convert-hf-to-gguf.py 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from enum import IntEnum
  10. from pathlib import Path
  11. from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast, Optional
  12. import numpy as np
  13. import torch
  14. if TYPE_CHECKING:
  15. from torch import Tensor
  16. if 'NO_LOCAL_GGUF' not in os.environ:
  17. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  18. import gguf
  19. ###### MODEL DEFINITIONS ######
  20. class SentencePieceTokenTypes(IntEnum):
  21. NORMAL = 1
  22. UNKNOWN = 2
  23. CONTROL = 3
  24. USER_DEFINED = 4
  25. UNUSED = 5
  26. BYTE = 6
  27. class Model:
  28. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
  29. self.dir_model = dir_model
  30. self.ftype = ftype
  31. self.fname_out = fname_out
  32. self.is_big_endian = is_big_endian
  33. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  34. self.is_safetensors = self._is_model_safetensors()
  35. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  36. self.part_names = self._get_part_names()
  37. self.hparams = Model.load_hparams(self.dir_model)
  38. self.model_arch = self._get_model_architecture()
  39. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess)
  40. def set_vocab(self):
  41. self._set_vocab_gpt2()
  42. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  43. for part_name in self.part_names:
  44. print(f"gguf: loading model part '{part_name}'")
  45. ctx: ContextManager[Any]
  46. if self.is_safetensors:
  47. from safetensors import safe_open
  48. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  49. else:
  50. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  51. with ctx as model_part:
  52. for name in model_part.keys():
  53. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  54. yield name, data
  55. def set_gguf_parameters(self):
  56. self.gguf_writer.add_name(self.dir_model.name)
  57. self.gguf_writer.add_block_count(self.hparams.get(
  58. "n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")),
  59. ))
  60. if (n_ctx := self.hparams.get("max_position_embeddings")) is not None:
  61. self.gguf_writer.add_context_length(n_ctx)
  62. if (n_embd := self.hparams.get("hidden_size")) is not None:
  63. self.gguf_writer.add_embedding_length(n_embd)
  64. if (n_ff := self.hparams.get("intermediate_size")) is not None:
  65. self.gguf_writer.add_feed_forward_length(n_ff)
  66. if (n_head := self.hparams.get("num_attention_heads")) is not None:
  67. self.gguf_writer.add_head_count(n_head)
  68. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  69. self.gguf_writer.add_head_count_kv(n_head_kv)
  70. if (n_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  71. self.gguf_writer.add_layer_norm_rms_eps(n_rms_eps)
  72. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  73. self.gguf_writer.add_expert_count(n_experts)
  74. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  75. self.gguf_writer.add_expert_used_count(n_experts_used)
  76. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  77. def write_tensors(self):
  78. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  79. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  80. for name, data_torch in self.get_tensors():
  81. # we don't need these
  82. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  83. continue
  84. old_dtype = data_torch.dtype
  85. # convert any unsupported data types to float32
  86. if data_torch.dtype not in (torch.float16, torch.float32):
  87. data_torch = data_torch.to(torch.float32)
  88. data = data_torch.squeeze().numpy()
  89. # map tensor names
  90. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  91. if new_name is None:
  92. print(f"Can not map tensor {name!r}")
  93. sys.exit()
  94. n_dims = len(data.shape)
  95. data_dtype = data.dtype
  96. # if f32 desired, convert any float16 to float32
