| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892 |
- // Defines CLOCK_MONOTONIC on Linux
- #define _GNU_SOURCE
- #include "ggml.h"
- #if defined(_MSC_VER) || defined(__MINGW32__)
- #include <malloc.h> // using malloc.h with MSC/MINGW
- #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
- #include <alloca.h>
- #endif
- #include <assert.h>
- #include <errno.h>
- #include <time.h>
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdint.h>
- #include <inttypes.h>
- #include <stdio.h>
- #include <float.h>
- // if C99 - static_assert is noop
- // ref: https://stackoverflow.com/a/53923785/4039976
- #ifndef static_assert
- #define static_assert(cond, msg) struct global_scope_noop_trick
- #endif
- #if defined(_WIN32)
- #include <windows.h>
- typedef volatile LONG atomic_int;
- typedef atomic_int atomic_bool;
- static void atomic_store(atomic_int* ptr, LONG val) {
- InterlockedExchange(ptr, val);
- }
- static LONG atomic_load(atomic_int* ptr) {
- return InterlockedCompareExchange(ptr, 0, 0);
- }
- static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
- return InterlockedExchangeAdd(ptr, inc);
- }
- static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
- return atomic_fetch_add(ptr, -(dec));
- }
- typedef HANDLE pthread_t;
- typedef DWORD thread_ret_t;
- static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
- (void) unused;
- HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
- if (handle == NULL)
- {
- return EAGAIN;
- }
- *out = handle;
- return 0;
- }
- static int pthread_join(pthread_t thread, void* unused) {
- (void) unused;
- return (int) WaitForSingleObject(thread, INFINITE);
- }
- static int sched_yield (void) {
- Sleep (0);
- return 0;
- }
- #else
- #include <pthread.h>
- #include <stdatomic.h>
- typedef void* thread_ret_t;
- #endif
- // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
- #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
- #ifndef __FMA__
- #define __FMA__
- #endif
- #ifndef __F16C__
- #define __F16C__
- #endif
- #ifndef __SSE3__
- #define __SSE3__
- #endif
- #endif
- #ifdef __HAIKU__
- #define static_assert(cond, msg) _Static_assert(cond, msg)
- #endif
- /*#define GGML_PERF*/
- #define GGML_DEBUG 0
- #define GGML_GELU_FP16
- #define GGML_SILU_FP16
- #define GGML_SOFT_MAX_UNROLL 4
- #define GGML_VEC_DOT_UNROLL 2
- #ifdef GGML_USE_ACCELERATE
- // uncomment to use vDSP for soft max computation
- // note: not sure if it is actually faster
- //#define GGML_SOFT_MAX_ACCELERATE
- #endif
- #if UINTPTR_MAX == 0xFFFFFFFF
- #define GGML_MEM_ALIGN 4
- #else
- #define GGML_MEM_ALIGN 16
- #endif
- #define UNUSED(x) (void)(x)
- #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
- #define GGML_ASSERT(x) \
- do { \
- if (!(x)) { \
- fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
- abort(); \
- } \
- } while (0)
- #ifdef GGML_USE_ACCELERATE
- #include <Accelerate/Accelerate.h>
- #elif GGML_USE_OPENBLAS
- #include <cblas.h>
- #endif
- #undef MIN
- #undef MAX
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- // floating point type used to accumulate sums
- typedef double ggml_float;
- // 16-bit float
- // on Arm, we use __fp16
- // on x86, we use uint16_t
- #ifdef __ARM_NEON
- // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
- //
- // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
- //
- #include <arm_neon.h>
- #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
- #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
- #define GGML_FP16_TO_FP32(x) ((float) (x))
- #define GGML_FP32_TO_FP16(x) (x)
- #else
- #ifdef __wasm_simd128__
- #include <wasm_simd128.h>
- #else
- #ifdef __POWER9_VECTOR__
- #include <altivec.h>
- #undef bool
- #define bool _Bool
- #else
- #include <immintrin.h>
- #endif
- #endif
- #ifdef __F16C__
- #ifdef _MSC_VER
- #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
- #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
- #else
- #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
- #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
- #endif
- #elif defined(__POWER9_VECTOR__)
- #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
- #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
- /* the inline asm below is about 12% faster than the lookup method */
- #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
- #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
- static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
- register float f;
- register double d;
- __asm__(
- "mtfprd %0,%2\n"
- "xscvhpdp %0,%0\n"
- "frsp %1,%0\n" :
- /* temp */ "=d"(d),
- /* out */ "=f"(f):
- /* in */ "r"(h));
- return f;
- }
- static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
- register double d;
- register ggml_fp16_t r;
- __asm__( /* xscvdphp can work on double or single precision */
- "xscvdphp %0,%2\n"
- "mffprd %1,%0\n" :
- /* temp */ "=d"(d),
- /* out */ "=r"(r):
- /* in */ "f"(f));
- return r;
- }
- #else
- // FP16 <-> FP32
- // ref: https://github.com/Maratyszcza/FP16
- static inline float fp32_from_bits(uint32_t w) {
- union {
- uint32_t as_bits;
- float as_value;
- } fp32;
- fp32.as_bits = w;
- return fp32.as_value;
- }
- static inline uint32_t fp32_to_bits(float f) {
- union {
- float as_value;
- uint32_t as_bits;
- } fp32;
- fp32.as_value = f;
- return fp32.as_bits;
- }
- static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
- const uint32_t w = (uint32_t) h << 16;
- const uint32_t sign = w & UINT32_C(0x80000000);
- const uint32_t two_w = w + w;
- const uint32_t exp_offset = UINT32_C(0xE0) << 23;
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
- const float exp_scale = 0x1.0p-112f;
- #else
- const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
- #endif
- const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
- const uint32_t magic_mask = UINT32_C(126) << 23;
- const float magic_bias = 0.5f;
- const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
- const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
- const uint32_t result = sign |
- (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
- return fp32_from_bits(result);
- }
- static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
- const float scale_to_inf = 0x1.0p+112f;
- const float scale_to_zero = 0x1.0p-110f;
- #else
- const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
- const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
- #endif
- float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
- const uint32_t w = fp32_to_bits(f);
- const uint32_t shl1_w = w + w;
- const uint32_t sign = w & UINT32_C(0x80000000);
- uint32_t bias = shl1_w & UINT32_C(0xFF000000);
- if (bias < UINT32_C(0x71000000)) {
- bias = UINT32_C(0x71000000);
- }
- base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
- const uint32_t bits = fp32_to_bits(base);
- const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
- const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
- const uint32_t nonsign = exp_bits + mantissa_bits;
- return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
- }
- #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
- #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
- #endif // __F16C__
- #endif // __ARM_NEON
- //
- // global data
- //
- // precomputed gelu table for f16 (128 KB)
- static ggml_fp16_t table_gelu_f16[1 << 16];
- // precomputed silu table for f16 (128 KB)
- static ggml_fp16_t table_silu_f16[1 << 16];
- // precomputed exp table for f16 (128 KB)
- static ggml_fp16_t table_exp_f16[1 << 16];
- // precomputed f32 table for f16 (256 KB)
- static float table_f32_f16[1 << 16];
- // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
- // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
- // This is also true for POWER9.
- #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
- inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
- uint16_t s;
- memcpy(&s, &f, sizeof(uint16_t));
- return table_f32_f16[s];
- }
- #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
- #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
- #endif
- // note: do not use these inside ggml.c
- // these are meant to be used via the ggml.h API
- float ggml_fp16_to_fp32(ggml_fp16_t x) {
- return (float) GGML_FP16_TO_FP32(x);
- }
- ggml_fp16_t ggml_fp32_to_fp16(float x) {
- return GGML_FP32_TO_FP16(x);
- }
- //
- // timing
- //
- #if defined(_MSC_VER) || defined(__MINGW32__)
- static int64_t timer_freq;
- void ggml_time_init(void) {
- LARGE_INTEGER frequency;
- QueryPerformanceFrequency(&frequency);
- timer_freq = frequency.QuadPart;
- }
- int64_t ggml_time_ms(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return (t.QuadPart * 1000) / timer_freq;
- }
- int64_t ggml_time_us(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return (t.QuadPart * 1000000) / timer_freq;
- }
- #else
- void ggml_time_init(void) {}
- int64_t ggml_time_ms(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
- }
- int64_t ggml_time_us(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
- }
- #endif
- int64_t ggml_cycles(void) {
- return clock();
- }
- int64_t ggml_cycles_per_ms(void) {
- return CLOCKS_PER_SEC/1000;
- }
- #ifdef GGML_PERF
- #define ggml_perf_time_ms() ggml_time_ms()
- #define ggml_perf_time_us() ggml_time_us()
- #define ggml_perf_cycles() ggml_cycles()
- #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
- #else
- #define ggml_perf_time_ms() 0
- #define ggml_perf_time_us() 0
- #define ggml_perf_cycles() 0
- #define ggml_perf_cycles_per_ms() 0
- #endif
- //
- // cache line
- //
- #if defined(__cpp_lib_hardware_interference_size)
- #define CACHE_LINE_SIZE hardware_destructive_interference_size
- #else
- #if defined(__POWER9_VECTOR__)
- #define CACHE_LINE_SIZE 128
- #else
- #define CACHE_LINE_SIZE 64
- #endif
- #endif
- static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
- //
- // quantization
- //
- #define QK 32
- // AVX routines provided by GH user Const-me
- // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
- #if __AVX2__ || __AVX512F__
- // Unpack 32 4-bit fields into 32 bytes
- // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
- static inline __m256i bytesFromNibbles( const uint8_t* rsi )
- {
- // Load 16 bytes from memory
- __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
- // Expand bytes into uint16_t values
- __m256i bytes = _mm256_cvtepu8_epi16( tmp );
- // Unpack values into individual bytes
- const __m256i lowMask = _mm256_set1_epi8( 0xF );
- __m256i high = _mm256_andnot_si256( lowMask, bytes );
- __m256i low = _mm256_and_si256( lowMask, bytes );
- high = _mm256_slli_epi16( high, 4 );
- bytes = _mm256_or_si256( low, high );
- return bytes;
- }
- static inline __m128i packNibbles( __m256i bytes )
- {
- // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
- const __m256i lowByte = _mm256_set1_epi16( 0xFF );
- __m256i high = _mm256_andnot_si256( lowByte, bytes );
- __m256i low = _mm256_and_si256( lowByte, bytes );
- high = _mm256_srli_epi16( high, 4 );
- bytes = _mm256_or_si256( low, high );
- // Compress uint16_t lanes into bytes
- __m128i r0 = _mm256_castsi256_si128( bytes );
- __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
- return _mm_packus_epi16( r0, r1 );
- }
- #elif __AVX__
- static inline __m128i bytesFromNibbles( const uint8_t* rsi )
- {
- // Load 8 bytes from memory
- __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
- // Expand bytes into uint16_t values
- __m128i bytes = _mm_cvtepu8_epi16( tmp );
- // Unpack values into individual bytes
- const __m128i lowMask = _mm_set1_epi8( 0xF );
- __m128i high = _mm_andnot_si128( lowMask, bytes );
- __m128i low = _mm_and_si128( lowMask, bytes );
- high = _mm_slli_epi16( high, 4 );
- bytes = _mm_or_si128( low, high );
- return bytes;
- }
- static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
- {
- // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
- const __m128i lowByte = _mm_set1_epi16( 0xFF );
- __m128i high = _mm_andnot_si128( lowByte, bytes1 );
- __m128i low = _mm_and_si128( lowByte, bytes1 );
- high = _mm_srli_epi16( high, 4 );
- bytes1 = _mm_or_si128( low, high );
- high = _mm_andnot_si128( lowByte, bytes2 );
- low = _mm_and_si128( lowByte, bytes2 );
- high = _mm_srli_epi16( high, 4 );
- bytes2 = _mm_or_si128( low, high );
- return _mm_packus_epi16( bytes1, bytes2);
- }
- #endif
- // method 5
- // blocks of QK elements
- // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
- typedef struct {
- float d; // delta
- uint8_t qs[QK / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
- // method 4
- // blocks of QK elements
- // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
- typedef struct {
- float d;
- float m;
- uint8_t qs[QK / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
- // reference implementation for deterministic creation of model files
- static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
- assert(k % QK == 0);
- const int nb = k / QK;
- uint8_t pp[QK/2];
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- for (int l = 0; l < QK; l++) {
- const float v = x[i*QK + l];
- amax = MAX(amax, fabsf(v));
- }
- const float d = amax / ((1 << 3) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- for (int l = 0; l < QK; l += 2) {
- const float v0 = x[i*QK + l + 0]*id;
- const float v1 = x[i*QK + l + 1]*id;
- const uint8_t vi0 = (int8_t)roundf(v0) + 8;
- const uint8_t vi1 = (int8_t)roundf(v1) + 8;
- assert(vi0 < 16);
- assert(vi1 < 16);
- pp[l/2] = vi0 | (vi1 << 4);
- }
- memcpy(y[i].qs, pp, sizeof(pp));
- }
- }
- static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
- assert(k % QK == 0);
- const int nb = k / QK;
- block_q4_0 * restrict y = vy;
- #if defined(__POWER9_VECTOR__)
- const vector float v85 = vec_splats(8.5f);
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- vector float srcv [8];
- vector float asrcv[8];
- vector float amaxv[8];
- for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
- for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
- for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
- //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
- amaxv[0] = vec_max(amaxv[0], amaxv[2]);
- amaxv[4] = vec_max(amaxv[4], amaxv[6]);
- //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
- amaxv[0] = vec_max(amaxv[0], amaxv[4]);
- amax = MAX(
- MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
- MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
- const float d = amax / ((1 << 3) - 1);
- const float id = d ? 1.0/d : 0.0;
- y[i].d = d;
- const vector float vid = vec_splats(id);
- uint8_t * restrict pb = y[i].qs;
- for (int l = 0; l < 8; l++) {
- const vector float vf = vec_madd(srcv[l], vid, v85);
- const vector signed int vi = vec_signed(vf);
- pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
- pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
- }
- }
- #elif __ARM_NEON
- for (int i = 0; i < nb; i++) {
- float32x4_t srcv [8];
- float32x4_t asrcv[8];
- float32x4_t amaxv[8];
- for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
- for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
- for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
- for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
- for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
- const float amax = vmaxvq_f32(amaxv[0]);
- const float d = amax / ((1 << 3) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- for (int l = 0; l < 8; l++) {
- const float32x4_t v = vmulq_n_f32(srcv[l], id);
- const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
- const int32x4_t vi = vcvtq_s32_f32(vf);
- y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
- y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
- }
- }
- #elif defined(__AVX2__)
- for (int i = 0; i < nb; i++) {
- // Load elements into 4 AVX vectors
- __m256 v0 = _mm256_loadu_ps( x );
- __m256 v1 = _mm256_loadu_ps( x + 8 );
- __m256 v2 = _mm256_loadu_ps( x + 16 );
- __m256 v3 = _mm256_loadu_ps( x + 24 );
- x += 32;
- // Compute max(abs(e)) for the block
- const __m256 signBit = _mm256_set1_ps( -0.0f );
- __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
- __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
- max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
- max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
- const float maxScalar = _mm_cvtss_f32( max4 );
- // Quantize these floats
- const float d = maxScalar / 7.0f;
- y[i].d = d;
- const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
- const __m256 mul = _mm256_set1_ps( id );
- // Apply the multiplier
- v0 = _mm256_mul_ps( v0, mul );
- v1 = _mm256_mul_ps( v1, mul );
- v2 = _mm256_mul_ps( v2, mul );
- v3 = _mm256_mul_ps( v3, mul );
- // Round to nearest integer
- v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
- v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
- v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
- v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
- // Convert floats to integers
- __m256i i0 = _mm256_cvtps_epi32( v0 );
- __m256i i1 = _mm256_cvtps_epi32( v1 );
- __m256i i2 = _mm256_cvtps_epi32( v2 );
- __m256i i3 = _mm256_cvtps_epi32( v3 );
- // Convert int32 to int16
- i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
- i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
- // Convert int16 to int8
- i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
- // We got our precious signed bytes, but the order is now wrong
- // These AVX2 pack instructions process 16-byte pieces independently
- // The following instruction is fixing the order
- const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
- i0 = _mm256_permutevar8x32_epi32( i0, perm );
- // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
- const __m256i off = _mm256_set1_epi8( 8 );
- i0 = _mm256_add_epi8( i0, off );
- // Compress the vector into 4 bit/value, and store
- __m128i res = packNibbles( i0 );
- _mm_storeu_si128( ( __m128i* )y[i].qs, res );
- }
- #elif defined(__AVX__)
- for (int i = 0; i < nb; i++) {
- // Load elements into 4 AVX vectors
- __m256 v0 = _mm256_loadu_ps( x );
- __m256 v1 = _mm256_loadu_ps( x + 8 );
- __m256 v2 = _mm256_loadu_ps( x + 16 );
- __m256 v3 = _mm256_loadu_ps( x + 24 );
- x += 32;
- // Compute max(abs(e)) for the block
- const __m256 signBit = _mm256_set1_ps( -0.0f );
- __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
- __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
- max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
- max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
- const float maxScalar = _mm_cvtss_f32( max4 );
- // Quantize these floats
- const float d = maxScalar / 7.0f;
- y[i].d = d;
- const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
- const __m256 mul = _mm256_set1_ps( id );
- // Apply the multiplier
- v0 = _mm256_mul_ps( v0, mul );
- v1 = _mm256_mul_ps( v1, mul );
- v2 = _mm256_mul_ps( v2, mul );
- v3 = _mm256_mul_ps( v3, mul );
- // Round to nearest integer
- v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
- v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
- v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
- v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
- // Convert floats to integers
- __m256i i0 = _mm256_cvtps_epi32( v0 );
- __m256i i1 = _mm256_cvtps_epi32( v1 );
- __m256i i2 = _mm256_cvtps_epi32( v2 );
- __m256i i3 = _mm256_cvtps_epi32( v3 );
- // Since we don't have in AVX some necessary functions,
- // we split the registers in half and call AVX2 analogs from SSE
- __m128i ni0 = _mm256_castsi256_si128( i0 );
- __m128i ni1 = _mm256_extractf128_si256( i0, 1);
- __m128i ni2 = _mm256_castsi256_si128( i1 );
- __m128i ni3 = _mm256_extractf128_si256( i1, 1);
- __m128i ni4 = _mm256_castsi256_si128( i2 );
- __m128i ni5 = _mm256_extractf128_si256( i2, 1);
- __m128i ni6 = _mm256_castsi256_si128( i3 );
- __m128i ni7 = _mm256_extractf128_si256( i3, 1);
- // Convert int32 to int16
- ni0 = _mm_packs_epi32( ni0, ni1 );
- ni2 = _mm_packs_epi32( ni2, ni3 );
- ni4 = _mm_packs_epi32( ni4, ni5 );
- ni6 = _mm_packs_epi32( ni6, ni7 );
- // Convert int16 to int8
- ni0 = _mm_packs_epi16( ni0, ni2 );
- ni4 = _mm_packs_epi16( ni4, ni6 );
- // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
- const __m128i off = _mm_set1_epi8( 8);
- ni0 = _mm_add_epi8( ni0, off );
- ni4 = _mm_add_epi8( ni4, off );
- // Compress the vector into 4 bit/value, and store
- __m128i res = packNibbles( ni0, ni4 );
- _mm_storeu_si128( ( __m128i* )y[i].qs, res );
- }
- #elif defined(__wasm_simd128__)
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- v128_t srcv [8];
- v128_t asrcv[8];
- v128_t amaxv[8];
- for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
- for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
- for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
- for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
- for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
- amax = MAX(
- MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
- MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
- const float d = amax / ((1 << 3) - 1);
- const float id = d ? 1.0/d : 0.0;
- y[i].d = d;
- for (int l = 0; l < 8; l++) {
- const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
- const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
- const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
- y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
- y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
- }
- }
- #else
- // scalar
