1 = MIN(ir0 + dr, nr);
  2801. if (src0->type == dst->type &&
  2802. ne00 == ne0 &&
  2803. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  2804. // copy by rows
  2805. const size_t rs = ne00*nb00;
  2806. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2807. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2808. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2809. memcpy(
  2810. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  2811. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  2812. rs);
  2813. }
  2814. }
  2815. }
  2816. return;
  2817. }
  2818. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  2819. if (ggml_is_contiguous(dst)) {
  2820. if (nb00 == sizeof(ggml_bf16_t)) {
  2821. if (dst->type == GGML_TYPE_BF16) {
  2822. size_t id = 0;
  2823. const size_t rs = ne00 * nb00;
  2824. char * dst_ptr = (char *) dst->data;
  2825. for (int i03 = 0; i03 < ne03; i03++) {
  2826. for (int i02 = 0; i02 < ne02; i02++) {
  2827. id += rs * ir0;
  2828. for (int i01 = ir0; i01 < ir1; i01++) {
  2829. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  2830. memcpy(dst_ptr + id, src0_ptr, rs);
  2831. id += rs;
  2832. }
  2833. id += rs * (ne01 - ir1);
  2834. }
  2835. }
  2836. } else if (dst->type == GGML_TYPE_F16) {
  2837. size_t id = 0;
  2838. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  2839. for (int i03 = 0; i03 < ne03; i03++) {
  2840. for (int i02 = 0; i02 < ne02; i02++) {
  2841. id += ne00 * ir0;
  2842. for (int i01 = ir0; i01 < ir1; i01++) {
  2843. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2844. for (int i00 = 0; i00 < ne00; i00++) {
  2845. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  2846. id++;
  2847. }
  2848. }
  2849. id += ne00 * (ne01 - ir1);
  2850. }
  2851. }
  2852. } else if (dst->type == GGML_TYPE_F32) {
  2853. size_t id = 0;
  2854. float * dst_ptr = (float *) dst->data;
  2855. for (int i03 = 0; i03 < ne03; i03++) {
  2856. for (int i02 = 0; i02 < ne02; i02++) {
  2857. id += ne00 * ir0;
  2858. for (int i01 = ir0; i01 < ir1; i01++) {
  2859. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2860. for (int i00 = 0; i00 < ne00; i00++) {
  2861. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  2862. id++;
  2863. }
  2864. }
  2865. id += ne00 * (ne01 - ir1);
  2866. }
  2867. }
  2868. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  2869. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  2870. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  2871. size_t id = 0;
  2872. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  2873. char * dst_ptr = (char *) dst->data;
  2874. for (int i03 = 0; i03 < ne03; i03++) {
  2875. for (int i02 = 0; i02 < ne02; i02++) {
  2876. id += rs * ir0;
  2877. for (int i01 = ir0; i01 < ir1; i01++) {
  2878. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2879. for (int i00 = 0; i00 < ne00; i00++) {
  2880. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  2881. }
  2882. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  2883. id += rs;
  2884. }
  2885. id += rs * (ne01 - ir1);
  2886. }
  2887. }
  2888. } else {
  2889. GGML_ABORT("fatal error"); // TODO: implement
  2890. }
  2891. } else {
  2892. //printf("%s: this is not optimal - fix me\n", __func__);
  2893. if (dst->type == GGML_TYPE_F32) {
  2894. size_t id = 0;
  2895. float * dst_ptr = (float *) dst->data;
  2896. for (int i03 = 0; i03 < ne03; i03++) {
  2897. for (int i02 = 0; i02 < ne02; i02++) {
  2898. id += ne00 * ir0;
  2899. for (int i01 = ir0; i01 < ir1; i01++) {
  2900. for (int i00 = 0; i00 < ne00; i00++) {
  2901. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2902. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  2903. id++;
  2904. }
  2905. }
  2906. id += ne00 * (ne01 - ir1);
  2907. }
  2908. }
  2909. } else if (dst->type == GGML_TYPE_BF16) {
  2910. size_t id = 0;
  2911. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  2912. for (int i03 = 0; i03 < ne03; i03++) {
  2913. for (int i02 = 0; i02 < ne02; i02++) {
  2914. id += ne00 * ir0;
  2915. for (int i01 = ir0; i01 < ir1; i01++) {
  2916. for (int i00 = 0; i00 < ne00; i00++) {
  2917. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2918. dst_ptr[id] = *src0_ptr;
  2919. id++;
  2920. }
  2921. }
  2922. id += ne00 * (ne01 - ir1);
  2923. }
  2924. }
  2925. } else if (dst->type == GGML_TYPE_F16) {
  2926. size_t id = 0;
  2927. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  2928. for (int i03 = 0; i03 < ne03; i03++) {
  2929. for (int i02 = 0; i02 < ne02; i02++) {
  2930. id += ne00 * ir0;
  2931. for (int i01 = ir0; i01 < ir1; i01++) {
  2932. for (int i00 = 0; i00 < ne00; i00++) {
  2933. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2934. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  2935. id++;
  2936. }
  2937. }
  2938. id += ne00 * (ne01 - ir1);
  2939. }
  2940. }
  2941. } else {
  2942. GGML_ABORT("fatal error"); // TODO: implement
  2943. }
  2944. }
  2945. return;
  2946. }
  2947. // dst counters
  2948. int64_t i10 = 0;
  2949. int64_t i11 = 0;
  2950. int64_t i12 = 0;
  2951. int64_t i13 = 0;
  2952. if (dst->type == GGML_TYPE_BF16) {
  2953. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2954. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2955. i10 += ne00 * ir0;
  2956. while (i10 >= ne0) {
  2957. i10 -= ne0;
  2958. if (++i11 == ne1) {
  2959. i11 = 0;
  2960. if (++i12 == ne2) {
  2961. i12 = 0;
  2962. if (++i13 == ne3) {
  2963. i13 = 0;
  2964. }
  2965. }
  2966. }
  2967. }
  2968. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2969. for (int64_t i00 = 0; i00 < ne00; i00++) {
  2970. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2971. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  2972. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  2973. if (++i10 == ne00) {
  2974. i10 = 0;
  2975. if (++i11 == ne01) {
  2976. i11 = 0;
  2977. if (++i12 == ne02) {
  2978. i12 = 0;
  2979. if (++i13 == ne03) {
  2980. i13 = 0;
  2981. }
  2982. }
  2983. }
  2984. }
  2985. }
  2986. }
  2987. i10 += ne00 * (ne01 - ir1);
  2988. while (i10 >= ne0) {
  2989. i10 -= ne0;
  2990. if (++i11 == ne1) {
  2991. i11 = 0;
  2992. if (++i12 == ne2) {
  2993. i12 = 0;
  2994. if (++i13 == ne3) {
  2995. i13 = 0;
  2996. }
  2997. }
  2998. }
  2999. }
  3000. }
  3001. }
  3002. } else if (dst->type == GGML_TYPE_F16) {
  3003. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3004. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3005. i10 += ne00 * ir0;
  3006. while (i10 >= ne0) {
  3007. i10 -= ne0;
  3008. if (++i11 == ne1) {
  3009. i11 = 0;
  3010. if (++i12 == ne2) {
  3011. i12 = 0;
  3012. if (++i13 == ne3) {
  3013. i13 = 0;
  3014. }
  3015. }
  3016. }
  3017. }
  3018. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3019. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3020. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3021. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3022. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  3023. if (++i10 == ne0) {
  3024. i10 = 0;
  3025. if (++i11 == ne1) {
  3026. i11 = 0;
  3027. if (++i12 == ne2) {
  3028. i12 = 0;
  3029. if (++i13 == ne3) {
  3030. i13 = 0;
  3031. }
  3032. }
  3033. }
  3034. }
  3035. }
  3036. }
  3037. i10 += ne00 * (ne01 - ir1);
  3038. while (i10 >= ne0) {
  3039. i10 -= ne0;
  3040. if (++i11 == ne1) {
  3041. i11 = 0;
  3042. if (++i12 == ne2) {
  3043. i12 = 0;
  3044. if (++i13 == ne3) {
  3045. i13 = 0;
  3046. }
  3047. }
  3048. }
  3049. }
  3050. }
  3051. }
  3052. } else if (dst->type == GGML_TYPE_F32) {
  3053. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3054. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3055. i10 += ne00 * ir0;
  3056. while (i10 >= ne0) {
  3057. i10 -= ne0;
  3058. if (++i11 == ne1) {
  3059. i11 = 0;
  3060. if (++i12 == ne2) {
  3061. i12 = 0;
  3062. if (++i13 == ne3) {
  3063. i13 = 0;
  3064. }
  3065. }
  3066. }
  3067. }
  3068. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3069. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3070. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3071. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3072. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  3073. if (++i10 == ne0) {
  3074. i10 = 0;
  3075. if (++i11 == ne1) {
  3076. i11 = 0;
  3077. if (++i12 == ne2) {
  3078. i12 = 0;
  3079. if (++i13 == ne3) {
  3080. i13 = 0;
  3081. }
  3082. }
  3083. }
  3084. }
  3085. }
  3086. }
  3087. i10 += ne00 * (ne01 - ir1);
  3088. while (i10 >= ne0) {
  3089. i10 -= ne0;
  3090. if (++i11 == ne1) {
  3091. i11 = 0;
  3092. if (++i12 == ne2) {
  3093. i12 = 0;
  3094. if (++i13 == ne3) {
  3095. i13 = 0;
  3096. }
  3097. }
  3098. }
  3099. }
  3100. }
  3101. }
  3102. } else {
  3103. GGML_ABORT("fatal error"); // TODO: implement
  3104. }
  3105. }
  3106. static void ggml_compute_forward_dup_f32(
  3107. const struct ggml_compute_params * params,
  3108. struct ggml_tensor * dst) {
  3109. const struct ggml_tensor * src0 = dst->src[0];
  3110. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3111. GGML_TENSOR_UNARY_OP_LOCALS
  3112. const int ith = params->ith; // thread index
  3113. const int nth = params->nth; // number of threads
  3114. // parallelize by rows
  3115. const int nr = ne01;
  3116. // number of rows per thread
  3117. const int dr = (nr + nth - 1) / nth;
  3118. // row range for this thread
  3119. const int ir0 = dr * ith;
  3120. const int ir1 = MIN(ir0 + dr, nr);
  3121. if (src0->type == dst->type &&
  3122. ne00 == ne0 &&
  3123. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  3124. // copy by rows
  3125. const size_t rs = ne00*nb00;
  3126. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3127. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3128. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3129. memcpy(
  3130. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3131. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3132. rs);
  3133. }
  3134. }
  3135. }
  3136. return;
  3137. }
  3138. if (ggml_is_contiguous(dst)) {
  3139. // TODO: simplify
  3140. if (nb00 == sizeof(float)) {
  3141. if (dst->type == GGML_TYPE_F32) {
  3142. size_t id = 0;
  3143. const size_t rs = ne00 * nb00;
  3144. char * dst_ptr = (char *) dst->data;
  3145. for (int i03 = 0; i03 < ne03; i03++) {
  3146. for (int i02 = 0; i02 < ne02; i02++) {
  3147. id += rs * ir0;
  3148. for (int i01 = ir0; i01 < ir1; i01++) {
  3149. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3150. memcpy(dst_ptr + id, src0_ptr, rs);
  3151. id += rs;
  3152. }
  3153. id += rs * (ne01 - ir1);
  3154. }
  3155. }
  3156. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  3157. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  3158. size_t id = 0;
  3159. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  3160. char * dst_ptr = (char *) dst->data;
  3161. for (int i03 = 0; i03 < ne03; i03++) {
  3162. for (int i02 = 0; i02 < ne02; i02++) {
  3163. id += rs * ir0;
  3164. for (int i01 = ir0; i01 < ir1; i01++) {
  3165. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3166. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  3167. id += rs;
  3168. }
  3169. id += rs * (ne01 - ir1);
  3170. }
  3171. }
  3172. } else {
  3173. GGML_ABORT("fatal error"); // TODO: implement
  3174. }
  3175. } else {
  3176. //printf("%s: this is not optimal - fix me\n", __func__);
  3177. if (dst->type == GGML_TYPE_F32) {
  3178. size_t id = 0;
  3179. float * dst_ptr = (float *) dst->data;
  3180. for (int i03 = 0; i03 < ne03; i03++) {
  3181. for (int i02 = 0; i02 < ne02; i02++) {
  3182. id += ne00 * ir0;
  3183. for (int i01 = ir0; i01 < ir1; i01++) {
  3184. for (int i00 = 0; i00 < ne00; i00++) {
  3185. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3186. dst_ptr[id] = *src0_ptr;
  3187. id++;
  3188. }
  3189. }
  3190. id += ne00 * (ne01 - ir1);
  3191. }
  3192. }
  3193. } else if (dst->type == GGML_TYPE_F16) {
  3194. size_t id = 0;
  3195. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3196. for (int i03 = 0; i03 < ne03; i03++) {
  3197. for (int i02 = 0; i02 < ne02; i02++) {
  3198. id += ne00 * ir0;
  3199. for (int i01 = ir0; i01 < ir1; i01++) {
  3200. for (int i00 = 0; i00 < ne00; i00++) {
  3201. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3202. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3203. id++;
  3204. }
  3205. }
  3206. id += ne00 * (ne01 - ir1);
  3207. }
  3208. }
  3209. } else if (dst->type == GGML_TYPE_BF16) {
  3210. size_t id = 0;
  3211. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  3212. for (int i03 = 0; i03 < ne03; i03++) {
  3213. for (int i02 = 0; i02 < ne02; i02++) {
  3214. id += ne00 * ir0;
  3215. for (int i01 = ir0; i01 < ir1; i01++) {
  3216. for (int i00 = 0; i00 < ne00; i00++) {
  3217. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3218. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  3219. id++;
  3220. }
  3221. }
  3222. id += ne00 * (ne01 - ir1);
  3223. }
  3224. }
  3225. } else {
  3226. GGML_ABORT("fatal error"); // TODO: implement
  3227. }
  3228. }
  3229. return;
  3230. }
  3231. // dst counters
  3232. int64_t i10 = 0;
  3233. int64_t i11 = 0;
  3234. int64_t i12 = 0;
  3235. int64_t i13 = 0;
  3236. if (dst->type == GGML_TYPE_F32) {
  3237. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3238. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3239. i10 += ne00 * ir0;
  3240. while (i10 >= ne0) {
  3241. i10 -= ne0;
  3242. if (++i11 == ne1) {
  3243. i11 = 0;
  3244. if (++i12 == ne2) {
  3245. i12 = 0;
  3246. if (++i13 == ne3) {
  3247. i13 = 0;
  3248. }
  3249. }
  3250. }
  3251. }
  3252. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3253. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3254. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3255. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3256. memcpy(dst_ptr, src0_ptr, sizeof(float));
  3257. if (++i10 == ne0) {
  3258. i10 = 0;
  3259. if (++i11 == ne1) {
  3260. i11 = 0;
  3261. if (++i12 == ne2) {
  3262. i12 = 0;
  3263. if (++i13 == ne3) {
  3264. i13 = 0;
  3265. }
  3266. }
  3267. }
  3268. }
  3269. }
  3270. }
  3271. i10 += ne00 * (ne01 - ir1);
  3272. while (i10 >= ne0) {
  3273. i10 -= ne0;
  3274. if (++i11 == ne1) {
  3275. i11 = 0;
  3276. if (++i12 == ne2) {
  3277. i12 = 0;
  3278. if (++i13 == ne3) {
  3279. i13 = 0;
  3280. }
  3281. }
  3282. }
  3283. }
  3284. }
  3285. }
  3286. } else if (dst->type == GGML_TYPE_F16) {
  3287. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3288. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3289. i10 += ne00 * ir0;
  3290. while (i10 >= ne0) {
  3291. i10 -= ne0;
  3292. if (++i11 == ne1) {
  3293. i11 = 0;
  3294. if (++i12 == ne2) {
  3295. i12 = 0;
  3296. if (++i13 == ne3) {
  3297. i13 = 0;
  3298. }
  3299. }
  3300. }
  3301. }
  3302. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3303. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3304. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3305. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3306. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  3307. if (++i10 == ne0) {
  3308. i10 = 0;
  3309. if (++i11 == ne1) {
  3310. i11 = 0;
  3311. if (++i12 == ne2) {
  3312. i12 = 0;
  3313. if (++i13 == ne3) {
  3314. i13 = 0;
  3315. }
  3316. }
  3317. }
  3318. }
  3319. }
  3320. }
  3321. i10 += ne00 * (ne01 - ir1);
  3322. while (i10 >= ne0) {
  3323. i10 -= ne0;
  3324. if (++i11 == ne1) {
  3325. i11 = 0;
  3326. if (++i12 == ne2) {
  3327. i12 = 0;
  3328. if (++i13 == ne3) {
  3329. i13 = 0;
  3330. }
  3331. }
  3332. }
  3333. }
  3334. }
  3335. }
  3336. } else if (dst->type == GGML_TYPE_BF16) {
  3337. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3338. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3339. i10 += ne00 * ir0;
  3340. while (i10 >= ne0) {
  3341. i10 -= ne0;
  3342. if (++i11 == ne1) {
  3343. i11 = 0;
  3344. if (++i12 == ne2) {
  3345. i12 = 0;
  3346. if (++i13 == ne3) {
  3347. i13 = 0;
  3348. }
  3349. }
  3350. }
  3351. }
  3352. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3353. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3354. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3355. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3356. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  3357. if (++i10 == ne0) {
  3358. i10 = 0;
  3359. if (++i11 == ne1) {
  3360. i11 = 0;
  3361. if (++i12 == ne2) {
  3362. i12 = 0;
  3363. if (++i13 == ne3) {
  3364. i13 = 0;
  3365. }
  3366. }
  3367. }
  3368. }
  3369. }
  3370. }
  3371. i10 += ne00 * (ne01 - ir1);
  3372. while (i10 >= ne0) {
  3373. i10 -= ne0;
  3374. if (++i11 == ne1) {
  3375. i11 = 0;
  3376. if (++i12 == ne2) {
  3377. i12 = 0;
  3378. if (++i13 == ne3) {
  3379. i13 = 0;
  3380. }
  3381. }
  3382. }
  3383. }
  3384. }
  3385. }
  3386. } else {
  3387. GGML_ABORT("fatal error"); // TODO: implement
  3388. }
  3389. }
  3390. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  3391. static void ggml_compute_forward_dup_bytes(
  3392. const struct ggml_compute_params * params,
  3393. struct ggml_tensor * dst) {
  3394. const struct ggml_tensor * src0 = dst->src[0];
  3395. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3396. GGML_ASSERT(src0->type == dst->type);
  3397. GGML_TENSOR_UNARY_OP_LOCALS;
  3398. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  3399. ggml_compute_forward_dup_same_cont(params, dst);
  3400. return;
  3401. }
  3402. const size_t type_size = ggml_type_size(src0->type);
  3403. const int ith = params->ith; // thread index
  3404. const int nth = params->nth; // number of threads
  3405. // parallelize by rows
  3406. const int nr = ne01;
  3407. // number of rows per thread
  3408. const int dr = (nr + nth - 1) / nth;
  3409. // row range for this thread
  3410. const int ir0 = dr * ith;
  3411. const int ir1 = MIN(ir0 + dr, nr);
  3412. if (src0->type == dst->type &&
  3413. ne00 == ne0 &&
  3414. nb00 == type_size && nb0 == type_size) {
  3415. // copy by rows
  3416. const size_t rs = ne00 * type_size;
  3417. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3418. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3419. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3420. memcpy(
  3421. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3422. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3423. rs);
  3424. }
  3425. }
  3426. }
  3427. return;
  3428. }
  3429. if (ggml_is_contiguous(dst)) {
  3430. size_t id = 0;
  3431. char * dst_ptr = (char *) dst->data;
  3432. const size_t rs = ne00 * type_size;
  3433. if (nb00 == type_size) {
  3434. // src0 is contigous on first dimension, copy by rows
  3435. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3436. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3437. id += rs * ir0;
  3438. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3439. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3440. memcpy(dst_ptr + id, src0_ptr, rs);
  3441. id += rs;
  3442. }
  3443. id += rs * (ne01 - ir1);
  3444. }
  3445. }
  3446. } else {
  3447. //printf("%s: this is not optimal - fix me\n", __func__);
  3448. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3449. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3450. id += rs * ir0;
  3451. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3452. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3453. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  3454. memcpy(dst_ptr + id, src0_ptr, type_size);
  3455. id += type_size;
  3456. }
  3457. }
  3458. id += rs * (ne01 - ir1);
  3459. }
  3460. }
  3461. }
  3462. return;
  3463. }
  3464. // dst counters
  3465. int64_t i10 = 0;
  3466. int64_t i11 = 0;
  3467. int64_t i12 = 0;
  3468. int64_t i13 = 0;
  3469. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3470. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3471. i10 += ne00 * ir0;
  3472. while (i10 >= ne0) {
  3473. i10 -= ne0;
  3474. if (++i11 == ne1) {
  3475. i11 = 0;
  3476. if (++i12 == ne2) {
  3477. i12 = 0;
  3478. if (++i13 == ne3) {
  3479. i13 = 0;
  3480. }
  3481. }
  3482. }
  3483. }
  3484. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3485. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3486. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3487. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3488. memcpy(dst_ptr, src0_ptr, type_size);
  3489. if (++i10 == ne0) {
  3490. i10 = 0;
  3491. if (++i11 == ne1) {
  3492. i11 = 0;
  3493. if (++i12 == ne2) {
  3494. i12 = 0;
  3495. if (++i13 == ne3) {
  3496. i13 = 0;
  3497. }
  3498. }
  3499. }
  3500. }
  3501. }
  3502. }
  3503. i10 += ne00 * (ne01 - ir1);
  3504. while (i10 >= ne0) {
  3505. i10 -= ne0;
  3506. if (++i11 == ne1) {
  3507. i11 = 0;
  3508. if (++i12 == ne2) {
  3509. i12 = 0;
  3510. if (++i13 == ne3) {
  3511. i13 = 0;
  3512. }
  3513. }
  3514. }
  3515. }
  3516. }
  3517. }
  3518. }
  3519. static void ggml_compute_forward_dup(
  3520. const struct ggml_compute_params * params,
  3521. struct ggml_tensor * dst) {
  3522. const struct ggml_tensor * src0 = dst->src[0];
  3523. if (src0->type == dst->type) {
  3524. ggml_compute_forward_dup_bytes(params, dst);
  3525. return;
  3526. }
  3527. switch (src0->type) {
  3528. case GGML_TYPE_F16:
  3529. {
  3530. ggml_compute_forward_dup_f16(params, dst);
  3531. } break;
  3532. case GGML_TYPE_BF16:
  3533. {
  3534. ggml_compute_forward_dup_bf16(params, dst);
  3535. } break;
  3536. case GGML_TYPE_F32:
  3537. {
  3538. ggml_compute_forward_dup_f32(params, dst);
  3539. } break;
  3540. default:
  3541. {
  3542. GGML_ABORT("fatal error");
  3543. }
  3544. }
  3545. }
  3546. // ggml_compute_forward_add
  3547. static void ggml_compute_forward_add_f32(
  3548. const struct ggml_compute_params * params,
  3549. struct ggml_tensor * dst) {
  3550. const struct ggml_tensor * src0 = dst->src[0];
  3551. const struct ggml_tensor * src1 = dst->src[1];
  3552. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  3553. const int ith = params->ith;
  3554. const int nth = params->nth;
  3555. const int nr = ggml_nrows(src0);
  3556. GGML_TENSOR_BINARY_OP_LOCALS
  3557. GGML_ASSERT( nb0 == sizeof(float));
  3558. GGML_ASSERT(nb00 == sizeof(float));
  3559. // rows per thread
  3560. const int dr = (nr + nth - 1)/nth;
  3561. // row range for this thread
  3562. const int ir0 = dr*ith;
  3563. const int ir1 = MIN(ir0 + dr, nr);
  3564. if (nb10 == sizeof(float)) {
  3565. for (int ir = ir0; ir < ir1; ++ir) {
  3566. // src1 is broadcastable across src0 and dst in i1, i2, i3
  3567. const int64_t i03 = ir/(ne02*ne01);
  3568. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  3569. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  3570. const int64_t i13 = i03 % ne13;
  3571. const int64_t i12 = i02 % ne12;
  3572. const int64_t i11 = i01 % ne11;
  3573. const int64_t nr0 = ne00 / ne10;
  3574. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  3575. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  3576. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  3577. for (int64_t r = 0; r < nr0; ++r) {
  3578. #ifdef GGML_USE_ACCELERATE
  3579. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  3580. #else
  3581. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  3582. #endif
  3583. }
  3584. }
  3585. } else {
  3586. // src1 is not contiguous
  3587. for (int ir = ir0; ir < ir1; ++ir) {
  3588. // src1 is broadcastable across src0 and dst in i1, i2, i3
  3589. const int64_t i03 = ir/(ne02*ne01);
  3590. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  3591. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  3592. const int64_t i13 = i03 % ne13;
  3593. const int64_t i12 = i02 % ne12;
  3594. const int64_t i11 = i01 % ne11;
  3595. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  3596. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  3597. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  3598. const int64_t i10 = i0 % ne10;
  3599. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  3600. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  3601. }
  3602. }
  3603. }
  3604. }
  3605. static void ggml_compute_forward_add_f16_f32(
  3606. const struct ggml_compute_params * params,
  3607. struct ggml_tensor * dst) {
  3608. const struct ggml_tensor * src0 = dst->src[0];
  3609. const struct ggml_tensor * src1 = dst->src[1];
  3610. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3611. const int ith = params->ith;
  3612. const int nth = params->nth;
  3613. const int nr = ggml_nrows(src0);
  3614. GGML_TENSOR_BINARY_OP_LOCALS
  3615. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  3616. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3617. if (dst->type == GGML_TYPE_F32) {
  3618. GGML_ASSERT( nb0 == sizeof(float));
  3619. }
  3620. else {
  3621. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  3622. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  3623. }
  3624. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  3625. // rows per thread
  3626. const int dr = (nr + nth - 1)/nth;
  3627. // row range for this thread
  3628. const int ir0 = dr*ith;
  3629. const int ir1 = MIN(ir0 + dr, nr);
  3630. if (nb10 == sizeof(float)) {
  3631. if (dst->type == GGML_TYPE_F16) {
  3632. for (int ir = ir0; ir < ir1; ++ir) {
  3633. // src0, src1 and dst are same shape => same indices
  3634. const int i3 = ir/(ne2*ne1);
  3635. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3636. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3637. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3638. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3639. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3640. for (int i = 0; i < ne0; i++) {
  3641. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  3642. }
  3643. }
  3644. } else {
  3645. for (int ir = ir0; ir < ir1; ++ir) {
  3646. // src0, src1 and dst are same shape => same indices
  3647. const int i3 = ir/(ne2*ne1);
  3648. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3649. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3650. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3651. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3652. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3653. for (int i = 0; i < ne0; i++) {
  3654. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  3655. }
  3656. }
  3657. }
  3658. }
  3659. else {
  3660. // src1 is not contiguous
  3661. GGML_ABORT("fatal error");
  3662. }
  3663. }
  3664. static void ggml_compute_forward_add_bf16_f32(
  3665. const struct ggml_compute_params * params,
  3666. struct ggml_tensor * dst) {
  3667. const struct ggml_tensor * src0 = dst->src[0];
  3668. const struct ggml_tensor * src1 = dst->src[1];
  3669. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3670. const int ith = params->ith;
  3671. const int nth = params->nth;
  3672. const int nr = ggml_nrows(src0);
  3673. GGML_TENSOR_BINARY_OP_LOCALS
  3674. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  3675. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3676. if (dst->type == GGML_TYPE_F32) {
  3677. GGML_ASSERT( nb0 == sizeof(float));
  3678. }
  3679. else {
  3680. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  3681. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  3682. }
  3683. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  3684. // rows per thread
  3685. const int dr = (nr + nth - 1)/nth;
  3686. // row range for this thread
  3687. const int ir0 = dr*ith;
  3688. const int ir1 = MIN(ir0 + dr, nr);
  3689. if (nb10 == sizeof(float)) {
  3690. if (dst->type == GGML_TYPE_BF16) {
  3691. for (int ir = ir0; ir < ir1; ++ir) {
  3692. // src0, src1 and dst are same shape => same indices
  3693. const int i3 = ir/(ne2*ne1);
  3694. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3695. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3696. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3697. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3698. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3699. for (int i = 0; i < ne0; i++) {
  3700. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  3701. }
  3702. }
  3703. } else {
  3704. for (int ir = ir0; ir < ir1; ++ir) {
  3705. // src0, src1 and dst are same shape => same indices
  3706. const int i3 = ir/(ne2*ne1);
  3707. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3708. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3709. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3710. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3711. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3712. for (int i = 0; i < ne0; i++) {
  3713. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  3714. }
  3715. }
  3716. }
  3717. }
  3718. else {
  3719. // src1 is not contiguous
  3720. GGML_ABORT("fatal error");
  3721. }
  3722. }
  3723. static void ggml_compute_forward_add_f16_f16(
  3724. const struct ggml_compute_params * params,
  3725. struct ggml_tensor * dst) {
  3726. const struct ggml_tensor * src0 = dst->src[0];
  3727. const struct ggml_tensor * src1 = dst->src[1];
  3728. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3729. const int ith = params->ith;
  3730. const int nth = params->nth;
  3731. const int nr = ggml_nrows(src0);
  3732. GGML_TENSOR_BINARY_OP_LOCALS
  3733. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  3734. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  3735. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  3736. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  3737. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  3738. // rows per thread
  3739. const int dr = (nr + nth - 1)/nth;
  3740. // row range for this thread
  3741. const int ir0 = dr*ith;
  3742. const int ir1 = MIN(ir0 + dr, nr);
  3743. if (nb10 == sizeof(ggml_fp16_t)) {
  3744. for (int ir = ir0; ir < ir1; ++ir) {
  3745. // src0, src1 and dst are same shape => same indices
  3746. const int i3 = ir/(ne2*ne1);
  3747. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3748. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3749. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3750. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3751. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3752. for (int i = 0; i < ne0; i++) {
  3753. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  3754. }
  3755. }
  3756. }
  3757. else {
  3758. // src1 is not contiguous
  3759. GGML_ABORT("fatal error");
  3760. }
  3761. }
  3762. static void ggml_compute_forward_add_bf16_bf16(
  3763. const struct ggml_compute_params * params,
  3764. struct ggml_tensor * dst) {
  3765. const struct ggml_tensor * src0 = dst->src[0];
  3766. const struct ggml_tensor * src1 = dst->src[1];
  3767. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3768. const int ith = params->ith;
  3769. const int nth = params->nth;
  3770. const int nr = ggml_nrows(src0);
  3771. GGML_TENSOR_BINARY_OP_LOCALS
  3772. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  3773. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  3774. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  3775. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  3776. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  3777. // rows per thread
  3778. const int dr = (nr + nth - 1)/nth;
  3779. // row range for this thread
  3780. const int ir0 = dr*ith;
  3781. const int ir1 = MIN(ir0 + dr, nr);
  3782. if (nb10 == sizeof(ggml_bf16_t)) {
  3783. for (int ir = ir0; ir < ir1; ++ir) {
  3784. // src0, src1 and dst are same shape => same indices
  3785. const int i3 = ir/(ne2*ne1);
  3786. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3787. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3788. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3789. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3790. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3791. for (int i = 0; i < ne0; i++) {
  3792. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  3793. }
  3794. }
  3795. }
  3796. else {
  3797. // src1 is not contiguous
  3798. GGML_ABORT("fatal error");
  3799. }
  3800. }
  3801. static void ggml_compute_forward_add_q_f32(
  3802. const struct ggml_compute_params * params,
  3803. struct ggml_tensor * dst) {
  3804. const struct ggml_tensor * src0 = dst->src[0];
  3805. const struct ggml_tensor * src1 = dst->src[1];
  3806. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3807. const int nr = ggml_nrows(src0);
  3808. GGML_TENSOR_BINARY_OP_LOCALS
  3809. const int ith = params->ith;
  3810. const int nth = params->nth;
  3811. const enum ggml_type type = src0->type;
  3812. const enum ggml_type dtype = dst->type;
  3813. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  3814. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
  3815. // we don't support permuted src0 or src1
  3816. GGML_ASSERT(nb00 == ggml_type_size(type));
  3817. GGML_ASSERT(nb10 == sizeof(float));
  3818. // dst cannot be transposed or permuted
  3819. GGML_ASSERT(nb0 <= nb1);
  3820. GGML_ASSERT(nb1 <= nb2);
  3821. GGML_ASSERT(nb2 <= nb3);
  3822. GGML_ASSERT(ggml_is_quantized(src0->type));
  3823. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3824. // rows per thread
  3825. const int dr = (nr + nth - 1)/nth;
  3826. // row range for this thread
  3827. const int ir0 = dr*ith;
  3828. const int ir1 = MIN(ir0 + dr, nr);
  3829. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  3830. for (int ir = ir0; ir < ir1; ++ir) {
  3831. // src0 indices
  3832. const int i03 = ir/(ne02*ne01);
  3833. const int i02 = (ir - i03*ne02*ne01)/ne01;
  3834. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  3835. // src1 and dst are same shape as src0 => same indices
  3836. const int i13 = i03;
  3837. const int i12 = i02;
  3838. const int i11 = i01;
  3839. const int i3 = i03;
  3840. const int i2 = i02;
  3841. const int i1 = i01;
  3842. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  3843. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  3844. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3845. assert(ne00 % 32 == 0);
  3846. // unquantize row from src0 to temp buffer
  3847. dequantize_row_q(src0_row, wdata, ne00);
  3848. // add src1
  3849. ggml_vec_acc_f32(ne00, wdata, src1_row);
  3850. // quantize row to dst
  3851. if (quantize_row_q != NULL) {
  3852. quantize_row_q(wdata, dst_row, ne00);
  3853. } else {
  3854. memcpy(dst_row, wdata, ne0*nb0);
  3855. }
  3856. }
  3857. }
  3858. static void ggml_compute_forward_add(
  3859. const struct ggml_compute_params * params,
  3860. struct ggml_tensor * dst) {
  3861. const struct ggml_tensor * src0 = dst->src[0];
  3862. const struct ggml_tensor * src1 = dst->src[1];
  3863. switch (src0->type) {
  3864. case GGML_TYPE_F32:
  3865. {
  3866. if (src1->type == GGML_TYPE_F32) {
  3867. ggml_compute_forward_add_f32(params, dst);
  3868. }
  3869. else {
  3870. GGML_ABORT("fatal error");
  3871. }
  3872. } break;
  3873. case GGML_TYPE_F16:
  3874. {
  3875. if (src1->type == GGML_TYPE_F16) {
  3876. ggml_compute_forward_add_f16_f16(params, dst);
  3877. }
  3878. else if (src1->type == GGML_TYPE_F32) {
  3879. ggml_compute_forward_add_f16_f32(params, dst);
  3880. }
  3881. else {
  3882. GGML_ABORT("fatal error");
  3883. }
  3884. } break;
  3885. case GGML_TYPE_BF16:
  3886. {
  3887. if (src1->type == GGML_TYPE_BF16) {
  3888. ggml_compute_forward_add_bf16_bf16(params, dst);
  3889. }
  3890. else if (src1->type == GGML_TYPE_F32) {
  3891. ggml_compute_forward_add_bf16_f32(params, dst);
  3892. }
  3893. else {
  3894. GGML_ABORT("fatal error");
  3895. }
  3896. } break;
  3897. case GGML_TYPE_Q4_0:
  3898. case GGML_TYPE_Q4_1:
  3899. case GGML_TYPE_Q5_0:
  3900. case GGML_TYPE_Q5_1:
  3901. case GGML_TYPE_Q8_0:
  3902. case GGML_TYPE_Q2_K:
  3903. case GGML_TYPE_Q3_K:
  3904. case GGML_TYPE_Q4_K:
  3905. case GGML_TYPE_Q5_K:
  3906. case GGML_TYPE_Q6_K:
  3907. case GGML_TYPE_TQ1_0:
  3908. case GGML_TYPE_TQ2_0:
  3909. case GGML_TYPE_IQ2_XXS:
  3910. case GGML_TYPE_IQ2_XS:
  3911. case GGML_TYPE_IQ3_XXS:
  3912. case GGML_TYPE_IQ1_S:
  3913. case GGML_TYPE_IQ1_M:
  3914. case GGML_TYPE_IQ4_NL:
  3915. case GGML_TYPE_IQ4_XS:
  3916. case GGML_TYPE_IQ3_S:
  3917. case GGML_TYPE_IQ2_S:
  3918. case GGML_TYPE_Q4_0_4_4:
  3919. case GGML_TYPE_Q4_0_4_8:
  3920. case GGML_TYPE_Q4_0_8_8:
  3921. {
  3922. ggml_compute_forward_add_q_f32(params, dst);
  3923. } break;
  3924. default:
  3925. {
  3926. GGML_ABORT("fatal error");
  3927. }
  3928. }
  3929. }
  3930. // ggml_compute_forward_add1
  3931. static void ggml_compute_forward_add1_f32(
  3932. const struct ggml_compute_params * params,
  3933. struct ggml_tensor * dst) {
  3934. const struct ggml_tensor * src0 = dst->src[0];
  3935. const struct ggml_tensor * src1 = dst->src[1];
  3936. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3937. GGML_ASSERT(ggml_is_scalar(src1));
  3938. const int ith = params->ith;
  3939. const int nth = params->nth;
  3940. const int nr = ggml_nrows(src0);
  3941. GGML_TENSOR_UNARY_OP_LOCALS
  3942. GGML_ASSERT( nb0 == sizeof(float));
  3943. GGML_ASSERT(nb00 == sizeof(float));
  3944. // rows per thread
  3945. const int dr = (nr + nth - 1)/nth;
  3946. // row range for this thread
  3947. const int ir0 = dr*ith;
  3948. const int ir1 = MIN(ir0 + dr, nr);
  3949. for (int ir = ir0; ir < ir1; ++ir) {
  3950. // src0 and dst are same shape => same indices
  3951. const int i3 = ir/(ne2*ne1);
  3952. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3953. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3954. #ifdef GGML_USE_ACCELERATE
  3955. UNUSED(ggml_vec_add1_f32);
  3956. vDSP_vadd(
  3957. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  3958. (float *) ((char *) src1->data), 0,
  3959. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  3960. ne0);
  3961. #else
  3962. ggml_vec_add1_f32(ne0,
  3963. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  3964. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  3965. *(float *) src1->data);
  3966. #endif
  3967. }
  3968. }
  3969. static void ggml_compute_forward_add1_f16_f32(
  3970. const struct ggml_compute_params * params,
  3971. struct ggml_tensor * dst) {
  3972. const struct ggml_tensor * src0 = dst->src[0];
  3973. const struct ggml_tensor * src1 = dst->src[1];
  3974. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3975. GGML_ASSERT(ggml_is_scalar(src1));
  3976. // scalar to add
  3977. const float v = *(float *) src1->data;
  3978. const int ith = params->ith;
  3979. const int nth = params->nth;
  3980. const int nr = ggml_nrows(src0);
  3981. GGML_TENSOR_UNARY_OP_LOCALS
  3982. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  3983. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3984. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  3985. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  3986. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  3987. // rows per thread
  3988. const int dr = (nr + nth - 1)/nth;
  3989. // row range for this thread
  3990. const int ir0 = dr*ith;
  3991. const int ir1 = MIN(ir0 + dr, nr);
  3992. for (int ir = ir0; ir < ir1; ++ir) {
  3993. // src0 and dst are same shape => same indices
  3994. const int i3 = ir/(ne2*ne1);
  3995. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3996. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3997. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  3998. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3999. for (int i = 0; i < ne0; i++) {
  4000. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  4001. }
  4002. }
  4003. }
  4004. static void ggml_compute_forward_add1_f16_f16(
  4005. const struct ggml_compute_params * params,
  4006. struct ggml_tensor * dst) {
  4007. const struct ggml_tensor * src0 = dst->src[0];
  4008. const struct ggml_tensor * src1 = dst->src[1];
  4009. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4010. GGML_ASSERT(ggml_is_scalar(src1));
  4011. // scalar to add
  4012. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  4013. const int ith = params->ith;
  4014. const int nth = params->nth;
  4015. const int nr = ggml_nrows(src0);
  4016. GGML_TENSOR_UNARY_OP_LOCALS
  4017. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4018. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  4019. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4020. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4021. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4022. // rows per thread
  4023. const int dr = (nr + nth - 1)/nth;
  4024. // row range for this thread
  4025. const int ir0 = dr*ith;
  4026. const int ir1 = MIN(ir0 + dr, nr);
  4027. for (int ir = ir0; ir < ir1; ++ir) {
  4028. // src0 and dst are same shape => same indices
  4029. const int i3 = ir/(ne2*ne1);
  4030. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4031. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4032. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  4033. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  4034. for (int i = 0; i < ne0; i++) {
  4035. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  4036. }
  4037. }
  4038. }
  4039. static void ggml_compute_forward_add1_q_f32(
  4040. const struct ggml_compute_params * params,
  4041. struct ggml_tensor * dst) {
  4042. const struct ggml_tensor * src0 = dst->src[0];
  4043. const struct ggml_tensor * src1 = dst->src[1];
  4044. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4045. GGML_ASSERT(ggml_is_scalar(src1));
  4046. // scalar to add
  4047. const float v = *(float *) src1->data;
  4048. const int ith = params->ith;
  4049. const int nth = params->nth;
  4050. const int nr = ggml_nrows(src0);
  4051. GGML_TENSOR_UNARY_OP_LOCALS
  4052. const enum ggml_type type = src0->type;
  4053. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  4054. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
  4055. // we don't support permuted src0
  4056. GGML_ASSERT(nb00 == ggml_type_size(type));
  4057. // dst cannot be transposed or permuted
  4058. GGML_ASSERT(nb0 <= nb1);
  4059. GGML_ASSERT(nb1 <= nb2);
  4060. GGML_ASSERT(nb2 <= nb3);
  4061. GGML_ASSERT(ggml_is_quantized(src0->type));
  4062. GGML_ASSERT(dst->type == src0->type);
  4063. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4064. // rows per thread
  4065. const int dr = (nr + nth - 1)/nth;
  4066. // row range for this thread
  4067. const int ir0 = dr*ith;
  4068. const int ir1 = MIN(ir0 + dr, nr);
  4069. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  4070. for (int ir = ir0; ir < ir1; ++ir) {
  4071. // src0 and dst are same shape => same indices
  4072. const int i3 = ir/(ne2*ne1);
  4073. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4074. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4075. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  4076. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  4077. assert(ne0 % 32 == 0);
  4078. // unquantize row from src0 to temp buffer
  4079. dequantize_row_q(src0_row, wdata, ne0);
  4080. // add src1
  4081. ggml_vec_acc1_f32(ne0, wdata, v);
  4082. // quantize row to dst
  4083. quantize_row_q(wdata, dst_row, ne0);
  4084. }
  4085. }
  4086. static void ggml_compute_forward_add1_bf16_f32(
  4087. const struct ggml_compute_params * params,
  4088. struct ggml_tensor * dst) {
  4089. const struct ggml_tensor * src0 = dst->src[0];
  4090. const struct ggml_tensor * src1 = dst->src[1];
  4091. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4092. GGML_ASSERT(ggml_is_scalar(src1));
  4093. // scalar to add
  4094. const float v = *(float *) src1->data;
  4095. const int ith = params->ith;
  4096. const int nth = params->nth;
  4097. const int nr = ggml_nrows(src0);
  4098. GGML_TENSOR_UNARY_OP_LOCALS
  4099. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  4100. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4101. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  4102. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  4103. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  4104. // rows per thread
  4105. const int dr = (nr + nth - 1)/nth;
  4106. // row range for this thread
  4107. const int ir0 = dr*ith;
  4108. const int ir1 = MIN(ir0 + dr, nr);
  4109. for (int ir = ir0; ir < ir1; ++ir) {
  4110. // src0 and dst are same shape => same indices
  4111. const int i3 = ir/(ne2*ne1);
  4112. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4113. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4114. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  4115. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  4116. for (int i = 0; i < ne0; i++) {
  4117. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  4118. }
  4119. }
  4120. }
  4121. static void ggml_compute_forward_add1_bf16_bf16(
  4122. const struct ggml_compute_params * params,
  4123. struct ggml_tensor * dst) {
  4124. const struct ggml_tensor * src0 = dst->src[0];
  4125. const struct ggml_tensor * src1 = dst->src[1];
  4126. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4127. GGML_ASSERT(ggml_is_scalar(src1));
  4128. // scalar to add
  4129. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  4130. const int ith = params->ith;
  4131. const int nth = params->nth;
  4132. const int nr = ggml_nrows(src0);
  4133. GGML_TENSOR_UNARY_OP_LOCALS
  4134. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  4135. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  4136. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  4137. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  4138. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  4139. // rows per thread
  4140. const int dr = (nr + nth - 1)/nth;
  4141. // row range for this thread
  4142. const int ir0 = dr*ith;
  4143. const int ir1 = MIN(ir0 + dr, nr);
  4144. for (int ir = ir0; ir < ir1; ++ir) {
  4145. // src0 and dst are same shape => same indices
  4146. const int i3 = ir/(ne2*ne1);
  4147. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4148. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4149. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  4150. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  4151. for (int i = 0; i < ne0; i++) {
  4152. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  4153. }
  4154. }
  4155. }
  4156. static void ggml_compute_forward_add1(
  4157. const struct ggml_compute_params * params,
  4158. struct ggml_tensor * dst) {
  4159. const struct ggml_tensor * src0 = dst->src[0];
  4160. const struct ggml_tensor * src1 = dst->src[1];
  4161. switch (src0->type) {
  4162. case GGML_TYPE_F32:
  4163. {
  4164. ggml_compute_forward_add1_f32(params, dst);
  4165. } break;
  4166. case GGML_TYPE_F16:
  4167. {
  4168. if (src1->type == GGML_TYPE_F16) {
  4169. ggml_compute_forward_add1_f16_f16(params, dst);
  4170. }
  4171. else if (src1->type == GGML_TYPE_F32) {
  4172. ggml_compute_forward_add1_f16_f32(params, dst);
  4173. }
  4174. else {
  4175. GGML_ABORT("fatal error");
  4176. }
  4177. } break;
  4178. case GGML_TYPE_BF16:
  4179. {
  4180. if (src1->type == GGML_TYPE_BF16) {
  4181. ggml_compute_forward_add1_bf16_bf16(params, dst);
  4182. }
  4183. else if (src1->type == GGML_TYPE_F32) {
  4184. ggml_compute_forward_add1_bf16_f32(params, dst);
  4185. }
  4186. else {
  4187. GGML_ABORT("fatal error");
  4188. }
  4189. } break;
  4190. case GGML_TYPE_Q4_0:
  4191. case GGML_TYPE_Q4_1:
  4192. case GGML_TYPE_Q5_0:
  4193. case GGML_TYPE_Q5_1:
  4194. case GGML_TYPE_Q8_0:
  4195. case GGML_TYPE_Q8_1:
  4196. case GGML_TYPE_Q2_K:
  4197. case GGML_TYPE_Q3_K:
  4198. case GGML_TYPE_Q4_K:
  4199. case GGML_TYPE_Q5_K:
  4200. case GGML_TYPE_Q6_K:
  4201. case GGML_TYPE_TQ1_0:
  4202. case GGML_TYPE_TQ2_0:
  4203. case GGML_TYPE_IQ2_XXS:
  4204. case GGML_TYPE_IQ2_XS:
  4205. case GGML_TYPE_IQ3_XXS:
  4206. case GGML_TYPE_IQ1_S:
  4207. case GGML_TYPE_IQ1_M:
  4208. case GGML_TYPE_IQ4_NL:
  4209. case GGML_TYPE_IQ4_XS:
  4210. case GGML_TYPE_IQ3_S:
  4211. case GGML_TYPE_IQ2_S:
  4212. case GGML_TYPE_Q4_0_4_4:
  4213. case GGML_TYPE_Q4_0_4_8:
  4214. case GGML_TYPE_Q4_0_8_8:
  4215. {
  4216. ggml_compute_forward_add1_q_f32(params, dst);
  4217. } break;
  4218. default:
  4219. {
  4220. GGML_ABORT("fatal error");
  4221. }
  4222. }
  4223. }
  4224. // ggml_compute_forward_acc
  4225. static void ggml_compute_forward_acc_f32(
  4226. const struct ggml_compute_params * params,
  4227. struct ggml_tensor * dst) {
  4228. const struct ggml_tensor * src0 = dst->src[0];
  4229. const struct ggml_tensor * src1 = dst->src[1];
  4230. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4231. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4232. // view src0 and dst with these strides and data offset inbytes during acc
  4233. // nb0 is implicitly element_size because src0 and dst are contiguous
  4234. size_t nb1 = ((int32_t *) dst->op_params)[0];
  4235. size_t nb2 = ((int32_t *) dst->op_params)[1];
  4236. size_t nb3 = ((int32_t *) dst->op_params)[2];
  4237. size_t offset = ((int32_t *) dst->op_params)[3];
  4238. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  4239. if (!inplace) {
  4240. if (params->ith == 0) {
  4241. // memcpy needs to be synchronized across threads to avoid race conditions.