  97. if self.ftype == 0 and data_dtype == np.float16:
  98. data = data.astype(np.float32)
  99. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  100. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  101. data = data.astype(np.float32)
  102. # if f16 desired, convert any float32 2-dim weight tensors to float16
  103. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  104. data = data.astype(np.float16)
  105. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  106. self.gguf_writer.add_tensor(new_name, data)
  107. def write(self):
  108. self.write_tensors()
  109. self.gguf_writer.write_header_to_file()
  110. self.gguf_writer.write_kv_data_to_file()
  111. self.gguf_writer.write_tensors_to_file()
  112. self.gguf_writer.close()
  113. def write_vocab(self):
  114. self.gguf_writer.write_header_to_file()
  115. self.gguf_writer.write_kv_data_to_file()
  116. self.gguf_writer.close()
  117. @staticmethod
  118. def count_model_parts(dir_model: Path, prefix: str) -> int:
  119. num_parts = 0
  120. for filename in os.listdir(dir_model):
  121. if filename.endswith(prefix):
  122. num_parts += 1
  123. return num_parts
  124. @staticmethod
  125. def load_hparams(dir_model):
  126. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  127. return json.load(f)
  128. @staticmethod
  129. def from_model_architecture(model_architecture):
  130. if model_architecture == "GPTNeoXForCausalLM":
  131. return GPTNeoXModel
  132. if model_architecture == "BloomForCausalLM":
  133. return BloomModel
  134. if model_architecture == "MPTForCausalLM":
  135. return MPTModel
  136. if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
  137. return BaichuanModel
  138. if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
  139. return FalconModel
  140. if model_architecture == "GPTBigCodeForCausalLM":
  141. return StarCoderModel
  142. if model_architecture == "GPTRefactForCausalLM":
  143. return RefactModel
  144. if model_architecture == "PersimmonForCausalLM":
  145. return PersimmonModel
  146. if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
  147. return StableLMModel
  148. if model_architecture == "QWenLMHeadModel":
  149. return QwenModel
  150. if model_architecture == "MixtralForCausalLM":
  151. return MixtralModel
  152. return Model
  153. def _is_model_safetensors(self) -> bool:
  154. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  155. def _get_part_names(self):
  156. if self.is_safetensors:
  157. if self.num_parts == 1: # there's only one .safetensors file
  158. return ("model.safetensors",)
  159. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  160. if self.num_parts == 1: # there's only one .bin file
  161. return ("pytorch_model.bin",)
  162. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  163. def _get_model_architecture(self) -> gguf.MODEL_ARCH:
  164. arch = self.hparams["architectures"][0]
  165. if arch == "GPTNeoXForCausalLM":
  166. return gguf.MODEL_ARCH.GPTNEOX
  167. if arch == "BloomForCausalLM":
  168. return gguf.MODEL_ARCH.BLOOM
  169. if arch == "MPTForCausalLM":
  170. return gguf.MODEL_ARCH.MPT
  171. if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
  172. return gguf.MODEL_ARCH.BAICHUAN
  173. if arch in ("FalconForCausalLM", "RWForCausalLM"):
  174. return gguf.MODEL_ARCH.FALCON
  175. if arch == "GPTBigCodeForCausalLM":
  176. return gguf.MODEL_ARCH.STARCODER
  177. if arch == "GPTRefactForCausalLM":
  178. return gguf.MODEL_ARCH.REFACT
  179. if arch == "PersimmonForCausalLM":
  180. return gguf.MODEL_ARCH.PERSIMMON
  181. if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
  182. return gguf.MODEL_ARCH.STABLELM
  183. if arch == "QWenLMHeadModel":
  184. return gguf.MODEL_ARCH.QWEN
  185. if arch == "MixtralForCausalLM":
  186. return gguf.MODEL_ARCH.LLAMA
  187. raise NotImplementedError(f'Architecture "{arch}" not supported!')