- quantize_row_q4_0_reference(x, y, k);
- #endif
- }
- static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
- assert(k % QK == 0);
- const int nb = k / QK;
- block_q4_1 * restrict y = vy;
- uint8_t pp[QK/2];
- for (int i = 0; i < nb; i++) {
- float min = FLT_MAX;
- float max = -FLT_MAX;
- for (int l = 0; l < QK; l++) {
- const float v = x[i*QK + l];
- if (v < min) min = v;
- if (v > max) max = v;
- }
- const float d = (max - min) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- y[i].m = min;
- for (int l = 0; l < QK; l += 2) {
- const float v0 = (x[i*QK + l + 0] - min)*id;
- const float v1 = (x[i*QK + l + 1] - min)*id;
- const uint8_t vi0 = roundf(v0);
- const uint8_t vi1 = roundf(v1);
- assert(vi0 < 16);
- assert(vi1 < 16);
- pp[l/2] = vi0 | (vi1 << 4);
- }
- memcpy(y[i].qs, pp, sizeof(pp));
- }
- }
- static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
- assert(k % QK == 0);
- const int nb = k / QK;
- block_q4_1 * restrict y = vy;
- #if defined(__AVX2__)
- for (int i = 0; i < nb; i++) {
- // Load elements into 4 AVX vectors
- __m256 v0 = _mm256_loadu_ps( x );
- __m256 v1 = _mm256_loadu_ps( x + 8 );
- __m256 v2 = _mm256_loadu_ps( x + 16 );
- __m256 v3 = _mm256_loadu_ps( x + 24 );
- x += 32;
- // Compute max for the block
- __m256 vmax;
- vmax = _mm256_max_ps( v0, v1 );
- vmax = _mm256_max_ps( vmax, v2 );
- vmax = _mm256_max_ps( vmax, v3 );
- __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
- max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
- max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
- const float maxScalar = _mm_cvtss_f32( max4 );
- // Compute min for the block
- __m256 vmin;
- vmin = _mm256_min_ps( v0, v1 );
- vmin = _mm256_min_ps( vmin, v2 );
- vmin = _mm256_min_ps( vmin, v3 );
- __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
- min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
- min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
- const float minScalar = _mm_cvtss_f32( min4 );
- // Quantize these floats
- const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].m = minScalar;
- y[i].d = d;
- // x = (x-min)*id
- const __m256 mul = _mm256_set1_ps( id );
- const __m256 off = _mm256_set1_ps( minScalar );
- v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
- v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
- v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
- v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
- // Round to nearest integer
- v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
- v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
- v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
- v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
- // Convert floats to integers
- __m256i i0 = _mm256_cvtps_epi32( v0 );
- __m256i i1 = _mm256_cvtps_epi32( v1 );
- __m256i i2 = _mm256_cvtps_epi32( v2 );
- __m256i i3 = _mm256_cvtps_epi32( v3 );
- // Convert int32 to int16
- i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
- i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
- // Convert int16 to int8
- i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
- // We got our precious signed bytes, but the order is now wrong
- // These AVX2 pack instructions process 16-byte pieces independently
- // The following instruction is fixing the order
- const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
- i0 = _mm256_permutevar8x32_epi32( i0, perm );
- // Compress the vector into 4 bit/value, and store
- __m128i res = packNibbles( i0 );
- _mm_storeu_si128( ( __m128i* )y[i].qs, res );
- }
- #elif __ARM_NEON
- for (int i = 0; i < nb; i++) {
- float32x4_t srcv[8];
- float32x4_t minv[8];
- float32x4_t maxv[8];
- for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l);
- for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
- for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
- for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
- for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
- for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
- for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
- const float min = vminvq_f32(minv[0]);
- const float max = vmaxvq_f32(maxv[0]);
- const float d = (max - min) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- y[i].m = min;
- const float32x4_t minv0 = vdupq_n_f32(min);
- for (int l = 0; l < 8; l++) {
- const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
- const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
- const int32x4_t vi = vcvtq_s32_f32(vf);
- y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
- y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
- }
- }
- #else
- // scalar
- quantize_row_q4_1_reference(x, vy, k);
- #endif
- }
- static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
- assert(k % QK == 0);
- const int nb = k / QK;
- const block_q4_0 * restrict x = vx;
- #if defined(__AVX2__)
- for (int i = 0; i < nb; i++) {
- // scale factor
- const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
- const uint8_t * restrict pp = x[i].qs;
- for (int l = 0; l < QK; l += 32) {
- // Load 32x4-bit integers into 32x8-bit integers
- __m256i vx8 = bytesFromNibbles(pp+l/2);
- // Subtract 8 from the integers
- vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
- // Convert to 16-bit int
- const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
- const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
- // Convert to 32-bit int -> float 32
- const __m256 vf[4] = {
- _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
- _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
- _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
- _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
- };
- // Scale and store
- for (int j = 0; j < 4; j++) {
- const __m256 result = _mm256_mul_ps(vf[j], d_v);
- _mm256_storeu_ps(y + i * QK + l + j*8, result);
- }
- }
- }
- #elif defined(__ARM_NEON)
- for (int i = 0; i < nb; i++) {
- const float32x4_t vd = vdupq_n_f32(x[i].d);
- const uint8_t * restrict pp = x[i].qs;
- for (int l = 0; l < QK; l += 16) {
- // Load 16x4-bit integers into 8x8-bit integers
- const uint8x8_t v8 = vld1_u8(pp + l/2);
- // Expand 4-bit qs to 8-bit bytes
- const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
- const uint8x8_t v1 = vshr_n_u8(v8, 4);
- // Convert to signed 8-bit integers
- const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
- const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
- // Subtract 8 from each byte
- const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
- const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
- // Interleave and combine
- const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
- const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
- const int8x16_t vq = vcombine_s8(vx_0, vx_1);
- // convert to 2x int16x8_t
- const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
- const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
- // convert to 4x float32x4_t
- const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
- const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
- const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
- const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
- // Multiply by d
- const float32x4_t r0 = vmulq_f32(vf_0, vd);
- const float32x4_t r1 = vmulq_f32(vf_1, vd);
- const float32x4_t r2 = vmulq_f32(vf_2, vd);
- const float32x4_t r3 = vmulq_f32(vf_3, vd);
- // Store
- vst1q_f32(y + i*QK + l + 0, r0);
- vst1q_f32(y + i*QK + l + 4, r1);
- vst1q_f32(y + i*QK + l + 8, r2);
- vst1q_f32(y + i*QK + l + 12, r3);
- }
- }
- #else
- // scalar
- for (int i = 0; i < nb; i++) {
- const float d = x[i].d;
- const uint8_t * restrict pp = x[i].qs;
- for (int l = 0; l < QK; l += 2) {
- const uint8_t vi = pp[l/2];
- const int8_t vi0 = vi & 0xf;
- const int8_t vi1 = vi >> 4;
- const float v0 = (vi0 - 8)*d;
- const float v1 = (vi1 - 8)*d;
- //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
- y[i*QK + l + 0] = v0;
- y[i*QK + l + 1] = v1;
- assert(!isnan(y[i*QK + l + 0]));
- assert(!isnan(y[i*QK + l + 1]));
- }
- }
- #endif
- }
- static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
- assert(k % QK == 0);
- const int nb = k / QK;
- const block_q4_1 * restrict x = vx;
- #if defined(__AVX2__)
- for (int i = 0; i < nb; i++) {
- const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
- const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
- const uint8_t * restrict pp = x[i].qs;
- for (int l = 0; l < QK; l += 32) {
- // Load 32x4-bit integers into 32x8-bit integers
- __m256i vx8 = bytesFromNibbles(pp+l/2);
- // Convert to 16-bit int
- const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
- const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
- // Convert to 32-bit int -> float 32
- const __m256 vf[4] = {
- _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
- _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
- _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
- _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
- };
- // Scale, add m and store
- for (int j = 0; j < 4; j++) {
- const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
- _mm256_storeu_ps(y + i * QK + l + j*8, result);
- }
- }
- }
- #elif defined(__ARM_NEON)
- for (int i = 0; i < nb; i++) {
- const float32x4_t vd = vdupq_n_f32(x[i].d);
- const float32x4_t vm = vdupq_n_f32(x[i].m);
- const uint8_t * restrict pp = x[i].qs;
- for (int l = 0; l < QK; l += 16) {
- // Load 16x4-bit integers into 8x8-bit integers
- const uint8x8_t v8 = vld1_u8(pp + l/2);
- // Expand 4-bit qs to 8-bit bytes
- const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
- const uint8x8_t v1 = vshr_n_u8(v8, 4);
- // Interleave and combine
- const uint8x8_t vx_0 = vzip1_u8(v0, v1);
- const uint8x8_t vx_1 = vzip2_u8(v0, v1);
- const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
- // convert to 2x uint16x8_t
- const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
- const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
- // convert to 4x float32x4_t
- const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
- const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
- const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
- const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
- // multiply by d and add m
- const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
- const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
- const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
- const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
- // Store
- vst1q_f32(y + i*QK + l + 0, r0);
- vst1q_f32(y + i*QK + l + 4, r1);
- vst1q_f32(y + i*QK + l + 8, r2);
- vst1q_f32(y + i*QK + l + 12, r3);
- }
- }
- #else
- for (int i = 0; i < nb; i++) {
- const float d = x[i].d;
- const float m = x[i].m;
- const uint8_t * restrict pp = x[i].qs;
- for (int l = 0; l < QK; l += 2) {
- const uint8_t vi = pp[l/2];
- const int8_t vi0 = vi & 0xf;
- const int8_t vi1 = vi >> 4;
- const float v0 = vi0*d + m;
- const float v1 = vi1*d + m;
- y[i*QK + l + 0] = v0;
- y[i*QK + l + 1] = v1;
- assert(!isnan(y[i*QK + l + 0]));
- assert(!isnan(y[i*QK + l + 1]));
- }
- }
- #endif
- }
- //
- // simd mappings
- //
- // we define a common set of C macros which map to specific intrinsics based on the current architecture
- // we then implement the fundamental computation operations below using only these macros
- // adding support for new architectures requires to define the corresponding SIMD macros
- //
- // GGML_F32_STEP / GGML_F16_STEP
- // number of elements to process in a single step
- //
- // GGML_F32_EPR / GGML_F16_EPR
- // number of elements to fit in a single register
- //
- #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
- #define GGML_SIMD
- // F32 NEON
- #define GGML_F32_STEP 16
- #define GGML_F32_EPR 4
- #define GGML_F32x4 float32x4_t
- #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
- #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
- #define GGML_F32x4_LOAD vld1q_f32
- #define GGML_F32x4_STORE vst1q_f32
- #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
- #define GGML_F32x4_ADD vaddq_f32
- #define GGML_F32x4_MUL vmulq_f32
- #if defined(__ARM_FEATURE_QRDMX)
- #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
- #else
- #define GGML_F32x4_REDUCE_ONE(x) \
- (vgetq_lane_f32(x, 0) + \
- vgetq_lane_f32(x, 1) + \
- vgetq_lane_f32(x, 2) + \
- vgetq_lane_f32(x, 3))
- #endif
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
- x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
- x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
- x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
- } \
- res = GGML_F32x4_REDUCE_ONE(x[0]); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 NEON
- #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 8
- #define GGML_F16x8 float16x8_t
- #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
- #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
- #define GGML_F16x8_LOAD vld1q_f16
- #define GGML_F16x8_STORE vst1q_f16
- #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
- #define GGML_F16x8_ADD vaddq_f16
- #define GGML_F16x8_MUL vmulq_f16
- #define GGML_F16x8_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
- x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
- x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
- x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
- } \
- const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
- const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
- res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
- }
- #define GGML_F16_VEC GGML_F16x8
- #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
- #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F16x8_FMA
- #define GGML_F16_VEC_ADD GGML_F16x8_ADD
- #define GGML_F16_VEC_MUL GGML_F16x8_MUL
- #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
- #else
- // if FP16 vector arithmetic is not supported, we use FP32 instead
- // and take advantage of the vcvt_ functions to convert to/from FP16
- #define GGML_F16_STEP 16
- #define GGML_F16_EPR 4
- #define GGML_F32Cx4 float32x4_t
- #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
- #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
- #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
- #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
- #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
- #define GGML_F32Cx4_ADD vaddq_f32
- #define GGML_F32Cx4_MUL vmulq_f32
- #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
- #define GGML_F16_VEC GGML_F32Cx4
- #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
- #endif
- #elif defined(__AVX__)
- #define GGML_SIMD
- // F32 AVX
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 8
- #define GGML_F32x8 __m256
- #define GGML_F32x8_ZERO _mm256_setzero_ps()
- #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
- #define GGML_F32x8_LOAD _mm256_loadu_ps
- #define GGML_F32x8_STORE _mm256_storeu_ps
- #if defined(__FMA__)
- #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
- #else
- #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
- #endif
- #define GGML_F32x8_ADD _mm256_add_ps
- #define GGML_F32x8_MUL _mm256_mul_ps
- #define GGML_F32x8_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
- x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
- x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
- x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
- } \
- const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
- _mm256_extractf128_ps(x[0], 1)); \
- const __m128 t1 = _mm_hadd_ps(t0, t0); \
- res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
- }
- // TODO: is this optimal ?
- #define GGML_F32_VEC GGML_F32x8
- #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x8_STORE
- #define GGML_F32_VEC_FMA GGML_F32x8_FMA
- #define GGML_F32_VEC_ADD GGML_F32x8_ADD
- #define GGML_F32_VEC_MUL GGML_F32x8_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
- // F16 AVX
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 8
- // F16 arithmetic is not supported by AVX, so we use F32 instead
- #define GGML_F32Cx8 __m256
- #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
- #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
- #if defined(__F16C__)
- // the _mm256_cvt intrinsics require F16C
- #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
- #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
- #else
- static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
- float tmp[8];
- for (int i = 0; i < 8; i++)
- tmp[i] = GGML_FP16_TO_FP32(x[i]);
- return _mm256_loadu_ps(tmp);
- }
- static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
- float arr[8];
- _mm256_storeu_ps(arr, y);
- for (int i = 0; i < 8; i++)
- x[i] = GGML_FP32_TO_FP16(arr[i]);
- }
- #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
- #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
- #endif
- #define GGML_F32Cx8_FMA GGML_F32x8_FMA
- #define GGML_F32Cx8_ADD _mm256_add_ps
- #define GGML_F32Cx8_MUL _mm256_mul_ps
- #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
- #define GGML_F16_VEC GGML_F32Cx8
- #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
- #elif defined(__POWER9_VECTOR__)
- #define GGML_SIMD
- // F32 POWER9
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 4
- #define GGML_F32x4 vector float
- #define GGML_F32x4_ZERO 0.0f
- #define GGML_F32x4_SET1 vec_splats
- #define GGML_F32x4_LOAD(p) vec_xl(0, p)
- #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
- #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
- #define GGML_F32x4_ADD vec_add
- #define GGML_F32x4_MUL vec_mul
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
- x[2*i] = vec_add(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
- x[4*i] = vec_add(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
- x[8*i] = vec_add(x[8*i], x[8*i+4]); \
- } \
- res = vec_extract(x[0], 0) + \
- vec_extract(x[0], 1) + \
- vec_extract(x[0], 2) + \
- vec_extract(x[0], 3); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 POWER9
- #define GGML_F16_STEP GGML_F32_STEP
- #define GGML_F16_EPR GGML_F32_EPR
- #define GGML_F16_VEC GGML_F32x4
- #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F16_VEC_FMA GGML_F32x4_FMA
- #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
- // Use vec_xl, not vec_ld, in case the load address is not aligned.
- #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
- vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
- vec_extract_fp32_from_shortl(vec_xl(0, p))
- #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
- #define GGML_F16_VEC_STORE(p, r, i) \
- if (i & 0x1) \
- vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
- r[i - GGML_ENDIAN_BYTE(0)]), \
- 0, p - GGML_F16_EPR)
- #elif defined(__wasm_simd128__)
- #define GGML_SIMD
- // F32 WASM
- #define GGML_F32_STEP 16
- #define GGML_F32_EPR 4
- #define GGML_F32x4 v128_t
- #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
- #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
- #define GGML_F32x4_LOAD wasm_v128_load
- #define GGML_F32x4_STORE wasm_v128_store
- #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
- #define GGML_F32x4_ADD wasm_f32x4_add
- #define GGML_F32x4_MUL wasm_f32x4_mul
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
- x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
- x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
- x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
- } \
- res = wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 WASM
- #define GGML_F16_STEP 16
- #define GGML_F16_EPR 4
- inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
- float tmp[4];
- tmp[0] = GGML_FP16_TO_FP32(p[0]);
- tmp[1] = GGML_FP16_TO_FP32(p[1]);
- tmp[2] = GGML_FP16_TO_FP32(p[2]);
- tmp[3] = GGML_FP16_TO_FP32(p[3]);
- return wasm_v128_load(tmp);
- }
- inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
- float tmp[4];
- wasm_v128_store(tmp, x);
- p[0] = GGML_FP32_TO_FP16(tmp[0]);
- p[1] = GGML_FP32_TO_FP16(tmp[1]);
- p[2] = GGML_FP32_TO_FP16(tmp[2]);
- p[3] = GGML_FP32_TO_FP16(tmp[3]);
- }
- #define GGML_F16x4 v128_t
- #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
- #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
- #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
- #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
- #define GGML_F16x4_FMA GGML_F32x4_FMA
- #define GGML_F16x4_ADD wasm_f32x4_add
- #define GGML_F16x4_MUL wasm_f32x4_mul
- #define GGML_F16x4_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
- x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
- x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
- x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
- } \
- res = wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3); \
- }
- #define GGML_F16_VEC GGML_F16x4
- #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F16x4_FMA
- #define GGML_F16_VEC_ADD GGML_F16x4_ADD
- #define GGML_F16_VEC_MUL GGML_F16x4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
- #elif defined(__SSE3__)
- #define GGML_SIMD
- // F32 SSE
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 4
- #define GGML_F32x4 __m128
- #define GGML_F32x4_ZERO _mm_setzero_ps()
- #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
- #define GGML_F32x4_LOAD _mm_loadu_ps
- #define GGML_F32x4_STORE _mm_storeu_ps
- #if defined(__FMA__)
- // TODO: Does this work?