  4242. // => do it in INIT phase
  4243. memcpy(
  4244. ((char *) dst->data),
  4245. ((char *) src0->data),
  4246. ggml_nbytes(dst));
  4247. }
  4248. ggml_barrier(params->threadpool);
  4249. }
  4250. const int ith = params->ith;
  4251. const int nth = params->nth;
  4252. const int nr = ggml_nrows(src1);
  4253. const int nc = src1->ne[0];
  4254. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  4255. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  4256. // src0 and dst as viewed during acc
  4257. const size_t nb0 = ggml_element_size(src0);
  4258. const size_t nb00 = nb0;
  4259. const size_t nb01 = nb1;
  4260. const size_t nb02 = nb2;
  4261. const size_t nb03 = nb3;
  4262. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  4263. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  4264. GGML_ASSERT(nb10 == sizeof(float));
  4265. // rows per thread
  4266. const int dr = (nr + nth - 1)/nth;
  4267. // row range for this thread
  4268. const int ir0 = dr*ith;
  4269. const int ir1 = MIN(ir0 + dr, nr);
  4270. for (int ir = ir0; ir < ir1; ++ir) {
  4271. // src0 and dst are viewed with shape of src1 and offset
  4272. // => same indices
  4273. const int i3 = ir/(ne12*ne11);
  4274. const int i2 = (ir - i3*ne12*ne11)/ne11;
  4275. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  4276. #ifdef GGML_USE_ACCELERATE
  4277. vDSP_vadd(
  4278. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  4279. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  4280. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  4281. #else
  4282. ggml_vec_add_f32(nc,
  4283. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  4284. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  4285. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  4286. #endif
  4287. }
  4288. }
  4289. static void ggml_compute_forward_acc(
  4290. const struct ggml_compute_params * params,
  4291. struct ggml_tensor * dst) {
  4292. const struct ggml_tensor * src0 = dst->src[0];
  4293. switch (src0->type) {
  4294. case GGML_TYPE_F32:
  4295. {
  4296. ggml_compute_forward_acc_f32(params, dst);
  4297. } break;
  4298. case GGML_TYPE_F16:
  4299. case GGML_TYPE_BF16:
  4300. case GGML_TYPE_Q4_0:
  4301. case GGML_TYPE_Q4_1:
  4302. case GGML_TYPE_Q5_0:
  4303. case GGML_TYPE_Q5_1:
  4304. case GGML_TYPE_Q8_0:
  4305. case GGML_TYPE_Q8_1:
  4306. case GGML_TYPE_Q2_K:
  4307. case GGML_TYPE_Q3_K:
  4308. case GGML_TYPE_Q4_K:
  4309. case GGML_TYPE_Q5_K:
  4310. case GGML_TYPE_Q6_K:
  4311. case GGML_TYPE_TQ1_0:
  4312. case GGML_TYPE_TQ2_0:
  4313. case GGML_TYPE_IQ2_XXS:
  4314. case GGML_TYPE_IQ2_XS:
  4315. case GGML_TYPE_IQ3_XXS:
  4316. case GGML_TYPE_IQ1_S:
  4317. case GGML_TYPE_IQ1_M:
  4318. case GGML_TYPE_IQ4_NL:
  4319. case GGML_TYPE_IQ4_XS:
  4320. case GGML_TYPE_IQ3_S:
  4321. case GGML_TYPE_IQ2_S:
  4322. case GGML_TYPE_Q4_0_4_4:
  4323. case GGML_TYPE_Q4_0_4_8:
  4324. case GGML_TYPE_Q4_0_8_8:
  4325. default:
  4326. {
  4327. GGML_ABORT("fatal error");
  4328. }
  4329. }
  4330. }
  4331. // ggml_compute_forward_sub
  4332. static void ggml_compute_forward_sub_f32(
  4333. const struct ggml_compute_params * params,
  4334. struct ggml_tensor * dst) {
  4335. const struct ggml_tensor * src0 = dst->src[0];
  4336. const struct ggml_tensor * src1 = dst->src[1];
  4337. assert(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  4338. const int ith = params->ith;
  4339. const int nth = params->nth;
  4340. const int nr = ggml_nrows(src0);
  4341. GGML_TENSOR_BINARY_OP_LOCALS
  4342. GGML_ASSERT( nb0 == sizeof(float));
  4343. GGML_ASSERT(nb00 == sizeof(float));
  4344. // rows per thread
  4345. const int dr = (nr + nth - 1)/nth;
  4346. // row range for this thread
  4347. const int ir0 = dr*ith;
  4348. const int ir1 = MIN(ir0 + dr, nr);
  4349. if (nb10 == sizeof(float)) {
  4350. for (int ir = ir0; ir < ir1; ++ir) {
  4351. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4352. const int64_t i03 = ir/(ne02*ne01);
  4353. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4354. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4355. const int64_t i13 = i03 % ne13;
  4356. const int64_t i12 = i02 % ne12;
  4357. const int64_t i11 = i01 % ne11;
  4358. const int64_t nr0 = ne00 / ne10;
  4359. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4360. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4361. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  4362. for (int64_t r = 0; r < nr0; ++r) {
  4363. #ifdef GGML_USE_ACCELERATE
  4364. vDSP_vsub(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  4365. #else
  4366. ggml_vec_sub_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  4367. #endif
  4368. }
  4369. }
  4370. } else {
  4371. // src1 is not contiguous
  4372. for (int ir = ir0; ir < ir1; ++ir) {
  4373. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4374. const int64_t i03 = ir/(ne02*ne01);
  4375. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4376. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4377. const int64_t i13 = i03 % ne13;
  4378. const int64_t i12 = i02 % ne12;
  4379. const int64_t i11 = i01 % ne11;
  4380. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4381. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4382. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  4383. const int64_t i10 = i0 % ne10;
  4384. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  4385. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  4386. }
  4387. }
  4388. }
  4389. }
  4390. static void ggml_compute_forward_sub(
  4391. const struct ggml_compute_params * params,
  4392. struct ggml_tensor * dst) {
  4393. const struct ggml_tensor * src0 = dst->src[0];
  4394. switch (src0->type) {
  4395. case GGML_TYPE_F32:
  4396. {
  4397. ggml_compute_forward_sub_f32(params, dst);
  4398. } break;
  4399. default:
  4400. {
  4401. GGML_ABORT("fatal error");
  4402. }
  4403. }
  4404. }
  4405. // ggml_compute_forward_mul
  4406. static void ggml_compute_forward_mul_f32(
  4407. const struct ggml_compute_params * params,
  4408. struct ggml_tensor * dst) {
  4409. const struct ggml_tensor * src0 = dst->src[0];
  4410. const struct ggml_tensor * src1 = dst->src[1];
  4411. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  4412. const int ith = params->ith;
  4413. const int nth = params->nth;
  4414. const int64_t nr = ggml_nrows(src0);
  4415. GGML_TENSOR_BINARY_OP_LOCALS
  4416. GGML_ASSERT( nb0 == sizeof(float));
  4417. GGML_ASSERT(nb00 == sizeof(float));
  4418. if (nb10 == sizeof(float)) {
  4419. for (int64_t ir = ith; ir < nr; ir += nth) {
  4420. // src0 and dst are same shape => same indices
  4421. const int64_t i03 = ir/(ne02*ne01);
  4422. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4423. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4424. const int64_t i13 = i03 % ne13;
  4425. const int64_t i12 = i02 % ne12;
  4426. const int64_t i11 = i01 % ne11;
  4427. const int64_t nr0 = ne00 / ne10;
  4428. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4429. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4430. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  4431. for (int64_t r = 0 ; r < nr0; ++r) {
  4432. #ifdef GGML_USE_ACCELERATE
  4433. UNUSED(ggml_vec_mul_f32);
  4434. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  4435. #else
  4436. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  4437. #endif
  4438. }
  4439. }
  4440. } else {
  4441. // src1 is not contiguous
  4442. for (int64_t ir = ith; ir < nr; ir += nth) {
  4443. // src0 and dst are same shape => same indices
  4444. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4445. const int64_t i03 = ir/(ne02*ne01);
  4446. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4447. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4448. const int64_t i13 = i03 % ne13;
  4449. const int64_t i12 = i02 % ne12;
  4450. const int64_t i11 = i01 % ne11;
  4451. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4452. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4453. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  4454. const int64_t i10 = i0 % ne10;
  4455. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  4456. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  4457. }
  4458. }
  4459. }
  4460. }
  4461. static void ggml_compute_forward_mul(
  4462. const struct ggml_compute_params * params,
  4463. struct ggml_tensor * dst) {
  4464. const struct ggml_tensor * src0 = dst->src[0];
  4465. const struct ggml_tensor * src1 = dst->src[1];
  4466. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  4467. switch (src0->type) {
  4468. case GGML_TYPE_F32:
  4469. {
  4470. ggml_compute_forward_mul_f32(params, dst);
  4471. } break;
  4472. default:
  4473. {
  4474. GGML_ABORT("fatal error");
  4475. }
  4476. }
  4477. }
  4478. // ggml_compute_forward_div
  4479. static void ggml_compute_forward_div_f32(
  4480. const struct ggml_compute_params * params,
  4481. struct ggml_tensor * dst) {
  4482. const struct ggml_tensor * src0 = dst->src[0];
  4483. const struct ggml_tensor * src1 = dst->src[1];
  4484. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  4485. const int ith = params->ith;
  4486. const int nth = params->nth;
  4487. const int64_t nr = ggml_nrows(src0);
  4488. GGML_TENSOR_BINARY_OP_LOCALS
  4489. GGML_ASSERT( nb0 == sizeof(float));
  4490. GGML_ASSERT(nb00 == sizeof(float));
  4491. if (nb10 == sizeof(float)) {
  4492. for (int64_t ir = ith; ir < nr; ir += nth) {
  4493. // src0 and dst are same shape => same indices
  4494. const int64_t i03 = ir/(ne02*ne01);
  4495. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4496. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4497. const int64_t i13 = i03 % ne13;
  4498. const int64_t i12 = i02 % ne12;
  4499. const int64_t i11 = i01 % ne11;
  4500. const int64_t nr0 = ne00 / ne10;
  4501. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4502. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4503. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  4504. for (int64_t r = 0; r < nr0; ++r) {
  4505. #ifdef GGML_USE_ACCELERATE
  4506. UNUSED(ggml_vec_div_f32);
  4507. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  4508. #else
  4509. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  4510. #endif
  4511. }
  4512. }
  4513. } else {
  4514. // src1 is not contiguous
  4515. for (int64_t ir = ith; ir < nr; ir += nth) {
  4516. // src0 and dst are same shape => same indices
  4517. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4518. const int64_t i03 = ir/(ne02*ne01);
  4519. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4520. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4521. const int64_t i13 = i03 % ne13;
  4522. const int64_t i12 = i02 % ne12;
  4523. const int64_t i11 = i01 % ne11;
  4524. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4525. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4526. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  4527. const int64_t i10 = i0 % ne10;
  4528. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  4529. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  4530. }
  4531. }
  4532. }
  4533. }
  4534. static void ggml_compute_forward_div(
  4535. const struct ggml_compute_params * params,
  4536. struct ggml_tensor * dst) {
  4537. const struct ggml_tensor * src0 = dst->src[0];
  4538. switch (src0->type) {
  4539. case GGML_TYPE_F32:
  4540. {
  4541. ggml_compute_forward_div_f32(params, dst);
  4542. } break;
  4543. default:
  4544. {
  4545. GGML_ABORT("fatal error");
  4546. }
  4547. }
  4548. }
  4549. // ggml_compute_forward_sqr
  4550. static void ggml_compute_forward_sqr_f32(
  4551. const struct ggml_compute_params * params,
  4552. struct ggml_tensor * dst) {
  4553. const struct ggml_tensor * src0 = dst->src[0];
  4554. if (params->ith != 0) {
  4555. return;
  4556. }
  4557. assert(ggml_are_same_shape(src0, dst));
  4558. const int n = ggml_nrows(src0);
  4559. const int nc = src0->ne[0];
  4560. assert( dst->nb[0] == sizeof(float));
  4561. assert(src0->nb[0] == sizeof(float));
  4562. for (int i = 0; i < n; i++) {
  4563. ggml_vec_sqr_f32(nc,
  4564. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4565. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4566. }
  4567. }
  4568. static void ggml_compute_forward_sqr(
  4569. const struct ggml_compute_params * params,
  4570. struct ggml_tensor * dst) {
  4571. const struct ggml_tensor * src0 = dst->src[0];
  4572. switch (src0->type) {
  4573. case GGML_TYPE_F32:
  4574. {
  4575. ggml_compute_forward_sqr_f32(params, dst);
  4576. } break;
  4577. default:
  4578. {
  4579. GGML_ABORT("fatal error");
  4580. }
  4581. }
  4582. }
  4583. // ggml_compute_forward_sqrt
  4584. static void ggml_compute_forward_sqrt_f32(
  4585. const struct ggml_compute_params * params,
  4586. struct ggml_tensor * dst) {
  4587. const struct ggml_tensor * src0 = dst->src[0];
  4588. if (params->ith != 0) {
  4589. return;
  4590. }
  4591. assert(ggml_are_same_shape(src0, dst));
  4592. const int n = ggml_nrows(src0);
  4593. const int nc = src0->ne[0];
  4594. assert( dst->nb[0] == sizeof(float));
  4595. assert(src0->nb[0] == sizeof(float));
  4596. for (int i = 0; i < n; i++) {
  4597. ggml_vec_sqrt_f32(nc,
  4598. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4599. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4600. }
  4601. }
  4602. static void ggml_compute_forward_sqrt(
  4603. const struct ggml_compute_params * params,
  4604. struct ggml_tensor * dst) {
  4605. const struct ggml_tensor * src0 = dst->src[0];
  4606. switch (src0->type) {
  4607. case GGML_TYPE_F32:
  4608. {
  4609. ggml_compute_forward_sqrt_f32(params, dst);
  4610. } break;
  4611. default:
  4612. {
  4613. GGML_ABORT("fatal error");
  4614. }
  4615. }
  4616. }
  4617. // ggml_compute_forward_log
  4618. static void ggml_compute_forward_log_f32(
  4619. const struct ggml_compute_params * params,
  4620. struct ggml_tensor * dst) {
  4621. const struct ggml_tensor * src0 = dst->src[0];
  4622. if (params->ith != 0) {
  4623. return;
  4624. }
  4625. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4626. const int n = ggml_nrows(src0);
  4627. const int nc = src0->ne[0];
  4628. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4629. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4630. for (int i = 0; i < n; i++) {
  4631. ggml_vec_log_f32(nc,
  4632. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4633. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4634. }
  4635. }
  4636. static void ggml_compute_forward_log(
  4637. const struct ggml_compute_params * params,
  4638. struct ggml_tensor * dst) {
  4639. const struct ggml_tensor * src0 = dst->src[0];
  4640. switch (src0->type) {
  4641. case GGML_TYPE_F32:
  4642. {
  4643. ggml_compute_forward_log_f32(params, dst);
  4644. } break;
  4645. default:
  4646. {
  4647. GGML_ABORT("fatal error");
  4648. }
  4649. }
  4650. }
  4651. // ggml_compute_forward_sin
  4652. static void ggml_compute_forward_sin_f32(
  4653. const struct ggml_compute_params * params,
  4654. struct ggml_tensor * dst) {
  4655. const struct ggml_tensor * src0 = dst->src[0];
  4656. if (params->ith != 0) {
  4657. return;
  4658. }
  4659. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4660. const int n = ggml_nrows(src0);
  4661. const int nc = src0->ne[0];
  4662. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4663. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4664. for (int i = 0; i < n; i++) {
  4665. ggml_vec_sin_f32(nc,
  4666. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4667. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4668. }
  4669. }
  4670. static void ggml_compute_forward_sin(
  4671. const struct ggml_compute_params * params,
  4672. struct ggml_tensor * dst) {
  4673. const struct ggml_tensor * src0 = dst->src[0];
  4674. switch (src0->type) {
  4675. case GGML_TYPE_F32:
  4676. {
  4677. ggml_compute_forward_sin_f32(params, dst);
  4678. } break;
  4679. default:
  4680. {
  4681. GGML_ABORT("fatal error");
  4682. }
  4683. }
  4684. }
  4685. // ggml_compute_forward_cos
  4686. static void ggml_compute_forward_cos_f32(
  4687. const struct ggml_compute_params * params,
  4688. struct ggml_tensor * dst) {
  4689. const struct ggml_tensor * src0 = dst->src[0];
  4690. if (params->ith != 0) {
  4691. return;
  4692. }
  4693. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4694. const int n = ggml_nrows(src0);
  4695. const int nc = src0->ne[0];
  4696. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4697. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4698. for (int i = 0; i < n; i++) {
  4699. ggml_vec_cos_f32(nc,
  4700. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4701. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4702. }
  4703. }
  4704. static void ggml_compute_forward_cos(
  4705. const struct ggml_compute_params * params,
  4706. struct ggml_tensor * dst) {
  4707. const struct ggml_tensor * src0 = dst->src[0];
  4708. switch (src0->type) {
  4709. case GGML_TYPE_F32:
  4710. {
  4711. ggml_compute_forward_cos_f32(params, dst);
  4712. } break;
  4713. default:
  4714. {
  4715. GGML_ABORT("fatal error");
  4716. }
  4717. }
  4718. }
  4719. // ggml_compute_forward_sum
  4720. static void ggml_compute_forward_sum_f32(
  4721. const struct ggml_compute_params * params,
  4722. struct ggml_tensor * dst) {
  4723. const struct ggml_tensor * src0 = dst->src[0];
  4724. if (params->ith != 0) {
  4725. return;
  4726. }
  4727. assert(ggml_is_scalar(dst));
  4728. assert(src0->nb[0] == sizeof(float));
  4729. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  4730. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  4731. ggml_float sum = 0;
  4732. ggml_float row_sum = 0;
  4733. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4734. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4735. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4736. ggml_vec_sum_f32_ggf(ne00,
  4737. &row_sum,
  4738. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4739. sum += row_sum;
  4740. }
  4741. }
  4742. }
  4743. ((float *) dst->data)[0] = sum;
  4744. }
  4745. static void ggml_compute_forward_sum_f16(
  4746. const struct ggml_compute_params * params,
  4747. struct ggml_tensor * dst) {
  4748. const struct ggml_tensor * src0 = dst->src[0];
  4749. if (params->ith != 0) {
  4750. return;
  4751. }
  4752. assert(ggml_is_scalar(dst));
  4753. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  4754. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  4755. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  4756. float sum = 0;
  4757. float row_sum = 0;
  4758. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4759. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4760. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4761. ggml_vec_sum_f16_ggf(ne00,
  4762. &row_sum,
  4763. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  4764. sum += row_sum;
  4765. }
  4766. }
  4767. }
  4768. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  4769. }
  4770. static void ggml_compute_forward_sum_bf16(
  4771. const struct ggml_compute_params * params,
  4772. struct ggml_tensor * dst) {
  4773. const struct ggml_tensor * src0 = dst->src[0];
  4774. if (params->ith != 0) {
  4775. return;
  4776. }
  4777. assert(ggml_is_scalar(dst));
  4778. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  4779. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  4780. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  4781. float sum = 0;
  4782. float row_sum = 0;
  4783. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4784. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4785. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4786. ggml_vec_sum_bf16_ggf(ne00,
  4787. &row_sum,
  4788. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  4789. sum += row_sum;
  4790. }
  4791. }
  4792. }
  4793. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  4794. }
  4795. static void ggml_compute_forward_sum(
  4796. const struct ggml_compute_params * params,
  4797. struct ggml_tensor * dst) {
  4798. const struct ggml_tensor * src0 = dst->src[0];
  4799. switch (src0->type) {
  4800. case GGML_TYPE_F32:
  4801. {
  4802. ggml_compute_forward_sum_f32(params, dst);
  4803. } break;
  4804. case GGML_TYPE_F16:
  4805. {
  4806. ggml_compute_forward_sum_f16(params, dst);
  4807. } break;
  4808. case GGML_TYPE_BF16:
  4809. {
  4810. ggml_compute_forward_sum_bf16(params, dst);
  4811. } break;
  4812. default:
  4813. {
  4814. GGML_ABORT("fatal error");
  4815. }
  4816. }
  4817. }
  4818. // ggml_compute_forward_sum_rows
  4819. static void ggml_compute_forward_sum_rows_f32(
  4820. const struct ggml_compute_params * params,
  4821. struct ggml_tensor * dst) {
  4822. const struct ggml_tensor * src0 = dst->src[0];
  4823. if (params->ith != 0) {
  4824. return;
  4825. }
  4826. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4827. GGML_ASSERT(dst->nb[0] == sizeof(float));
  4828. GGML_TENSOR_UNARY_OP_LOCALS
  4829. GGML_ASSERT(ne0 == 1);
  4830. GGML_ASSERT(ne1 == ne01);
  4831. GGML_ASSERT(ne2 == ne02);
  4832. GGML_ASSERT(ne3 == ne03);
  4833. for (int64_t i3 = 0; i3 < ne03; i3++) {
  4834. for (int64_t i2 = 0; i2 < ne02; i2++) {
  4835. for (int64_t i1 = 0; i1 < ne01; i1++) {
  4836. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  4837. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  4838. float row_sum = 0;
  4839. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  4840. dst_row[0] = row_sum;
  4841. }
  4842. }
  4843. }
  4844. }
  4845. static void ggml_compute_forward_sum_rows(
  4846. const struct ggml_compute_params * params,
  4847. struct ggml_tensor * dst) {
  4848. const struct ggml_tensor * src0 = dst->src[0];
  4849. switch (src0->type) {
  4850. case GGML_TYPE_F32:
  4851. {
  4852. ggml_compute_forward_sum_rows_f32(params, dst);
  4853. } break;
  4854. default:
  4855. {
  4856. GGML_ABORT("fatal error");
  4857. }
  4858. }
  4859. }
  4860. // ggml_compute_forward_mean
  4861. static void ggml_compute_forward_mean_f32(
  4862. const struct ggml_compute_params * params,
  4863. struct ggml_tensor * dst) {
  4864. const struct ggml_tensor * src0 = dst->src[0];
  4865. if (params->ith != 0) {
  4866. return;
  4867. }
  4868. assert(src0->nb[0] == sizeof(float));
  4869. GGML_TENSOR_UNARY_OP_LOCALS
  4870. assert(ne0 == 1);
  4871. assert(ne1 == ne01);
  4872. assert(ne2 == ne02);
  4873. assert(ne3 == ne03);
  4874. UNUSED(ne0);
  4875. UNUSED(ne1);
  4876. UNUSED(ne2);
  4877. UNUSED(ne3);
  4878. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4879. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4880. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4881. ggml_vec_sum_f32(ne00,
  4882. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4883. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4884. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4885. }
  4886. }
  4887. }
  4888. }
  4889. static void ggml_compute_forward_mean(
  4890. const struct ggml_compute_params * params,
  4891. struct ggml_tensor * dst) {
  4892. const struct ggml_tensor * src0 = dst->src[0];
  4893. switch (src0->type) {
  4894. case GGML_TYPE_F32:
  4895. {
  4896. ggml_compute_forward_mean_f32(params, dst);
  4897. } break;
  4898. default:
  4899. {
  4900. GGML_ABORT("fatal error");
  4901. }
  4902. }
  4903. }
  4904. // ggml_compute_forward_argmax
  4905. static void ggml_compute_forward_argmax_f32(
  4906. const struct ggml_compute_params * params,
  4907. struct ggml_tensor * dst) {
  4908. const struct ggml_tensor * src0 = dst->src[0];
  4909. if (params->ith != 0) {
  4910. return;
  4911. }
  4912. assert(src0->nb[0] == sizeof(float));
  4913. assert(dst->nb[0] == sizeof(float));
  4914. const int64_t ne00 = src0->ne[0];
  4915. const int64_t ne01 = src0->ne[1];
  4916. const size_t nb01 = src0->nb[1];
  4917. const size_t nb0 = dst->nb[0];
  4918. for (int64_t i1 = 0; i1 < ne01; i1++) {
  4919. float * src = (float *) ((char *) src0->data + i1*nb01);
  4920. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  4921. int v = 0;
  4922. ggml_vec_argmax_f32(ne00, &v, src);
  4923. dst_[0] = v;
  4924. }
  4925. }
  4926. static void ggml_compute_forward_argmax(
  4927. const struct ggml_compute_params * params,
  4928. struct ggml_tensor * dst) {
  4929. const struct ggml_tensor * src0 = dst->src[0];
  4930. switch (src0->type) {
  4931. case GGML_TYPE_F32:
  4932. {
  4933. ggml_compute_forward_argmax_f32(params, dst);
  4934. } break;
  4935. default:
  4936. {
  4937. GGML_ABORT("fatal error");
  4938. }
  4939. }
  4940. }
  4941. // ggml_compute_forward_count_equal
  4942. static void ggml_compute_forward_count_equal_i32(
  4943. const struct ggml_compute_params * params,
  4944. struct ggml_tensor * dst) {
  4945. const struct ggml_tensor * src0 = dst->src[0];
  4946. const struct ggml_tensor * src1 = dst->src[1];
  4947. GGML_TENSOR_BINARY_OP_LOCALS;
  4948. GGML_ASSERT(src0->type == GGML_TYPE_I32);
  4949. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  4950. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  4951. GGML_ASSERT(ggml_is_scalar(dst));
  4952. GGML_ASSERT(dst->type == GGML_TYPE_I64);
  4953. const int64_t nr = ggml_nrows(src0);
  4954. const int ith = params->ith;
  4955. const int nth = params->nth;
  4956. int64_t * sums = (int64_t *) params->wdata;
  4957. int64_t sum_thread = 0;
  4958. // rows per thread
  4959. const int64_t dr = (nr + nth - 1)/nth;
  4960. // row range for this thread
  4961. const int64_t ir0 = dr*ith;
  4962. const int64_t ir1 = MIN(ir0 + dr, nr);
  4963. for (int64_t ir = ir0; ir < ir1; ++ir) {
  4964. const int64_t i03 = ir / (ne02*ne01);
  4965. const int64_t i02 = (ir - i03*ne03) / ne01;
  4966. const int64_t i01 = ir - i03*ne03 - i02*ne02;
  4967. const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
  4968. const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
  4969. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  4970. const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
  4971. const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
  4972. sum_thread += val0 == val1;
  4973. }
  4974. }
  4975. if (ith != 0) {
  4976. sums[ith] = sum_thread;
  4977. }
  4978. ggml_barrier(params->threadpool);
  4979. if (ith != 0) {
  4980. return;
  4981. }
  4982. for (int ith_other = 1; ith_other < nth; ++ith_other) {
  4983. sum_thread += sums[ith_other];
  4984. }
  4985. *((int64_t *) dst->data) = sum_thread;
  4986. }
  4987. static void ggml_compute_forward_count_equal(
  4988. const struct ggml_compute_params * params,
  4989. struct ggml_tensor * dst) {
  4990. const struct ggml_tensor * src0 = dst->src[0];
  4991. switch (src0->type) {
  4992. case GGML_TYPE_I32:
  4993. {
  4994. ggml_compute_forward_count_equal_i32(params, dst);
  4995. } break;
  4996. default:
  4997. {
  4998. GGML_ABORT("fatal error");
  4999. }
  5000. }
  5001. }
  5002. // ggml_compute_forward_repeat
  5003. static void ggml_compute_forward_repeat_f32(
  5004. const struct ggml_compute_params * params,
  5005. struct ggml_tensor * dst) {
  5006. const struct ggml_tensor * src0 = dst->src[0];
  5007. if (params->ith != 0) {
  5008. return;
  5009. }
  5010. GGML_ASSERT(ggml_can_repeat(src0, dst));
  5011. GGML_TENSOR_UNARY_OP_LOCALS
  5012. // guaranteed to be an integer due to the check in ggml_can_repeat
  5013. const int nr0 = (int)(ne0/ne00);
  5014. const int nr1 = (int)(ne1/ne01);
  5015. const int nr2 = (int)(ne2/ne02);
  5016. const int nr3 = (int)(ne3/ne03);
  5017. // TODO: support for transposed / permuted tensors
  5018. GGML_ASSERT(nb0 == sizeof(float));
  5019. GGML_ASSERT(nb00 == sizeof(float));
  5020. // TODO: maybe this is not optimal?
  5021. for (int i3 = 0; i3 < nr3; i3++) {
  5022. for (int k3 = 0; k3 < ne03; k3++) {
  5023. for (int i2 = 0; i2 < nr2; i2++) {
  5024. for (int k2 = 0; k2 < ne02; k2++) {
  5025. for (int i1 = 0; i1 < nr1; i1++) {
  5026. for (int k1 = 0; k1 < ne01; k1++) {
  5027. for (int i0 = 0; i0 < nr0; i0++) {
  5028. ggml_vec_cpy_f32(ne00,
  5029. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  5030. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  5031. }
  5032. }
  5033. }
  5034. }
  5035. }
  5036. }
  5037. }
  5038. }
  5039. static void ggml_compute_forward_repeat_f16(
  5040. const struct ggml_compute_params * params,
  5041. struct ggml_tensor * dst) {
  5042. const struct ggml_tensor * src0 = dst->src[0];
  5043. if (params->ith != 0) {
  5044. return;
  5045. }
  5046. GGML_ASSERT(ggml_can_repeat(src0, dst));
  5047. GGML_TENSOR_UNARY_OP_LOCALS
  5048. // guaranteed to be an integer due to the check in ggml_can_repeat
  5049. const int nr0 = (int)(ne0/ne00);
  5050. const int nr1 = (int)(ne1/ne01);
  5051. const int nr2 = (int)(ne2/ne02);
  5052. const int nr3 = (int)(ne3/ne03);
  5053. // TODO: support for transposed / permuted tensors
  5054. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  5055. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5056. // TODO: maybe this is not optimal?