  188. def _set_vocab_gpt2(self):
  189. dir_model = self.dir_model
  190. hparams = self.hparams
  191. tokens: list[bytearray] = []
  192. toktypes: list[int] = []
  193. from transformers import AutoTokenizer # type: ignore[attr-defined]
  194. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  195. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  196. assert max(tokenizer.vocab.values()) < vocab_size
  197. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  198. added_vocab = tokenizer.get_added_vocab()
  199. for i in range(vocab_size):
  200. if i not in reverse_vocab:
  201. pad_token = f"[PAD{i}]".encode('utf-8')
  202. tokens.append(bytearray(pad_token))
  203. toktypes.append(gguf.TokenType.USER_DEFINED)
  204. elif reverse_vocab[i] in added_vocab:
  205. tokens.append(reverse_vocab[i])
  206. if tokenizer.added_tokens_decoder[i].special:
  207. toktypes.append(gguf.TokenType.CONTROL)
  208. else:
  209. toktypes.append(gguf.TokenType.USER_DEFINED)
  210. else:
  211. tokens.append(reverse_vocab[i])
  212. toktypes.append(gguf.TokenType.NORMAL)
  213. self.gguf_writer.add_tokenizer_model("gpt2")
  214. self.gguf_writer.add_token_list(tokens)
  215. self.gguf_writer.add_token_types(toktypes)
  216. special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
  217. special_vocab.add_to_gguf(self.gguf_writer)
  218. def _set_vocab_sentencepiece(self):
  219. from sentencepiece import SentencePieceProcessor
  220. tokenizer_path = self.dir_model / 'tokenizer.model'
  221. tokens: list[bytes] = []
  222. scores: list[float] = []
  223. toktypes: list[int] = []
  224. if not tokenizer_path.is_file():
  225. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  226. sys.exit(1)
  227. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  228. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  229. for token_id in range(vocab_size):
  230. piece = tokenizer.id_to_piece(token_id)
  231. text = piece.encode("utf-8")
  232. score = tokenizer.get_score(token_id)
  233. toktype = SentencePieceTokenTypes.NORMAL
  234. if tokenizer.is_unknown(token_id):
  235. toktype = SentencePieceTokenTypes.UNKNOWN
  236. elif tokenizer.is_control(token_id):
  237. toktype = SentencePieceTokenTypes.CONTROL
  238. elif tokenizer.is_unused(token_id):
  239. toktype = SentencePieceTokenTypes.UNUSED
  240. elif tokenizer.is_byte(token_id):
  241. toktype = SentencePieceTokenTypes.BYTE
  242. tokens.append(text)
  243. scores.append(score)
  244. toktypes.append(toktype)
  245. added_tokens_file = self.dir_model / 'added_tokens.json'
  246. if added_tokens_file.is_file():
  247. with open(added_tokens_file, "r", encoding="utf-8") as f:
  248. added_tokens_json = json.load(f)
  249. for key in added_tokens_json:
  250. tokens.append(key.encode("utf-8"))
  251. scores.append(-1000.0)
  252. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  253. self.gguf_writer.add_tokenizer_model("llama")
  254. self.gguf_writer.add_token_list(tokens)
  255. self.gguf_writer.add_token_scores(scores)
  256. self.gguf_writer.add_token_types(toktypes)
  257. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  258. special_vocab.add_to_gguf(self.gguf_writer)
  259. class GPTNeoXModel(Model):
  260. def set_gguf_parameters(self):
  261. block_count = self.hparams["num_hidden_layers"]
  262. self.gguf_writer.add_name(self.dir_model.name)
  263. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  264. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  265. self.gguf_writer.add_block_count(block_count)
  266. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  267. self.gguf_writer.add_rope_dimension_count(
  268. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  269. )
  270. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  271. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  272. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  273. class BloomModel(Model):
  274. def set_gguf_parameters(self):
  275. self.gguf_writer.add_name("Bloom")
  276. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  277. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  278. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  279. self.gguf_writer.add_embedding_length(n_embed)
  280. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  281. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  282. self.gguf_writer.add_head_count(n_head)
  283. self.gguf_writer.add_head_count_kv(n_head)
  284. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  285. self.gguf_writer.add_file_type(self.ftype)
  286. def write_tensors(self):
  287. block_count = self.hparams["n_layer"]
  288. tensors = dict(self.get_tensors())
  289. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  290. has_lm_head = True
  291. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  292. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  293. for name, data_torch in tensors.items():
  294. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  295. has_lm_head = False
  296. name = re.sub(r'transformer\.', '', name)
  297. old_dtype = data_torch.dtype
  298. # convert any unsupported data types to float32
  299. if data_torch.dtype not in (torch.float16, torch.float32):
  300. data_torch = data_torch.to(torch.float32)