- #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
- #else
- #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
- #endif
- #define GGML_F32x4_ADD _mm_add_ps
- #define GGML_F32x4_MUL _mm_mul_ps
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
- x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
- x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
- } \
- for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
- x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
- } \
- const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
- res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
- }
- // TODO: is this optimal ?
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 SSE
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 4
- static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
- float tmp[4];
- tmp[0] = GGML_FP16_TO_FP32(x[0]);
- tmp[1] = GGML_FP16_TO_FP32(x[1]);
- tmp[2] = GGML_FP16_TO_FP32(x[2]);
- tmp[3] = GGML_FP16_TO_FP32(x[3]);
- return _mm_loadu_ps(tmp);
- }
- static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
- float arr[4];
- _mm_storeu_ps(arr, y);
- x[0] = GGML_FP32_TO_FP16(arr[0]);
- x[1] = GGML_FP32_TO_FP16(arr[1]);
- x[2] = GGML_FP32_TO_FP16(arr[2]);
- x[3] = GGML_FP32_TO_FP16(arr[3]);
- }
- #define GGML_F32Cx4 __m128
- #define GGML_F32Cx4_ZERO _mm_setzero_ps()
- #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
- #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
- #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
- #define GGML_F32Cx4_FMA GGML_F32x4_FMA
- #define GGML_F32Cx4_ADD _mm_add_ps
- #define GGML_F32Cx4_MUL _mm_mul_ps
- #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
- #define GGML_F16_VEC GGML_F32Cx4
- #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
- #endif
- // GGML_F32_ARR / GGML_F16_ARR
- // number of registers to use per step
- #ifdef GGML_SIMD
- #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
- #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
- #endif
- //
- // fundamental operations
- //
- inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
- inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
- inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
- inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
- inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
- inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
- inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
- inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
- inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
- #ifdef GGML_SIMD
- float sumf = 0.0f;
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
- // reduce sum0..sum3 to sum0
- GGML_F32_VEC_REDUCE(sumf, sum);
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += x[i]*y[i];
- }
- #else
- // scalar
- ggml_float sumf = 0.0;
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(x[i]*y[i]);
- }
- #endif
- *s = sumf;
- }
- #if __AVX512F__ && QK == 32
- static inline __m512 dot_q4_0_oneblock_avx512(
- __m512 acc,
- const block_q4_0 * restrict x,
- const block_q4_0 * restrict y,
- int i
- ) {
- // Compute combined scale for the block
- __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
- __m256i bx = bytesFromNibbles( x[i].qs );
- __m256i by = bytesFromNibbles( y[i].qs );
- // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
- const __m256i off = _mm256_set1_epi8( 8 );
- bx = _mm256_sub_epi8( bx, off );
- by = _mm256_sub_epi8( by, off );
- // Sign-extend 16 signed bytes into int16_t
- __m512i x32 = _mm512_cvtepi8_epi16( bx );
- __m512i y32 = _mm512_cvtepi8_epi16( by );
- // Compute products of int16_t integers, add pairwise
- __m512i i64 = _mm512_madd_epi16( x32, y32 );
- // Convert int32_t to float
- __m512 p = _mm512_cvtepi32_ps( i64 );
- // Apply the scale, and accumulate
- return _mm512_fmadd_ps( d, p, acc );
- }
- #endif
- inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
- ggml_float sumf = 0.0;
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
- GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
- // reduce sum0..sum3 to sum0
- GGML_F16_VEC_REDUCE(sumf, sum);
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
- }
- #else
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
- }
- #endif
- *s = sumf;
- }
- static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int nb = n / QK;
- assert(n % QK == 0);
- assert(nb % 2 == 0);
- const block_q4_0 * restrict x = vx;
- const block_q4_0 * restrict y = vy;
- float sumf = 0.0;
- #if defined(__ARM_NEON)
- float sum0 = 0.0f;
- float sum1 = 0.0f;
- for (int i = 0; i < nb; i += 2) {
- const block_q4_0 * restrict x0 = &x[i + 0];
- const block_q4_0 * restrict y0 = &y[i + 0];
- const block_q4_0 * restrict x1 = &x[i + 1];
- const block_q4_0 * restrict y1 = &y[i + 1];
- const uint8x16_t m4b = vdupq_n_u8(0xf);
- const int8x16_t s8b = vdupq_n_s8(0x8);
- const uint8x16_t v0_0 = vld1q_u8(x0->qs);
- const uint8x16_t v1_0 = vld1q_u8(y0->qs);
- const uint8x16_t v0_1 = vld1q_u8(x1->qs);
- const uint8x16_t v1_1 = vld1q_u8(y1->qs);
- // 4-bit -> 8-bit
- const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
- const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
- const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
- const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
- const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
- const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
- const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
- const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
- // sub 8
- const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
- const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
- const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
- const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
- const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
- const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
- const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
- const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
- #if defined(__ARM_FEATURE_DOTPROD)
- // dot product into int16x8_t
- int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
- int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
- p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
- p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
- // scalar
- #if defined(__ARM_FEATURE_QRDMX)
- sum0 += x0->d * y0->d * vaddvq_s32(p_0);
- sum1 += x1->d * y1->d * vaddvq_s32(p_1);
- #else
- sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
- sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
- #endif
- #else
- const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
- const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
- const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
- const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
- const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
- const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
- const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
- const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
- const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
- const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
- const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
- const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
- const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
- const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
- // scalar
- #if defined(__ARM_FEATURE_QRDMX)
- sum0 += x0->d * y0->d * vaddvq_s16(p_0);
- sum1 += x1->d * y1->d * vaddvq_s16(p_1);
- #else
- sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
- sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
- #endif
- #endif
- }
- sumf = sum0 + sum1;
- #elif defined(__AVX512F__)
- // Initialize accumulator with zeros
- __m512 acc0 = _mm512_setzero_ps();
- __m512 acc1 = _mm512_setzero_ps();
- const int superblock_size = 8;
- const int superblock_count = nb / superblock_size;
- for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
- int i = superblock_ix * superblock_size;
- acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
- acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
- acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
- acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
- acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
- acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
- acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
- acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
- }
- // Remainders
- for (int i = superblock_count * superblock_size; i < nb; ++i) {
- acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
- }
- // Horizontal sum of all lanes of the accumulator
- sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
- #elif defined(__AVX2__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- /* Prepare the constants we will need during execution */
- const __m256i lowMask = _mm256_set1_epi8( 0xF );
- const __m256i offset_8 = _mm256_set1_epi16( 8 );
- #define UNROLL_COUNT 8
- // make sure we only unroll multiples of the block count
- assert(nb % UNROLL_COUNT == 0);
- // Main loop
- for (int i = 0; i < nb; i+=UNROLL_COUNT) {
- // This loop will be unrolled by the compiler
- for (int u=0;u<UNROLL_COUNT;u++) {
- /* Compute combined scale for the block */
- const __m256 scale = _mm256_mul_ps(
- _mm256_broadcast_ss( &x[i+u].d ),
- _mm256_broadcast_ss( &y[i+u].d ) );
- /* get input from x
- Input: 32 Nibbles (16 bytes) at *x[i+u]
- Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
- /* Load 16 bytes from memory */
- const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
- /* Expand bytes into uint16_t values */
- const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
- /* Unpack values into individual bytes */
- __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
- const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
- __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
- /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
- x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
- x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
- /* get input from y
- Input: 32 Nibbles (16 bytes) at *y[i+u]
- Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
- /* Load 16 bytes from memory */
- const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
- /* Expand bytes into uint16_t values */
- const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
- /* Unpack values into individual bytes */
- const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
- __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
- __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
- /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
- y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
- y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
- /* Compute products of int16_t integers, add pairwise, store as int32_t */
- __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
- __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
- /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
- __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
- /* Convert to vectore of 8 int32_t to 8 floats */
- __m256 q = _mm256_cvtepi32_ps( xy_q );
- /* Multiply q with scale and accumulate */
- acc = _mm256_fmadd_ps( scale, q, acc );
- }
- }
- // Return horizontal sum of the acc vector
- __m128 res = _mm256_extractf128_ps( acc, 1 );
- res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
- res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
- res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
- sumf = _mm_cvtss_f32( res );
- #elif defined(__AVX__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- // Main loop
- for (int i = 0; i < nb; ++i) {
- // Compute combined scale for the block
- const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
- __m128i i32[2];
- for (int j = 0; j < 2; ++j) {
- // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
- __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
- __m128i by = bytesFromNibbles( y[i].qs + 8*j );
- // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
- const __m128i off = _mm_set1_epi8( 8 );
- bx = _mm_sub_epi8( bx, off );
- by = _mm_sub_epi8( by, off );
- // Get absolute values of x vectors
- const __m128i ax = _mm_sign_epi8(bx, bx);
- // Sign the values of the y vectors
- const __m128i sy = _mm_sign_epi8(by, bx);
- // Perform multiplication and create 16-bit values
- const __m128i dot = _mm_maddubs_epi16(ax, sy);
- const __m128i ones = _mm_set1_epi16(1);
- i32[j] = _mm_madd_epi16(ones, dot);
- }
- // Convert int32_t to float
- __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
- // Apply the scale, and accumulate
- acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
- }
- // Return horizontal sum of the acc vector
- __m128 res = _mm256_extractf128_ps( acc, 1 );
- res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
- res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
- res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
- sumf = _mm_cvtss_f32( res );
- #elif defined(__wasm_simd128__)
- // wasm simd
- float sum0 = 0.0f;
- float sum1 = 0.0f;
- for (int i = 0; i < nb; i += 2) {
- const block_q4_0 * restrict x0 = &x[i + 0];
- const block_q4_0 * restrict y0 = &y[i + 0];
- const block_q4_0 * restrict x1 = &x[i + 1];
- const block_q4_0 * restrict y1 = &y[i + 1];
- const v128_t m4b = wasm_u8x16_splat(0xf);
- const v128_t s8b = wasm_i8x16_splat(0x8);
- const v128_t v0_0 = wasm_v128_load(x0->qs);
- const v128_t v0_1 = wasm_v128_load(y0->qs);
- const v128_t v1_0 = wasm_v128_load(x1->qs);
- const v128_t v1_1 = wasm_v128_load(y1->qs);
- // 4-bit -> 8-bit
- const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
- const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
- const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
- const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
- const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
- const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
- const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
- const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
- // sub 8
- const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
- const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
- const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
- const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
- const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
- const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
- const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
- const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
- // dot product into int16x8_t
- const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
- const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
- const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
- const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
- const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
- const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
- const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
- const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
- const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
- const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
- const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
- const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
- const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
- const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
- sum0 += x0->d * y0->d * (
- wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
- wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
- wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
- wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
- sum1 += x1->d * y1->d * (
- wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
- wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
- wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
- wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
- }
- sumf = sum0 + sum1;
- #else
- // scalar
- for (int i = 0; i < nb; i++) {
- const float d0 = x[i].d;
- const float d1 = y[i].d;
- const uint8_t * restrict p0 = x[i].qs;
- const uint8_t * restrict p1 = y[i].qs;
- for (int j = 0; j < QK/2; j++) {
- const uint8_t v0 = p0[j];
- const uint8_t v1 = p1[j];
- const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
- const float f1 = d0*((int8_t) (v0 >> 4) - 8);
- const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
- const float f3 = d1*((int8_t) (v1 >> 4) - 8);
- sumf += f0*f2 + f1*f3;
- }
- }
- #endif
- *s = sumf;
- }
- static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int nb = n / QK;
- const block_q4_1 * restrict x = vx;
- const block_q4_1 * restrict y = vy;
- float sumf = 0.0;
- #if defined(__AVX2__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- // Accumulator for constant offsets
- float acc_offset = 0.0f;
- // Main loop
- for (int i = 0; i < nb; ++i) {
- const float * d0 = &x[i].d;
- const float * d1 = &y[i].d;
- const float * m0 = &x[i].m;
- const float * m1 = &y[i].m;
- const __m256 d0v = _mm256_broadcast_ss( d0 );
- const __m256 d1v = _mm256_broadcast_ss( d1 );
- const __m256 m0v = _mm256_broadcast_ss( m0 );
- const __m256 m1v = _mm256_broadcast_ss( m1 );
- // Compute combined scale for the block
- const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
- // Compute cross scales for the block
- const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
- const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
- const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
- // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
- __m256i bx = bytesFromNibbles( x[i].qs );
- __m256i by = bytesFromNibbles( y[i].qs );
- // Now we have a vector with bytes in [ 0 .. 15 ] interval.
- // Sign-extend first 16 signed bytes into int16_t
- __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
- __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
- // Compute products of int16_t integers, add pairwise
- __m256i i32 = _mm256_madd_epi16( x16, y16 );
- // Sign-extend last 16 signed bytes into int16_t vectors
- __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
- __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
- // Accumulate products of int16_t integers
- i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
- // compute sums of unsigned bytes in bx, by in blocks of 8.
- // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
- // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
- // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
- __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
- __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
- __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
- __m256 sums = _mm256_cvtepi32_ps( sumsi );
- // Convert int32_t to float
- __m256 p = _mm256_cvtepi32_ps( i32 );
- // Apply the scale, and accumulate
- // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
- acc = _mm256_fmadd_ps( scale_01, p, acc );
- acc = _mm256_fmadd_ps( cross_scales, sums, acc );
- // acc_offset += m0*m1 (for each entry in the block)
- acc_offset += (*m0)*(*m1);
- }
- // Return horizontal sum of the acc vector
- __m128 res = _mm256_extractf128_ps( acc, 1 );
- res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
- res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
- res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
- sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
- #elif defined(__ARM_NEON)
- float sum00 = 0.0f;
- float sum01 = 0.0f;
- float sum10 = 0.0f;
- float sum11 = 0.0f;
- for (int i = 0; i < nb; ++i) {
- const block_q4_1 * restrict x0 = &x[i + 0];
- const block_q4_1 * restrict y0 = &y[i + 0];
- const uint8x16_t m4b = vdupq_n_u8(0xf);
- const uint8x16_t v0_0 = vld1q_u8(x0->qs);
- const uint8x16_t v1_0 = vld1q_u8(y0->qs);
- // and with 0xf
- const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
- const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
- const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
- const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
- // dot product into uint16x8_t
- const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
- const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
- const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
- const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
- const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
- const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
- sum00 += x0->m*y0->m;
- sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
- sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
- sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
- }
- sumf = QK*sum00 + sum01 + sum10 + sum11;
- #else
- // scalar
- for (int i = 0; i < nb; i++) {
- const float d0 = x[i].d;
- const float d1 = y[i].d;
- const float m0 = x[i].m;
- const float m1 = y[i].m;
- const uint8_t * restrict p0 = x[i].qs;
- const uint8_t * restrict p1 = y[i].qs;
- for (int j = 0; j < QK/2; j++) {
- const uint8_t v0 = p0[j];
- const uint8_t v1 = p1[j];
- const float f0 = d0*(v0 & 0xf) + m0;
- const float f1 = d0*(v0 >> 4) + m0;
- const float f2 = d1*(v1 & 0xf) + m1;
- const float f3 = d1*(v1 >> 4) + m1;
- sumf += f0*f2 + f1*f3;
- }
- }
- #endif
- *s = sumf;
- }
- // compute GGML_VEC_DOT_UNROLL dot products at once
- // xs - x row stride in bytes
- inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
- ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
- ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
- }
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
- GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
- sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
- }
- }
- }
- // reduce sum0..sum3 to sum0
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
- #else
- for (int i = 0; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
- #endif
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- s[i] = sumf[i];
- }
- }
- inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] += x[i]*v;
- }
- #else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] += x[i]*v;
- }
- #endif
- }
- //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
- inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] *= v;
- }
- #else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] *= v;
- }
- #endif
- }
- inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
- inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
- inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
- inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
- inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
- inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
- inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
- static const float GELU_COEF_A = 0.044715f;
- static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- inline static float ggml_gelu_f32(float x) {
- return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
- }
- inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- const uint16_t * i16 = (const uint16_t *) x;
- for (int i = 0; i < n; ++i) {
- y[i] = table_gelu_f16[i16[i]];
- }
- }
- #ifdef GGML_GELU_FP16
- inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
- }
- }
- #else
- inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_gelu_f32(x[i]);
- }
- }
- #endif
- // Sigmoid Linear Unit (SiLU) function
- inline static float ggml_silu_f32(float x) {
- return x/(1.0f + expf(-x));
- }
- inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- const uint16_t * i16 = (const uint16_t *) x;
- for (int i = 0; i < n; ++i) {
- y[i] = table_silu_f16[i16[i]];
- }
- }
- #ifdef GGML_SILU_FP16
- inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
- }
- }
- #else
- inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_silu_f32(x[i]);
- }
- }
- #endif
- inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
- #ifndef GGML_USE_ACCELERATE
- ggml_float sum = 0.0;
- for (int i = 0; i < n; ++i) {
- sum += (ggml_float)x[i];
- }
- *s = sum;
- #else
- vDSP_sve(x, 1, s, n);
- #endif
- }
- inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
- #ifndef GGML_USE_ACCELERATE
- float max = -INFINITY;
- for (int i = 0; i < n; ++i) {
- max = MAX(max, x[i]);
- }
- *s = max;
- #else
- vDSP_maxv(x, 1, s, n);
- #endif
- }
- inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
- ggml_vec_norm_f32(n, s, x);
- *s = 1.f/(*s);
- }
- //
- // logging
- //
- #if (GGML_DEBUG >= 1)
- #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG(...)
- #endif
- #if (GGML_DEBUG >= 5)
- #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_5(...)
- #endif
- #if (GGML_DEBUG >= 10)
- #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_10(...)
