ggml-metal.metal 168 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908
  1. #include <metal_stdlib>
  2. using namespace metal;
  3. #define MAX(x, y) ((x) > (y) ? (x) : (y))
  4. #define MIN(x, y) ((x) < (y) ? (x) : (y))
  5. #define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
  6. #define QK4_0 32
  7. #define QR4_0 2
  8. typedef struct {
  9. half d; // delta
  10. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  11. } block_q4_0;
  12. #define QK4_1 32
  13. typedef struct {
  14. half d; // delta
  15. half m; // min
  16. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  17. } block_q4_1;
  18. #define QK5_0 32
  19. typedef struct {
  20. half d; // delta
  21. uint8_t qh[4]; // 5-th bit of quants
  22. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  23. } block_q5_0;
  24. #define QK5_1 32
  25. typedef struct {
  26. half d; // delta
  27. half m; // min
  28. uint8_t qh[4]; // 5-th bit of quants
  29. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  30. } block_q5_1;
  31. #define QK8_0 32
  32. typedef struct {
  33. half d; // delta
  34. int8_t qs[QK8_0]; // quants
  35. } block_q8_0;
  36. #define N_SIMDWIDTH 32 // assuming SIMD group size is 32
  37. enum ggml_sort_order {
  38. GGML_SORT_ASC,
  39. GGML_SORT_DESC,
  40. };
  41. // general-purpose kernel for addition, multiplication and division of two tensors
  42. // pros: works for non-contiguous tensors, supports broadcast across all dims
  43. // cons: not very efficient
  44. kernel void kernel_add(
  45. device const char * src0,
  46. device const char * src1,
  47. device char * dst,
  48. constant int64_t & ne00,
  49. constant int64_t & ne01,
  50. constant int64_t & ne02,
  51. constant int64_t & ne03,
  52. constant int64_t & nb00,
  53. constant int64_t & nb01,
  54. constant int64_t & nb02,
  55. constant int64_t & nb03,
  56. constant int64_t & ne10,
  57. constant int64_t & ne11,
  58. constant int64_t & ne12,
  59. constant int64_t & ne13,
  60. constant int64_t & nb10,
  61. constant int64_t & nb11,
  62. constant int64_t & nb12,
  63. constant int64_t & nb13,
  64. constant int64_t & ne0,
  65. constant int64_t & ne1,
  66. constant int64_t & ne2,
  67. constant int64_t & ne3,
  68. constant int64_t & nb0,
  69. constant int64_t & nb1,
  70. constant int64_t & nb2,
  71. constant int64_t & nb3,
  72. constant int64_t & offs,
  73. uint3 tgpig[[threadgroup_position_in_grid]],
  74. uint3 tpitg[[thread_position_in_threadgroup]],
  75. uint3 ntg[[threads_per_threadgroup]]) {
  76. const int64_t i03 = tgpig.z;
  77. const int64_t i02 = tgpig.y;
  78. const int64_t i01 = tgpig.x;
  79. const int64_t i13 = i03 % ne13;
  80. const int64_t i12 = i02 % ne12;
  81. const int64_t i11 = i01 % ne11;
  82. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
  83. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  84. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
  85. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  86. const int i10 = i0 % ne10;
  87. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10));
  88. }
  89. }
  90. kernel void kernel_mul(
  91. device const char * src0,
  92. device const char * src1,
  93. device char * dst,
  94. constant int64_t & ne00,
  95. constant int64_t & ne01,
  96. constant int64_t & ne02,
  97. constant int64_t & ne03,
  98. constant int64_t & nb00,
  99. constant int64_t & nb01,
  100. constant int64_t & nb02,
  101. constant int64_t & nb03,
  102. constant int64_t & ne10,
  103. constant int64_t & ne11,
  104. constant int64_t & ne12,
  105. constant int64_t & ne13,
  106. constant int64_t & nb10,
  107. constant int64_t & nb11,
  108. constant int64_t & nb12,
  109. constant int64_t & nb13,
  110. constant int64_t & ne0,
  111. constant int64_t & ne1,
  112. constant int64_t & ne2,
  113. constant int64_t & ne3,
  114. constant int64_t & nb0,
  115. constant int64_t & nb1,
  116. constant int64_t & nb2,
  117. constant int64_t & nb3,
  118. uint3 tgpig[[threadgroup_position_in_grid]],
  119. uint3 tpitg[[thread_position_in_threadgroup]],
  120. uint3 ntg[[threads_per_threadgroup]]) {
  121. const int64_t i03 = tgpig.z;
  122. const int64_t i02 = tgpig.y;
  123. const int64_t i01 = tgpig.x;
  124. const int64_t i13 = i03 % ne13;
  125. const int64_t i12 = i02 % ne12;
  126. const int64_t i11 = i01 % ne11;
  127. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  128. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  129. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  130. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  131. const int i10 = i0 % ne10;
  132. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10));
  133. }
  134. }
  135. kernel void kernel_div(
  136. device const char * src0,
  137. device const char * src1,
  138. device char * dst,
  139. constant int64_t & ne00,
  140. constant int64_t & ne01,
  141. constant int64_t & ne02,
  142. constant int64_t & ne03,
  143. constant int64_t & nb00,
  144. constant int64_t & nb01,
  145. constant int64_t & nb02,
  146. constant int64_t & nb03,
  147. constant int64_t & ne10,
  148. constant int64_t & ne11,
  149. constant int64_t & ne12,
  150. constant int64_t & ne13,
  151. constant int64_t & nb10,
  152. constant int64_t & nb11,
  153. constant int64_t & nb12,
  154. constant int64_t & nb13,
  155. constant int64_t & ne0,
  156. constant int64_t & ne1,
  157. constant int64_t & ne2,
  158. constant int64_t & ne3,
  159. constant int64_t & nb0,
  160. constant int64_t & nb1,
  161. constant int64_t & nb2,
  162. constant int64_t & nb3,
  163. uint3 tgpig[[threadgroup_position_in_grid]],
  164. uint3 tpitg[[thread_position_in_threadgroup]],
  165. uint3 ntg[[threads_per_threadgroup]]) {
  166. const int64_t i03 = tgpig.z;
  167. const int64_t i02 = tgpig.y;
  168. const int64_t i01 = tgpig.x;
  169. const int64_t i13 = i03 % ne13;
  170. const int64_t i12 = i02 % ne12;
  171. const int64_t i11 = i01 % ne11;
  172. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  173. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  174. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  175. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  176. const int i10 = i0 % ne10;
  177. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10));
  178. }
  179. }
  180. // assumption: src1 is a row
  181. // broadcast src1 into src0
  182. kernel void kernel_add_row(
  183. device const float4 * src0,
  184. device const float4 * src1,
  185. device float4 * dst,
  186. constant int64_t & nb [[buffer(28)]],
  187. uint tpig[[thread_position_in_grid]]) {
  188. dst[tpig] = src0[tpig] + src1[tpig % nb];
  189. }
  190. kernel void kernel_mul_row(
  191. device const float4 * src0,
  192. device const float4 * src1,
  193. device float4 * dst,
  194. constant int64_t & nb [[buffer(28)]],
  195. uint tpig[[thread_position_in_grid]]) {
  196. dst[tpig] = src0[tpig] * src1[tpig % nb];
  197. }
  198. kernel void kernel_div_row(
  199. device const float4 * src0,
  200. device const float4 * src1,
  201. device float4 * dst,
  202. constant int64_t & nb [[buffer(28)]],
  203. uint tpig[[thread_position_in_grid]]) {
  204. dst[tpig] = src0[tpig] / src1[tpig % nb];
  205. }
  206. kernel void kernel_scale(
  207. device const float * src0,
  208. device float * dst,
  209. constant float & scale,
  210. uint tpig[[thread_position_in_grid]]) {
  211. dst[tpig] = src0[tpig] * scale;
  212. }
  213. kernel void kernel_scale_4(
  214. device const float4 * src0,
  215. device float4 * dst,
  216. constant float & scale,
  217. uint tpig[[thread_position_in_grid]]) {
  218. dst[tpig] = src0[tpig] * scale;
  219. }
  220. kernel void kernel_relu(
  221. device const float * src0,
  222. device float * dst,
  223. uint tpig[[thread_position_in_grid]]) {
  224. dst[tpig] = max(0.0f, src0[tpig]);
  225. }
  226. kernel void kernel_tanh(
  227. device const float * src0,
  228. device float * dst,
  229. uint tpig[[thread_position_in_grid]]) {
  230. device const float & x = src0[tpig];
  231. dst[tpig] = precise::tanh(x);
  232. }
  233. constant float GELU_COEF_A = 0.044715f;
  234. constant float GELU_QUICK_COEF = -1.702f;
  235. constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  236. kernel void kernel_gelu(
  237. device const float4 * src0,
  238. device float4 * dst,
  239. uint tpig[[thread_position_in_grid]]) {
  240. device const float4 & x = src0[tpig];
  241. // BEWARE !!!
  242. // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
  243. // This was observed with Falcon 7B and 40B models
  244. //
  245. dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  246. }
  247. kernel void kernel_gelu_quick(
  248. device const float4 * src0,
  249. device float4 * dst,
  250. uint tpig[[thread_position_in_grid]]) {
  251. device const float4 & x = src0[tpig];
  252. dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
  253. }
  254. kernel void kernel_silu(
  255. device const float4 * src0,
  256. device float4 * dst,
  257. uint tpig[[thread_position_in_grid]]) {
  258. device const float4 & x = src0[tpig];
  259. dst[tpig] = x / (1.0f + exp(-x));
  260. }
  261. kernel void kernel_sqr(
  262. device const float * src0,
  263. device float * dst,
  264. uint tpig[[thread_position_in_grid]]) {
  265. dst[tpig] = src0[tpig] * src0[tpig];
  266. }
  267. kernel void kernel_sum_rows(
  268. device const float * src0,
  269. device float * dst,
  270. constant int64_t & ne00,
  271. constant int64_t & ne01,
  272. constant int64_t & ne02,
  273. constant int64_t & ne03,
  274. constant int64_t & nb00,
  275. constant int64_t & nb01,
  276. constant int64_t & nb02,
  277. constant int64_t & nb03,
  278. constant int64_t & ne10,
  279. constant int64_t & ne11,
  280. constant int64_t & ne12,
  281. constant int64_t & ne13,
  282. constant int64_t & nb10,
  283. constant int64_t & nb11,
  284. constant int64_t & nb12,
  285. constant int64_t & nb13,
  286. constant int64_t & ne0,
  287. constant int64_t & ne1,
  288. constant int64_t & ne2,
  289. constant int64_t & ne3,
  290. constant int64_t & nb0,
  291. constant int64_t & nb1,
  292. constant int64_t & nb2,
  293. constant int64_t & nb3,
  294. uint3 tpig[[thread_position_in_grid]]) {
  295. int64_t i3 = tpig.z;
  296. int64_t i2 = tpig.y;
  297. int64_t i1 = tpig.x;
  298. if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
  299. return;
  300. }
  301. device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
  302. device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
  303. float row_sum = 0;
  304. for (int64_t i0 = 0; i0 < ne00; i0++) {
  305. row_sum += src_row[i0];
  306. }
  307. dst_row[0] = row_sum;
  308. }
  309. kernel void kernel_soft_max(
  310. device const float * src0,
  311. device const float * src1,
  312. device float * dst,
  313. constant int64_t & ne00,
  314. constant int64_t & ne01,
  315. constant int64_t & ne02,
  316. constant float & scale,
  317. threadgroup float * buf [[threadgroup(0)]],
  318. uint tgpig[[threadgroup_position_in_grid]],
  319. uint tpitg[[thread_position_in_threadgroup]],
  320. uint sgitg[[simdgroup_index_in_threadgroup]],
  321. uint tiisg[[thread_index_in_simdgroup]],
  322. uint ntg[[threads_per_threadgroup]]) {
  323. const int64_t i03 = (tgpig) / (ne02*ne01);
  324. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  325. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  326. device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  327. device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr;
  328. device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  329. // parallel max
  330. float lmax = -INFINITY;
  331. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  332. lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f));
  333. }
  334. // find the max value in the block
  335. float max_val = simd_max(lmax);
  336. if (ntg > N_SIMDWIDTH) {
  337. if (sgitg == 0) {
  338. buf[tiisg] = -INFINITY;
  339. }
  340. threadgroup_barrier(mem_flags::mem_threadgroup);
  341. if (tiisg == 0) {
  342. buf[sgitg] = max_val;
  343. }
  344. threadgroup_barrier(mem_flags::mem_threadgroup);
  345. max_val = buf[tiisg];
  346. max_val = simd_max(max_val);
  347. }
  348. // parallel sum
  349. float lsum = 0.0f;
  350. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  351. const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
  352. lsum += exp_psrc0;
  353. pdst[i00] = exp_psrc0;
  354. }
  355. // This barrier fixes a failing test
  356. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  357. threadgroup_barrier(mem_flags::mem_none);
  358. float sum = simd_sum(lsum);
  359. if (ntg > N_SIMDWIDTH) {
  360. if (sgitg == 0) {
  361. buf[tiisg] = 0.0f;
  362. }
  363. threadgroup_barrier(mem_flags::mem_threadgroup);
  364. if (tiisg == 0) {
  365. buf[sgitg] = sum;
  366. }
  367. threadgroup_barrier(mem_flags::mem_threadgroup);
  368. sum = buf[tiisg];
  369. sum = simd_sum(sum);
  370. }
  371. const float inv_sum = 1.0f/sum;
  372. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  373. pdst[i00] *= inv_sum;
  374. }
  375. }
  376. kernel void kernel_soft_max_4(
  377. device const float * src0,
  378. device const float * src1,
  379. device float * dst,
  380. constant int64_t & ne00,
  381. constant int64_t & ne01,
  382. constant int64_t & ne02,
  383. constant float & scale,
  384. threadgroup float * buf [[threadgroup(0)]],
  385. uint tgpig[[threadgroup_position_in_grid]],
  386. uint tpitg[[thread_position_in_threadgroup]],
  387. uint sgitg[[simdgroup_index_in_threadgroup]],
  388. uint tiisg[[thread_index_in_simdgroup]],
  389. uint ntg[[threads_per_threadgroup]]) {
  390. const int64_t i03 = (tgpig) / (ne02*ne01);
  391. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  392. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  393. device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  394. device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
  395. device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  396. // parallel max
  397. float4 lmax4 = -INFINITY;
  398. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  399. lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f));
  400. }
  401. const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
  402. float max_val = simd_max(lmax);
  403. if (ntg > N_SIMDWIDTH) {
  404. if (sgitg == 0) {
  405. buf[tiisg] = -INFINITY;
  406. }
  407. threadgroup_barrier(mem_flags::mem_threadgroup);
  408. if (tiisg == 0) {
  409. buf[sgitg] = max_val;
  410. }
  411. threadgroup_barrier(mem_flags::mem_threadgroup);
  412. max_val = buf[tiisg];
  413. max_val = simd_max(max_val);
  414. }
  415. // parallel sum
  416. float4 lsum4 = 0.0f;
  417. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  418. const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
  419. lsum4 += exp_psrc4;
  420. pdst4[i00] = exp_psrc4;
  421. }
  422. const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
  423. // This barrier fixes a failing test
  424. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  425. threadgroup_barrier(mem_flags::mem_none);
  426. float sum = simd_sum(lsum);
  427. if (ntg > N_SIMDWIDTH) {
  428. if (sgitg == 0) {
  429. buf[tiisg] = 0.0f;
  430. }
  431. threadgroup_barrier(mem_flags::mem_threadgroup);
  432. if (tiisg == 0) {
  433. buf[sgitg] = sum;
  434. }
  435. threadgroup_barrier(mem_flags::mem_threadgroup);
  436. sum = buf[tiisg];
  437. sum = simd_sum(sum);
  438. }
  439. const float inv_sum = 1.0f/sum;
  440. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  441. pdst4[i00] *= inv_sum;
  442. }
  443. }
  444. kernel void kernel_diag_mask_inf(
  445. device const float * src0,
  446. device float * dst,
  447. constant int64_t & ne00,
  448. constant int64_t & ne01,
  449. constant int & n_past,
  450. uint3 tpig[[thread_position_in_grid]]) {
  451. const int64_t i02 = tpig[2];
  452. const int64_t i01 = tpig[1];
  453. const int64_t i00 = tpig[0];
  454. if (i00 > n_past + i01) {
  455. dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
  456. } else {
  457. dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
  458. }
  459. }
  460. kernel void kernel_diag_mask_inf_8(
  461. device const float4 * src0,
  462. device float4 * dst,
  463. constant int64_t & ne00,
  464. constant int64_t & ne01,
  465. constant int & n_past,
  466. uint3 tpig[[thread_position_in_grid]]) {
  467. const int64_t i = 2*tpig[0];
  468. dst[i+0] = src0[i+0];
  469. dst[i+1] = src0[i+1];
  470. int64_t i4 = 4*i;
  471. const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
  472. const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
  473. const int64_t i00 = i4;
  474. for (int k = 3; k >= 0; --k) {
  475. if (i00 + 4 + k <= n_past + i01) {
  476. break;
  477. }
  478. dst[i+1][k] = -INFINITY;
  479. if (i00 + k > n_past + i01) {
  480. dst[i][k] = -INFINITY;
  481. }
  482. }
  483. }
  484. kernel void kernel_norm(
  485. device const void * src0,
  486. device float * dst,
  487. constant int64_t & ne00,
  488. constant uint64_t & nb01,
  489. constant float & eps,
  490. threadgroup float * sum [[threadgroup(0)]],
  491. uint tgpig[[threadgroup_position_in_grid]],
  492. uint tpitg[[thread_position_in_threadgroup]],
  493. uint ntg[[threads_per_threadgroup]]) {
  494. device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
  495. // MEAN
  496. // parallel sum
  497. sum[tpitg] = 0.0f;
  498. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  499. sum[tpitg] += x[i00];
  500. }
  501. // reduce
  502. threadgroup_barrier(mem_flags::mem_threadgroup);
  503. for (uint i = ntg/2; i > 0; i /= 2) {
  504. if (tpitg < i) {
  505. sum[tpitg] += sum[tpitg + i];
  506. }
  507. threadgroup_barrier(mem_flags::mem_threadgroup);
  508. }
  509. const float mean = sum[0] / ne00;
  510. // recenter and VARIANCE
  511. threadgroup_barrier(mem_flags::mem_threadgroup);
  512. device float * y = dst + tgpig*ne00;
  513. sum[tpitg] = 0.0f;
  514. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  515. y[i00] = x[i00] - mean;
  516. sum[tpitg] += y[i00] * y[i00];
  517. }
  518. // reduce
  519. threadgroup_barrier(mem_flags::mem_threadgroup);
  520. for (uint i = ntg/2; i > 0; i /= 2) {
  521. if (tpitg < i) {
  522. sum[tpitg] += sum[tpitg + i];
  523. }
  524. threadgroup_barrier(mem_flags::mem_threadgroup);
  525. }
  526. const float variance = sum[0] / ne00;
  527. const float scale = 1.0f/sqrt(variance + eps);
  528. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  529. y[i00] = y[i00] * scale;
  530. }
  531. }
  532. kernel void kernel_rms_norm(
  533. device const void * src0,
  534. device float * dst,
  535. constant int64_t & ne00,
  536. constant uint64_t & nb01,
  537. constant float & eps,
  538. threadgroup float * buf [[threadgroup(0)]],
  539. uint tgpig[[threadgroup_position_in_grid]],
  540. uint tpitg[[thread_position_in_threadgroup]],
  541. uint sgitg[[simdgroup_index_in_threadgroup]],
  542. uint tiisg[[thread_index_in_simdgroup]],
  543. uint ntg[[threads_per_threadgroup]]) {
  544. device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
  545. float4 sumf = 0;
  546. float all_sum = 0;
  547. // parallel sum
  548. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  549. sumf += x[i00] * x[i00];
  550. }
  551. all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
  552. all_sum = simd_sum(all_sum);
  553. if (ntg > N_SIMDWIDTH) {
  554. if (sgitg == 0) {
  555. buf[tiisg] = 0.0f;
  556. }
  557. threadgroup_barrier(mem_flags::mem_threadgroup);
  558. if (tiisg == 0) {
  559. buf[sgitg] = all_sum;
  560. }
  561. threadgroup_barrier(mem_flags::mem_threadgroup);
  562. all_sum = buf[tiisg];
  563. all_sum = simd_sum(all_sum);
  564. }
  565. const float mean = all_sum/ne00;
  566. const float scale = 1.0f/sqrt(mean + eps);
  567. device float4 * y = (device float4 *) (dst + tgpig*ne00);
  568. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  569. y[i00] = x[i00] * scale;
  570. }
  571. }
  572. kernel void kernel_group_norm(
  573. device const float * src0,
  574. device float * dst,
  575. constant int64_t & ne00,
  576. constant int64_t & ne01,
  577. constant int64_t & ne02,
  578. constant uint64_t & nb00,
  579. constant uint64_t & nb01,
  580. constant uint64_t & nb02,
  581. constant int32_t & n_groups,
  582. constant float & eps,
  583. threadgroup float * buf [[threadgroup(0)]],
  584. uint tgpig[[threadgroup_position_in_grid]],
  585. uint tpitg[[thread_position_in_threadgroup]],
  586. uint sgitg[[simdgroup_index_in_threadgroup]],
  587. uint tiisg[[thread_index_in_simdgroup]],
  588. uint ntg[[threads_per_threadgroup]]) {
  589. const int64_t ne = ne00*ne01*ne02;
  590. const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups);
  591. int start = tgpig * gs;
  592. int end = start + gs;
  593. start += tpitg;
  594. if (end >= ne) {
  595. end = ne;
  596. }
  597. float tmp = 0.0f; // partial sum for thread in warp
  598. for (int j = start; j < end; j += ntg) {
  599. tmp += src0[j];
  600. }
  601. threadgroup_barrier(mem_flags::mem_threadgroup);
