ggml.c 334 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #define UNUSED(x) (void)(x)
  97. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  98. #define GGML_ASSERT(x) \
  99. do { \
  100. if (!(x)) { \
  101. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  102. abort(); \
  103. } \
  104. } while (0)
  105. #ifdef GGML_USE_ACCELERATE
  106. #include <Accelerate/Accelerate.h>
  107. #elif GGML_USE_OPENBLAS
  108. #include <cblas.h>
  109. #endif
  110. #undef MIN
  111. #undef MAX
  112. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  113. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  114. // floating point type used to accumulate sums
  115. typedef double ggml_float;
  116. // 16-bit float
  117. // on Arm, we use __fp16
  118. // on x86, we use uint16_t
  119. #ifdef __ARM_NEON
  120. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  121. //
  122. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  123. //
  124. #include <arm_neon.h>
  125. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  126. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  127. #define GGML_FP16_TO_FP32(x) ((float) (x))
  128. #define GGML_FP32_TO_FP16(x) (x)
  129. #else
  130. #ifdef __wasm_simd128__
  131. #include <wasm_simd128.h>
  132. #else
  133. #ifdef __POWER9_VECTOR__
  134. #include <altivec.h>
  135. #undef bool
  136. #define bool _Bool
  137. #else
  138. #include <immintrin.h>
  139. #endif
  140. #endif
  141. #ifdef __F16C__
  142. #ifdef _MSC_VER
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  145. #else
  146. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  147. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  148. #endif
  149. #elif defined(__POWER9_VECTOR__)
  150. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  151. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  152. /* the inline asm below is about 12% faster than the lookup method */
  153. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  154. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  155. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  156. register float f;
  157. register double d;
  158. __asm__(
  159. "mtfprd %0,%2\n"
  160. "xscvhpdp %0,%0\n"
  161. "frsp %1,%0\n" :
  162. /* temp */ "=d"(d),
  163. /* out */ "=f"(f):
  164. /* in */ "r"(h));
  165. return f;
  166. }
  167. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  168. register double d;
  169. register ggml_fp16_t r;
  170. __asm__( /* xscvdphp can work on double or single precision */
  171. "xscvdphp %0,%2\n"
  172. "mffprd %1,%0\n" :
  173. /* temp */ "=d"(d),
  174. /* out */ "=r"(r):
  175. /* in */ "f"(f));
  176. return r;
  177. }
  178. #else
  179. // FP16 <-> FP32
  180. // ref: https://github.com/Maratyszcza/FP16
  181. static inline float fp32_from_bits(uint32_t w) {
  182. union {
  183. uint32_t as_bits;
  184. float as_value;
  185. } fp32;
  186. fp32.as_bits = w;
  187. return fp32.as_value;
  188. }
  189. static inline uint32_t fp32_to_bits(float f) {
  190. union {
  191. float as_value;
  192. uint32_t as_bits;
  193. } fp32;
  194. fp32.as_value = f;
  195. return fp32.as_bits;
  196. }
  197. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  198. const uint32_t w = (uint32_t) h << 16;
  199. const uint32_t sign = w & UINT32_C(0x80000000);
  200. const uint32_t two_w = w + w;
  201. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  202. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  203. const float exp_scale = 0x1.0p-112f;
  204. #else
  205. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  206. #endif
  207. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  208. const uint32_t magic_mask = UINT32_C(126) << 23;
  209. const float magic_bias = 0.5f;
  210. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  211. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  212. const uint32_t result = sign |
  213. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  214. return fp32_from_bits(result);
  215. }
  216. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  217. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  218. const float scale_to_inf = 0x1.0p+112f;
  219. const float scale_to_zero = 0x1.0p-110f;
  220. #else
  221. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  222. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  223. #endif
  224. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  225. const uint32_t w = fp32_to_bits(f);
  226. const uint32_t shl1_w = w + w;
  227. const uint32_t sign = w & UINT32_C(0x80000000);
  228. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  229. if (bias < UINT32_C(0x71000000)) {
  230. bias = UINT32_C(0x71000000);
  231. }
  232. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  233. const uint32_t bits = fp32_to_bits(base);
  234. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  235. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  236. const uint32_t nonsign = exp_bits + mantissa_bits;
  237. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  238. }
  239. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  240. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  241. #endif // __F16C__
  242. #endif // __ARM_NEON
  243. //
  244. // global data
  245. //
  246. // precomputed gelu table for f16 (128 KB)
  247. static ggml_fp16_t table_gelu_f16[1 << 16];
  248. // precomputed silu table for f16 (128 KB)
  249. static ggml_fp16_t table_silu_f16[1 << 16];
  250. // precomputed exp table for f16 (128 KB)
  251. static ggml_fp16_t table_exp_f16[1 << 16];
  252. // precomputed f32 table for f16 (256 KB)
  253. static float table_f32_f16[1 << 16];
  254. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  255. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  256. // This is also true for POWER9.
