common.h 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include <string>
  5. #include <vector>
  6. #include <random>
  7. #include <thread>
  8. #include <unordered_map>
  9. #include <tuple>
  10. #if !defined (_WIN32)
  11. #include <stdio.h>
  12. #include <termios.h>
  13. #endif
  14. //
  15. // CLI argument parsing
  16. //
  17. int32_t get_num_physical_cores();
  18. struct gpt_params {
  19. uint32_t seed = -1; // RNG seed
  20. int32_t n_threads = get_num_physical_cores();
  21. int32_t n_predict = -1; // new tokens to predict
  22. int32_t n_ctx = 512; // context size
  23. int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
  24. int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
  25. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  26. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  27. int32_t n_gpu_layers = 0; // number of layers to store in VRAM
  28. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  29. float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
  30. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  31. float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; // rms norm epsilon
  32. float rope_freq_base = 10000.0f; // RoPE base frequency
  33. float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
  34. // sampling parameters
  35. std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
  36. int32_t top_k = 40; // <= 0 to use vocab size
  37. float top_p = 0.95f; // 1.0 = disabled
  38. float tfs_z = 1.00f; // 1.0 = disabled
  39. float typical_p = 1.00f; // 1.0 = disabled
  40. float temp = 0.80f; // 1.0 = disabled
  41. float repeat_penalty = 1.10f; // 1.0 = disabled
  42. int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  43. float frequency_penalty = 0.00f; // 0.0 = disabled
  44. float presence_penalty = 0.00f; // 0.0 = disabled
  45. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  46. float mirostat_tau = 5.00f; // target entropy
  47. float mirostat_eta = 0.10f; // learning rate
  48. // Classifier-Free Guidance
  49. // https://arxiv.org/abs/2306.17806
  50. std::string cfg_negative_prompt; // string to help guidance
  51. float cfg_scale = 1.f; // How strong is guidance
  52. std::string model = "models/7B/ggml-model.bin"; // model path
  53. std::string model_alias = "unknown"; // model alias
  54. std::string prompt = "";
  55. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  56. std::string input_prefix = ""; // string to prefix user inputs with
  57. std::string input_suffix = ""; // string to suffix user inputs with
  58. std::string grammar = ""; // optional BNF-like grammar to constrain sampling
  59. std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
  60. std::string lora_adapter = ""; // lora adapter path
  61. std::string lora_base = ""; // base model path for the lora adapter
  62. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  63. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  64. bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
  65. bool memory_f16 = true; // use f16 instead of f32 for memory kv
  66. bool random_prompt = false; // do not randomize prompt if none provided
  67. bool use_color = false; // use color to distinguish generations and inputs
  68. bool interactive = false; // interactive mode
  69. bool prompt_cache_all = false; // save user input and generations to prompt cache
  70. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  71. bool embedding = false; // get only sentence embedding
  72. bool interactive_first = false; // wait for user input immediately
  73. bool multiline_input = false; // reverse the usage of `\`
  74. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  75. bool instruct = false; // instruction mode (used for Alpaca models)
  76. bool penalize_nl = true; // consider newlines as a repeatable token
  77. bool perplexity = false; // compute perplexity over the prompt
  78. bool use_mmap = true; // use mmap for faster loads
  79. bool use_mlock = false; // use mlock to keep model in memory
  80. bool mem_test = false; // compute maximum memory usage
  81. bool numa = false; // attempt optimizations that help on some NUMA systems
  82. bool export_cgraph = false; // export the computation graph
  83. bool verbose_prompt = false; // print prompt tokens before generation
  84. };
  85. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  86. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  87. std::string gpt_random_prompt(std::mt19937 & rng);
  88. //
  89. // Vocab utils
  90. //
  91. std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);
  92. //
  93. // Model utils
  94. //
  95. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params);
  96. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
  97. //
  98. // Console utils
  99. //
  100. #define ANSI_COLOR_RED "\x1b[31m"
  101. #define ANSI_COLOR_GREEN "\x1b[32m"
  102. #define ANSI_COLOR_YELLOW "\x1b[33m"
  103. #define ANSI_COLOR_BLUE "\x1b[34m"
  104. #define ANSI_COLOR_MAGENTA "\x1b[35m"
  105. #define ANSI_COLOR_CYAN "\x1b[36m"
  106. #define ANSI_COLOR_RESET "\x1b[0m"
  107. #define ANSI_BOLD "\x1b[1m"
  108. enum console_color_t {
  109. CONSOLE_COLOR_DEFAULT=0,
  110. CONSOLE_COLOR_PROMPT,
  111. CONSOLE_COLOR_USER_INPUT,
  112. CONSOLE_COLOR_ERROR
  113. };
  114. struct console_state {
  115. bool multiline_input = false;
  116. bool use_color = false;
  117. console_color_t color = CONSOLE_COLOR_DEFAULT;
  118. FILE* out = stdout;
  119. #if defined (_WIN32)
  120. void* hConsole;
  121. #else
  122. FILE* tty = nullptr;
  123. termios prev_state;
  124. #endif
  125. };
  126. void console_init(console_state & con_st);
  127. void console_cleanup(console_state & con_st);
  128. void console_set_color(console_state & con_st, console_color_t color);
  129. bool console_readline(console_state & con_st, std::string & line);