  602. tmp = simd_sum(tmp);
  603. if (ntg > N_SIMDWIDTH) {
  604. if (sgitg == 0) {
  605. buf[tiisg] = 0.0f;
  606. }
  607. threadgroup_barrier(mem_flags::mem_threadgroup);
  608. if (tiisg == 0) {
  609. buf[sgitg] = tmp;
  610. }
  611. threadgroup_barrier(mem_flags::mem_threadgroup);
  612. tmp = buf[tiisg];
  613. tmp = simd_sum(tmp);
  614. }
  615. const float mean = tmp / gs;
  616. tmp = 0.0f;
  617. for (int j = start; j < end; j += ntg) {
  618. float xi = src0[j] - mean;
  619. dst[j] = xi;
  620. tmp += xi * xi;
  621. }
  622. tmp = simd_sum(tmp);
  623. if (ntg > N_SIMDWIDTH) {
  624. if (sgitg == 0) {
  625. buf[tiisg] = 0.0f;
  626. }
  627. threadgroup_barrier(mem_flags::mem_threadgroup);
  628. if (tiisg == 0) {
  629. buf[sgitg] = tmp;
  630. }
  631. threadgroup_barrier(mem_flags::mem_threadgroup);
  632. tmp = buf[tiisg];
  633. tmp = simd_sum(tmp);
  634. }
  635. const float variance = tmp / gs;
  636. const float scale = 1.0f/sqrt(variance + eps);
  637. for (int j = start; j < end; j += ntg) {
  638. dst[j] *= scale;
  639. }
  640. }
  641. // function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
  642. // il indicates where the q4 quants begin (0 or QK4_0/4)
  643. // we assume that the yl's have been multiplied with the appropriate scale factor
  644. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  645. inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
  646. float d = qb_curr->d;
  647. float2 acc = 0.f;
  648. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
  649. for (int i = 0; i < 8; i+=2) {
  650. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  651. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  652. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  653. + yl[i + 9] * (qs[i / 2] & 0xF000);
  654. }
  655. return d * (sumy * -8.f + acc[0] + acc[1]);
  656. }
  657. // function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
  658. // il indicates where the q4 quants begin (0 or QK4_0/4)
  659. // we assume that the yl's have been multiplied with the appropriate scale factor
  660. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  661. inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
  662. float d = qb_curr->d;
  663. float m = qb_curr->m;
  664. float2 acc = 0.f;
  665. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
  666. for (int i = 0; i < 8; i+=2) {
  667. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  668. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  669. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  670. + yl[i + 9] * (qs[i / 2] & 0xF000);
  671. }
  672. return d * (acc[0] + acc[1]) + sumy * m;
  673. }
  674. // function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
  675. // il indicates where the q5 quants begin (0 or QK5_0/4)
  676. // we assume that the yl's have been multiplied with the appropriate scale factor
  677. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  678. inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
  679. float d = qb_curr->d;
  680. float2 acc = 0.f;
  681. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
  682. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  683. for (int i = 0; i < 8; i+=2) {
  684. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  685. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  686. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  687. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  688. }
  689. return d * (sumy * -16.f + acc[0] + acc[1]);
  690. }
  691. // function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
  692. // il indicates where the q5 quants begin (0 or QK5_1/4)
  693. // we assume that the yl's have been multiplied with the appropriate scale factor
  694. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  695. inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
  696. float d = qb_curr->d;
  697. float m = qb_curr->m;
  698. float2 acc = 0.f;
  699. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
  700. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  701. for (int i = 0; i < 8; i+=2) {
  702. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  703. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  704. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  705. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  706. }
  707. return d * (acc[0] + acc[1]) + sumy * m;
  708. }
  709. // putting them in the kernel cause a significant performance penalty
  710. #define N_DST 4 // each SIMD group works on 4 rows
  711. #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
  712. //Note: This is a template, but strictly speaking it only applies to
  713. // quantizations where the block size is 32. It also does not
  714. // giard against the number of rows not being divisible by
  715. // N_DST, so this is another explicit assumption of the implementation.
  716. template<typename block_q_type, int nr, int nsg, int nw>
  717. void mul_vec_q_n_f32_impl(
  718. device const void * src0,
  719. device const float * src1,
  720. device float * dst,
  721. int64_t ne00,
  722. int64_t ne01,
  723. int64_t ne02,
  724. int64_t ne10,
  725. int64_t ne12,
  726. int64_t ne0,
  727. int64_t ne1,
  728. uint r2,
  729. uint r3,
  730. uint3 tgpig, uint tiisg, uint sgitg) {
  731. const int nb = ne00/QK4_0;
  732. const int r0 = tgpig.x;
  733. const int r1 = tgpig.y;
  734. const int im = tgpig.z;
  735. const int first_row = (r0 * nsg + sgitg) * nr;
  736. const uint i12 = im%ne12;
  737. const uint i13 = im/ne12;
  738. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  739. device const block_q_type * x = (device const block_q_type *) src0 + offset0;
  740. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  741. float yl[16]; // src1 vector cache
  742. float sumf[nr] = {0.f};
  743. const int ix = (tiisg/2);
  744. const int il = (tiisg%2)*8;
  745. device const float * yb = y + ix * QK4_0 + il;
  746. // each thread in a SIMD group deals with half a block.
  747. for (int ib = ix; ib < nb; ib += nw/2) {
  748. float sumy = 0;
  749. for (int i = 0; i < 8; i += 2) {
  750. sumy += yb[i] + yb[i+1];
  751. yl[i+0] = yb[i+ 0];
  752. yl[i+1] = yb[i+ 1]/256.f;
  753. sumy += yb[i+16] + yb[i+17];
  754. yl[i+8] = yb[i+16]/16.f;
  755. yl[i+9] = yb[i+17]/4096.f;
  756. }
  757. for (int row = 0; row < nr; row++) {
  758. sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
  759. }
  760. yb += QK4_0 * 16;
  761. }
  762. for (int row = 0; row < nr; ++row) {
  763. const float tot = simd_sum(sumf[row]);
  764. if (tiisg == 0 && first_row + row < ne01) {
  765. dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
  766. }
  767. }
  768. }
  769. kernel void kernel_mul_mv_q4_0_f32(
  770. device const void * src0,
  771. device const float * src1,
  772. device float * dst,
  773. constant int64_t & ne00,
  774. constant int64_t & ne01[[buffer(4)]],
  775. constant int64_t & ne02[[buffer(5)]],
  776. constant int64_t & ne10[[buffer(9)]],
  777. constant int64_t & ne12[[buffer(11)]],
  778. constant int64_t & ne0 [[buffer(15)]],
  779. constant int64_t & ne1 [[buffer(16)]],
  780. constant uint & r2 [[buffer(17)]],
  781. constant uint & r3 [[buffer(18)]],
  782. uint3 tgpig[[threadgroup_position_in_grid]],
  783. uint tiisg[[thread_index_in_simdgroup]],
  784. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  785. mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  786. }
  787. kernel void kernel_mul_mv_q4_1_f32(
  788. device const void * src0,
  789. device const float * src1,
  790. device float * dst,
  791. constant int64_t & ne00,
  792. constant int64_t & ne01[[buffer(4)]],
  793. constant int64_t & ne02[[buffer(5)]],
  794. constant int64_t & ne10[[buffer(9)]],
  795. constant int64_t & ne12[[buffer(11)]],
  796. constant int64_t & ne0 [[buffer(15)]],
  797. constant int64_t & ne1 [[buffer(16)]],
  798. constant uint & r2 [[buffer(17)]],
  799. constant uint & r3 [[buffer(18)]],
  800. uint3 tgpig[[threadgroup_position_in_grid]],
  801. uint tiisg[[thread_index_in_simdgroup]],
  802. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  803. mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  804. }
  805. kernel void kernel_mul_mv_q5_0_f32(
  806. device const void * src0,
  807. device const float * src1,
  808. device float * dst,
  809. constant int64_t & ne00,
  810. constant int64_t & ne01[[buffer(4)]],
  811. constant int64_t & ne02[[buffer(5)]],
  812. constant int64_t & ne10[[buffer(9)]],
  813. constant int64_t & ne12[[buffer(11)]],
  814. constant int64_t & ne0 [[buffer(15)]],
  815. constant int64_t & ne1 [[buffer(16)]],
  816. constant uint & r2 [[buffer(17)]],
  817. constant uint & r3 [[buffer(18)]],
  818. uint3 tgpig[[threadgroup_position_in_grid]],
  819. uint tiisg[[thread_index_in_simdgroup]],
  820. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  821. mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  822. }
  823. kernel void kernel_mul_mv_q5_1_f32(
  824. device const void * src0,
  825. device const float * src1,
  826. device float * dst,
  827. constant int64_t & ne00,
  828. constant int64_t & ne01[[buffer(4)]],
  829. constant int64_t & ne02[[buffer(5)]],
  830. constant int64_t & ne10[[buffer(9)]],
  831. constant int64_t & ne12[[buffer(11)]],
  832. constant int64_t & ne0 [[buffer(15)]],
  833. constant int64_t & ne1 [[buffer(16)]],
  834. constant uint & r2 [[buffer(17)]],
  835. constant uint & r3 [[buffer(18)]],
  836. uint3 tgpig[[threadgroup_position_in_grid]],
  837. uint tiisg[[thread_index_in_simdgroup]],
  838. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  839. mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  840. }
  841. #define NB_Q8_0 8
  842. void kernel_mul_mv_q8_0_f32_impl(
  843. device const void * src0,
  844. device const float * src1,
  845. device float * dst,
  846. constant int64_t & ne00,
  847. constant int64_t & ne01,
  848. constant int64_t & ne02,
  849. constant int64_t & ne10,
  850. constant int64_t & ne12,
  851. constant int64_t & ne0,
  852. constant int64_t & ne1,
  853. constant uint & r2,
  854. constant uint & r3,
  855. uint3 tgpig[[threadgroup_position_in_grid]],
  856. uint tiisg[[thread_index_in_simdgroup]],
  857. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  858. const int nr = N_DST;
  859. const int nsg = N_SIMDGROUP;
  860. const int nw = N_SIMDWIDTH;
  861. const int nb = ne00/QK8_0;
  862. const int r0 = tgpig.x;
  863. const int r1 = tgpig.y;
  864. const int im = tgpig.z;
  865. const int first_row = (r0 * nsg + sgitg) * nr;
  866. const uint i12 = im%ne12;
  867. const uint i13 = im/ne12;
  868. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  869. device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
  870. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  871. float yl[NB_Q8_0];
  872. float sumf[nr]={0.f};
  873. const int ix = tiisg/4;
  874. const int il = tiisg%4;
  875. device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
  876. // each thread in a SIMD group deals with NB_Q8_0 quants at a time
  877. for (int ib = ix; ib < nb; ib += nw/4) {
  878. for (int i = 0; i < NB_Q8_0; ++i) {
  879. yl[i] = yb[i];
  880. }
  881. for (int row = 0; row < nr; row++) {
  882. device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
  883. float sumq = 0.f;
  884. for (int iq = 0; iq < NB_Q8_0; ++iq) {
  885. sumq += qs[iq] * yl[iq];
  886. }
  887. sumf[row] += sumq*x[ib+row*nb].d;
  888. }
  889. yb += NB_Q8_0 * nw;
  890. }
  891. for (int row = 0; row < nr; ++row) {
  892. const float tot = simd_sum(sumf[row]);
  893. if (tiisg == 0 && first_row + row < ne01) {
  894. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  895. }
  896. }
  897. }
  898. [[host_name("kernel_mul_mv_q8_0_f32")]]
  899. kernel void kernel_mul_mv_q8_0_f32(
  900. device const void * src0,
  901. device const float * src1,
  902. device float * dst,
  903. constant int64_t & ne00,
  904. constant int64_t & ne01,
  905. constant int64_t & ne02,
  906. constant int64_t & ne10,
  907. constant int64_t & ne12,
  908. constant int64_t & ne0,
  909. constant int64_t & ne1,
  910. constant uint & r2 [[buffer(17)]],
  911. constant uint & r3 [[buffer(18)]],
  912. uint3 tgpig[[threadgroup_position_in_grid]],
  913. uint tiisg[[thread_index_in_simdgroup]],
  914. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  915. kernel_mul_mv_q8_0_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  916. }
  917. #define N_F32_F32 4
  918. void kernel_mul_mv_f32_f32_impl(
  919. device const char * src0,
  920. device const char * src1,
  921. device float * dst,
  922. constant int64_t & ne00,
  923. constant int64_t & ne01,
  924. constant int64_t & ne02,
  925. constant uint64_t & nb00,
  926. constant uint64_t & nb01,
  927. constant uint64_t & nb02,
  928. constant int64_t & ne10,
  929. constant int64_t & ne11,
  930. constant int64_t & ne12,
  931. constant uint64_t & nb10,
  932. constant uint64_t & nb11,
  933. constant uint64_t & nb12,
  934. constant int64_t & ne0,
  935. constant int64_t & ne1,
  936. constant uint & r2,
  937. constant uint & r3,
  938. uint3 tgpig[[threadgroup_position_in_grid]],
  939. uint tiisg[[thread_index_in_simdgroup]]) {
  940. const int64_t r0 = tgpig.x;
  941. const int64_t rb = tgpig.y*N_F32_F32;
  942. const int64_t im = tgpig.z;
  943. const uint i12 = im%ne12;
  944. const uint i13 = im/ne12;
  945. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  946. device const float * x = (device const float *) (src0 + offset0);
  947. if (ne00 < 128) {
  948. for (int row = 0; row < N_F32_F32; ++row) {
  949. int r1 = rb + row;
  950. if (r1 >= ne11) {
  951. break;
  952. }
  953. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  954. float sumf = 0;
  955. for (int i = tiisg; i < ne00; i += 32) {
  956. sumf += (float) x[i] * (float) y[i];
  957. }
  958. float all_sum = simd_sum(sumf);
  959. if (tiisg == 0) {
  960. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  961. }
  962. }
  963. } else {
  964. device const float4 * x4 = (device const float4 *)x;
  965. for (int row = 0; row < N_F32_F32; ++row) {
  966. int r1 = rb + row;
  967. if (r1 >= ne11) {
  968. break;
  969. }
  970. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  971. device const float4 * y4 = (device const float4 *) y;
  972. float sumf = 0;
  973. for (int i = tiisg; i < ne00/4; i += 32) {
  974. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  975. }
  976. float all_sum = simd_sum(sumf);
  977. if (tiisg == 0) {
  978. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  979. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  980. }
  981. }
  982. }
  983. }
  984. [[host_name("kernel_mul_mv_f32_f32")]]
  985. kernel void kernel_mul_mv_f32_f32(
  986. device const char * src0,
  987. device const char * src1,
  988. device float * dst,
  989. constant int64_t & ne00,
  990. constant int64_t & ne01,
  991. constant int64_t & ne02,
  992. constant uint64_t & nb00,
  993. constant uint64_t & nb01,
  994. constant uint64_t & nb02,
  995. constant int64_t & ne10,
  996. constant int64_t & ne11,
  997. constant int64_t & ne12,
  998. constant uint64_t & nb10,
  999. constant uint64_t & nb11,
  1000. constant uint64_t & nb12,
  1001. constant int64_t & ne0,
  1002. constant int64_t & ne1,
  1003. constant uint & r2 [[buffer(17)]],
  1004. constant uint & r3 [[buffer(18)]],
  1005. uint3 tgpig[[threadgroup_position_in_grid]],
  1006. uint tiisg[[thread_index_in_simdgroup]]) {
  1007. kernel_mul_mv_f32_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1008. }
  1009. #define N_F16_F16 4
  1010. kernel void kernel_mul_mv_f16_f16(
  1011. device const char * src0,
  1012. device const char * src1,
  1013. device float * dst,
  1014. constant int64_t & ne00,
  1015. constant int64_t & ne01,
  1016. constant int64_t & ne02,
  1017. constant uint64_t & nb00,
  1018. constant uint64_t & nb01,
  1019. constant uint64_t & nb02,
  1020. constant int64_t & ne10,
  1021. constant int64_t & ne11,
  1022. constant int64_t & ne12,
  1023. constant uint64_t & nb10,
  1024. constant uint64_t & nb11,
  1025. constant uint64_t & nb12,
  1026. constant int64_t & ne0,
  1027. constant int64_t & ne1,
  1028. constant uint & r2 [[buffer(17)]],
  1029. constant uint & r3 [[buffer(18)]],
  1030. uint3 tgpig[[threadgroup_position_in_grid]],
  1031. uint tiisg[[thread_index_in_simdgroup]]) {
  1032. const int64_t r0 = tgpig.x;
  1033. const int64_t rb = tgpig.y*N_F16_F16;
  1034. const int64_t im = tgpig.z;
  1035. const uint i12 = im%ne12;
  1036. const uint i13 = im/ne12;
  1037. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1038. device const half * x = (device const half *) (src0 + offset0);
  1039. if (ne00 < 128) {
  1040. for (int row = 0; row < N_F16_F16; ++row) {
  1041. int r1 = rb + row;
  1042. if (r1 >= ne11) {
  1043. break;
  1044. }
  1045. device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
  1046. float sumf = 0;
  1047. for (int i = tiisg; i < ne00; i += 32) {
  1048. sumf += (half) x[i] * (half) y[i];
  1049. }
  1050. float all_sum = simd_sum(sumf);
  1051. if (tiisg == 0) {
  1052. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1053. }
  1054. }
  1055. } else {
  1056. device const half4 * x4 = (device const half4 *)x;
  1057. for (int row = 0; row < N_F16_F16; ++row) {
  1058. int r1 = rb + row;
  1059. if (r1 >= ne11) {
  1060. break;
  1061. }
  1062. device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
  1063. device const half4 * y4 = (device const half4 *) y;
  1064. float sumf = 0;
  1065. for (int i = tiisg; i < ne00/4; i += 32) {
  1066. for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
  1067. }
  1068. float all_sum = simd_sum(sumf);
  1069. if (tiisg == 0) {
  1070. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
  1071. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1072. }
  1073. }
  1074. }
  1075. }
  1076. void kernel_mul_mv_f16_f32_1row_impl(
  1077. device const char * src0,
  1078. device const char * src1,
  1079. device float * dst,
  1080. constant int64_t & ne00,
  1081. constant int64_t & ne01,
  1082. constant int64_t & ne02,
  1083. constant uint64_t & nb00,
  1084. constant uint64_t & nb01,
  1085. constant uint64_t & nb02,
  1086. constant int64_t & ne10,
  1087. constant int64_t & ne11,
  1088. constant int64_t & ne12,
  1089. constant uint64_t & nb10,
  1090. constant uint64_t & nb11,
  1091. constant uint64_t & nb12,
  1092. constant int64_t & ne0,
  1093. constant int64_t & ne1,
  1094. constant uint & r2,
  1095. constant uint & r3,
  1096. uint3 tgpig[[threadgroup_position_in_grid]],
  1097. uint tiisg[[thread_index_in_simdgroup]]) {
  1098. const int64_t r0 = tgpig.x;
  1099. const int64_t r1 = tgpig.y;
  1100. const int64_t im = tgpig.z;
  1101. const uint i12 = im%ne12;
  1102. const uint i13 = im/ne12;
  1103. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1104. device const half * x = (device const half *) (src0 + offset0);
  1105. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1106. float sumf = 0;
  1107. if (ne00 < 128) {
  1108. for (int i = tiisg; i < ne00; i += 32) {
  1109. sumf += (float) x[i] * (float) y[i];
  1110. }
  1111. float all_sum = simd_sum(sumf);
  1112. if (tiisg == 0) {
  1113. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1114. }
  1115. } else {
  1116. device const half4 * x4 = (device const half4 *) x;
  1117. device const float4 * y4 = (device const float4 *) y;
  1118. for (int i = tiisg; i < ne00/4; i += 32) {
  1119. for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k];
  1120. }
  1121. float all_sum = simd_sum(sumf);
  1122. if (tiisg == 0) {
  1123. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1124. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1125. }
  1126. }
  1127. }
  1128. [[host_name("kernel_mul_mv_f16_f32_1row")]]
  1129. kernel void kernel_mul_mv_f16_f32_1row(
  1130. device const char * src0,
  1131. device const char * src1,
  1132. device float * dst,
  1133. constant int64_t & ne00,
  1134. constant int64_t & ne01,
  1135. constant int64_t & ne02,
  1136. constant uint64_t & nb00,
  1137. constant uint64_t & nb01,
  1138. constant uint64_t & nb02,
  1139. constant int64_t & ne10,
  1140. constant int64_t & ne11,
  1141. constant int64_t & ne12,
  1142. constant uint64_t & nb10,
  1143. constant uint64_t & nb11,
  1144. constant uint64_t & nb12,
  1145. constant int64_t & ne0,
  1146. constant int64_t & ne1,
  1147. constant uint & r2 [[buffer(17)]],
  1148. constant uint & r3 [[buffer(18)]],
  1149. uint3 tgpig[[threadgroup_position_in_grid]],
  1150. uint tiisg[[thread_index_in_simdgroup]]) {
  1151. kernel_mul_mv_f16_f32_1row_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1152. }
  1153. #define N_F16_F32 4
  1154. void kernel_mul_mv_f16_f32_impl(
  1155. device const char * src0,
  1156. device const char * src1,
  1157. device float * dst,
  1158. constant int64_t & ne00,
  1159. constant int64_t & ne01,
  1160. constant int64_t & ne02,
  1161. constant uint64_t & nb00,
  1162. constant uint64_t & nb01,