  257. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  258. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  259. uint16_t s;
  260. memcpy(&s, &f, sizeof(uint16_t));
  261. return table_f32_f16[s];
  262. }
  263. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  264. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  265. #endif
  266. // note: do not use these inside ggml.c
  267. // these are meant to be used via the ggml.h API
  268. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  269. return (float) GGML_FP16_TO_FP32(x);
  270. }
  271. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  272. return GGML_FP32_TO_FP16(x);
  273. }
  274. //
  275. // timing
  276. //
  277. #if defined(_MSC_VER) || defined(__MINGW32__)
  278. static int64_t timer_freq;
  279. void ggml_time_init(void) {
  280. LARGE_INTEGER frequency;
  281. QueryPerformanceFrequency(&frequency);
  282. timer_freq = frequency.QuadPart;
  283. }
  284. int64_t ggml_time_ms(void) {
  285. LARGE_INTEGER t;
  286. QueryPerformanceCounter(&t);
  287. return (t.QuadPart * 1000) / timer_freq;
  288. }
  289. int64_t ggml_time_us(void) {
  290. LARGE_INTEGER t;
  291. QueryPerformanceCounter(&t);
  292. return (t.QuadPart * 1000000) / timer_freq;
  293. }
  294. #else
  295. void ggml_time_init(void) {}
  296. int64_t ggml_time_ms(void) {
  297. struct timespec ts;
  298. clock_gettime(CLOCK_MONOTONIC, &ts);
  299. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  300. }
  301. int64_t ggml_time_us(void) {
  302. struct timespec ts;
  303. clock_gettime(CLOCK_MONOTONIC, &ts);
  304. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  305. }
  306. #endif
  307. int64_t ggml_cycles(void) {
  308. return clock();
  309. }
  310. int64_t ggml_cycles_per_ms(void) {
  311. return CLOCKS_PER_SEC/1000;
  312. }
  313. #ifdef GGML_PERF
  314. #define ggml_perf_time_ms() ggml_time_ms()
  315. #define ggml_perf_time_us() ggml_time_us()
  316. #define ggml_perf_cycles() ggml_cycles()
  317. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  318. #else
  319. #define ggml_perf_time_ms() 0
  320. #define ggml_perf_time_us() 0
  321. #define ggml_perf_cycles() 0
  322. #define ggml_perf_cycles_per_ms() 0
  323. #endif
  324. //
  325. // cache line
  326. //
  327. #if defined(__cpp_lib_hardware_interference_size)
  328. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  329. #else
  330. #if defined(__POWER9_VECTOR__)
  331. #define CACHE_LINE_SIZE 128
  332. #else
  333. #define CACHE_LINE_SIZE 64
  334. #endif
  335. #endif
  336. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  337. //
  338. // quantization
  339. //
  340. #define QK 32
  341. // AVX routines provided by GH user Const-me
  342. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  343. #if __AVX2__ || __AVX512F__
  344. // Unpack 32 4-bit fields into 32 bytes
  345. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  346. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  347. {
  348. // Load 16 bytes from memory
  349. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  350. // Expand bytes into uint16_t values
  351. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  352. // Unpack values into individual bytes
  353. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  354. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  355. __m256i low = _mm256_and_si256( lowMask, bytes );
  356. high = _mm256_slli_epi16( high, 4 );
  357. bytes = _mm256_or_si256( low, high );
  358. return bytes;
  359. }
  360. static inline __m128i packNibbles( __m256i bytes )
  361. {
  362. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  363. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  364. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  365. __m256i low = _mm256_and_si256( lowByte, bytes );
  366. high = _mm256_srli_epi16( high, 4 );
  367. bytes = _mm256_or_si256( low, high );
  368. // Compress uint16_t lanes into bytes
  369. __m128i r0 = _mm256_castsi256_si128( bytes );
  370. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  371. return _mm_packus_epi16( r0, r1 );
  372. }
  373. #elif __AVX__
  374. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  375. {
  376. // Load 8 bytes from memory
  377. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  378. // Expand bytes into uint16_t values
  379. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  380. // Unpack values into individual bytes
  381. const __m128i lowMask = _mm_set1_epi8( 0xF );
  382. __m128i high = _mm_andnot_si128( lowMask, bytes );
  383. __m128i low = _mm_and_si128( lowMask, bytes );
  384. high = _mm_slli_epi16( high, 4 );
  385. bytes = _mm_or_si128( low, high );
  386. return bytes;
  387. }
  388. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  389. {
  390. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  391. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  392. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  393. __m128i low = _mm_and_si128( lowByte, bytes1 );