- #endif
- #define GGML_PRINT(...) printf(__VA_ARGS__)
- //
- // data types
- //
- static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
- [GGML_TYPE_F32] = 1,
- [GGML_TYPE_F16] = 1,
- [GGML_TYPE_Q4_0] = QK,
- [GGML_TYPE_Q4_1] = QK,
- [GGML_TYPE_I8] = 1,
- [GGML_TYPE_I16] = 1,
- [GGML_TYPE_I32] = 1,
- };
- static_assert(GGML_TYPE_COUNT == 7, "GGML_BLCK_SIZE is outdated");
- static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
- [GGML_TYPE_F32] = sizeof(float),
- [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
- [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
- [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
- [GGML_TYPE_I8] = sizeof(int8_t),
- [GGML_TYPE_I16] = sizeof(int16_t),
- [GGML_TYPE_I32] = sizeof(int32_t),
- };
- static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated");
- static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
- "NONE",
- "DUP",
- "ADD",
- "SUB",
- "MUL",
- "DIV",
- "SQR",
- "SQRT",
- "SUM",
- "MEAN",
- "REPEAT",
- "ABS",
- "SGN",
- "NEG",
- "STEP",
- "RELU",
- "GELU",
- "SILU",
- "NORM",
- "RMS_NORM",
- "MUL_MAT",
- "SCALE",
- "CPY",
- "CONT",
- "RESHAPE",
- "VIEW",
- "PERMUTE",
- "TRANSPOSE",
- "GET_ROWS",
- "DIAG_MASK_INF",
- "SOFT_MAX",
- "ROPE",
- "CONV_1D_1S",
- "CONV_1D_2S",
- "FLASH_ATTN",
- "FLASH_FF",
- };
- static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
- static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
- "none",
- "x",
- "x+y",
- "x-y",
- "x*y",
- "x/y",
- "x^2",
- "√x",
- "Σx",
- "Σx/n",
- "repeat(x)",
- "abs(x)",
- "sgn(x)",
- "-x",
- "step(x)",
- "relu(x)",
- "gelu(x)",
- "silu(x)",
- "norm(x)",
- "rms_norm(x)",
- "X*Y",
- "x*v",
- "x-\\>y",
- "cont(x)",
- "reshape(x)",
- "view(x)",
- "permute(x)",
- "transpose(x)",
- "get_rows(x)",
- "diag_mask_inf(x)",
- "soft_max(x)",
- "rope(x)",
- "conv_1d_1s(x)",
- "conv_1d_2s(x)",
- "flash_attn(x)",
- "flash_ff(x)",
- };
- static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
- static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
- static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
- //
- // ggml context
- //
- struct ggml_context {
- size_t mem_size;
- void * mem_buffer;
- bool mem_buffer_owned;
- bool no_alloc;
- int n_objects;
- struct ggml_object * objects_begin;
- struct ggml_object * objects_end;
- struct ggml_scratch scratch;
- struct ggml_scratch scratch_save;
- };
- struct ggml_context_container {
- bool used;
- struct ggml_context context;
- };
- //
- // compute types
- //
- enum ggml_task_type {
- GGML_TASK_INIT = 0,
- GGML_TASK_COMPUTE,
- GGML_TASK_FINALIZE,
- };
- struct ggml_compute_params {
- enum ggml_task_type type;
- int ith, nth;
- // work buffer for all threads
- size_t wsize;
- void * wdata;
- };
- //
- // ggml state
- //
- struct ggml_state {
- struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
- };
- // global state
- static struct ggml_state g_state;
- static atomic_int g_state_barrier = 0;
- // barrier via spin lock
- inline static void ggml_critical_section_start(void) {
- int processing = atomic_fetch_add(&g_state_barrier, 1);
- while (processing > 0) {
- // wait for other threads to finish
- atomic_fetch_sub(&g_state_barrier, 1);
- sched_yield(); // TODO: reconsider this
- processing = atomic_fetch_add(&g_state_barrier, 1);
- }
- }
- // TODO: make this somehow automatically executed
- // some sort of "sentry" mechanism
- inline static void ggml_critical_section_end(void) {
- atomic_fetch_sub(&g_state_barrier, 1);
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_print_object(const struct ggml_object * obj) {
- GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
- obj->offs, obj->size, (const void *) obj->next);
- }
- void ggml_print_objects(const struct ggml_context * ctx) {
- struct ggml_object * obj = ctx->objects_begin;
- GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
- while (obj != NULL) {
- ggml_print_object(obj);
- obj = obj->next;
- }
- GGML_PRINT("%s: --- end ---\n", __func__);
- }
- int64_t ggml_nelements(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
- }
- int ggml_nrows(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
- }
- size_t ggml_nbytes(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
- }
- int ggml_blck_size(enum ggml_type type) {
- return GGML_BLCK_SIZE[type];
- }
- size_t ggml_type_size(enum ggml_type type) {
- return GGML_TYPE_SIZE[type];
- }
- float ggml_type_sizef(enum ggml_type type) {
- return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
- }
- size_t ggml_element_size(const struct ggml_tensor * tensor) {
- return GGML_TYPE_SIZE[tensor->type];
- }
- static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t0->ne[0] == t1->ne[0]) &&
- (t0->ne[2] == t1->ne[2]) &&
- (t0->ne[3] == t1->ne[3]);
- }
- static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
- return tensor->nb[0] > tensor->nb[1];
- }
- static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
- tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t0->ne[0] == t1->ne[0] ) &&
- (t0->ne[1] == t1->ne[1] ) &&
- (t0->ne[2] == t1->ne[2] ) &&
- (t0->ne[3] == t1->ne[3] );
- }
- // check if t1 can be represented as a repeatition of t0
- static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t1->ne[0]%t0->ne[0] == 0) &&
- (t1->ne[1]%t0->ne[1] == 0) &&
- (t1->ne[2]%t0->ne[2] == 0) &&
- (t1->ne[3]%t0->ne[3] == 0);
- }
- static inline int ggml_up32(int n) {
- return (n + 31) & ~31;
- }
- static inline int ggml_up64(int n) {
- return (n + 63) & ~63;
- }
- static inline int ggml_up(int n, int m) {
- // assert m is a power of 2
- GGML_ASSERT((m & (m - 1)) == 0);
- return (n + m - 1) & ~(m - 1);
- }
- // assert that pointer is aligned to GGML_MEM_ALIGN
- #define ggml_assert_aligned(ptr) \
- GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
- ////////////////////////////////////////////////////////////////////////////////
- struct ggml_context * ggml_init(struct ggml_init_params params) {
- // make this function thread safe
- ggml_critical_section_start();
- static bool is_first_call = true;
- if (is_first_call) {
- // initialize time system (required on Windows)
- ggml_time_init();
- // initialize GELU, SILU and EXP F32 tables
- {
- const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
- ggml_fp16_t ii;
- for (int i = 0; i < (1 << 16); ++i) {
- uint16_t ui = i;
- memcpy(&ii, &ui, sizeof(ii));
- const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
- table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
- table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
- table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
- }
- const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
- GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
- }
- // initialize g_state
- {
- const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
- g_state = (struct ggml_state) {
- /*.contexts =*/ { { 0 } },
- };
- for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
- g_state.contexts[i].used = false;
- }
- const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
- GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
- }
- is_first_call = false;
- }
- // find non-used context in g_state
- struct ggml_context * ctx = NULL;
- for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
- if (!g_state.contexts[i].used) {
- g_state.contexts[i].used = true;
- ctx = &g_state.contexts[i].context;
- GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
- break;
- }
- }
- if (ctx == NULL) {
- GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
- ggml_critical_section_end();
- return NULL;
- }
- *ctx = (struct ggml_context) {
- /*.mem_size =*/ params.mem_size,
- /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
- /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
- /*.no_alloc =*/ params.no_alloc,
- /*.n_objects =*/ 0,
- /*.objects_begin =*/ NULL,
- /*.objects_end =*/ NULL,
- /*.scratch =*/ { 0, 0, NULL, },
- /*.scratch_save =*/ { 0, 0, NULL, },
- };
- GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
- ggml_assert_aligned(ctx->mem_buffer);
- GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
- ggml_critical_section_end();
- return ctx;
- }
- void ggml_free(struct ggml_context * ctx) {
- // make this function thread safe
- ggml_critical_section_start();
- bool found = false;
- for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
- if (&g_state.contexts[i].context == ctx) {
- g_state.contexts[i].used = false;
- GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
- __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
- if (ctx->mem_buffer_owned) {
- free(ctx->mem_buffer);
- }
- found = true;
- break;
- }
- }
- if (!found) {
- GGML_PRINT_DEBUG("%s: context not found\n", __func__);
- }
- ggml_critical_section_end();
- }
- size_t ggml_used_mem(const struct ggml_context * ctx) {
- return ctx->objects_end->offs + ctx->objects_end->size;
- }
- size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
- const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
- ctx->scratch = scratch;
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- struct ggml_tensor * ggml_new_tensor_impl(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t* ne,
- void* data) {
- // always insert objects at the end of the context's memory pool
- struct ggml_object * obj_cur = ctx->objects_end;
- const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
- const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
- const size_t cur_end = cur_offs + cur_size;
- size_t size_needed = 0;
- if (data == NULL && !ctx->no_alloc) {
- size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
- for (int i = 1; i < n_dims; i++) {
- size_needed *= ne[i];
- }
- // align to GGML_MEM_ALIGN
- size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
- }
- char * const mem_buffer = ctx->mem_buffer;
- struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
- if (ctx->scratch.data == NULL || data != NULL) {
- size_needed += sizeof(struct ggml_tensor);
- if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
- GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
- __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
- assert(false);
- return NULL;
- }
- *obj_new = (struct ggml_object) {
- .offs = cur_end + GGML_OBJECT_SIZE,
- .size = size_needed,
- .next = NULL,
- };
- } else {
- if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
- GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
- assert(false);
- return NULL;
- }
- if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
- GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
- __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
- assert(false);
- return NULL;
- }
- data = (char * const) ctx->scratch.data + ctx->scratch.offs;
- *obj_new = (struct ggml_object) {
- .offs = cur_end + GGML_OBJECT_SIZE,
- .size = sizeof(struct ggml_tensor),
- .next = NULL,
- };
- //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
- ctx->scratch.offs += size_needed;
- }
- if (obj_cur != NULL) {
- obj_cur->next = obj_new;
- } else {
- // this is the first object in this context
- ctx->objects_begin = obj_new;
- }
- ctx->objects_end = obj_new;
- //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
- struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
- ggml_assert_aligned(result);
- *result = (struct ggml_tensor) {
- /*.type =*/ type,
- /*.n_dims =*/ n_dims,
- /*.ne =*/ { 1, 1, 1, 1 },
- /*.nb =*/ { 0, 0, 0, 0 },
- /*.op =*/ GGML_OP_NONE,
- /*.is_param =*/ false,
- /*.grad =*/ NULL,
- /*.src0 =*/ NULL,
- /*.src1 =*/ NULL,
- /*.opt =*/ { NULL },
- /*.n_tasks =*/ 0,
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
- /*.pad =*/ { 0 },
- };
- // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
- //ggml_assert_aligned(result->data);
- for (int i = 0; i < n_dims; i++) {
- result->ne[i] = ne[i];
- }
- result->nb[0] = GGML_TYPE_SIZE[type];
- result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
- for (int i = 2; i < GGML_MAX_DIMS; i++) {
- result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
- }
- ctx->n_objects++;
- return result;
- }
- struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t * ne) {
- return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
- }
- struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0) {
- return ggml_new_tensor(ctx, type, 1, &ne0);
- }
- struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1) {
- const int64_t ne[2] = { ne0, ne1 };
- return ggml_new_tensor(ctx, type, 2, ne);
- }
- struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- const int64_t ne[3] = { ne0, ne1, ne2 };
- return ggml_new_tensor(ctx, type, 3, ne);
- }
- struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- return ggml_new_tensor(ctx, type, 4, ne);
- }
- struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
- ctx->scratch_save = ctx->scratch;
- ctx->scratch.data = NULL;
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
- ctx->scratch = ctx->scratch_save;
- ggml_set_i32(result, value);
- return result;
- }
- struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
- ctx->scratch_save = ctx->scratch;
- ctx->scratch.data = NULL;
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ctx->scratch = ctx->scratch_save;
- ggml_set_f32(result, value);
- return result;
- }
- struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
- return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
- }
- struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
- memset(tensor->data, 0, ggml_nbytes(tensor));
- return tensor;
- }
- struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
- char * const data = tensor->data;
- switch (tensor->type) {
- case GGML_TYPE_Q4_0:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_Q4_1:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- return tensor;
- }
- struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
- char * const data = tensor->data;
- switch (tensor->type) {
- case GGML_TYPE_Q4_0:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_Q4_1:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- return tensor;
- }
- int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
- switch (tensor->type) {
- case GGML_TYPE_Q4_0:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_Q4_1:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- return ((int8_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- return ((int16_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- return ((int32_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- return ((float *)(tensor->data))[i];
- } break;
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- return 0.0f;
- }
- void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
- switch (tensor->type) {
- case GGML_TYPE_Q4_0:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_Q4_1:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- ((float *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
- switch (tensor->type) {
- case GGML_TYPE_Q4_0:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_Q4_1:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- return ((int8_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- return ((int16_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- return ((int32_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- return ((float *)(tensor->data))[i];
- } break;
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- return 0.0f;
- }
- void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
- switch (tensor->type) {
- case GGML_TYPE_Q4_0:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_Q4_1:
- {
- GGML_ASSERT(false);
- } break;
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- ((float *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- void * ggml_get_data(const struct ggml_tensor * tensor) {
- return tensor->data;
- }
- float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
- assert(tensor->type == GGML_TYPE_F32);
- return (float *)(tensor->data);
- }
- struct ggml_tensor * ggml_view_tensor(
- struct ggml_context * ctx,
- const struct ggml_tensor * src) {
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
- result->nb[0] = src->nb[0];
- result->nb[1] = src->nb[1];
- result->nb[2] = src->nb[2];
- result->nb[3] = src->nb[3];
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // ggml_dup
- struct ggml_tensor * ggml_dup_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_DUP;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_dup_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, true);
- }
- // ggml_add
- struct ggml_tensor * ggml_add_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ADD;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_add_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, true);
- }
- // ggml_sub
- struct ggml_tensor * ggml_sub_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SUB;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_sub_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, true);
- }
- // ggml_mul
- struct ggml_tensor * ggml_mul_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- if (inplace) {
- GGML_ASSERT(is_node == false);
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_MUL;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_mul_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, true);
- }
- // ggml_div
- struct ggml_tensor * ggml_div_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- if (inplace) {
- GGML_ASSERT(is_node == false);
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_DIV;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_div_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, true);
- }
- // ggml_sqr
- struct ggml_tensor * ggml_sqr_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SQR;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sqr_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, true);
- }
- // ggml_sqrt
- struct ggml_tensor * ggml_sqrt_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SQRT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sqrt_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, true);
- }
- // ggml_sum
- struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
- result->op = GGML_OP_SUM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- // ggml_mean
- struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement
- is_node = true;
- }
- int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
- result->op = GGML_OP_MEAN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- // ggml_repeat
- struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_repeat(a, b));
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- if (ggml_are_same_shape(a, b) && !is_node) {
- return a;
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
- result->op = GGML_OP_REPEAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_abs
- struct ggml_tensor * ggml_abs_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ABS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_abs_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_abs_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_abs_impl(ctx, a, true);
- }
- // ggml_sgn
- struct ggml_tensor * ggml_sgn_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SGN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sgn_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sgn_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sgn_impl(ctx, a, true);
- }
- // ggml_neg
- struct ggml_tensor * ggml_neg_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_NEG;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_neg_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_neg_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_neg_impl(ctx, a, true);
- }
- // ggml_step
- struct ggml_tensor * ggml_step_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_STEP;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_step_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_step_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_step_impl(ctx, a, true);
- }
- // ggml_relu
- struct ggml_tensor * ggml_relu_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_RELU;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_relu_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_relu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_relu_impl(ctx, a, true);
- }
- // ggml_gelu
- struct ggml_tensor * ggml_gelu_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_GELU;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_gelu_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_gelu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_gelu_impl(ctx, a, true);
- }
- // ggml_silu
- struct ggml_tensor * ggml_silu_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SILU;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_silu_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_silu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_silu_impl(ctx, a, true);
- }
- // ggml_norm
- struct ggml_tensor * ggml_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL; // TODO: maybe store epsilon here?
- return result;
- }
- struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_norm_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_norm_impl(ctx, a, true);
- }
- struct ggml_tensor * ggml_rms_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_RMS_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL; // TODO: maybe store epsilon here?
- return result;
- }
- struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_rms_norm_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_rms_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_rms_norm_impl(ctx, a, true);
- }
- // ggml_mul_mat
- struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_mul_mat(a, b));
- GGML_ASSERT(!ggml_is_transposed(a));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
- result->op = GGML_OP_MUL_MAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_scale
- struct ggml_tensor * ggml_scale_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_is_scalar(b));
- GGML_ASSERT(ggml_is_padded_1d(a));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // TODO: when implement backward, fix this:
- //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- result->op = GGML_OP_SCALE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_scale_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_scale_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_scale_impl(ctx, a, b, true);
- }
- // ggml_cpy
- struct ggml_tensor * ggml_cpy_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // make a view of the destination
- struct ggml_tensor * result = ggml_view_tensor(ctx, b);
- result->op = GGML_OP_CPY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_cpy_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_cpy_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_cpy_impl(ctx, a, b, true);
- }
- // ggml_cont
- struct ggml_tensor * ggml_cont_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_CONT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_cont(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_cont_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_cont_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_cont_impl(ctx, a, true);
- }
- // ggml_reshape
- struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_is_contiguous(b));
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[2] = { ne0, ne1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[3] = { ne0, ne1, ne2 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- // ggml_view_1d
- struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- size_t offset) {
- if (a->grad) {
- GGML_ASSERT(false); // gradient propagation is not supported
- }
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
- result->op = GGML_OP_VIEW;
- result->grad = NULL;
- result->src0 = a;
- result->src1 = NULL; // TODO: maybe store the offset here?
- return result;
- }
- // ggml_view_2d
- struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- size_t nb1,
- size_t offset) {
- if (a->grad) {
- GGML_ASSERT(false); // gradient propagation is not supported
- }
- const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
- result->nb[1] = nb1;
- result->nb[2] = result->nb[1]*ne1;
- result->nb[3] = result->nb[2];
- result->op = GGML_OP_VIEW;
- result->grad = NULL;
- result->src0 = a;
- result->src1 = NULL; // TODO: maybe store the offset here?
- return result;
- }
- // ggml_view_3d
- struct ggml_tensor * ggml_view_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- size_t nb1,
- size_t nb2,
- size_t offset) {
- if (a->grad) {
- GGML_ASSERT(false); // gradient propagation is not supported
- }
- const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
- result->nb[1] = nb1;
- result->nb[2] = nb2;
- result->nb[3] = result->nb[2]*ne2;
- result->op = GGML_OP_VIEW;
- result->grad = NULL;
- result->src0 = a;
- result->src1 = NULL; // TODO: maybe store the offset here?