  1163. constant uint64_t & nb02,
  1164. constant int64_t & ne10,
  1165. constant int64_t & ne11,
  1166. constant int64_t & ne12,
  1167. constant uint64_t & nb10,
  1168. constant uint64_t & nb11,
  1169. constant uint64_t & nb12,
  1170. constant int64_t & ne0,
  1171. constant int64_t & ne1,
  1172. constant uint & r2,
  1173. constant uint & r3,
  1174. uint3 tgpig[[threadgroup_position_in_grid]],
  1175. uint tiisg[[thread_index_in_simdgroup]]) {
  1176. const int64_t r0 = tgpig.x;
  1177. const int64_t rb = tgpig.y*N_F16_F32;
  1178. const int64_t im = tgpig.z;
  1179. const uint i12 = im%ne12;
  1180. const uint i13 = im/ne12;
  1181. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1182. device const half * x = (device const half *) (src0 + offset0);
  1183. if (ne00 < 128) {
  1184. for (int row = 0; row < N_F16_F32; ++row) {
  1185. int r1 = rb + row;
  1186. if (r1 >= ne11) {
  1187. break;
  1188. }
  1189. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1190. float sumf = 0;
  1191. for (int i = tiisg; i < ne00; i += 32) {
  1192. sumf += (float) x[i] * (float) y[i];
  1193. }
  1194. float all_sum = simd_sum(sumf);
  1195. if (tiisg == 0) {
  1196. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1197. }
  1198. }
  1199. } else {
  1200. device const half4 * x4 = (device const half4 *)x;
  1201. for (int row = 0; row < N_F16_F32; ++row) {
  1202. int r1 = rb + row;
  1203. if (r1 >= ne11) {
  1204. break;
  1205. }
  1206. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1207. device const float4 * y4 = (device const float4 *) y;
  1208. float sumf = 0;
  1209. for (int i = tiisg; i < ne00/4; i += 32) {
  1210. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1211. }
  1212. float all_sum = simd_sum(sumf);
  1213. if (tiisg == 0) {
  1214. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1215. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1216. }
  1217. }
  1218. }
  1219. }
  1220. [[host_name("kernel_mul_mv_f16_f32")]]
  1221. kernel void kernel_mul_mv_f16_f32(
  1222. device const char * src0,
  1223. device const char * src1,
  1224. device float * dst,
  1225. constant int64_t & ne00,
  1226. constant int64_t & ne01,
  1227. constant int64_t & ne02,
  1228. constant uint64_t & nb00,
  1229. constant uint64_t & nb01,
  1230. constant uint64_t & nb02,
  1231. constant int64_t & ne10,
  1232. constant int64_t & ne11,
  1233. constant int64_t & ne12,
  1234. constant uint64_t & nb10,
  1235. constant uint64_t & nb11,
  1236. constant uint64_t & nb12,
  1237. constant int64_t & ne0,
  1238. constant int64_t & ne1,
  1239. constant uint & r2 [[buffer(17)]],
  1240. constant uint & r3 [[buffer(18)]],
  1241. uint3 tgpig[[threadgroup_position_in_grid]],
  1242. uint tiisg[[thread_index_in_simdgroup]]) {
  1243. kernel_mul_mv_f16_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1244. }
  1245. // Assumes row size (ne00) is a multiple of 4
  1246. kernel void kernel_mul_mv_f16_f32_l4(
  1247. device const char * src0,
  1248. device const char * src1,
  1249. device float * dst,
  1250. constant int64_t & ne00,
  1251. constant int64_t & ne01,
  1252. constant int64_t & ne02,
  1253. constant uint64_t & nb00,
  1254. constant uint64_t & nb01,
  1255. constant uint64_t & nb02,
  1256. constant int64_t & ne10,
  1257. constant int64_t & ne11,
  1258. constant int64_t & ne12,
  1259. constant uint64_t & nb10,
  1260. constant uint64_t & nb11,
  1261. constant uint64_t & nb12,
  1262. constant int64_t & ne0,
  1263. constant int64_t & ne1,
  1264. constant uint & r2 [[buffer(17)]],
  1265. constant uint & r3 [[buffer(18)]],
  1266. uint3 tgpig[[threadgroup_position_in_grid]],
  1267. uint tiisg[[thread_index_in_simdgroup]]) {
  1268. const int nrows = ne11;
  1269. const int64_t r0 = tgpig.x;
  1270. const int64_t im = tgpig.z;
  1271. const uint i12 = im%ne12;
  1272. const uint i13 = im/ne12;
  1273. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1274. device const half4 * x4 = (device const half4 *) (src0 + offset0);
  1275. for (int r1 = 0; r1 < nrows; ++r1) {
  1276. device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
  1277. float sumf = 0;
  1278. for (int i = tiisg; i < ne00/4; i += 32) {
  1279. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1280. }
  1281. float all_sum = simd_sum(sumf);
  1282. if (tiisg == 0) {
  1283. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1284. }
  1285. }
  1286. }
  1287. kernel void kernel_alibi_f32(
  1288. device const float * src0,
  1289. device float * dst,
  1290. constant int64_t & ne00,
  1291. constant int64_t & ne01,
  1292. constant int64_t & ne02,
  1293. constant int64_t & ne03,
  1294. constant uint64_t & nb00,
  1295. constant uint64_t & nb01,
  1296. constant uint64_t & nb02,
  1297. constant uint64_t & nb03,
  1298. constant int64_t & ne0,
  1299. constant int64_t & ne1,
  1300. constant int64_t & ne2,
  1301. constant int64_t & ne3,
  1302. constant uint64_t & nb0,
  1303. constant uint64_t & nb1,
  1304. constant uint64_t & nb2,
  1305. constant uint64_t & nb3,
  1306. constant float & m0,
  1307. constant float & m1,
  1308. constant int & n_heads_log2_floor,
  1309. uint3 tgpig[[threadgroup_position_in_grid]],
  1310. uint3 tpitg[[thread_position_in_threadgroup]],
  1311. uint3 ntg[[threads_per_threadgroup]]) {
  1312. const int64_t i03 = tgpig[2];
  1313. const int64_t i02 = tgpig[1];
  1314. const int64_t i01 = tgpig[0];
  1315. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1316. const int64_t i3 = n / (ne2*ne1*ne0);
  1317. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1318. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1319. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1320. const int64_t k = i3*ne3 + i2;
  1321. float m_k;
  1322. if (k < n_heads_log2_floor) {
  1323. m_k = pow(m0, k + 1);
  1324. } else {
  1325. m_k = pow(m1, 2 * (k - n_heads_log2_floor) + 1);
  1326. }
  1327. device char * dst_row = (device char *) dst + i3*nb3 + i2*nb2 + i1*nb1;
  1328. device const char * src_row = (device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01;
  1329. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1330. const float src_v = *(device float *)(src_row + i00*nb00);
  1331. device float * dst_v = (device float *)(dst_row + i00*nb0);
  1332. *dst_v = i00 * m_k + src_v;
  1333. }
  1334. }
  1335. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  1336. const float y = (i0 / 2 - low) / max(0.001f, high - low);
  1337. return 1.0f - min(1.0f, max(0.0f, y));
  1338. }
  1339. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  1340. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  1341. static void rope_yarn(
  1342. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  1343. thread float * cos_theta, thread float * sin_theta
  1344. ) {
  1345. // Get n-d rotational scaling corrected for extrapolation
  1346. float theta_interp = freq_scale * theta_extrap;
  1347. float theta = theta_interp;
  1348. if (ext_factor != 0.0f) {
  1349. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  1350. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  1351. // Get n-d magnitude scaling corrected for interpolation
  1352. mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
  1353. }
  1354. *cos_theta = cos(theta) * mscale;
  1355. *sin_theta = sin(theta) * mscale;
  1356. }
  1357. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  1358. // `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  1359. static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
  1360. return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base));
  1361. }
  1362. static void rope_yarn_corr_dims(
  1363. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  1364. ) {
  1365. // start and end correction dims
  1366. dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
  1367. dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
  1368. }
  1369. typedef void (rope_t)(
  1370. device const void * src0,
  1371. device const int32_t * src1,
  1372. device float * dst,
  1373. constant int64_t & ne00,
  1374. constant int64_t & ne01,
  1375. constant int64_t & ne02,
  1376. constant int64_t & ne03,
  1377. constant uint64_t & nb00,
  1378. constant uint64_t & nb01,
  1379. constant uint64_t & nb02,
  1380. constant uint64_t & nb03,
  1381. constant int64_t & ne0,
  1382. constant int64_t & ne1,
  1383. constant int64_t & ne2,
  1384. constant int64_t & ne3,
  1385. constant uint64_t & nb0,
  1386. constant uint64_t & nb1,
  1387. constant uint64_t & nb2,
  1388. constant uint64_t & nb3,
  1389. constant int & n_past,
  1390. constant int & n_dims,
  1391. constant int & mode,
  1392. constant int & n_orig_ctx,
  1393. constant float & freq_base,
  1394. constant float & freq_scale,
  1395. constant float & ext_factor,
  1396. constant float & attn_factor,
  1397. constant float & beta_fast,
  1398. constant float & beta_slow,
  1399. uint tiitg[[thread_index_in_threadgroup]],
  1400. uint3 tptg[[threads_per_threadgroup]],
  1401. uint3 tgpig[[threadgroup_position_in_grid]]);
  1402. template<typename T>
  1403. kernel void kernel_rope(
  1404. device const void * src0,
  1405. device const int32_t * src1,
  1406. device float * dst,
  1407. constant int64_t & ne00,
  1408. constant int64_t & ne01,
  1409. constant int64_t & ne02,
  1410. constant int64_t & ne03,
  1411. constant uint64_t & nb00,
  1412. constant uint64_t & nb01,
  1413. constant uint64_t & nb02,
  1414. constant uint64_t & nb03,
  1415. constant int64_t & ne0,
  1416. constant int64_t & ne1,
  1417. constant int64_t & ne2,
  1418. constant int64_t & ne3,
  1419. constant uint64_t & nb0,
  1420. constant uint64_t & nb1,
  1421. constant uint64_t & nb2,
  1422. constant uint64_t & nb3,
  1423. constant int & n_past,
  1424. constant int & n_dims,
  1425. constant int & mode,
  1426. constant int & n_orig_ctx,
  1427. constant float & freq_base,
  1428. constant float & freq_scale,
  1429. constant float & ext_factor,
  1430. constant float & attn_factor,
  1431. constant float & beta_fast,
  1432. constant float & beta_slow,
  1433. uint tiitg[[thread_index_in_threadgroup]],
  1434. uint3 tptg[[threads_per_threadgroup]],
  1435. uint3 tgpig[[threadgroup_position_in_grid]]) {
  1436. const int64_t i3 = tgpig[2];
  1437. const int64_t i2 = tgpig[1];
  1438. const int64_t i1 = tgpig[0];
  1439. const bool is_neox = mode & 2;
  1440. float corr_dims[2];
  1441. rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  1442. device const int32_t * pos = src1;
  1443. const int64_t p = pos[i2];
  1444. const float theta_0 = (float)p;
  1445. const float inv_ndims = -1.f/n_dims;
  1446. if (!is_neox) {
  1447. for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
  1448. const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
  1449. float cos_theta, sin_theta;
  1450. rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1451. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1452. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1453. const T x0 = src[0];
  1454. const T x1 = src[1];
  1455. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1456. dst_data[1] = x0*sin_theta + x1*cos_theta;
  1457. }
  1458. } else {
  1459. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  1460. for (int64_t ic = 2*tiitg; ic < n_dims; ic += 2*tptg.x) {
  1461. // simplified from `(ib * n_dims + ic) * inv_ndims`
  1462. const float cur_rot = inv_ndims*ic - ib;
  1463. const float theta = theta_0 * pow(freq_base, cur_rot);
  1464. float cos_theta, sin_theta;
  1465. rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1466. const int64_t i0 = ib*n_dims + ic/2;
  1467. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1468. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1469. const float x0 = src[0];
  1470. const float x1 = src[n_dims/2];
  1471. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1472. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  1473. }
  1474. }
  1475. }
  1476. }
  1477. template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
  1478. template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
  1479. kernel void kernel_im2col_f16(
  1480. device const float * x,
  1481. device half * dst,
  1482. constant int32_t & ofs0,
  1483. constant int32_t & ofs1,
  1484. constant int32_t & IW,
  1485. constant int32_t & IH,
  1486. constant int32_t & CHW,
  1487. constant int32_t & s0,
  1488. constant int32_t & s1,
  1489. constant int32_t & p0,
  1490. constant int32_t & p1,
  1491. constant int32_t & d0,
  1492. constant int32_t & d1,
  1493. uint3 tgpig[[threadgroup_position_in_grid]],
  1494. uint3 tgpg[[threadgroups_per_grid]],
  1495. uint3 tpitg[[thread_position_in_threadgroup]],
  1496. uint3 ntg[[threads_per_threadgroup]]) {
  1497. const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
  1498. const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
  1499. const int32_t offset_dst =
  1500. (tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
  1501. (tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
  1502. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  1503. dst[offset_dst] = 0.0f;
  1504. } else {
  1505. const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
  1506. dst[offset_dst] = x[offset_src + iih * IW + iiw];
  1507. }
  1508. }
  1509. kernel void kernel_upscale_f32(
  1510. device const char * src0,
  1511. device char * dst,
  1512. constant int64_t & ne00,
  1513. constant int64_t & ne01,
  1514. constant int64_t & ne02,
  1515. constant int64_t & ne03,
  1516. constant uint64_t & nb00,
  1517. constant uint64_t & nb01,
  1518. constant uint64_t & nb02,
  1519. constant uint64_t & nb03,
  1520. constant int64_t & ne0,
  1521. constant int64_t & ne1,
  1522. constant int64_t & ne2,
  1523. constant int64_t & ne3,
  1524. constant uint64_t & nb0,
  1525. constant uint64_t & nb1,
  1526. constant uint64_t & nb2,
  1527. constant uint64_t & nb3,
  1528. constant int32_t & sf,
  1529. uint3 tgpig[[threadgroup_position_in_grid]],
  1530. uint3 tpitg[[thread_position_in_threadgroup]],
  1531. uint3 ntg[[threads_per_threadgroup]]) {
  1532. const int64_t i3 = tgpig.z;
  1533. const int64_t i2 = tgpig.y;
  1534. const int64_t i1 = tgpig.x;
  1535. const int64_t i03 = i3;
  1536. const int64_t i02 = i2;
  1537. const int64_t i01 = i1/sf;
  1538. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1539. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1540. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1541. dst_ptr[i0] = src0_ptr[i0/sf];
  1542. }
  1543. }
  1544. kernel void kernel_pad_f32(
  1545. device const char * src0,
  1546. device char * dst,
  1547. constant int64_t & ne00,
  1548. constant int64_t & ne01,
  1549. constant int64_t & ne02,
  1550. constant int64_t & ne03,
  1551. constant uint64_t & nb00,
  1552. constant uint64_t & nb01,
  1553. constant uint64_t & nb02,
  1554. constant uint64_t & nb03,
  1555. constant int64_t & ne0,
  1556. constant int64_t & ne1,
  1557. constant int64_t & ne2,
  1558. constant int64_t & ne3,
  1559. constant uint64_t & nb0,
  1560. constant uint64_t & nb1,
  1561. constant uint64_t & nb2,
  1562. constant uint64_t & nb3,
  1563. uint3 tgpig[[threadgroup_position_in_grid]],
  1564. uint3 tpitg[[thread_position_in_threadgroup]],
  1565. uint3 ntg[[threads_per_threadgroup]]) {
  1566. const int64_t i3 = tgpig.z;
  1567. const int64_t i2 = tgpig.y;
  1568. const int64_t i1 = tgpig.x;
  1569. const int64_t i03 = i3;
  1570. const int64_t i02 = i2;
  1571. const int64_t i01 = i1;
  1572. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1573. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1574. if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
  1575. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1576. if (i0 < ne00) {
  1577. dst_ptr[i0] = src0_ptr[i0];
  1578. } else {
  1579. dst_ptr[i0] = 0.0f;
  1580. }
  1581. }
  1582. return;
  1583. }
  1584. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1585. dst_ptr[i0] = 0.0f;
  1586. }
  1587. }
  1588. // bitonic sort implementation following the CUDA kernels as reference
  1589. typedef void (argsort_t)(
  1590. device const float * x,
  1591. device int32_t * dst,
  1592. constant int64_t & ncols,
  1593. uint3 tgpig[[threadgroup_position_in_grid]],
  1594. uint3 tpitg[[thread_position_in_threadgroup]]);
  1595. template<ggml_sort_order order>
  1596. kernel void kernel_argsort_f32_i32(
  1597. device const float * x,
  1598. device int32_t * dst,
  1599. constant int64_t & ncols,
  1600. uint3 tgpig[[threadgroup_position_in_grid]],
  1601. uint3 tpitg[[thread_position_in_threadgroup]]) {
  1602. // bitonic sort
  1603. int col = tpitg[0];
  1604. int row = tgpig[1];
  1605. if (col >= ncols) return;
  1606. device const float * x_row = x + row * ncols;
  1607. device int32_t * dst_row = dst + row * ncols;
  1608. // initialize indices
  1609. if (col < ncols) {
  1610. dst_row[col] = col;
  1611. }
  1612. threadgroup_barrier(mem_flags::mem_threadgroup);
  1613. for (int k = 2; k <= ncols; k *= 2) {
  1614. for (int j = k / 2; j > 0; j /= 2) {
  1615. int ixj = col ^ j;
  1616. if (ixj > col) {
  1617. if ((col & k) == 0) {
  1618. if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
  1619. SWAP(dst_row[col], dst_row[ixj]);
  1620. }
  1621. } else {
  1622. if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
  1623. SWAP(dst_row[col], dst_row[ixj]);
  1624. }
  1625. }
  1626. }
  1627. threadgroup_barrier(mem_flags::mem_threadgroup);
  1628. }
  1629. }
  1630. }
  1631. template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ASC>;
  1632. template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_DESC>;
  1633. kernel void kernel_leaky_relu_f32(
  1634. device const float * src0,
  1635. device float * dst,
  1636. constant float & slope,
  1637. uint tpig[[thread_position_in_grid]]) {
  1638. dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
  1639. }
  1640. kernel void kernel_cpy_f16_f16(
  1641. device const half * src0,
  1642. device half * dst,
  1643. constant int64_t & ne00,
  1644. constant int64_t & ne01,
  1645. constant int64_t & ne02,
  1646. constant int64_t & ne03,
  1647. constant uint64_t & nb00,
  1648. constant uint64_t & nb01,
  1649. constant uint64_t & nb02,
  1650. constant uint64_t & nb03,
  1651. constant int64_t & ne0,
  1652. constant int64_t & ne1,
  1653. constant int64_t & ne2,
  1654. constant int64_t & ne3,
  1655. constant uint64_t & nb0,
  1656. constant uint64_t & nb1,
  1657. constant uint64_t & nb2,
  1658. constant uint64_t & nb3,
  1659. uint3 tgpig[[threadgroup_position_in_grid]],
  1660. uint3 tpitg[[thread_position_in_threadgroup]],
  1661. uint3 ntg[[threads_per_threadgroup]]) {
  1662. const int64_t i03 = tgpig[2];
  1663. const int64_t i02 = tgpig[1];
  1664. const int64_t i01 = tgpig[0];
  1665. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1666. const int64_t i3 = n / (ne2*ne1*ne0);
  1667. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1668. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1669. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1670. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1671. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1672. device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1673. dst_data[i00] = src[0];
  1674. }
  1675. }
  1676. kernel void kernel_cpy_f16_f32(
  1677. device const half * src0,
  1678. device float * dst,
  1679. constant int64_t & ne00,
  1680. constant int64_t & ne01,
  1681. constant int64_t & ne02,
  1682. constant int64_t & ne03,
  1683. constant uint64_t & nb00,
  1684. constant uint64_t & nb01,
  1685. constant uint64_t & nb02,
  1686. constant uint64_t & nb03,
  1687. constant int64_t & ne0,
  1688. constant int64_t & ne1,
  1689. constant int64_t & ne2,
  1690. constant int64_t & ne3,
  1691. constant uint64_t & nb0,
  1692. constant uint64_t & nb1,
  1693. constant uint64_t & nb2,
  1694. constant uint64_t & nb3,
  1695. uint3 tgpig[[threadgroup_position_in_grid]],
  1696. uint3 tpitg[[thread_position_in_threadgroup]],
  1697. uint3 ntg[[threads_per_threadgroup]]) {
  1698. const int64_t i03 = tgpig[2];
  1699. const int64_t i02 = tgpig[1];
  1700. const int64_t i01 = tgpig[0];
  1701. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1702. const int64_t i3 = n / (ne2*ne1*ne0);
  1703. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1704. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1705. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1706. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1707. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1708. device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1709. dst_data[i00] = src[0];
  1710. }
  1711. }
  1712. kernel void kernel_cpy_f32_f16(
  1713. device const float * src0,
  1714. device half * dst,
  1715. constant int64_t & ne00,
  1716. constant int64_t & ne01,
  1717. constant int64_t & ne02,
  1718. constant int64_t & ne03,
  1719. constant uint64_t & nb00,
  1720. constant uint64_t & nb01,
  1721. constant uint64_t & nb02,
  1722. constant uint64_t & nb03,