  5057. for (int i3 = 0; i3 < nr3; i3++) {
  5058. for (int k3 = 0; k3 < ne03; k3++) {
  5059. for (int i2 = 0; i2 < nr2; i2++) {
  5060. for (int k2 = 0; k2 < ne02; k2++) {
  5061. for (int i1 = 0; i1 < nr1; i1++) {
  5062. for (int k1 = 0; k1 < ne01; k1++) {
  5063. for (int i0 = 0; i0 < nr0; i0++) {
  5064. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  5065. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  5066. // ggml_vec_cpy_f16(ne00, y, x)
  5067. for (int i = 0; i < ne00; ++i) {
  5068. y[i] = x[i];
  5069. }
  5070. }
  5071. }
  5072. }
  5073. }
  5074. }
  5075. }
  5076. }
  5077. }
  5078. static void ggml_compute_forward_repeat(
  5079. const struct ggml_compute_params * params,
  5080. struct ggml_tensor * dst) {
  5081. const struct ggml_tensor * src0 = dst->src[0];
  5082. switch (src0->type) {
  5083. case GGML_TYPE_F16:
  5084. case GGML_TYPE_BF16:
  5085. case GGML_TYPE_I16:
  5086. {
  5087. ggml_compute_forward_repeat_f16(params, dst);
  5088. } break;
  5089. case GGML_TYPE_F32:
  5090. case GGML_TYPE_I32:
  5091. {
  5092. ggml_compute_forward_repeat_f32(params, dst);
  5093. } break;
  5094. default:
  5095. {
  5096. GGML_ABORT("fatal error");
  5097. }
  5098. }
  5099. }
  5100. // ggml_compute_forward_repeat_back
  5101. static void ggml_compute_forward_repeat_back_f32(
  5102. const struct ggml_compute_params * params,
  5103. struct ggml_tensor * dst) {
  5104. const struct ggml_tensor * src0 = dst->src[0];
  5105. if (params->ith != 0) {
  5106. return;
  5107. }
  5108. GGML_ASSERT(ggml_can_repeat(dst, src0));
  5109. GGML_TENSOR_UNARY_OP_LOCALS
  5110. // guaranteed to be an integer due to the check in ggml_can_repeat
  5111. const int nr0 = (int)(ne00/ne0);
  5112. const int nr1 = (int)(ne01/ne1);
  5113. const int nr2 = (int)(ne02/ne2);
  5114. const int nr3 = (int)(ne03/ne3);
  5115. // TODO: support for transposed / permuted tensors
  5116. GGML_ASSERT(nb0 == sizeof(float));
  5117. GGML_ASSERT(nb00 == sizeof(float));
  5118. if (ggml_is_contiguous(dst)) {
  5119. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  5120. } else {
  5121. for (int k3 = 0; k3 < ne3; k3++) {
  5122. for (int k2 = 0; k2 < ne2; k2++) {
  5123. for (int k1 = 0; k1 < ne1; k1++) {
  5124. ggml_vec_set_f32(ne0,
  5125. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  5126. 0);
  5127. }
  5128. }
  5129. }
  5130. }
  5131. // TODO: maybe this is not optimal?
  5132. for (int i3 = 0; i3 < nr3; i3++) {
  5133. for (int k3 = 0; k3 < ne3; k3++) {
  5134. for (int i2 = 0; i2 < nr2; i2++) {
  5135. for (int k2 = 0; k2 < ne2; k2++) {
  5136. for (int i1 = 0; i1 < nr1; i1++) {
  5137. for (int k1 = 0; k1 < ne1; k1++) {
  5138. for (int i0 = 0; i0 < nr0; i0++) {
  5139. ggml_vec_acc_f32(ne0,
  5140. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  5141. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  5142. }
  5143. }
  5144. }
  5145. }
  5146. }
  5147. }
  5148. }
  5149. }
  5150. static void ggml_compute_forward_repeat_back(
  5151. const struct ggml_compute_params * params,
  5152. struct ggml_tensor * dst) {
  5153. const struct ggml_tensor * src0 = dst->src[0];
  5154. switch (src0->type) {
  5155. case GGML_TYPE_F32:
  5156. {
  5157. ggml_compute_forward_repeat_back_f32(params, dst);
  5158. } break;
  5159. default:
  5160. {
  5161. GGML_ABORT("fatal error");
  5162. }
  5163. }
  5164. }
  5165. // ggml_compute_forward_concat
  5166. static void ggml_compute_forward_concat_f32(
  5167. const struct ggml_compute_params * params,
  5168. struct ggml_tensor * dst) {
  5169. const struct ggml_tensor * src0 = dst->src[0];
  5170. const struct ggml_tensor * src1 = dst->src[1];
  5171. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5172. const int ith = params->ith;
  5173. const int nth = params->nth;
  5174. GGML_TENSOR_BINARY_OP_LOCALS
  5175. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  5176. GGML_ASSERT(dim >= 0 && dim < 4);
  5177. int64_t o[4] = {0, 0, 0, 0};
  5178. o[dim] = src0->ne[dim];
  5179. const float * x;
  5180. // TODO: smarter multi-theading
  5181. for (int i3 = 0; i3 < ne3; i3++) {
  5182. for (int i2 = ith; i2 < ne2; i2 += nth) {
  5183. for (int i1 = 0; i1 < ne1; i1++) {
  5184. for (int i0 = 0; i0 < ne0; i0++) {
  5185. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  5186. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  5187. } else {
  5188. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  5189. }
  5190. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  5191. *y = *x;
  5192. }
  5193. }
  5194. }
  5195. }
  5196. }
  5197. static void ggml_compute_forward_concat(
  5198. const struct ggml_compute_params * params,
  5199. struct ggml_tensor * dst) {
  5200. const struct ggml_tensor * src0 = dst->src[0];
  5201. switch (src0->type) {
  5202. case GGML_TYPE_F32:
  5203. case GGML_TYPE_I32:
  5204. {
  5205. ggml_compute_forward_concat_f32(params, dst);
  5206. } break;
  5207. default:
  5208. {
  5209. GGML_ABORT("fatal error");
  5210. }
  5211. }
  5212. }
  5213. // ggml_compute_forward_abs
  5214. static void ggml_compute_forward_abs_f32(
  5215. const struct ggml_compute_params * params,
  5216. struct ggml_tensor * dst) {
  5217. const struct ggml_tensor * src0 = dst->src[0];
  5218. if (params->ith != 0) {
  5219. return;
  5220. }
  5221. assert(ggml_is_contiguous_1(src0));
  5222. assert(ggml_is_contiguous_1(dst));
  5223. assert(ggml_are_same_shape(src0, dst));
  5224. const int n = ggml_nrows(src0);
  5225. const int nc = src0->ne[0];
  5226. for (int i = 0; i < n; i++) {
  5227. ggml_vec_abs_f32(nc,
  5228. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5229. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5230. }
  5231. }
  5232. static void ggml_compute_forward_abs(
  5233. const struct ggml_compute_params * params,
  5234. struct ggml_tensor * dst) {
  5235. const struct ggml_tensor * src0 = dst->src[0];
  5236. switch (src0->type) {
  5237. case GGML_TYPE_F32:
  5238. {
  5239. ggml_compute_forward_abs_f32(params, dst);
  5240. } break;
  5241. default:
  5242. {
  5243. GGML_ABORT("fatal error");
  5244. }
  5245. }
  5246. }
  5247. // ggml_compute_forward_sgn
  5248. static void ggml_compute_forward_sgn_f32(
  5249. const struct ggml_compute_params * params,
  5250. struct ggml_tensor * dst) {
  5251. const struct ggml_tensor * src0 = dst->src[0];
  5252. if (params->ith != 0) {
  5253. return;
  5254. }
  5255. assert(ggml_is_contiguous_1(src0));
  5256. assert(ggml_is_contiguous_1(dst));
  5257. assert(ggml_are_same_shape(src0, dst));
  5258. const int n = ggml_nrows(src0);
  5259. const int nc = src0->ne[0];
  5260. for (int i = 0; i < n; i++) {
  5261. ggml_vec_sgn_f32(nc,
  5262. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5263. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5264. }
  5265. }
  5266. static void ggml_compute_forward_sgn(
  5267. const struct ggml_compute_params * params,
  5268. struct ggml_tensor * dst) {
  5269. const struct ggml_tensor * src0 = dst->src[0];
  5270. switch (src0->type) {
  5271. case GGML_TYPE_F32:
  5272. {
  5273. ggml_compute_forward_sgn_f32(params, dst);
  5274. } break;
  5275. default:
  5276. {
  5277. GGML_ABORT("fatal error");
  5278. }
  5279. }
  5280. }
  5281. // ggml_compute_forward_neg
  5282. static void ggml_compute_forward_neg_f32(
  5283. const struct ggml_compute_params * params,
  5284. struct ggml_tensor * dst) {
  5285. const struct ggml_tensor * src0 = dst->src[0];
  5286. if (params->ith != 0) {
  5287. return;
  5288. }
  5289. assert(ggml_is_contiguous_1(src0));
  5290. assert(ggml_is_contiguous_1(dst));
  5291. assert(ggml_are_same_shape(src0, dst));
  5292. const int n = ggml_nrows(src0);
  5293. const int nc = src0->ne[0];
  5294. for (int i = 0; i < n; i++) {
  5295. ggml_vec_neg_f32(nc,
  5296. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5297. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5298. }
  5299. }
  5300. static void ggml_compute_forward_neg(
  5301. const struct ggml_compute_params * params,
  5302. struct ggml_tensor * dst) {
  5303. const struct ggml_tensor * src0 = dst->src[0];
  5304. switch (src0->type) {
  5305. case GGML_TYPE_F32:
  5306. {
  5307. ggml_compute_forward_neg_f32(params, dst);
  5308. } break;
  5309. default:
  5310. {
  5311. GGML_ABORT("fatal error");
  5312. }
  5313. }
  5314. }
  5315. // ggml_compute_forward_step
  5316. static void ggml_compute_forward_step_f32(
  5317. const struct ggml_compute_params * params,
  5318. struct ggml_tensor * dst) {
  5319. const struct ggml_tensor * src0 = dst->src[0];
  5320. if (params->ith != 0) {
  5321. return;
  5322. }
  5323. assert(ggml_is_contiguous_1(src0));
  5324. assert(ggml_is_contiguous_1(dst));
  5325. assert(ggml_are_same_shape(src0, dst));
  5326. const int n = ggml_nrows(src0);
  5327. const int nc = src0->ne[0];
  5328. for (int i = 0; i < n; i++) {
  5329. ggml_vec_step_f32(nc,
  5330. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5331. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5332. }
  5333. }
  5334. static void ggml_compute_forward_step(
  5335. const struct ggml_compute_params * params,
  5336. struct ggml_tensor * dst) {
  5337. const struct ggml_tensor * src0 = dst->src[0];
  5338. switch (src0->type) {
  5339. case GGML_TYPE_F32:
  5340. {
  5341. ggml_compute_forward_step_f32(params, dst);
  5342. } break;
  5343. default:
  5344. {
  5345. GGML_ABORT("fatal error");
  5346. }
  5347. }
  5348. }
  5349. // ggml_compute_forward_tanh
  5350. static void ggml_compute_forward_tanh_f32(
  5351. const struct ggml_compute_params * params,
  5352. struct ggml_tensor * dst) {
  5353. const struct ggml_tensor * src0 = dst->src[0];
  5354. if (params->ith != 0) {
  5355. return;
  5356. }
  5357. assert(ggml_is_contiguous_1(src0));
  5358. assert(ggml_is_contiguous_1(dst));
  5359. assert(ggml_are_same_shape(src0, dst));
  5360. const int n = ggml_nrows(src0);
  5361. const int nc = src0->ne[0];
  5362. for (int i = 0; i < n; i++) {
  5363. ggml_vec_tanh_f32(nc,
  5364. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5365. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5366. }
  5367. }
  5368. static void ggml_compute_forward_tanh(
  5369. const struct ggml_compute_params * params,
  5370. struct ggml_tensor * dst) {
  5371. const struct ggml_tensor * src0 = dst->src[0];
  5372. switch (src0->type) {
  5373. case GGML_TYPE_F32:
  5374. {
  5375. ggml_compute_forward_tanh_f32(params, dst);
  5376. } break;
  5377. default:
  5378. {
  5379. GGML_ABORT("fatal error");
  5380. }
  5381. }
  5382. }
  5383. // ggml_compute_forward_elu
  5384. static void ggml_compute_forward_elu_f32(
  5385. const struct ggml_compute_params * params,
  5386. struct ggml_tensor * dst) {
  5387. const struct ggml_tensor * src0 = dst->src[0];
  5388. if (params->ith != 0) {
  5389. return;
  5390. }
  5391. assert(ggml_is_contiguous_1(src0));
  5392. assert(ggml_is_contiguous_1(dst));
  5393. assert(ggml_are_same_shape(src0, dst));
  5394. const int n = ggml_nrows(src0);
  5395. const int nc = src0->ne[0];
  5396. for (int i = 0; i < n; i++) {
  5397. ggml_vec_elu_f32(nc,
  5398. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5399. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5400. }
  5401. }
  5402. static void ggml_compute_forward_elu(
  5403. const struct ggml_compute_params * params,
  5404. struct ggml_tensor * dst) {
  5405. const struct ggml_tensor * src0 = dst->src[0];
  5406. switch (src0->type) {
  5407. case GGML_TYPE_F32:
  5408. {
  5409. ggml_compute_forward_elu_f32(params, dst);
  5410. } break;
  5411. default:
  5412. {
  5413. GGML_ABORT("fatal error");
  5414. }
  5415. }
  5416. }
  5417. // ggml_compute_forward_relu
  5418. static void ggml_compute_forward_relu_f32(
  5419. const struct ggml_compute_params * params,
  5420. struct ggml_tensor * dst) {
  5421. const struct ggml_tensor * src0 = dst->src[0];
  5422. if (params->ith != 0) {
  5423. return;
  5424. }
  5425. assert(ggml_is_contiguous_1(src0));
  5426. assert(ggml_is_contiguous_1(dst));
  5427. assert(ggml_are_same_shape(src0, dst));
  5428. const int n = ggml_nrows(src0);
  5429. const int nc = src0->ne[0];
  5430. for (int i = 0; i < n; i++) {
  5431. ggml_vec_relu_f32(nc,
  5432. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5433. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5434. }
  5435. }
  5436. static void ggml_compute_forward_relu(
  5437. const struct ggml_compute_params * params,
  5438. struct ggml_tensor * dst) {
  5439. const struct ggml_tensor * src0 = dst->src[0];
  5440. switch (src0->type) {
  5441. case GGML_TYPE_F32:
  5442. {
  5443. ggml_compute_forward_relu_f32(params, dst);
  5444. } break;
  5445. default:
  5446. {
  5447. GGML_ABORT("fatal error");
  5448. }
  5449. }
  5450. }
  5451. // ggml_compute_forward_sigmoid
  5452. static void ggml_compute_forward_sigmoid_f32(
  5453. const struct ggml_compute_params * params,
  5454. struct ggml_tensor * dst) {
  5455. const struct ggml_tensor * src0 = dst->src[0];
  5456. if (params->ith != 0) {
  5457. return;
  5458. }
  5459. assert(ggml_is_contiguous_1(src0));
  5460. assert(ggml_is_contiguous_1(dst));
  5461. assert(ggml_are_same_shape(src0, dst));
  5462. const int n = ggml_nrows(src0);
  5463. const int nc = src0->ne[0];
  5464. for (int i = 0; i < n; i++) {
  5465. ggml_vec_sigmoid_f32(nc,
  5466. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5467. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5468. }
  5469. }
  5470. static void ggml_compute_forward_sigmoid(
  5471. const struct ggml_compute_params * params,
  5472. struct ggml_tensor * dst) {
  5473. const struct ggml_tensor * src0 = dst->src[0];
  5474. switch (src0->type) {
  5475. case GGML_TYPE_F32:
  5476. {
  5477. ggml_compute_forward_sigmoid_f32(params, dst);
  5478. } break;
  5479. default:
  5480. {
  5481. GGML_ABORT("fatal error");
  5482. }
  5483. }
  5484. }
  5485. // ggml_compute_forward_gelu
  5486. static void ggml_compute_forward_gelu_f32(
  5487. const struct ggml_compute_params * params,
  5488. struct ggml_tensor * dst) {
  5489. const struct ggml_tensor * src0 = dst->src[0];
  5490. assert(ggml_is_contiguous_1(src0));
  5491. assert(ggml_is_contiguous_1(dst));
  5492. assert(ggml_are_same_shape(src0, dst));
  5493. const int ith = params->ith;
  5494. const int nth = params->nth;
  5495. const int nc = src0->ne[0];
  5496. const int nr = ggml_nrows(src0);
  5497. // rows per thread
  5498. const int dr = (nr + nth - 1)/nth;
  5499. // row range for this thread
  5500. const int ir0 = dr*ith;
  5501. const int ir1 = MIN(ir0 + dr, nr);
  5502. for (int i1 = ir0; i1 < ir1; i1++) {
  5503. ggml_vec_gelu_f32(nc,
  5504. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5505. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5506. #ifndef NDEBUG
  5507. for (int k = 0; k < nc; k++) {
  5508. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5509. UNUSED(x);
  5510. assert(!isnan(x));
  5511. assert(!isinf(x));
  5512. }
  5513. #endif
  5514. }
  5515. }
  5516. static void ggml_compute_forward_gelu(
  5517. const struct ggml_compute_params * params,
  5518. struct ggml_tensor * dst) {
  5519. const struct ggml_tensor * src0 = dst->src[0];
  5520. switch (src0->type) {
  5521. case GGML_TYPE_F32:
  5522. {
  5523. ggml_compute_forward_gelu_f32(params, dst);
  5524. } break;
  5525. default:
  5526. {
  5527. GGML_ABORT("fatal error");
  5528. }
  5529. }
  5530. }
  5531. // ggml_compute_forward_gelu_quick
  5532. static void ggml_compute_forward_gelu_quick_f32(
  5533. const struct ggml_compute_params * params,
  5534. struct ggml_tensor * dst) {
  5535. const struct ggml_tensor * src0 = dst->src[0];
  5536. assert(ggml_is_contiguous_1(src0));
  5537. assert(ggml_is_contiguous_1(dst));
  5538. assert(ggml_are_same_shape(src0, dst));
  5539. const int ith = params->ith;
  5540. const int nth = params->nth;
  5541. const int nc = src0->ne[0];
  5542. const int nr = ggml_nrows(src0);
  5543. // rows per thread
  5544. const int dr = (nr + nth - 1)/nth;
  5545. // row range for this thread
  5546. const int ir0 = dr*ith;
  5547. const int ir1 = MIN(ir0 + dr, nr);
  5548. for (int i1 = ir0; i1 < ir1; i1++) {
  5549. ggml_vec_gelu_quick_f32(nc,
  5550. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5551. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5552. #ifndef NDEBUG
  5553. for (int k = 0; k < nc; k++) {
  5554. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5555. UNUSED(x);
  5556. assert(!isnan(x));
  5557. assert(!isinf(x));
  5558. }
  5559. #endif
  5560. }
  5561. }
  5562. static void ggml_compute_forward_gelu_quick(
  5563. const struct ggml_compute_params * params,
  5564. struct ggml_tensor * dst) {
  5565. const struct ggml_tensor * src0 = dst->src[0];
  5566. switch (src0->type) {
  5567. case GGML_TYPE_F32:
  5568. {
  5569. ggml_compute_forward_gelu_quick_f32(params, dst);
  5570. } break;
  5571. default:
  5572. {
  5573. GGML_ABORT("fatal error");
  5574. }
  5575. }
  5576. }
  5577. // ggml_compute_forward_silu
  5578. static void ggml_compute_forward_silu_f32(
  5579. const struct ggml_compute_params * params,
  5580. struct ggml_tensor * dst) {
  5581. const struct ggml_tensor * src0 = dst->src[0];
  5582. assert(ggml_is_contiguous_1(src0));
  5583. assert(ggml_is_contiguous_1(dst));
  5584. assert(ggml_are_same_shape(src0, dst));
  5585. const int ith = params->ith;
  5586. const int nth = params->nth;
  5587. const int nc = src0->ne[0];
  5588. const int nr = ggml_nrows(src0);
  5589. // rows per thread
  5590. const int dr = (nr + nth - 1)/nth;
  5591. // row range for this thread
  5592. const int ir0 = dr*ith;
  5593. const int ir1 = MIN(ir0 + dr, nr);
  5594. for (int i1 = ir0; i1 < ir1; i1++) {
  5595. ggml_vec_silu_f32(nc,
  5596. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5597. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5598. #ifndef NDEBUG
  5599. for (int k = 0; k < nc; k++) {
  5600. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  5601. UNUSED(x);
  5602. assert(!isnan(x));
  5603. assert(!isinf(x));
  5604. }
  5605. #endif
  5606. }
  5607. }
  5608. static void ggml_compute_forward_silu(
  5609. const struct ggml_compute_params * params,
  5610. struct ggml_tensor * dst) {
  5611. const struct ggml_tensor * src0 = dst->src[0];
  5612. switch (src0->type) {
  5613. case GGML_TYPE_F32:
  5614. {
  5615. ggml_compute_forward_silu_f32(params, dst);
  5616. } break;
  5617. default:
  5618. {
  5619. GGML_ABORT("fatal error");
  5620. }
  5621. }
  5622. }
  5623. // ggml_compute_forward_leaky_relu
  5624. static void ggml_compute_forward_leaky_relu_f32(
  5625. const struct ggml_compute_params * params,
  5626. struct ggml_tensor * dst) {
  5627. const struct ggml_tensor * src0 = dst->src[0];
  5628. if (params->ith != 0) {
  5629. return;
  5630. }
  5631. assert(ggml_is_contiguous_1(src0));
  5632. assert(ggml_is_contiguous_1(dst));
  5633. assert(ggml_are_same_shape(src0, dst));
  5634. const int n = ggml_nrows(src0);
  5635. const int nc = src0->ne[0];
  5636. float negative_slope;
  5637. memcpy(&negative_slope, dst->op_params, sizeof(float));
  5638. assert(dst->nb[0] == sizeof(float));
  5639. assert(src0->nb[0] == sizeof(float));
  5640. for (int i = 0; i < n; i++) {
  5641. ggml_vec_leaky_relu_f32(nc,
  5642. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5643. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  5644. }
  5645. }
  5646. static void ggml_compute_forward_leaky_relu(
  5647. const struct ggml_compute_params * params,
  5648. struct ggml_tensor * dst) {
  5649. const struct ggml_tensor * src0 = dst->src[0];
  5650. switch (src0->type) {
  5651. case GGML_TYPE_F32:
  5652. {
  5653. ggml_compute_forward_leaky_relu_f32(params, dst);
  5654. } break;
  5655. default:
  5656. {
  5657. GGML_ABORT("fatal error");
  5658. }
  5659. }
  5660. }
  5661. // ggml_compute_forward_silu_back
  5662. static void ggml_compute_forward_silu_back_f32(
  5663. const struct ggml_compute_params * params,
  5664. struct ggml_tensor * dst) {
  5665. const struct ggml_tensor * src0 = dst->src[0];
  5666. const struct ggml_tensor * grad = dst->src[1];
  5667. assert(ggml_is_contiguous_1(grad));
  5668. assert(ggml_is_contiguous_1(src0));
  5669. assert(ggml_is_contiguous_1(dst));
  5670. assert(ggml_are_same_shape(src0, dst));
  5671. assert(ggml_are_same_shape(src0, grad));
  5672. const int ith = params->ith;
  5673. const int nth = params->nth;
  5674. const int nc = src0->ne[0];
  5675. const int nr = ggml_nrows(src0);
  5676. // rows per thread
  5677. const int dr = (nr + nth - 1)/nth;
  5678. // row range for this thread
  5679. const int ir0 = dr*ith;
  5680. const int ir1 = MIN(ir0 + dr, nr);
  5681. for (int i1 = ir0; i1 < ir1; i1++) {
  5682. ggml_vec_silu_backward_f32(nc,
  5683. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5684. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  5685. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  5686. #ifndef NDEBUG
  5687. for (int k = 0; k < nc; k++) {
  5688. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5689. UNUSED(x);
  5690. assert(!isnan(x));
  5691. assert(!isinf(x));
  5692. }
  5693. #endif
  5694. }
  5695. }
  5696. static void ggml_compute_forward_silu_back(
  5697. const struct ggml_compute_params * params,
  5698. struct ggml_tensor * dst) {
  5699. const struct ggml_tensor * src0 = dst->src[0];
  5700. switch (src0->type) {
  5701. case GGML_TYPE_F32:
  5702. {
  5703. ggml_compute_forward_silu_back_f32(params, dst);
  5704. } break;
  5705. default:
  5706. {
  5707. GGML_ABORT("fatal error");
  5708. }
  5709. }
  5710. }
  5711. static void ggml_compute_forward_hardswish_f32(
  5712. const struct ggml_compute_params * params,
  5713. struct ggml_tensor * dst) {
  5714. const struct ggml_tensor * src0 = dst->src[0];
  5715. if (params->ith != 0) {
  5716. return;
  5717. }
  5718. assert(ggml_is_contiguous_1(src0));
  5719. assert(ggml_is_contiguous_1(dst));
  5720. assert(ggml_are_same_shape(src0, dst));
  5721. const int n = ggml_nrows(src0);
  5722. const int nc = src0->ne[0];
  5723. for (int i = 0; i < n; i++) {
  5724. ggml_vec_hardswish_f32(nc,
  5725. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5726. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5727. }
  5728. }
  5729. static void ggml_compute_forward_hardswish(
  5730. const struct ggml_compute_params * params,
  5731. struct ggml_tensor * dst) {
  5732. const struct ggml_tensor * src0 = dst->src[0];
  5733. switch (src0->type) {
  5734. case GGML_TYPE_F32:
  5735. {
  5736. ggml_compute_forward_hardswish_f32(params, dst);
  5737. } break;
  5738. default:
  5739. {
  5740. GGML_ABORT("fatal error");
  5741. }
  5742. }
  5743. }
  5744. static void ggml_compute_forward_hardsigmoid_f32(
  5745. const struct ggml_compute_params * params,
  5746. struct ggml_tensor * dst) {
  5747. const struct ggml_tensor * src0 = dst->src[0];
  5748. if (params->ith != 0) {
  5749. return;
  5750. }
  5751. assert(ggml_is_contiguous_1(src0));
  5752. assert(ggml_is_contiguous_1(dst));
  5753. assert(ggml_are_same_shape(src0, dst));
  5754. const int n = ggml_nrows(src0);
  5755. const int nc = src0->ne[0];
  5756. for (int i = 0; i < n; i++) {
  5757. ggml_vec_hardsigmoid_f32(nc,
  5758. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5759. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5760. }
  5761. }
  5762. static void ggml_compute_forward_hardsigmoid(
  5763. const struct ggml_compute_params * params,
  5764. struct ggml_tensor * dst) {
  5765. const struct ggml_tensor * src0 = dst->src[0];
  5766. switch (src0->type) {
  5767. case GGML_TYPE_F32:
  5768. {
  5769. ggml_compute_forward_hardsigmoid_f32(params, dst);
  5770. } break;
  5771. default:
  5772. {
  5773. GGML_ABORT("fatal error");
  5774. }
  5775. }
  5776. }
  5777. static void ggml_compute_forward_exp_f32(
  5778. const struct ggml_compute_params * params,
  5779. struct ggml_tensor * dst) {
  5780. const struct ggml_tensor * src0 = dst->src[0];
  5781. if (params->ith != 0) {
  5782. return;
  5783. }
  5784. assert(ggml_is_contiguous_1(src0));
  5785. assert(ggml_is_contiguous_1(dst));
  5786. assert(ggml_are_same_shape(src0, dst));
  5787. const int n = ggml_nrows(src0);
  5788. const int nc = src0->ne[0];
  5789. for (int i = 0; i < n; i++) {
  5790. ggml_vec_exp_f32(nc,
  5791. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5792. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5793. }
  5794. }
  5795. static void ggml_compute_forward_exp(
  5796. const struct ggml_compute_params * params,
  5797. struct ggml_tensor * dst) {
  5798. const struct ggml_tensor * src0 = dst->src[0];
  5799. switch (src0->type) {
  5800. case GGML_TYPE_F32:
  5801. {
  5802. ggml_compute_forward_exp_f32(params, dst);
  5803. } break;
  5804. default:
  5805. {
  5806. GGML_ABORT("fatal error");
  5807. }
  5808. }
  5809. }
  5810. // ggml_compute_forward_norm
  5811. static void ggml_compute_forward_norm_f32(
  5812. const struct ggml_compute_params * params,
  5813. struct ggml_tensor * dst) {
  5814. const struct ggml_tensor * src0 = dst->src[0];
  5815. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5816. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5817. const int ith = params->ith;
  5818. const int nth = params->nth;
  5819. GGML_TENSOR_UNARY_OP_LOCALS
  5820. float eps;
  5821. memcpy(&eps, dst->op_params, sizeof(float));
  5822. GGML_ASSERT(eps > 0.0f);
  5823. // TODO: optimize
  5824. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5825. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5826. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5827. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5828. ggml_float sum = 0.0;
  5829. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5830. sum += (ggml_float)x[i00];
  5831. }
  5832. float mean = sum/ne00;
  5833. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5834. ggml_float sum2 = 0.0;
  5835. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5836. float v = x[i00] - mean;
  5837. y[i00] = v;
  5838. sum2 += (ggml_float)(v*v);
  5839. }
  5840. float variance = sum2/ne00;
  5841. const float scale = 1.0f/sqrtf(variance + eps);
  5842. ggml_vec_scale_f32(ne00, y, scale);
  5843. }
  5844. }
  5845. }
  5846. }
  5847. static void ggml_compute_forward_norm(
  5848. const struct ggml_compute_params * params,
  5849. struct ggml_tensor * dst) {
  5850. const struct ggml_tensor * src0 = dst->src[0];
  5851. switch (src0->type) {
  5852. case GGML_TYPE_F32:
  5853. {
  5854. ggml_compute_forward_norm_f32(params, dst);
  5855. } break;
  5856. default:
  5857. {
  5858. GGML_ABORT("fatal error");
  5859. }
  5860. }
  5861. }
  5862. // ggml_compute_forward_group_rms_norm
  5863. static void ggml_compute_forward_rms_norm_f32(
  5864. const struct ggml_compute_params * params,
  5865. struct ggml_tensor * dst) {
  5866. const struct ggml_tensor * src0 = dst->src[0];
  5867. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5868. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5869. const int ith = params->ith;
  5870. const int nth = params->nth;
  5871. GGML_TENSOR_UNARY_OP_LOCALS
  5872. float eps;
  5873. memcpy(&eps, dst->op_params, sizeof(float));
  5874. GGML_ASSERT(eps > 0.0f);
  5875. // TODO: optimize
  5876. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5877. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5878. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5879. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5880. ggml_float sum = 0.0;
  5881. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5882. sum += (ggml_float)(x[i00] * x[i00]);
  5883. }
  5884. const float mean = sum/ne00;
  5885. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5886. memcpy(y, x, ne00 * sizeof(float));
  5887. // for (int i00 = 0; i00 < ne00; i00++) {
  5888. // y[i00] = x[i00];
  5889. // }
  5890. const float scale = 1.0f/sqrtf(mean + eps);
  5891. ggml_vec_scale_f32(ne00, y, scale);
  5892. }
  5893. }
  5894. }
  5895. }
  5896. static void ggml_compute_forward_rms_norm(
  5897. const struct ggml_compute_params * params,
  5898. struct ggml_tensor * dst) {
  5899. const struct ggml_tensor * src0 = dst->src[0];
  5900. switch (src0->type) {
  5901. case GGML_TYPE_F32:
  5902. {
  5903. ggml_compute_forward_rms_norm_f32(params, dst);
  5904. } break;
  5905. default:
  5906. {
  5907. GGML_ABORT("fatal error");
  5908. }
  5909. }
  5910. }
  5911. static void ggml_compute_forward_rms_norm_back_f32(
  5912. const struct ggml_compute_params * params,
  5913. struct ggml_tensor * dst) {
  5914. const struct ggml_tensor * src0 = dst->src[0];
  5915. const struct ggml_tensor * src1 = dst->src[1];
  5916. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  5917. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5918. const int ith = params->ith;
  5919. const int nth = params->nth;
  5920. GGML_TENSOR_BINARY_OP_LOCALS
  5921. float eps;
  5922. memcpy(&eps, dst->op_params, sizeof(float));
  5923. // TODO: optimize
  5924. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5925. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5926. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5927. // src1 is same shape as src0 => same indices
  5928. const int64_t i11 = i01;
  5929. const int64_t i12 = i02;
  5930. const int64_t i13 = i03;
  5931. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5932. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  5933. ggml_float sum_xx = 0.0;
  5934. ggml_float sum_xdz = 0.0;
  5935. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5936. sum_xx += (ggml_float)(x[i00] * x[i00]);
  5937. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  5938. }
  5939. //const float mean = (float)(sum_xx)/ne00;
  5940. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  5941. const float sum_eps = (float)(sum_xx) + eps*ne00;
  5942. //const float mean_xdz = (float)(sum_xdz)/ne00;
  5943. // we could cache rms from forward pass to improve performance.
  5944. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  5945. //const float rms = sqrtf(mean_eps);
  5946. const float rrms = 1.0f / sqrtf(mean_eps);
  5947. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  5948. {
  5949. // z = rms_norm(x)
  5950. //
  5951. // rms_norm(src0) =
  5952. // scale(
  5953. // src0,
  5954. // div(
  5955. // 1,
  5956. // sqrt(
  5957. // add(
  5958. // scale(
  5959. // sum(
  5960. // sqr(
  5961. // src0)),
  5962. // (1.0/N)),
  5963. // eps))));
  5964. // postorder:
  5965. // ## op args grad
  5966. // 00 param src0 grad[#00]
  5967. // 01 const 1
  5968. // 02 sqr (#00) grad[#02]
  5969. // 03 sum (#02) grad[#03]
  5970. // 04 const 1/N
  5971. // 05 scale (#03, #04) grad[#05]
  5972. // 06 const eps
  5973. // 07 add (#05, #06) grad[#07]
  5974. // 08 sqrt (#07) grad[#08]
  5975. // 09 div (#01,#08) grad[#09]
  5976. // 10 scale (#00,#09) grad[#10]
  5977. //
  5978. // backward pass, given grad[#10]
  5979. // #10: scale
  5980. // grad[#00] += scale(grad[#10],#09)
  5981. // grad[#09] += sum(mul(grad[#10],#00))
  5982. // #09: div
  5983. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  5984. // #08: sqrt
  5985. // grad[#07] += mul(grad[#08], div(0.5, #08))
  5986. // #07: add
  5987. // grad[#05] += grad[#07]
  5988. // #05: scale
  5989. // grad[#03] += scale(grad[#05],#04)
  5990. // #03: sum
  5991. // grad[#02] += repeat(grad[#03], #02)
  5992. // #02:
  5993. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  5994. //
  5995. // substitute and simplify:
  5996. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  5997. // grad[#02] = repeat(grad[#03], #02)
  5998. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  5999. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  6000. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  6001. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  6002. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  6003. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  6004. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  6005. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  6006. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  6007. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  6008. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  6009. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  6010. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  6011. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  6012. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  6013. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  6014. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  6015. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  6016. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  6017. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  6018. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  6019. // a = b*c + d*e
  6020. // a = b*c*f/f + d*e*f/f
  6021. // a = (b*c*f + d*e*f)*(1/f)
  6022. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  6023. // a = (b + d*e/c)*c
  6024. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  6025. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  6026. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  6027. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  6028. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  6029. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  6030. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  6031. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  6032. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  6033. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  6034. }
  6035. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  6036. // post-order:
  6037. // dx := x
  6038. // dx := scale(dx,-mean_xdz/mean_eps)
  6039. // dx := add(dx, dz)
  6040. // dx := scale(dx, rrms)
  6041. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6042. ggml_vec_cpy_f32 (ne00, dx, x);
  6043. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  6044. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  6045. ggml_vec_acc_f32 (ne00, dx, dz);
  6046. ggml_vec_scale_f32(ne00, dx, rrms);
  6047. }
  6048. }
  6049. }
  6050. }
  6051. static void ggml_compute_forward_rms_norm_back(
  6052. const struct ggml_compute_params * params,
  6053. struct ggml_tensor * dst) {
  6054. const struct ggml_tensor * src0 = dst->src[0];
  6055. switch (src0->type) {
  6056. case GGML_TYPE_F32:
  6057. {
  6058. ggml_compute_forward_rms_norm_back_f32(params, dst);
  6059. } break;
  6060. default:
  6061. {
  6062. GGML_ABORT("fatal error");
  6063. }
  6064. }
  6065. }
  6066. // ggml_compute_forward_group_norm
  6067. static void ggml_compute_forward_group_norm_f32(
  6068. const struct ggml_compute_params * params,
  6069. struct ggml_tensor * dst) {
  6070. const struct ggml_tensor * src0 = dst->src[0];
  6071. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6072. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6073. const int ith = params->ith;
  6074. const int nth = params->nth;
  6075. GGML_TENSOR_UNARY_OP_LOCALS
  6076. // TODO: optimize
  6077. float eps;
  6078. memcpy(&eps, dst->op_params + 1, sizeof(float));
  6079. int n_channels = src0->ne[2];
  6080. int n_groups = dst->op_params[0];
  6081. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  6082. for (int i = ith; i < n_groups; i += nth) {
  6083. int start = i * n_channels_per_group;
  6084. int end = start + n_channels_per_group;
  6085. if (end > n_channels) {
  6086. end = n_channels;
  6087. }
  6088. int step = end - start;
  6089. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6090. ggml_float sum = 0.0;
  6091. for (int64_t i02 = start; i02 < end; i02++) {
  6092. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6093. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  6094. ggml_float sumr = 0.0;
  6095. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6096. sumr += (ggml_float)x[i00];
  6097. }
  6098. sum += sumr;
  6099. }
  6100. }
  6101. const float mean = sum / (ne00 * ne01 * step);
  6102. ggml_float sum2 = 0.0;
  6103. for (int64_t i02 = start; i02 < end; i02++) {
  6104. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6105. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  6106. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  6107. ggml_float sumr = 0.0;
  6108. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6109. float v = x[i00] - mean;
  6110. y[i00] = v;
  6111. sumr += (ggml_float)(v * v);
  6112. }
  6113. sum2 += sumr;
  6114. }
  6115. }
  6116. const float variance = sum2 / (ne00 * ne01 * step);
  6117. const float scale = 1.0f / sqrtf(variance + eps);
  6118. for (int64_t i02 = start; i02 < end; i02++) {
  6119. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6120. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  6121. ggml_vec_scale_f32(ne00, y, scale);
  6122. }
  6123. }
  6124. }
  6125. }
  6126. }
  6127. static void ggml_compute_forward_group_norm(
  6128. const struct ggml_compute_params * params,
  6129. struct ggml_tensor * dst) {
  6130. const struct ggml_tensor * src0 = dst->src[0];
  6131. switch (src0->type) {
  6132. case GGML_TYPE_F32:
  6133. {
  6134. ggml_compute_forward_group_norm_f32(params, dst);
  6135. } break;
  6136. default:
  6137. {
  6138. GGML_ABORT("fatal error");
  6139. }
  6140. }
  6141. }
  6142. // ggml_compute_forward_mul_mat
  6143. static void ggml_compute_forward_mul_mat_one_chunk(
  6144. const struct ggml_compute_params * params,
  6145. struct ggml_tensor * dst,
  6146. const enum ggml_type type,
  6147. const int64_t num_rows_per_vec_dot,
  6148. const int64_t ir0_start,
  6149. const int64_t ir0_end,
  6150. const int64_t ir1_start,
  6151. const int64_t ir1_end) {
  6152. const struct ggml_tensor * src0 = dst->src[0];
  6153. const struct ggml_tensor * src1 = dst->src[1];
  6154. GGML_TENSOR_BINARY_OP_LOCALS
  6155. const bool src1_cont = ggml_is_contiguous(src1);
  6156. ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
  6157. enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
  6158. // broadcast factors
  6159. const int64_t r2 = ne12 / ne02;
  6160. const int64_t r3 = ne13 / ne03;
  6161. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  6162. // threads with no work simply yield (not sure if it helps)
  6163. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  6164. return;
  6165. }
  6166. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6167. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  6168. assert(ne12 % ne02 == 0);
  6169. assert(ne13 % ne03 == 0);
  6170. // block-tiling attempt
  6171. const int64_t blck_0 = 16;
  6172. const int64_t blck_1 = 16;
  6173. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  6174. // attempt to reduce false-sharing (does not seem to make a difference)
  6175. // 16 * 2, accounting for mmla kernels
  6176. float tmp[32];
  6177. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  6178. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  6179. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  6180. const int64_t i13 = (ir1 / (ne12 * ne1));
  6181. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  6182. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  6183. // broadcast src0 into src1
  6184. const int64_t i03 = i13 / r3;
  6185. const int64_t i02 = i12 / r2;
  6186. const int64_t i1 = i11;
  6187. const int64_t i2 = i12;
  6188. const int64_t i3 = i13;
  6189. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  6190. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  6191. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  6192. // the original src1 data pointer, so we should index using the indices directly
  6193. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  6194. const char * src1_col = (const char*)wdata +
  6195. (src1_cont || src1->type != vec_dot_type
  6196. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  6197. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  6198. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  6199. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  6200. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  6201. //}
  6202. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  6203. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  6204. }
  6205. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  6206. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  6207. }
  6208. }
  6209. }
  6210. }
  6211. }
  6212. static void ggml_compute_forward_mul_mat(
  6213. const struct ggml_compute_params * params,
  6214. struct ggml_tensor * dst) {
  6215. const struct ggml_tensor * src0 = dst->src[0];
  6216. const struct ggml_tensor * src1 = dst->src[1];
  6217. GGML_TENSOR_BINARY_OP_LOCALS
  6218. const int ith = params->ith;
  6219. const int nth = params->nth;
  6220. enum ggml_type type = src0->type;
  6221. if (src0->buffer && ggml_backend_cpu_buft_is_aarch64(src0->buffer->buft)) {
  6222. type = (enum ggml_type)(intptr_t)src0->extra;
  6223. }
  6224. enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
  6225. ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
  6226. ggml_from_float_to_mat_t const from_float_to_mat = type_traits_cpu[vec_dot_type].from_float_to_mat;
  6227. int64_t const vec_dot_num_rows = type_traits_cpu[type].nrows;
  6228. int64_t const matmul_num_cols = type_traits_cpu[type].ncols;
  6229. int64_t const blck_size_interleave = ggml_get_type_traits(type)->blck_size_interleave;
  6230. ggml_gemv_t const gemv = type_traits_cpu[type].gemv;
  6231. ggml_gemm_t const gemm = type_traits_cpu[type].gemm;
  6232. GGML_ASSERT(ne0 == ne01);
  6233. GGML_ASSERT(ne1 == ne11);
  6234. GGML_ASSERT(ne2 == ne12);
  6235. GGML_ASSERT(ne3 == ne13);
  6236. // we don't support permuted src0 or src1
  6237. GGML_ASSERT(nb00 == ggml_type_size(type));
  6238. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  6239. // dst cannot be transposed or permuted
  6240. GGML_ASSERT(nb0 == sizeof(float));
  6241. GGML_ASSERT(nb0 <= nb1);
  6242. GGML_ASSERT(nb1 <= nb2);
  6243. GGML_ASSERT(nb2 <= nb3);
  6244. // nb01 >= nb00 - src0 is not transposed
  6245. // compute by src0 rows
  6246. #if GGML_USE_LLAMAFILE
  6247. // broadcast factors
  6248. const int64_t r2 = ne12 / ne02;
  6249. const int64_t r3 = ne13 / ne03;
  6250. const bool src1_cont = ggml_is_contiguous(src1);
  6251. if (src1_cont) {
  6252. for (int64_t i13 = 0; i13 < ne13; i13++)
  6253. for (int64_t i12 = 0; i12 < ne12; i12++)
  6254. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
  6255. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  6256. nb01/ggml_type_size(type),
  6257. (const char *)src1->data + i12*nb12 + i13*nb13,
  6258. nb11/ggml_type_size(src1->type),
  6259. (char *)dst->data + i12*nb2 + i13*nb3,
  6260. nb1/ggml_type_size(dst->type),
  6261. ith, nth,
  6262. type,
  6263. src1->type,
  6264. dst->type))
  6265. goto UseGgmlGemm1;
  6266. return;
  6267. }
  6268. UseGgmlGemm1:;
  6269. #endif
  6270. if (src1->type != vec_dot_type) {
  6271. char * wdata = params->wdata;
  6272. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  6273. const size_t nbw2 = nbw1*ne11;
  6274. const size_t nbw3 = nbw2*ne12;
  6275. assert(params->wsize >= ne13*nbw3);
  6276. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6277. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6278. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6279. int64_t i11_processed = 0;
  6280. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  6281. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  6282. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  6283. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  6284. 4, ne10, blck_size_interleave);
  6285. }
  6286. i11_processed = ne11 - ne11 % 4;
  6287. }
  6288. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  6289. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  6290. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  6291. ne10);
  6292. }
  6293. }
  6294. }
  6295. }
  6296. if (ith == 0) {
  6297. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  6298. atomic_store_explicit(&params->threadpool->current_chunk, nth, memory_order_relaxed);
  6299. }
  6300. ggml_barrier(params->threadpool);
  6301. #if GGML_USE_LLAMAFILE
  6302. if (src1->type != vec_dot_type) {
  6303. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6304. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  6305. for (int64_t i13 = 0; i13 < ne13; i13++)
  6306. for (int64_t i12 = 0; i12 < ne12; i12++)
  6307. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
  6308. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  6309. nb01/ggml_type_size(type),
  6310. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  6311. row_size/ggml_type_size(vec_dot_type),
  6312. (char *)dst->data + i12*nb2 + i13*nb3,
  6313. nb1/ggml_type_size(dst->type),
  6314. ith, nth,
  6315. type,
  6316. vec_dot_type,
  6317. dst->type))
  6318. goto UseGgmlGemm2;
  6319. return;
  6320. }
  6321. UseGgmlGemm2:;
  6322. #endif
  6323. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  6324. const int64_t nr0 = ne0;
  6325. // This is the size of the rest of the dimensions of the result
  6326. const int64_t nr1 = ne1 * ne2 * ne3;
  6327. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  6328. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  6329. // TODO: currently the mmla kernels support only even numbered rows/cols.