  301. data = data_torch.squeeze().numpy()
  302. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  303. # Map bloom-style qkv_linear to gpt-style qkv_linear
  304. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  305. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  306. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  307. data = np.concatenate(
  308. (
  309. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  310. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  311. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  312. ),
  313. axis=0,
  314. )
  315. print("re-format attention.linear_qkv.weight")
  316. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  317. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  318. data = np.concatenate(
  319. (
  320. qkv_bias[:, 0, :].reshape((n_embed,)),
  321. qkv_bias[:, 1, :].reshape((n_embed,)),
  322. qkv_bias[:, 2, :].reshape((n_embed,)),
  323. ),
  324. axis=0,
  325. )
  326. print("re-format attention.linear_qkv.bias")
  327. # map tensor names
  328. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  329. if new_name is None:
  330. print(f"Can not map tensor {name!r}")
  331. sys.exit()
  332. n_dims = len(data.shape)
  333. data_dtype = data.dtype
  334. # if f32 desired, convert any float16 to float32
  335. if self.ftype == 0 and data_dtype == np.float16:
  336. data = data.astype(np.float32)
  337. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  338. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  339. data = data.astype(np.float32)
  340. # if f16 desired, convert any float32 2-dim weight tensors to float16
  341. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  342. data = data.astype(np.float16)
  343. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  344. self.gguf_writer.add_tensor(new_name, data)
  345. if not has_lm_head and name == "word_embeddings.weight":
  346. self.gguf_writer.add_tensor("output.weight", data)
  347. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  348. class MPTModel(Model):
  349. def set_gguf_parameters(self):
  350. block_count = self.hparams["n_layers"]
  351. self.gguf_writer.add_name(self.dir_model.name)
  352. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  353. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  354. self.gguf_writer.add_block_count(block_count)
  355. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  356. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  357. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  358. self.gguf_writer.add_head_count_kv(kv_n_heads)
  359. self.gguf_writer.add_layer_norm_eps(1e-5)
  360. if self.hparams["attn_config"]["clip_qkv"] is not None:
  361. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  362. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  363. def write_tensors(self):
  364. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  365. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  366. for name, data_torch in self.get_tensors():
  367. # we don't need these
  368. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  369. continue
  370. old_dtype = data_torch.dtype
  371. # convert any unsupported data types to float32
  372. if data_torch.dtype not in (torch.float16, torch.float32):
  373. data_torch = data_torch.to(torch.float32)
  374. data = data_torch.squeeze().numpy()
  375. # map tensor names
  376. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  377. if new_name is None:
  378. print(f"Can not map tensor {name!r}")
  379. sys.exit()
  380. n_dims = len(data.shape)
  381. data_dtype = data.dtype
  382. # if f32 desired, convert any float16 to float32
  383. if self.ftype == 0 and data_dtype == np.float16:
  384. data = data.astype(np.float32)
  385. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  386. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  387. data = data.astype(np.float32)
  388. # if f16 desired, convert any float32 2-dim weight tensors to float16
  389. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  390. data = data.astype(np.float16)
  391. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  392. self.gguf_writer.add_tensor(new_name, data)
  393. # note: MPT output is tied to (same as) wte in original model;
  394. # for easier implementation in llama.cpp it's duplicated in GGUF, though :/
  395. if new_name == "token_embd.weight":
  396. self.gguf_writer.add_tensor("output.weight", data)
  397. class BaichuanModel(Model):
  398. def set_vocab(self):
  399. self._set_vocab_sentencepiece()
  400. def set_gguf_parameters(self):
  401. block_count = self.hparams["num_hidden_layers"]
  402. head_count = self.hparams["num_attention_heads"]
  403. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  404. hf_repo = self.hparams.get("_name_or_path", "")
  405. ctx_length = 0
  406. if "max_sequence_length" in self.hparams:
  407. ctx_length = self.hparams["max_sequence_length"]
  408. elif "max_position_embeddings" in self.hparams:
  409. ctx_length = self.hparams["max_position_embeddings"]
  410. elif "model_max_length" in self.hparams:
  411. ctx_length = self.hparams["model_max_length"]
  412. else:
  413. print("gguf: can not find ctx length parameter.")