- return result;
- }
- // ggml_permute
- struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3) {
- GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
- GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
- GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
- GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
- GGML_ASSERT(axis0 != axis1);
- GGML_ASSERT(axis0 != axis2);
- GGML_ASSERT(axis0 != axis3);
- GGML_ASSERT(axis1 != axis2);
- GGML_ASSERT(axis1 != axis3);
- GGML_ASSERT(axis2 != axis3);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- int ne[GGML_MAX_DIMS];
- int nb[GGML_MAX_DIMS];
- ne[axis0] = a->ne[0];
- ne[axis1] = a->ne[1];
- ne[axis2] = a->ne[2];
- ne[axis3] = a->ne[3];
- nb[axis0] = a->nb[0];
- nb[axis1] = a->nb[1];
- nb[axis2] = a->nb[2];
- nb[axis3] = a->nb[3];
- result->ne[0] = ne[0];
- result->ne[1] = ne[1];
- result->ne[2] = ne[2];
- result->ne[3] = ne[3];
- result->nb[0] = nb[0];
- result->nb[1] = nb[1];
- result->nb[2] = nb[2];
- result->nb[3] = nb[3];
- result->op = GGML_OP_PERMUTE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL; // TODO: maybe store the permutation here?
- return result;
- }
- // ggml_transpose
- struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- result->ne[0] = a->ne[1];
- result->ne[1] = a->ne[0];
- result->nb[0] = a->nb[1];
- result->nb[1] = a->nb[0];
- result->op = GGML_OP_TRANSPOSE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- // ggml_get_rows
- struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // TODO: implement non F32 return
- //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
- struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
- result->op = GGML_OP_GET_ROWS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_diag_mask_inf
- struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // TODO: when implement backward, fix this:
- //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
- result->op = GGML_OP_DIAG_MASK_INF;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_soft_max
- struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // TODO: when implement backward, fix this:
- //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- result->op = GGML_OP_SOFT_MAX;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = NULL;
- return result;
- }
- // ggml_rope
- struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode) {
- GGML_ASSERT(n_past >= 0);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // TODO: when implement backward, fix this:
- //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
- ((int32_t *) b->data)[0] = n_past;
- ((int32_t *) b->data)[1] = n_dims;
- ((int32_t *) b->data)[2] = mode;
- result->op = GGML_OP_ROPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_conv_1d_1s
- struct ggml_tensor * ggml_conv_1d_1s(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_matrix(b));
- GGML_ASSERT(a->ne[1] == b->ne[1]);
- GGML_ASSERT(a->ne[3] == 1);
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
- result->op = GGML_OP_CONV_1D_1S;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_conv_1d_2s
- struct ggml_tensor * ggml_conv_1d_2s(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_matrix(b));
- GGML_ASSERT(a->ne[1] == b->ne[1]);
- GGML_ASSERT(a->ne[3] == 1);
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
- result->op = GGML_OP_CONV_1D_2S;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b;
- return result;
- }
- // ggml_flash_attn
- struct ggml_tensor * ggml_flash_attn(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- bool masked) {
- GGML_ASSERT(ggml_can_mul_mat(k, q));
- // TODO: check if vT can be multiplied by (k*qT)
- bool is_node = false;
- if (q->grad || k->grad || v->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
- result->op = GGML_OP_FLASH_ATTN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = q;
- result->src1 = k;
- result->opt[0] = v;
- result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
- return result;
- }
- // ggml_flash_ff
- struct ggml_tensor * ggml_flash_ff(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b0,
- struct ggml_tensor * b1,
- struct ggml_tensor * c0,
- struct ggml_tensor * c1) {
- GGML_ASSERT(ggml_can_mul_mat(b0, a));
- // TODO: more checks
- bool is_node = false;
- if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
- result->op = GGML_OP_FLASH_FF;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src0 = a;
- result->src1 = b0;
- result->opt[0] = b1;
- result->opt[1] = c0;
- result->opt[2] = c1;
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_set_param(
- struct ggml_context * ctx,
- struct ggml_tensor * tensor) {
- tensor->is_param = true;
- GGML_ASSERT(tensor->grad == NULL);
- tensor->grad = ggml_dup_tensor(ctx, tensor);
- }
- // ggml_compute_forward_dup
- static void ggml_compute_forward_dup_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
- return;
- }
- if (src0->type == dst->type &&
- src0->ne[0] == dst->ne[0] &&
- src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
- if (ggml_is_contiguous(dst)) {
- if (src0->nb[0] == sizeof(ggml_fp16_t)) {
- if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- const size_t rs = ne00*nb00;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- for (int i01 = 0; i01 < ne01; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- char * dst_ptr = (char *) dst->data + id*rs;
- memcpy(dst_ptr, src0_ptr, rs);
- id++;
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
- id++;
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
- id++;
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
- if (++i10 == ne00) {
- i10 = 0;
- if (++i11 == ne01) {
- i11 = 0;
- if (++i12 == ne02) {
- i12 = 0;
- if (++i13 == ne03) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
- if (++i10 == ne00) {
- i10 = 0;
- if (++i11 == ne01) {
- i11 = 0;
- if (++i12 == ne02) {
- i12 = 0;
- if (++i13 == ne03) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- static void ggml_compute_forward_dup_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
- return;
- }
- if (src0->type == dst->type &&
- src0->ne[0] == dst->ne[0] &&
- src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- if (ggml_is_contiguous(dst)) {
- // TODO: simplify
- if (src0->nb[0] == sizeof(float)) {
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- const size_t rs = ne00*nb00;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- for (int i01 = 0; i01 < ne01; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- char * dst_ptr = (char *) dst->data + id*rs;
- memcpy(dst_ptr, src0_ptr, rs);
- id++;
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
- id++;
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
- id++;
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, sizeof(float));
- if (++i10 == dst->ne[0]) {
- i10 = 0;
- if (++i11 == dst->ne[1]) {
- i11 = 0;
- if (++i12 == dst->ne[2]) {
- i12 = 0;
- if (++i13 == dst->ne[3]) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
- if (++i10 == dst->ne[0]) {
- i10 = 0;
- if (++i11 == dst->ne[1]) {
- i11 = 0;
- if (++i12 == dst->ne[2]) {
- i12 = 0;
- if (++i13 == dst->ne[3]) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- static void ggml_compute_forward_dup(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_dup_f16(params, src0, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_dup_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_add
- static void ggml_compute_forward_add_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb10 = src1->nb[0];
- const size_t nb11 = src1->nb[1];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- if (nb10 == sizeof(float)) {
- for (int j = ith; j < n; j += nth) {
- #ifdef GGML_USE_ACCELERATE
- vDSP_vadd(
- (float *) ((char *) src0->data + j*nb01), 1,
- (float *) ((char *) src1->data + j*nb11), 1,
- (float *) ((char *) dst->data + j*nb1), 1, nc);
- #else
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + j*nb1),
- (float *) ((char *) src0->data + j*nb01),
- (float *) ((char *) src1->data + j*nb11));
- #endif
- }
- } else {
- // src1 is not contiguous
- for (int j = ith; j < n; j += nth) {
- float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
- float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
- for (int i = 0; i < nc; i++) {
- float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
- dst_ptr[i] = src0_ptr[i] + *src1_ptr;
- }
- }
- }
- }
- static void ggml_compute_forward_add(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sub
- static void ggml_compute_forward_sub_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- assert(src1->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sub_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])),
- (float *) ((char *) src1->data + i*(src1->nb[1])));
- }
- }
- static void ggml_compute_forward_sub(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sub_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mul
- static void ggml_compute_forward_mul_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- assert(src1->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_mul_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])),
- (float *) ((char *) src1->data + i*(src1->nb[1])));
- }
- }
- static void ggml_compute_forward_mul(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mul_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_div
- static void ggml_compute_forward_div_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- assert(src1->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_div_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])),
- (float *) ((char *) src1->data + i*(src1->nb[1])));
- }
- }
- static void ggml_compute_forward_div(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_div_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sqr
- static void ggml_compute_forward_sqr_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sqr_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sqr(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sqr_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sqrt
- static void ggml_compute_forward_sqrt_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sqrt_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sqrt(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sqrt_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sum
- static void ggml_compute_forward_sum_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_is_scalar(dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(ggml_is_scalar(dst));
- assert(src0->nb[0] == sizeof(float));
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32(ne00,
- (float *) (dst->data),
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- }
- }
- }
- }
- static void ggml_compute_forward_sum(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mean
- static void ggml_compute_forward_mean_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(src0->nb[0] == sizeof(float));
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- assert(ne0 == 1);
- assert(ne1 == ne01);
- assert(ne2 == ne02);
- assert(ne3 == ne03);
- UNUSED(ne0);
- UNUSED(ne1);
- UNUSED(ne2);
- UNUSED(ne3);
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32(ne00,
- (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
- }
- }
- }
- }
- static void ggml_compute_forward_mean(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mean_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_repeat
- static void ggml_compute_forward_repeat_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_can_repeat(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: implement support for rank > 2 tensors
- assert(src0->ne[2] == 1);
- assert(src0->ne[3] == 1);
- assert( dst->ne[2] == 1);
- assert( dst->ne[3] == 1);
- const int nc = dst->ne[0];
- const int nr = dst->ne[1];
- const int nc0 = src0->ne[0];
- const int nr0 = src0->ne[1];
- const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
- // TODO: support for transposed / permuted tensors
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- // TODO: maybe this is not optimal?
- for (int i = 0; i < nrr; i++) {
- for (int j = 0; j < ncr; j++) {
- for (int k = 0; k < nr0; k++) {
- ggml_vec_cpy_f32(nc0,
- (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
- (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
- }
- }
- }
- }
- static void ggml_compute_forward_repeat(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_repeat_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_abs
- static void ggml_compute_forward_abs_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_abs_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_abs(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_abs_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sgn
- static void ggml_compute_forward_sgn_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sgn_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sgn(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sgn_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_neg
- static void ggml_compute_forward_neg_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_neg_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_neg(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_neg_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_step
- static void ggml_compute_forward_step_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_step_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_step(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_step_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_relu
- static void ggml_compute_forward_relu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_relu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_relu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_relu_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_gelu
- static void ggml_compute_forward_gelu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- //printf("XXXXXXXX gelu\n");
- }
- // ggml_compute_forward_silu
- static void ggml_compute_forward_silu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_silu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_norm
- static void ggml_compute_forward_norm_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- const float eps = 1e-5f; // TODO: make this a parameter
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)x[i00];
- }
- float mean = sum/ne00;
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- ggml_float sum2 = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sum2 += (ggml_float)(v*v);
- }
- float variance = sum2/ne00;
- const float scale = 1.0f/sqrtf(variance + eps);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- static void ggml_compute_forward_norm(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_norm_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_compute_forward_rms_norm_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
- const size_t nb1 = dst->nb[1];
- const size_t nb2 = dst->nb[2];
- const size_t nb3 = dst->nb[3];
- const float eps = 1e-6f; // TODO: make this a parameter
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)(x[i00] * x[i00]);
- }
- float mean = sum/ne00;
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- memcpy(y, x, ne00 * sizeof(float));
- // for (int i00 = 0; i00 < ne00; i00++) {
- // y[i00] = x[i00];
- // }
- const float scale = 1.0f/sqrtf(mean + eps);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- static void ggml_compute_forward_rms_norm(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mul_mat
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- // helper function to determine if it is better to use BLAS or not
- // for large matrices, BLAS is faster
- static bool ggml_compute_forward_mul_mat_use_blas(
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- //const int64_t ne00 = src0->ne[0];
- //const int64_t ne01 = src0->ne[1];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- if (ggml_is_contiguous(src0) &&
- ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
- /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
- return true;
- }
- return false;
- }
- #endif
- static void ggml_compute_forward_mul_mat_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- const int64_t ne10 = src1->ne[0];
- #endif
- const int64_t ne11 = src1->ne[1];
- #ifndef NDEBUG
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- const int nb00 = src0->nb[0];
- #endif
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- const int nb03 = src0->nb[3];
- #ifndef NDEBUG
- const int nb10 = src1->nb[0];
- #endif
- const int nb11 = src1->nb[1];
- const int nb12 = src1->nb[2];
- const int nb13 = src1->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- assert(ne02 == ne12);
- assert(ne03 == ne13);
- assert(ne2 == ne12);
- assert(ne3 == ne13);
- // we don't support permuted src0 or src1
- assert(nb00 == sizeof(float));
- assert(nb10 == sizeof(float));
- // dst cannot be transposed or permuted
- assert(nb0 == sizeof(float));
- assert(nb0 <= nb1);
- assert(nb1 <= nb2);
- assert(nb2 <= nb3);
- assert(ne0 == ne01);
- assert(ne1 == ne11);
- assert(ne2 == ne02);
- assert(ne3 == ne03);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
- if (params->ith != 0) {
- return;
- }
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
- const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- // zT = y * xT
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne11, ne01, ne10,
- 1.0f, y, ne10,
- x, ne10,
- 0.0f, d, ne01);
- }
- }
- //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
- return;
- }
- #endif
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by src0 rows using ggml_vec_dot_f32
- // total rows in src0
- const int nr = ne01*ne02*ne03;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
- for (int64_t ic = 0; ic < ne11; ++ic) {
- // src1 indices
- const int i13 = i03;
- const int i12 = i02;
- const int i11 = ic;
- // dst indices
- const int i0 = i01;
- const int i1 = i11;
- const int i2 = i02;
- const int i3 = i03;
- ggml_vec_dot_f32(ne00,
- (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
- (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
- }
- }
- //int64_t t1 = ggml_perf_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
- }
- static void ggml_compute_forward_mul_mat_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- //const int64_t ne = ne0*ne1*ne2*ne3;
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- const int nb12 = src1->nb[2];
- const int nb13 = src1->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne03 == ne13);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- // TODO: we don't support permuted src0
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->ith != 0) {
- return;
- }
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- float * const wdata = params->wdata;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- {
- size_t id = 0;
- for (int64_t i01 = 0; i01 < ne01; ++i01) {
- for (int64_t i00 = 0; i00 < ne00; ++i00) {
- wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
- }
- }
- }
- const float * x = wdata;
- const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- // zT = y * xT
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne11, ne01, ne10,
- 1.0f, y, ne10,
- x, ne10,
- 0.0f, d, ne01);
- }
- }
- /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
- return;
- }
- #endif
- if (params->type == GGML_TASK_INIT) {
- ggml_fp16_t * const wdata = params->wdata;
- size_t id = 0;
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- for (int64_t i10 = 0; i10 < ne10; ++i10) {
- wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
- }
- }
- }
- }
- GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // fp16 -> half the size, so divide by 2
- // TODO: do not support transposed src1
- assert(nb10/2 == sizeof(ggml_fp16_t));
- // parallelize by src0 rows using ggml_vec_dot_f16
- // total rows in src0
- const int nr = ne01*ne02*ne03;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- ggml_fp16_t * wdata = params->wdata;
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int i13 = i03;
- const int i12 = i02;
- const int i0 = i01;
- const int i2 = i02;
- const int i3 = i03;
- ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
- ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
- float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
- for (int64_t ic = 0; ic < ne11; ++ic) {
- ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
- }
- }
- //int64_t t1 = ggml_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
- }
- static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
- [GGML_TYPE_Q4_0] = {
- .dequantize_row_q = dequantize_row_q4_0,
- .quantize_row_q = quantize_row_q4_0,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
- .vec_dot_q = ggml_vec_dot_q4_0,
- },
- [GGML_TYPE_Q4_1] = {
- .dequantize_row_q = dequantize_row_q4_1,
- .quantize_row_q = quantize_row_q4_1,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
- .vec_dot_q = ggml_vec_dot_q4_1,
- },
- };
- // For internal test use
- quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
- GGML_ASSERT(i < GGML_TYPE_COUNT);
- return quantize_fns[i];
- }
- static void ggml_compute_forward_mul_mat_q_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t ne3 = dst->ne[3];
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- const int nb12 = src1->nb[2];
- const int nb13 = src1->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne03 == ne13);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- const enum ggml_type type = src0->type;
- quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
- vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
- GGML_ASSERT(nb10 == sizeof(float));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
- if (params->ith != 0) {
- return;
- }
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- float * const wdata = params->wdata;
- dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- {
- size_t id = 0;
- for (int64_t i01 = 0; i01 < ne01; ++i01) {
- dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
- id += ne00;
- }
- }
- const float * x = wdata;
- const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- // zT = y * xT