  1723. constant int64_t & ne0,
  1724. constant int64_t & ne1,
  1725. constant int64_t & ne2,
  1726. constant int64_t & ne3,
  1727. constant uint64_t & nb0,
  1728. constant uint64_t & nb1,
  1729. constant uint64_t & nb2,
  1730. constant uint64_t & nb3,
  1731. uint3 tgpig[[threadgroup_position_in_grid]],
  1732. uint3 tpitg[[thread_position_in_threadgroup]],
  1733. uint3 ntg[[threads_per_threadgroup]]) {
  1734. const int64_t i03 = tgpig[2];
  1735. const int64_t i02 = tgpig[1];
  1736. const int64_t i01 = tgpig[0];
  1737. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1738. const int64_t i3 = n / (ne2*ne1*ne0);
  1739. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1740. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1741. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1742. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1743. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1744. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1745. dst_data[i00] = src[0];
  1746. }
  1747. }
  1748. kernel void kernel_cpy_f32_f32(
  1749. device const float * src0,
  1750. device float * dst,
  1751. constant int64_t & ne00,
  1752. constant int64_t & ne01,
  1753. constant int64_t & ne02,
  1754. constant int64_t & ne03,
  1755. constant uint64_t & nb00,
  1756. constant uint64_t & nb01,
  1757. constant uint64_t & nb02,
  1758. constant uint64_t & nb03,
  1759. constant int64_t & ne0,
  1760. constant int64_t & ne1,
  1761. constant int64_t & ne2,
  1762. constant int64_t & ne3,
  1763. constant uint64_t & nb0,
  1764. constant uint64_t & nb1,
  1765. constant uint64_t & nb2,
  1766. constant uint64_t & nb3,
  1767. uint3 tgpig[[threadgroup_position_in_grid]],
  1768. uint3 tpitg[[thread_position_in_threadgroup]],
  1769. uint3 ntg[[threads_per_threadgroup]]) {
  1770. const int64_t i03 = tgpig[2];
  1771. const int64_t i02 = tgpig[1];
  1772. const int64_t i01 = tgpig[0];
  1773. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1774. const int64_t i3 = n / (ne2*ne1*ne0);
  1775. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1776. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1777. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1778. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1779. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1780. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1781. dst_data[i00] = src[0];
  1782. }
  1783. }
  1784. kernel void kernel_cpy_f32_q8_0(
  1785. device const float * src0,
  1786. device void * dst,
  1787. constant int64_t & ne00,
  1788. constant int64_t & ne01,
  1789. constant int64_t & ne02,
  1790. constant int64_t & ne03,
  1791. constant uint64_t & nb00,
  1792. constant uint64_t & nb01,
  1793. constant uint64_t & nb02,
  1794. constant uint64_t & nb03,
  1795. constant int64_t & ne0,
  1796. constant int64_t & ne1,
  1797. constant int64_t & ne2,
  1798. constant int64_t & ne3,
  1799. constant uint64_t & nb0,
  1800. constant uint64_t & nb1,
  1801. constant uint64_t & nb2,
  1802. constant uint64_t & nb3,
  1803. uint3 tgpig[[threadgroup_position_in_grid]],
  1804. uint3 tpitg[[thread_position_in_threadgroup]],
  1805. uint3 ntg[[threads_per_threadgroup]]) {
  1806. const int64_t i03 = tgpig[2];
  1807. const int64_t i02 = tgpig[1];
  1808. const int64_t i01 = tgpig[0];
  1809. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1810. const int64_t i3 = n / (ne2*ne1*ne0);
  1811. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1812. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1813. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0;
  1814. device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1815. for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) {
  1816. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1817. float amax = 0.0f; // absolute max
  1818. for (int j = 0; j < QK8_0; j++) {
  1819. const float v = src[j];
  1820. amax = MAX(amax, fabs(v));
  1821. }
  1822. const float d = amax / ((1 << 7) - 1);
  1823. const float id = d ? 1.0f/d : 0.0f;
  1824. dst_data[i00/QK8_0].d = d;
  1825. for (int j = 0; j < QK8_0; ++j) {
  1826. const float x0 = src[j]*id;
  1827. dst_data[i00/QK8_0].qs[j] = round(x0);
  1828. }
  1829. }
  1830. }
  1831. kernel void kernel_cpy_f32_q4_0(
  1832. device const float * src0,
  1833. device void * dst,
  1834. constant int64_t & ne00,
  1835. constant int64_t & ne01,
  1836. constant int64_t & ne02,
  1837. constant int64_t & ne03,
  1838. constant uint64_t & nb00,
  1839. constant uint64_t & nb01,
  1840. constant uint64_t & nb02,
  1841. constant uint64_t & nb03,
  1842. constant int64_t & ne0,
  1843. constant int64_t & ne1,
  1844. constant int64_t & ne2,
  1845. constant int64_t & ne3,
  1846. constant uint64_t & nb0,
  1847. constant uint64_t & nb1,
  1848. constant uint64_t & nb2,
  1849. constant uint64_t & nb3,
  1850. uint3 tgpig[[threadgroup_position_in_grid]],
  1851. uint3 tpitg[[thread_position_in_threadgroup]],
  1852. uint3 ntg[[threads_per_threadgroup]]) {
  1853. const int64_t i03 = tgpig[2];
  1854. const int64_t i02 = tgpig[1];
  1855. const int64_t i01 = tgpig[0];
  1856. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1857. const int64_t i3 = n / (ne2*ne1*ne0);
  1858. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1859. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1860. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0;
  1861. device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1862. for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) {
  1863. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1864. float amax = 0.0f; // absolute max
  1865. float max = 0.0f;
  1866. for (int j = 0; j < QK4_0; j++) {
  1867. const float v = src[j];
  1868. if (amax < fabs(v)) {
  1869. amax = fabs(v);
  1870. max = v;
  1871. }
  1872. }
  1873. const float d = max / -8;
  1874. const float id = d ? 1.0f/d : 0.0f;
  1875. dst_data[i00/QK4_0].d = d;
  1876. for (int j = 0; j < QK4_0/2; ++j) {
  1877. const float x0 = src[0 + j]*id;
  1878. const float x1 = src[QK4_0/2 + j]*id;
  1879. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  1880. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  1881. dst_data[i00/QK4_0].qs[j] = xi0;
  1882. dst_data[i00/QK4_0].qs[j] |= xi1 << 4;
  1883. }
  1884. }
  1885. }
  1886. kernel void kernel_cpy_f32_q4_1(
  1887. device const float * src0,
  1888. device void * dst,
  1889. constant int64_t & ne00,
  1890. constant int64_t & ne01,
  1891. constant int64_t & ne02,
  1892. constant int64_t & ne03,
  1893. constant uint64_t & nb00,
  1894. constant uint64_t & nb01,
  1895. constant uint64_t & nb02,
  1896. constant uint64_t & nb03,
  1897. constant int64_t & ne0,
  1898. constant int64_t & ne1,
  1899. constant int64_t & ne2,
  1900. constant int64_t & ne3,
  1901. constant uint64_t & nb0,
  1902. constant uint64_t & nb1,
  1903. constant uint64_t & nb2,
  1904. constant uint64_t & nb3,
  1905. uint3 tgpig[[threadgroup_position_in_grid]],
  1906. uint3 tpitg[[thread_position_in_threadgroup]],
  1907. uint3 ntg[[threads_per_threadgroup]]) {
  1908. const int64_t i03 = tgpig[2];
  1909. const int64_t i02 = tgpig[1];
  1910. const int64_t i01 = tgpig[0];
  1911. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1912. const int64_t i3 = n / (ne2*ne1*ne0);
  1913. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1914. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1915. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1;
  1916. device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1917. for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) {
  1918. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1919. float min = FLT_MAX;
  1920. float max = -FLT_MAX;
  1921. for (int j = 0; j < QK4_1; j++) {
  1922. const float v = src[j];
  1923. if (min > v) min = v;
  1924. if (max < v) max = v;
  1925. }
  1926. const float d = (max - min) / ((1 << 4) - 1);
  1927. const float id = d ? 1.0f/d : 0.0f;
  1928. dst_data[i00/QK4_1].d = d;
  1929. dst_data[i00/QK4_1].m = min;
  1930. for (int j = 0; j < QK4_1/2; ++j) {
  1931. const float x0 = (src[0 + j] - min)*id;
  1932. const float x1 = (src[QK4_1/2 + j] - min)*id;
  1933. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  1934. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  1935. dst_data[i00/QK4_1].qs[j] = xi0;
  1936. dst_data[i00/QK4_1].qs[j] |= xi1 << 4;
  1937. }
  1938. }
  1939. }
  1940. kernel void kernel_concat(
  1941. device const char * src0,
  1942. device const char * src1,
  1943. device char * dst,
  1944. constant int64_t & ne00,
  1945. constant int64_t & ne01,
  1946. constant int64_t & ne02,
  1947. constant int64_t & ne03,
  1948. constant uint64_t & nb00,
  1949. constant uint64_t & nb01,
  1950. constant uint64_t & nb02,
  1951. constant uint64_t & nb03,
  1952. constant int64_t & ne10,
  1953. constant int64_t & ne11,
  1954. constant int64_t & ne12,
  1955. constant int64_t & ne13,
  1956. constant uint64_t & nb10,
  1957. constant uint64_t & nb11,
  1958. constant uint64_t & nb12,
  1959. constant uint64_t & nb13,
  1960. constant int64_t & ne0,
  1961. constant int64_t & ne1,
  1962. constant int64_t & ne2,
  1963. constant int64_t & ne3,
  1964. constant uint64_t & nb0,
  1965. constant uint64_t & nb1,
  1966. constant uint64_t & nb2,
  1967. constant uint64_t & nb3,
  1968. uint3 tgpig[[threadgroup_position_in_grid]],
  1969. uint3 tpitg[[thread_position_in_threadgroup]],
  1970. uint3 ntg[[threads_per_threadgroup]]) {
  1971. const int64_t i03 = tgpig.z;
  1972. const int64_t i02 = tgpig.y;
  1973. const int64_t i01 = tgpig.x;
  1974. const int64_t i13 = i03 % ne13;
  1975. const int64_t i12 = i02 % ne12;
  1976. const int64_t i11 = i01 % ne11;
  1977. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00;
  1978. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
  1979. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
  1980. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1981. if (i02 < ne02) {
  1982. ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
  1983. src0_ptr += ntg.x*nb00;
  1984. } else {
  1985. ((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
  1986. src1_ptr += ntg.x*nb10;
  1987. }
  1988. dst_ptr += ntg.x*nb0;
  1989. }
  1990. }
  1991. //============================================ k-quants ======================================================
  1992. #ifndef QK_K
  1993. #define QK_K 256
  1994. #else
  1995. static_assert(QK_K == 256 || QK_K == 64, "QK_K must be 256 or 64");
  1996. #endif
  1997. #if QK_K == 256
  1998. #define K_SCALE_SIZE 12
  1999. #else
  2000. #define K_SCALE_SIZE 4
  2001. #endif
  2002. typedef struct {
  2003. uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
  2004. uint8_t qs[QK_K/4]; // quants
  2005. half d; // super-block scale for quantized scales
  2006. half dmin; // super-block scale for quantized mins
  2007. } block_q2_K;
  2008. // 84 bytes / block
  2009. typedef struct {
  2010. uint8_t hmask[QK_K/8]; // quants - high bit
  2011. uint8_t qs[QK_K/4]; // quants - low 2 bits
  2012. #if QK_K == 64
  2013. uint8_t scales[2];
  2014. #else
  2015. uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
  2016. #endif
  2017. half d; // super-block scale
  2018. } block_q3_K;
  2019. #if QK_K == 64
  2020. typedef struct {
  2021. half d[2]; // super-block scales/mins
  2022. uint8_t scales[2];
  2023. uint8_t qs[QK_K/2]; // 4-bit quants
  2024. } block_q4_K;
  2025. #else
  2026. typedef struct {
  2027. half d; // super-block scale for quantized scales
  2028. half dmin; // super-block scale for quantized mins
  2029. uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
  2030. uint8_t qs[QK_K/2]; // 4--bit quants
  2031. } block_q4_K;
  2032. #endif
  2033. #if QK_K == 64
  2034. typedef struct {
  2035. half d; // super-block scales/mins
  2036. int8_t scales[QK_K/16]; // 8-bit block scales
  2037. uint8_t qh[QK_K/8]; // quants, high bit
  2038. uint8_t qs[QK_K/2]; // quants, low 4 bits
  2039. } block_q5_K;
  2040. #else
  2041. typedef struct {
  2042. half d; // super-block scale for quantized scales
  2043. half dmin; // super-block scale for quantized mins
  2044. uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
  2045. uint8_t qh[QK_K/8]; // quants, high bit
  2046. uint8_t qs[QK_K/2]; // quants, low 4 bits
  2047. } block_q5_K;
  2048. // 176 bytes / block
  2049. #endif
  2050. typedef struct {
  2051. uint8_t ql[QK_K/2]; // quants, lower 4 bits
  2052. uint8_t qh[QK_K/4]; // quants, upper 2 bits
  2053. int8_t scales[QK_K/16]; // scales, quantized with 8 bits
  2054. half d; // super-block scale
  2055. } block_q6_K;
  2056. // 210 bytes / block
  2057. static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
  2058. uchar4 r;
  2059. if (j < 4) {
  2060. r[0] = q[j+0] & 63;
  2061. r[2] = q[j+1] & 63;
  2062. r[1] = q[j+4] & 63;
  2063. r[3] = q[j+5] & 63;
  2064. } else {
  2065. r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  2066. r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
  2067. r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  2068. r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4);
  2069. }
  2070. return r;
  2071. }
  2072. //====================================== dot products =========================
  2073. void kernel_mul_mv_q2_K_f32_impl(
  2074. device const void * src0,
  2075. device const float * src1,
  2076. device float * dst,
  2077. constant int64_t & ne00,
  2078. constant int64_t & ne01,
  2079. constant int64_t & ne02,
  2080. constant int64_t & ne10,
  2081. constant int64_t & ne12,
  2082. constant int64_t & ne0,
  2083. constant int64_t & ne1,
  2084. constant uint & r2,
  2085. constant uint & r3,
  2086. uint3 tgpig[[threadgroup_position_in_grid]],
  2087. uint tiisg[[thread_index_in_simdgroup]],
  2088. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2089. const int nb = ne00/QK_K;
  2090. const int r0 = tgpig.x;
  2091. const int r1 = tgpig.y;
  2092. const int im = tgpig.z;
  2093. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2094. const int ib_row = first_row * nb;
  2095. const uint i12 = im%ne12;
  2096. const uint i13 = im/ne12;
  2097. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2098. device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row + offset0;
  2099. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2100. float yl[32];
  2101. float sumf[N_DST]={0.f}, all_sum;
  2102. const int step = sizeof(block_q2_K) * nb;
  2103. #if QK_K == 256
  2104. const int ix = tiisg/8; // 0...3
  2105. const int it = tiisg%8; // 0...7
  2106. const int iq = it/4; // 0 or 1
  2107. const int ir = it%4; // 0...3
  2108. const int is = (8*ir)/16;// 0 or 1
  2109. device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir;
  2110. for (int ib = ix; ib < nb; ib += 4) {
  2111. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2112. for (int i = 0; i < 8; ++i) {
  2113. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  2114. yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
  2115. yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
  2116. yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
  2117. }
  2118. device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is;
  2119. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  2120. device const half * dh = &x[ib].d;
  2121. for (int row = 0; row < N_DST; row++) {
  2122. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2123. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2124. for (int i = 0; i < 8; i += 2) {
  2125. acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
  2126. acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
  2127. acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
  2128. acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
  2129. acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
  2130. acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
  2131. acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
  2132. acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
  2133. }
  2134. float dall = dh[0];
  2135. float dmin = dh[1] * 1.f/16.f;
  2136. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
  2137. (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
  2138. (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
  2139. (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
  2140. dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
  2141. qs += step/2;
  2142. sc += step;
  2143. dh += step/2;
  2144. }
  2145. y4 += 4 * QK_K;
  2146. }
  2147. #else
  2148. const int ix = tiisg/2; // 0...15
  2149. const int it = tiisg%2; // 0...1
  2150. device const float * y4 = y + ix * QK_K + 8 * it;
  2151. for (int ib = ix; ib < nb; ib += 16) {
  2152. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2153. for (int i = 0; i < 8; ++i) {
  2154. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  2155. yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
  2156. yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
  2157. yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
  2158. }
  2159. device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
  2160. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
  2161. device const half * dh = &x[ib].d;
  2162. for (int row = 0; row < N_DST; row++) {
  2163. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2164. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2165. for (int i = 0; i < 8; i += 2) {
  2166. acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
  2167. acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
  2168. acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
  2169. acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
  2170. acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
  2171. acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
  2172. acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
  2173. acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
  2174. }
  2175. float dall = dh[0];
  2176. float dmin = dh[1];
  2177. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
  2178. (acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
  2179. (acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
  2180. (acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
  2181. dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
  2182. qs += step/2;
  2183. sc += step;
  2184. dh += step/2;
  2185. }
  2186. y4 += 16 * QK_K;
  2187. }
  2188. #endif
  2189. for (int row = 0; row < N_DST; ++row) {
  2190. all_sum = simd_sum(sumf[row]);
  2191. if (tiisg == 0) {
  2192. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2193. }
  2194. }
  2195. }
  2196. [[host_name("kernel_mul_mv_q2_K_f32")]]
  2197. kernel void kernel_mul_mv_q2_K_f32(
  2198. device const void * src0,
  2199. device const float * src1,
  2200. device float * dst,
  2201. constant int64_t & ne00,
  2202. constant int64_t & ne01[[buffer(4)]],
  2203. constant int64_t & ne02[[buffer(5)]],
  2204. constant int64_t & ne10[[buffer(9)]],
  2205. constant int64_t & ne12[[buffer(11)]],
  2206. constant int64_t & ne0 [[buffer(15)]],
  2207. constant int64_t & ne1 [[buffer(16)]],
  2208. constant uint & r2 [[buffer(17)]],
  2209. constant uint & r3 [[buffer(18)]],
  2210. uint3 tgpig[[threadgroup_position_in_grid]],
  2211. uint tiisg[[thread_index_in_simdgroup]],
  2212. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2213. kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2214. }
  2215. #if QK_K == 256
  2216. void kernel_mul_mv_q3_K_f32_impl(
  2217. device const void * src0,
  2218. device const float * src1,
  2219. device float * dst,
  2220. constant int64_t & ne00,
  2221. constant int64_t & ne01,
  2222. constant int64_t & ne02,
  2223. constant int64_t & ne10,
  2224. constant int64_t & ne12,
  2225. constant int64_t & ne0,
  2226. constant int64_t & ne1,
  2227. constant uint & r2,
  2228. constant uint & r3,
  2229. uint3 tgpig[[threadgroup_position_in_grid]],
  2230. uint tiisg[[thread_index_in_simdgroup]],
  2231. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2232. const int nb = ne00/QK_K;
  2233. const int64_t r0 = tgpig.x;
  2234. const int64_t r1 = tgpig.y;
  2235. const int64_t im = tgpig.z;
  2236. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  2237. const uint i12 = im%ne12;
  2238. const uint i13 = im/ne12;
  2239. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2240. device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
  2241. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2242. float yl[32];
  2243. //const uint16_t kmask1 = 0x3030;
  2244. //const uint16_t kmask2 = 0x0f0f;
  2245. const int tid = tiisg/4;
  2246. const int ix = tiisg%4;
  2247. const int ip = tid/4; // 0 or 1
  2248. const int il = 2*((tid%4)/2); // 0 or 2
  2249. const int ir = tid%2;
  2250. const int n = 8;
  2251. const int l0 = n*ir;
  2252. // One would think that the Metal compiler would figure out that ip and il can only have
  2253. // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
  2254. // with these two tales.