  414. sys.exit()
  415. self.gguf_writer.add_name(self.dir_model.name)
  416. self.gguf_writer.add_source_hf_repo(hf_repo)
  417. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  418. self.gguf_writer.add_context_length(ctx_length)
  419. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  420. self.gguf_writer.add_block_count(block_count)
  421. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  422. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  423. self.gguf_writer.add_head_count(head_count)
  424. self.gguf_writer.add_head_count_kv(head_count_kv)
  425. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  426. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  427. if self.hparams["rope_scaling"].get("type") == "linear":
  428. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  429. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  430. def write_tensors(self):
  431. # Collect tensors from generator object
  432. model_kv = dict(self.get_tensors())
  433. block_count = self.hparams["num_hidden_layers"]
  434. head_count = self.hparams["num_attention_heads"]
  435. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  436. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  437. for i in range(block_count):
  438. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  439. print(f"Unpacking and permuting layer {i}")
  440. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  441. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  442. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  443. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  444. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  445. self._reverse_hf_part(w, 2)
  446. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  447. for name, data_torch in model_kv.items():
  448. # we don't need these
  449. if name.endswith(".rotary_emb.inv_freq"):
  450. continue
  451. old_dtype = data_torch.dtype
  452. # convert any unsupported data types to float32
  453. if data_torch.dtype not in (torch.float16, torch.float32):
  454. data_torch = data_torch.to(torch.float32)
  455. data = data_torch.squeeze().numpy()
  456. # map tensor names
  457. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  458. if new_name is None:
  459. print(f"Can not map tensor {name!r}")
  460. sys.exit()
  461. n_dims = len(data.shape)
  462. data_dtype = data.dtype
  463. # if f32 desired, convert any float16 to float32
  464. if self.ftype == 0 and data_dtype == np.float16:
  465. data = data.astype(np.float32)
  466. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  467. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  468. data = data.astype(np.float32)
  469. # if f16 desired, convert any float32 2-dim weight tensors to float16
  470. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  471. data = data.astype(np.float16)
  472. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  473. self.gguf_writer.add_tensor(new_name, data)
  474. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  475. if n_kv_head is not None and n_head != n_kv_head:
  476. n_head //= n_kv_head
  477. return (
  478. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  479. .swapaxes(1, 2)
  480. .reshape(weights.shape)
  481. )
  482. def _reverse_hf_permute_part(
  483. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  484. ) -> Tensor:
  485. r = weights.shape[0] // 3
  486. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  487. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  488. r = weights.shape[0] // 3
  489. return weights[r * n_part:r * n_part + r, ...]
  490. class FalconModel(Model):
  491. def set_gguf_parameters(self):
  492. block_count = self.hparams.get("num_hidden_layers")
  493. if block_count is None:
  494. block_count = self.hparams["n_layer"] # old name
  495. n_head = self.hparams.get("num_attention_heads")
  496. if n_head is None:
  497. n_head = self.hparams["n_head"] # old name
  498. n_head_kv = self.hparams.get("num_kv_heads")
  499. if n_head_kv is None:
  500. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  501. self.gguf_writer.add_name("Falcon")
  502. self.gguf_writer.add_context_length(2048) # not in config.json
  503. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  504. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  505. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  506. self.gguf_writer.add_block_count(block_count)
  507. self.gguf_writer.add_head_count(n_head)
  508. self.gguf_writer.add_head_count_kv(n_head_kv)
  509. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  510. self.gguf_writer.add_file_type(self.ftype)
  511. def write_tensors(self):
  512. block_count = self.hparams.get("num_hidden_layers")
  513. if block_count is None:
  514. block_count = self.hparams["n_layer"] # old name
  515. n_head = self.hparams.get("num_attention_heads")
  516. if n_head is None:
  517. n_head = self.hparams["n_head"] # old name
  518. n_head_kv = self.hparams.get("num_kv_heads")
  519. if n_head_kv is None:
  520. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  521. head_dim = self.hparams["hidden_size"] // n_head
  522. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  523. for name, data_torch in self.get_tensors():
  524. old_dtype = data_torch.dtype
  525. # convert any unsupported data types to float32
  526. if data_torch.dtype not in (torch.float16, torch.float32):
  527. data_torch = data_torch.to(torch.float32)
  528. # QKV tensor transform
  529. # The original query_key_value tensor contains n_head_kv "kv groups",
  530. # each consisting of n_head/n_head_kv query weights followed by one key
  531. # and one value weight (shared by all query heads in the kv group).