  6330. // this check can be removed once they are extended to support odd numbered rows/cols too
  6331. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  6332. num_rows_per_vec_dot = 1;
  6333. }
  6334. // Now select a reasonable chunk size.
  6335. int chunk_size = 16;
  6336. // We need to step up the size if it's small
  6337. if (nr0 == 1 || nr1 == 1) {
  6338. chunk_size = 64;
  6339. }
  6340. // distribute the work across the inner or outer loop based on which one is larger
  6341. // The number of chunks in the 0/1 dim.
  6342. // CEIL(nr0/chunk_size)
  6343. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  6344. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  6345. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  6346. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  6347. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  6348. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  6349. // distribute the thread work across the inner or outer loop based on which one is larger
  6350. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  6351. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  6352. }
  6353. // The number of elements in each chunk
  6354. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  6355. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  6356. if ((ggml_n_dims(src0) == 2) && gemv) {
  6357. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6358. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  6359. int64_t src0_start = (ith * ne01) / nth;
  6360. int64_t src0_end = ((ith + 1) * ne01) / nth;
  6361. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  6362. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  6363. if (src0_start >= src0_end) return;
  6364. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  6365. if (gemm && (ne11 > 3)) {
  6366. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  6367. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  6368. }
  6369. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  6370. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  6371. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  6372. src0_end - src0_start);
  6373. }
  6374. return;
  6375. }
  6376. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  6377. int current_chunk = ith;
  6378. while (current_chunk < nchunk0 * nchunk1) {
  6379. const int64_t ith0 = current_chunk % nchunk0;
  6380. const int64_t ith1 = current_chunk / nchunk0;
  6381. const int64_t ir0_start = dr0 * ith0;
  6382. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  6383. const int64_t ir1_start = dr1 * ith1;
  6384. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  6385. ggml_compute_forward_mul_mat_one_chunk(params, dst, type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  6386. if (nth >= nchunk0 * nchunk1) {
  6387. break;
  6388. }
  6389. current_chunk = atomic_fetch_add_explicit(&params->threadpool->current_chunk, 1, memory_order_relaxed);
  6390. }
  6391. }
  6392. // ggml_compute_forward_mul_mat_id
  6393. static void ggml_compute_forward_mul_mat_id(
  6394. const struct ggml_compute_params * params,
  6395. struct ggml_tensor * dst) {
  6396. const struct ggml_tensor * src0 = dst->src[0];
  6397. const struct ggml_tensor * src1 = dst->src[1];
  6398. const struct ggml_tensor * ids = dst->src[2];
  6399. GGML_TENSOR_BINARY_OP_LOCALS
  6400. const int ith = params->ith;
  6401. const int nth = params->nth;
  6402. const enum ggml_type type = src0->type;
  6403. const bool src1_cont = ggml_is_contiguous(src1);
  6404. ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
  6405. enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
  6406. ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
  6407. int64_t const matmul_num_cols = type_traits_cpu[type].ncols;
  6408. ggml_gemv_t const gemv = type_traits_cpu[type].gemv;
  6409. // we don't support permuted src0 or src1
  6410. GGML_ASSERT(nb00 == ggml_type_size(type));
  6411. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  6412. // dst cannot be transposed or permuted
  6413. GGML_ASSERT(nb0 == sizeof(float));
  6414. GGML_ASSERT(nb0 <= nb1);
  6415. GGML_ASSERT(nb1 <= nb2);
  6416. GGML_ASSERT(nb2 <= nb3);
  6417. // row groups
  6418. const int n_ids = ids->ne[0]; // n_expert_used
  6419. const int n_as = ne02; // n_expert
  6420. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  6421. (char *) params->wdata :
  6422. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  6423. struct mmid_row_mapping {
  6424. int32_t i1;
  6425. int32_t i2;
  6426. };
  6427. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  6428. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  6429. if (src1->type != vec_dot_type) {
  6430. char * wdata = params->wdata;
  6431. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  6432. const size_t nbw2 = nbw1*ne11;
  6433. const size_t nbw3 = nbw2*ne12;
  6434. assert(params->wsize >= ne13*nbw3);
  6435. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6436. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6437. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6438. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  6439. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  6440. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  6441. ne10);
  6442. }
  6443. }
  6444. }
  6445. }
  6446. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  6447. if (ith == 0) {
  6448. // initialize matrix_row_counts
  6449. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  6450. // group rows by src0 matrix
  6451. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  6452. for (int id = 0; id < n_ids; ++id) {
  6453. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  6454. assert(i02 >= 0 && i02 < n_as);
  6455. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  6456. matrix_row_counts[i02] += 1;
  6457. }
  6458. }
  6459. }
  6460. ggml_barrier(params->threadpool);
  6461. // compute each matrix multiplication in sequence
  6462. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  6463. const int64_t cne1 = matrix_row_counts[cur_a];
  6464. if (cne1 == 0) {
  6465. continue;
  6466. }
  6467. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  6468. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6469. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  6470. const int64_t nr0 = ne01; // src0 rows
  6471. const int64_t nr1 = cne1; // src1 rows
  6472. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  6473. int64_t src0_cur_start = (ith * ne01) / nth;
  6474. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  6475. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  6476. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  6477. if (src0_cur_start >= src0_cur_end) return;
  6478. for (int ir1 = 0; ir1 < nr1; ir1++) {
  6479. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  6480. const int id = row_mapping.i1; // selected expert index
  6481. const int64_t i11 = id % ne11;
  6482. const int64_t i12 = row_mapping.i2; // row index in src1
  6483. const int64_t i1 = id; // selected expert index
  6484. const int64_t i2 = i12; // row
  6485. const char * src1_col = (const char *) wdata +
  6486. (src1_cont || src1->type != vec_dot_type
  6487. ? (i11 + i12 * ne11) * row_size
  6488. : (i11 * nb11 + i12 * nb12));
  6489. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  6490. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  6491. }
  6492. continue;
  6493. }
  6494. // distribute the thread work across the inner or outer loop based on which one is larger
  6495. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  6496. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  6497. const int64_t ith0 = ith % nth0;
  6498. const int64_t ith1 = ith / nth0;
  6499. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  6500. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  6501. const int64_t ir010 = dr0*ith0;
  6502. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  6503. const int64_t ir110 = dr1*ith1;
  6504. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  6505. // threads with no work simply yield (not sure if it helps)
  6506. //if (ir010 >= ir011 || ir110 >= ir111) {
  6507. // sched_yield();
  6508. // continue;
  6509. //}
  6510. // block-tiling attempt
  6511. const int64_t blck_0 = 16;
  6512. const int64_t blck_1 = 16;
  6513. // attempt to reduce false-sharing (does not seem to make a difference)
  6514. float tmp[16];
  6515. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  6516. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  6517. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  6518. const int64_t _i12 = ir1; // logical row index for this expert
  6519. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  6520. const int id = row_mapping.i1; // selected expert index
  6521. const int64_t i11 = id % ne11;
  6522. const int64_t i12 = row_mapping.i2; // row index in src1
  6523. const int64_t i1 = id; // selected expert index
  6524. const int64_t i2 = i12; // row
  6525. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  6526. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  6527. // the original src1 data pointer, so we should index using the indices directly
  6528. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  6529. const char * src1_col = (const char *) wdata +
  6530. (src1_cont || src1->type != vec_dot_type
  6531. ? (i11 + i12*ne11)*row_size
  6532. : (i11*nb11 + i12*nb12));
  6533. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  6534. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  6535. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  6536. //}
  6537. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  6538. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  6539. }
  6540. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  6541. }
  6542. }
  6543. }
  6544. }
  6545. #undef MMID_MATRIX_ROW
  6546. }
  6547. // ggml_compute_forward_out_prod
  6548. static void ggml_compute_forward_out_prod_f32(
  6549. const struct ggml_compute_params * params,
  6550. struct ggml_tensor * dst) {
  6551. const struct ggml_tensor * src0 = dst->src[0];
  6552. const struct ggml_tensor * src1 = dst->src[1];
  6553. GGML_TENSOR_BINARY_OP_LOCALS
  6554. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  6555. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6556. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6557. const int ith = params->ith;
  6558. const int nth = params->nth;
  6559. GGML_ASSERT(ne0 == ne00);
  6560. GGML_ASSERT(ne1 == ne10);
  6561. GGML_ASSERT(ne2 == ne02);
  6562. GGML_ASSERT(ne02 == ne12);
  6563. GGML_ASSERT(ne3 == ne13);
  6564. GGML_ASSERT(ne03 == ne13);
  6565. // we don't support permuted src0 or src1
  6566. GGML_ASSERT(nb00 == sizeof(float));
  6567. // dst cannot be transposed or permuted
  6568. GGML_ASSERT(nb0 == sizeof(float));
  6569. // GGML_ASSERT(nb0 <= nb1);
  6570. // GGML_ASSERT(nb1 <= nb2);
  6571. // GGML_ASSERT(nb2 <= nb3);
  6572. // nb01 >= nb00 - src0 is not transposed
  6573. // compute by src0 rows
  6574. if (ith == 0) {
  6575. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6576. }
  6577. ggml_barrier(params->threadpool);
  6578. // dst[:,:,:,:] = 0
  6579. // for i2,i3:
  6580. // for i1:
  6581. // for i01:
  6582. // for i0:
  6583. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  6584. // parallelize by last three dimensions
  6585. // total rows in dst
  6586. const int64_t nr = ne1*ne2*ne3;
  6587. // rows per thread
  6588. const int64_t dr = (nr + nth - 1)/nth;
  6589. // row range for this thread
  6590. const int64_t ir0 = dr*ith;
  6591. const int64_t ir1 = MIN(ir0 + dr, nr);
  6592. // block-tiling attempt
  6593. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  6594. const int64_t blck_1 = 16;
  6595. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  6596. const int64_t bir1 = MIN(bir + blck_1, ir1);
  6597. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  6598. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  6599. for (int64_t ir = bir; ir < bir1; ++ir) {
  6600. // dst indices
  6601. const int64_t i3 = ir/(ne2*ne1);
  6602. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  6603. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6604. const int64_t i02 = i2;
  6605. const int64_t i03 = i3;
  6606. //const int64_t i10 = i1;
  6607. const int64_t i12 = i2;
  6608. const int64_t i13 = i3;
  6609. #if GGML_VEC_MAD_UNROLL > 2
  6610. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  6611. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  6612. const int64_t i11 = i01;
  6613. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6614. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6615. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6616. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  6617. }
  6618. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  6619. const int64_t i11 = i01;
  6620. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6621. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6622. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6623. ggml_vec_mad_f32(ne0, d, s0, *s1);
  6624. }
  6625. #else
  6626. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  6627. const int64_t i11 = i01;
  6628. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6629. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6630. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6631. ggml_vec_mad_f32(ne0, d, s0, *s1);
  6632. }
  6633. #endif
  6634. }
  6635. }
  6636. }
  6637. }
  6638. static void ggml_compute_forward_out_prod_q_f32(
  6639. const struct ggml_compute_params * params,
  6640. struct ggml_tensor * dst) {
  6641. const struct ggml_tensor * src0 = dst->src[0];
  6642. const struct ggml_tensor * src1 = dst->src[1];
  6643. GGML_TENSOR_BINARY_OP_LOCALS;
  6644. const int ith = params->ith;
  6645. const int nth = params->nth;
  6646. const enum ggml_type type = src0->type;
  6647. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  6648. GGML_ASSERT(ne02 == ne12);
  6649. GGML_ASSERT(ne03 == ne13);
  6650. GGML_ASSERT(ne2 == ne12);
  6651. GGML_ASSERT(ne3 == ne13);
  6652. // we don't support permuted src0 dim0
  6653. GGML_ASSERT(nb00 == ggml_type_size(type));
  6654. // dst dim0 cannot be transposed or permuted
  6655. GGML_ASSERT(nb0 == sizeof(float));
  6656. // GGML_ASSERT(nb0 <= nb1);
  6657. // GGML_ASSERT(nb1 <= nb2);
  6658. // GGML_ASSERT(nb2 <= nb3);
  6659. GGML_ASSERT(ne0 == ne00);
  6660. GGML_ASSERT(ne1 == ne10);
  6661. GGML_ASSERT(ne2 == ne02);
  6662. GGML_ASSERT(ne3 == ne03);
  6663. // nb01 >= nb00 - src0 is not transposed
  6664. // compute by src0 rows
  6665. if (ith == 0) {
  6666. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6667. }
  6668. ggml_barrier(params->threadpool);
  6669. // parallelize by last three dimensions
  6670. // total rows in dst
  6671. const int64_t nr = ne1*ne2*ne3;
  6672. // rows per thread
  6673. const int64_t dr = (nr + nth - 1)/nth;
  6674. // row range for this thread
  6675. const int64_t ir0 = dr*ith;
  6676. const int64_t ir1 = MIN(ir0 + dr, nr);
  6677. // dst[:,:,:,:] = 0
  6678. // for i2,i3:
  6679. // for i1:
  6680. // for i01:
  6681. // for i0:
  6682. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  6683. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6684. for (int64_t ir = ir0; ir < ir1; ++ir) {
  6685. // dst indices
  6686. const int64_t i3 = ir/(ne2*ne1);
  6687. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  6688. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6689. const int64_t i02 = i2;
  6690. const int64_t i03 = i3;
  6691. //const int64_t i10 = i1;
  6692. const int64_t i12 = i2;
  6693. const int64_t i13 = i3;
  6694. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6695. const int64_t i11 = i01;
  6696. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6697. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6698. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6699. dequantize_row_q(s0, wdata, ne0);
  6700. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  6701. }
  6702. }
  6703. }
  6704. static void ggml_compute_forward_out_prod(
  6705. const struct ggml_compute_params * params,
  6706. struct ggml_tensor * dst) {
  6707. const struct ggml_tensor * src0 = dst->src[0];
  6708. switch (src0->type) {
  6709. case GGML_TYPE_Q4_0:
  6710. case GGML_TYPE_Q4_1:
  6711. case GGML_TYPE_Q5_0:
  6712. case GGML_TYPE_Q5_1:
  6713. case GGML_TYPE_Q8_0:
  6714. case GGML_TYPE_Q2_K:
  6715. case GGML_TYPE_Q3_K:
  6716. case GGML_TYPE_Q4_K:
  6717. case GGML_TYPE_Q5_K:
  6718. case GGML_TYPE_Q6_K:
  6719. case GGML_TYPE_TQ1_0:
  6720. case GGML_TYPE_TQ2_0:
  6721. case GGML_TYPE_IQ2_XXS:
  6722. case GGML_TYPE_IQ2_XS:
  6723. case GGML_TYPE_IQ3_XXS:
  6724. case GGML_TYPE_IQ1_S:
  6725. case GGML_TYPE_IQ1_M:
  6726. case GGML_TYPE_IQ4_NL:
  6727. case GGML_TYPE_IQ4_XS:
  6728. case GGML_TYPE_IQ3_S:
  6729. case GGML_TYPE_IQ2_S:
  6730. case GGML_TYPE_Q4_0_4_4:
  6731. case GGML_TYPE_Q4_0_4_8:
  6732. case GGML_TYPE_Q4_0_8_8:
  6733. {
  6734. ggml_compute_forward_out_prod_q_f32(params, dst);
  6735. } break;
  6736. case GGML_TYPE_F16:
  6737. {
  6738. GGML_ABORT("fatal error"); // todo
  6739. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  6740. }
  6741. case GGML_TYPE_F32:
  6742. {
  6743. ggml_compute_forward_out_prod_f32(params, dst);
  6744. } break;
  6745. default:
  6746. {
  6747. GGML_ABORT("fatal error");
  6748. }
  6749. }
  6750. }
  6751. // ggml_compute_forward_scale
  6752. static void ggml_compute_forward_scale_f32(
  6753. const struct ggml_compute_params * params,
  6754. struct ggml_tensor * dst) {
  6755. const struct ggml_tensor * src0 = dst->src[0];
  6756. GGML_ASSERT(ggml_is_contiguous(src0));
  6757. GGML_ASSERT(ggml_is_contiguous(dst));
  6758. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6759. // scale factor
  6760. float v;
  6761. memcpy(&v, dst->op_params, sizeof(float));
  6762. const int ith = params->ith;
  6763. const int nth = params->nth;
  6764. const int nc = src0->ne[0];
  6765. const int nr = ggml_nrows(src0);
  6766. // rows per thread
  6767. const int dr = (nr + nth - 1)/nth;
  6768. // row range for this thread
  6769. const int ir0 = dr*ith;
  6770. const int ir1 = MIN(ir0 + dr, nr);
  6771. const size_t nb01 = src0->nb[1];
  6772. const size_t nb1 = dst->nb[1];
  6773. for (int i1 = ir0; i1 < ir1; i1++) {
  6774. if (dst->data != src0->data) {
  6775. // src0 is same shape as dst => same indices
  6776. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  6777. }
  6778. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  6779. }
  6780. }
  6781. static void ggml_compute_forward_scale(
  6782. const struct ggml_compute_params * params,
  6783. struct ggml_tensor * dst) {
  6784. const struct ggml_tensor * src0 = dst->src[0];
  6785. switch (src0->type) {
  6786. case GGML_TYPE_F32:
  6787. {
  6788. ggml_compute_forward_scale_f32(params, dst);
  6789. } break;
  6790. default:
  6791. {
  6792. GGML_ABORT("fatal error");
  6793. }
  6794. }
  6795. }
  6796. // ggml_compute_forward_set
  6797. static void ggml_compute_forward_set_f32(
  6798. const struct ggml_compute_params * params,
  6799. struct ggml_tensor * dst) {
  6800. const struct ggml_tensor * src0 = dst->src[0];
  6801. const struct ggml_tensor * src1 = dst->src[1];
  6802. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6803. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6804. // view src0 and dst with these strides and data offset inbytes during set
  6805. // nb0 is implicitly element_size because src0 and dst are contiguous
  6806. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6807. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6808. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6809. size_t offset = ((int32_t *) dst->op_params)[3];
  6810. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6811. if (!inplace) {
  6812. if (params->ith == 0) {
  6813. // memcpy needs to be synchronized across threads to avoid race conditions.
  6814. // => do it in INIT phase
  6815. memcpy(
  6816. ((char *) dst->data),
  6817. ((char *) src0->data),
  6818. ggml_nbytes(dst));
  6819. }
  6820. ggml_barrier(params->threadpool);
  6821. }
  6822. const int ith = params->ith;
  6823. const int nth = params->nth;
  6824. const int nr = ggml_nrows(src1);
  6825. const int nc = src1->ne[0];
  6826. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6827. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6828. // src0 and dst as viewed during set
  6829. const size_t nb0 = ggml_element_size(src0);
  6830. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  6831. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  6832. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  6833. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  6834. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  6835. GGML_ASSERT(nb10 == sizeof(float));
  6836. // rows per thread
  6837. const int dr = (nr + nth - 1)/nth;
  6838. // row range for this thread
  6839. const int ir0 = dr*ith;
  6840. const int ir1 = MIN(ir0 + dr, nr);
  6841. for (int ir = ir0; ir < ir1; ++ir) {
  6842. // src0 and dst are viewed with shape of src1 and offset
  6843. // => same indices
  6844. const int i3 = ir/(ne12*ne11);
  6845. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6846. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6847. ggml_vec_cpy_f32(nc,
  6848. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6849. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6850. }
  6851. }
  6852. static void ggml_compute_forward_set(
  6853. const struct ggml_compute_params * params,
  6854. struct ggml_tensor * dst) {
  6855. const struct ggml_tensor * src0 = dst->src[0];
  6856. switch (src0->type) {
  6857. case GGML_TYPE_F32:
  6858. {
  6859. ggml_compute_forward_set_f32(params, dst);
  6860. } break;
  6861. case GGML_TYPE_F16:
  6862. case GGML_TYPE_BF16:
  6863. case GGML_TYPE_Q4_0:
  6864. case GGML_TYPE_Q4_1:
  6865. case GGML_TYPE_Q5_0:
  6866. case GGML_TYPE_Q5_1:
  6867. case GGML_TYPE_Q8_0:
  6868. case GGML_TYPE_Q8_1:
  6869. case GGML_TYPE_Q2_K:
  6870. case GGML_TYPE_Q3_K:
  6871. case GGML_TYPE_Q4_K:
  6872. case GGML_TYPE_Q5_K:
  6873. case GGML_TYPE_Q6_K:
  6874. case GGML_TYPE_TQ1_0:
  6875. case GGML_TYPE_TQ2_0:
  6876. case GGML_TYPE_IQ2_XXS:
  6877. case GGML_TYPE_IQ2_XS:
  6878. case GGML_TYPE_IQ3_XXS:
  6879. case GGML_TYPE_IQ1_S:
  6880. case GGML_TYPE_IQ1_M:
  6881. case GGML_TYPE_IQ4_NL:
  6882. case GGML_TYPE_IQ4_XS:
  6883. case GGML_TYPE_IQ3_S:
  6884. case GGML_TYPE_IQ2_S:
  6885. case GGML_TYPE_Q4_0_4_4:
  6886. case GGML_TYPE_Q4_0_4_8:
  6887. case GGML_TYPE_Q4_0_8_8:
  6888. default:
  6889. {
  6890. GGML_ABORT("fatal error");
  6891. }
  6892. }
  6893. }
  6894. // ggml_compute_forward_cpy
  6895. static void ggml_compute_forward_cpy(
  6896. const struct ggml_compute_params * params,
  6897. struct ggml_tensor * dst) {
  6898. ggml_compute_forward_dup(params, dst);
  6899. }
  6900. // ggml_compute_forward_cont
  6901. static void ggml_compute_forward_cont(
  6902. const struct ggml_compute_params * params,
  6903. struct ggml_tensor * dst) {
  6904. ggml_compute_forward_dup(params, dst);
  6905. }
  6906. // ggml_compute_forward_reshape
  6907. static void ggml_compute_forward_reshape(
  6908. const struct ggml_compute_params * params,
  6909. struct ggml_tensor * dst) {
  6910. // NOP
  6911. UNUSED(params);
  6912. UNUSED(dst);
  6913. }
  6914. // ggml_compute_forward_view
  6915. static void ggml_compute_forward_view(
  6916. const struct ggml_compute_params * params,
  6917. const struct ggml_tensor * dst) {
  6918. // NOP
  6919. UNUSED(params);
  6920. UNUSED(dst);
  6921. }
  6922. // ggml_compute_forward_permute
  6923. static void ggml_compute_forward_permute(
  6924. const struct ggml_compute_params * params,
  6925. const struct ggml_tensor * dst) {
  6926. // NOP
  6927. UNUSED(params);
  6928. UNUSED(dst);
  6929. }
  6930. // ggml_compute_forward_transpose
  6931. static void ggml_compute_forward_transpose(
  6932. const struct ggml_compute_params * params,
  6933. const struct ggml_tensor * dst) {
  6934. // NOP
  6935. UNUSED(params);
  6936. UNUSED(dst);
  6937. }
  6938. // ggml_compute_forward_get_rows
  6939. static void ggml_compute_forward_get_rows_q(
  6940. const struct ggml_compute_params * params,
  6941. struct ggml_tensor * dst) {
  6942. const struct ggml_tensor * src0 = dst->src[0];
  6943. const struct ggml_tensor * src1 = dst->src[1];
  6944. GGML_TENSOR_BINARY_OP_LOCALS
  6945. const int64_t nc = ne00;
  6946. const int64_t nr = ggml_nelements(src1);
  6947. const enum ggml_type type = src0->type;
  6948. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  6949. assert(ne0 == nc);
  6950. assert(ne02 == ne11);
  6951. assert(nb00 == ggml_type_size(type));
  6952. assert(ggml_nrows(dst) == nr);
  6953. const int ith = params->ith;
  6954. const int nth = params->nth;
  6955. // rows per thread
  6956. const int dr = (nr + nth - 1)/nth;
  6957. // row range for this thread
  6958. const int ir0 = dr*ith;
  6959. const int ir1 = MIN(ir0 + dr, nr);
  6960. for (int64_t i = ir0; i < ir1; ++i) {
  6961. const int64_t i12 = i/(ne11*ne10);
  6962. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  6963. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  6964. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  6965. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  6966. dequantize_row_q(
  6967. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  6968. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  6969. }
  6970. }
  6971. static void ggml_compute_forward_get_rows_f16(
  6972. const struct ggml_compute_params * params,
  6973. struct ggml_tensor * dst) {
  6974. const struct ggml_tensor * src0 = dst->src[0];
  6975. const struct ggml_tensor * src1 = dst->src[1];
  6976. GGML_TENSOR_BINARY_OP_LOCALS
  6977. const int64_t nc = ne00;
  6978. const int64_t nr = ggml_nelements(src1);
  6979. assert(ne0 == nc);
  6980. assert(ne02 == ne11);
  6981. assert(nb00 == sizeof(ggml_fp16_t));
  6982. assert(ggml_nrows(dst) == nr);
  6983. const int ith = params->ith;
  6984. const int nth = params->nth;
  6985. // rows per thread
  6986. const int dr = (nr + nth - 1)/nth;
  6987. // row range for this thread
  6988. const int ir0 = dr*ith;
  6989. const int ir1 = MIN(ir0 + dr, nr);
  6990. for (int64_t i = ir0; i < ir1; ++i) {
  6991. const int64_t i12 = i/(ne11*ne10);
  6992. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  6993. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  6994. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  6995. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  6996. ggml_fp16_to_fp32_row(
  6997. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  6998. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  6999. }
  7000. }
  7001. static void ggml_compute_forward_get_rows_bf16(
  7002. const struct ggml_compute_params * params,
  7003. struct ggml_tensor * dst) {
  7004. const struct ggml_tensor * src0 = dst->src[0];
  7005. const struct ggml_tensor * src1 = dst->src[1];
  7006. GGML_TENSOR_BINARY_OP_LOCALS
  7007. const int64_t nc = ne00;
  7008. const int64_t nr = ggml_nelements(src1);
  7009. assert(ne0 == nc);
  7010. assert(ne02 == ne11);
  7011. assert(nb00 == sizeof(ggml_bf16_t));
  7012. assert(ggml_nrows(dst) == nr);
  7013. const int ith = params->ith;
  7014. const int nth = params->nth;
  7015. // rows per thread
  7016. const int dr = (nr + nth - 1)/nth;
  7017. // row range for this thread
  7018. const int ir0 = dr*ith;
  7019. const int ir1 = MIN(ir0 + dr, nr);
  7020. for (int64_t i = ir0; i < ir1; ++i) {
  7021. const int64_t i12 = i/(ne11*ne10);
  7022. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  7023. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  7024. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  7025. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  7026. ggml_bf16_to_fp32_row(
  7027. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  7028. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  7029. }
  7030. }
  7031. static void ggml_compute_forward_get_rows_f32(
  7032. const struct ggml_compute_params * params,
  7033. struct ggml_tensor * dst) {
  7034. const struct ggml_tensor * src0 = dst->src[0];
  7035. const struct ggml_tensor * src1 = dst->src[1];
  7036. GGML_TENSOR_BINARY_OP_LOCALS
  7037. const int64_t nc = ne00;
  7038. const int64_t nr = ggml_nelements(src1);
  7039. assert(ne0 == nc);
  7040. assert(ne02 == ne11);
  7041. assert(nb00 == sizeof(float));
  7042. assert(ggml_nrows(dst) == nr);
  7043. const int ith = params->ith;
  7044. const int nth = params->nth;
  7045. // rows per thread
  7046. const int dr = (nr + nth - 1)/nth;
  7047. // row range for this thread
  7048. const int ir0 = dr*ith;
  7049. const int ir1 = MIN(ir0 + dr, nr);
  7050. for (int64_t i = ir0; i < ir1; ++i) {
  7051. const int64_t i12 = i/(ne11*ne10);
  7052. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  7053. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  7054. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  7055. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  7056. ggml_vec_cpy_f32(nc,
  7057. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  7058. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  7059. }
  7060. }
  7061. static void ggml_compute_forward_get_rows(
  7062. const struct ggml_compute_params * params,
  7063. struct ggml_tensor * dst) {
  7064. const struct ggml_tensor * src0 = dst->src[0];
  7065. switch (src0->type) {
  7066. case GGML_TYPE_Q4_0:
  7067. case GGML_TYPE_Q4_1:
  7068. case GGML_TYPE_Q5_0:
  7069. case GGML_TYPE_Q5_1:
  7070. case GGML_TYPE_Q8_0:
  7071. case GGML_TYPE_Q8_1:
  7072. case GGML_TYPE_Q2_K:
  7073. case GGML_TYPE_Q3_K:
  7074. case GGML_TYPE_Q4_K:
  7075. case GGML_TYPE_Q5_K:
  7076. case GGML_TYPE_Q6_K:
  7077. case GGML_TYPE_TQ1_0:
  7078. case GGML_TYPE_TQ2_0:
  7079. case GGML_TYPE_IQ2_XXS:
  7080. case GGML_TYPE_IQ2_XS:
  7081. case GGML_TYPE_IQ3_XXS:
  7082. case GGML_TYPE_IQ1_S:
  7083. case GGML_TYPE_IQ1_M:
  7084. case GGML_TYPE_IQ4_NL:
  7085. case GGML_TYPE_IQ4_XS:
  7086. case GGML_TYPE_IQ3_S:
  7087. case GGML_TYPE_IQ2_S:
  7088. case GGML_TYPE_Q4_0_4_4:
  7089. case GGML_TYPE_Q4_0_4_8:
  7090. case GGML_TYPE_Q4_0_8_8:
  7091. {
  7092. ggml_compute_forward_get_rows_q(params, dst);
  7093. } break;
  7094. case GGML_TYPE_F16:
  7095. {
  7096. ggml_compute_forward_get_rows_f16(params, dst);
  7097. } break;
  7098. case GGML_TYPE_BF16:
  7099. {
  7100. ggml_compute_forward_get_rows_bf16(params, dst);
  7101. } break;
  7102. case GGML_TYPE_F32:
  7103. case GGML_TYPE_I32:
  7104. {
  7105. ggml_compute_forward_get_rows_f32(params, dst);
  7106. } break;
  7107. default:
  7108. {
  7109. GGML_ABORT("fatal error");
  7110. }
  7111. }
  7112. //static bool first = true;
  7113. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7114. //if (first) {
  7115. // first = false;
  7116. //} else {
  7117. // for (int k = 0; k < dst->ne[1]; ++k) {
  7118. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7119. // for (int i = 0; i < 16; ++i) {
  7120. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7121. // }
  7122. // printf("\n");
  7123. // }
  7124. // printf("\n");
  7125. // }
  7126. // printf("\n");
  7127. // exit(0);
  7128. //}
  7129. }
  7130. // ggml_compute_forward_get_rows_back
  7131. static void ggml_compute_forward_get_rows_back_f32_f16(
  7132. const struct ggml_compute_params * params,
  7133. struct ggml_tensor * dst) {
  7134. const struct ggml_tensor * src0 = dst->src[0];
  7135. const struct ggml_tensor * src1 = dst->src[1];
  7136. if (params->ith != 0) {
  7137. return;
  7138. }
  7139. GGML_ASSERT(ggml_is_contiguous(dst));
  7140. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  7141. memset(dst->data, 0, ggml_nbytes(dst));
  7142. const int nc = src0->ne[0];
  7143. const int nr = ggml_nelements(src1);
  7144. GGML_ASSERT( dst->ne[0] == nc);
  7145. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  7146. for (int i = 0; i < nr; ++i) {
  7147. const int r = ((int32_t *) src1->data)[i];
  7148. for (int j = 0; j < nc; ++j) {
  7149. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  7150. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  7151. }
  7152. }
  7153. }
  7154. static void ggml_compute_forward_get_rows_back_f32(
  7155. const struct ggml_compute_params * params,
  7156. struct ggml_tensor * dst) {
  7157. const struct ggml_tensor * src0 = dst->src[0];
  7158. const struct ggml_tensor * src1 = dst->src[1];
  7159. if (params->ith != 0) {
  7160. return;
  7161. }
  7162. GGML_ASSERT(ggml_is_contiguous(dst));
  7163. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  7164. memset(dst->data, 0, ggml_nbytes(dst));
  7165. const int nc = src0->ne[0];
  7166. const int nr = ggml_nelements(src1);
  7167. GGML_ASSERT( dst->ne[0] == nc);
  7168. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7169. for (int i = 0; i < nr; ++i) {
  7170. const int r = ((int32_t *) src1->data)[i];
  7171. ggml_vec_add_f32(nc,
  7172. (float *) ((char *) dst->data + r*dst->nb[1]),
  7173. (float *) ((char *) dst->data + r*dst->nb[1]),
  7174. (float *) ((char *) src0->data + i*src0->nb[1]));
  7175. }
  7176. }
  7177. static void ggml_compute_forward_get_rows_back(
  7178. const struct ggml_compute_params * params,
  7179. struct ggml_tensor * dst) {
  7180. const struct ggml_tensor * src0 = dst->src[0];
  7181. switch (src0->type) {
  7182. case GGML_TYPE_F16:
  7183. {
  7184. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  7185. } break;
  7186. case GGML_TYPE_F32:
  7187. {
  7188. ggml_compute_forward_get_rows_back_f32(params, dst);
  7189. } break;
  7190. default:
  7191. {
  7192. GGML_ABORT("fatal error");
  7193. }
  7194. }
  7195. //static bool first = true;
  7196. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7197. //if (first) {
  7198. // first = false;
  7199. //} else {
  7200. // for (int k = 0; k < dst->ne[1]; ++k) {
  7201. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7202. // for (int i = 0; i < 16; ++i) {
  7203. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7204. // }
  7205. // printf("\n");
  7206. // }
  7207. // printf("\n");
  7208. // }
  7209. // printf("\n");
  7210. // exit(0);
  7211. //}
  7212. }
  7213. // ggml_compute_forward_diag
  7214. static void ggml_compute_forward_diag_f32(
  7215. const struct ggml_compute_params * params,
  7216. struct ggml_tensor * dst) {
  7217. const struct ggml_tensor * src0 = dst->src[0];
  7218. if (params->ith != 0) {
  7219. return;
  7220. }
  7221. // TODO: handle transposed/permuted matrices
  7222. GGML_TENSOR_UNARY_OP_LOCALS
  7223. GGML_ASSERT(ne00 == ne0);
  7224. GGML_ASSERT(ne00 == ne1);
  7225. GGML_ASSERT(ne01 == 1);
  7226. GGML_ASSERT(ne02 == ne2);
  7227. GGML_ASSERT(ne03 == ne3);
  7228. GGML_ASSERT(nb00 == sizeof(float));
  7229. GGML_ASSERT(nb0 == sizeof(float));
  7230. for (int i3 = 0; i3 < ne3; i3++) {
  7231. for (int i2 = 0; i2 < ne2; i2++) {
  7232. for (int i1 = 0; i1 < ne1; i1++) {
  7233. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7234. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  7235. for (int i0 = 0; i0 < i1; i0++) {
  7236. d[i0] = 0;
  7237. }
  7238. d[i1] = s[i1];
  7239. for (int i0 = i1+1; i0 < ne0; i0++) {
  7240. d[i0] = 0;
  7241. }
  7242. }
  7243. }
  7244. }
  7245. }
  7246. static void ggml_compute_forward_diag(
  7247. const struct ggml_compute_params * params,
  7248. struct ggml_tensor * dst) {
  7249. const struct ggml_tensor * src0 = dst->src[0];
  7250. switch (src0->type) {
  7251. case GGML_TYPE_F32:
  7252. {
  7253. ggml_compute_forward_diag_f32(params, dst);
  7254. } break;
  7255. default:
  7256. {
  7257. GGML_ABORT("fatal error");
  7258. }
  7259. }
  7260. }
  7261. // ggml_compute_forward_diag_mask_inf
  7262. static void ggml_compute_forward_diag_mask_f32(
  7263. const struct ggml_compute_params * params,
  7264. struct ggml_tensor * dst,
  7265. const float value) {
  7266. const struct ggml_tensor * src0 = dst->src[0];
  7267. const int ith = params->ith;
  7268. const int nth = params->nth;
  7269. const int n_past = ((int32_t *) dst->op_params)[0];
  7270. const bool inplace = src0->data == dst->data;
  7271. GGML_ASSERT(n_past >= 0);
  7272. if (!inplace) {
  7273. if (ith == 0) {
  7274. // memcpy needs to be synchronized across threads to avoid race conditions.