  394. high = _mm_srli_epi16( high, 4 );
  395. bytes1 = _mm_or_si128( low, high );
  396. high = _mm_andnot_si128( lowByte, bytes2 );
  397. low = _mm_and_si128( lowByte, bytes2 );
  398. high = _mm_srli_epi16( high, 4 );
  399. bytes2 = _mm_or_si128( low, high );
  400. return _mm_packus_epi16( bytes1, bytes2);
  401. }
  402. #endif
  403. // method 5
  404. // blocks of QK elements
  405. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  406. typedef struct {
  407. float d; // delta
  408. uint8_t qs[QK / 2]; // nibbles / quants
  409. } block_q4_0;
  410. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  411. // method 4
  412. // blocks of QK elements
  413. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  414. typedef struct {
  415. float d;
  416. float m;
  417. uint8_t qs[QK / 2]; // nibbles / quants
  418. } block_q4_1;
  419. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  420. // reference implementation for deterministic creation of model files
  421. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  422. assert(k % QK == 0);
  423. const int nb = k / QK;
  424. uint8_t pp[QK/2];
  425. for (int i = 0; i < nb; i++) {
  426. float amax = 0.0f; // absolute max
  427. for (int l = 0; l < QK; l++) {
  428. const float v = x[i*QK + l];
  429. amax = MAX(amax, fabsf(v));
  430. }
  431. const float d = amax / ((1 << 3) - 1);
  432. const float id = d ? 1.0f/d : 0.0f;
  433. y[i].d = d;
  434. for (int l = 0; l < QK; l += 2) {
  435. const float v0 = x[i*QK + l + 0]*id;
  436. const float v1 = x[i*QK + l + 1]*id;
  437. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  438. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  439. assert(vi0 < 16);
  440. assert(vi1 < 16);
  441. pp[l/2] = vi0 | (vi1 << 4);
  442. }
  443. memcpy(y[i].qs, pp, sizeof(pp));
  444. }
  445. }
  446. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  447. assert(k % QK == 0);
  448. const int nb = k / QK;
  449. block_q4_0 * restrict y = vy;
  450. #if defined(__POWER9_VECTOR__)
  451. const vector float v85 = vec_splats(8.5f);
  452. for (int i = 0; i < nb; i++) {
  453. float amax = 0.0f; // absolute max
  454. vector float srcv [8];
  455. vector float asrcv[8];
  456. vector float amaxv[8];
  457. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  458. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  459. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  460. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  461. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  462. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  463. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  464. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  465. amax = MAX(
  466. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  467. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  468. const float d = amax / ((1 << 3) - 1);
  469. const float id = d ? 1.0/d : 0.0;
  470. y[i].d = d;
  471. const vector float vid = vec_splats(id);
  472. uint8_t * restrict pb = y[i].qs;
  473. for (int l = 0; l < 8; l++) {
  474. const vector float vf = vec_madd(srcv[l], vid, v85);
  475. const vector signed int vi = vec_signed(vf);
  476. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  477. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  478. }
  479. }
  480. #elif __ARM_NEON
  481. for (int i = 0; i < nb; i++) {
  482. float32x4_t srcv [8];
  483. float32x4_t asrcv[8];
  484. float32x4_t amaxv[8];
  485. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  486. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  487. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  488. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  489. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  490. const float amax = vmaxvq_f32(amaxv[0]);
  491. const float d = amax / ((1 << 3) - 1);
  492. const float id = d ? 1.0f/d : 0.0f;
  493. y[i].d = d;
  494. for (int l = 0; l < 8; l++) {
  495. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  496. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  497. const int32x4_t vi = vcvtq_s32_f32(vf);
  498. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  499. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  500. }
  501. }
  502. #elif defined(__AVX2__)
  503. for (int i = 0; i < nb; i++) {
  504. // Load elements into 4 AVX vectors
  505. __m256 v0 = _mm256_loadu_ps( x );
  506. __m256 v1 = _mm256_loadu_ps( x + 8 );
  507. __m256 v2 = _mm256_loadu_ps( x + 16 );
  508. __m256 v3 = _mm256_loadu_ps( x + 24 );
  509. x += 32;
  510. // Compute max(abs(e)) for the block
  511. const __m256 signBit = _mm256_set1_ps( -0.0f );