  532. # This layout makes it a big pain to work with in GGML.
  533. # So we rearrange them here,, so that we have n_head query weights
  534. # followed by n_head_kv key weights followed by n_head_kv value weights,
  535. # in contiguous fashion.
  536. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  537. if "query_key_value" in name:
  538. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  539. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  540. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  541. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  542. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  543. data = data_torch.squeeze().numpy()
  544. # map tensor names
  545. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  546. if new_name is None:
  547. print(f"Can not map tensor {name!r}")
  548. sys.exit()
  549. n_dims = len(data.shape)
  550. data_dtype = data.dtype
  551. # if f32 desired, convert any float16 to float32
  552. if self.ftype == 0 and data_dtype == np.float16:
  553. data = data.astype(np.float32)
  554. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  555. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  556. data = data.astype(np.float32)
  557. # if f16 desired, convert any float32 2-dim weight tensors to float16
  558. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  559. data = data.astype(np.float16)
  560. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  561. self.gguf_writer.add_tensor(new_name, data)
  562. class StarCoderModel(Model):
  563. def set_gguf_parameters(self):
  564. block_count = self.hparams["n_layer"]
  565. self.gguf_writer.add_name("StarCoder")
  566. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  567. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  568. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  569. self.gguf_writer.add_block_count(block_count)
  570. self.gguf_writer.add_head_count(self.hparams["n_head"])
  571. self.gguf_writer.add_head_count_kv(1)
  572. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  573. self.gguf_writer.add_file_type(self.ftype)
  574. class RefactModel(Model):
  575. def set_gguf_parameters(self):
  576. hidden_dim = self.hparams["n_embd"]
  577. inner_dim = 4 * hidden_dim
  578. hidden_dim = int(2 * inner_dim / 3)
  579. multiple_of = 256
  580. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  581. block_count = self.hparams["n_layer"]
  582. self.gguf_writer.add_name("Refact")
  583. # refact uses Alibi. So this is from config.json which might be used by training.
  584. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  585. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  586. self.gguf_writer.add_feed_forward_length(ff_dim)
  587. self.gguf_writer.add_block_count(block_count)
  588. self.gguf_writer.add_head_count(self.hparams["n_head"])
  589. self.gguf_writer.add_head_count_kv(1)
  590. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  591. self.gguf_writer.add_file_type(self.ftype)
  592. def write_tensors(self):
  593. hidden_dim = self.hparams["n_embd"]
  594. inner_dim = 4 * hidden_dim
  595. hidden_dim = int(2 * inner_dim / 3)
  596. multiple_of = 256
  597. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  598. n_head = self.hparams["n_head"]
  599. n_head_kv = 1
  600. head_dim = self.hparams["n_embd"] // n_head
  601. block_count = self.hparams["n_layer"]
  602. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  603. tensors = dict(self.get_tensors())
  604. for i in range(block_count):
  605. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  606. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  607. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  608. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  609. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  610. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  611. del tensors[f"transformer.h.{i}.attn.q.weight"]
  612. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  613. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  614. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  615. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  616. for name, data_torch in tensors.items():
  617. old_dtype = data_torch.dtype
  618. # convert any unsupported data types to float32
  619. if data_torch.dtype not in (torch.float16, torch.float32):
  620. data_torch = data_torch.to(torch.float32)
  621. data = data_torch.squeeze().numpy()
  622. # map tensor names
  623. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  624. if new_name is None:
  625. print(f"Can not map tensor {name!r}")
  626. sys.exit()
  627. n_dims = len(data.shape)
  628. data_dtype = data.dtype
  629. # if f32 desired, convert any float16 to float32