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne11, ne01, ne10,
- 1.0f, y, ne10,
- x, ne10,
- 0.0f, d, ne01);
- }
- }
- //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
- return;
- }
- #endif
- if (params->type == GGML_TASK_INIT) {
- char * wdata = params->wdata;
- const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
- wdata += row_size;
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by src0 rows using ggml_vec_dot_q
- // total rows in src0
- const int nr = ne01*ne02*ne03;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- void * wdata = params->wdata;
- const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int i13 = i03;
- const int i12 = i02;
- const int i0 = i01;
- const int i2 = i02;
- const int i3 = i03;
- void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
- char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
- float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
- assert(ne00 % 32 == 0);
- for (int64_t ic = 0; ic < ne11; ++ic) {
- vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
- }
- }
- //int64_t t1 = ggml_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
- }
- static void ggml_compute_forward_mul_mat(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- {
- ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- #if 0
- if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
- static int first = 8;
- printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
- printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
- printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- if (first) {
- --first;
- } else {
- for (int k = 0; k < dst->ne[1]; ++k) {
- for (int j = 0; j < dst->ne[0]/16; ++j) {
- for (int i = 0; i < 16; ++i) {
- printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- }
- printf("\n");
- }
- printf("\n");
- }
- printf("\n");
- exit(0);
- }
- } else {
- printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
- printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
- printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- }
- #endif
- }
- // ggml_compute_forward_scale
- static void ggml_compute_forward_scale_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scale factor
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
- }
- }
- static void ggml_compute_forward_scale(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_scale_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_cpy
- static void ggml_compute_forward_cpy(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, src0, dst);
- }
- // ggml_compute_forward_cont
- static void ggml_compute_forward_cont(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, src0, dst);
- }
- // ggml_compute_forward_reshape
- static void ggml_compute_forward_reshape(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- UNUSED(dst);
- }
- // ggml_compute_forward_view
- static void ggml_compute_forward_view(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_permute
- static void ggml_compute_forward_permute(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_transpose
- static void ggml_compute_forward_transpose(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_get_rows
- static void ggml_compute_forward_get_rows_q(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- const enum ggml_type type = src0->type;
- dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
- assert( dst->ne[0] == nc);
- assert( dst->ne[1] == nr);
- assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- dequantize_row_q(
- (const void *) ((char *) src0->data + r*src0->nb[1]),
- (float *) ((char *) dst->data + i*dst->nb[1]), nc);
- }
- }
- static void ggml_compute_forward_get_rows_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- assert( dst->ne[0] == nc);
- assert( dst->ne[1] == nr);
- assert(src0->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- for (int j = 0; j < nc; ++j) {
- ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
- ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
- }
- }
- }
- static void ggml_compute_forward_get_rows_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- assert( dst->ne[0] == nc);
- assert( dst->ne[1] == nr);
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i*dst->nb[1]),
- (float *) ((char *) src0->data + r*src0->nb[1]));
- }
- }
- static void ggml_compute_forward_get_rows(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- {
- ggml_compute_forward_get_rows_q(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
- }
- // ggml_compute_forward_diag_mask_inf
- static void ggml_compute_forward_diag_mask_inf_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 1);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n_past = ((int32_t *) src1->data)[0];
- // TODO: handle transposed/permuted matrices
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const int nr = src0->ne[1];
- const int nz = n/nr;
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int k = 0; k < nz; k++) {
- for (int j = 0; j < nr; j++) {
- for (int i = n_past; i < nc; i++) {
- if (i > n_past + j) {
- *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_diag_mask_inf(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_soft_max
- static void ggml_compute_forward_soft_max_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(p[i]));
- }
- #endif
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, p);
- ggml_float sum = 0.0;
- uint16_t scvt;
- for (int i = 0; i < nc; i++) {
- if (p[i] == -INFINITY) {
- p[i] = 0.0f;
- } else {
- //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
- ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
- memcpy(&scvt, &s, sizeof(scvt));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
- sum += (ggml_float)val;
- p[i] = val;
- }
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(nc, p, sum);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(p[i]));
- assert(!isinf(p[i]));
- }
- #endif
- }
- }
- static void ggml_compute_forward_soft_max(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_F16:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_rope
- static void ggml_compute_forward_rope_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 3);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- //const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
- const int64_t ne3 = src0->ne[3];
- const int nb0 = src0->nb[0];
- const int nb1 = src0->nb[1];
- const int nb2 = src0->nb[2];
- const int nb3 = src0->nb[3];
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- assert(nb0 == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
- const int p = (mode == 0 ? n_past + i2 : i2);
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- for (int i0 = 0; i0 < n_dims; i0 += 2) {
- const float theta = powf(10000.0, ((float)-i0)/n_dims);
- const float cos_theta = cosf(p*theta);
- const float sin_theta = sinf(p*theta);
- const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = src[0];
- const float x1 = src[1];
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[1] = x0*sin_theta + x1*cos_theta;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 3);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- //const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
- const int64_t ne3 = src0->ne[3];
- const int nb0 = src0->nb[0];
- const int nb1 = src0->nb[1];
- const int nb2 = src0->nb[2];
- const int nb3 = src0->nb[3];
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- assert(nb0 == sizeof(ggml_fp16_t));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
- const int p = (mode == 0 ? n_past + i2 : i2);
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- for (int i0 = 0; i0 < n_dims; i0 += 2) {
- const float theta = powf(10000.0, ((float)-i0)/n_dims);
- const float cos_theta = cosf(p*theta);
- const float sin_theta = sinf(p*theta);
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = ggml_fp16_to_fp32(src[0]);
- const float x1 = ggml_fp16_to_fp32(src[1]);
- dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
- dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_f16(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_conv_1d_1s
- static void ggml_compute_forward_conv_1d_1s_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- //const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- //const int64_t ne12 = src1->ne[2];
- //const int64_t ne13 = src1->ne[3];
- //const int64_t ne0 = dst->ne[0];
- //const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- //const int64_t ne = ne0*ne1*ne2*ne3;
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- //const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- //const int nb12 = src1->nb[2];
- //const int nb13 = src1->nb[3];
- //const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- //const int nb2 = dst->nb[2];
- //const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- ggml_fp16_t * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; ++i0) {
- dst_data[i0] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f16(ew0, &v,
- (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_1s_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- //const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- //const int64_t ne12 = src1->ne[2];
- //const int64_t ne13 = src1->ne[3];
- //const int64_t ne0 = dst->ne[0];
- //const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- //const int64_t ne = ne0*ne1*ne2*ne3;
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- //const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- //const int nb12 = src1->nb[2];
- //const int nb13 = src1->nb[3];
- //const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- //const int nb2 = dst->nb[2];
- //const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- float * const wdata = (float *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- float * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = src[i10];
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; ++i0) {
- dst_data[i0] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f32(ew0, &v,
- (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_1s(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_conv_1d_2s
- static void ggml_compute_forward_conv_1d_2s_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- //const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- //const int64_t ne12 = src1->ne[2];
- //const int64_t ne13 = src1->ne[3];
- //const int64_t ne0 = dst->ne[0];
- //const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- //const int64_t ne = ne0*ne1*ne2*ne3;
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- //const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- //const int nb12 = src1->nb[2];
- //const int nb13 = src1->nb[3];
- //const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- //const int nb2 = dst->nb[2];
- //const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- ggml_fp16_t * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
- dst_data[i0/2] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f16(ew0, &v,
- (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0/2] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_2s_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- //const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- //const int64_t ne12 = src1->ne[2];
- //const int64_t ne13 = src1->ne[3];
- //const int64_t ne0 = dst->ne[0];
- //const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- //const int64_t ne = ne0*ne1*ne2*ne3;
- const int nb00 = src0->nb[0];
- const int nb01 = src0->nb[1];
- const int nb02 = src0->nb[2];
- //const int nb03 = src0->nb[3];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- //const int nb12 = src1->nb[2];
- //const int nb13 = src1->nb[3];
- //const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- //const int nb2 = dst->nb[2];
- //const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- float * const wdata = (float *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- float * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = src[i10];
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
- dst_data[i0/2] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f32(ew0, &v,
- (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0/2] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_2s(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_flash_attn
- static void ggml_compute_forward_flash_attn_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t neq0 = q->ne[0];
- const int64_t neq1 = q->ne[1];
- const int64_t neq2 = q->ne[2];
- const int64_t neq3 = q->ne[3];
- const int64_t nek0 = k->ne[0];
- const int64_t nek1 = k->ne[1];
- //const int64_t nek2 = k->ne[2];
- //const int64_t nek3 = k->ne[3];
- //const int64_t nev0 = v->ne[0];
- const int64_t nev1 = v->ne[1];
- //const int64_t nev2 = v->ne[2];
- //const int64_t nev3 = v->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- const int nbk0 = k->nb[0];
- const int nbk1 = k->nb[1];
- const int nbk2 = k->nb[2];
- const int nbk3 = k->nb[3];
- const int nbq0 = q->nb[0];
- const int nbq1 = q->nb[1];
- const int nbq2 = q->nb[2];
- const int nbq3 = q->nb[3];
- const int nbv0 = v->nb[0];
- const int nbv1 = v->nb[1];
- const int nbv2 = v->nb[2];
- const int nbv3 = v->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- GGML_ASSERT(ne0 == D);
- GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
- GGML_ASSERT(nbq0 == sizeof(float));
- GGML_ASSERT(nbk0 == sizeof(float));
- GGML_ASSERT(nbv0 == sizeof(float));
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by q rows using ggml_vec_dot_f32
- // total rows in q
- const int nr = neq1*neq2*neq3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float scale = 1.0f/sqrtf(D);
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2*neq1);
- const int iq2 = (ir - iq3*neq2*neq1)/neq1;
- const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
- float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
- for (int64_t ic = 0; ic < nek1; ++ic) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f32(neq0,
- S + i1,
- (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
- }
- // scale
- ggml_vec_scale_f32(nek1, S, scale);
- if (masked) {
- for (int64_t i = P; i < M; i++) {
- if (i > P + iq1) {
- S[i] = -INFINITY;
- }
- }
- }
- // softmax
- {
- float max = -INFINITY;
- ggml_vec_max_f32(M, &max, S);
- ggml_float sum = 0.0;
- {
- #ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(S, 1, &max, S, 1, Mup);
- vvexpf(S, S, &Mup);
- ggml_vec_sum_f32(Mup, &sum, S);
- #else
- uint16_t scvt[GGML_SOFT_MAX_UNROLL];
- ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
- for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
- float * SS = S + i;
- for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
- if (SS[j] == -INFINITY) {
- SS[j] = 0.0f;
- } else {
- ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
- memcpy(&scvt[j], &s, sizeof(uint16_t));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
- sump[j] += (ggml_float)val;
- SS[j] = val;
- }
- }
- }
- for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
- sum += sump[i];
- }
- #endif
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(M, S, sum);
- #ifndef NDEBUG
- for (int i = 0; i < M; ++i) {
- assert(!isnan(S[i]));
- assert(!isinf(S[i]));
- }
- #endif
- }
- for (int64_t ic = 0; ic < nev1; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- ggml_vec_dot_f32(nek1,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
- S);
- }
- }
- }
- static void ggml_compute_forward_flash_attn_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t neq0 = q->ne[0];
- const int64_t neq1 = q->ne[1];
- const int64_t neq2 = q->ne[2];
- const int64_t neq3 = q->ne[3];
- const int64_t nek0 = k->ne[0];
- const int64_t nek1 = k->ne[1];
- //const int64_t nek2 = k->ne[2];
- //const int64_t nek3 = k->ne[3];
- //const int64_t nev0 = v->ne[0];
- const int64_t nev1 = v->ne[1];
- //const int64_t nev2 = v->ne[2];
- //const int64_t nev3 = v->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- //const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- const int nbk0 = k->nb[0];
- const int nbk1 = k->nb[1];
- const int nbk2 = k->nb[2];
- const int nbk3 = k->nb[3];
- const int nbq0 = q->nb[0];
- const int nbq1 = q->nb[1];
- const int nbq2 = q->nb[2];
- const int nbq3 = q->nb[3];
- const int nbv0 = v->nb[0];
- const int nbv1 = v->nb[1];
- const int nbv2 = v->nb[2];
- const int nbv3 = v->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- GGML_ASSERT(ne0 == D);
- GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
- GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by q rows using ggml_vec_dot_f32
- // total rows in q
- const int nr = neq1*neq2*neq3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float scale = 1.0f/sqrtf(D);
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2*neq1);
- const int iq2 = (ir - iq3*neq2*neq1)/neq1;
- const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
- float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
- if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
- for (int64_t ic = 0; ic < nek1; ++ic) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f16(neq0,
- S + i1,
- (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
- (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
- }
- } else {
- for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f16_unroll(neq0, nbk1,
- S + i1,
- ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
- (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
- }
- }
- // scale
- ggml_vec_scale_f32(nek1, S, scale);
- if (masked) {
- for (int64_t i = P; i < M; i++) {
- if (i > P + iq1) {
- S[i] = -INFINITY;
- }
- }
- }
- // softmax
- {
- float max = -INFINITY;
- ggml_vec_max_f32(M, &max, S);
- ggml_float sum = 0.0;
- {
- #ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(S, 1, &max, S, 1, Mup);
- vvexpf(S, S, &Mup);
- ggml_vec_sum_f32(Mup, &sum, S);
- #else
- uint16_t scvt[GGML_SOFT_MAX_UNROLL];
- ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
- for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
- float * SS = S + i;
- for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
- if (SS[j] == -INFINITY) {
- SS[j] = 0.0f;
- } else {
- ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
- memcpy(&scvt[j], &s, sizeof(uint16_t));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
- sump[j] += (ggml_float)val;
- SS[j] = val;
- }
- }
- }
- for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
- sum += sump[i];
- }
- #endif
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(M, S, sum);
- #ifndef NDEBUG
- for (int i = 0; i < M; ++i) {
- assert(!isnan(S[i]));
- assert(!isinf(S[i]));
- }
- #endif
- }
- ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
- for (int64_t i = 0; i < M; i++) {
- S16[i] = GGML_FP32_TO_FP16(S[i]);
- }
- if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
- for (int64_t ic = 0; ic < nev1; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- ggml_vec_dot_f16(nek1,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
- S16);
- }
- } else {
- for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- ggml_vec_dot_f16_unroll(nek1, nbv1,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
- S16);
- }
- }
- }
- }
- static void ggml_compute_forward_flash_attn(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- switch (q->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_flash_ff
- static void ggml_compute_forward_flash_ff_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a, // F16
- const struct ggml_tensor * b0, // F16 fc_w
- const struct ggml_tensor * b1, // F32 fc_b
- const struct ggml_tensor * c0, // F16 proj_w
- const struct ggml_tensor * c1, // F32 proj_b
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- const int64_t nea0 = a->ne[0];
- const int64_t nea1 = a->ne[1];
- const int64_t nea2 = a->ne[2];
- const int64_t nea3 = a->ne[3];
- const int64_t neb00 = b0->ne[0];
- const int64_t neb01 = b0->ne[1];
- //const int64_t neb02 = b0->ne[2];
- //const int64_t neb03 = b0->ne[3];
- const int64_t neb10 = b1->ne[0];
- const int64_t neb11 = b1->ne[1];
- //const int64_t neb12 = b1->ne[2];
- //const int64_t neb13 = b1->ne[3];
- const int64_t nec00 = c0->ne[0];
- const int64_t nec01 = c0->ne[1];
- //const int64_t nec02 = c0->ne[2];
- //const int64_t nec03 = c0->ne[3];
- const int64_t nec10 = c1->ne[0];
- const int64_t nec11 = c1->ne[1];
- //const int64_t nec12 = c1->ne[2];
- //const int64_t nec13 = c1->ne[3];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t ne2 = dst->ne[2];
- //const int64_t ne3 = dst->ne[3];
- const int nba0 = a->nb[0];
- const int nba1 = a->nb[1];
- const int nba2 = a->nb[2];
- const int nba3 = a->nb[3];
- const int nbb00 = b0->nb[0];
- const int nbb01 = b0->nb[1];
- const int nbb02 = b0->nb[2];
- const int nbb03 = b0->nb[3];
- const int nbb10 = b1->nb[0];
- //const int nbb11 = b1->nb[1];
- //const int nbb12 = b1->nb[2];
- //const int nbb13 = b1->nb[3];
- const int nbc00 = c0->nb[0];
- const int nbc01 = c0->nb[1];
- const int nbc02 = c0->nb[2];
- const int nbc03 = c0->nb[3];
- const int nbc10 = c1->nb[0];
- //const int nbc11 = c1->nb[1];
- //const int nbc12 = c1->nb[2];
- //const int nbc13 = c1->nb[3];
- const int nb0 = dst->nb[0];
- const int nb1 = dst->nb[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = nea0;
- //const int64_t N = nea1;
- const int64_t M = neb01;
- GGML_ASSERT(ne0 == nea0);
- GGML_ASSERT(ne1 == nea1);
- GGML_ASSERT(ne2 == nea2);
- GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbb10 == sizeof(float));
- GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbc10 == sizeof(float));
- GGML_ASSERT(neb00 == D);
- GGML_ASSERT(neb01 == M);
- GGML_ASSERT(neb10 == M);
- GGML_ASSERT(neb11 == 1);
- GGML_ASSERT(nec00 == M);
- GGML_ASSERT(nec01 == D);
- GGML_ASSERT(nec10 == D);
- GGML_ASSERT(nec11 == 1);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by a rows using ggml_vec_dot_f32
- // total rows in a
- const int nr = nea1*nea2*nea3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // a indices
- const int ia3 = ir/(nea2*nea1);
- const int ia2 = (ir - ia3*nea2*nea1)/nea1;
- const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
- float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