  2255. //
  2256. // Possible masks for the high bit
  2257. const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
  2258. {0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
  2259. {0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
  2260. {0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
  2261. // Possible masks for the low 2 bits
  2262. const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
  2263. const ushort4 hm = mm[2*ip + il/2];
  2264. const int shift = 2*il;
  2265. const float v1 = il == 0 ? 4.f : 64.f;
  2266. const float v2 = 4.f * v1;
  2267. const uint16_t s_shift1 = 4*ip;
  2268. const uint16_t s_shift2 = s_shift1 + il;
  2269. const int q_offset = 32*ip + l0;
  2270. const int y_offset = 128*ip + 32*il + l0;
  2271. const int step = sizeof(block_q3_K) * nb / 2;
  2272. device const float * y1 = yy + ix*QK_K + y_offset;
  2273. uint32_t scales32, aux32;
  2274. thread uint16_t * scales16 = (thread uint16_t *)&scales32;
  2275. thread const int8_t * scales = (thread const int8_t *)&scales32;
  2276. float sumf1[2] = {0.f};
  2277. float sumf2[2] = {0.f};
  2278. for (int i = ix; i < nb; i += 4) {
  2279. for (int l = 0; l < 8; ++l) {
  2280. yl[l+ 0] = y1[l+ 0];
  2281. yl[l+ 8] = y1[l+16];
  2282. yl[l+16] = y1[l+32];
  2283. yl[l+24] = y1[l+48];
  2284. }
  2285. device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
  2286. device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
  2287. device const uint16_t * a = (device const uint16_t *)(x[i].scales);
  2288. device const half * dh = &x[i].d;
  2289. for (int row = 0; row < 2; ++row) {
  2290. const float d_all = (float)dh[0];
  2291. scales16[0] = a[4];
  2292. scales16[1] = a[5];
  2293. aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
  2294. scales16[0] = a[il+0];
  2295. scales16[1] = a[il+1];
  2296. scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
  2297. float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
  2298. for (int l = 0; l < n; l += 2) {
  2299. const int32_t qs = q[l/2];
  2300. s1 += yl[l+0] * (qs & qm[il/2][0]);
  2301. s2 += yl[l+1] * (qs & qm[il/2][1]);
  2302. s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
  2303. s4 += yl[l+16] * (qs & qm[il/2][2]);
  2304. s5 += yl[l+17] * (qs & qm[il/2][3]);
  2305. s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
  2306. }
  2307. float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  2308. float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  2309. sumf1[row] += d1 * (scales[0] - 32);
  2310. sumf2[row] += d2 * (scales[2] - 32);
  2311. s1 = s2 = s3 = s4 = s5 = s6 = 0;
  2312. for (int l = 0; l < n; l += 2) {
  2313. const int32_t qs = q[l/2+8];
  2314. s1 += yl[l+8] * (qs & qm[il/2][0]);
  2315. s2 += yl[l+9] * (qs & qm[il/2][1]);
  2316. s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
  2317. s4 += yl[l+24] * (qs & qm[il/2][2]);
  2318. s5 += yl[l+25] * (qs & qm[il/2][3]);
  2319. s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
  2320. }
  2321. d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  2322. d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  2323. sumf1[row] += d1 * (scales[1] - 32);
  2324. sumf2[row] += d2 * (scales[3] - 32);
  2325. q += step;
  2326. h += step;
  2327. a += step;
  2328. dh += step;
  2329. }
  2330. y1 += 4 * QK_K;
  2331. }
  2332. for (int row = 0; row < 2; ++row) {
  2333. const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
  2334. sumf1[row] = simd_sum(sumf);
  2335. }
  2336. if (tiisg == 0) {
  2337. for (int row = 0; row < 2; ++row) {
  2338. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = sumf1[row];
  2339. }
  2340. }
  2341. }
  2342. #else
  2343. void kernel_mul_mv_q3_K_f32_impl(
  2344. device const void * src0,
  2345. device const float * src1,
  2346. device float * dst,
  2347. constant int64_t & ne00,
  2348. constant int64_t & ne01,
  2349. constant int64_t & ne02,
  2350. constant int64_t & ne10,
  2351. constant int64_t & ne12,
  2352. constant int64_t & ne0,
  2353. constant int64_t & ne1,
  2354. constant uint & r2,
  2355. constant uint & r3,
  2356. uint3 tgpig[[threadgroup_position_in_grid]],
  2357. uint tiisg[[thread_index_in_simdgroup]],
  2358. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2359. const int nb = ne00/QK_K;
  2360. const int64_t r0 = tgpig.x;
  2361. const int64_t r1 = tgpig.y;
  2362. const int64_t im = tgpig.z;
  2363. const int row = 2 * r0 + sgitg;
  2364. const uint i12 = im%ne12;
  2365. const uint i13 = im/ne12;
  2366. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2367. device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0;
  2368. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2369. const int ix = tiisg/4;
  2370. const int il = 4 * (tiisg%4);// 0, 4, 8, 12
  2371. const int iq = il/8; // 0, 0, 1, 1
  2372. const int in = il%8; // 0, 4, 0, 4
  2373. float2 sum = {0.f, 0.f};
  2374. for (int i = ix; i < nb; i += 8) {
  2375. const float d_all = (float)(x[i].d);
  2376. device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
  2377. device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
  2378. device const uint16_t * s = (device const uint16_t *)(x[i].scales);
  2379. device const float * y = yy + i * QK_K + il;
  2380. const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
  2381. const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
  2382. const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
  2383. const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
  2384. for (int l = 0; l < 4; l += 2) {
  2385. const uint16_t hm = h[l/2] >> iq;
  2386. sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
  2387. + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
  2388. + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
  2389. + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
  2390. sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
  2391. + y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
  2392. + y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
  2393. + y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
  2394. }
  2395. }
  2396. const float sumf = sum[0] + sum[1] * 1.f/256.f;
  2397. const float tot = simd_sum(sumf);
  2398. if (tiisg == 0) {
  2399. dst[r1*ne0 + im*ne0*ne1 + row] = tot;
  2400. }
  2401. }
  2402. #endif
  2403. [[host_name("kernel_mul_mv_q3_K_f32")]]
  2404. kernel void kernel_mul_mv_q3_K_f32(
  2405. device const void * src0,
  2406. device const float * src1,
  2407. device float * dst,
  2408. constant int64_t & ne00,
  2409. constant int64_t & ne01[[buffer(4)]],
  2410. constant int64_t & ne02[[buffer(5)]],
  2411. constant int64_t & ne10[[buffer(9)]],
  2412. constant int64_t & ne12[[buffer(11)]],
  2413. constant int64_t & ne0 [[buffer(15)]],
  2414. constant int64_t & ne1 [[buffer(16)]],
  2415. constant uint & r2 [[buffer(17)]],
  2416. constant uint & r3 [[buffer(18)]],
  2417. uint3 tgpig[[threadgroup_position_in_grid]],
  2418. uint tiisg[[thread_index_in_simdgroup]],
  2419. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2420. kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2421. }
  2422. #if QK_K == 256
  2423. void kernel_mul_mv_q4_K_f32_impl(
  2424. device const void * src0,
  2425. device const float * src1,
  2426. device float * dst,
  2427. constant int64_t & ne00,
  2428. constant int64_t & ne01,
  2429. constant int64_t & ne02,
  2430. constant int64_t & ne10,
  2431. constant int64_t & ne12,
  2432. constant int64_t & ne0,
  2433. constant int64_t & ne1,
  2434. constant uint & r2,
  2435. constant uint & r3,
  2436. uint3 tgpig[[threadgroup_position_in_grid]],
  2437. uint tiisg[[thread_index_in_simdgroup]],
  2438. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2439. const uint16_t kmask1 = 0x3f3f;
  2440. const uint16_t kmask2 = 0x0f0f;
  2441. const uint16_t kmask3 = 0xc0c0;
  2442. const int ix = tiisg/8; // 0...3
  2443. const int it = tiisg%8; // 0...7
  2444. const int iq = it/4; // 0 or 1
  2445. const int ir = it%4; // 0...3
  2446. const int nb = ne00/QK_K;
  2447. const int r0 = tgpig.x;
  2448. const int r1 = tgpig.y;
  2449. const int im = tgpig.z;
  2450. //const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2451. const int first_row = r0 * N_DST;
  2452. const int ib_row = first_row * nb;
  2453. const uint i12 = im%ne12;
  2454. const uint i13 = im/ne12;
  2455. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2456. device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
  2457. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2458. float yl[16];
  2459. float yh[16];
  2460. float sumf[N_DST]={0.f}, all_sum;
  2461. const int step = sizeof(block_q4_K) * nb / 2;
  2462. device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir;
  2463. uint16_t sc16[4];
  2464. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  2465. for (int ib = ix; ib < nb; ib += 4) {
  2466. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2467. for (int i = 0; i < 8; ++i) {
  2468. yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
  2469. yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
  2470. yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
  2471. yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
  2472. }
  2473. device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq;
  2474. device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  2475. device const half * dh = &x[ib].d;
  2476. for (int row = 0; row < N_DST; row++) {
  2477. sc16[0] = sc[0] & kmask1;
  2478. sc16[1] = sc[2] & kmask1;
  2479. sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
  2480. sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
  2481. device const uint16_t * q2 = q1 + 32;
  2482. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2483. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2484. for (int i = 0; i < 8; i += 2) {
  2485. acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
  2486. acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
  2487. acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
  2488. acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
  2489. acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
  2490. acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
  2491. acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
  2492. acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
  2493. }
  2494. float dall = dh[0];
  2495. float dmin = dh[1];
  2496. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
  2497. (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
  2498. (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
  2499. (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
  2500. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  2501. q1 += step;
  2502. sc += step;
  2503. dh += step;
  2504. }
  2505. y4 += 4 * QK_K;
  2506. }
  2507. for (int row = 0; row < N_DST; ++row) {
  2508. all_sum = simd_sum(sumf[row]);
  2509. if (tiisg == 0) {
  2510. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2511. }
  2512. }
  2513. }
  2514. #else
  2515. void kernel_mul_mv_q4_K_f32_impl(
  2516. device const void * src0,
  2517. device const float * src1,
  2518. device float * dst,
  2519. constant int64_t & ne00,
  2520. constant int64_t & ne01,
  2521. constant int64_t & ne02,
  2522. constant int64_t & ne10,
  2523. constant int64_t & ne12,
  2524. constant int64_t & ne0,
  2525. constant int64_t & ne1,
  2526. constant uint & r2,
  2527. constant uint & r3,
  2528. uint3 tgpig[[threadgroup_position_in_grid]],
  2529. uint tiisg[[thread_index_in_simdgroup]],
  2530. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2531. const int ix = tiisg/4; // 0...7
  2532. const int it = tiisg%4; // 0...3
  2533. const int nb = ne00/QK_K;
  2534. const int r0 = tgpig.x;
  2535. const int r1 = tgpig.y;
  2536. const int im = tgpig.z;
  2537. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2538. const int ib_row = first_row * nb;
  2539. const uint i12 = im%ne12;
  2540. const uint i13 = im/ne12;
  2541. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2542. device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
  2543. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2544. float yl[8];
  2545. float yh[8];
  2546. float sumf[N_DST]={0.f}, all_sum;
  2547. const int step = sizeof(block_q4_K) * nb / 2;
  2548. device const float * y4 = y + ix * QK_K + 8 * it;
  2549. uint16_t sc16[4];
  2550. for (int ib = ix; ib < nb; ib += 8) {
  2551. float2 sumy = {0.f, 0.f};
  2552. for (int i = 0; i < 8; ++i) {
  2553. yl[i] = y4[i+ 0]; sumy[0] += yl[i];
  2554. yh[i] = y4[i+32]; sumy[1] += yh[i];
  2555. }
  2556. device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
  2557. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
  2558. device const half * dh = x[ib].d;
  2559. for (int row = 0; row < N_DST; row++) {
  2560. sc16[0] = sc[0] & 0x000f;
  2561. sc16[1] = sc[0] & 0x0f00;
  2562. sc16[2] = sc[0] & 0x00f0;
  2563. sc16[3] = sc[0] & 0xf000;
  2564. float2 acc1 = {0.f, 0.f};
  2565. float2 acc2 = {0.f, 0.f};
  2566. for (int i = 0; i < 8; i += 2) {
  2567. acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
  2568. acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
  2569. acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
  2570. acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
  2571. }
  2572. float dall = dh[0];
  2573. float dmin = dh[1];
  2574. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
  2575. (acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
  2576. dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
  2577. qs += step;
  2578. sc += step;
  2579. dh += step;
  2580. }
  2581. y4 += 8 * QK_K;
  2582. }
  2583. for (int row = 0; row < N_DST; ++row) {
  2584. all_sum = simd_sum(sumf[row]);
  2585. if (tiisg == 0) {
  2586. dst[r1*ne0+ im*ne0*ne1 + first_row + row] = all_sum;
  2587. }
  2588. }
  2589. }
  2590. #endif
  2591. [[host_name("kernel_mul_mv_q4_K_f32")]]
  2592. kernel void kernel_mul_mv_q4_K_f32(
  2593. device const void * src0,
  2594. device const float * src1,
  2595. device float * dst,
  2596. constant int64_t & ne00,
  2597. constant int64_t & ne01[[buffer(4)]],
  2598. constant int64_t & ne02[[buffer(5)]],
  2599. constant int64_t & ne10[[buffer(9)]],
  2600. constant int64_t & ne12[[buffer(11)]],
  2601. constant int64_t & ne0 [[buffer(15)]],
  2602. constant int64_t & ne1 [[buffer(16)]],
  2603. constant uint & r2 [[buffer(17)]],
  2604. constant uint & r3 [[buffer(18)]],
  2605. uint3 tgpig[[threadgroup_position_in_grid]],
  2606. uint tiisg[[thread_index_in_simdgroup]],
  2607. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2608. kernel_mul_mv_q4_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2609. }
  2610. void kernel_mul_mv_q5_K_f32_impl(
  2611. device const void * src0,
  2612. device const float * src1,
  2613. device float * dst,
  2614. constant int64_t & ne00,
  2615. constant int64_t & ne01,
  2616. constant int64_t & ne02,
  2617. constant int64_t & ne10,
  2618. constant int64_t & ne12,
  2619. constant int64_t & ne0,
  2620. constant int64_t & ne1,
  2621. constant uint & r2,
  2622. constant uint & r3,
  2623. uint3 tgpig[[threadgroup_position_in_grid]],
  2624. uint tiisg[[thread_index_in_simdgroup]],
  2625. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2626. const int nb = ne00/QK_K;
  2627. const int64_t r0 = tgpig.x;
  2628. const int64_t r1 = tgpig.y;
  2629. const int im = tgpig.z;
  2630. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  2631. const uint i12 = im%ne12;
  2632. const uint i13 = im/ne12;
  2633. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2634. device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb + offset0;
  2635. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2636. float sumf[2]={0.f};
  2637. const int step = sizeof(block_q5_K) * nb;
  2638. #if QK_K == 256
  2639. #
  2640. float yl[16], yh[16];
  2641. const uint16_t kmask1 = 0x3f3f;
  2642. const uint16_t kmask2 = 0x0f0f;
  2643. const uint16_t kmask3 = 0xc0c0;
  2644. const int tid = tiisg/4;
  2645. const int ix = tiisg%4;
  2646. const int iq = tid/4;
  2647. const int ir = tid%4;
  2648. const int n = 8;
  2649. const int l0 = n*ir;
  2650. const int q_offset = 32*iq + l0;
  2651. const int y_offset = 64*iq + l0;
  2652. const uint8_t hm1 = 1u << (2*iq);
  2653. const uint8_t hm2 = hm1 << 1;
  2654. const uint8_t hm3 = hm1 << 4;
  2655. const uint8_t hm4 = hm2 << 4;
  2656. uint16_t sc16[4];
  2657. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  2658. device const float * y1 = yy + ix*QK_K + y_offset;
  2659. for (int i = ix; i < nb; i += 4) {
  2660. device const uint8_t * q1 = x[i].qs + q_offset;
  2661. device const uint8_t * qh = x[i].qh + l0;
  2662. device const half * dh = &x[i].d;
  2663. device const uint16_t * a = (device const uint16_t *)x[i].scales + iq;
  2664. device const float * y2 = y1 + 128;
  2665. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2666. for (int l = 0; l < 8; ++l) {
  2667. yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
  2668. yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
  2669. yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
  2670. yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
  2671. }
  2672. for (int row = 0; row < 2; ++row) {
  2673. device const uint8_t * q2 = q1 + 64;
  2674. sc16[0] = a[0] & kmask1;
  2675. sc16[1] = a[2] & kmask1;
  2676. sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
  2677. sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
  2678. float4 acc1 = {0.f};
  2679. float4 acc2 = {0.f};
  2680. for (int l = 0; l < n; ++l) {
  2681. uint8_t h = qh[l];
  2682. acc1[0] += yl[l+0] * (q1[l] & 0x0F);
  2683. acc1[1] += yl[l+8] * (q1[l] & 0xF0);
  2684. acc1[2] += yh[l+0] * (q2[l] & 0x0F);
  2685. acc1[3] += yh[l+8] * (q2[l] & 0xF0);
  2686. acc2[0] += h & hm1 ? yl[l+0] : 0.f;
  2687. acc2[1] += h & hm2 ? yl[l+8] : 0.f;
  2688. acc2[2] += h & hm3 ? yh[l+0] : 0.f;
  2689. acc2[3] += h & hm4 ? yh[l+8] : 0.f;
  2690. }
  2691. const float dall = dh[0];
  2692. const float dmin = dh[1];
  2693. sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
  2694. sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
  2695. sc8[4] * (acc1[2] + 16.f*acc2[2]) +
  2696. sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
  2697. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  2698. q1 += step;