  7275. // => do it in INIT phase
  7276. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7277. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7278. memcpy(
  7279. ((char *) dst->data),
  7280. ((char *) src0->data),
  7281. ggml_nbytes(dst));
  7282. }
  7283. ggml_barrier(params->threadpool);
  7284. }
  7285. // TODO: handle transposed/permuted matrices
  7286. const int n = ggml_nrows(src0);
  7287. const int nc = src0->ne[0];
  7288. const int nr = src0->ne[1];
  7289. const int nz = n/nr;
  7290. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7291. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7292. for (int k = 0; k < nz; k++) {
  7293. for (int j = ith; j < nr; j += nth) {
  7294. for (int i = n_past; i < nc; i++) {
  7295. if (i > n_past + j) {
  7296. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  7297. }
  7298. }
  7299. }
  7300. }
  7301. }
  7302. static void ggml_compute_forward_diag_mask_inf(
  7303. const struct ggml_compute_params * params,
  7304. struct ggml_tensor * dst) {
  7305. const struct ggml_tensor * src0 = dst->src[0];
  7306. switch (src0->type) {
  7307. case GGML_TYPE_F32:
  7308. {
  7309. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  7310. } break;
  7311. default:
  7312. {
  7313. GGML_ABORT("fatal error");
  7314. }
  7315. }
  7316. }
  7317. static void ggml_compute_forward_diag_mask_zero(
  7318. const struct ggml_compute_params * params,
  7319. struct ggml_tensor * dst) {
  7320. const struct ggml_tensor * src0 = dst->src[0];
  7321. switch (src0->type) {
  7322. case GGML_TYPE_F32:
  7323. {
  7324. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  7325. } break;
  7326. default:
  7327. {
  7328. GGML_ABORT("fatal error");
  7329. }
  7330. }
  7331. }
  7332. // ggml_compute_forward_soft_max
  7333. static void ggml_compute_forward_soft_max_f32(
  7334. const struct ggml_compute_params * params,
  7335. struct ggml_tensor * dst) {
  7336. const struct ggml_tensor * src0 = dst->src[0];
  7337. const struct ggml_tensor * src1 = dst->src[1];
  7338. assert(ggml_is_contiguous(dst));
  7339. assert(ggml_are_same_shape(src0, dst));
  7340. float scale = 1.0f;
  7341. float max_bias = 0.0f;
  7342. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  7343. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  7344. // TODO: handle transposed/permuted matrices
  7345. const int ith = params->ith;
  7346. const int nth = params->nth;
  7347. GGML_TENSOR_UNARY_OP_LOCALS
  7348. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  7349. // TODO: is this supposed to be ceil instead of floor?
  7350. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  7351. const uint32_t n_head = ne02;
  7352. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  7353. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  7354. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  7355. const int nc = src0->ne[0];
  7356. const int nr = ggml_nrows(src0);
  7357. // rows per thread
  7358. const int dr = (nr + nth - 1)/nth;
  7359. // row range for this thread
  7360. const int ir0 = dr*ith;
  7361. const int ir1 = MIN(ir0 + dr, nr);
  7362. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  7363. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  7364. for (int i1 = ir0; i1 < ir1; i1++) {
  7365. // ALiBi
  7366. const uint32_t h = (i1/ne01)%ne02; // head
  7367. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  7368. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  7369. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  7370. // broadcast the mask across rows
  7371. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  7372. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  7373. ggml_vec_cpy_f32 (nc, wp, sp);
  7374. ggml_vec_scale_f32(nc, wp, scale);
  7375. if (mp_f32) {
  7376. if (use_f16) {
  7377. for (int i = 0; i < nc; ++i) {
  7378. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  7379. }
  7380. } else {
  7381. for (int i = 0; i < nc; ++i) {
  7382. wp[i] += slope*mp_f32[i];
  7383. }
  7384. }
  7385. }
  7386. #ifndef NDEBUG
  7387. for (int i = 0; i < nc; ++i) {
  7388. //printf("p[%d] = %f\n", i, p[i]);
  7389. assert(!isnan(wp[i]));
  7390. }
  7391. #endif
  7392. float max = -INFINITY;
  7393. ggml_vec_max_f32(nc, &max, wp);
  7394. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  7395. assert(sum > 0.0);
  7396. sum = 1.0/sum;
  7397. ggml_vec_scale_f32(nc, dp, sum);
  7398. #ifndef NDEBUG
  7399. for (int i = 0; i < nc; ++i) {
  7400. assert(!isnan(dp[i]));
  7401. assert(!isinf(dp[i]));
  7402. }
  7403. #endif
  7404. }
  7405. }
  7406. static void ggml_compute_forward_soft_max(
  7407. const struct ggml_compute_params * params,
  7408. struct ggml_tensor * dst) {
  7409. const struct ggml_tensor * src0 = dst->src[0];
  7410. switch (src0->type) {
  7411. case GGML_TYPE_F32:
  7412. {
  7413. ggml_compute_forward_soft_max_f32(params, dst);
  7414. } break;
  7415. default:
  7416. {
  7417. GGML_ABORT("fatal error");
  7418. }
  7419. }
  7420. }
  7421. // ggml_compute_forward_soft_max_back
  7422. static void ggml_compute_forward_soft_max_back_f32(
  7423. const struct ggml_compute_params * params,
  7424. struct ggml_tensor * dst) {
  7425. const struct ggml_tensor * src0 = dst->src[0];
  7426. const struct ggml_tensor * src1 = dst->src[1];
  7427. GGML_ASSERT(ggml_is_contiguous(src0));
  7428. GGML_ASSERT(ggml_is_contiguous(src1));
  7429. GGML_ASSERT(ggml_is_contiguous(dst));
  7430. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7431. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  7432. // TODO: handle transposed/permuted matrices
  7433. const int ith = params->ith;
  7434. const int nth = params->nth;
  7435. const int nc = src0->ne[0];
  7436. const int nr = ggml_nrows(src0);
  7437. // rows per thread
  7438. const int dr = (nr + nth - 1)/nth;
  7439. // row range for this thread
  7440. const int ir0 = dr*ith;
  7441. const int ir1 = MIN(ir0 + dr, nr);
  7442. for (int i1 = ir0; i1 < ir1; i1++) {
  7443. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  7444. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  7445. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  7446. #ifndef NDEBUG
  7447. for (int i = 0; i < nc; ++i) {
  7448. //printf("p[%d] = %f\n", i, p[i]);
  7449. assert(!isnan(dy[i]));
  7450. assert(!isnan(y[i]));
  7451. }
  7452. #endif
  7453. // Jii = yi - yi*yi
  7454. // Jij = -yi*yj
  7455. // J = diag(y)-y.T*y
  7456. // dx = J * dy
  7457. // dxk = sum_i(Jki * dyi)
  7458. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  7459. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  7460. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  7461. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  7462. // dxk = -yk * dot(y, dy) + yk*dyk
  7463. // dxk = yk * (- dot(y, dy) + dyk)
  7464. // dxk = yk * (dyk - dot(y, dy))
  7465. //
  7466. // post-order:
  7467. // dot_y_dy := dot(y, dy)
  7468. // dx := dy
  7469. // dx := dx - dot_y_dy
  7470. // dx := dx * y
  7471. // linear runtime, no additional memory
  7472. float dot_y_dy = 0;
  7473. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  7474. ggml_vec_cpy_f32 (nc, dx, dy);
  7475. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  7476. ggml_vec_mul_f32 (nc, dx, dx, y);
  7477. #ifndef NDEBUG
  7478. for (int i = 0; i < nc; ++i) {
  7479. assert(!isnan(dx[i]));
  7480. assert(!isinf(dx[i]));
  7481. }
  7482. #endif
  7483. }
  7484. }
  7485. static void ggml_compute_forward_soft_max_back(
  7486. const struct ggml_compute_params * params,
  7487. struct ggml_tensor * dst) {
  7488. const struct ggml_tensor * src0 = dst->src[0];
  7489. switch (src0->type) {
  7490. case GGML_TYPE_F32:
  7491. {
  7492. ggml_compute_forward_soft_max_back_f32(params, dst);
  7493. } break;
  7494. default:
  7495. {
  7496. GGML_ABORT("fatal error");
  7497. }
  7498. }
  7499. }
  7500. // ggml_compute_forward_clamp
  7501. static void ggml_compute_forward_clamp_f32(
  7502. const struct ggml_compute_params * params,
  7503. struct ggml_tensor * dst) {
  7504. const struct ggml_tensor * src0 = dst->src[0];
  7505. if (params->ith != 0) {
  7506. return;
  7507. }
  7508. float min;
  7509. float max;
  7510. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  7511. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  7512. const int ith = params->ith;
  7513. const int nth = params->nth;
  7514. const int n = ggml_nrows(src0);
  7515. const int nc = src0->ne[0];
  7516. const size_t nb00 = src0->nb[0];
  7517. const size_t nb01 = src0->nb[1];
  7518. const size_t nb0 = dst->nb[0];
  7519. const size_t nb1 = dst->nb[1];
  7520. GGML_ASSERT( nb0 == sizeof(float));
  7521. GGML_ASSERT(nb00 == sizeof(float));
  7522. for (int j = ith; j < n; j += nth) {
  7523. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  7524. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  7525. for (int i = 0; i < nc; i++) {
  7526. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  7527. }
  7528. }
  7529. }
  7530. static void ggml_compute_forward_clamp(
  7531. const struct ggml_compute_params * params,
  7532. struct ggml_tensor * dst) {
  7533. const struct ggml_tensor * src0 = dst->src[0];
  7534. switch (src0->type) {
  7535. case GGML_TYPE_F32:
  7536. {
  7537. ggml_compute_forward_clamp_f32(params, dst);
  7538. } break;
  7539. case GGML_TYPE_F16:
  7540. case GGML_TYPE_BF16:
  7541. case GGML_TYPE_Q4_0:
  7542. case GGML_TYPE_Q4_1:
  7543. case GGML_TYPE_Q5_0:
  7544. case GGML_TYPE_Q5_1:
  7545. case GGML_TYPE_Q8_0:
  7546. case GGML_TYPE_Q8_1:
  7547. case GGML_TYPE_Q2_K:
  7548. case GGML_TYPE_Q3_K:
  7549. case GGML_TYPE_Q4_K:
  7550. case GGML_TYPE_Q5_K:
  7551. case GGML_TYPE_Q6_K:
  7552. case GGML_TYPE_TQ1_0:
  7553. case GGML_TYPE_TQ2_0:
  7554. case GGML_TYPE_IQ2_XXS:
  7555. case GGML_TYPE_IQ2_XS:
  7556. case GGML_TYPE_IQ3_XXS:
  7557. case GGML_TYPE_IQ1_S:
  7558. case GGML_TYPE_IQ1_M:
  7559. case GGML_TYPE_IQ4_NL:
  7560. case GGML_TYPE_IQ4_XS:
  7561. case GGML_TYPE_IQ3_S:
  7562. case GGML_TYPE_IQ2_S:
  7563. case GGML_TYPE_Q8_K:
  7564. case GGML_TYPE_Q4_0_4_4:
  7565. case GGML_TYPE_Q4_0_4_8:
  7566. case GGML_TYPE_Q4_0_8_8:
  7567. case GGML_TYPE_I8:
  7568. case GGML_TYPE_I16:
  7569. case GGML_TYPE_I32:
  7570. case GGML_TYPE_I64:
  7571. case GGML_TYPE_F64:
  7572. case GGML_TYPE_COUNT:
  7573. {
  7574. GGML_ABORT("fatal error");
  7575. }
  7576. }
  7577. }
  7578. // ggml_compute_forward_rope
  7579. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  7580. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  7581. return 1 - MIN(1, MAX(0, y));
  7582. }
  7583. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  7584. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  7585. static void rope_yarn(
  7586. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  7587. float * cos_theta, float * sin_theta) {
  7588. // Get n-d rotational scaling corrected for extrapolation
  7589. float theta_interp = freq_scale * theta_extrap;
  7590. float theta = theta_interp;
  7591. if (ext_factor != 0.0f) {
  7592. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  7593. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  7594. // Get n-d magnitude scaling corrected for interpolation
  7595. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  7596. }
  7597. *cos_theta = cosf(theta) * mscale;
  7598. *sin_theta = sinf(theta) * mscale;
  7599. }
  7600. static void ggml_rope_cache_init(
  7601. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  7602. float * cache, float sin_sign, float theta_scale) {
  7603. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  7604. float theta = theta_base;
  7605. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  7606. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  7607. rope_yarn(
  7608. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  7609. );
  7610. cache[i0 + 1] *= sin_sign;
  7611. theta *= theta_scale;
  7612. }
  7613. }
  7614. static void ggml_compute_forward_rope_f32(
  7615. const struct ggml_compute_params * params,
  7616. struct ggml_tensor * dst,
  7617. const bool forward) {
  7618. const struct ggml_tensor * src0 = dst->src[0];
  7619. const struct ggml_tensor * src1 = dst->src[1];
  7620. const struct ggml_tensor * src2 = dst->src[2];
  7621. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  7622. //const int n_past = ((int32_t *) dst->op_params)[0];
  7623. const int n_dims = ((int32_t *) dst->op_params)[1];
  7624. const int mode = ((int32_t *) dst->op_params)[2];
  7625. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  7626. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  7627. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  7628. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  7629. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  7630. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  7631. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  7632. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  7633. GGML_TENSOR_UNARY_OP_LOCALS
  7634. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7635. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7636. GGML_ASSERT(nb00 == sizeof(float));
  7637. const int ith = params->ith;
  7638. const int nth = params->nth;
  7639. const int nr = ggml_nrows(dst);
  7640. GGML_ASSERT(n_dims <= ne0);
  7641. GGML_ASSERT(n_dims % 2 == 0);
  7642. // rows per thread
  7643. const int dr = (nr + nth - 1)/nth;
  7644. // row range for this thread
  7645. const int ir0 = dr*ith;
  7646. const int ir1 = MIN(ir0 + dr, nr);
  7647. // row index used to determine which thread to use
  7648. int ir = 0;
  7649. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  7650. float corr_dims[2];
  7651. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  7652. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  7653. const float * freq_factors = NULL;
  7654. if (src2 != NULL) {
  7655. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  7656. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  7657. freq_factors = (const float *) src2->data;
  7658. }
  7659. // backward process uses inverse rotation by cos and sin.
  7660. // cos and sin build a rotation matrix, where the inverse is the transpose.
  7661. // this essentially just switches the sign of sin.
  7662. const float sin_sign = forward ? 1.0f : -1.0f;
  7663. const int32_t * pos = (const int32_t *) src1->data;
  7664. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7665. for (int64_t i2 = 0; i2 < ne2; i2++) {
  7666. const int64_t p = pos[i2];
  7667. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  7668. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  7669. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7670. if (ir++ < ir0) continue;
  7671. if (ir > ir1) break;
  7672. if (!is_neox) {
  7673. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7674. const float cos_theta = cache[i0 + 0];
  7675. const float sin_theta = cache[i0 + 1];
  7676. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7677. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7678. const float x0 = src[0];
  7679. const float x1 = src[1];
  7680. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7681. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7682. }
  7683. } else {
  7684. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7685. const int64_t ic = i0/2;
  7686. const float cos_theta = cache[i0 + 0];
  7687. const float sin_theta = cache[i0 + 1];
  7688. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  7689. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  7690. const float x0 = src[0];
  7691. const float x1 = src[n_dims/2];
  7692. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7693. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7694. }
  7695. }
  7696. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  7697. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7698. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7699. dst_data[0] = src[0];
  7700. dst_data[1] = src[1];
  7701. }
  7702. }
  7703. }
  7704. }
  7705. }
  7706. // TODO: deduplicate f16/f32 code
  7707. static void ggml_compute_forward_rope_f16(
  7708. const struct ggml_compute_params * params,
  7709. struct ggml_tensor * dst,
  7710. const bool forward) {
  7711. const struct ggml_tensor * src0 = dst->src[0];
  7712. const struct ggml_tensor * src1 = dst->src[1];
  7713. const struct ggml_tensor * src2 = dst->src[2];
  7714. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  7715. //const int n_past = ((int32_t *) dst->op_params)[0];
  7716. const int n_dims = ((int32_t *) dst->op_params)[1];
  7717. const int mode = ((int32_t *) dst->op_params)[2];
  7718. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  7719. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  7720. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  7721. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  7722. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  7723. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  7724. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  7725. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  7726. GGML_TENSOR_UNARY_OP_LOCALS
  7727. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7728. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7729. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7730. const int ith = params->ith;
  7731. const int nth = params->nth;
  7732. const int nr = ggml_nrows(dst);
  7733. GGML_ASSERT(n_dims <= ne0);
  7734. GGML_ASSERT(n_dims % 2 == 0);
  7735. // rows per thread
  7736. const int dr = (nr + nth - 1)/nth;
  7737. // row range for this thread
  7738. const int ir0 = dr*ith;
  7739. const int ir1 = MIN(ir0 + dr, nr);
  7740. // row index used to determine which thread to use
  7741. int ir = 0;
  7742. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  7743. float corr_dims[2];
  7744. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  7745. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  7746. const float * freq_factors = NULL;
  7747. if (src2 != NULL) {
  7748. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  7749. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  7750. freq_factors = (const float *) src2->data;
  7751. }
  7752. // backward process uses inverse rotation by cos and sin.
  7753. // cos and sin build a rotation matrix, where the inverse is the transpose.
  7754. // this essentially just switches the sign of sin.
  7755. const float sin_sign = forward ? 1.0f : -1.0f;
  7756. const int32_t * pos = (const int32_t *) src1->data;
  7757. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7758. for (int64_t i2 = 0; i2 < ne2; i2++) {
  7759. const int64_t p = pos[i2];
  7760. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  7761. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  7762. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7763. if (ir++ < ir0) continue;
  7764. if (ir > ir1) break;
  7765. if (!is_neox) {
  7766. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7767. const float cos_theta = cache[i0 + 0];
  7768. const float sin_theta = cache[i0 + 1];
  7769. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7770. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7771. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7772. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7773. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7774. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7775. }
  7776. } else {
  7777. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7778. const int64_t ic = i0/2;
  7779. const float cos_theta = cache[i0 + 0];
  7780. const float sin_theta = cache[i0 + 1];
  7781. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  7782. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  7783. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7784. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7785. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7786. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7787. }
  7788. }
  7789. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  7790. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7791. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7792. dst_data[0] = src[0];
  7793. dst_data[1] = src[1];
  7794. }
  7795. }
  7796. }
  7797. }
  7798. }
  7799. static void ggml_compute_forward_rope(
  7800. const struct ggml_compute_params * params,
  7801. struct ggml_tensor * dst) {
  7802. const struct ggml_tensor * src0 = dst->src[0];
  7803. switch (src0->type) {
  7804. case GGML_TYPE_F16:
  7805. {
  7806. ggml_compute_forward_rope_f16(params, dst, true);
  7807. } break;
  7808. case GGML_TYPE_F32:
  7809. {
  7810. ggml_compute_forward_rope_f32(params, dst, true);
  7811. } break;
  7812. default:
  7813. {
  7814. GGML_ABORT("fatal error");
  7815. }
  7816. }
  7817. }
  7818. // ggml_compute_forward_rope_back
  7819. static void ggml_compute_forward_rope_back(
  7820. const struct ggml_compute_params * params,
  7821. struct ggml_tensor * dst) {
  7822. const struct ggml_tensor * src0 = dst->src[0];
  7823. switch (src0->type) {
  7824. case GGML_TYPE_F16:
  7825. {
  7826. ggml_compute_forward_rope_f16(params, dst, false);
  7827. } break;
  7828. case GGML_TYPE_F32:
  7829. {
  7830. ggml_compute_forward_rope_f32(params, dst, false);
  7831. } break;
  7832. default:
  7833. {
  7834. GGML_ABORT("fatal error");
  7835. }
  7836. }
  7837. }
  7838. // ggml_compute_forward_conv_transpose_1d
  7839. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  7840. const struct ggml_compute_params * params,
  7841. struct ggml_tensor * dst) {
  7842. const struct ggml_tensor * src0 = dst->src[0];
  7843. const struct ggml_tensor * src1 = dst->src[1];
  7844. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7845. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7846. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7847. GGML_TENSOR_BINARY_OP_LOCALS
  7848. const int ith = params->ith;
  7849. const int nth = params->nth;
  7850. const int nk = ne00*ne01*ne02;
  7851. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7852. GGML_ASSERT(nb10 == sizeof(float));
  7853. if (ith == 0) {
  7854. memset(params->wdata, 0, params->wsize);
  7855. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  7856. {
  7857. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7858. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7859. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7860. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7861. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  7862. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7863. dst_data[i00*ne02 + i02] = src[i00];
  7864. }
  7865. }
  7866. }
  7867. }
  7868. // permute source data (src1) from (L x Cin) to (Cin x L)
  7869. {
  7870. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  7871. ggml_fp16_t * dst_data = wdata;
  7872. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7873. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7874. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7875. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7876. }
  7877. }
  7878. }
  7879. // need to zero dst since we are accumulating into it
  7880. memset(dst->data, 0, ggml_nbytes(dst));
  7881. }
  7882. ggml_barrier(params->threadpool);
  7883. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  7884. // total rows in dst
  7885. const int nr = ne1;
  7886. // rows per thread
  7887. const int dr = (nr + nth - 1)/nth;
  7888. // row range for this thread
  7889. const int ir0 = dr*ith;
  7890. const int ir1 = MIN(ir0 + dr, nr);
  7891. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7892. ggml_fp16_t * const wdata_src = wdata + nk;
  7893. for (int i1 = ir0; i1 < ir1; i1++) {
  7894. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7895. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  7896. for (int i10 = 0; i10 < ne10; i10++) {
  7897. const int i1n = i10*ne11;
  7898. for (int i00 = 0; i00 < ne00; i00++) {
  7899. float v = 0;
  7900. ggml_vec_dot_f16(ne02, &v, 0,
  7901. (ggml_fp16_t *) wdata_src + i1n, 0,
  7902. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  7903. dst_data[i10*s0 + i00] += v;
  7904. }
  7905. }
  7906. }
  7907. }
  7908. static void ggml_compute_forward_conv_transpose_1d_f32(
  7909. const struct ggml_compute_params * params,
  7910. struct ggml_tensor * dst) {
  7911. const struct ggml_tensor * src0 = dst->src[0];
  7912. const struct ggml_tensor * src1 = dst->src[1];
  7913. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7914. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7915. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7916. GGML_TENSOR_BINARY_OP_LOCALS
  7917. const int ith = params->ith;
  7918. const int nth = params->nth;
  7919. const int nk = ne00*ne01*ne02;
  7920. GGML_ASSERT(nb00 == sizeof(float));
  7921. GGML_ASSERT(nb10 == sizeof(float));
  7922. if (ith == 0) {
  7923. memset(params->wdata, 0, params->wsize);
  7924. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  7925. {
  7926. float * const wdata = (float *) params->wdata + 0;
  7927. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7928. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7929. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7930. float * dst_data = wdata + i01*ne00*ne02;
  7931. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7932. dst_data[i00*ne02 + i02] = src[i00];
  7933. }
  7934. }
  7935. }
  7936. }
  7937. // prepare source data (src1)
  7938. {
  7939. float * const wdata = (float *) params->wdata + nk;
  7940. float * dst_data = wdata;
  7941. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7942. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7943. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7944. dst_data[i10*ne11 + i11] = src[i10];
  7945. }
  7946. }
  7947. }
  7948. // need to zero dst since we are accumulating into it
  7949. memset(dst->data, 0, ggml_nbytes(dst));
  7950. }
  7951. ggml_barrier(params->threadpool);
  7952. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  7953. // total rows in dst
  7954. const int nr = ne1;
  7955. // rows per thread
  7956. const int dr = (nr + nth - 1)/nth;
  7957. // row range for this thread
  7958. const int ir0 = dr*ith;
  7959. const int ir1 = MIN(ir0 + dr, nr);
  7960. float * const wdata = (float *) params->wdata + 0;
  7961. float * const wdata_src = wdata + nk;
  7962. for (int i1 = ir0; i1 < ir1; i1++) {
  7963. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7964. float * wdata_kernel = wdata + i1*ne02*ne00;
  7965. for (int i10 = 0; i10 < ne10; i10++) {
  7966. const int i1n = i10*ne11;
  7967. for (int i00 = 0; i00 < ne00; i00++) {
  7968. float v = 0;
  7969. ggml_vec_dot_f32(ne02, &v, 0,
  7970. wdata_src + i1n, 0,
  7971. wdata_kernel + i00*ne02, 0, 1);
  7972. dst_data[i10*s0 + i00] += v;
  7973. }
  7974. }
  7975. }
  7976. }
  7977. static void ggml_compute_forward_conv_transpose_1d(
  7978. const struct ggml_compute_params * params,
  7979. struct ggml_tensor * dst) {
  7980. const struct ggml_tensor * src0 = dst->src[0];
  7981. switch (src0->type) {
  7982. case GGML_TYPE_F16:
  7983. {
  7984. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  7985. } break;
  7986. case GGML_TYPE_F32:
  7987. {
  7988. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  7989. } break;
  7990. default:
  7991. {
  7992. GGML_ABORT("fatal error");
  7993. }
  7994. }
  7995. }
  7996. // ggml_compute_forward_im2col_f32
  7997. // src0: kernel [OC, IC, KH, KW]
  7998. // src1: image [N, IC, IH, IW]
  7999. // dst: result [N, OH, OW, IC*KH*KW]
  8000. static void ggml_compute_forward_im2col_f32(
  8001. const struct ggml_compute_params * params,
  8002. struct ggml_tensor * dst) {
  8003. const struct ggml_tensor * src0 = dst->src[0];
  8004. const struct ggml_tensor * src1 = dst->src[1];
  8005. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8006. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8007. GGML_TENSOR_BINARY_OP_LOCALS;
  8008. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  8009. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  8010. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  8011. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  8012. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  8013. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  8014. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  8015. const int ith = params->ith;
  8016. const int nth = params->nth;
  8017. const int64_t N = is_2D ? ne13 : ne12;
  8018. const int64_t IC = is_2D ? ne12 : ne11;
  8019. const int64_t IH = is_2D ? ne11 : 1;
  8020. const int64_t IW = ne10;
  8021. const int64_t KH = is_2D ? ne01 : 1;
  8022. const int64_t KW = ne00;
  8023. const int64_t OH = is_2D ? ne2 : 1;
  8024. const int64_t OW = ne1;
  8025. int ofs0 = is_2D ? nb13 : nb12;
  8026. int ofs1 = is_2D ? nb12 : nb11;
  8027. GGML_ASSERT(nb10 == sizeof(float));
  8028. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  8029. {
  8030. float * const wdata = (float *) dst->data;
  8031. for (int64_t in = 0; in < N; in++) {
  8032. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  8033. for (int64_t iow = 0; iow < OW; iow++) {
  8034. for (int64_t iic = ith; iic < IC; iic += nth) {
  8035. // micro kernel
  8036. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  8037. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  8038. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  8039. for (int64_t ikw = 0; ikw < KW; ikw++) {
  8040. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  8041. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  8042. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  8043. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  8044. } else {
  8045. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  8046. }
  8047. }
  8048. }
  8049. }
  8050. }
  8051. }
  8052. }
  8053. }
  8054. }
  8055. // ggml_compute_forward_im2col_f16
  8056. // src0: kernel [OC, IC, KH, KW]
  8057. // src1: image [N, IC, IH, IW]
  8058. // dst: result [N, OH, OW, IC*KH*KW]
  8059. static void ggml_compute_forward_im2col_f16(
  8060. const struct ggml_compute_params * params,
  8061. struct ggml_tensor * dst) {
  8062. const struct ggml_tensor * src0 = dst->src[0];
  8063. const struct ggml_tensor * src1 = dst->src[1];
  8064. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8065. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8066. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  8067. GGML_TENSOR_BINARY_OP_LOCALS;
  8068. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  8069. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  8070. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  8071. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  8072. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  8073. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  8074. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  8075. const int ith = params->ith;
  8076. const int nth = params->nth;
  8077. const int64_t N = is_2D ? ne13 : ne12;
  8078. const int64_t IC = is_2D ? ne12 : ne11;
  8079. const int64_t IH = is_2D ? ne11 : 1;
  8080. const int64_t IW = ne10;
  8081. const int64_t KH = is_2D ? ne01 : 1;
  8082. const int64_t KW = ne00;
  8083. const int64_t OH = is_2D ? ne2 : 1;
  8084. const int64_t OW = ne1;
  8085. int ofs0 = is_2D ? nb13 : nb12;
  8086. int ofs1 = is_2D ? nb12 : nb11;
  8087. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8088. GGML_ASSERT(nb10 == sizeof(float));
  8089. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  8090. {
  8091. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  8092. for (int64_t in = 0; in < N; in++) {
  8093. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  8094. for (int64_t iow = 0; iow < OW; iow++) {
  8095. for (int64_t iic = ith; iic < IC; iic += nth) {
  8096. // micro kernel
  8097. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  8098. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  8099. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  8100. for (int64_t ikw = 0; ikw < KW; ikw++) {
  8101. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  8102. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  8103. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  8104. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  8105. } else {
  8106. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  8107. }
  8108. }
  8109. }
  8110. }
  8111. }
  8112. }
  8113. }
  8114. }
  8115. }
  8116. static void ggml_compute_forward_im2col(
  8117. const struct ggml_compute_params * params,
  8118. struct ggml_tensor * dst) {
  8119. switch (dst->type) {
  8120. case GGML_TYPE_F16:
  8121. {
  8122. ggml_compute_forward_im2col_f16(params, dst);
  8123. } break;
  8124. case GGML_TYPE_F32:
  8125. {
  8126. ggml_compute_forward_im2col_f32(params, dst);
  8127. } break;
  8128. default:
  8129. {
  8130. GGML_ABORT("fatal error");
  8131. }
  8132. }
  8133. }
  8134. // ggml_compute_forward_im2col_back_f32
  8135. static void ggml_compute_forward_im2col_back_f32(
  8136. const struct ggml_compute_params * params,
  8137. struct ggml_tensor * dst) {
  8138. const struct ggml_tensor * src0 = dst->src[0];
  8139. const struct ggml_tensor * src1 = dst->src[1];
  8140. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8141. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8142. GGML_TENSOR_BINARY_OP_LOCALS;
  8143. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  8144. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  8145. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  8146. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  8147. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  8148. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  8149. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  8150. const int ith = params->ith;
  8151. const int nth = params->nth;
  8152. const int64_t N = is_2D ? ne3 : ne2;
  8153. const int64_t IC = is_2D ? ne2 : ne1;
  8154. const int64_t IH = is_2D ? ne1 : 1;
  8155. const int64_t IW = ne0;
  8156. const int64_t KH = is_2D ? ne01 : 1;
  8157. const int64_t KW = ne00;
  8158. const int64_t OH = is_2D ? ne12 : 1;
  8159. const int64_t OW = ne11;
  8160. int ofs0 = is_2D ? nb3 : nb2;
  8161. int ofs1 = is_2D ? nb2 : nb1;
  8162. GGML_ASSERT(nb0 == sizeof(float));
  8163. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  8164. {
  8165. float * const wdata = (float *) dst->data;
  8166. for (int64_t in = 0; in < N; in++) {
  8167. for (int64_t iic = ith; iic < IC; iic += nth) {
  8168. for (int64_t iih = 0; iih < IH; iih++) {
  8169. for (int64_t iiw = 0; iiw < IW; iiw++) {
  8170. // micro kernel
  8171. float grad = 0.0f;
  8172. for (int64_t ikh = 0; ikh < KH; ikh++) {
  8173. for (int64_t ikw = 0; ikw < KW; ikw++) {
  8174. // For s0 > 1 some values were skipped over in the forward pass.
  8175. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
  8176. const int64_t tmpw = (iiw + p0 - ikw*d0);
  8177. if (tmpw % s0 != 0) {
  8178. continue;
  8179. }
  8180. const int64_t iow = tmpw / s0;
  8181. // Equivalent logic as above except for s1.
  8182. int64_t ioh;
  8183. if (is_2D) {
  8184. const int64_t tmph = iih + p1 - ikh*d1;
  8185. if (tmph % s1 != 0) {
  8186. continue;
  8187. }
  8188. ioh = tmph / s1;
  8189. } else {
  8190. ioh = 0;
  8191. }
  8192. if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
  8193. continue;
  8194. }
  8195. const float * const src_data = (const float *) src1->data
  8196. + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  8197. grad += src_data[iic*(KH*KW) + ikh*KW + ikw];
  8198. }
  8199. }
  8200. float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
  8201. dst_data[iih*IW + iiw] = grad;
  8202. }
  8203. }
  8204. }
  8205. }
  8206. }
  8207. }
  8208. // ggml_compute_forward_conv_transpose_2d
  8209. static void ggml_compute_forward_conv_transpose_2d(
  8210. const struct ggml_compute_params * params,
  8211. struct ggml_tensor * dst) {
  8212. const struct ggml_tensor * src0 = dst->src[0];
  8213. const struct ggml_tensor * src1 = dst->src[1];
  8214. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8215. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8216. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8217. GGML_TENSOR_BINARY_OP_LOCALS
  8218. const int ith = params->ith;
  8219. const int nth = params->nth;
  8220. const int nk = ne00*ne01*ne02*ne03;
  8221. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8222. GGML_ASSERT(nb10 == sizeof(float));
  8223. if (ith == 0) {
  8224. memset(params->wdata, 0, params->wsize);
  8225. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  8226. {
  8227. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  8228. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8229. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8230. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  8231. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  8232. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8233. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8234. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  8235. }
  8236. }
  8237. }
  8238. }
  8239. }
  8240. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  8241. {
  8242. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  8243. for (int i12 = 0; i12 < ne12; i12++) {
  8244. for (int i11 = 0; i11 < ne11; i11++) {
  8245. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  8246. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  8247. for (int i10 = 0; i10 < ne10; i10++) {
  8248. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  8249. }
  8250. }
  8251. }
  8252. }
  8253. memset(dst->data, 0, ggml_nbytes(dst));
  8254. }
  8255. ggml_barrier(params->threadpool);
  8256. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  8257. // total patches in dst
  8258. const int np = ne2;
  8259. // patches per thread
  8260. const int dp = (np + nth - 1)/nth;
  8261. // patch range for this thread
  8262. const int ip0 = dp*ith;
  8263. const int ip1 = MIN(ip0 + dp, np);
  8264. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  8265. ggml_fp16_t * const wdata_src = wdata + nk;
  8266. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  8267. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  8268. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  8269. for (int i11 = 0; i11 < ne11; i11++) {
  8270. for (int i10 = 0; i10 < ne10; i10++) {
  8271. const int i1n = i11*ne10*ne12 + i10*ne12;
  8272. for (int i01 = 0; i01 < ne01; i01++) {
  8273. for (int i00 = 0; i00 < ne00; i00++) {
  8274. float v = 0;
  8275. ggml_vec_dot_f16(ne03, &v, 0,
  8276. wdata_src + i1n, 0,
  8277. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  8278. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  8279. }
  8280. }
  8281. }
  8282. }
  8283. }
  8284. }
  8285. // ggml_compute_forward_pool_1d_sk_p0
  8286. static void ggml_compute_forward_pool_1d_sk_p0(
  8287. const struct ggml_compute_params * params,
  8288. const enum ggml_op_pool op,
  8289. const int k,
  8290. struct ggml_tensor * dst) {
  8291. const struct ggml_tensor * src = dst->src[0];
  8292. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  8293. if (params->ith != 0) {
  8294. return;
  8295. }
  8296. const char * cdata = (const char *)src->data;
  8297. const char * const data_end = cdata + ggml_nbytes(src);
  8298. float * drow = (float *)dst->data;
  8299. const int64_t rs = dst->ne[0];
  8300. while (cdata < data_end) {
  8301. const void * srow = (const void *)cdata;
  8302. int j = 0;
  8303. for (int64_t i = 0; i < rs; ++i) {
  8304. switch (op) {
  8305. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  8306. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  8307. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8308. }
  8309. for (int ki = 0; ki < k; ++ki) {
  8310. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  8311. switch (op) {
  8312. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  8313. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  8314. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8315. }
  8316. ++j;
  8317. }
  8318. switch (op) {
  8319. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  8320. case GGML_OP_POOL_MAX: break;
  8321. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8322. }
  8323. }
  8324. cdata += src->nb[1];
  8325. drow += rs;
  8326. }
  8327. }
  8328. // ggml_compute_forward_pool_1d
  8329. static void ggml_compute_forward_pool_1d(
  8330. const struct ggml_compute_params * params,
  8331. struct ggml_tensor * dst) {
  8332. const int32_t * opts = (const int32_t *)dst->op_params;
  8333. enum ggml_op_pool op = opts[0];
  8334. const int k0 = opts[1];
  8335. const int s0 = opts[2];
  8336. const int p0 = opts[3];
  8337. GGML_ASSERT(p0 == 0); // padding not supported
  8338. GGML_ASSERT(k0 == s0); // only s = k supported
  8339. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  8340. }
  8341. // ggml_compute_forward_pool_2d
  8342. static void ggml_compute_forward_pool_2d(
  8343. const struct ggml_compute_params * params,
  8344. struct ggml_tensor * dst) {
  8345. const struct ggml_tensor * src = dst->src[0];
  8346. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  8347. if (params->ith != 0) {
  8348. return;
  8349. }
  8350. const int32_t * opts = (const int32_t *)dst->op_params;
  8351. enum ggml_op_pool op = opts[0];
  8352. const int k0 = opts[1];
  8353. const int k1 = opts[2];
  8354. const int s0 = opts[3];
  8355. const int s1 = opts[4];
  8356. const int p0 = opts[5];
  8357. const int p1 = opts[6];
  8358. const char * cdata = (const char*)src->data;
  8359. const char * const data_end = cdata + ggml_nbytes(src);
  8360. const int64_t px = dst->ne[0];
  8361. const int64_t py = dst->ne[1];
  8362. const int64_t pa = px * py;
  8363. float * dplane = (float *)dst->data;
  8364. const int ka = k0 * k1;
  8365. const int offset0 = -p0;
  8366. const int offset1 = -p1;
  8367. while (cdata < data_end) {
  8368. for (int oy = 0; oy < py; ++oy) {
  8369. float * const drow = dplane + oy * px;
  8370. for (int ox = 0; ox < px; ++ox) {
  8371. float * const out = drow + ox;
  8372. switch (op) {
  8373. case GGML_OP_POOL_AVG: *out = 0; break;
  8374. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  8375. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8376. }
  8377. const int ix = offset0 + ox * s0;
  8378. const int iy = offset1 + oy * s1;
  8379. for (int ky = 0; ky < k1; ++ky) {
  8380. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  8381. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  8382. for (int kx = 0; kx < k0; ++kx) {
  8383. int j = ix + kx;
  8384. if (j < 0 || j >= src->ne[0]) continue;
  8385. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  8386. switch (op) {
  8387. case GGML_OP_POOL_AVG: *out += srow_j; break;
  8388. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  8389. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8390. }
  8391. }
  8392. }
  8393. switch (op) {
  8394. case GGML_OP_POOL_AVG: *out /= ka; break;
  8395. case GGML_OP_POOL_MAX: break;
  8396. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8397. }
  8398. }
  8399. }
  8400. cdata += src->nb[2];
  8401. dplane += pa;
  8402. }
  8403. }
  8404. // ggml_compute_forward_pool_2d_back
  8405. static void ggml_compute_forward_pool_2d_back(
  8406. const struct ggml_compute_params * params,
  8407. struct ggml_tensor * dst) {
  8408. const struct ggml_tensor * src = dst->src[0];
  8409. const struct ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
  8410. assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
  8411. if (params->ith != 0) {
  8412. return;
  8413. }
  8414. const int32_t * opts = (const int32_t *)dst->op_params;
  8415. enum ggml_op_pool op = opts[0];
  8416. const int k0 = opts[1];
  8417. const int k1 = opts[2];
  8418. const int s0 = opts[3];
  8419. const int s1 = opts[4];
  8420. const int p0 = opts[5];
  8421. const int p1 = opts[6];
  8422. char * cdata = (char *) dst->data;
  8423. const char * cdataf = (const char *) dstf->data;
  8424. const char * const data_end = cdata + ggml_nbytes(dst);
  8425. GGML_ASSERT(params->ith == 0);
  8426. memset(cdata, 0, ggml_nbytes(dst));
  8427. const int64_t px = src->ne[0];
  8428. const int64_t py = src->ne[1];
  8429. const int64_t pa = px * py;
  8430. const float * splane = (const float *) src->data;
  8431. const int ka = k0 * k1;
  8432. const int offset0 = -p0;
  8433. const int offset1 = -p1;
  8434. while (cdata < data_end) {
  8435. for (int oy = 0; oy < py; ++oy) {
  8436. const float * const srow = splane + oy * px;
  8437. for (int ox = 0; ox < px; ++ox) {
  8438. const float grad0 = srow[ox];
  8439. const int ix = offset0 + ox * s0;
  8440. const int iy = offset1 + oy * s1;
  8441. if (op == GGML_OP_POOL_MAX) {
  8442. float maxval = -FLT_MAX;
  8443. int kxmax = -1;
  8444. int kymax = -1;
  8445. for (int ky = 0; ky < k1; ++ky) {
  8446. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  8447. continue;
  8448. }
  8449. const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
  8450. for (int kx = 0; kx < k0; ++kx) {
  8451. int j = ix + kx;
  8452. if (j < 0 || j >= dst->ne[0]) {
  8453. continue;
  8454. }
  8455. const float val = dst->type == GGML_TYPE_F32 ?