  630. if self.ftype == 0 and data_dtype == np.float16:
  631. data = data.astype(np.float32)
  632. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  633. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  634. data = data.astype(np.float32)
  635. # if f16 desired, convert any float32 2-dim weight tensors to float16
  636. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  637. data = data.astype(np.float16)
  638. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  639. self.gguf_writer.add_tensor(new_name, data)
  640. class PersimmonModel(Model):
  641. def set_gguf_parameters(self):
  642. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  643. head_count = self.hparams["num_attention_heads"]
  644. head_count_kv = head_count
  645. hidden_size = self.hparams["hidden_size"]
  646. self.gguf_writer.add_name('persimmon-8b-chat')
  647. self.gguf_writer.add_embedding_length(hidden_size)
  648. self.gguf_writer.add_block_count(block_count)
  649. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  650. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  651. self.gguf_writer.add_head_count(head_count)
  652. self.gguf_writer.add_head_count_kv(head_count_kv)
  653. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  654. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  655. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  656. def set_vocab(self):
  657. self._set_vocab_sentencepiece()
  658. # self.gguf_writer.add_bos_token_id(71013)
  659. # self.gguf_writer.add_eos_token_id(71013)
  660. def write_tensors(self):
  661. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  662. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  663. for name, data_torch in self.get_tensors():
  664. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  665. continue
  666. old_dtype = data_torch.dtype
  667. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  668. data = data_torch.to(torch.float32).squeeze().numpy()
  669. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  670. if new_name is None:
  671. print(f"Can not map tensor {name!r}")
  672. sys.exit()
  673. n_dims = len(data.shape)
  674. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  675. self.gguf_writer.add_tensor(new_name, data)
  676. class StableLMModel(Model):
  677. def set_gguf_parameters(self):
  678. hparams = self.hparams
  679. block_count = hparams["num_hidden_layers"]
  680. self.gguf_writer.add_name(dir_model.name)
  681. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  682. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  683. self.gguf_writer.add_block_count(block_count)
  684. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  685. self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  686. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  687. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  688. self.gguf_writer.add_layer_norm_eps(1e-5)
  689. class MixtralModel(Model):
  690. def set_vocab(self):
  691. self._set_vocab_sentencepiece()
  692. class QwenModel(Model):
  693. @staticmethod
  694. def token_bytes_to_string(b):
  695. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  696. byte_encoder = bytes_to_unicode()
  697. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  698. @staticmethod
  699. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: Optional[int] = None) -> list[bytes]:
  700. parts = [bytes([b]) for b in token]
  701. while True:
  702. min_idx = None
  703. min_rank = None
  704. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  705. rank = mergeable_ranks.get(pair[0] + pair[1])
  706. if rank is not None and (min_rank is None or rank < min_rank):
  707. min_idx = i
  708. min_rank = rank
  709. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  710. break
  711. assert min_idx is not None
  712. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  713. return parts
  714. def set_vocab(self):
  715. dir_model = self.dir_model
  716. hparams = self.hparams
  717. tokens: list[bytearray] = []
  718. toktypes: list[int] = []
  719. from transformers import AutoTokenizer # type: ignore[attr-defined]
  720. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  721. vocab_size = hparams["vocab_size"]
  722. assert max(tokenizer.get_vocab().values()) < vocab_size
  723. merges = []
  724. vocab = {}
  725. mergeable_ranks = tokenizer.mergeable_ranks
  726. for token, rank in mergeable_ranks.items():
  727. vocab[self.token_bytes_to_string(token)] = rank
  728. if len(token) == 1:
  729. continue
  730. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  731. assert len(merged) == 2
  732. merges.append(' '.join(map(self.token_bytes_to_string, merged)))
  733. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in vocab.items()}
  734. added_vocab = tokenizer.special_tokens