  512. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  513. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  514. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  515. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  516. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  517. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  518. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  519. const float maxScalar = _mm_cvtss_f32( max4 );
  520. // Quantize these floats
  521. const float d = maxScalar / 7.0f;
  522. y[i].d = d;
  523. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  524. const __m256 mul = _mm256_set1_ps( id );
  525. // Apply the multiplier
  526. v0 = _mm256_mul_ps( v0, mul );
  527. v1 = _mm256_mul_ps( v1, mul );
  528. v2 = _mm256_mul_ps( v2, mul );
  529. v3 = _mm256_mul_ps( v3, mul );
  530. // Round to nearest integer
  531. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  532. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  533. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  534. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  535. // Convert floats to integers
  536. __m256i i0 = _mm256_cvtps_epi32( v0 );
  537. __m256i i1 = _mm256_cvtps_epi32( v1 );
  538. __m256i i2 = _mm256_cvtps_epi32( v2 );
  539. __m256i i3 = _mm256_cvtps_epi32( v3 );
  540. // Convert int32 to int16
  541. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  542. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  543. // Convert int16 to int8
  544. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  545. // We got our precious signed bytes, but the order is now wrong
  546. // These AVX2 pack instructions process 16-byte pieces independently
  547. // The following instruction is fixing the order
  548. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  549. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  550. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  551. const __m256i off = _mm256_set1_epi8( 8 );
  552. i0 = _mm256_add_epi8( i0, off );
  553. // Compress the vector into 4 bit/value, and store
  554. __m128i res = packNibbles( i0 );
  555. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  556. }
  557. #elif defined(__AVX__)
  558. for (int i = 0; i < nb; i++) {
  559. // Load elements into 4 AVX vectors
  560. __m256 v0 = _mm256_loadu_ps( x );
  561. __m256 v1 = _mm256_loadu_ps( x + 8 );
  562. __m256 v2 = _mm256_loadu_ps( x + 16 );
  563. __m256 v3 = _mm256_loadu_ps( x + 24 );
  564. x += 32;
  565. // Compute max(abs(e)) for the block
  566. const __m256 signBit = _mm256_set1_ps( -0.0f );
  567. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  568. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  569. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  570. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  571. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  572. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  573. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  574. const float maxScalar = _mm_cvtss_f32( max4 );
  575. // Quantize these floats
  576. const float d = maxScalar / 7.0f;
  577. y[i].d = d;
  578. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  579. const __m256 mul = _mm256_set1_ps( id );
  580. // Apply the multiplier
  581. v0 = _mm256_mul_ps( v0, mul );
  582. v1 = _mm256_mul_ps( v1, mul );
  583. v2 = _mm256_mul_ps( v2, mul );
  584. v3 = _mm256_mul_ps( v3, mul );
  585. // Round to nearest integer
  586. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  587. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  588. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  589. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  590. // Convert floats to integers
  591. __m256i i0 = _mm256_cvtps_epi32( v0 );
  592. __m256i i1 = _mm256_cvtps_epi32( v1 );
  593. __m256i i2 = _mm256_cvtps_epi32( v2 );
  594. __m256i i3 = _mm256_cvtps_epi32( v3 );
  595. // Since we don't have in AVX some necessary functions,
  596. // we split the registers in half and call AVX2 analogs from SSE
  597. __m128i ni0 = _mm256_castsi256_si128( i0 );
  598. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  599. __m128i ni2 = _mm256_castsi256_si128( i1 );
  600. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  601. __m128i ni4 = _mm256_castsi256_si128( i2 );
  602. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  603. __m128i ni6 = _mm256_castsi256_si128( i3 );
  604. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  605. // Convert int32 to int16
  606. ni0 = _mm_packs_epi32( ni0, ni1 );
  607. ni2 = _mm_packs_epi32( ni2, ni3 );
  608. ni4 = _mm_packs_epi32( ni4, ni5 );
  609. ni6 = _mm_packs_epi32( ni6, ni7 );
  610. // Convert int16 to int8
  611. ni0 = _mm_packs_epi16( ni0, ni2 );
  612. ni4 = _mm_packs_epi16( ni4, ni6 );
  613. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  614. const __m128i off = _mm_set1_epi8( 8);
  615. ni0 = _mm_add_epi8( ni0, off );
  616. ni4 = _mm_add_epi8( ni4, off );
  617. // Compress the vector into 4 bit/value, and store
  618. __m128i res = packNibbles( ni0, ni4 );