  8456. ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
  8457. if (val <= maxval) {
  8458. continue;
  8459. }
  8460. maxval = val;
  8461. kxmax = kx;
  8462. kymax = ky;
  8463. }
  8464. }
  8465. if (kxmax == -1 || kymax == -1) {
  8466. continue;
  8467. }
  8468. void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
  8469. const int j = ix + kxmax;
  8470. if (dst->type == GGML_TYPE_F32) {
  8471. ((float *) drow)[j] += grad0;
  8472. } else {
  8473. ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
  8474. }
  8475. } else if (op == GGML_OP_POOL_AVG) {
  8476. const float grad = grad0 / ka;
  8477. for (int ky = 0; ky < k1; ++ky) {
  8478. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  8479. continue;
  8480. }
  8481. void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
  8482. for (int kx = 0; kx < k0; ++kx) {
  8483. int j = ix + kx;
  8484. if (j < 0 || j >= dst->ne[0]) {
  8485. continue;
  8486. }
  8487. if (dst->type == GGML_TYPE_F32) {
  8488. ((float *) drow)[j] += grad;
  8489. } else {
  8490. ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
  8491. }
  8492. }
  8493. }
  8494. } else {
  8495. GGML_ASSERT(false);
  8496. }
  8497. }
  8498. }
  8499. cdata += dst->nb[2];
  8500. cdataf += dst->nb[2];
  8501. splane += pa;
  8502. }
  8503. }
  8504. // ggml_compute_forward_upscale
  8505. static void ggml_compute_forward_upscale_f32(
  8506. const struct ggml_compute_params * params,
  8507. struct ggml_tensor * dst) {
  8508. const struct ggml_tensor * src0 = dst->src[0];
  8509. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8510. const int ith = params->ith;
  8511. const int nth = params->nth;
  8512. GGML_TENSOR_UNARY_OP_LOCALS
  8513. const float sf0 = (float)ne0/src0->ne[0];
  8514. const float sf1 = (float)ne1/src0->ne[1];
  8515. const float sf2 = (float)ne2/src0->ne[2];
  8516. const float sf3 = (float)ne3/src0->ne[3];
  8517. // TODO: optimize
  8518. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8519. const int64_t i03 = i3 / sf3;
  8520. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  8521. const int64_t i02 = i2 / sf2;
  8522. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8523. const int64_t i01 = i1 / sf1;
  8524. for (int64_t i0 = 0; i0 < ne0; i0++) {
  8525. const int64_t i00 = i0 / sf0;
  8526. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  8527. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  8528. *y = *x;
  8529. }
  8530. }
  8531. }
  8532. }
  8533. }
  8534. static void ggml_compute_forward_upscale(
  8535. const struct ggml_compute_params * params,
  8536. struct ggml_tensor * dst) {
  8537. const struct ggml_tensor * src0 = dst->src[0];
  8538. switch (src0->type) {
  8539. case GGML_TYPE_F32:
  8540. {
  8541. ggml_compute_forward_upscale_f32(params, dst);
  8542. } break;
  8543. default:
  8544. {
  8545. GGML_ABORT("fatal error");
  8546. }
  8547. }
  8548. }
  8549. // ggml_compute_forward_pad
  8550. static void ggml_compute_forward_pad_f32(
  8551. const struct ggml_compute_params * params,
  8552. struct ggml_tensor * dst) {
  8553. const struct ggml_tensor * src0 = dst->src[0];
  8554. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8555. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8556. const int ith = params->ith;
  8557. const int nth = params->nth;
  8558. GGML_TENSOR_UNARY_OP_LOCALS
  8559. float * dst_ptr = (float *) dst->data;
  8560. // TODO: optimize
  8561. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  8562. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  8563. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8564. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  8565. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  8566. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8567. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  8568. dst_ptr[dst_idx] = *src_ptr;
  8569. } else {
  8570. dst_ptr[dst_idx] = 0;
  8571. }
  8572. }
  8573. }
  8574. }
  8575. }
  8576. }
  8577. static void ggml_compute_forward_pad(
  8578. const struct ggml_compute_params * params,
  8579. struct ggml_tensor * dst) {
  8580. const struct ggml_tensor * src0 = dst->src[0];
  8581. switch (src0->type) {
  8582. case GGML_TYPE_F32:
  8583. {
  8584. ggml_compute_forward_pad_f32(params, dst);
  8585. } break;
  8586. default:
  8587. {
  8588. GGML_ABORT("fatal error");
  8589. }
  8590. }
  8591. }
  8592. // ggml_compute_forward_arange
  8593. static void ggml_compute_forward_arange_f32(
  8594. const struct ggml_compute_params * params,
  8595. struct ggml_tensor * dst) {
  8596. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8597. const int ith = params->ith;
  8598. const int nth = params->nth;
  8599. const float start = ggml_get_op_params_f32(dst, 0);
  8600. const float stop = ggml_get_op_params_f32(dst, 1);
  8601. const float step = ggml_get_op_params_f32(dst, 2);
  8602. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  8603. GGML_ASSERT(ggml_nelements(dst) == steps);
  8604. for (int64_t i = ith; i < steps; i+= nth) {
  8605. float value = start + step * i;
  8606. ((float *)dst->data)[i] = value;
  8607. }
  8608. }
  8609. static void ggml_compute_forward_arange(
  8610. const struct ggml_compute_params * params,
  8611. struct ggml_tensor * dst) {
  8612. switch (dst->type) {
  8613. case GGML_TYPE_F32:
  8614. {
  8615. ggml_compute_forward_arange_f32(params, dst);
  8616. } break;
  8617. default:
  8618. {
  8619. GGML_ABORT("fatal error");
  8620. }
  8621. }
  8622. }
  8623. static void ggml_compute_forward_timestep_embedding_f32(
  8624. const struct ggml_compute_params * params,
  8625. struct ggml_tensor * dst) {
  8626. const struct ggml_tensor * src0 = dst->src[0];
  8627. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8628. const int ith = params->ith;
  8629. const int nth = params->nth;
  8630. GGML_TENSOR_UNARY_OP_LOCALS
  8631. const int dim = ggml_get_op_params_i32(dst, 0);
  8632. const int max_period = ggml_get_op_params_i32(dst, 1);
  8633. int half = dim / 2;
  8634. for (int64_t i = 0; i < ne00; i++) {
  8635. float * embed_data = (float *)((char *) dst->data + i*nb1);
  8636. for (int64_t j = ith; j < half; j += nth) {
  8637. float timestep = ((float *)src0->data)[i];
  8638. float freq = (float)expf(-logf(max_period) * j / half);
  8639. float arg = timestep * freq;
  8640. embed_data[j] = cosf(arg);
  8641. embed_data[j + half] = sinf(arg);
  8642. }
  8643. if (dim % 2 != 0 && ith == 0) {
  8644. embed_data[dim] = 0.f;
  8645. }
  8646. }
  8647. }
  8648. static void ggml_compute_forward_timestep_embedding(
  8649. const struct ggml_compute_params * params,
  8650. struct ggml_tensor * dst) {
  8651. const struct ggml_tensor * src0 = dst->src[0];
  8652. switch (src0->type) {
  8653. case GGML_TYPE_F32:
  8654. {
  8655. ggml_compute_forward_timestep_embedding_f32(params, dst);
  8656. } break;
  8657. default:
  8658. {
  8659. GGML_ABORT("fatal error");
  8660. }
  8661. }
  8662. }
  8663. // ggml_compute_forward_argsort
  8664. static void ggml_compute_forward_argsort_f32(
  8665. const struct ggml_compute_params * params,
  8666. struct ggml_tensor * dst) {
  8667. const struct ggml_tensor * src0 = dst->src[0];
  8668. GGML_TENSOR_UNARY_OP_LOCALS
  8669. GGML_ASSERT(nb0 == sizeof(float));
  8670. const int ith = params->ith;
  8671. const int nth = params->nth;
  8672. const int64_t nr = ggml_nrows(src0);
  8673. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  8674. for (int64_t i = ith; i < nr; i += nth) {
  8675. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  8676. const float * src_data = (float *)((char *) src0->data + i*nb01);
  8677. for (int64_t j = 0; j < ne0; j++) {
  8678. dst_data[j] = j;
  8679. }
  8680. // C doesn't have a functional sort, so we do a bubble sort instead
  8681. for (int64_t j = 0; j < ne0; j++) {
  8682. for (int64_t k = j + 1; k < ne0; k++) {
  8683. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  8684. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  8685. int32_t tmp = dst_data[j];
  8686. dst_data[j] = dst_data[k];
  8687. dst_data[k] = tmp;
  8688. }
  8689. }
  8690. }
  8691. }
  8692. }
  8693. static void ggml_compute_forward_argsort(
  8694. const struct ggml_compute_params * params,
  8695. struct ggml_tensor * dst) {
  8696. const struct ggml_tensor * src0 = dst->src[0];
  8697. switch (src0->type) {
  8698. case GGML_TYPE_F32:
  8699. {
  8700. ggml_compute_forward_argsort_f32(params, dst);
  8701. } break;
  8702. default:
  8703. {
  8704. GGML_ABORT("fatal error");
  8705. }
  8706. }
  8707. }
  8708. // ggml_compute_forward_flash_attn_ext
  8709. static void ggml_compute_forward_flash_attn_ext_f16(
  8710. const struct ggml_compute_params * params,
  8711. const struct ggml_tensor * q,
  8712. const struct ggml_tensor * k,
  8713. const struct ggml_tensor * v,
  8714. const struct ggml_tensor * mask,
  8715. struct ggml_tensor * dst) {
  8716. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  8717. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  8718. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  8719. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  8720. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  8721. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  8722. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  8723. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  8724. const int ith = params->ith;
  8725. const int nth = params->nth;
  8726. const int64_t D = neq0;
  8727. const int64_t N = neq1;
  8728. GGML_ASSERT(ne0 == D);
  8729. GGML_ASSERT(ne2 == N);
  8730. // input tensor rows must be contiguous
  8731. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  8732. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  8733. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  8734. GGML_ASSERT(neq0 == D);
  8735. GGML_ASSERT(nek0 == D);
  8736. GGML_ASSERT(nev0 == D);
  8737. GGML_ASSERT(neq1 == N);
  8738. GGML_ASSERT(nev0 == D);
  8739. // dst cannot be transposed or permuted
  8740. GGML_ASSERT(nb0 == sizeof(float));
  8741. GGML_ASSERT(nb0 <= nb1);
  8742. GGML_ASSERT(nb1 <= nb2);
  8743. GGML_ASSERT(nb2 <= nb3);
  8744. // broadcast factors
  8745. const int64_t rk2 = neq2/nek2;
  8746. const int64_t rk3 = neq3/nek3;
  8747. const int64_t rv2 = neq2/nev2;
  8748. const int64_t rv3 = neq3/nev3;
  8749. // parallelize by q rows using ggml_vec_dot_f32
  8750. // total rows in q
  8751. const int nr = neq1*neq2*neq3;
  8752. // rows per thread
  8753. const int dr = (nr + nth - 1)/nth;
  8754. // row range for this thread
  8755. const int ir0 = dr*ith;
  8756. const int ir1 = MIN(ir0 + dr, nr);
  8757. float scale = 1.0f;
  8758. float max_bias = 0.0f;
  8759. float logit_softcap = 0.0f;
  8760. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  8761. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  8762. memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
  8763. if (logit_softcap != 0) {
  8764. scale /= logit_softcap;
  8765. }
  8766. const uint32_t n_head = neq2;
  8767. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  8768. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  8769. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  8770. enum ggml_type const k_vec_dot_type = type_traits_cpu[k->type].vec_dot_type;
  8771. ggml_from_float_t const q_to_vec_dot = type_traits_cpu[k_vec_dot_type].from_float;
  8772. ggml_vec_dot_t const kq_vec_dot = type_traits_cpu[k->type].vec_dot;
  8773. ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
  8774. GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type");
  8775. GGML_ASSERT(v_to_float && "fattn: unsupported V-type");
  8776. // loop over n_batch and n_head
  8777. for (int ir = ir0; ir < ir1; ++ir) {
  8778. // q indices
  8779. const int iq3 = ir/(neq2*neq1);
  8780. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8781. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8782. const uint32_t h = iq2; // head index
  8783. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  8784. float S = 0.0f; // sum
  8785. float M = -INFINITY; // maximum KQ value
  8786. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  8787. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  8788. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  8789. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  8790. if (v->type == GGML_TYPE_F16) {
  8791. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  8792. } else {
  8793. memset(VKQ32, 0, D*sizeof(float));
  8794. }
  8795. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  8796. // k indices
  8797. const int ik3 = iq3 / rk3;
  8798. const int ik2 = iq2 / rk2;
  8799. // v indices
  8800. const int iv3 = iq3 / rv3;
  8801. const int iv2 = iq2 / rv2;
  8802. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  8803. q_to_vec_dot(pq, Q_q, D);
  8804. // online softmax / attention
  8805. // loop over n_kv and n_head_kv
  8806. // ref: https://arxiv.org/pdf/2112.05682.pdf
  8807. for (int64_t ic = 0; ic < nek1; ++ic) {
  8808. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  8809. if (mv == -INFINITY) {
  8810. continue;
  8811. }
  8812. float s; // KQ value
  8813. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  8814. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  8815. s = s*scale; // scale KQ value
  8816. if (logit_softcap != 0.0f) {
  8817. s = logit_softcap*tanhf(s);
  8818. }
  8819. s += mv; // apply mask
  8820. const float Mold = M;
  8821. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  8822. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  8823. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  8824. if (v->type == GGML_TYPE_F16) {
  8825. if (s > M) {
  8826. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  8827. M = s;
  8828. ms = expf(Mold - M);
  8829. // V = V*expf(Mold - M)
  8830. ggml_vec_scale_f16(D, VKQ16, ms);
  8831. } else {
  8832. // no new maximum, ms == 1.0f, vs != 1.0f
  8833. vs = expf(s - M);
  8834. }
  8835. // V += v*expf(s - M)
  8836. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  8837. } else {
  8838. if (s > M) {
  8839. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  8840. M = s;
  8841. ms = expf(Mold - M);
  8842. // V = V*expf(Mold - M)
  8843. ggml_vec_scale_f32(D, VKQ32, ms);
  8844. } else {
  8845. // no new maximum, ms == 1.0f, vs != 1.0f
  8846. vs = expf(s - M);
  8847. }
  8848. v_to_float(v_data, V32, D);
  8849. // V += v*expf(s - M)
  8850. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  8851. }
  8852. S = S*ms + vs; // scale and increment sum with partial sum
  8853. }
  8854. if (v->type == GGML_TYPE_F16) {
  8855. for (int64_t d = 0; d < D; ++d) {
  8856. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  8857. }
  8858. }
  8859. // V /= S
  8860. const float S_inv = 1.0f/S;
  8861. ggml_vec_scale_f32(D, VKQ32, S_inv);
  8862. // dst indices
  8863. const int i1 = iq1;
  8864. const int i2 = iq2;
  8865. const int i3 = iq3;
  8866. // original
  8867. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  8868. // permute(0, 2, 1, 3)
  8869. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  8870. }
  8871. }
  8872. static void ggml_compute_forward_flash_attn_ext(
  8873. const struct ggml_compute_params * params,
  8874. const struct ggml_tensor * q,
  8875. const struct ggml_tensor * k,
  8876. const struct ggml_tensor * v,
  8877. const struct ggml_tensor * mask,
  8878. struct ggml_tensor * dst) {
  8879. switch (dst->op_params[3]) {
  8880. case GGML_PREC_DEFAULT:
  8881. case GGML_PREC_F32:
  8882. {
  8883. // uses F32 accumulators
  8884. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  8885. } break;
  8886. default:
  8887. {
  8888. GGML_ABORT("fatal error");
  8889. }
  8890. }
  8891. }
  8892. // ggml_compute_forward_flash_attn_back
  8893. static void ggml_compute_forward_flash_attn_back_f32(
  8894. const struct ggml_compute_params * params,
  8895. const bool masked,
  8896. struct ggml_tensor * dst) {
  8897. const struct ggml_tensor * q = dst->src[0];
  8898. const struct ggml_tensor * k = dst->src[1];
  8899. const struct ggml_tensor * v = dst->src[2];
  8900. const struct ggml_tensor * d = dst->src[3];
  8901. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  8902. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  8903. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  8904. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  8905. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  8906. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  8907. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  8908. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  8909. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  8910. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  8911. const int ith = params->ith;
  8912. const int nth = params->nth;
  8913. const int64_t D = neq0;
  8914. const int64_t N = neq1;
  8915. const int64_t P = nek1 - N;
  8916. const int64_t M = P + N;
  8917. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8918. const int mxDM = MAX(D, Mup);
  8919. // GGML_ASSERT(ne0 == D);
  8920. // GGML_ASSERT(ne1 == N);
  8921. GGML_ASSERT(P >= 0);
  8922. GGML_ASSERT(nbq0 == sizeof(float));
  8923. GGML_ASSERT(nbk0 == sizeof(float));
  8924. GGML_ASSERT(nbv0 == sizeof(float));
  8925. GGML_ASSERT(neq0 == D);
  8926. GGML_ASSERT(nek0 == D);
  8927. GGML_ASSERT(nev1 == D);
  8928. GGML_ASSERT(ned0 == D);
  8929. GGML_ASSERT(neq1 == N);
  8930. GGML_ASSERT(nek1 == N + P);
  8931. GGML_ASSERT(nev1 == D);
  8932. GGML_ASSERT(ned1 == N);
  8933. // dst cannot be transposed or permuted
  8934. GGML_ASSERT(nb0 == sizeof(float));
  8935. GGML_ASSERT(nb0 <= nb1);
  8936. GGML_ASSERT(nb1 <= nb2);
  8937. GGML_ASSERT(nb2 <= nb3);
  8938. if (ith == 0) {
  8939. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  8940. }
  8941. ggml_barrier(params->threadpool);
  8942. const int64_t elem_q = ggml_nelements(q);
  8943. const int64_t elem_k = ggml_nelements(k);
  8944. enum ggml_type result_type = dst->type;
  8945. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  8946. const size_t tsize = ggml_type_size(result_type);
  8947. const size_t offs_q = 0;
  8948. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  8949. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  8950. void * grad_q = (char *) dst->data;
  8951. void * grad_k = (char *) dst->data + offs_k;
  8952. void * grad_v = (char *) dst->data + offs_v;
  8953. const size_t nbgq1 = nb0*neq0;
  8954. const size_t nbgq2 = nb0*neq0*neq1;
  8955. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  8956. const size_t nbgk1 = nb0*nek0;
  8957. const size_t nbgk2 = nb0*nek0*nek1;
  8958. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  8959. const size_t nbgv1 = nb0*nev0;
  8960. const size_t nbgv2 = nb0*nev0*nev1;
  8961. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  8962. // parallelize by k rows using ggml_vec_dot_f32
  8963. // total rows in k
  8964. const int nr = nek2*nek3;
  8965. // rows per thread
  8966. const int dr = (nr + nth - 1)/nth;
  8967. // row range for this thread
  8968. const int ir0 = dr*ith;
  8969. const int ir1 = MIN(ir0 + dr, nr);
  8970. const float scale = 1.0f/sqrtf(D);
  8971. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8972. // how often k2 (and v2) is repeated in q2
  8973. int nrep = neq2/nek2;
  8974. for (int ir = ir0; ir < ir1; ++ir) {
  8975. // q indices
  8976. const int ik3 = ir/(nek2);
  8977. const int ik2 = ir - ik3*nek2;
  8978. const int iq3 = ik3;
  8979. const int id3 = ik3;
  8980. const int iv3 = ik3;
  8981. const int iv2 = ik2;
  8982. for (int irep = 0; irep < nrep; ++irep) {
  8983. const int iq2 = ik2 + irep*nek2;
  8984. const int id2 = iq2;
  8985. // (ik2 + irep*nek2) % nek2 == ik2
  8986. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  8987. const int id1 = iq1;
  8988. // not sure about CACHE_LINE_SIZE_F32..
  8989. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  8990. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  8991. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  8992. for (int i = M; i < Mup; ++i) {
  8993. S[i] = -INFINITY;
  8994. }
  8995. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  8996. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  8997. // k indices
  8998. const int ik1 = ic;
  8999. // S indices
  9000. const int i1 = ik1;
  9001. ggml_vec_dot_f32(neq0,
  9002. S + i1, 0,
  9003. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  9004. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  9005. }
  9006. // scale
  9007. ggml_vec_scale_f32(masked_begin, S, scale);
  9008. for (int64_t i = masked_begin; i < M; i++) {
  9009. S[i] = -INFINITY;
  9010. }
  9011. // softmax
  9012. // exclude known -INF S[..] values from max and loop
  9013. // dont forget to set their SM values to zero
  9014. {
  9015. float max = -INFINITY;
  9016. ggml_vec_max_f32(masked_begin, &max, S);
  9017. ggml_float sum = 0.0;
  9018. {
  9019. #ifdef GGML_SOFT_MAX_ACCELERATE
  9020. max = -max;
  9021. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  9022. vvexpf(SM, SM, &Mup);
  9023. ggml_vec_sum_f32(Mup, &sum, SM);
  9024. #else
  9025. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  9026. #endif
  9027. }
  9028. assert(sum > 0.0);
  9029. sum = 1.0/sum;
  9030. ggml_vec_scale_f32(masked_begin, SM, sum);
  9031. }
  9032. // step-by-step explanation
  9033. {
  9034. // forward-process shape grads from backward process
  9035. // parallel_for ik2,ik3:
  9036. // for irep:
  9037. // iq2 = ik2 + irep*nek2
  9038. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  9039. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  9040. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  9041. // for iq1:
  9042. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  9043. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  9044. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  9045. // S0 = -Inf [D,1,1,1]
  9046. // ~S1[i] = dot(kcur[:D,i], qcur)
  9047. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  9048. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  9049. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  9050. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  9051. // ~S5[i] = dot(vcur[:,i], S4)
  9052. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  9053. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  9054. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  9055. // dst backward-/ grad[dst] = d
  9056. //
  9057. // output gradients with their dependencies:
  9058. //
  9059. // grad[kcur] = grad[S1].T @ qcur
  9060. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  9061. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  9062. // grad[S4] = grad[S5] @ vcur
  9063. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  9064. // grad[qcur] = grad[S1] @ kcur
  9065. // grad[vcur] = grad[S5].T @ S4
  9066. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  9067. //
  9068. // in post-order:
  9069. //
  9070. // S1 = qcur @ kcur.T
  9071. // S2 = S1 * scale
  9072. // S3 = diag_mask_inf(S2, P)
  9073. // S4 = softmax(S3)
  9074. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  9075. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  9076. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  9077. // grad[qcur] = grad[S1] @ kcur
  9078. // grad[kcur] = grad[S1].T @ qcur
  9079. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  9080. //
  9081. // using less variables (SM=S4):
  9082. //
  9083. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  9084. // SM = softmax(S)
  9085. // S = d[:D,iq1,iq2,iq3] @ vcur
  9086. // dot_SM_gradSM = dot(SM, S)
  9087. // S = SM * (S - dot(SM, S))
  9088. // S = diag_mask_zero(S, P) * scale
  9089. //
  9090. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  9091. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  9092. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  9093. }
  9094. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  9095. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  9096. // for ic:
  9097. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  9098. // exclude known future zero S[..] values from operation
  9099. ggml_vec_set_f32(masked_begin, S, 0);
  9100. for (int64_t ic = 0; ic < D; ++ic) {
  9101. ggml_vec_mad_f32(masked_begin,
  9102. S,
  9103. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  9104. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  9105. }
  9106. // S = SM * (S - dot(SM, S))
  9107. float dot_SM_gradSM = 0;
  9108. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  9109. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  9110. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  9111. // S = diag_mask_zero(S, P) * scale
  9112. // already done by above ggml_vec_set_f32
  9113. // exclude known zero S[..] values from operation
  9114. ggml_vec_scale_f32(masked_begin, S, scale);
  9115. // S shape [M,1]
  9116. // SM shape [M,1]
  9117. // kcur shape [D,M]
  9118. // qcur shape [D,1]
  9119. // vcur shape [M,D]
  9120. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  9121. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  9122. // for ic:
  9123. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  9124. // exclude known zero S[..] values from loop
  9125. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  9126. ggml_vec_mad_f32(D,
  9127. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  9128. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9129. S[ic]);
  9130. }
  9131. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  9132. // for ic:
  9133. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  9134. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  9135. // exclude known zero S[..] values from loop
  9136. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  9137. ggml_vec_mad_f32(D,
  9138. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  9139. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  9140. S[ic]);
  9141. }
  9142. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  9143. // for ic:
  9144. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  9145. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  9146. // exclude known zero SM[..] values from mad
  9147. for (int64_t ic = 0; ic < D; ++ic) {
  9148. ggml_vec_mad_f32(masked_begin,
  9149. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  9150. SM,
  9151. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  9152. }
  9153. }
  9154. }
  9155. }
  9156. }
  9157. static void ggml_compute_forward_flash_attn_back(
  9158. const struct ggml_compute_params * params,
  9159. const bool masked,
  9160. struct ggml_tensor * dst) {
  9161. const struct ggml_tensor * q = dst->src[0];
  9162. switch (q->type) {
  9163. case GGML_TYPE_F32:
  9164. {
  9165. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  9166. } break;
  9167. default:
  9168. {
  9169. GGML_ABORT("fatal error");
  9170. }
  9171. }
  9172. }
  9173. // ggml_compute_forward_ssm_conv
  9174. static void ggml_compute_forward_ssm_conv_f32(
  9175. const struct ggml_compute_params * params,
  9176. struct ggml_tensor * dst) {
  9177. const struct ggml_tensor * src0 = dst->src[0]; // conv_x
  9178. const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
  9179. const int ith = params->ith;
  9180. const int nth = params->nth;
  9181. const int nc = src1->ne[0]; // d_conv
  9182. const int ncs = src0->ne[0]; // d_conv - 1 + n_t
  9183. const int nr = src0->ne[1]; // d_inner
  9184. const int n_t = dst->ne[1]; // tokens per sequence
  9185. const int n_s = dst->ne[2]; // number of sequences in the batch
  9186. GGML_ASSERT( dst->ne[0] == nr);
  9187. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9188. GGML_ASSERT(src1->nb[0] == sizeof(float));
  9189. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  9190. // rows per thread
  9191. const int dr = (nr + nth - 1)/nth;
  9192. // row range for this thread
  9193. const int ir0 = dr*ith;
  9194. const int ir1 = MIN(ir0 + dr, nr);
  9195. const int ir = ir1 - ir0;
  9196. for (int i3 = 0; i3 < n_s; ++i3) {
  9197. for (int i2 = 0; i2 < n_t; ++i2) {
  9198. // {d_conv - 1 + n_t, d_inner, n_seqs}
  9199. // sliding window
  9200. const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
  9201. const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
  9202. float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
  9203. // TODO: transpose the output for smaller strides for big batches?