- for (int64_t ic = 0; ic < neb01; ++ic) {
- // b0 indices
- const int ib03 = ia3;
- const int ib02 = ia2;
- const int ib01 = ic;
- // S indices
- const int i1 = ib01;
- ggml_vec_dot_f16(nea0,
- S + i1,
- (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
- (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
- }
- ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
- //ggml_vec_gelu_f32(neb01, S, S);
- ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
- for (int64_t i = 0; i < M; i++) {
- S16[i] = GGML_FP32_TO_FP16(S[i]);
- }
- ggml_vec_gelu_f16(neb01, S16, S16);
- {
- // dst indices
- const int i1 = ia1;
- const int i2 = ia2;
- const int i3 = ia3;
- for (int64_t ic = 0; ic < nec01; ++ic) {
- ggml_vec_dot_f16(neb01,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
- S16);
- }
- ggml_vec_add_f32(nec01,
- (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) c1->data);
- }
- }
- }
- static void ggml_compute_forward_flash_ff(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b0,
- const struct ggml_tensor * b1,
- const struct ggml_tensor * c0,
- const struct ggml_tensor * c1,
- struct ggml_tensor * dst) {
- switch (b0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(false); // TODO
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- /////////////////////////////////
- static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
- GGML_ASSERT(params);
- switch (tensor->op) {
- case GGML_OP_DUP:
- {
- ggml_compute_forward_dup(params, tensor->src0, tensor);
- } break;
- case GGML_OP_ADD:
- {
- ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_SUB:
- {
- ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_MUL:
- {
- ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_DIV:
- {
- ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_SQR:
- {
- ggml_compute_forward_sqr(params, tensor->src0, tensor);
- } break;
- case GGML_OP_SQRT:
- {
- ggml_compute_forward_sqrt(params, tensor->src0, tensor);
- } break;
- case GGML_OP_SUM:
- {
- ggml_compute_forward_sum(params, tensor->src0, tensor);
- } break;
- case GGML_OP_MEAN:
- {
- ggml_compute_forward_mean(params, tensor->src0, tensor);
- } break;
- case GGML_OP_REPEAT:
- {
- ggml_compute_forward_repeat(params, tensor->src0, tensor);
- } break;
- case GGML_OP_ABS:
- {
- ggml_compute_forward_abs(params, tensor->src0, tensor);
- } break;
- case GGML_OP_SGN:
- {
- ggml_compute_forward_sgn(params, tensor->src0, tensor);
- } break;
- case GGML_OP_NEG:
- {
- ggml_compute_forward_neg(params, tensor->src0, tensor);
- } break;
- case GGML_OP_STEP:
- {
- ggml_compute_forward_step(params, tensor->src0, tensor);
- } break;
- case GGML_OP_RELU:
- {
- ggml_compute_forward_relu(params, tensor->src0, tensor);
- } break;
- case GGML_OP_GELU:
- {
- ggml_compute_forward_gelu(params, tensor->src0, tensor);
- } break;
- case GGML_OP_SILU:
- {
- ggml_compute_forward_silu(params, tensor->src0, tensor);
- } break;
- case GGML_OP_NORM:
- {
- ggml_compute_forward_norm(params, tensor->src0, tensor);
- } break;
- case GGML_OP_RMS_NORM:
- {
- ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
- } break;
- case GGML_OP_MUL_MAT:
- {
- ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_SCALE:
- {
- ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_CPY:
- {
- ggml_compute_forward_cpy(params, tensor->src0, tensor);
- } break;
- case GGML_OP_CONT:
- {
- ggml_compute_forward_cont(params, tensor->src0, tensor);
- } break;
- case GGML_OP_RESHAPE:
- {
- ggml_compute_forward_reshape(params, tensor->src0, tensor);
- } break;
- case GGML_OP_VIEW:
- {
- ggml_compute_forward_view(params, tensor->src0);
- } break;
- case GGML_OP_PERMUTE:
- {
- ggml_compute_forward_permute(params, tensor->src0);
- } break;
- case GGML_OP_TRANSPOSE:
- {
- ggml_compute_forward_transpose(params, tensor->src0);
- } break;
- case GGML_OP_GET_ROWS:
- {
- ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_SOFT_MAX:
- {
- ggml_compute_forward_soft_max(params, tensor->src0, tensor);
- } break;
- case GGML_OP_ROPE:
- {
- ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_CONV_1D_1S:
- {
- ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_CONV_1D_2S:
- {
- ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
- GGML_ASSERT(t == 0 || t == 1);
- bool masked = t != 0;
- ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
- } break;
- case GGML_OP_FLASH_FF:
- {
- ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
- } break;
- case GGML_OP_NONE:
- {
- // nop
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- ////////////////////////////////////////////////////////////////////////////////
- static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
- struct ggml_tensor * src0 = tensor->src0;
- struct ggml_tensor * src1 = tensor->src1;
- switch (tensor->op) {
- case GGML_OP_DUP:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_ADD:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_SUB:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_MUL:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_mul(ctx, src1, tensor->grad),
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- ggml_mul(ctx, src0, tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_DIV:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_div(ctx, tensor->grad, src1),
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_sub_impl(ctx,
- src1->grad,
- ggml_mul(ctx,
- tensor->grad,
- ggml_div(ctx, tensor, src1)),
- inplace);
- }
- } break;
- case GGML_OP_SQR:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_mul(ctx,
- ggml_mul(ctx, src0, tensor->grad),
- ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
- inplace);
- }
- } break;
- case GGML_OP_SQRT:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_div(ctx,
- ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
- tensor),
- inplace);
- }
- } break;
- case GGML_OP_SUM:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_repeat(ctx, tensor->grad, src0->grad),
- inplace);
- }
- } break;
- case GGML_OP_MEAN:
- {
- GGML_ASSERT(false); // TODO: implement
- } break;
- case GGML_OP_REPEAT:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_sum(ctx, tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_ABS:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_mul(ctx,
- ggml_sgn(ctx, src0),
- tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_SGN:
- {
- if (src0->grad) {
- // noop
- }
- } break;
- case GGML_OP_NEG:
- {
- if (src0->grad) {
- src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_STEP:
- {
- if (src0->grad) {
- // noop
- }
- } break;
- case GGML_OP_RELU:
- {
- if (src0->grad) {
- src0->grad = ggml_sub_impl(ctx,
- src0->grad,
- ggml_mul(ctx,
- ggml_step(ctx, src0),
- tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_GELU:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_SILU:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_NORM:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_RMS_NORM:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_MUL_MAT:
- {
- if (src0->grad) {
- // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
- GGML_ASSERT(false);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- ggml_mul_mat(ctx,
- ggml_cont(ctx, ggml_transpose(ctx, src0)),
- tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_SCALE:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CPY:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONT:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_RESHAPE:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_VIEW:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_PERMUTE:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_TRANSPOSE:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_GET_ROWS:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_SOFT_MAX:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_ROPE:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_1D_1S:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_1D_2S:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_FLASH_FF:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_NONE:
- {
- // nop
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
- if (node->grad == NULL) {
- // this usually happens when we generate intermediate nodes from constants in the backward pass
- // it can also happen during forward pass, if the user performs computations with constants
- if (node->op != GGML_OP_NONE) {
- //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
- }
- }
- // check if already visited
- for (int i = 0; i < cgraph->n_nodes; i++) {
- if (cgraph->nodes[i] == node) {
- return;
- }
- }
- for (int i = 0; i < cgraph->n_leafs; i++) {
- if (cgraph->leafs[i] == node) {
- return;
- }
- }
- if (node->src0) {
- ggml_visit_parents(cgraph, node->src0);
- }
- if (node->src1) {
- ggml_visit_parents(cgraph, node->src1);
- }
- for (int i = 0; i < GGML_MAX_OPT; ++i) {
- if (node->opt[i]) {
- ggml_visit_parents(cgraph, node->opt[i]);
- }
- }
- if (node->op == GGML_OP_NONE && node->grad == NULL) {
- // reached a leaf node, not part of the gradient graph (e.g. a constant)
- GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
- cgraph->leafs[cgraph->n_leafs] = node;
- cgraph->n_leafs++;
- } else {
- GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
- cgraph->nodes[cgraph->n_nodes] = node;
- cgraph->grads[cgraph->n_nodes] = node->grad;
- cgraph->n_nodes++;
- }
- }
- static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
- if (!expand) {
- cgraph->n_nodes = 0;
- cgraph->n_leafs = 0;
- }
- const int n0 = cgraph->n_nodes;
- UNUSED(n0);
- ggml_visit_parents(cgraph, tensor);
- const int n_new = cgraph->n_nodes - n0;
- GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
- if (n_new > 0) {
- // the last added node should always be starting point
- GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
- }
- }
- void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
- ggml_build_forward_impl(cgraph, tensor, true);
- }
- struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
- struct ggml_cgraph result = {
- /*.n_nodes =*/ 0,
- /*.n_leafs =*/ 0,
- /*.n_threads =*/ 0,
- /*.work_size =*/ 0,
- /*.work =*/ NULL,
- /*.nodes =*/ { NULL },
- /*.grads =*/ { NULL },
- /*.leafs =*/ { NULL },
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- };
- ggml_build_forward_impl(&result, tensor, false);
- return result;
- }
- struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
- struct ggml_cgraph result = *gf;
- GGML_ASSERT(gf->n_nodes > 0);
- // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
- if (keep) {
- for (int i = 0; i < gf->n_nodes; i++) {
- struct ggml_tensor * node = gf->nodes[i];
- if (node->grad) {
- node->grad = ggml_dup_tensor(ctx, node);
- gf->grads[i] = node->grad;
- }
- }
- }
- for (int i = gf->n_nodes - 1; i >= 0; i--) {
- struct ggml_tensor * node = gf->nodes[i];
- // because we detached the grad nodes from the original graph, we can afford inplace operations
- if (node->grad) {
- ggml_compute_backward(ctx, node, keep);
- }
- }
- for (int i = gf->n_nodes - 1; i >= 0; i--) {
- struct ggml_tensor * node = gf->nodes[i];
- if (node->is_param) {
- GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
- ggml_build_forward_impl(&result, node->grad, true);
- }
- }
- return result;
- }
- //
- // thread data
- //
- // synchronization is done via busy loops
- // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
- //
- #ifdef __APPLE__
- //#include <os/lock.h>
- //
- //typedef os_unfair_lock ggml_lock_t;
- //
- //#define ggml_lock_init(x) UNUSED(x)
- //#define ggml_lock_destroy(x) UNUSED(x)
- //#define ggml_lock_lock os_unfair_lock_lock
- //#define ggml_lock_unlock os_unfair_lock_unlock
- //
- //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
- typedef int ggml_lock_t;
- #define ggml_lock_init(x) UNUSED(x)
- #define ggml_lock_destroy(x) UNUSED(x)
- #define ggml_lock_lock(x) UNUSED(x)
- #define ggml_lock_unlock(x) UNUSED(x)
- #define GGML_LOCK_INITIALIZER 0
- typedef pthread_t ggml_thread_t;
- #define ggml_thread_create pthread_create
- #define ggml_thread_join pthread_join
- #else
- //typedef pthread_spinlock_t ggml_lock_t;
- //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
- //#define ggml_lock_destroy pthread_spin_destroy
- //#define ggml_lock_lock pthread_spin_lock
- //#define ggml_lock_unlock pthread_spin_unlock
- typedef int ggml_lock_t;
- #define ggml_lock_init(x) UNUSED(x)
- #define ggml_lock_destroy(x) UNUSED(x)
- #define ggml_lock_lock(x) UNUSED(x)
- #define ggml_lock_unlock(x) UNUSED(x)
- #define GGML_LOCK_INITIALIZER 0
- typedef pthread_t ggml_thread_t;
- #define ggml_thread_create pthread_create
- #define ggml_thread_join pthread_join
- #endif
- struct ggml_compute_state_shared {
- ggml_lock_t spin;
- int n_threads;
- // synchronization primitives
- atomic_int n_ready;
- atomic_bool has_work;
- atomic_bool stop; // stop all threads
- };
- struct ggml_compute_state {
- ggml_thread_t thrd;
- struct ggml_compute_params params;
- struct ggml_tensor * node;
- struct ggml_compute_state_shared * shared;
- };
- static thread_ret_t ggml_graph_compute_thread(void * data) {
- struct ggml_compute_state * state = (struct ggml_compute_state *) data;
- const int n_threads = state->shared->n_threads;
- while (true) {
- if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
- atomic_store(&state->shared->has_work, false);
- } else {
- while (atomic_load(&state->shared->has_work)) {
- if (atomic_load(&state->shared->stop)) {
- return 0;
- }
- ggml_lock_lock (&state->shared->spin);
- ggml_lock_unlock(&state->shared->spin);
- }
- }
- atomic_fetch_sub(&state->shared->n_ready, 1);
- // wait for work
- while (!atomic_load(&state->shared->has_work)) {
- if (atomic_load(&state->shared->stop)) {
- return 0;
- }
- ggml_lock_lock (&state->shared->spin);
- ggml_lock_unlock(&state->shared->spin);
- }
- // check if we should stop
- if (atomic_load(&state->shared->stop)) {
- break;
- }
- if (state->node) {
- if (state->params.ith < state->params.nth) {
- ggml_compute_forward(&state->params, state->node);
- }
- state->node = NULL;
- } else {
- break;
- }
- }
- return 0;
- }
- void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
- const int n_threads = cgraph->n_threads;
- struct ggml_compute_state_shared state_shared = {
- /*.spin =*/ GGML_LOCK_INITIALIZER,
- /*.n_threads =*/ n_threads,
- /*.n_ready =*/ 0,
- /*.has_work =*/ false,
- /*.stop =*/ false,
- };
- struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
- // create thread pool
- if (n_threads > 1) {
- ggml_lock_init(&state_shared.spin);
- atomic_store(&state_shared.has_work, true);
- for (int j = 0; j < n_threads - 1; j++) {
- workers[j] = (struct ggml_compute_state) {
- .thrd = 0,
- .params = {
- .type = GGML_TASK_COMPUTE,
- .ith = j + 1,
- .nth = n_threads,
- .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
- .wdata = cgraph->work ? cgraph->work->data : NULL,
- },
- .node = NULL,
- .shared = &state_shared,
- };
- int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
- GGML_ASSERT(rc == 0);
- UNUSED(rc);
- }
- }
- // initialize tasks + work buffer
- {
- size_t work_size = 0;
- // thread scheduling for the different operations
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- switch (node->op) {
- case GGML_OP_DUP:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_ADD:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_SUB:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_SUM:
- case GGML_OP_MEAN:
- case GGML_OP_REPEAT:
- case GGML_OP_ABS:
- case GGML_OP_SGN:
- case GGML_OP_NEG:
- case GGML_OP_STEP:
- case GGML_OP_RELU:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_GELU:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_SILU:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_NORM:
- case GGML_OP_RMS_NORM:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_MUL_MAT:
- {
- node->n_tasks = n_threads;
- // TODO: use different scheduling for different matrix sizes
- //const int nr0 = ggml_nrows(node->src0);
- //const int nr1 = ggml_nrows(node->src1);
- //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
- //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
- size_t cur = 0;
- if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
- node->n_tasks = 1; // TODO: this actually is doing nothing
- // the threads are still spinning
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
- //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
- //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
- //printf("cur = %zu\n", cur);
- } else {
- cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
- }
- #else
- cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
- #endif
- } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
- cur = 0;
- } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
- node->n_tasks = 1;
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
- } else
- #endif
- {
- cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
- }
- } else {
- GGML_ASSERT(false);
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_SCALE:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_CPY:
- case GGML_OP_CONT:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_GET_ROWS:
- case GGML_OP_DIAG_MASK_INF:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_SOFT_MAX:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_ROPE:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_CONV_1D_1S:
- case GGML_OP_CONV_1D_2S:
- {
- node->n_tasks = n_threads;
- GGML_ASSERT(node->src0->ne[3] == 1);
- GGML_ASSERT(node->src1->ne[2] == 1);
- GGML_ASSERT(node->src1->ne[3] == 1);
- size_t cur = 0;
- const int nk = node->src0->ne[0];
- if (node->src0->type == GGML_TYPE_F16 &&
- node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(ggml_fp16_t)*(
- nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
- ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
- );
- } else if (node->src0->type == GGML_TYPE_F32 &&
- node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(float)*(
- nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
- ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
- );
- } else {
- GGML_ASSERT(false);
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- node->n_tasks = n_threads;
- size_t cur = 0;
- const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
- if (node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
- }
- if (node->src1->type == GGML_TYPE_F16) {
- cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_FLASH_FF:
- {
- node->n_tasks = n_threads;
- size_t cur = 0;
- if (node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
- }
- if (node->src1->type == GGML_TYPE_F16) {
- cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_NONE:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- if (cgraph->work != NULL && work_size > cgraph->work_size) {
- GGML_ASSERT(false); // TODO: better handling
- }
- if (work_size > 0 && cgraph->work == NULL) {
- cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
- GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
- cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
- }
- }
- const int64_t perf_start_cycles = ggml_perf_cycles();
- const int64_t perf_start_time_us = ggml_perf_time_us();
- for (int i = 0; i < cgraph->n_nodes; i++) {
- GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
- struct ggml_tensor * node = cgraph->nodes[i];
- // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
- //if (node->grad == NULL && node->perf_runs > 0) {
- // continue;
- //}
- const int64_t perf_node_start_cycles = ggml_perf_cycles();
- const int64_t perf_node_start_time_us = ggml_perf_time_us();
- // INIT
- struct ggml_compute_params params = {
- /*.type =*/ GGML_TASK_INIT,
- /*.ith =*/ 0,
- /*.nth =*/ node->n_tasks,
- /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
- /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
- };
- ggml_compute_forward(¶ms, node);
- // COMPUTE
- if (node->n_tasks > 1) {
- if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
- atomic_store(&state_shared.has_work, false);
- }
- while (atomic_load(&state_shared.has_work)) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- // launch thread pool
- for (int j = 0; j < n_threads - 1; j++) {
- workers[j].params = (struct ggml_compute_params) {
- .type = GGML_TASK_COMPUTE,
- .ith = j + 1,
- .nth = node->n_tasks,
- .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
- .wdata = cgraph->work ? cgraph->work->data : NULL,
- };
- workers[j].node = node;
- }
- atomic_fetch_sub(&state_shared.n_ready, 1);
- while (atomic_load(&state_shared.n_ready) > 0) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- atomic_store(&state_shared.has_work, true);
- }
- params.type = GGML_TASK_COMPUTE;
- ggml_compute_forward(¶ms, node);
- // wait for thread pool
- if (node->n_tasks > 1) {
- if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
- atomic_store(&state_shared.has_work, false);
- }
- while (atomic_load(&state_shared.has_work)) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- atomic_fetch_sub(&state_shared.n_ready, 1);
- while (atomic_load(&state_shared.n_ready) != 0) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- }
- // FINALIZE
- if (node->n_tasks > 1) {
- if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
- atomic_store(&state_shared.has_work, false);
- }
- while (atomic_load(&state_shared.has_work)) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- // launch thread pool
- for (int j = 0; j < n_threads - 1; j++) {
- workers[j].params = (struct ggml_compute_params) {
- .type = GGML_TASK_FINALIZE,
- .ith = j + 1,
- .nth = node->n_tasks,
- .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
- .wdata = cgraph->work ? cgraph->work->data : NULL,
- };
- workers[j].node = node;
- }
- atomic_fetch_sub(&state_shared.n_ready, 1);
- while (atomic_load(&state_shared.n_ready) > 0) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- atomic_store(&state_shared.has_work, true);
- }
- params.type = GGML_TASK_FINALIZE;
- ggml_compute_forward(¶ms, node);
- // wait for thread pool
- if (node->n_tasks > 1) {
- if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
- atomic_store(&state_shared.has_work, false);
- }