  2699. qh += step;
  2700. dh += step/2;
  2701. a += step/2;
  2702. }
  2703. y1 += 4 * QK_K;
  2704. }
  2705. #else
  2706. float yl[8], yh[8];
  2707. const int il = 4 * (tiisg/8); // 0, 4, 8, 12
  2708. const int ix = tiisg%8;
  2709. const int iq = il/8; // 0, 0, 1, 1
  2710. const int in = il%8; // 0, 4, 0, 4
  2711. device const float * y = yy + ix*QK_K + il;
  2712. for (int i = ix; i < nb; i += 8) {
  2713. for (int l = 0; l < 4; ++l) {
  2714. yl[l+0] = y[l+ 0];
  2715. yl[l+4] = y[l+16];
  2716. yh[l+0] = y[l+32];
  2717. yh[l+4] = y[l+48];
  2718. }
  2719. device const half * dh = &x[i].d;
  2720. device const uint8_t * q = x[i].qs + il;
  2721. device const uint8_t * h = x[i].qh + in;
  2722. device const int8_t * s = x[i].scales;
  2723. for (int row = 0; row < 2; ++row) {
  2724. const float d = dh[0];
  2725. float2 acc = {0.f, 0.f};
  2726. for (int l = 0; l < 4; ++l) {
  2727. const uint8_t hl = h[l] >> iq;
  2728. acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
  2729. + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
  2730. acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
  2731. + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
  2732. }
  2733. sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
  2734. q += step;
  2735. h += step;
  2736. s += step;
  2737. dh += step/2;
  2738. }
  2739. y += 8 * QK_K;
  2740. }
  2741. #endif
  2742. for (int row = 0; row < 2; ++row) {
  2743. const float tot = simd_sum(sumf[row]);
  2744. if (tiisg == 0) {
  2745. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  2746. }
  2747. }
  2748. }
  2749. [[host_name("kernel_mul_mv_q5_K_f32")]]
  2750. kernel void kernel_mul_mv_q5_K_f32(
  2751. device const void * src0,
  2752. device const float * src1,
  2753. device float * dst,
  2754. constant int64_t & ne00,
  2755. constant int64_t & ne01[[buffer(4)]],
  2756. constant int64_t & ne02[[buffer(5)]],
  2757. constant int64_t & ne10[[buffer(9)]],
  2758. constant int64_t & ne12[[buffer(11)]],
  2759. constant int64_t & ne0 [[buffer(15)]],
  2760. constant int64_t & ne1 [[buffer(16)]],
  2761. constant uint & r2 [[buffer(17)]],
  2762. constant uint & r3 [[buffer(18)]],
  2763. uint3 tgpig[[threadgroup_position_in_grid]],
  2764. uint tiisg[[thread_index_in_simdgroup]],
  2765. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2766. kernel_mul_mv_q5_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2767. }
  2768. void kernel_mul_mv_q6_K_f32_impl(
  2769. device const void * src0,
  2770. device const float * src1,
  2771. device float * dst,
  2772. constant int64_t & ne00,
  2773. constant int64_t & ne01,
  2774. constant int64_t & ne02,
  2775. constant int64_t & ne10,
  2776. constant int64_t & ne12,
  2777. constant int64_t & ne0,
  2778. constant int64_t & ne1,
  2779. constant uint & r2,
  2780. constant uint & r3,
  2781. uint3 tgpig[[threadgroup_position_in_grid]],
  2782. uint tiisg[[thread_index_in_simdgroup]],
  2783. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2784. const uint8_t kmask1 = 0x03;
  2785. const uint8_t kmask2 = 0x0C;
  2786. const uint8_t kmask3 = 0x30;
  2787. const uint8_t kmask4 = 0xC0;
  2788. const int nb = ne00/QK_K;
  2789. const int64_t r0 = tgpig.x;
  2790. const int64_t r1 = tgpig.y;
  2791. const int im = tgpig.z;
  2792. const int row = 2 * r0 + sgitg;
  2793. const uint i12 = im%ne12;
  2794. const uint i13 = im/ne12;
  2795. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2796. device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb + offset0;
  2797. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2798. float sumf = 0;
  2799. #if QK_K == 256
  2800. const int tid = tiisg/2;
  2801. const int ix = tiisg%2;
  2802. const int ip = tid/8; // 0 or 1
  2803. const int il = tid%8;
  2804. const int n = 4;
  2805. const int l0 = n*il;
  2806. const int is = 8*ip + l0/16;
  2807. const int y_offset = 128*ip + l0;
  2808. const int q_offset_l = 64*ip + l0;
  2809. const int q_offset_h = 32*ip + l0;
  2810. for (int i = ix; i < nb; i += 2) {
  2811. device const uint8_t * q1 = x[i].ql + q_offset_l;
  2812. device const uint8_t * q2 = q1 + 32;
  2813. device const uint8_t * qh = x[i].qh + q_offset_h;
  2814. device const int8_t * sc = x[i].scales + is;
  2815. device const float * y = yy + i * QK_K + y_offset;
  2816. const float dall = x[i].d;
  2817. float4 sums = {0.f, 0.f, 0.f, 0.f};
  2818. for (int l = 0; l < n; ++l) {
  2819. sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  2820. sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  2821. sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
  2822. sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  2823. }
  2824. sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
  2825. }
  2826. #else
  2827. const int ix = tiisg/4;
  2828. const int il = 4*(tiisg%4);
  2829. for (int i = ix; i < nb; i += 8) {
  2830. device const float * y = yy + i * QK_K + il;
  2831. device const uint8_t * ql = x[i].ql + il;
  2832. device const uint8_t * qh = x[i].qh + il;
  2833. device const int8_t * s = x[i].scales;
  2834. const float d = x[i].d;
  2835. float4 sums = {0.f, 0.f, 0.f, 0.f};
  2836. for (int l = 0; l < 4; ++l) {
  2837. sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  2838. sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  2839. sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
  2840. sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  2841. }
  2842. sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
  2843. }
  2844. #endif
  2845. const float tot = simd_sum(sumf);
  2846. if (tiisg == 0) {
  2847. dst[r1*ne0 + im*ne0*ne1 + row] = tot;
  2848. }
  2849. }
  2850. [[host_name("kernel_mul_mv_q6_K_f32")]]
  2851. kernel void kernel_mul_mv_q6_K_f32(
  2852. device const void * src0,
  2853. device const float * src1,
  2854. device float * dst,
  2855. constant int64_t & ne00,
  2856. constant int64_t & ne01[[buffer(4)]],
  2857. constant int64_t & ne02[[buffer(5)]],
  2858. constant int64_t & ne10[[buffer(9)]],
  2859. constant int64_t & ne12[[buffer(11)]],
  2860. constant int64_t & ne0 [[buffer(15)]],
  2861. constant int64_t & ne1 [[buffer(16)]],
  2862. constant uint & r2 [[buffer(17)]],
  2863. constant uint & r3 [[buffer(18)]],
  2864. uint3 tgpig[[threadgroup_position_in_grid]],
  2865. uint tiisg[[thread_index_in_simdgroup]],
  2866. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2867. kernel_mul_mv_q6_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2868. }
  2869. //============================= templates and their specializations =============================
  2870. // NOTE: this is not dequantizing - we are simply fitting the template
  2871. template <typename type4x4>
  2872. void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
  2873. float4x4 temp = *(((device float4x4 *)src));
  2874. for (int i = 0; i < 16; i++){
  2875. reg[i/4][i%4] = temp[i/4][i%4];
  2876. }
  2877. }
  2878. template <typename type4x4>
  2879. void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
  2880. half4x4 temp = *(((device half4x4 *)src));
  2881. for (int i = 0; i < 16; i++){
  2882. reg[i/4][i%4] = temp[i/4][i%4];
  2883. }
  2884. }
  2885. template <typename type4x4>
  2886. void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
  2887. device const uint16_t * qs = ((device const uint16_t *)xb + 1);
  2888. const float d1 = il ? (xb->d / 16.h) : xb->d;
  2889. const float d2 = d1 / 256.f;
  2890. const float md = -8.h * xb->d;
  2891. const ushort mask0 = il ? 0x00F0 : 0x000F;
  2892. const ushort mask1 = mask0 << 8;
  2893. for (int i=0;i<8;i++) {
  2894. reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
  2895. reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
  2896. }
  2897. }
  2898. template <typename type4x4>
  2899. void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
  2900. device const uint16_t * qs = ((device const uint16_t *)xb + 2);
  2901. const float d1 = il ? (xb->d / 16.h) : xb->d;
  2902. const float d2 = d1 / 256.f;
  2903. const float m = xb->m;
  2904. const ushort mask0 = il ? 0x00F0 : 0x000F;
  2905. const ushort mask1 = mask0 << 8;
  2906. for (int i=0;i<8;i++) {
  2907. reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
  2908. reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
  2909. }
  2910. }
  2911. template <typename type4x4>
  2912. void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
  2913. device const uint16_t * qs = ((device const uint16_t *)xb + 3);
  2914. const float d = xb->d;
  2915. const float md = -16.h * xb->d;
  2916. const ushort mask = il ? 0x00F0 : 0x000F;
  2917. const uint32_t qh = *((device const uint32_t *)xb->qh);
  2918. const int x_mv = il ? 4 : 0;
  2919. const int gh_mv = il ? 12 : 0;
  2920. const int gh_bk = il ? 0 : 4;
  2921. for (int i = 0; i < 8; i++) {
  2922. // extract the 5-th bits for x0 and x1
  2923. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  2924. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  2925. // combine the 4-bits from qs with the 5th bit
  2926. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  2927. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  2928. reg[i/2][2*(i%2)+0] = d * x0 + md;
  2929. reg[i/2][2*(i%2)+1] = d * x1 + md;
  2930. }
  2931. }
  2932. template <typename type4x4>
  2933. void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
  2934. device const uint16_t * qs = ((device const uint16_t *)xb + 4);
  2935. const float d = xb->d;
  2936. const float m = xb->m;
  2937. const ushort mask = il ? 0x00F0 : 0x000F;
  2938. const uint32_t qh = *((device const uint32_t *)xb->qh);
  2939. const int x_mv = il ? 4 : 0;
  2940. const int gh_mv = il ? 12 : 0;
  2941. const int gh_bk = il ? 0 : 4;
  2942. for (int i = 0; i < 8; i++) {
  2943. // extract the 5-th bits for x0 and x1
  2944. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  2945. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  2946. // combine the 4-bits from qs with the 5th bit
  2947. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  2948. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  2949. reg[i/2][2*(i%2)+0] = d * x0 + m;
  2950. reg[i/2][2*(i%2)+1] = d * x1 + m;
  2951. }
  2952. }
  2953. template <typename type4x4>
  2954. void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
  2955. device const int8_t * qs = ((device const int8_t *)xb->qs);
  2956. const half d = xb->d;
  2957. for (int i=0;i<16;i++) {
  2958. reg[i/4][i%4] = (qs[i + 16*il] * d);
  2959. }
  2960. }
  2961. template <typename type4x4>
  2962. void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
  2963. const float d = xb->d;
  2964. const float min = xb->dmin;
  2965. device const uint8_t * q = (device const uint8_t *)xb->qs;
  2966. float dl, ml;
  2967. uint8_t sc = xb->scales[il];
  2968. #if QK_K == 256
  2969. q = q + 32*(il/8) + 16*(il&1);
  2970. il = (il/2)%4;
  2971. #endif
  2972. half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  2973. uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  2974. dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
  2975. for (int i = 0; i < 16; ++i) {
  2976. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  2977. }
  2978. }
  2979. template <typename type4x4>
  2980. void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
  2981. const half d_all = xb->d;
  2982. device const uint8_t * q = (device const uint8_t *)xb->qs;
  2983. device const uint8_t * h = (device const uint8_t *)xb->hmask;
  2984. device const int8_t * scales = (device const int8_t *)xb->scales;
  2985. #if QK_K == 256
  2986. q = q + 32 * (il/8) + 16 * (il&1);
  2987. h = h + 16 * (il&1);
  2988. uint8_t m = 1 << (il/2);
  2989. uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
  2990. ((il/4)>0 ? 12 : 3);
  2991. uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
  2992. uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
  2993. int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
  2994. : (scale_2&kmask2) | ((scale_1&kmask1) << 4);
  2995. half dl = il<8 ? d_all * (dl_int - 32.h) : d_all * (dl_int / 16.h - 32.h);
  2996. const half ml = 4.h * dl;
  2997. il = (il/2) & 3;
  2998. const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  2999. const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3000. dl *= coef;
  3001. for (int i = 0; i < 16; ++i) {
  3002. reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
  3003. }
  3004. #else
  3005. float kcoef = il&1 ? 1.f/16.f : 1.f;
  3006. uint16_t kmask = il&1 ? 0xF0 : 0x0F;
  3007. float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8);
  3008. float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  3009. uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3010. uint8_t m = 1<<(il*2);
  3011. for (int i = 0; i < 16; ++i) {
  3012. reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef));
  3013. }
  3014. #endif
  3015. }
  3016. static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
  3017. return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
  3018. : uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
  3019. }
  3020. template <typename type4x4>
  3021. void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
  3022. device const uchar * q = xb->qs;
  3023. #if QK_K == 256
  3024. short is = (il/4) * 2;
  3025. q = q + (il/4) * 32 + 16 * (il&1);
  3026. il = il & 3;
  3027. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  3028. const float d = il < 2 ? xb->d : xb->d / 16.h;
  3029. const float min = xb->dmin;
  3030. const float dl = d * sc[0];
  3031. const float ml = min * sc[1];
  3032. #else
  3033. q = q + 16 * (il&1);
  3034. device const uint8_t * s = xb->scales;
  3035. device const half2 * dh = (device const half2 *)xb->d;
  3036. const float2 d = (float2)dh[0];
  3037. const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
  3038. const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
  3039. #endif
  3040. const ushort mask = il<2 ? 0x0F : 0xF0;
  3041. for (int i = 0; i < 16; ++i) {
  3042. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  3043. }
  3044. }
  3045. template <typename type4x4>
  3046. void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
  3047. device const uint8_t * q = xb->qs;
  3048. device const uint8_t * qh = xb->qh;
  3049. #if QK_K == 256
  3050. short is = (il/4) * 2;
  3051. q = q + 32 * (il/4) + 16 * (il&1);
  3052. qh = qh + 16 * (il&1);
  3053. uint8_t ul = 1 << (il/2);
  3054. il = il & 3;
  3055. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  3056. const float d = il < 2 ? xb->d : xb->d / 16.h;
  3057. const float min = xb->dmin;
  3058. const float dl = d * sc[0];
  3059. const float ml = min * sc[1];
  3060. const ushort mask = il<2 ? 0x0F : 0xF0;
  3061. const float qh_val = il<2 ? 16.f : 256.f;
  3062. for (int i = 0; i < 16; ++i) {
  3063. reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
  3064. }
  3065. #else
  3066. q = q + 16 * (il&1);
  3067. device const int8_t * s = xb->scales;
  3068. const float dl = xb->d * s[il];
  3069. uint8_t m = 1<<(il*2);
  3070. const float coef = il<2 ? 1.f : 1.f/16.f;
  3071. const ushort mask = il<2 ? 0x0F : 0xF0;
  3072. for (int i = 0; i < 16; ++i) {
  3073. reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef));
  3074. }
  3075. #endif
  3076. }
  3077. template <typename type4x4>
  3078. void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
  3079. const half d_all = xb->d;
  3080. device const uint8_t * ql = (device const uint8_t *)xb->ql;
  3081. device const uint8_t * qh = (device const uint8_t *)xb->qh;
  3082. device const int8_t * scales = (device const int8_t *)xb->scales;
  3083. #if QK_K == 256
  3084. ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
  3085. qh = qh + 32*(il/8) + 16*(il&1);
  3086. half sc = scales[(il%2) + 2 * ((il/2))];
  3087. il = (il/2) & 3;
  3088. #else
  3089. ql = ql + 16 * (il&1);
  3090. half sc = scales[il];
  3091. #endif
  3092. const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3093. const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
  3094. const half coef = il>1 ? 1.f/16.h : 1.h;
  3095. const half ml = d_all * sc * 32.h;
  3096. const half dl = d_all * sc * coef;
  3097. for (int i = 0; i < 16; ++i) {
  3098. const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
  3099. : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
  3100. reg[i/4][i%4] = dl * q - ml;
  3101. }
  3102. }
  3103. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
  3104. kernel void kernel_get_rows(
  3105. device const void * src0,
  3106. device const char * src1,
  3107. device float * dst,
  3108. constant int64_t & ne00,
  3109. constant uint64_t & nb01,
  3110. constant uint64_t & nb02,
  3111. constant int64_t & ne10,
  3112. constant uint64_t & nb10,
  3113. constant uint64_t & nb11,
  3114. constant uint64_t & nb1,
  3115. constant uint64_t & nb2,
  3116. uint3 tgpig[[threadgroup_position_in_grid]],
  3117. uint tiitg[[thread_index_in_threadgroup]],
  3118. uint3 tptg [[threads_per_threadgroup]]) {
  3119. //const int64_t i = tgpig;
  3120. //const int64_t r = ((device int32_t *) src1)[i];
  3121. const int64_t i10 = tgpig.x;
  3122. const int64_t i11 = tgpig.y;
  3123. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3124. const int64_t i02 = i11;
  3125. for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) {
  3126. float4x4 temp;
  3127. dequantize_func(
  3128. ((device const block_q *) ((device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp);
  3129. *(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp;
  3130. }
  3131. }
  3132. kernel void kernel_get_rows_f32(
  3133. device const void * src0,
  3134. device const char * src1,
  3135. device float * dst,
  3136. constant int64_t & ne00,
  3137. constant uint64_t & nb01,
  3138. constant uint64_t & nb02,
  3139. constant int64_t & ne10,
  3140. constant uint64_t & nb10,
  3141. constant uint64_t & nb11,
  3142. constant uint64_t & nb1,
  3143. constant uint64_t & nb2,
  3144. uint3 tgpig[[threadgroup_position_in_grid]],
  3145. uint tiitg[[thread_index_in_threadgroup]],
  3146. uint3 tptg [[threads_per_threadgroup]]) {
  3147. const int64_t i10 = tgpig.x;
  3148. const int64_t i11 = tgpig.y;
  3149. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3150. const int64_t i02 = i11;
  3151. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  3152. ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  3153. ((device float *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  3154. }