  619. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  620. }
  621. #elif defined(__wasm_simd128__)
  622. for (int i = 0; i < nb; i++) {
  623. float amax = 0.0f; // absolute max
  624. v128_t srcv [8];
  625. v128_t asrcv[8];
  626. v128_t amaxv[8];
  627. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  628. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  629. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  630. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  631. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  632. amax = MAX(
  633. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  634. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  635. const float d = amax / ((1 << 3) - 1);
  636. const float id = d ? 1.0/d : 0.0;
  637. y[i].d = d;
  638. for (int l = 0; l < 8; l++) {
  639. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  640. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  641. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  642. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  643. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  644. }
  645. }
  646. #else
  647. // scalar
  648. quantize_row_q4_0_reference(x, y, k);
  649. #endif
  650. }
  651. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  652. assert(k % QK == 0);
  653. const int nb = k / QK;
  654. block_q4_1 * restrict y = vy;
  655. uint8_t pp[QK/2];
  656. for (int i = 0; i < nb; i++) {
  657. float min = FLT_MAX;
  658. float max = -FLT_MAX;
  659. for (int l = 0; l < QK; l++) {
  660. const float v = x[i*QK + l];
  661. if (v < min) min = v;
  662. if (v > max) max = v;
  663. }
  664. const float d = (max - min) / ((1 << 4) - 1);
  665. const float id = d ? 1.0f/d : 0.0f;
  666. y[i].d = d;
  667. y[i].m = min;
  668. for (int l = 0; l < QK; l += 2) {
  669. const float v0 = (x[i*QK + l + 0] - min)*id;
  670. const float v1 = (x[i*QK + l + 1] - min)*id;
  671. const uint8_t vi0 = roundf(v0);
  672. const uint8_t vi1 = roundf(v1);
  673. assert(vi0 < 16);
  674. assert(vi1 < 16);
  675. pp[l/2] = vi0 | (vi1 << 4);
  676. }
  677. memcpy(y[i].qs, pp, sizeof(pp));
  678. }
  679. }
  680. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  681. assert(k % QK == 0);
  682. const int nb = k / QK;
  683. block_q4_1 * restrict y = vy;
  684. #if defined(__AVX2__)
  685. for (int i = 0; i < nb; i++) {
  686. // Load elements into 4 AVX vectors
  687. __m256 v0 = _mm256_loadu_ps( x );
  688. __m256 v1 = _mm256_loadu_ps( x + 8 );
  689. __m256 v2 = _mm256_loadu_ps( x + 16 );
  690. __m256 v3 = _mm256_loadu_ps( x + 24 );
  691. x += 32;
  692. // Compute max for the block
  693. __m256 vmax;
  694. vmax = _mm256_max_ps( v0, v1 );
  695. vmax = _mm256_max_ps( vmax, v2 );
  696. vmax = _mm256_max_ps( vmax, v3 );
  697. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  698. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  699. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  700. const float maxScalar = _mm_cvtss_f32( max4 );
  701. // Compute min for the block
  702. __m256 vmin;
  703. vmin = _mm256_min_ps( v0, v1 );
  704. vmin = _mm256_min_ps( vmin, v2 );
  705. vmin = _mm256_min_ps( vmin, v3 );
  706. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  707. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  708. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  709. const float minScalar = _mm_cvtss_f32( min4 );
  710. // Quantize these floats
  711. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  712. const float id = d ? 1.0f/d : 0.0f;
  713. y[i].m = minScalar;
  714. y[i].d = d;
  715. // x = (x-min)*id
  716. const __m256 mul = _mm256_set1_ps( id );
  717. const __m256 off = _mm256_set1_ps( minScalar );
  718. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  719. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  720. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  721. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  722. // Round to nearest integer
  723. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  724. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  725. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  726. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  727. // Convert floats to integers
  728. __m256i i0 = _mm256_cvtps_epi32( v0 );
  729. __m256i i1 = _mm256_cvtps_epi32( v1 );
  730. __m256i i2 = _mm256_cvtps_epi32( v2 );
  731. __m256i i3 = _mm256_cvtps_epi32( v3 );
  732. // Convert int32 to int16
  733. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  734. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  735. // Convert int16 to int8
  736. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  737. // We got our precious signed bytes, but the order is now wrong
  738. // These AVX2 pack instructions process 16-byte pieces independently
  739. // The following instruction is fixing the order