  735. for i in range(vocab_size):
  736. if i not in reverse_vocab:
  737. pad_token = f"[PAD{i}]".encode("utf-8")
  738. tokens.append(bytearray(pad_token))
  739. toktypes.append(gguf.TokenType.USER_DEFINED)
  740. elif reverse_vocab[i] in added_vocab:
  741. tokens.append(reverse_vocab[i])
  742. toktypes.append(gguf.TokenType.CONTROL)
  743. else:
  744. tokens.append(reverse_vocab[i])
  745. toktypes.append(gguf.TokenType.NORMAL)
  746. self.gguf_writer.add_tokenizer_model("gpt2")
  747. self.gguf_writer.add_token_list(tokens)
  748. self.gguf_writer.add_token_types(toktypes)
  749. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  750. special_vocab.merges = merges
  751. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  752. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  753. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  754. special_vocab.add_to_gguf(self.gguf_writer)
  755. def set_gguf_parameters(self):
  756. self.gguf_writer.add_name("Qwen")
  757. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  758. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  759. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  760. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  761. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  762. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  763. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  764. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  765. def write_tensors(self):
  766. block_count = self.hparams["num_hidden_layers"]
  767. model_kv = dict(self.get_tensors())
  768. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  769. for name, data_torch in model_kv.items():
  770. # we don't need these
  771. if name.endswith(".rotary_emb.inv_freq"):
  772. continue
  773. old_dtype = data_torch.dtype
  774. # convert any unsupported data types to float32
  775. if data_torch.dtype not in (torch.float16, torch.float32):
  776. data_torch = data_torch.to(torch.float32)
  777. data = data_torch.squeeze().numpy()
  778. # map tensor names
  779. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  780. if new_name is None:
  781. print(f"Can not map tensor {name!r}")
  782. sys.exit()
  783. n_dims = len(data.shape)
  784. data_dtype = data.dtype
  785. # if f32 desired, convert any float16 to float32
  786. if self.ftype == 0 and data_dtype == np.float16:
  787. data = data.astype(np.float32)
  788. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  789. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  790. data = data.astype(np.float32)
  791. # if f16 desired, convert any float32 2-dim weight tensors to float16
  792. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  793. data = data.astype(np.float16)
  794. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  795. self.gguf_writer.add_tensor(new_name, data)
  796. ###### CONVERSION LOGIC ######
  797. def parse_args() -> argparse.Namespace:
  798. parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
  799. parser.add_argument(
  800. "--vocab-only", action="store_true",
  801. help="extract only the vocab",
  802. )
  803. parser.add_argument(
  804. "--outfile", type=Path,
  805. help="path to write to; default: based on input",
  806. )
  807. parser.add_argument(
  808. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  809. help="output format - use f32 for float32, f16 for float16",
  810. )
  811. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  812. parser.add_argument(
  813. "model", type=Path,
  814. help="directory containing model file",
  815. )
  816. return parser.parse_args()
  817. args = parse_args()
  818. dir_model = args.model
  819. if not dir_model.is_dir():
  820. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  821. sys.exit(1)
  822. ftype_map = {
  823. "f32": gguf.GGMLQuantizationType.F32,
  824. "f16": gguf.GGMLQuantizationType.F16,
  825. }
  826. if args.outfile is not None:
  827. fname_out = args.outfile
  828. else:
  829. # output in the same directory as the model by default
  830. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  831. print(f"Loading model: {dir_model.name}")
  832. hparams = Model.load_hparams(dir_model)
  833. with torch.inference_mode():
  834. model_class = Model.from_model_architecture(hparams["architectures"][0])
  835. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
  836. print("Set model parameters")
  837. model_instance.set_gguf_parameters()
  838. print("Set model tokenizer")
  839. model_instance.set_vocab()
  840. if args.vocab_only:
  841. print(f"Exporting model vocab to '{fname_out}'")
  842. model_instance.write_vocab()
  843. else:
  844. print(f"Exporting model to '{fname_out}'")
  845. model_instance.write()
  846. print(f"Model successfully exported to '{fname_out}'")