  3155. }
  3156. kernel void kernel_get_rows_f16(
  3157. device const void * src0,
  3158. device const char * src1,
  3159. device float * dst,
  3160. constant int64_t & ne00,
  3161. constant uint64_t & nb01,
  3162. constant uint64_t & nb02,
  3163. constant int64_t & ne10,
  3164. constant uint64_t & nb10,
  3165. constant uint64_t & nb11,
  3166. constant uint64_t & nb1,
  3167. constant uint64_t & nb2,
  3168. uint3 tgpig[[threadgroup_position_in_grid]],
  3169. uint tiitg[[thread_index_in_threadgroup]],
  3170. uint3 tptg [[threads_per_threadgroup]]) {
  3171. const int64_t i10 = tgpig.x;
  3172. const int64_t i11 = tgpig.y;
  3173. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3174. const int64_t i02 = i11;
  3175. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  3176. ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  3177. ((device half *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  3178. }
  3179. }
  3180. #define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
  3181. #define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
  3182. #define BLOCK_SIZE_K 32
  3183. #define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
  3184. #define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
  3185. #define THREAD_PER_BLOCK 128
  3186. #define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
  3187. #define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
  3188. #define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
  3189. #define SG_MAT_ROW 8
  3190. // each block_q contains 16*nl weights
  3191. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3192. void kernel_mul_mm_impl(device const uchar * src0,
  3193. device const uchar * src1,
  3194. device float * dst,
  3195. constant int64_t & ne00,
  3196. constant int64_t & ne02,
  3197. constant int64_t & nb01,
  3198. constant int64_t & nb02,
  3199. constant int64_t & ne12,
  3200. constant int64_t & nb10,
  3201. constant int64_t & nb11,
  3202. constant int64_t & nb12,
  3203. constant int64_t & ne0,
  3204. constant int64_t & ne1,
  3205. constant uint & r2,
  3206. constant uint & r3,
  3207. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3208. uint3 tgpig[[threadgroup_position_in_grid]],
  3209. uint tiitg[[thread_index_in_threadgroup]],
  3210. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3211. threadgroup half * sa = (threadgroup half *)(shared_memory);
  3212. threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
  3213. const uint r0 = tgpig.y;
  3214. const uint r1 = tgpig.x;
  3215. const uint im = tgpig.z;
  3216. // if this block is of 64x32 shape or smaller
  3217. short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
  3218. short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
  3219. // a thread shouldn't load data outside of the matrix
  3220. short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
  3221. short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
  3222. simdgroup_half8x8 ma[4];
  3223. simdgroup_float8x8 mb[2];
  3224. simdgroup_float8x8 c_res[8];
  3225. for (int i = 0; i < 8; i++){
  3226. c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
  3227. }
  3228. short il = (tiitg % THREAD_PER_ROW);
  3229. const uint i12 = im%ne12;
  3230. const uint i13 = im/ne12;
  3231. uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
  3232. ushort offset1 = il/nl;
  3233. device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
  3234. device const float * y = (device const float *)(src1
  3235. + nb12 * im
  3236. + nb11 * (r1 * BLOCK_SIZE_N + thread_col)
  3237. + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
  3238. for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
  3239. // load data and store to threadgroup memory
  3240. half4x4 temp_a;
  3241. dequantize_func(x, il, temp_a);
  3242. threadgroup_barrier(mem_flags::mem_threadgroup);
  3243. #pragma unroll(16)
  3244. for (int i = 0; i < 16; i++) {
  3245. *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
  3246. + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
  3247. + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
  3248. }
  3249. *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
  3250. il = (il + 2 < nl) ? il + 2 : il % 2;
  3251. x = (il < 2) ? x + (2+nl-1)/nl : x;
  3252. y += BLOCK_SIZE_K;
  3253. threadgroup_barrier(mem_flags::mem_threadgroup);
  3254. // load matrices from threadgroup memory and conduct outer products
  3255. threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
  3256. threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
  3257. #pragma unroll(4)
  3258. for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
  3259. #pragma unroll(4)
  3260. for (int i = 0; i < 4; i++) {
  3261. simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
  3262. }
  3263. simdgroup_barrier(mem_flags::mem_none);
  3264. #pragma unroll(2)
  3265. for (int i = 0; i < 2; i++) {
  3266. simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
  3267. }
  3268. lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
  3269. lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
  3270. #pragma unroll(8)
  3271. for (int i = 0; i < 8; i++){
  3272. simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
  3273. }
  3274. }
  3275. }
  3276. if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
  3277. device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
  3278. + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
  3279. for (int i = 0; i < 8; i++) {
  3280. simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
  3281. }
  3282. } else {
  3283. // block is smaller than 64x32, we should avoid writing data outside of the matrix
  3284. threadgroup_barrier(mem_flags::mem_threadgroup);
  3285. threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
  3286. + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
  3287. for (int i = 0; i < 8; i++) {
  3288. simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
  3289. }
  3290. threadgroup_barrier(mem_flags::mem_threadgroup);
  3291. device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
  3292. if (sgitg == 0) {
  3293. for (int i = 0; i < n_rows; i++) {
  3294. for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
  3295. *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
  3296. }
  3297. }
  3298. }
  3299. }
  3300. }
  3301. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3302. kernel void kernel_mul_mm(device const uchar * src0,
  3303. device const uchar * src1,
  3304. device float * dst,
  3305. constant int64_t & ne00,
  3306. constant int64_t & ne02,
  3307. constant int64_t & nb01,
  3308. constant int64_t & nb02,
  3309. constant int64_t & ne12,
  3310. constant int64_t & nb10,
  3311. constant int64_t & nb11,
  3312. constant int64_t & nb12,
  3313. constant int64_t & ne0,
  3314. constant int64_t & ne1,
  3315. constant uint & r2,
  3316. constant uint & r3,
  3317. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3318. uint3 tgpig[[threadgroup_position_in_grid]],
  3319. uint tiitg[[thread_index_in_threadgroup]],
  3320. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3321. kernel_mul_mm_impl<block_q, nl, dequantize_func>(
  3322. src0,
  3323. src1,
  3324. dst,
  3325. ne00,
  3326. ne02,
  3327. nb01,
  3328. nb02,
  3329. ne12,
  3330. nb10,
  3331. nb11,
  3332. nb12,
  3333. ne0,
  3334. ne1,
  3335. r2,
  3336. r3,
  3337. shared_memory,
  3338. tgpig,
  3339. tiitg,
  3340. sgitg);
  3341. }
  3342. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3343. kernel void kernel_mul_mm_id(
  3344. device const uchar * ids,
  3345. device const uchar * src1,
  3346. device uchar * dst,
  3347. constant int64_t & nbi1,
  3348. constant int64_t & ne00,
  3349. constant int64_t & ne02,
  3350. constant int64_t & nb01,
  3351. constant int64_t & nb02,
  3352. constant int64_t & ne12,
  3353. constant int64_t & ne13,
  3354. constant int64_t & nb10,
  3355. constant int64_t & nb11,
  3356. constant int64_t & nb12,
  3357. constant int64_t & ne0,
  3358. constant int64_t & ne1,
  3359. constant int64_t & nb1,
  3360. constant uint & r2,
  3361. constant uint & r3,
  3362. constant int & idx,
  3363. device const uchar * src00,
  3364. device const uchar * src01,
  3365. device const uchar * src02,
  3366. device const uchar * src03,
  3367. device const uchar * src04,
  3368. device const uchar * src05,
  3369. device const uchar * src06,
  3370. device const uchar * src07,
  3371. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3372. uint3 tgpig[[threadgroup_position_in_grid]],
  3373. uint tiitg[[thread_index_in_threadgroup]],
  3374. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3375. device const uchar * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3376. const int64_t bid = tgpig.z/(ne12*ne13);
  3377. tgpig.z = tgpig.z%(ne12*ne13);
  3378. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3379. kernel_mul_mm_impl<block_q, nl, dequantize_func>(
  3380. src0[id],
  3381. src1 + bid*nb11,
  3382. (device float *) (dst + bid*nb1),
  3383. ne00,
  3384. ne02,
  3385. nb01,
  3386. nb02,
  3387. ne12,
  3388. nb10,
  3389. nb11,
  3390. nb12,
  3391. ne0,
  3392. ne1,
  3393. r2,
  3394. r3,
  3395. shared_memory,
  3396. tgpig,
  3397. tiitg,
  3398. sgitg);
  3399. }
  3400. #if QK_K == 256
  3401. #define QK_NL 16
  3402. #else
  3403. #define QK_NL 4
  3404. #endif
  3405. //
  3406. // get rows
  3407. //
  3408. typedef void (get_rows_t)(
  3409. device const void * src0,
  3410. device const char * src1,
  3411. device float * dst,
  3412. constant int64_t & ne00,
  3413. constant uint64_t & nb01,
  3414. constant uint64_t & nb02,
  3415. constant int64_t & ne10,
  3416. constant uint64_t & nb10,
  3417. constant uint64_t & nb11,
  3418. constant uint64_t & nb1,
  3419. constant uint64_t & nb2,
  3420. uint3, uint, uint3);
  3421. //template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows<float4x4, 1, dequantize_f32>;
  3422. //template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
  3423. template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
  3424. template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
  3425. template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows<block_q5_0, 2, dequantize_q5_0>;
  3426. template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows<block_q5_1, 2, dequantize_q5_1>;
  3427. template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
  3428. template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
  3429. template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
  3430. template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows<block_q4_K, QK_NL, dequantize_q4_K>;
  3431. template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows<block_q5_K, QK_NL, dequantize_q5_K>;
  3432. template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
  3433. //
  3434. // matrix-matrix multiplication
  3435. //
  3436. typedef void (mat_mm_t)(
  3437. device const uchar * src0,
  3438. device const uchar * src1,
  3439. device float * dst,
  3440. constant int64_t & ne00,
  3441. constant int64_t & ne02,
  3442. constant int64_t & nb01,
  3443. constant int64_t & nb02,
  3444. constant int64_t & ne12,
  3445. constant int64_t & nb10,
  3446. constant int64_t & nb11,
  3447. constant int64_t & nb12,
  3448. constant int64_t & ne0,
  3449. constant int64_t & ne1,
  3450. constant uint & r2,
  3451. constant uint & r3,
  3452. threadgroup uchar *,
  3453. uint3, uint, uint);
  3454. template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<float4x4, 1, dequantize_f32>;
  3455. template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
  3456. template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
  3457. template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
  3458. template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
  3459. template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
  3460. template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
  3461. template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
  3462. template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
  3463. template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
  3464. template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_K, QK_NL, dequantize_q5_K>;
  3465. template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
  3466. //
  3467. // indirect matrix-matrix multiplication
  3468. //
  3469. typedef void (mat_mm_id_t)(
  3470. device const uchar * ids,
  3471. device const uchar * src1,
  3472. device uchar * dst,
  3473. constant int64_t & nbi1,
  3474. constant int64_t & ne00,
  3475. constant int64_t & ne02,
  3476. constant int64_t & nb01,
  3477. constant int64_t & nb02,
  3478. constant int64_t & ne12,
  3479. constant int64_t & ne13,
  3480. constant int64_t & nb10,
  3481. constant int64_t & nb11,
  3482. constant int64_t & nb12,
  3483. constant int64_t & ne0,
  3484. constant int64_t & ne1,
  3485. constant int64_t & nb1,
  3486. constant uint & r2,
  3487. constant uint & r3,
  3488. constant int & idx,
  3489. device const uchar * src00,
  3490. device const uchar * src01,
  3491. device const uchar * src02,
  3492. device const uchar * src03,
  3493. device const uchar * src04,
  3494. device const uchar * src05,
  3495. device const uchar * src06,
  3496. device const uchar * src07,
  3497. threadgroup uchar *,
  3498. uint3, uint, uint);
  3499. template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>;
  3500. template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>;
  3501. template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>;
  3502. template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>;
  3503. template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>;
  3504. template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>;
  3505. template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>;
  3506. template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
  3507. template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
  3508. template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
  3509. template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
  3510. template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
  3511. //
  3512. // matrix-vector multiplication
  3513. //
  3514. [[host_name("kernel_mul_mv_id_f32_f32")]]
  3515. kernel void kernel_mul_mv_id_f32_f32(
  3516. device const char * ids,
  3517. device const char * src1,
  3518. device uchar * dst,
  3519. constant int64_t & nbi1,
  3520. constant int64_t & ne00,
  3521. constant int64_t & ne01,
  3522. constant int64_t & ne02,
  3523. constant uint64_t & nb00,
  3524. constant uint64_t & nb01,
  3525. constant uint64_t & nb02,
  3526. constant int64_t & ne10,
  3527. constant int64_t & ne11,
  3528. constant int64_t & ne12,
  3529. constant int64_t & ne13,
  3530. constant uint64_t & nb10,
  3531. constant uint64_t & nb11,
  3532. constant uint64_t & nb12,
  3533. constant int64_t & ne0,
  3534. constant int64_t & ne1,
  3535. constant int64_t & nb1,
  3536. constant uint & r2,
  3537. constant uint & r3,
  3538. constant int & idx,
  3539. device const char * src00,
  3540. device const char * src01,
  3541. device const char * src02,
  3542. device const char * src03,
  3543. device const char * src04,
  3544. device const char * src05,
  3545. device const char * src06,
  3546. device const char * src07,
  3547. uint3 tgpig[[threadgroup_position_in_grid]],
  3548. uint tiitg[[thread_index_in_threadgroup]],
  3549. uint tiisg[[thread_index_in_simdgroup]],
  3550. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3551. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3552. const int64_t bid = tgpig.z/(ne12*ne13);
  3553. tgpig.z = tgpig.z%(ne12*ne13);
  3554. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3555. kernel_mul_mv_f32_f32_impl(
  3556. src0[id],
  3557. src1 + bid*nb11,
  3558. (device float *) (dst + bid*nb1),
  3559. ne00,
  3560. ne01,
  3561. ne02,
  3562. nb00,
  3563. nb01,
  3564. nb02,
  3565. ne10,
  3566. ne11,
  3567. ne12,
  3568. nb10,
  3569. nb11,
  3570. nb12,
  3571. ne0,
  3572. ne1,
  3573. r2,
  3574. r3,
  3575. tgpig,
  3576. tiisg);
  3577. }
  3578. [[host_name("kernel_mul_mv_id_f16_f32")]]
  3579. kernel void kernel_mul_mv_id_f16_f32(
  3580. device const char * ids,
  3581. device const char * src1,
  3582. device uchar * dst,
  3583. constant int64_t & nbi1,
  3584. constant int64_t & ne00,
  3585. constant int64_t & ne01,
  3586. constant int64_t & ne02,
  3587. constant uint64_t & nb00,
  3588. constant uint64_t & nb01,
  3589. constant uint64_t & nb02,
  3590. constant int64_t & ne10,
  3591. constant int64_t & ne11,
  3592. constant int64_t & ne12,
  3593. constant int64_t & ne13,
  3594. constant uint64_t & nb10,
  3595. constant uint64_t & nb11,
  3596. constant uint64_t & nb12,
  3597. constant int64_t & ne0,
  3598. constant int64_t & ne1,
  3599. constant int64_t & nb1,
  3600. constant uint & r2,
  3601. constant uint & r3,
  3602. constant int & idx,
  3603. device const char * src00,
  3604. device const char * src01,
  3605. device const char * src02,
  3606. device const char * src03,
  3607. device const char * src04,
  3608. device const char * src05,
  3609. device const char * src06,
  3610. device const char * src07,
  3611. uint3 tgpig[[threadgroup_position_in_grid]],
  3612. uint tiitg[[thread_index_in_threadgroup]],
  3613. uint tiisg[[thread_index_in_simdgroup]],
  3614. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3615. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3616. const int64_t bid = tgpig.z/(ne12*ne13);
  3617. tgpig.z = tgpig.z%(ne12*ne13);
  3618. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3619. kernel_mul_mv_f16_f32_impl(
  3620. src0[id],
  3621. src1 + bid*nb11,
  3622. (device float *) (dst + bid*nb1),
  3623. ne00,
  3624. ne01,
  3625. ne02,
  3626. nb00,
  3627. nb01,
  3628. nb02,
  3629. ne10,
  3630. ne11,
  3631. ne12,
  3632. nb10,
  3633. nb11,
  3634. nb12,
  3635. ne0,
  3636. ne1,
  3637. r2,
  3638. r3,
  3639. tgpig,
  3640. tiisg);
  3641. }
  3642. [[host_name("kernel_mul_mv_id_q8_0_f32")]]
  3643. kernel void kernel_mul_mv_id_q8_0_f32(
  3644. device const char * ids,
  3645. device const char * src1,