  740. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  741. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  742. // Compress the vector into 4 bit/value, and store
  743. __m128i res = packNibbles( i0 );
  744. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  745. }
  746. #elif __ARM_NEON
  747. for (int i = 0; i < nb; i++) {
  748. float32x4_t srcv[8];
  749. float32x4_t minv[8];
  750. float32x4_t maxv[8];
  751. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l);
  752. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  753. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  754. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  755. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  756. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  757. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  758. const float min = vminvq_f32(minv[0]);
  759. const float max = vmaxvq_f32(maxv[0]);
  760. const float d = (max - min) / ((1 << 4) - 1);
  761. const float id = d ? 1.0f/d : 0.0f;
  762. y[i].d = d;
  763. y[i].m = min;
  764. const float32x4_t minv0 = vdupq_n_f32(min);
  765. for (int l = 0; l < 8; l++) {
  766. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  767. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  768. const int32x4_t vi = vcvtq_s32_f32(vf);
  769. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  770. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  771. }
  772. }
  773. #else
  774. // scalar
  775. quantize_row_q4_1_reference(x, vy, k);
  776. #endif
  777. }
  778. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  779. assert(k % QK == 0);
  780. const int nb = k / QK;
  781. const block_q4_0 * restrict x = vx;
  782. #if defined(__AVX2__)
  783. for (int i = 0; i < nb; i++) {
  784. // scale factor
  785. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  786. const uint8_t * restrict pp = x[i].qs;
  787. for (int l = 0; l < QK; l += 32) {
  788. // Load 32x4-bit integers into 32x8-bit integers
  789. __m256i vx8 = bytesFromNibbles(pp+l/2);
  790. // Subtract 8 from the integers
  791. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  792. // Convert to 16-bit int
  793. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  794. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  795. // Convert to 32-bit int -> float 32
  796. const __m256 vf[4] = {
  797. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  798. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  799. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  800. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  801. };
  802. // Scale and store
  803. for (int j = 0; j < 4; j++) {
  804. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  805. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  806. }
  807. }
  808. }
  809. #elif defined(__ARM_NEON)
  810. for (int i = 0; i < nb; i++) {
  811. const float32x4_t vd = vdupq_n_f32(x[i].d);
  812. const uint8_t * restrict pp = x[i].qs;
  813. for (int l = 0; l < QK; l += 16) {
  814. // Load 16x4-bit integers into 8x8-bit integers
  815. const uint8x8_t v8 = vld1_u8(pp + l/2);
  816. // Expand 4-bit qs to 8-bit bytes
  817. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  818. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  819. // Convert to signed 8-bit integers
  820. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  821. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  822. // Subtract 8 from each byte
  823. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  824. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  825. // Interleave and combine
  826. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  827. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  828. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  829. // convert to 2x int16x8_t
  830. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  831. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  832. // convert to 4x float32x4_t
  833. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  834. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  835. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  836. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  837. // Multiply by d
  838. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  839. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  840. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  841. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  842. // Store
  843. vst1q_f32(y + i*QK + l + 0, r0);
  844. vst1q_f32(y + i*QK + l + 4, r1);
  845. vst1q_f32(y + i*QK + l + 8, r2);
  846. vst1q_f32(y + i*QK + l + 12, r3);
  847. }
  848. }
  849. #else
  850. // scalar
  851. for (int i = 0; i < nb; i++) {
  852. const float d = x[i].d;
  853. const uint8_t * restrict pp = x[i].qs;
  854. for (int l = 0; l < QK; l += 2) {
  855. const uint8_t vi = pp[l/2];
  856. const int8_t vi0 = vi & 0xf;
  857. const int8_t vi1 = vi >> 4;