- while (atomic_load(&state_shared.has_work)) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- atomic_fetch_sub(&state_shared.n_ready, 1);
- while (atomic_load(&state_shared.n_ready) != 0) {
- ggml_lock_lock (&state_shared.spin);
- ggml_lock_unlock(&state_shared.spin);
- }
- }
- // performance stats (node)
- {
- int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
- int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
- node->perf_runs++;
- node->perf_cycles += perf_cycles_cur;
- node->perf_time_us += perf_time_us_cur;
- }
- }
- // join thread pool
- if (n_threads > 1) {
- atomic_store(&state_shared.stop, true);
- atomic_store(&state_shared.has_work, true);
- for (int j = 0; j < n_threads - 1; j++) {
- int rc = ggml_thread_join(workers[j].thrd, NULL);
- GGML_ASSERT(rc == 0);
- UNUSED(rc);
- }
- ggml_lock_destroy(&state_shared.spin);
- }
- // performance stats (graph)
- {
- int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
- int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
- cgraph->perf_runs++;
- cgraph->perf_cycles += perf_cycles_cur;
- cgraph->perf_time_us += perf_time_us_cur;
- GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
- __func__, cgraph->perf_runs,
- (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
- (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
- (double) perf_time_us_cur / 1000.0,
- (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
- }
- }
- void ggml_graph_reset(struct ggml_cgraph * cgraph) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * grad = cgraph->grads[i];
- if (grad) {
- ggml_set_zero(grad);
- }
- }
- }
- void ggml_graph_print(const struct ggml_cgraph * cgraph) {
- int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
- GGML_PRINT("=== GRAPH ===\n");
- GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
- GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
- GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- perf_total_per_op_us[node->op] += node->perf_time_us;
- GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
- i,
- node->ne[0], node->ne[1], node->ne[2],
- GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
- (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
- (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
- (double) node->perf_time_us / 1000.0,
- (double) node->perf_time_us / 1000.0 / node->perf_runs);
- }
- GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
- for (int i = 0; i < cgraph->n_leafs; i++) {
- struct ggml_tensor * node = cgraph->leafs[i];
- GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
- i,
- node->ne[0], node->ne[1],
- GGML_OP_LABEL[node->op]);
- }
- for (int i = 0; i < GGML_OP_COUNT; i++) {
- GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
- }
- GGML_PRINT("========================================\n");
- }
- // check if node is part of the graph
- static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- if (cgraph == NULL) {
- return true;
- }
- for (int i = 0; i < cgraph->n_nodes; i++) {
- if (cgraph->nodes[i] == node) {
- return true;
- }
- }
- return false;
- }
- static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * parent = cgraph->nodes[i];
- if (parent->grad == node) {
- return parent;
- }
- }
- return NULL;
- }
- void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
- char color[16];
- FILE * fp = fopen(filename, "w");
- GGML_ASSERT(fp);
- fprintf(fp, "digraph G {\n");
- fprintf(fp, " newrank = true;\n");
- fprintf(fp, " rankdir = LR;\n");
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
- if (ggml_graph_get_parent(gb, node) != NULL) {
- continue;
- }
- if (node->is_param) {
- snprintf(color, sizeof(color), "yellow");
- } else if (node->grad) {
- if (ggml_graph_find(gf, node)) {
- snprintf(color, sizeof(color), "green");
- } else {
- snprintf(color, sizeof(color), "lightblue");
- }
- } else {
- snprintf(color, sizeof(color), "white");
- }
- fprintf(fp, " \"%p\" [ \
- style = filled; fillcolor = %s; shape = record; \
- label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
- (void *) node, color,
- i, node->ne[0], node->ne[1],
- GGML_OP_SYMBOL[node->op]);
- if (node->grad) {
- fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
- } else {
- fprintf(fp, "\"; ]\n");
- }
- }
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
- snprintf(color, sizeof(color), "pink");
- if (ggml_nelements(node) == 1) {
- fprintf(fp, " \"%p\" [ \
- style = filled; fillcolor = %s; shape = record; \
- label=\"<x>%.1e\"; ]\n",
- (void *) node, color, (double)ggml_get_f32_1d(node, 0));
- } else {
- fprintf(fp, " \"%p\" [ \
- style = filled; fillcolor = %s; shape = record; \
- label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
- (void *) node, color,
- i, node->ne[0], node->ne[1]);
- }
- }
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
- struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
- if (node->src0) {
- struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
- parent0 ? (void *) parent0 : (void *) node->src0,
- parent0 ? "g" : "x",
- parent ? (void *) parent : (void *) node,
- parent ? "g" : "x",
- parent ? "empty" : "vee",
- parent ? "dashed" : "solid");
- }
- if (node->src1) {
- struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
- parent1 ? (void *) parent1 : (void *) node->src1,
- parent1 ? "g" : "x",
- parent ? (void *) parent : (void *) node,
- parent ? "g" : "x",
- parent ? "empty" : "vee",
- parent ? "dashed" : "solid");
- }
- }
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
- if (node->src0) {
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
- (void *) node->src0, "x",
- (void *) node, "x");
- }
- if (node->src1) {
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
- (void *) node->src1, "x",
- (void *) node, "x");
- }
- }
- fprintf(fp, "}\n");
- fclose(fp);
- GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
- }
- ////////////////////////////////////////////////////////////////////////////////
- static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to set tensor from array
- for (int64_t j = 0; j < ne; ++j) {
- ggml_set_f32_1d(ps[p], j, x[i++]);
- }
- }
- }
- static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- x[i++] = ggml_get_f32_1d(ps[p], j);
- }
- }
- }
- static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
- }
- }
- }
- //
- // ADAM
- //
- // ref: https://arxiv.org/pdf/1412.6980.pdf
- //
- static enum ggml_opt_result ggml_opt_adam(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb) {
- GGML_ASSERT(ggml_is_scalar(f));
- gf->n_threads = params.n_threads;
- gb->n_threads = params.n_threads;
- // these will store the parameters we want to optimize
- struct ggml_tensor * ps[GGML_MAX_PARAMS];
- int np = 0;
- int nx = 0;
- for (int i = 0; i < gf->n_nodes; ++i) {
- if (gf->nodes[i]->is_param) {
- GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
- GGML_ASSERT(np < GGML_MAX_PARAMS);
- ps[np++] = gf->nodes[i];
- nx += ggml_nelements(gf->nodes[i]);
- }
- }
- // constants
- const float alpha = params.adam.alpha;
- const float beta1 = params.adam.beta1;
- const float beta2 = params.adam.beta2;
- const float eps = params.adam.eps;
- float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
- float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
- float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
- float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
- float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
- float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
- float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
- float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
- // initialize
- ggml_vec_set_f32(nx, m, 0.0f);
- ggml_vec_set_f32(nx, v, 0.0f);
- // update view
- ggml_opt_get_params(np, ps, x);
- // compute the function value
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
- float fx_prev = ggml_get_f32_1d(f, 0);
- if (pf) {
- pf[0] = fx_prev;
- }
- int n_no_improvement = 0;
- float fx_best = fx_prev;
- // run the optimizer
- for (int t = 0; t < params.adam.n_iter; ++t) {
- GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
- GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
- GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
- GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
- for (int i = 0; i < np; ++i) {
- GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
- ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
- }
- const int64_t t_start_wall = ggml_time_us();
- const int64_t t_start_cpu = ggml_cycles();
- UNUSED(t_start_wall);
- UNUSED(t_start_cpu);
- {
- // update the gradient
- ggml_opt_get_grad(np, ps, g1);
- // m_t = beta1*m_t-1 + (1 - beta1)*g_t
- ggml_vec_scale_f32(nx, m, beta1);
- ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
- // g2 = g1^2
- ggml_vec_sqr_f32 (nx, g2, g1);
- // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
- ggml_vec_scale_f32(nx, v, beta2);
- ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
- // m^hat = m_t / (1 - beta1^t)
- // v^hat = v_t / (1 - beta2^t)
- // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
- ggml_vec_cpy_f32 (nx, mh, m);
- ggml_vec_cpy_f32 (nx, vh, v);
- ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
- ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
- ggml_vec_sqrt_f32 (nx, vh, vh);
- ggml_vec_acc1_f32 (nx, vh, eps);
- ggml_vec_div_f32 (nx, mh, mh, vh);
- ggml_vec_sub_f32 (nx, x, x, mh);
- // update the parameters
- ggml_opt_set_params(np, ps, x);
- }
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
- const float fx = ggml_get_f32_1d(f, 0);
- // check convergence
- if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
- GGML_PRINT_DEBUG("converged\n");
- return GGML_OPT_OK;
- }
- // delta-based convergence test
- if (pf != NULL) {
- // need at least params.past iterations to start checking for convergence
- if (params.past <= t) {
- const float rate = (pf[t%params.past] - fx)/fx;
- if (fabsf(rate) < params.delta) {
- return GGML_OPT_OK;
- }
- }
- pf[t%params.past] = fx;
- }
- // check for improvement
- if (params.max_no_improvement > 0) {
- if (fx_best > fx) {
- fx_best = fx;
- n_no_improvement = 0;
- } else {
- ++n_no_improvement;
- if (n_no_improvement >= params.max_no_improvement) {
- return GGML_OPT_OK;
- }
- }
- }
- fx_prev = fx;
- {
- const int64_t t_end_cpu = ggml_cycles();
- GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
- UNUSED(t_end_cpu);
- const int64_t t_end_wall = ggml_time_us();
- GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
- UNUSED(t_end_wall);
- }
- }
- return GGML_OPT_DID_NOT_CONVERGE;
- }
- //
- // L-BFGS
- //
- // the L-BFGS implementation below is based on the following implementation:
- //
- // https://github.com/chokkan/liblbfgs
- //
- struct ggml_lbfgs_iteration_data {
- float alpha;
- float ys;
- float * s;
- float * y;
- };
- static enum ggml_opt_result linesearch_backtracking(
- struct ggml_context * ctx,
- const struct ggml_opt_params * params,
- int nx,
- float * x,
- float * fx,
- float * g,
- float * d,
- float * step,
- const float * xp,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- const int np,
- struct ggml_tensor * ps[]) {
- int count = 0;
- float width = 0.0f;
- float dg = 0.0f;
- float finit = 0.0f;
- float dginit = 0.0f;
- float dgtest = 0.0f;
- const float dec = 0.5f;
- const float inc = 2.1f;
- if (*step <= 0.f) {
- return GGML_LINESEARCH_INVALID_PARAMETERS;
- }
- // compute the initial gradient in the search direction
- ggml_vec_dot_f32(nx, &dginit, g, d);
- // make sure that d points to a descent direction
- if (0 < dginit) {
- return GGML_LINESEARCH_FAIL;
- }
- // initialize local variables
- finit = *fx;
- dgtest = params->lbfgs.ftol*dginit;
- while (true) {
- ggml_vec_cpy_f32(nx, x, xp);
- ggml_vec_mad_f32(nx, x, d, *step);
- // evaluate the function and gradient values
- {
- ggml_opt_set_params(np, ps, x);
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
- ggml_opt_get_grad(np, ps, g);
- *fx = ggml_get_f32_1d(f, 0);
- }
- ++count;
- if (*fx > finit + (*step)*dgtest) {
- width = dec;
- } else {
- // Armijo condition is satisfied
- if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
- return count;
- }
- ggml_vec_dot_f32(nx, &dg, g, d);
- // check the Wolfe condition
- if (dg < params->lbfgs.wolfe * dginit) {
- width = inc;
- } else {
- if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
- // regular Wolfe conditions
- return count;
- }
- if(dg > -params->lbfgs.wolfe*dginit) {
- width = dec;
- } else {
- // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
- return count;
- }
- return count;
- }
- }
- if (*step < params->lbfgs.min_step) {
- return GGML_LINESEARCH_MINIMUM_STEP;
- }
- if (*step > params->lbfgs.max_step) {
- return GGML_LINESEARCH_MAXIMUM_STEP;
- }
- if (params->lbfgs.max_linesearch <= count) {
- return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
- }
- (*step) *= width;
- }
- return GGML_LINESEARCH_FAIL;
- }
- static enum ggml_opt_result ggml_opt_lbfgs(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb) {
- if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
- params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
- if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
- return GGML_OPT_INVALID_WOLFE;
- }
- }
- gf->n_threads = params.n_threads;
- gb->n_threads = params.n_threads;
- const int m = params.lbfgs.m;
- // these will store the parameters we want to optimize
- struct ggml_tensor * ps[GGML_MAX_PARAMS];
- int np = 0;
- int nx = 0;
- for (int i = 0; i < gf->n_nodes; ++i) {
- if (gf->nodes[i]->is_param) {
- GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
- GGML_ASSERT(np < GGML_MAX_PARAMS);
- ps[np++] = gf->nodes[i];
- nx += ggml_nelements(gf->nodes[i]);
- }
- }
- float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
- float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
- float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
- float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
- float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
- float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
- float fx = 0.0f; // cost function value
- float xnorm = 0.0f; // ||x||
- float gnorm = 0.0f; // ||g||
- float step = 0.0f;
- // initialize x from the graph nodes
- ggml_opt_get_params(np, ps, x);
- // the L-BFGS memory
- struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
- for (int i = 0; i < m; ++i) {
- lm[i].alpha = 0.0f;
- lm[i].ys = 0.0f;
- lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
- lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
- }
- // evaluate the function value and its gradient
- {
- ggml_opt_set_params(np, ps, x);
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
- ggml_opt_get_grad(np, ps, g);
- fx = ggml_get_f32_1d(f, 0);
- }
- if (pf) {
- pf[0] = fx;
- }
- float fx_best = fx;
- // search direction = -gradient
- ggml_vec_neg_f32(nx, d, g);
- // ||x||, ||g||
- ggml_vec_norm_f32(nx, &xnorm, x);
- ggml_vec_norm_f32(nx, &gnorm, g);
- if (xnorm < 1.0f) {
- xnorm = 1.0f;
- }
- // already optimized
- if (gnorm/xnorm <= params.lbfgs.eps) {
- return GGML_OPT_OK;
- }
- // initial step
- ggml_vec_norm_inv_f32(nx, &step, d);
- int j = 0;
- int k = 1;
- int ls = 0;
- int end = 0;
- int bound = 0;
- int n_no_improvement = 0;
- float ys = 0.0f;
- float yy = 0.0f;
- float beta = 0.0f;
- while (true) {
- // store the current position and gradient vectors
- ggml_vec_cpy_f32(nx, xp, x);
- ggml_vec_cpy_f32(nx, gp, g);
- ls = linesearch_backtracking(ctx, ¶ms, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
- if (ls < 0) {
- // linesearch failed - go back to the previous point and return
- ggml_vec_cpy_f32(nx, x, xp);
- ggml_vec_cpy_f32(nx, g, gp);
- return ls;
- }
- ggml_vec_norm_f32(nx, &xnorm, x);
- ggml_vec_norm_f32(nx, &gnorm, g);
- GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
- if (xnorm < 1.0f) {
- xnorm = 1.0f;
- }
- if (gnorm/xnorm <= params.lbfgs.eps) {
- // converged
- return GGML_OPT_OK;
- }
- // delta-based convergence test
- if (pf != NULL) {
- // need at least params.past iterations to start checking for convergence
- if (params.past <= k) {
- const float rate = (pf[k%params.past] - fx)/fx;
- if (fabsf(rate) < params.delta) {
- return GGML_OPT_OK;
- }
- }
- pf[k%params.past] = fx;
- }
- // check for improvement
- if (params.max_no_improvement > 0) {
- if (fx < fx_best) {
- fx_best = fx;
- n_no_improvement = 0;
- } else {
- n_no_improvement++;
- if (n_no_improvement >= params.max_no_improvement) {
- return GGML_OPT_OK;
- }
- }
- }
- if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
- // reached the maximum number of iterations
- return GGML_OPT_DID_NOT_CONVERGE;
- }
- // update vectors s and y:
- // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
- // y_{k+1} = g_{k+1} - g_{k}.
- //
- ggml_vec_sub_f32(nx, lm[end].s, x, xp);
- ggml_vec_sub_f32(nx, lm[end].y, g, gp);
- // compute scalars ys and yy:
- // ys = y^t \cdot s -> 1 / \rho.
- // yy = y^t \cdot y.
- //
- ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
- ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
- lm[end].ys = ys;
- // find new search direction
- // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
- bound = (m <= k) ? m : k;
- k++;
- end = (end + 1)%m;
- // initialize search direction with -g
- ggml_vec_neg_f32(nx, d, g);
- j = end;
- for (int i = 0; i < bound; ++i) {
- j = (j + m - 1) % m;
- // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
- ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
- lm[j].alpha /= lm[j].ys;
- // q_{i} = q_{i+1} - \alpha_{i} y_{i}
- ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
- }
- ggml_vec_scale_f32(nx, d, ys/yy);
- for (int i = 0; i < bound; ++i) {
- // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
- ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
- beta /= lm[j].ys;
- // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
- ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
- j = (j + 1)%m;
- }
- step = 1.0;
- }
- return GGML_OPT_DID_NOT_CONVERGE;
- }
- struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
- struct ggml_opt_params result;
- switch (type) {
- case GGML_OPT_ADAM:
- {
- result = (struct ggml_opt_params) {
- .type = GGML_OPT_ADAM,
- .n_threads = 1,
- .past = 0,
- .delta = 1e-5f,
- .max_no_improvement = 100,
- .print_forward_graph = true,
- .print_backward_graph = true,
- .adam = {
- .n_iter = 10000,
- .alpha = 0.001f,
- .beta1 = 0.9f,
- .beta2 = 0.999f,
- .eps = 1e-8f,
- .eps_f = 1e-5f,
- .eps_g = 1e-3f,
- },
- };
- } break;
- case GGML_OPT_LBFGS:
- {
- result = (struct ggml_opt_params) {
- .type = GGML_OPT_LBFGS,
- .n_threads = 1,
- .past = 0,
- .delta = 1e-5f,
- .max_no_improvement = 0,
- .print_forward_graph = true,
- .print_backward_graph = true,
- .lbfgs = {
- .m = 6,
- .n_iter = 100,
- .max_linesearch = 20,
- .eps = 1e-5f,
- .ftol = 1e-4f,
- .wolfe = 0.9f,
- .min_step = 1e-20f,
- .max_step = 1e+20f,
- .linesearch = GGML_LINESEARCH_DEFAULT,
- },
- };
- } break;
- }
- return result;
- }
- enum ggml_opt_result ggml_opt(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f) {
- bool free_ctx = false;
- if (ctx == NULL) {
- struct ggml_init_params params_ctx = {
- .mem_size = 16*1024*1024,
- .mem_buffer = NULL,
- .no_alloc = false,
- };
- ctx = ggml_init(params_ctx);
- if (ctx == NULL) {
- return GGML_OPT_NO_CONTEXT;
- }
- free_ctx = true;
- }
- enum ggml_opt_result result = GGML_OPT_OK;
- // build forward + backward compute graphs
- struct ggml_cgraph gf = ggml_build_forward (f);
- struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
- switch (params.type) {
- case GGML_OPT_ADAM:
- {
- result = ggml_opt_adam(ctx, params, f, &gf, &gb);
- } break;
- case GGML_OPT_LBFGS:
- {
- result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
- } break;
- }
- if (params.print_forward_graph) {
- ggml_graph_print (&gf);
- ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
- }
- if (params.print_backward_graph) {
- ggml_graph_print (&gb);
- ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
- }
- if (free_ctx) {
- ggml_free(ctx);
- }
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK == 0);
- const int nb = k / QK;
- for (int j = 0; j < n; j += k) {
- block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
- quantize_row_q4_0_reference(src + j, y, k);
- for (int i = 0; i < nb; i++) {
- for (int l = 0; l < QK; l += 2) {
- const uint8_t vi0 = y[i].qs[l/2] & 0xF;
- const uint8_t vi1 = y[i].qs[l/2] >> 4;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK*sizeof(block_q4_0));
- }
- size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK == 0);
- const int nb = k / QK;
- for (int j = 0; j < n; j += k) {
- block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
- quantize_row_q4_1_reference(src + j, y, k);
- for (int i = 0; i < nb; i++) {
- for (int l = 0; l < QK; l += 2) {
- const uint8_t vi0 = y[i].qs[l/2] & 0xF;
- const uint8_t vi1 = y[i].qs[l/2] >> 4;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK*sizeof(block_q4_1));
- }
- ////////////////////////////////////////////////////////////////////////////////
- int ggml_cpu_has_avx(void) {
- #if defined(__AVX__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx2(void) {
- #if defined(__AVX2__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512(void) {
- #if defined(__AVX512F__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_fma(void) {
- #if defined(__FMA__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_neon(void) {
- #if defined(__ARM_NEON)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_arm_fma(void) {
- #if defined(__ARM_FEATURE_FMA)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_f16c(void) {
- #if defined(__F16C__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_fp16_va(void) {
- #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_wasm_simd(void) {
- #if defined(__wasm_simd128__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_blas(void) {
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_sse3(void) {
- #if defined(__SSE3__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_vsx(void) {
- #if defined(__POWER9_VECTOR__)
- return 1;
- #else
- return 0;
- #endif
- }
- ////////////////////////////////////////////////////////////////////////////////
|