  9204. // d_inner
  9205. for (int i1 = 0; i1 < ir; ++i1) {
  9206. // rowwise dot product
  9207. // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
  9208. float sumf = 0.0f;
  9209. // d_conv
  9210. for (int i0 = 0; i0 < nc; ++i0) {
  9211. sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
  9212. }
  9213. x[i1] = sumf;
  9214. }
  9215. }
  9216. }
  9217. }
  9218. static void ggml_compute_forward_ssm_conv(
  9219. const struct ggml_compute_params * params,
  9220. struct ggml_tensor * dst) {
  9221. switch (dst->src[0]->type) {
  9222. case GGML_TYPE_F32:
  9223. {
  9224. ggml_compute_forward_ssm_conv_f32(params, dst);
  9225. } break;
  9226. default:
  9227. {
  9228. GGML_ABORT("fatal error");
  9229. }
  9230. }
  9231. }
  9232. // ggml_compute_forward_ssm_scan
  9233. static void ggml_compute_forward_ssm_scan_f32(
  9234. const struct ggml_compute_params * params,
  9235. struct ggml_tensor * dst) {
  9236. const struct ggml_tensor * src0 = dst->src[0]; // s
  9237. const struct ggml_tensor * src1 = dst->src[1]; // x
  9238. const struct ggml_tensor * src2 = dst->src[2]; // dt
  9239. const struct ggml_tensor * src3 = dst->src[3]; // A
  9240. const struct ggml_tensor * src4 = dst->src[4]; // B
  9241. const struct ggml_tensor * src5 = dst->src[5]; // C
  9242. const int ith = params->ith;
  9243. const int nth = params->nth;
  9244. const int64_t nc = src0->ne[0]; // d_state
  9245. const int64_t nr = src0->ne[1]; // d_inner
  9246. const int64_t n_t = src1->ne[1]; // number of tokens per sequence
  9247. const int64_t n_s = src0->ne[2]; // number of sequences in the batch
  9248. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  9249. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9250. GGML_ASSERT(src1->nb[0] == sizeof(float));
  9251. GGML_ASSERT(src2->nb[0] == sizeof(float));
  9252. GGML_ASSERT(src3->nb[0] == sizeof(float));
  9253. GGML_ASSERT(src4->nb[0] == sizeof(float));
  9254. GGML_ASSERT(src5->nb[0] == sizeof(float));
  9255. // required for the dot product between s and C
  9256. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  9257. // required for per-sequence offsets for states
  9258. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  9259. // required to get correct offset for state destination (i.e. src1->nb[3])
  9260. GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
  9261. // rows per thread
  9262. const int dr = (nr + nth - 1)/nth;
  9263. // row range for this thread
  9264. const int ir0 = dr*ith;
  9265. const int ir1 = MIN(ir0 + dr, nr);
  9266. const int ir = ir1 - ir0;
  9267. for (int i3 = 0; i3 < n_s; ++i3) {
  9268. for (int i2 = 0; i2 < n_t; ++i2) {
  9269. const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
  9270. const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  9271. const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
  9272. const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  9273. const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
  9274. const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
  9275. float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  9276. float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
  9277. // use the output as the source for the next token-wise iterations
  9278. if (i2 > 0) { s0 = s; }
  9279. // d_inner
  9280. for (int i1 = 0; i1 < ir; ++i1) {
  9281. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  9282. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  9283. float x_dt = x[i1] * dt_soft_plus;
  9284. float sumf = 0.0f;
  9285. // d_state
  9286. for (int i0 = 0; i0 < nc; ++i0) {
  9287. int i = i0 + i1*nc;
  9288. // state = prev_state * dA + dB * x
  9289. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  9290. // y = rowwise_dotprod(state, C)
  9291. sumf += state * C[i0];
  9292. s[i] = state;
  9293. }
  9294. y[i1] = sumf;
  9295. }
  9296. }
  9297. }
  9298. }
  9299. static void ggml_compute_forward_ssm_scan(
  9300. const struct ggml_compute_params * params,
  9301. struct ggml_tensor * dst) {
  9302. switch (dst->src[0]->type) {
  9303. case GGML_TYPE_F32:
  9304. {
  9305. ggml_compute_forward_ssm_scan_f32(params, dst);
  9306. } break;
  9307. default:
  9308. {
  9309. GGML_ABORT("fatal error");
  9310. }
  9311. }
  9312. }
  9313. // ggml_compute_forward_win_part
  9314. static void ggml_compute_forward_win_part_f32(
  9315. const struct ggml_compute_params * params,
  9316. struct ggml_tensor * dst) {
  9317. UNUSED(params);
  9318. const struct ggml_tensor * src0 = dst->src[0];
  9319. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9320. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  9321. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  9322. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  9323. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  9324. assert(ne00 == ne0);
  9325. assert(ne3 == nep0*nep1);
  9326. // TODO: optimize / multi-thread
  9327. for (int py = 0; py < nep1; ++py) {
  9328. for (int px = 0; px < nep0; ++px) {
  9329. const int64_t i3 = py*nep0 + px;
  9330. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  9331. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  9332. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9333. const int64_t i02 = py*w + i2;
  9334. const int64_t i01 = px*w + i1;
  9335. const int64_t i00 = i0;
  9336. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  9337. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  9338. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  9339. ((float *) dst->data)[i] = 0.0f;
  9340. } else {
  9341. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  9342. }
  9343. }
  9344. }
  9345. }
  9346. }
  9347. }
  9348. }
  9349. static void ggml_compute_forward_win_part(
  9350. const struct ggml_compute_params * params,
  9351. struct ggml_tensor * dst) {
  9352. const struct ggml_tensor * src0 = dst->src[0];
  9353. switch (src0->type) {
  9354. case GGML_TYPE_F32:
  9355. {
  9356. ggml_compute_forward_win_part_f32(params, dst);
  9357. } break;
  9358. default:
  9359. {
  9360. GGML_ABORT("fatal error");
  9361. }
  9362. }
  9363. }
  9364. // ggml_compute_forward_win_unpart
  9365. static void ggml_compute_forward_win_unpart_f32(
  9366. const struct ggml_compute_params * params,
  9367. struct ggml_tensor * dst) {
  9368. UNUSED(params);
  9369. const struct ggml_tensor * src0 = dst->src[0];
  9370. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9371. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  9372. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  9373. // padding
  9374. const int px = (w - ne1%w)%w;
  9375. //const int py = (w - ne2%w)%w;
  9376. const int npx = (px + ne1)/w;
  9377. //const int npy = (py + ne2)/w;
  9378. assert(ne0 == ne00);
  9379. // TODO: optimize / multi-thread
  9380. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  9381. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  9382. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9383. const int ip2 = i2/w;
  9384. const int ip1 = i1/w;
  9385. const int64_t i02 = i2%w;
  9386. const int64_t i01 = i1%w;
  9387. const int64_t i00 = i0;
  9388. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  9389. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  9390. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  9391. }
  9392. }
  9393. }
  9394. }
  9395. static void ggml_compute_forward_win_unpart(
  9396. const struct ggml_compute_params * params,
  9397. struct ggml_tensor * dst) {
  9398. const struct ggml_tensor * src0 = dst->src[0];
  9399. switch (src0->type) {
  9400. case GGML_TYPE_F32:
  9401. {
  9402. ggml_compute_forward_win_unpart_f32(params, dst);
  9403. } break;
  9404. default:
  9405. {
  9406. GGML_ABORT("fatal error");
  9407. }
  9408. }
  9409. }
  9410. //gmml_compute_forward_unary
  9411. static void ggml_compute_forward_unary(
  9412. const struct ggml_compute_params * params,
  9413. struct ggml_tensor * dst) {
  9414. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  9415. switch (op) {
  9416. case GGML_UNARY_OP_ABS:
  9417. {
  9418. ggml_compute_forward_abs(params, dst);
  9419. } break;
  9420. case GGML_UNARY_OP_SGN:
  9421. {
  9422. ggml_compute_forward_sgn(params, dst);
  9423. } break;
  9424. case GGML_UNARY_OP_NEG:
  9425. {
  9426. ggml_compute_forward_neg(params, dst);
  9427. } break;
  9428. case GGML_UNARY_OP_STEP:
  9429. {
  9430. ggml_compute_forward_step(params, dst);
  9431. } break;
  9432. case GGML_UNARY_OP_TANH:
  9433. {
  9434. ggml_compute_forward_tanh(params, dst);
  9435. } break;
  9436. case GGML_UNARY_OP_ELU:
  9437. {
  9438. ggml_compute_forward_elu(params, dst);
  9439. } break;
  9440. case GGML_UNARY_OP_RELU:
  9441. {
  9442. ggml_compute_forward_relu(params, dst);
  9443. } break;
  9444. case GGML_UNARY_OP_SIGMOID:
  9445. {
  9446. ggml_compute_forward_sigmoid(params, dst);
  9447. } break;
  9448. case GGML_UNARY_OP_GELU:
  9449. {
  9450. ggml_compute_forward_gelu(params, dst);
  9451. } break;
  9452. case GGML_UNARY_OP_GELU_QUICK:
  9453. {
  9454. ggml_compute_forward_gelu_quick(params, dst);
  9455. } break;
  9456. case GGML_UNARY_OP_SILU:
  9457. {
  9458. ggml_compute_forward_silu(params, dst);
  9459. } break;
  9460. case GGML_UNARY_OP_HARDSWISH:
  9461. {
  9462. ggml_compute_forward_hardswish(params, dst);
  9463. } break;
  9464. case GGML_UNARY_OP_HARDSIGMOID:
  9465. {
  9466. ggml_compute_forward_hardsigmoid(params, dst);
  9467. } break;
  9468. case GGML_UNARY_OP_EXP:
  9469. {
  9470. ggml_compute_forward_exp(params, dst);
  9471. } break;
  9472. default:
  9473. {
  9474. GGML_ABORT("fatal error");
  9475. }
  9476. }
  9477. }
  9478. // ggml_compute_forward_get_rel_pos
  9479. static void ggml_compute_forward_get_rel_pos_f16(
  9480. const struct ggml_compute_params * params,
  9481. struct ggml_tensor * dst) {
  9482. UNUSED(params);
  9483. const struct ggml_tensor * src0 = dst->src[0];
  9484. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  9485. GGML_TENSOR_UNARY_OP_LOCALS
  9486. const int64_t w = ne1;
  9487. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  9488. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  9489. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  9490. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  9491. const int64_t pos = (w - i1 - 1) + i2;
  9492. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9493. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  9494. }
  9495. }
  9496. }
  9497. }
  9498. static void ggml_compute_forward_get_rel_pos(
  9499. const struct ggml_compute_params * params,
  9500. struct ggml_tensor * dst) {
  9501. const struct ggml_tensor * src0 = dst->src[0];
  9502. switch (src0->type) {
  9503. case GGML_TYPE_F16:
  9504. case GGML_TYPE_BF16:
  9505. {
  9506. ggml_compute_forward_get_rel_pos_f16(params, dst);
  9507. } break;
  9508. default:
  9509. {
  9510. GGML_ABORT("fatal error");
  9511. }
  9512. }
  9513. }
  9514. // ggml_compute_forward_add_rel_pos
  9515. static void ggml_compute_forward_add_rel_pos_f32(
  9516. const struct ggml_compute_params * params,
  9517. struct ggml_tensor * dst) {
  9518. const struct ggml_tensor * src0 = dst->src[0];
  9519. const struct ggml_tensor * src1 = dst->src[1];
  9520. const struct ggml_tensor * src2 = dst->src[2];
  9521. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  9522. if (!inplace) {
  9523. if (params->ith == 0) {
  9524. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  9525. }
  9526. ggml_barrier(params->threadpool);
  9527. }
  9528. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  9529. float * src1_data = (float *) src1->data;
  9530. float * src2_data = (float *) src2->data;
  9531. float * dst_data = (float *) dst->data;
  9532. const int64_t ne10 = src1->ne[0];
  9533. const int64_t ne11 = src1->ne[1];
  9534. const int64_t ne12 = src1->ne[2];
  9535. const int64_t ne13 = src1->ne[3];
  9536. const int ith = params->ith;
  9537. const int nth = params->nth;
  9538. // total patches in dst
  9539. const int np = ne13;
  9540. // patches per thread
  9541. const int dp = (np + nth - 1)/nth;
  9542. // patch range for this thread
  9543. const int ip0 = dp*ith;
  9544. const int ip1 = MIN(ip0 + dp, np);
  9545. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  9546. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9547. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9548. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  9549. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9550. const int64_t jp0 = jp1 + i10;
  9551. const float src1_e = src1_data[jp0];
  9552. const float src2_e = src2_data[jp0];
  9553. const int64_t jdh = jp0 * ne10;
  9554. const int64_t jdw = jdh - (ne10 - 1) * i10;
  9555. for (int64_t j = 0; j < ne10; ++j) {
  9556. dst_data[jdh + j ] += src2_e;
  9557. dst_data[jdw + j*ne10] += src1_e;
  9558. }
  9559. }
  9560. }
  9561. }
  9562. }
  9563. }
  9564. static void ggml_compute_forward_add_rel_pos(
  9565. const struct ggml_compute_params * params,
  9566. struct ggml_tensor * dst) {
  9567. const struct ggml_tensor * src0 = dst->src[0];
  9568. switch (src0->type) {
  9569. case GGML_TYPE_F32:
  9570. {
  9571. ggml_compute_forward_add_rel_pos_f32(params, dst);
  9572. } break;
  9573. default:
  9574. {
  9575. GGML_ABORT("fatal error");
  9576. }
  9577. }
  9578. }
  9579. // ggml_compute_forward_rwkv_wkv6
  9580. static void ggml_compute_forward_rwkv_wkv6_f32(
  9581. const struct ggml_compute_params * params,
  9582. struct ggml_tensor * dst) {
  9583. const int64_t T = dst->src[1]->ne[3];
  9584. const int64_t C = dst->ne[0];
  9585. const int64_t HEADS = dst->src[1]->ne[2];
  9586. const int64_t n_seqs = dst->src[5]->ne[1];
  9587. const int64_t head_size = C / HEADS;
  9588. float * dst_data = (float *) dst->data;
  9589. float * state = ((float *) dst->data) + C * T;
  9590. const int ith = params->ith;
  9591. const int nth = params->nth;
  9592. if (ith >= HEADS) {
  9593. return;
  9594. }
  9595. const int h_start = (HEADS * ith) / nth;
  9596. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  9597. (HEADS * (ith + 1)) / nth : HEADS;
  9598. float * k = (float *) dst->src[0]->data;
  9599. float * v = (float *) dst->src[1]->data;
  9600. float * r = (float *) dst->src[2]->data;
  9601. float * time_faaaa = (float *) dst->src[3]->data;
  9602. float * time_decay = (float *) dst->src[4]->data;
  9603. size_t t_stride = HEADS * head_size; // Same to C
  9604. size_t h_stride = C / HEADS;
  9605. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  9606. size_t h_stride_2d = head_size * head_size;
  9607. if (ith == 0) {
  9608. memset(dst_data, 0, T * C * sizeof(float));
  9609. }
  9610. ggml_barrier(params->threadpool);
  9611. #if defined(__AVX__) && !defined(__AVX512F__)
  9612. #define GGML_F32X GGML_F32x8
  9613. #define GGML_F32X_SET1 GGML_F32x8_SET1
  9614. #define GGML_F32X_LOAD GGML_F32x8_LOAD
  9615. #define GGML_F32X_STORE GGML_F32x8_STORE
  9616. #define GGML_F32X_MUL GGML_F32x8_MUL
  9617. #define GGML_F32X_FMA GGML_F32x8_FMA
  9618. #define WKV_VECTOR_SIZE 8
  9619. #elif defined(__AVX512F__)
  9620. #define GGML_F32X GGML_F32x16
  9621. #define GGML_F32X_SET1 GGML_F32x16_SET1
  9622. #define GGML_F32X_LOAD GGML_F32x16_LOAD
  9623. #define GGML_F32X_STORE GGML_F32x16_STORE
  9624. #define GGML_F32X_MUL GGML_F32x16_MUL
  9625. #define GGML_F32X_FMA GGML_F32x16_FMA
  9626. #define WKV_VECTOR_SIZE 16
  9627. #elif defined(__ARM_NEON) && defined(__aarch64__)
  9628. #define GGML_F32X GGML_F32x4
  9629. #define GGML_F32X_SET1 GGML_F32x4_SET1
  9630. #define GGML_F32X_LOAD GGML_F32x4_LOAD
  9631. #define GGML_F32X_STORE GGML_F32x4_STORE
  9632. #define GGML_F32X_MUL GGML_F32x4_MUL
  9633. #define GGML_F32X_FMA GGML_F32x4_FMA
  9634. #define WKV_VECTOR_SIZE 4
  9635. #endif
  9636. #ifdef WKV_VECTOR_SIZE
  9637. const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
  9638. for (int64_t t = 0; t < T; t++) {
  9639. size_t t_offset = t * t_stride;
  9640. size_t state_offset = head_size * C * (t / (T / n_seqs));
  9641. float * state_cur = state + state_offset;
  9642. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  9643. for (int64_t h = h_start; h < h_end; h++) {
  9644. size_t h_offset = h * h_stride;
  9645. size_t t_h_offset = t_offset + h_offset;
  9646. size_t h_2d_offset = h * h_stride_2d;
  9647. for (int64_t i = 0; i < head_size; i++) {
  9648. size_t t_h_i_offset = t_h_offset + i;
  9649. size_t h_i_offset = h_offset + i;
  9650. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  9651. float k_val = k[t_h_i_offset];
  9652. float r_val = r[t_h_i_offset];
  9653. float time_faaaa_val = time_faaaa[h_i_offset];
  9654. float time_decay_val = time_decay[t_h_i_offset];
  9655. // Broadcast scalar values to vectors
  9656. GGML_F32X k_vec = GGML_F32X_SET1(k_val);
  9657. GGML_F32X r_vec = GGML_F32X_SET1(r_val);
  9658. GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
  9659. GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
  9660. for (int64_t j = 0; j < vec_count; j++) {
  9661. size_t base_j = j * WKV_VECTOR_SIZE;
  9662. size_t t_h_j_offset = t_h_offset + base_j;
  9663. size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
  9664. // Load x elements at once
  9665. GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
  9666. GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
  9667. GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
  9668. // Compute kv = v * k
  9669. GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
  9670. // Compute temp = kv * time_faaaa + prev_state
  9671. GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
  9672. // Update dst: dst += temp * r
  9673. dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
  9674. GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
  9675. // Update state: state = prev_state * time_decay + kv
  9676. GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
  9677. GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
  9678. }
  9679. // Handle remaining elements, this will not be used.
  9680. for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
  9681. size_t t_h_j_offset = t_h_offset + j;
  9682. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  9683. float v_val = v[t_h_j_offset];
  9684. float kv_val = v_val * k_val;
  9685. float prev_state_val = state_prev[h_2d_i_j_offset];
  9686. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  9687. dst_data[t_h_j_offset] += temp_val * r_val;
  9688. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  9689. }
  9690. }
  9691. }
  9692. }
  9693. #else
  9694. // basically fused operations:
  9695. // dst = r @ (time_faaaa * (k @ v) + state),
  9696. // state = time_decay * state + (k @ v),
  9697. // recursive through each token
  9698. for (int64_t t = 0; t < T; t++) {
  9699. size_t t_offset = t * t_stride;
  9700. size_t state_offset = head_size * C * (t / (T / n_seqs));
  9701. float * state_cur = state + state_offset;
  9702. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  9703. for (int64_t h = h_start; h < h_end; h++) {
  9704. size_t h_offset = h * h_stride;
  9705. size_t t_h_offset = t_offset + h_offset;
  9706. size_t h_2d_offset = h * h_stride_2d;
  9707. for (int64_t i = 0; i < head_size; i++) {
  9708. size_t t_h_i_offset = t_h_offset + i;
  9709. size_t h_i_offset = h_offset + i;
  9710. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  9711. float k_val = k[t_h_i_offset];
  9712. float r_val = r[t_h_i_offset];
  9713. float time_faaaa_val = time_faaaa[h_i_offset];
  9714. // RWKV v6: different time_decay for each token.
  9715. float time_decay_val = time_decay[t_h_i_offset];
  9716. for (int64_t j = 0; j < head_size; j++) {
  9717. size_t t_h_j_offset = t_h_offset + j;
  9718. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  9719. float v_val = v[t_h_j_offset];
  9720. float kv_val = v_val * k_val;
  9721. float prev_state_val = state_prev[h_2d_i_j_offset];
  9722. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  9723. dst_data[t_h_j_offset] += temp_val * r_val;
  9724. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  9725. }
  9726. }
  9727. }
  9728. }
  9729. #endif
  9730. }
  9731. static void ggml_compute_forward_rwkv_wkv6(
  9732. const struct ggml_compute_params * params,
  9733. struct ggml_tensor * dst) {
  9734. const struct ggml_tensor * src0 = dst->src[0];
  9735. switch (src0->type) {
  9736. case GGML_TYPE_F32:
  9737. {
  9738. ggml_compute_forward_rwkv_wkv6_f32(params, dst);
  9739. } break;
  9740. default:
  9741. {
  9742. GGML_ABORT("fatal error");
  9743. }
  9744. }
  9745. }
  9746. // ggml_compute_forward_map_unary
  9747. static void ggml_compute_forward_map_unary_f32(
  9748. const struct ggml_compute_params * params,
  9749. struct ggml_tensor * dst,
  9750. const ggml_unary_op_f32_t fun) {
  9751. const struct ggml_tensor * src0 = dst->src[0];
  9752. if (params->ith != 0) {
  9753. return;
  9754. }
  9755. assert(ggml_is_contiguous_1(src0));
  9756. assert(ggml_is_contiguous_1(dst));
  9757. assert(ggml_are_same_shape(src0, dst));
  9758. const int n = ggml_nrows(src0);
  9759. const int nc = src0->ne[0];
  9760. for (int i = 0; i < n; i++) {
  9761. fun(nc,
  9762. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9763. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9764. }
  9765. }
  9766. static void ggml_compute_forward_map_unary(
  9767. const struct ggml_compute_params * params,
  9768. struct ggml_tensor * dst,
  9769. const ggml_unary_op_f32_t fun) {
  9770. const struct ggml_tensor * src0 = dst->src[0];
  9771. switch (src0->type) {
  9772. case GGML_TYPE_F32:
  9773. {
  9774. ggml_compute_forward_map_unary_f32(params, dst, fun);
  9775. } break;
  9776. default:
  9777. {
  9778. GGML_ABORT("fatal error");
  9779. }
  9780. }
  9781. }
  9782. // ggml_compute_forward_map_binary
  9783. static void ggml_compute_forward_map_binary_f32(
  9784. const struct ggml_compute_params * params,
  9785. struct ggml_tensor * dst,
  9786. const ggml_binary_op_f32_t fun) {
  9787. const struct ggml_tensor * src0 = dst->src[0];
  9788. const struct ggml_tensor * src1 = dst->src[1];
  9789. if (params->ith != 0) {
  9790. return;
  9791. }
  9792. assert(ggml_is_contiguous_1(src0));
  9793. assert(ggml_is_contiguous_1(src1));
  9794. assert(ggml_is_contiguous_1(dst));
  9795. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  9796. const int n = ggml_nrows(src0);
  9797. const int nc = src0->ne[0];
  9798. for (int i = 0; i < n; i++) {
  9799. fun(nc,
  9800. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9801. (float *) ((char *) src0->data + i*(src0->nb[1])),
  9802. (float *) ((char *) src1->data + i*(src1->nb[1])));
  9803. }
  9804. }
  9805. static void ggml_compute_forward_map_binary(
  9806. const struct ggml_compute_params * params,
  9807. struct ggml_tensor * dst,
  9808. const ggml_binary_op_f32_t fun) {
  9809. const struct ggml_tensor * src0 = dst->src[0];
  9810. switch (src0->type) {
  9811. case GGML_TYPE_F32:
  9812. {
  9813. ggml_compute_forward_map_binary_f32(params, dst, fun);
  9814. } break;
  9815. default:
  9816. {
  9817. GGML_ABORT("fatal error");
  9818. }
  9819. }
  9820. }
  9821. // ggml_compute_forward_map_custom1
  9822. static void ggml_compute_forward_map_custom1_f32(
  9823. const struct ggml_compute_params * params,
  9824. struct ggml_tensor * dst,
  9825. const ggml_custom1_op_f32_t fun) {
  9826. const struct ggml_tensor * a = dst->src[0];
  9827. if (params->ith != 0) {
  9828. return;
  9829. }
  9830. fun(dst, a);
  9831. }
  9832. // ggml_compute_forward_map_custom2
  9833. static void ggml_compute_forward_map_custom2_f32(
  9834. const struct ggml_compute_params * params,
  9835. struct ggml_tensor * dst,
  9836. const ggml_custom2_op_f32_t fun) {
  9837. const struct ggml_tensor * a = dst->src[0];
  9838. const struct ggml_tensor * b = dst->src[1];
  9839. if (params->ith != 0) {
  9840. return;
  9841. }
  9842. fun(dst, a, b);
  9843. }
  9844. // ggml_compute_forward_map_custom3
  9845. static void ggml_compute_forward_map_custom3_f32(
  9846. const struct ggml_compute_params * params,
  9847. struct ggml_tensor * dst,
  9848. const ggml_custom3_op_f32_t fun) {
  9849. const struct ggml_tensor * a = dst->src[0];
  9850. const struct ggml_tensor * b = dst->src[1];
  9851. const struct ggml_tensor * c = dst->src[1];
  9852. if (params->ith != 0) {
  9853. return;
  9854. }
  9855. fun(dst, a, b, c);
  9856. }
  9857. // ggml_compute_forward_map_custom1
  9858. static void ggml_compute_forward_map_custom1(
  9859. const struct ggml_compute_params * params,
  9860. struct ggml_tensor * dst) {
  9861. const struct ggml_tensor * a = dst->src[0];
  9862. struct ggml_map_custom1_op_params p;
  9863. memcpy(&p, dst->op_params, sizeof(p));
  9864. p.fun(dst, a, params->ith, params->nth, p.userdata);
  9865. }
  9866. // ggml_compute_forward_map_custom2
  9867. static void ggml_compute_forward_map_custom2(
  9868. const struct ggml_compute_params * params,
  9869. struct ggml_tensor * dst) {
  9870. const struct ggml_tensor * a = dst->src[0];
  9871. const struct ggml_tensor * b = dst->src[1];
  9872. struct ggml_map_custom2_op_params p;
  9873. memcpy(&p, dst->op_params, sizeof(p));
  9874. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  9875. }
  9876. // ggml_compute_forward_map_custom3
  9877. static void ggml_compute_forward_map_custom3(
  9878. const struct ggml_compute_params * params,
  9879. struct ggml_tensor * dst) {
  9880. const struct ggml_tensor * a = dst->src[0];
  9881. const struct ggml_tensor * b = dst->src[1];
  9882. const struct ggml_tensor * c = dst->src[2];
  9883. struct ggml_map_custom3_op_params p;
  9884. memcpy(&p, dst->op_params, sizeof(p));
  9885. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  9886. }
  9887. // ggml_compute_forward_cross_entropy_loss
  9888. static void ggml_compute_forward_cross_entropy_loss_f32(
  9889. const struct ggml_compute_params * params,
  9890. struct ggml_tensor * dst) {
  9891. const struct ggml_tensor * src0 = dst->src[0];
  9892. const struct ggml_tensor * src1 = dst->src[1];
  9893. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9894. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9895. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  9896. GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
  9897. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  9898. GGML_ASSERT(ggml_is_scalar(dst));
  9899. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  9900. // TODO: handle transposed/permuted matrices
  9901. const int64_t nc = src0->ne[0];
  9902. const int64_t nr = ggml_nrows(src0);
  9903. const int ith = params->ith;
  9904. const int nth = params->nth;
  9905. float * sums = (float *) params->wdata;
  9906. float * st = ((float *) params->wdata) + nth + ith*nc;
  9907. float sum_thread = 0.0f;
  9908. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  9909. // rows per thread
  9910. const int64_t dr = (nr + nth - 1)/nth;
  9911. // row range for this thread
  9912. const int64_t ir0 = dr*ith;
  9913. const int64_t ir1 = MIN(ir0 + dr, nr);
  9914. for (int64_t i1 = ir0; i1 < ir1; ++i1) {
  9915. const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
  9916. const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
  9917. #ifndef NDEBUG
  9918. for (int64_t i = 0; i < nc; ++i) {
  9919. //printf("p[%d] = %f\n", i, p[i]);
  9920. assert(!isnan(s0[i]));
  9921. assert(!isnan(s1[i]));
  9922. }
  9923. #endif
  9924. float max = -INFINITY;
  9925. ggml_vec_max_f32(nc, &max, s0);
  9926. const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
  9927. assert(sum_softmax >= 0.0);
  9928. ggml_vec_add1_f32(nc, st, st, -sum_softmax);
  9929. ggml_vec_mul_f32(nc, st, st, s1);
  9930. float sum_st = 0.0f;
  9931. ggml_vec_sum_f32(nc, &sum_st, st);
  9932. sum_thread += sum_st;
  9933. #ifndef NDEBUG
  9934. for (int64_t i = 0; i < nc; ++i) {
  9935. assert(!isnan(st[i]));
  9936. assert(!isinf(st[i]));
  9937. }
  9938. #endif
  9939. }
  9940. sums[ith] = sum_thread;
  9941. ggml_barrier(params->threadpool);
  9942. if (ith == 0) {
  9943. float * dp = (float *) dst->data;
  9944. ggml_vec_sum_f32(nth, dp, sums);
  9945. dp[0] *= -1.0f / (float) nr;
  9946. }
  9947. }
  9948. static void ggml_compute_forward_cross_entropy_loss(
  9949. const struct ggml_compute_params * params,
  9950. struct ggml_tensor * dst) {
  9951. const struct ggml_tensor * src0 = dst->src[0];
  9952. switch (src0->type) {
  9953. case GGML_TYPE_F32:
  9954. {
  9955. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  9956. } break;
  9957. default:
  9958. {
  9959. GGML_ABORT("fatal error");
  9960. }
  9961. }
  9962. }
  9963. // ggml_compute_forward_cross_entropy_loss_back
  9964. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  9965. const struct ggml_compute_params * params,
  9966. struct ggml_tensor * dst) {
  9967. const struct ggml_tensor * src0 = dst->src[0];
  9968. const struct ggml_tensor * src1 = dst->src[1];
  9969. const struct ggml_tensor * opt0 = dst->src[2];
  9970. GGML_ASSERT(ggml_is_contiguous(dst));
  9971. GGML_ASSERT(ggml_is_contiguous(src0));
  9972. GGML_ASSERT(ggml_is_contiguous(src1));
  9973. GGML_ASSERT(ggml_is_contiguous(opt0));
  9974. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  9975. const int64_t ith = params->ith;
  9976. const int64_t nth = params->nth;
  9977. // TODO: handle transposed/permuted matrices
  9978. const int64_t nc = src0->ne[0];
  9979. const int64_t nr = ggml_nrows(src0);
  9980. // rows per thread
  9981. const int64_t dr = (nr + nth - 1)/nth;
  9982. // row range for this thread
  9983. const int64_t ir0 = dr*ith;
  9984. const int64_t ir1 = MIN(ir0 + dr, nr);
  9985. const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
  9986. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  9987. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  9988. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  9989. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  9990. #ifndef NDEBUG
  9991. for (int64_t i = 0; i < nc; ++i) {
  9992. //printf("p[%d] = %f\n", i, p[i]);
  9993. assert(!isnan(s0[i]));
  9994. assert(!isnan(s1[i]));
  9995. }
  9996. #endif
  9997. // soft_max
  9998. float max = -INFINITY;
  9999. ggml_vec_max_f32(nc, &max, s0);
  10000. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  10001. assert(sum > 0.0);
  10002. ggml_vec_scale_f32(nc, ds0, 1.0/sum);
  10003. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  10004. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  10005. ggml_vec_scale_f32(nc, ds0, d_by_nr);
  10006. #ifndef NDEBUG
  10007. for (int64_t i = 0; i < nc; ++i) {
  10008. assert(!isnan(ds0[i]));
  10009. assert(!isinf(ds0[i]));
  10010. }
  10011. #endif
  10012. }
  10013. }
  10014. static void ggml_compute_forward_cross_entropy_loss_back(
  10015. const struct ggml_compute_params * params,
  10016. struct ggml_tensor * dst) {
  10017. const struct ggml_tensor * src0 = dst->src[0];
  10018. switch (src0->type) {
  10019. case GGML_TYPE_F32:
  10020. {
  10021. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  10022. } break;
  10023. default:
  10024. {
  10025. GGML_ABORT("fatal error");
  10026. }
  10027. }
  10028. }
  10029. static void ggml_compute_forward_opt_step_adamw_f32(
  10030. const struct ggml_compute_params * params,
  10031. struct ggml_tensor * dst) {
  10032. const struct ggml_tensor * src0 = dst->src[0];
  10033. const struct ggml_tensor * src0_grad = dst->src[1];
  10034. const struct ggml_tensor * src0_grad_m = dst->src[2];
  10035. const struct ggml_tensor * src0_grad_v = dst->src[3];
  10036. const struct ggml_tensor * adamw_params = dst->src[4];
  10037. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  10038. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
  10039. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
  10040. GGML_ASSERT(ggml_nelements(adamw_params) == 7);
  10041. const int ith = params->ith;
  10042. const int nth = params->nth;
  10043. const int nr = ggml_nrows(src0);
  10044. GGML_TENSOR_UNARY_OP_LOCALS
  10045. GGML_ASSERT(nb00 == sizeof(float));
  10046. // rows per thread
  10047. const int dr = (nr + nth - 1)/nth;
  10048. // row range for this thread
  10049. const int ir0 = dr*ith;
  10050. const int ir1 = MIN(ir0 + dr, nr);
  10051. const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
  10052. const float alpha = adamw_params_ptr[0];
  10053. const float beta1 = adamw_params_ptr[1];
  10054. const float beta2 = adamw_params_ptr[2];
  10055. const float eps = adamw_params_ptr[3];
  10056. const float wd = adamw_params_ptr[4];
  10057. const float beta1h = adamw_params_ptr[5];
  10058. const float beta2h = adamw_params_ptr[6];
  10059. for (int ir = ir0; ir < ir1; ++ir) {
  10060. const int64_t i03 = ir/(ne02*ne01);
  10061. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  10062. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  10063. const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
  10064. float * w = (float *) ((char *) src0->data + offset); // weight
  10065. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  10066. float * m = (float *) ((char *) src0_grad_m->data + offset);
  10067. float * v = (float *) ((char *) src0_grad_v->data + offset);
  10068. for (int i00 = 0; i00 < ne00; ++i00) {
  10069. m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
  10070. v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
  10071. const float mh = m[i00]*beta1h;
  10072. const float vh = sqrtf(v[i00]*beta2h) + eps;
  10073. // The weight decay is applied independently of the Adam momenta m and v.
  10074. // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
  10075. // See: https://arxiv.org/pdf/1711.05101v3.pdf
  10076. w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
  10077. }
  10078. }
  10079. }
  10080. static void ggml_compute_forward_opt_step_adamw(
  10081. const struct ggml_compute_params * params,
  10082. struct ggml_tensor * dst) {
  10083. const struct ggml_tensor * src0 = dst->src[0];
  10084. switch (src0->type) {
  10085. case GGML_TYPE_F32:
  10086. {
  10087. ggml_compute_forward_opt_step_adamw_f32(params, dst);
  10088. } break;
  10089. default:
  10090. {
  10091. GGML_ABORT("fatal error");
  10092. }
  10093. }
  10094. }
  10095. /////////////////////////////////
  10096. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10097. GGML_ASSERT(params);
  10098. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  10099. return;
  10100. }
  10101. switch (tensor->op) {
  10102. case GGML_OP_DUP:
  10103. {
  10104. ggml_compute_forward_dup(params, tensor);
  10105. } break;
  10106. case GGML_OP_ADD:
  10107. {
  10108. ggml_compute_forward_add(params, tensor);
  10109. } break;
  10110. case GGML_OP_ADD1:
  10111. {
  10112. ggml_compute_forward_add1(params, tensor);
  10113. } break;
  10114. case GGML_OP_ACC:
  10115. {
  10116. ggml_compute_forward_acc(params, tensor);
  10117. } break;
  10118. case GGML_OP_SUB:
  10119. {
  10120. ggml_compute_forward_sub(params, tensor);
  10121. } break;
  10122. case GGML_OP_MUL:
  10123. {
  10124. ggml_compute_forward_mul(params, tensor);
  10125. } break;
  10126. case GGML_OP_DIV:
  10127. {
  10128. ggml_compute_forward_div(params, tensor);
  10129. } break;
  10130. case GGML_OP_SQR:
  10131. {
  10132. ggml_compute_forward_sqr(params, tensor);
  10133. } break;
  10134. case GGML_OP_SQRT:
  10135. {
  10136. ggml_compute_forward_sqrt(params, tensor);
  10137. } break;
  10138. case GGML_OP_LOG:
  10139. {
  10140. ggml_compute_forward_log(params, tensor);
  10141. } break;
  10142. case GGML_OP_SIN:
  10143. {
  10144. ggml_compute_forward_sin(params, tensor);
  10145. } break;
  10146. case GGML_OP_COS:
  10147. {
  10148. ggml_compute_forward_cos(params, tensor);
  10149. } break;
  10150. case GGML_OP_SUM:
  10151. {
  10152. ggml_compute_forward_sum(params, tensor);
  10153. } break;
  10154. case GGML_OP_SUM_ROWS:
  10155. {
  10156. ggml_compute_forward_sum_rows(params, tensor);
  10157. } break;
  10158. case GGML_OP_MEAN:
  10159. {
  10160. ggml_compute_forward_mean(params, tensor);
  10161. } break;
  10162. case GGML_OP_ARGMAX:
  10163. {
  10164. ggml_compute_forward_argmax(params, tensor);
  10165. } break;
  10166. case GGML_OP_COUNT_EQUAL:
  10167. {
  10168. ggml_compute_forward_count_equal(params, tensor);
  10169. } break;
  10170. case GGML_OP_REPEAT:
  10171. {
  10172. ggml_compute_forward_repeat(params, tensor);
  10173. } break;
  10174. case GGML_OP_REPEAT_BACK:
  10175. {
  10176. ggml_compute_forward_repeat_back(params, tensor);
  10177. } break;
  10178. case GGML_OP_CONCAT:
  10179. {
  10180. ggml_compute_forward_concat(params, tensor);
  10181. } break;
  10182. case GGML_OP_SILU_BACK:
  10183. {
  10184. ggml_compute_forward_silu_back(params, tensor);
  10185. } break;
  10186. case GGML_OP_NORM:
  10187. {
  10188. ggml_compute_forward_norm(params, tensor);
  10189. } break;
  10190. case GGML_OP_RMS_NORM:
  10191. {
  10192. ggml_compute_forward_rms_norm(params, tensor);
  10193. } break;
  10194. case GGML_OP_RMS_NORM_BACK:
  10195. {
  10196. ggml_compute_forward_rms_norm_back(params, tensor);
  10197. } break;
  10198. case GGML_OP_GROUP_NORM:
  10199. {
  10200. ggml_compute_forward_group_norm(params, tensor);
  10201. } break;
  10202. case GGML_OP_MUL_MAT:
  10203. {
  10204. ggml_compute_forward_mul_mat(params, tensor);
  10205. } break;
  10206. case GGML_OP_MUL_MAT_ID:
  10207. {
  10208. ggml_compute_forward_mul_mat_id(params, tensor);
  10209. } break;
  10210. case GGML_OP_OUT_PROD:
  10211. {
  10212. ggml_compute_forward_out_prod(params, tensor);
  10213. } break;
  10214. case GGML_OP_SCALE:
  10215. {
  10216. ggml_compute_forward_scale(params, tensor);
  10217. } break;
  10218. case GGML_OP_SET:
  10219. {
  10220. ggml_compute_forward_set(params, tensor);
  10221. } break;
  10222. case GGML_OP_CPY:
  10223. {
  10224. ggml_compute_forward_cpy(params, tensor);
  10225. } break;
  10226. case GGML_OP_CONT:
  10227. {
  10228. ggml_compute_forward_cont(params, tensor);
  10229. } break;
  10230. case GGML_OP_RESHAPE:
  10231. {
  10232. ggml_compute_forward_reshape(params, tensor);
  10233. } break;
  10234. case GGML_OP_VIEW:
  10235. {
  10236. ggml_compute_forward_view(params, tensor);
  10237. } break;
  10238. case GGML_OP_PERMUTE:
  10239. {
  10240. ggml_compute_forward_permute(params, tensor);
  10241. } break;
  10242. case GGML_OP_TRANSPOSE:
  10243. {
  10244. ggml_compute_forward_transpose(params, tensor);
  10245. } break;
  10246. case GGML_OP_GET_ROWS:
  10247. {
  10248. ggml_compute_forward_get_rows(params, tensor);
  10249. } break;
  10250. case GGML_OP_GET_ROWS_BACK:
  10251. {
  10252. ggml_compute_forward_get_rows_back(params, tensor);
  10253. } break;
  10254. case GGML_OP_DIAG:
  10255. {
  10256. ggml_compute_forward_diag(params, tensor);
  10257. } break;
  10258. case GGML_OP_DIAG_MASK_INF:
  10259. {
  10260. ggml_compute_forward_diag_mask_inf(params, tensor);
  10261. } break;
  10262. case GGML_OP_DIAG_MASK_ZERO:
  10263. {
  10264. ggml_compute_forward_diag_mask_zero(params, tensor);
  10265. } break;
  10266. case GGML_OP_SOFT_MAX:
  10267. {
  10268. ggml_compute_forward_soft_max(params, tensor);
  10269. } break;
  10270. case GGML_OP_SOFT_MAX_BACK:
  10271. {
  10272. ggml_compute_forward_soft_max_back(params, tensor);
  10273. } break;
  10274. case GGML_OP_ROPE:
  10275. {
  10276. ggml_compute_forward_rope(params, tensor);
  10277. } break;
  10278. case GGML_OP_ROPE_BACK:
  10279. {
  10280. ggml_compute_forward_rope_back(params, tensor);
  10281. } break;
  10282. case GGML_OP_CLAMP:
  10283. {
  10284. ggml_compute_forward_clamp(params, tensor);
  10285. } break;
  10286. case GGML_OP_CONV_TRANSPOSE_1D:
  10287. {
  10288. ggml_compute_forward_conv_transpose_1d(params, tensor);
  10289. } break;
  10290. case GGML_OP_IM2COL:
  10291. {
  10292. ggml_compute_forward_im2col(params, tensor);
  10293. } break;
  10294. case GGML_OP_IM2COL_BACK:
  10295. {
  10296. ggml_compute_forward_im2col_back_f32(params, tensor);
  10297. } break;
  10298. case GGML_OP_CONV_TRANSPOSE_2D:
  10299. {
  10300. ggml_compute_forward_conv_transpose_2d(params, tensor);
  10301. } break;
  10302. case GGML_OP_POOL_1D:
  10303. {
  10304. ggml_compute_forward_pool_1d(params, tensor);
  10305. } break;
  10306. case GGML_OP_POOL_2D:
  10307. {
  10308. ggml_compute_forward_pool_2d(params, tensor);
  10309. } break;
  10310. case GGML_OP_POOL_2D_BACK:
  10311. {
  10312. ggml_compute_forward_pool_2d_back(params, tensor);
  10313. } break;
  10314. case GGML_OP_UPSCALE:
  10315. {
  10316. ggml_compute_forward_upscale(params, tensor);
  10317. } break;
  10318. case GGML_OP_PAD:
  10319. {
  10320. ggml_compute_forward_pad(params, tensor);
  10321. } break;
  10322. case GGML_OP_ARANGE:
  10323. {
  10324. ggml_compute_forward_arange(params, tensor);
  10325. } break;
  10326. case GGML_OP_TIMESTEP_EMBEDDING:
  10327. {
  10328. ggml_compute_forward_timestep_embedding(params, tensor);
  10329. } break;
  10330. case GGML_OP_ARGSORT:
  10331. {
  10332. ggml_compute_forward_argsort(params, tensor);
  10333. } break;
  10334. case GGML_OP_LEAKY_RELU:
  10335. {
  10336. ggml_compute_forward_leaky_relu(params, tensor);
  10337. } break;
  10338. case GGML_OP_FLASH_ATTN_EXT:
  10339. {
  10340. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  10341. } break;
  10342. case GGML_OP_FLASH_ATTN_BACK:
  10343. {
  10344. int32_t t = ggml_get_op_params_i32(tensor, 0);
  10345. GGML_ASSERT(t == 0 || t == 1);
  10346. bool masked = t != 0;
  10347. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  10348. } break;
  10349. case GGML_OP_SSM_CONV:
  10350. {
  10351. ggml_compute_forward_ssm_conv(params, tensor);
  10352. } break;
  10353. case GGML_OP_SSM_SCAN:
  10354. {
  10355. ggml_compute_forward_ssm_scan(params, tensor);
  10356. } break;
  10357. case GGML_OP_WIN_PART:
  10358. {
  10359. ggml_compute_forward_win_part(params, tensor);
  10360. } break;
  10361. case GGML_OP_WIN_UNPART:
  10362. {
  10363. ggml_compute_forward_win_unpart(params, tensor);
  10364. } break;
  10365. case GGML_OP_UNARY:
  10366. {
  10367. ggml_compute_forward_unary(params, tensor);
  10368. } break;
  10369. case GGML_OP_GET_REL_POS:
  10370. {
  10371. ggml_compute_forward_get_rel_pos(params, tensor);
  10372. } break;
  10373. case GGML_OP_ADD_REL_POS:
  10374. {
  10375. ggml_compute_forward_add_rel_pos(params, tensor);
  10376. } break;
  10377. case GGML_OP_RWKV_WKV6:
  10378. {
  10379. ggml_compute_forward_rwkv_wkv6(params, tensor);
  10380. } break;
  10381. case GGML_OP_MAP_UNARY:
  10382. {
  10383. ggml_unary_op_f32_t fun;
  10384. memcpy(&fun, tensor->op_params, sizeof(fun));
  10385. ggml_compute_forward_map_unary(params, tensor, fun);
  10386. }
  10387. break;
  10388. case GGML_OP_MAP_BINARY:
  10389. {
  10390. ggml_binary_op_f32_t fun;
  10391. memcpy(&fun, tensor->op_params, sizeof(fun));
  10392. ggml_compute_forward_map_binary(params, tensor, fun);
  10393. }
  10394. break;
  10395. case GGML_OP_MAP_CUSTOM1_F32:
  10396. {
  10397. ggml_custom1_op_f32_t fun;
  10398. memcpy(&fun, tensor->op_params, sizeof(fun));
  10399. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  10400. }
  10401. break;
  10402. case GGML_OP_MAP_CUSTOM2_F32:
  10403. {
  10404. ggml_custom2_op_f32_t fun;
  10405. memcpy(&fun, tensor->op_params, sizeof(fun));
  10406. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  10407. }
  10408. break;
  10409. case GGML_OP_MAP_CUSTOM3_F32:
  10410. {
  10411. ggml_custom3_op_f32_t fun;
  10412. memcpy(&fun, tensor->op_params, sizeof(fun));
  10413. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  10414. }
  10415. break;
  10416. case GGML_OP_MAP_CUSTOM1:
  10417. {
  10418. ggml_compute_forward_map_custom1(params, tensor);
  10419. }
  10420. break;
  10421. case GGML_OP_MAP_CUSTOM2:
  10422. {
  10423. ggml_compute_forward_map_custom2(params, tensor);
  10424. }
  10425. break;
  10426. case GGML_OP_MAP_CUSTOM3:
  10427. {
  10428. ggml_compute_forward_map_custom3(params, tensor);
  10429. }
  10430. break;
  10431. case GGML_OP_CROSS_ENTROPY_LOSS:
  10432. {
  10433. ggml_compute_forward_cross_entropy_loss(params, tensor);
  10434. }
  10435. break;
  10436. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  10437. {
  10438. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  10439. }
  10440. break;
  10441. case GGML_OP_OPT_STEP_ADAMW:
  10442. {
  10443. ggml_compute_forward_opt_step_adamw(params, tensor);
  10444. }
  10445. break;
  10446. case GGML_OP_NONE:
  10447. {
  10448. // nop
  10449. } break;
  10450. case GGML_OP_COUNT:
  10451. {
  10452. GGML_ABORT("fatal error");
  10453. }
  10454. }
  10455. }
  10456. // Android's libc implementation "bionic" does not support setting affinity
  10457. #if defined(__gnu_linux__)
  10458. static void set_numa_thread_affinity(int thread_n) {
  10459. if (!ggml_is_numa()) {
  10460. return;
  10461. }
  10462. int node_num;
  10463. int rv;
  10464. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  10465. switch(g_state.numa.numa_strategy) {
  10466. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  10467. // run thread on node_num thread_n / (threads per node)
  10468. node_num = thread_n % g_state.numa.n_nodes;
  10469. break;
  10470. case GGML_NUMA_STRATEGY_ISOLATE:
  10471. // run thread on current_node
  10472. node_num = g_state.numa.current_node;
  10473. break;
  10474. case GGML_NUMA_STRATEGY_NUMACTL:
  10475. // use the cpuset that numactl gave us
  10476. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  10477. if (rv) {
  10478. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  10479. }
  10480. return;
  10481. default:
  10482. return;
  10483. }
  10484. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  10485. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  10486. CPU_ZERO_S(setsize, cpus);
  10487. for (size_t i = 0; i < node->n_cpus; ++i) {
  10488. CPU_SET_S(node->cpus[i], setsize, cpus);
  10489. }
  10490. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  10491. if (rv) {
  10492. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  10493. }
  10494. CPU_FREE(cpus);
  10495. }
  10496. static void clear_numa_thread_affinity(void) {
  10497. if (!ggml_is_numa()) {
  10498. return;
  10499. }
  10500. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  10501. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  10502. CPU_ZERO_S(setsize, cpus);
  10503. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  10504. CPU_SET_S(i, setsize, cpus);
  10505. }
  10506. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  10507. if (rv) {
  10508. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  10509. }
  10510. CPU_FREE(cpus);
  10511. }
  10512. #else
  10513. // TODO: Windows etc.