  858. const float v0 = (vi0 - 8)*d;
  859. const float v1 = (vi1 - 8)*d;
  860. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  861. y[i*QK + l + 0] = v0;
  862. y[i*QK + l + 1] = v1;
  863. assert(!isnan(y[i*QK + l + 0]));
  864. assert(!isnan(y[i*QK + l + 1]));
  865. }
  866. }
  867. #endif
  868. }
  869. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  870. assert(k % QK == 0);
  871. const int nb = k / QK;
  872. const block_q4_1 * restrict x = vx;
  873. #if defined(__AVX2__)
  874. for (int i = 0; i < nb; i++) {
  875. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  876. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  877. const uint8_t * restrict pp = x[i].qs;
  878. for (int l = 0; l < QK; l += 32) {
  879. // Load 32x4-bit integers into 32x8-bit integers
  880. __m256i vx8 = bytesFromNibbles(pp+l/2);
  881. // Convert to 16-bit int
  882. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  883. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  884. // Convert to 32-bit int -> float 32
  885. const __m256 vf[4] = {
  886. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  887. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  888. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  889. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  890. };
  891. // Scale, add m and store
  892. for (int j = 0; j < 4; j++) {
  893. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  894. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  895. }
  896. }
  897. }
  898. #elif defined(__ARM_NEON)
  899. for (int i = 0; i < nb; i++) {
  900. const float32x4_t vd = vdupq_n_f32(x[i].d);
  901. const float32x4_t vm = vdupq_n_f32(x[i].m);
  902. const uint8_t * restrict pp = x[i].qs;
  903. for (int l = 0; l < QK; l += 16) {
  904. // Load 16x4-bit integers into 8x8-bit integers
  905. const uint8x8_t v8 = vld1_u8(pp + l/2);
  906. // Expand 4-bit qs to 8-bit bytes
  907. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  908. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  909. // Interleave and combine
  910. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  911. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  912. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  913. // convert to 2x uint16x8_t
  914. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  915. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  916. // convert to 4x float32x4_t
  917. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  918. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  919. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  920. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  921. // multiply by d and add m
  922. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  923. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  924. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  925. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  926. // Store
  927. vst1q_f32(y + i*QK + l + 0, r0);
  928. vst1q_f32(y + i*QK + l + 4, r1);
  929. vst1q_f32(y + i*QK + l + 8, r2);
  930. vst1q_f32(y + i*QK + l + 12, r3);
  931. }
  932. }
  933. #else
  934. for (int i = 0; i < nb; i++) {
  935. const float d = x[i].d;
  936. const float m = x[i].m;
  937. const uint8_t * restrict pp = x[i].qs;
  938. for (int l = 0; l < QK; l += 2) {
  939. const uint8_t vi = pp[l/2];
  940. const int8_t vi0 = vi & 0xf;
  941. const int8_t vi1 = vi >> 4;
  942. const float v0 = vi0*d + m;
  943. const float v1 = vi1*d + m;
  944. y[i*QK + l + 0] = v0;
  945. y[i*QK + l + 1] = v1;
  946. assert(!isnan(y[i*QK + l + 0]));
  947. assert(!isnan(y[i*QK + l + 1]));
  948. }
  949. }
  950. #endif
  951. }
  952. //
  953. // simd mappings
  954. //
  955. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  956. // we then implement the fundamental computation operations below using only these macros
  957. // adding support for new architectures requires to define the corresponding SIMD macros
  958. //
  959. // GGML_F32_STEP / GGML_F16_STEP
  960. // number of elements to process in a single step
  961. //
  962. // GGML_F32_EPR / GGML_F16_EPR
  963. // number of elements to fit in a single register
  964. //
  965. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  966. #define GGML_SIMD
  967. // F32 NEON
  968. #define GGML_F32_STEP 16
  969. #define GGML_F32_EPR 4
  970. #define GGML_F32x4 float32x4_t
  971. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  972. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  973. #define GGML_F32x4_LOAD vld1q_f32
  974. #define GGML_F32x4_STORE vst1q_f32
  975. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  976. #define GGML_F32x4_ADD vaddq_f32
  977. #define GGML_F32x4_MUL vmulq_f32
  978. #if defined(__ARM_FEATURE_QRDMX)
  979. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  980. #else
  981. #define GGML_F32x4_REDUCE_ONE(x) \
  982. (vgetq_lane_f32(x, 0) + \