  3646. device uchar * dst,
  3647. constant int64_t & nbi1,
  3648. constant int64_t & ne00,
  3649. constant int64_t & ne01,
  3650. constant int64_t & ne02,
  3651. constant uint64_t & nb00,
  3652. constant uint64_t & nb01,
  3653. constant uint64_t & nb02,
  3654. constant int64_t & ne10,
  3655. constant int64_t & ne11,
  3656. constant int64_t & ne12,
  3657. constant int64_t & ne13,
  3658. constant uint64_t & nb10,
  3659. constant uint64_t & nb11,
  3660. constant uint64_t & nb12,
  3661. constant int64_t & ne0,
  3662. constant int64_t & ne1,
  3663. constant int64_t & nb1,
  3664. constant uint & r2,
  3665. constant uint & r3,
  3666. constant int & idx,
  3667. device const char * src00,
  3668. device const char * src01,
  3669. device const char * src02,
  3670. device const char * src03,
  3671. device const char * src04,
  3672. device const char * src05,
  3673. device const char * src06,
  3674. device const char * src07,
  3675. uint3 tgpig[[threadgroup_position_in_grid]],
  3676. uint tiitg[[thread_index_in_threadgroup]],
  3677. uint tiisg[[thread_index_in_simdgroup]],
  3678. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3679. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3680. const int64_t bid = tgpig.z/(ne12*ne13);
  3681. tgpig.z = tgpig.z%(ne12*ne13);
  3682. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3683. kernel_mul_mv_q8_0_f32_impl(
  3684. src0[id],
  3685. (device const float *) (src1 + bid*nb11),
  3686. (device float *) ( dst + bid*nb1),
  3687. ne00,
  3688. ne01,
  3689. ne02,
  3690. ne10,
  3691. ne12,
  3692. ne0,
  3693. ne1,
  3694. r2,
  3695. r3,
  3696. tgpig,
  3697. tiisg,
  3698. sgitg);
  3699. }
  3700. [[host_name("kernel_mul_mv_id_q4_0_f32")]]
  3701. kernel void kernel_mul_mv_id_q4_0_f32(
  3702. device const char * ids,
  3703. device const char * src1,
  3704. device uchar * dst,
  3705. constant int64_t & nbi1,
  3706. constant int64_t & ne00,
  3707. constant int64_t & ne01,
  3708. constant int64_t & ne02,
  3709. constant uint64_t & nb00,
  3710. constant uint64_t & nb01,
  3711. constant uint64_t & nb02,
  3712. constant int64_t & ne10,
  3713. constant int64_t & ne11,
  3714. constant int64_t & ne12,
  3715. constant int64_t & ne13,
  3716. constant uint64_t & nb10,
  3717. constant uint64_t & nb11,
  3718. constant uint64_t & nb12,
  3719. constant int64_t & ne0,
  3720. constant int64_t & ne1,
  3721. constant int64_t & nb1,
  3722. constant uint & r2,
  3723. constant uint & r3,
  3724. constant int & idx,
  3725. device const char * src00,
  3726. device const char * src01,
  3727. device const char * src02,
  3728. device const char * src03,
  3729. device const char * src04,
  3730. device const char * src05,
  3731. device const char * src06,
  3732. device const char * src07,
  3733. uint3 tgpig[[threadgroup_position_in_grid]],
  3734. uint tiitg[[thread_index_in_threadgroup]],
  3735. uint tiisg[[thread_index_in_simdgroup]],
  3736. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3737. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3738. const int64_t bid = tgpig.z/(ne12*ne13);
  3739. tgpig.z = tgpig.z%(ne12*ne13);
  3740. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3741. mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  3742. src0[id],
  3743. (device const float *) (src1 + bid*nb11),
  3744. (device float *) ( dst + bid*nb1),
  3745. ne00,
  3746. ne01,
  3747. ne02,
  3748. ne10,
  3749. ne12,
  3750. ne0,
  3751. ne1,
  3752. r2,
  3753. r3,
  3754. tgpig,
  3755. tiisg,
  3756. sgitg);
  3757. }
  3758. [[host_name("kernel_mul_mv_id_q4_1_f32")]]
  3759. kernel void kernel_mul_mv_id_q4_1_f32(
  3760. device const char * ids,
  3761. device const char * src1,
  3762. device uchar * dst,
  3763. constant int64_t & nbi1,
  3764. constant int64_t & ne00,
  3765. constant int64_t & ne01,
  3766. constant int64_t & ne02,
  3767. constant uint64_t & nb00,
  3768. constant uint64_t & nb01,
  3769. constant uint64_t & nb02,
  3770. constant int64_t & ne10,
  3771. constant int64_t & ne11,
  3772. constant int64_t & ne12,
  3773. constant int64_t & ne13,
  3774. constant uint64_t & nb10,
  3775. constant uint64_t & nb11,
  3776. constant uint64_t & nb12,
  3777. constant int64_t & ne0,
  3778. constant int64_t & ne1,
  3779. constant int64_t & nb1,
  3780. constant uint & r2,
  3781. constant uint & r3,
  3782. constant int & idx,
  3783. device const char * src00,
  3784. device const char * src01,
  3785. device const char * src02,
  3786. device const char * src03,
  3787. device const char * src04,
  3788. device const char * src05,
  3789. device const char * src06,
  3790. device const char * src07,
  3791. uint3 tgpig[[threadgroup_position_in_grid]],
  3792. uint tiitg[[thread_index_in_threadgroup]],
  3793. uint tiisg[[thread_index_in_simdgroup]],
  3794. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3795. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3796. const int64_t bid = tgpig.z/(ne12*ne13);
  3797. tgpig.z = tgpig.z%(ne12*ne13);
  3798. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3799. mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  3800. src0[id],
  3801. (device const float *) (src1 + bid*nb11),
  3802. (device float *) ( dst + bid*nb1),
  3803. ne00,
  3804. ne01,
  3805. ne02,
  3806. ne10,
  3807. ne12,
  3808. ne0,
  3809. ne1,
  3810. r2,
  3811. r3,
  3812. tgpig,
  3813. tiisg,
  3814. sgitg);
  3815. }
  3816. [[host_name("kernel_mul_mv_id_q5_0_f32")]]
  3817. kernel void kernel_mul_mv_id_q5_0_f32(
  3818. device const char * ids,
  3819. device const char * src1,
  3820. device uchar * dst,
  3821. constant int64_t & nbi1,
  3822. constant int64_t & ne00,
  3823. constant int64_t & ne01,
  3824. constant int64_t & ne02,
  3825. constant uint64_t & nb00,
  3826. constant uint64_t & nb01,
  3827. constant uint64_t & nb02,
  3828. constant int64_t & ne10,
  3829. constant int64_t & ne11,
  3830. constant int64_t & ne12,
  3831. constant int64_t & ne13,
  3832. constant uint64_t & nb10,
  3833. constant uint64_t & nb11,
  3834. constant uint64_t & nb12,
  3835. constant int64_t & ne0,
  3836. constant int64_t & ne1,
  3837. constant int64_t & nb1,
  3838. constant uint & r2,
  3839. constant uint & r3,
  3840. constant int & idx,
  3841. device const char * src00,
  3842. device const char * src01,
  3843. device const char * src02,
  3844. device const char * src03,
  3845. device const char * src04,
  3846. device const char * src05,
  3847. device const char * src06,
  3848. device const char * src07,
  3849. uint3 tgpig[[threadgroup_position_in_grid]],
  3850. uint tiitg[[thread_index_in_threadgroup]],
  3851. uint tiisg[[thread_index_in_simdgroup]],
  3852. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3853. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3854. const int64_t bid = tgpig.z/(ne12*ne13);
  3855. tgpig.z = tgpig.z%(ne12*ne13);
  3856. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3857. mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  3858. src0[id],
  3859. (device const float *) (src1 + bid*nb11),
  3860. (device float *) ( dst + bid*nb1),
  3861. ne00,
  3862. ne01,
  3863. ne02,
  3864. ne10,
  3865. ne12,
  3866. ne0,
  3867. ne1,
  3868. r2,
  3869. r3,
  3870. tgpig,
  3871. tiisg,
  3872. sgitg);
  3873. }
  3874. [[host_name("kernel_mul_mv_id_q5_1_f32")]]
  3875. kernel void kernel_mul_mv_id_q5_1_f32(
  3876. device const char * ids,
  3877. device const char * src1,
  3878. device uchar * dst,
  3879. constant int64_t & nbi1,
  3880. constant int64_t & ne00,
  3881. constant int64_t & ne01,
  3882. constant int64_t & ne02,
  3883. constant uint64_t & nb00,
  3884. constant uint64_t & nb01,
  3885. constant uint64_t & nb02,
  3886. constant int64_t & ne10,
  3887. constant int64_t & ne11,
  3888. constant int64_t & ne12,
  3889. constant int64_t & ne13,
  3890. constant uint64_t & nb10,
  3891. constant uint64_t & nb11,
  3892. constant uint64_t & nb12,
  3893. constant int64_t & ne0,
  3894. constant int64_t & ne1,
  3895. constant int64_t & nb1,
  3896. constant uint & r2,
  3897. constant uint & r3,
  3898. constant int & idx,
  3899. device const char * src00,
  3900. device const char * src01,
  3901. device const char * src02,
  3902. device const char * src03,
  3903. device const char * src04,
  3904. device const char * src05,
  3905. device const char * src06,
  3906. device const char * src07,
  3907. uint3 tgpig[[threadgroup_position_in_grid]],
  3908. uint tiitg[[thread_index_in_threadgroup]],
  3909. uint tiisg[[thread_index_in_simdgroup]],
  3910. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3911. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3912. const int64_t bid = tgpig.z/(ne12*ne13);
  3913. tgpig.z = tgpig.z%(ne12*ne13);
  3914. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3915. mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  3916. src0[id],
  3917. (device const float *) (src1 + bid*nb11),
  3918. (device float *) ( dst + bid*nb1),
  3919. ne00,
  3920. ne01,
  3921. ne02,
  3922. ne10,
  3923. ne12,
  3924. ne0,
  3925. ne1,
  3926. r2,
  3927. r3,
  3928. tgpig,
  3929. tiisg,
  3930. sgitg);
  3931. }
  3932. [[host_name("kernel_mul_mv_id_q2_K_f32")]]
  3933. kernel void kernel_mul_mv_id_q2_K_f32(
  3934. device const char * ids,
  3935. device const char * src1,
  3936. device uchar * dst,
  3937. constant int64_t & nbi1,
  3938. constant int64_t & ne00,
  3939. constant int64_t & ne01,
  3940. constant int64_t & ne02,
  3941. constant uint64_t & nb00,
  3942. constant uint64_t & nb01,
  3943. constant uint64_t & nb02,
  3944. constant int64_t & ne10,
  3945. constant int64_t & ne11,
  3946. constant int64_t & ne12,
  3947. constant int64_t & ne13,
  3948. constant uint64_t & nb10,
  3949. constant uint64_t & nb11,
  3950. constant uint64_t & nb12,
  3951. constant int64_t & ne0,
  3952. constant int64_t & ne1,
  3953. constant int64_t & nb1,
  3954. constant uint & r2,
  3955. constant uint & r3,
  3956. constant int & idx,
  3957. device const char * src00,
  3958. device const char * src01,
  3959. device const char * src02,
  3960. device const char * src03,
  3961. device const char * src04,
  3962. device const char * src05,
  3963. device const char * src06,
  3964. device const char * src07,
  3965. uint3 tgpig[[threadgroup_position_in_grid]],
  3966. uint tiitg[[thread_index_in_threadgroup]],
  3967. uint tiisg[[thread_index_in_simdgroup]],
  3968. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3969. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3970. const int64_t bid = tgpig.z/(ne12*ne13);
  3971. tgpig.z = tgpig.z%(ne12*ne13);
  3972. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3973. kernel_mul_mv_q2_K_f32_impl(
  3974. src0[id],
  3975. (device const float *) (src1 + bid*nb11),
  3976. (device float *) ( dst + bid*nb1),
  3977. ne00,
  3978. ne01,
  3979. ne02,
  3980. ne10,
  3981. ne12,
  3982. ne0,
  3983. ne1,
  3984. r2,
  3985. r3,
  3986. tgpig,
  3987. tiisg,
  3988. sgitg);
  3989. }
  3990. [[host_name("kernel_mul_mv_id_q3_K_f32")]]
  3991. kernel void kernel_mul_mv_id_q3_K_f32(
  3992. device const char * ids,
  3993. device const char * src1,
  3994. device uchar * dst,
  3995. constant int64_t & nbi1,
  3996. constant int64_t & ne00,
  3997. constant int64_t & ne01,
  3998. constant int64_t & ne02,
  3999. constant uint64_t & nb00,
  4000. constant uint64_t & nb01,
  4001. constant uint64_t & nb02,
  4002. constant int64_t & ne10,
  4003. constant int64_t & ne11,
  4004. constant int64_t & ne12,
  4005. constant int64_t & ne13,
  4006. constant uint64_t & nb10,
  4007. constant uint64_t & nb11,
  4008. constant uint64_t & nb12,
  4009. constant int64_t & ne0,
  4010. constant int64_t & ne1,
  4011. constant int64_t & nb1,
  4012. constant uint & r2,
  4013. constant uint & r3,
  4014. constant int & idx,
  4015. device const char * src00,
  4016. device const char * src01,
  4017. device const char * src02,
  4018. device const char * src03,
  4019. device const char * src04,
  4020. device const char * src05,
  4021. device const char * src06,
  4022. device const char * src07,
  4023. uint3 tgpig[[threadgroup_position_in_grid]],
  4024. uint tiitg[[thread_index_in_threadgroup]],
  4025. uint tiisg[[thread_index_in_simdgroup]],
  4026. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4027. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4028. const int64_t bid = tgpig.z/(ne12*ne13);
  4029. tgpig.z = tgpig.z%(ne12*ne13);
  4030. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4031. kernel_mul_mv_q3_K_f32_impl(
  4032. src0[id],
  4033. (device const float *) (src1 + bid*nb11),
  4034. (device float *) ( dst + bid*nb1),
  4035. ne00,
  4036. ne01,
  4037. ne02,
  4038. ne10,
  4039. ne12,
  4040. ne0,
  4041. ne1,
  4042. r2,
  4043. r3,
  4044. tgpig,
  4045. tiisg,
  4046. sgitg);
  4047. }
  4048. [[host_name("kernel_mul_mv_id_q4_K_f32")]]
  4049. kernel void kernel_mul_mv_id_q4_K_f32(
  4050. device const char * ids,
  4051. device const char * src1,
  4052. device uchar * dst,
  4053. constant int64_t & nbi1,
  4054. constant int64_t & ne00,
  4055. constant int64_t & ne01,
  4056. constant int64_t & ne02,
  4057. constant uint64_t & nb00,
  4058. constant uint64_t & nb01,
  4059. constant uint64_t & nb02,
  4060. constant int64_t & ne10,
  4061. constant int64_t & ne11,
  4062. constant int64_t & ne12,
  4063. constant int64_t & ne13,
  4064. constant uint64_t & nb10,
  4065. constant uint64_t & nb11,
  4066. constant uint64_t & nb12,
  4067. constant int64_t & ne0,
  4068. constant int64_t & ne1,
  4069. constant int64_t & nb1,
  4070. constant uint & r2,
  4071. constant uint & r3,
  4072. constant int & idx,
  4073. device const char * src00,
  4074. device const char * src01,
  4075. device const char * src02,
  4076. device const char * src03,
  4077. device const char * src04,
  4078. device const char * src05,
  4079. device const char * src06,
  4080. device const char * src07,
  4081. uint3 tgpig[[threadgroup_position_in_grid]],
  4082. uint tiitg[[thread_index_in_threadgroup]],
  4083. uint tiisg[[thread_index_in_simdgroup]],
  4084. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4085. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4086. const int64_t bid = tgpig.z/(ne12*ne13);
  4087. tgpig.z = tgpig.z%(ne12*ne13);
  4088. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4089. kernel_mul_mv_q4_K_f32_impl(
  4090. src0[id],
  4091. (device const float *) (src1 + bid*nb11),
  4092. (device float *) ( dst + bid*nb1),
  4093. ne00,
  4094. ne01,
  4095. ne02,
  4096. ne10,
  4097. ne12,
  4098. ne0,
  4099. ne1,
  4100. r2,
  4101. r3,
  4102. tgpig,
  4103. tiisg,
  4104. sgitg);
  4105. }
  4106. [[host_name("kernel_mul_mv_id_q5_K_f32")]]
  4107. kernel void kernel_mul_mv_id_q5_K_f32(
  4108. device const char * ids,
  4109. device const char * src1,
  4110. device uchar * dst,
  4111. constant int64_t & nbi1,
  4112. constant int64_t & ne00,
  4113. constant int64_t & ne01,
  4114. constant int64_t & ne02,
  4115. constant uint64_t & nb00,
  4116. constant uint64_t & nb01,
  4117. constant uint64_t & nb02,
  4118. constant int64_t & ne10,
  4119. constant int64_t & ne11,
  4120. constant int64_t & ne12,
  4121. constant int64_t & ne13,
  4122. constant uint64_t & nb10,
  4123. constant uint64_t & nb11,
  4124. constant uint64_t & nb12,
  4125. constant int64_t & ne0,
  4126. constant int64_t & ne1,
  4127. constant int64_t & nb1,
  4128. constant uint & r2,
  4129. constant uint & r3,
  4130. constant int & idx,
  4131. device const char * src00,
  4132. device const char * src01,
  4133. device const char * src02,
  4134. device const char * src03,
  4135. device const char * src04,
  4136. device const char * src05,
  4137. device const char * src06,
  4138. device const char * src07,
  4139. uint3 tgpig[[threadgroup_position_in_grid]],
  4140. uint tiitg[[thread_index_in_threadgroup]],
  4141. uint tiisg[[thread_index_in_simdgroup]],
  4142. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4143. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4144. const int64_t bid = tgpig.z/(ne12*ne13);
  4145. tgpig.z = tgpig.z%(ne12*ne13);
  4146. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4147. kernel_mul_mv_q5_K_f32_impl(
  4148. src0[id],
  4149. (device const float *) (src1 + bid*nb11),
  4150. (device float *) ( dst + bid*nb1),
  4151. ne00,
  4152. ne01,
  4153. ne02,
  4154. ne10,
  4155. ne12,
  4156. ne0,
  4157. ne1,
  4158. r2,
  4159. r3,
  4160. tgpig,
  4161. tiisg,
  4162. sgitg);
  4163. }
  4164. [[host_name("kernel_mul_mv_id_q6_K_f32")]]
  4165. kernel void kernel_mul_mv_id_q6_K_f32(
  4166. device const char * ids,
  4167. device const char * src1,
  4168. device uchar * dst,
  4169. constant int64_t & nbi1,
  4170. constant int64_t & ne00,
  4171. constant int64_t & ne01,
  4172. constant int64_t & ne02,
  4173. constant uint64_t & nb00,
  4174. constant uint64_t & nb01,
  4175. constant uint64_t & nb02,
  4176. constant int64_t & ne10,
  4177. constant int64_t & ne11,
  4178. constant int64_t & ne12,
  4179. constant int64_t & ne13,
  4180. constant uint64_t & nb10,
  4181. constant uint64_t & nb11,
  4182. constant uint64_t & nb12,
  4183. constant int64_t & ne0,
  4184. constant int64_t & ne1,
  4185. constant int64_t & nb1,
  4186. constant uint & r2,
  4187. constant uint & r3,
  4188. constant int & idx,
  4189. device const char * src00,
  4190. device const char * src01,
  4191. device const char * src02,
  4192. device const char * src03,
  4193. device const char * src04,
  4194. device const char * src05,
  4195. device const char * src06,
  4196. device const char * src07,
  4197. uint3 tgpig[[threadgroup_position_in_grid]],
  4198. uint tiitg[[thread_index_in_threadgroup]],
  4199. uint tiisg[[thread_index_in_simdgroup]],
  4200. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4201. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4202. const int64_t bid = tgpig.z/(ne12*ne13);
  4203. tgpig.z = tgpig.z%(ne12*ne13);
  4204. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4205. kernel_mul_mv_q6_K_f32_impl(
  4206. src0[id],
  4207. (device const float *) (src1 + bid*nb11),
  4208. (device float *) ( dst + bid*nb1),
  4209. ne00,
  4210. ne01,
  4211. ne02,
  4212. ne10,
  4213. ne12,
  4214. ne0,
  4215. ne1,
  4216. r2,
  4217. r3,
  4218. tgpig,
  4219. tiisg,
  4220. sgitg);
  4221. }