  10514. // (the linux implementation may also work on BSD, someone should test)
  10515. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  10516. static void clear_numa_thread_affinity(void) {}
  10517. #endif
  10518. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  10519. int n_tasks = 0;
  10520. if (ggml_is_empty(node)) {
  10521. // no need to multi-thread a no-op
  10522. n_tasks = 1;
  10523. return n_tasks;
  10524. }
  10525. switch (node->op) {
  10526. case GGML_OP_CPY:
  10527. case GGML_OP_DUP:
  10528. case GGML_OP_CONT:
  10529. case GGML_OP_ADD:
  10530. case GGML_OP_ADD1:
  10531. case GGML_OP_ACC:
  10532. {
  10533. n_tasks = n_threads;
  10534. } break;
  10535. case GGML_OP_SUB:
  10536. case GGML_OP_SQR:
  10537. case GGML_OP_SQRT:
  10538. case GGML_OP_LOG:
  10539. case GGML_OP_SIN:
  10540. case GGML_OP_COS:
  10541. case GGML_OP_SUM:
  10542. case GGML_OP_SUM_ROWS:
  10543. case GGML_OP_MEAN:
  10544. case GGML_OP_ARGMAX:
  10545. {
  10546. n_tasks = 1;
  10547. } break;
  10548. case GGML_OP_COUNT_EQUAL:
  10549. {
  10550. n_tasks = n_threads;
  10551. } break;
  10552. case GGML_OP_REPEAT:
  10553. case GGML_OP_REPEAT_BACK:
  10554. case GGML_OP_LEAKY_RELU:
  10555. {
  10556. n_tasks = 1;
  10557. } break;
  10558. case GGML_OP_UNARY:
  10559. switch (ggml_get_unary_op(node)) {
  10560. case GGML_UNARY_OP_ABS:
  10561. case GGML_UNARY_OP_SGN:
  10562. case GGML_UNARY_OP_NEG:
  10563. case GGML_UNARY_OP_STEP:
  10564. case GGML_UNARY_OP_TANH:
  10565. case GGML_UNARY_OP_ELU:
  10566. case GGML_UNARY_OP_RELU:
  10567. case GGML_UNARY_OP_SIGMOID:
  10568. case GGML_UNARY_OP_HARDSWISH:
  10569. case GGML_UNARY_OP_HARDSIGMOID:
  10570. case GGML_UNARY_OP_EXP:
  10571. {
  10572. n_tasks = 1;
  10573. } break;
  10574. case GGML_UNARY_OP_GELU:
  10575. case GGML_UNARY_OP_GELU_QUICK:
  10576. case GGML_UNARY_OP_SILU:
  10577. {
  10578. n_tasks = n_threads;
  10579. } break;
  10580. default:
  10581. GGML_ABORT("fatal error");
  10582. }
  10583. break;
  10584. case GGML_OP_SILU_BACK:
  10585. case GGML_OP_MUL:
  10586. case GGML_OP_DIV:
  10587. case GGML_OP_NORM:
  10588. case GGML_OP_RMS_NORM:
  10589. case GGML_OP_RMS_NORM_BACK:
  10590. case GGML_OP_GROUP_NORM:
  10591. case GGML_OP_CONCAT:
  10592. case GGML_OP_MUL_MAT:
  10593. case GGML_OP_MUL_MAT_ID:
  10594. case GGML_OP_OUT_PROD:
  10595. {
  10596. n_tasks = n_threads;
  10597. } break;
  10598. case GGML_OP_GET_ROWS:
  10599. {
  10600. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  10601. // decreases performance with GPU offloading
  10602. //n_tasks = n_threads;
  10603. n_tasks = 1;
  10604. } break;
  10605. case GGML_OP_SCALE:
  10606. case GGML_OP_SET:
  10607. case GGML_OP_RESHAPE:
  10608. case GGML_OP_VIEW:
  10609. case GGML_OP_PERMUTE:
  10610. case GGML_OP_TRANSPOSE:
  10611. case GGML_OP_GET_ROWS_BACK:
  10612. case GGML_OP_DIAG:
  10613. {
  10614. n_tasks = 1;
  10615. } break;
  10616. case GGML_OP_DIAG_MASK_ZERO:
  10617. case GGML_OP_DIAG_MASK_INF:
  10618. case GGML_OP_SOFT_MAX_BACK:
  10619. case GGML_OP_ROPE:
  10620. case GGML_OP_ROPE_BACK:
  10621. case GGML_OP_ADD_REL_POS:
  10622. {
  10623. n_tasks = n_threads;
  10624. } break;
  10625. case GGML_OP_CLAMP:
  10626. {
  10627. n_tasks = 1; //TODO
  10628. } break;
  10629. case GGML_OP_SOFT_MAX:
  10630. {
  10631. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  10632. } break;
  10633. case GGML_OP_IM2COL:
  10634. case GGML_OP_IM2COL_BACK:
  10635. case GGML_OP_CONV_TRANSPOSE_1D:
  10636. case GGML_OP_CONV_TRANSPOSE_2D:
  10637. {
  10638. n_tasks = n_threads;
  10639. } break;
  10640. case GGML_OP_POOL_1D:
  10641. case GGML_OP_POOL_2D:
  10642. case GGML_OP_POOL_2D_BACK:
  10643. {
  10644. n_tasks = 1;
  10645. } break;
  10646. case GGML_OP_UPSCALE:
  10647. case GGML_OP_PAD:
  10648. case GGML_OP_ARANGE:
  10649. case GGML_OP_TIMESTEP_EMBEDDING:
  10650. case GGML_OP_ARGSORT:
  10651. case GGML_OP_FLASH_ATTN_EXT:
  10652. case GGML_OP_FLASH_ATTN_BACK:
  10653. case GGML_OP_SSM_CONV:
  10654. case GGML_OP_SSM_SCAN:
  10655. {
  10656. n_tasks = n_threads;
  10657. } break;
  10658. case GGML_OP_WIN_PART:
  10659. case GGML_OP_WIN_UNPART:
  10660. case GGML_OP_GET_REL_POS:
  10661. case GGML_OP_RWKV_WKV6:
  10662. case GGML_OP_MAP_UNARY:
  10663. case GGML_OP_MAP_BINARY:
  10664. case GGML_OP_MAP_CUSTOM1_F32:
  10665. case GGML_OP_MAP_CUSTOM2_F32:
  10666. case GGML_OP_MAP_CUSTOM3_F32:
  10667. {
  10668. n_tasks = 1;
  10669. } break;
  10670. case GGML_OP_MAP_CUSTOM1:
  10671. {
  10672. struct ggml_map_custom1_op_params p;
  10673. memcpy(&p, node->op_params, sizeof(p));
  10674. if (p.n_tasks == GGML_N_TASKS_MAX) {
  10675. n_tasks = n_threads;
  10676. } else {
  10677. n_tasks = MIN(p.n_tasks, n_threads);
  10678. }
  10679. } break;
  10680. case GGML_OP_MAP_CUSTOM2:
  10681. {
  10682. struct ggml_map_custom2_op_params p;
  10683. memcpy(&p, node->op_params, sizeof(p));
  10684. if (p.n_tasks == GGML_N_TASKS_MAX) {
  10685. n_tasks = n_threads;
  10686. } else {
  10687. n_tasks = MIN(p.n_tasks, n_threads);
  10688. }
  10689. } break;
  10690. case GGML_OP_MAP_CUSTOM3:
  10691. {
  10692. struct ggml_map_custom3_op_params p;
  10693. memcpy(&p, node->op_params, sizeof(p));
  10694. if (p.n_tasks == GGML_N_TASKS_MAX) {
  10695. n_tasks = n_threads;
  10696. } else {
  10697. n_tasks = MIN(p.n_tasks, n_threads);
  10698. }
  10699. } break;
  10700. case GGML_OP_CROSS_ENTROPY_LOSS:
  10701. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  10702. case GGML_OP_OPT_STEP_ADAMW:
  10703. {
  10704. n_tasks = n_threads;
  10705. } break;
  10706. case GGML_OP_NONE:
  10707. {
  10708. n_tasks = 1;
  10709. } break;
  10710. case GGML_OP_COUNT:
  10711. {
  10712. GGML_ABORT("fatal error");
  10713. }
  10714. default:
  10715. {
  10716. fprintf(stderr, "%s: op not implemented: ", __func__);
  10717. if (node->op < GGML_OP_COUNT) {
  10718. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  10719. } else {
  10720. fprintf(stderr, "%d\n", node->op);
  10721. }
  10722. GGML_ABORT("fatal error");
  10723. }
  10724. }
  10725. assert(n_tasks > 0);
  10726. return n_tasks;
  10727. }
  10728. static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
  10729. #if defined(_WIN32)
  10730. #include "windows.h"
  10731. // TODO: support > 64 CPUs
  10732. bool ggml_thread_apply_affinity(bool * mask) {
  10733. HANDLE h = GetCurrentThread();
  10734. uint64_t bitmask = 0ULL;
  10735. assert(GGML_MAX_N_THREADS >= 64);
  10736. for (int32_t i = 0; i < 8; i++) {
  10737. int32_t idx = i * 8;
  10738. uint8_t val = 0;
  10739. val |= mask[idx + 0] << 0;
  10740. val |= mask[idx + 1] << 1;
  10741. val |= mask[idx + 2] << 2;
  10742. val |= mask[idx + 3] << 3;
  10743. val |= mask[idx + 4] << 4;
  10744. val |= mask[idx + 5] << 5;
  10745. val |= mask[idx + 6] << 6;
  10746. val |= mask[idx + 7] << 7;
  10747. bitmask |= (uint64_t)val << idx;
  10748. }
  10749. for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) {
  10750. if (mask[i]) {
  10751. fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n");
  10752. break;
  10753. }
  10754. }
  10755. DWORD_PTR m = (DWORD_PTR)bitmask;
  10756. m = SetThreadAffinityMask(h, m);
  10757. return m != 0;
  10758. }
  10759. static bool ggml_thread_apply_priority(int32_t prio) {
  10760. // Note that on Windows the Process Priority Class must be updated in order to set Thread priority.
  10761. // This is up to the applications.
  10762. DWORD p = THREAD_PRIORITY_NORMAL;
  10763. switch (prio) {
  10764. case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
  10765. case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
  10766. case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
  10767. case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
  10768. }
  10769. if (prio == GGML_SCHED_PRIO_NORMAL) {
  10770. // Keep inherited policy/priority
  10771. return true;
  10772. }
  10773. if (!SetThreadPriority(GetCurrentThread(), p)) {
  10774. fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError());
  10775. return false;
  10776. }
  10777. return true;
  10778. }
  10779. #elif defined(__APPLE__)
  10780. #include <sys/types.h>
  10781. #include <sys/resource.h>
  10782. static bool ggml_thread_apply_affinity(const bool * mask) {
  10783. // Not supported on Apple platforms
  10784. UNUSED(mask);
  10785. return true;
  10786. }
  10787. static bool ggml_thread_apply_priority(int32_t prio) {
  10788. struct sched_param p;
  10789. int32_t policy = SCHED_OTHER;
  10790. switch (prio) {
  10791. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  10792. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  10793. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  10794. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  10795. }
  10796. if (prio == GGML_SCHED_PRIO_NORMAL) {
  10797. // Keep inherited policy/priority
  10798. return true;
  10799. }
  10800. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  10801. if (err != 0) {
  10802. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  10803. return false;
  10804. }
  10805. return true;
  10806. }
  10807. #elif defined(__gnu_linux__)
  10808. // TODO: this may not work on BSD, to be verified
  10809. static bool ggml_thread_apply_affinity(const bool * mask) {
  10810. cpu_set_t cpuset;
  10811. int err;
  10812. CPU_ZERO(&cpuset);
  10813. for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  10814. if (mask[i]) {
  10815. GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i);
  10816. CPU_SET(i, &cpuset);
  10817. }
  10818. }
  10819. #ifdef __ANDROID__
  10820. err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
  10821. if (err < 0) {
  10822. err = errno;
  10823. }
  10824. #else
  10825. err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
  10826. #endif
  10827. if (err != 0) {
  10828. fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err);
  10829. return false;
  10830. }
  10831. return true;
  10832. }
  10833. static bool ggml_thread_apply_priority(int32_t prio) {
  10834. struct sched_param p;
  10835. int32_t policy = SCHED_OTHER;
  10836. switch (prio) {
  10837. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  10838. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  10839. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  10840. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  10841. }
  10842. if (prio == GGML_SCHED_PRIO_NORMAL) {
  10843. // Keep inherited policy/priority
  10844. return true;
  10845. }
  10846. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  10847. if (err != 0) {
  10848. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  10849. return false;
  10850. }
  10851. return true;
  10852. }
  10853. #else // unsupported platforms
  10854. static bool ggml_thread_apply_affinity(const bool * mask) {
  10855. UNUSED(mask);
  10856. return true;
  10857. }
  10858. static bool ggml_thread_apply_priority(int32_t prio) {
  10859. UNUSED(prio);
  10860. return true;
  10861. }
  10862. #endif
  10863. static bool ggml_thread_cpumask_is_valid(const bool * mask) {
  10864. for (int i = 0; i < GGML_MAX_N_THREADS; i++) {
  10865. if (mask[i]) { return true; }
  10866. }
  10867. return false;
  10868. }
  10869. static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) {
  10870. if (!strict) {
  10871. memcpy(local_mask, global_mask, GGML_MAX_N_THREADS);
  10872. return;
  10873. } else {
  10874. memset(local_mask, 0, GGML_MAX_N_THREADS);
  10875. int32_t base_idx = *iter;
  10876. for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  10877. int32_t idx = base_idx + i;
  10878. if (idx >= GGML_MAX_N_THREADS) {
  10879. // Just a cheaper modulo
  10880. idx -= GGML_MAX_N_THREADS;
  10881. }
  10882. if (global_mask[idx]) {
  10883. local_mask[idx] = 1;
  10884. *iter = idx + 1;
  10885. return;
  10886. }
  10887. }
  10888. }
  10889. }
  10890. void ggml_threadpool_free(struct ggml_threadpool* threadpool) {
  10891. if (!threadpool) return;
  10892. const int n_threads = threadpool->n_threads_max;
  10893. #ifndef GGML_USE_OPENMP
  10894. struct ggml_compute_state* workers = threadpool->workers;
  10895. ggml_mutex_lock(&threadpool->mutex);
  10896. threadpool->stop = true;
  10897. threadpool->pause = false;
  10898. ggml_cond_broadcast(&threadpool->cond);
  10899. ggml_mutex_unlock(&threadpool->mutex);
  10900. for (int j = 1; j < n_threads; j++) {
  10901. int32_t rc = ggml_thread_join(workers[j].thrd, NULL);
  10902. GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED);
  10903. UNUSED(rc);
  10904. }
  10905. ggml_mutex_destroy(&threadpool->mutex);
  10906. ggml_cond_destroy(&threadpool->cond);
  10907. #endif // GGML_USE_OPENMP
  10908. const size_t workers_size = sizeof(struct ggml_compute_state) * n_threads;
  10909. ggml_aligned_free(threadpool->workers, workers_size);
  10910. ggml_aligned_free(threadpool, sizeof(struct ggml_threadpool));
  10911. }
  10912. #ifndef GGML_USE_OPENMP
  10913. // pause/resume must be called under mutex
  10914. static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) {
  10915. GGML_PRINT_DEBUG("Pausing threadpool\n");
  10916. threadpool->pause = true;
  10917. ggml_cond_broadcast(&threadpool->cond);
  10918. }
  10919. static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) {
  10920. GGML_PRINT_DEBUG("Resuming threadpool\n");
  10921. threadpool->pause = false;
  10922. ggml_cond_broadcast(&threadpool->cond);
  10923. }
  10924. #endif
  10925. void ggml_threadpool_pause(struct ggml_threadpool * threadpool) {
  10926. #ifndef GGML_USE_OPENMP
  10927. ggml_mutex_lock(&threadpool->mutex);
  10928. if (!threadpool->pause) {
  10929. ggml_threadpool_pause_locked(threadpool);
  10930. }
  10931. ggml_mutex_unlock(&threadpool->mutex);
  10932. #else
  10933. UNUSED(threadpool);
  10934. #endif
  10935. }
  10936. void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
  10937. #ifndef GGML_USE_OPENMP
  10938. ggml_mutex_lock(&threadpool->mutex);
  10939. if (threadpool->pause) {
  10940. ggml_threadpool_resume_locked(threadpool);
  10941. }
  10942. ggml_mutex_unlock(&threadpool->mutex);
  10943. #else
  10944. UNUSED(threadpool);
  10945. #endif
  10946. }
  10947. struct ggml_cplan ggml_graph_plan(
  10948. const struct ggml_cgraph * cgraph,
  10949. int n_threads,
  10950. struct ggml_threadpool * threadpool) {
  10951. if (threadpool == NULL) {
  10952. //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  10953. }
  10954. if (n_threads <= 0) {
  10955. n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
  10956. }
  10957. size_t work_size = 0;
  10958. struct ggml_cplan cplan;
  10959. memset(&cplan, 0, sizeof(struct ggml_cplan));
  10960. int max_tasks = 1;
  10961. // thread scheduling for the different operations + work buffer size estimation
  10962. for (int i = 0; i < cgraph->n_nodes; i++) {
  10963. struct ggml_tensor * node = cgraph->nodes[i];
  10964. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  10965. max_tasks = MAX(max_tasks, n_tasks);
  10966. size_t cur = 0;
  10967. switch (node->op) {
  10968. case GGML_OP_CPY:
  10969. case GGML_OP_DUP:
  10970. {
  10971. if (ggml_is_quantized(node->type) ||
  10972. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  10973. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  10974. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  10975. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  10976. }
  10977. } break;
  10978. case GGML_OP_ADD:
  10979. case GGML_OP_ADD1:
  10980. {
  10981. if (ggml_is_quantized(node->src[0]->type)) {
  10982. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  10983. }
  10984. } break;
  10985. case GGML_OP_ACC:
  10986. {
  10987. if (ggml_is_quantized(node->src[0]->type)) {
  10988. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  10989. }
  10990. } break;
  10991. case GGML_OP_COUNT_EQUAL:
  10992. {
  10993. cur = ggml_type_size(node->type)*n_tasks;
  10994. } break;
  10995. case GGML_OP_MUL_MAT:
  10996. {
  10997. const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type;
  10998. if (node->src[1]->type != vec_dot_type) {
  10999. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  11000. }
  11001. } break;
  11002. case GGML_OP_MUL_MAT_ID:
  11003. {
  11004. cur = 0;
  11005. const struct ggml_tensor * src0 = node->src[0];
  11006. const struct ggml_tensor * src1 = node->src[1];
  11007. const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
  11008. if (src1->type != vec_dot_type) {
  11009. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  11010. }
  11011. const int n_as = src0->ne[2];
  11012. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  11013. cur += n_as * sizeof(int64_t); // matrix_row_counts
  11014. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  11015. } break;
  11016. case GGML_OP_OUT_PROD:
  11017. {
  11018. if (ggml_is_quantized(node->src[0]->type)) {
  11019. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  11020. }
  11021. } break;
  11022. case GGML_OP_SOFT_MAX:
  11023. case GGML_OP_ROPE:
  11024. {
  11025. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  11026. } break;
  11027. case GGML_OP_CONV_TRANSPOSE_1D:
  11028. {
  11029. GGML_ASSERT(node->src[0]->ne[3] == 1);
  11030. GGML_ASSERT(node->src[1]->ne[2] == 1);
  11031. GGML_ASSERT(node->src[1]->ne[3] == 1);
  11032. const int64_t ne00 = node->src[0]->ne[0]; // K
  11033. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  11034. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  11035. const int64_t ne10 = node->src[1]->ne[0]; // L
  11036. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  11037. if ((node->src[0]->type == GGML_TYPE_F16 ||
  11038. node->src[0]->type == GGML_TYPE_BF16) &&
  11039. node->src[1]->type == GGML_TYPE_F32) {
  11040. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  11041. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  11042. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  11043. node->src[1]->type == GGML_TYPE_F32) {
  11044. cur += sizeof(float)*ne00*ne01*ne02;
  11045. cur += sizeof(float)*ne10*ne11;
  11046. } else {
  11047. GGML_ABORT("fatal error");
  11048. }
  11049. } break;
  11050. case GGML_OP_CONV_TRANSPOSE_2D:
  11051. {
  11052. const int64_t ne00 = node->src[0]->ne[0]; // W
  11053. const int64_t ne01 = node->src[0]->ne[1]; // H
  11054. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  11055. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  11056. const int64_t ne10 = node->src[1]->ne[0]; // W
  11057. const int64_t ne11 = node->src[1]->ne[1]; // H
  11058. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  11059. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  11060. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  11061. } break;
  11062. case GGML_OP_FLASH_ATTN_EXT:
  11063. {
  11064. const int64_t ne00 = node->src[0]->ne[0]; // D
  11065. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  11066. } break;
  11067. case GGML_OP_FLASH_ATTN_BACK:
  11068. {
  11069. const int64_t D = node->src[0]->ne[0];
  11070. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  11071. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  11072. if (node->src[1]->type == GGML_TYPE_F32) {
  11073. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  11074. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  11075. } else if (node->src[1]->type == GGML_TYPE_F16) {
  11076. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  11077. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  11078. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  11079. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  11080. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  11081. }
  11082. } break;
  11083. case GGML_OP_CROSS_ENTROPY_LOSS:
  11084. {
  11085. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  11086. } break;
  11087. case GGML_OP_COUNT:
  11088. {
  11089. GGML_ABORT("fatal error");
  11090. }
  11091. default:
  11092. break;
  11093. }
  11094. work_size = MAX(work_size, cur);
  11095. }
  11096. if (work_size > 0) {
  11097. work_size += CACHE_LINE_SIZE*(n_threads);
  11098. }
  11099. cplan.threadpool = threadpool;
  11100. cplan.n_threads = MIN(max_tasks, n_threads);
  11101. cplan.work_size = work_size;
  11102. cplan.work_data = NULL;
  11103. return cplan;
  11104. }
  11105. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11106. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11107. struct ggml_threadpool * tp = state->threadpool;
  11108. const struct ggml_cgraph * cgraph = tp->cgraph;
  11109. const struct ggml_cplan * cplan = tp->cplan;
  11110. set_numa_thread_affinity(state->ith);
  11111. struct ggml_compute_params params = {
  11112. /*.ith =*/ state->ith,
  11113. /*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed),
  11114. /*.wsize =*/ cplan->work_size,
  11115. /*.wdata =*/ cplan->work_data,
  11116. /*.threadpool=*/ tp,
  11117. };
  11118. for (int node_n = 0; node_n < cgraph->n_nodes && !tp->abort; node_n++) {
  11119. struct ggml_tensor * node = cgraph->nodes[node_n];
  11120. ggml_compute_forward(&params, node);
  11121. if (state->ith == 0 && cplan->abort_callback &&
  11122. cplan->abort_callback(cplan->abort_callback_data)) {
  11123. tp->abort = true;
  11124. tp->ec = GGML_STATUS_ABORTED;
  11125. }
  11126. ggml_barrier(state->threadpool);
  11127. }
  11128. return 0;
  11129. }
  11130. #ifndef GGML_USE_OPENMP
  11131. // check if thread is active
  11132. static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) {
  11133. struct ggml_threadpool * threadpool = state->threadpool;
  11134. int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed);
  11135. return (state->ith < n_threads);
  11136. }
  11137. // check if thread is ready to proceed (exit from polling or sleeping)
  11138. static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) {
  11139. struct ggml_threadpool * threadpool = state->threadpool;
  11140. if (state->pending || threadpool->stop || threadpool->pause) { return true; }
  11141. // check for new graph/work
  11142. int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed);
  11143. if (new_graph != state->last_graph) {
  11144. state->pending = ggml_graph_compute_thread_active(state);
  11145. state->last_graph = new_graph;
  11146. }
  11147. return state->pending;
  11148. }
  11149. // sync thread state after polling
  11150. static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) {
  11151. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  11152. #ifdef GGML_TSAN_ENABLED
  11153. atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst);
  11154. #else
  11155. atomic_thread_fence(memory_order_seq_cst);
  11156. #endif
  11157. UNUSED(state);
  11158. }
  11159. static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) {
  11160. struct ggml_threadpool * threadpool = state->threadpool;
  11161. // Skip polling for unused threads
  11162. if (!ggml_graph_compute_thread_active(state)) {
  11163. return state->pending;
  11164. }
  11165. // This seems to make 0 ... 100 a decent range for polling level across modern processors.
  11166. // Perhaps, we can adjust it dynamically based on load and things.
  11167. const uint64_t n_rounds = 1024UL * 128 * threadpool->poll;
  11168. for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) {
  11169. // No new work. Keep polling.
  11170. ggml_thread_cpu_relax();
  11171. }
  11172. return state->pending;
  11173. }
  11174. static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) {
  11175. struct ggml_threadpool * threadpool = state->threadpool;
  11176. if (ggml_graph_compute_poll_for_work(state)) {
  11177. ggml_graph_compute_thread_sync(state);
  11178. return state->pending;
  11179. }
  11180. ggml_mutex_lock_shared(&threadpool->mutex);
  11181. while (!ggml_graph_compute_thread_ready(state)) {
  11182. // No new work. Wait for the signal.
  11183. GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith);
  11184. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  11185. }
  11186. ggml_mutex_unlock_shared(&threadpool->mutex);
  11187. return state->pending;
  11188. }
  11189. static thread_ret_t ggml_graph_compute_secondary_thread(void* data) {
  11190. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11191. struct ggml_threadpool * threadpool = state->threadpool;
  11192. ggml_thread_apply_priority(threadpool->prio);
  11193. if (ggml_thread_cpumask_is_valid(state->cpumask)) {
  11194. ggml_thread_apply_affinity(state->cpumask);
  11195. }
  11196. while (true) {
  11197. // Check if we need to sleep
  11198. while (threadpool->pause) {
  11199. GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith);
  11200. ggml_mutex_lock_shared(&threadpool->mutex);
  11201. if (threadpool->pause) {
  11202. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  11203. }
  11204. GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith);
  11205. ggml_mutex_unlock_shared(&threadpool->mutex);
  11206. }
  11207. // This needs to be checked for after the cond_wait
  11208. if (threadpool->stop) break;
  11209. // Check if there is new work
  11210. // The main thread is the only one that can dispatch new work
  11211. ggml_graph_compute_check_for_work(state);
  11212. if (state->pending) {
  11213. state->pending = false;
  11214. ggml_graph_compute_thread(state);
  11215. }
  11216. }
  11217. return (thread_ret_t) 0;
  11218. }
  11219. // Start processing new graph
  11220. static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads)
  11221. {
  11222. // Always take the mutex here because the worker threads are doing hybrid poll/wait
  11223. ggml_mutex_lock(&threadpool->mutex);
  11224. GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n", threadpool->n_threads_cur, n_threads);
  11225. // Update the number of active threads
  11226. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  11227. // Indicate the graph is ready to be processed
  11228. // We need the full seq-cst fence here because of the polling threads (used in thread_sync)
  11229. atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst);
  11230. if (threadpool->pause) {
  11231. // Update main thread prio and affinity to match the threadpool settings
  11232. ggml_thread_apply_priority(threadpool->prio);
  11233. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  11234. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  11235. }
  11236. // resume does cond broadcast
  11237. ggml_threadpool_resume_locked(threadpool);
  11238. } else {
  11239. ggml_cond_broadcast(&threadpool->cond);
  11240. }
  11241. ggml_mutex_unlock(&threadpool->mutex);
  11242. }
  11243. #endif // GGML_USE_OPENMP
  11244. void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
  11245. p->n_threads = n_threads;
  11246. p->prio = 0; // default priority (usually means normal or inherited)
  11247. p->poll = 50; // hybrid-polling enabled
  11248. p->strict_cpu = false; // no strict placement (all threads share same cpumask)
  11249. p->paused = false; // threads are ready to go
  11250. memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
  11251. }
  11252. struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
  11253. struct ggml_threadpool_params p;
  11254. ggml_threadpool_params_init(&p, n_threads);
  11255. return p;
  11256. }
  11257. bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
  11258. if (p0->n_threads != p1->n_threads ) return false;
  11259. if (p0->prio != p1->prio ) return false;
  11260. if (p0->poll != p1->poll ) return false;
  11261. if (p0->strict_cpu != p1->strict_cpu ) return false;
  11262. return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
  11263. }
  11264. static struct ggml_threadpool * ggml_threadpool_new_impl(
  11265. struct ggml_threadpool_params * tpp,
  11266. struct ggml_cgraph * cgraph,
  11267. struct ggml_cplan * cplan) {
  11268. struct ggml_threadpool * threadpool =
  11269. ggml_aligned_malloc(sizeof(struct ggml_threadpool));
  11270. {
  11271. threadpool->cgraph = cgraph;
  11272. threadpool->cplan = cplan;
  11273. threadpool->n_graph = 0;
  11274. threadpool->n_barrier = 0;
  11275. threadpool->n_barrier_passed = 0;
  11276. threadpool->current_chunk = 0;
  11277. threadpool->stop = false;
  11278. threadpool->pause = tpp->paused;
  11279. threadpool->abort = false;
  11280. threadpool->workers = NULL;
  11281. threadpool->n_threads_max = tpp->n_threads;
  11282. threadpool->n_threads_cur = tpp->n_threads;
  11283. threadpool->poll = tpp->poll;
  11284. threadpool->prio = tpp->prio;
  11285. threadpool->ec = GGML_STATUS_SUCCESS;
  11286. }
  11287. // Allocate and init workers state
  11288. const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads;
  11289. struct ggml_compute_state * workers = ggml_aligned_malloc(workers_size);
  11290. memset(workers, 0, workers_size);
  11291. for (int j = 0; j < tpp->n_threads; j++) {
  11292. workers[j].threadpool = threadpool;
  11293. workers[j].ith = j;
  11294. }
  11295. threadpool->workers = workers;
  11296. #ifndef GGML_USE_OPENMP
  11297. ggml_mutex_init(&threadpool->mutex);
  11298. ggml_cond_init(&threadpool->cond);
  11299. // Spin the threads for all workers, and update CPU placements.
  11300. // Place the main thread last (towards the higher numbered CPU cores).
  11301. int32_t cpumask_iter = 0;
  11302. for (int j = 1; j < tpp->n_threads; j++) {
  11303. ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
  11304. int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]);
  11305. GGML_ASSERT(rc == 0);
  11306. }
  11307. ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter);
  11308. if (!threadpool->pause) {
  11309. // Update main thread prio and affinity at the start, otherwise we'll do it in resume
  11310. ggml_thread_apply_priority(threadpool->prio);
  11311. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  11312. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  11313. }
  11314. }
  11315. #endif // GGML_USE_OPENMP
  11316. return threadpool;
  11317. }
  11318. struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
  11319. return ggml_threadpool_new_impl(tpp, NULL, NULL);
  11320. }
  11321. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  11322. ggml_cpu_init();
  11323. GGML_ASSERT(cplan);
  11324. GGML_ASSERT(cplan->n_threads > 0);
  11325. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  11326. int n_threads = cplan->n_threads;
  11327. struct ggml_threadpool * threadpool = cplan->threadpool;
  11328. bool disposable_threadpool = false;
  11329. if (threadpool == NULL) {
  11330. //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  11331. disposable_threadpool = true;
  11332. struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
  11333. threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
  11334. } else {
  11335. // Reset some of the parameters that need resetting
  11336. // No worker threads should be accessing the parameters below at this stage
  11337. threadpool->cgraph = cgraph;
  11338. threadpool->cplan = cplan;
  11339. threadpool->current_chunk = 0;
  11340. threadpool->abort = false;
  11341. threadpool->ec = GGML_STATUS_SUCCESS;
  11342. }
  11343. #ifdef GGML_USE_OPENMP
  11344. if (n_threads > 1) {
  11345. #pragma omp parallel num_threads(n_threads)
  11346. {
  11347. #pragma omp single
  11348. {
  11349. // update the number of threads from the actual number of threads that we got from OpenMP
  11350. n_threads = omp_get_num_threads();
  11351. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  11352. }
  11353. ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
  11354. }
  11355. } else {
  11356. atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed);
  11357. ggml_graph_compute_thread(&threadpool->workers[0]);
  11358. }
  11359. #else
  11360. if (n_threads > threadpool->n_threads_max) {
  11361. GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads_max);
  11362. n_threads = threadpool->n_threads_max;
  11363. }
  11364. // Kick all threads to start the new graph
  11365. ggml_graph_compute_kickoff(threadpool, n_threads);
  11366. // This is a work thread too
  11367. ggml_graph_compute_thread(&threadpool->workers[0]);
  11368. #endif
  11369. // don't leave affinity set on the main thread
  11370. clear_numa_thread_affinity();
  11371. enum ggml_status ret = threadpool->ec;
  11372. if (disposable_threadpool) {
  11373. ggml_threadpool_free(threadpool);
  11374. }
  11375. return ret;
  11376. }
  11377. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  11378. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
  11379. cplan.work_data = (uint8_t *)ggml_new_buffer(ctx, cplan.work_size);
  11380. return ggml_graph_compute(cgraph, &cplan);
  11381. }
  11382. int ggml_cpu_has_avx(void) {
  11383. #if defined(__AVX__)
  11384. return 1;
  11385. #else
  11386. return 0;
  11387. #endif
  11388. }
  11389. int ggml_cpu_has_avx_vnni(void) {
  11390. #if defined(__AVXVNNI__)
  11391. return 1;
  11392. #else
  11393. return 0;
  11394. #endif
  11395. }
  11396. int ggml_cpu_has_avx2(void) {
  11397. #if defined(__AVX2__)
  11398. return 1;
  11399. #else
  11400. return 0;
  11401. #endif
  11402. }
  11403. int ggml_cpu_has_avx512(void) {
  11404. #if defined(__AVX512F__)
  11405. return 1;
  11406. #else
  11407. return 0;
  11408. #endif
  11409. }
  11410. int ggml_cpu_has_avx512_vbmi(void) {
  11411. #if defined(__AVX512VBMI__)
  11412. return 1;
  11413. #else
  11414. return 0;
  11415. #endif
  11416. }
  11417. int ggml_cpu_has_avx512_vnni(void) {
  11418. #if defined(__AVX512VNNI__)
  11419. return 1;
  11420. #else
  11421. return 0;
  11422. #endif
  11423. }
  11424. int ggml_cpu_has_avx512_bf16(void) {
  11425. #if defined(__AVX512BF16__)
  11426. return 1;
  11427. #else
  11428. return 0;
  11429. #endif
  11430. }
  11431. int ggml_cpu_has_amx_int8(void) {
  11432. #if defined(__AMX_INT8__)
  11433. return 1;
  11434. #else
  11435. return 0;
  11436. #endif
  11437. }
  11438. int ggml_cpu_has_fma(void) {
  11439. #if defined(__FMA__)
  11440. return 1;
  11441. #else
  11442. return 0;
  11443. #endif
  11444. }
  11445. int ggml_cpu_has_arm_fma(void) {
  11446. #if defined(__ARM_FEATURE_FMA)
  11447. return 1;
  11448. #else
  11449. return 0;
  11450. #endif
  11451. }
  11452. int ggml_cpu_has_riscv_v(void) {
  11453. #if defined(__riscv_v_intrinsic)
  11454. return 1;
  11455. #else
  11456. return 0;
  11457. #endif
  11458. }
  11459. int ggml_cpu_has_f16c(void) {
  11460. #if defined(__F16C__)
  11461. return 1;
  11462. #else
  11463. return 0;
  11464. #endif
  11465. }
  11466. int ggml_cpu_has_fp16_va(void) {
  11467. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  11468. return 1;
  11469. #else
  11470. return 0;
  11471. #endif
  11472. }
  11473. int ggml_cpu_has_wasm_simd(void) {
  11474. #if defined(__wasm_simd128__)
  11475. return 1;
  11476. #else
  11477. return 0;
  11478. #endif
  11479. }
  11480. int ggml_cpu_has_llamafile(void) {
  11481. #if defined(GGML_USE_LLAMAFILE)
  11482. return 1;
  11483. #else
  11484. return 0;
  11485. #endif
  11486. }
  11487. int ggml_cpu_has_sse3(void) {
  11488. #if defined(__SSE3__)
  11489. return 1;
  11490. #else
  11491. return 0;
  11492. #endif
  11493. }
  11494. int ggml_cpu_has_ssse3(void) {
  11495. #if defined(__SSSE3__)
  11496. return 1;
  11497. #else
  11498. return 0;
  11499. #endif
  11500. }
  11501. int ggml_cpu_has_vsx(void) {
  11502. #if defined(__POWER9_VECTOR__)
  11503. return 1;
  11504. #else
  11505. return 0;
  11506. #endif
  11507. }
  11508. int ggml_cpu_has_neon(void) {
  11509. #if defined(__ARM_ARCH)
  11510. return ggml_arm_arch_features.has_neon;
  11511. #else
  11512. return 0;
  11513. #endif
  11514. }
  11515. int ggml_cpu_has_sve(void) {
  11516. #if defined(__ARM_ARCH)
  11517. return ggml_arm_arch_features.has_sve;
  11518. #else
  11519. return 0;
  11520. #endif
  11521. }
  11522. int ggml_cpu_has_matmul_int8(void) {
  11523. #if defined(__ARM_ARCH)
  11524. return ggml_arm_arch_features.has_i8mm;
  11525. #else
  11526. return 0;
  11527. #endif
  11528. }
  11529. int ggml_cpu_get_sve_cnt(void) {
  11530. #if defined(__ARM_ARCH)
  11531. return ggml_arm_arch_features.sve_cnt;
  11532. #else
  11533. return 0;
  11534. #endif
  11535. }
  11536. void ggml_cpu_init(void) {
  11537. // needed to initialize f16 tables
  11538. {
  11539. struct ggml_init_params params = { 0, NULL, false };
  11540. struct ggml_context * ctx = ggml_init(params);
  11541. ggml_free(ctx);
  11542. }
  11543. ggml_critical_section_start();
  11544. static bool is_first_call = true;
  11545. if (is_first_call) {
  11546. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  11547. {
  11548. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  11549. for (int i = 0; i < (1 << 16); ++i) {
  11550. union {
  11551. uint16_t u16;
  11552. ggml_fp16_t fp16;
  11553. } u = {i};
  11554. float f = GGML_FP16_TO_FP32(u.fp16);
  11555. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  11556. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  11557. }
  11558. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  11559. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);
  11560. }
  11561. #if defined(__ARM_ARCH)
  11562. ggml_init_arm_arch_features();
  11563. #endif
  11564. is_first_call = false;
  11565. }
  11566. ggml_critical_section_end();
  11567. }