  983. vgetq_lane_f32(x, 1) + \
  984. vgetq_lane_f32(x, 2) + \
  985. vgetq_lane_f32(x, 3))
  986. #endif
  987. #define GGML_F32x4_REDUCE(res, x) \
  988. { \
  989. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  990. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  991. } \
  992. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  993. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  994. } \
  995. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  996. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  997. } \
  998. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  999. }
  1000. #define GGML_F32_VEC GGML_F32x4
  1001. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1002. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1003. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1004. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1005. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1006. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1007. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1008. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1009. // F16 NEON
  1010. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1011. #define GGML_F16_STEP 32
  1012. #define GGML_F16_EPR 8
  1013. #define GGML_F16x8 float16x8_t
  1014. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1015. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1016. #define GGML_F16x8_LOAD vld1q_f16
  1017. #define GGML_F16x8_STORE vst1q_f16
  1018. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1019. #define GGML_F16x8_ADD vaddq_f16
  1020. #define GGML_F16x8_MUL vmulq_f16
  1021. #define GGML_F16x8_REDUCE(res, x) \
  1022. { \
  1023. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1024. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1025. } \
  1026. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1027. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1028. } \
  1029. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1030. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1031. } \
  1032. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1033. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1034. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1035. }
  1036. #define GGML_F16_VEC GGML_F16x8
  1037. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1038. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1039. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1040. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1041. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1042. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1043. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1044. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1045. #else
  1046. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1047. // and take advantage of the vcvt_ functions to convert to/from FP16
  1048. #define GGML_F16_STEP 16
  1049. #define GGML_F16_EPR 4
  1050. #define GGML_F32Cx4 float32x4_t
  1051. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1052. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1053. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1054. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1055. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1056. #define GGML_F32Cx4_ADD vaddq_f32
  1057. #define GGML_F32Cx4_MUL vmulq_f32
  1058. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1059. #define GGML_F16_VEC GGML_F32Cx4
  1060. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1061. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1062. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1063. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1064. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1065. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1066. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1067. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1068. #endif
  1069. #elif defined(__AVX__)
  1070. #define GGML_SIMD
  1071. // F32 AVX
  1072. #define GGML_F32_STEP 32
  1073. #define GGML_F32_EPR 8
  1074. #define GGML_F32x8 __m256
  1075. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1076. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1077. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1078. #define GGML_F32x8_STORE _mm256_storeu_ps
  1079. #if defined(__FMA__)
  1080. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1081. #else
  1082. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1083. #endif
  1084. #define GGML_F32x8_ADD _mm256_add_ps
  1085. #define GGML_F32x8_MUL _mm256_mul_ps
  1086. #define GGML_F32x8_REDUCE(res, x) \
  1087. { \
  1088. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1089. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1090. } \
  1091. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1092. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1093. } \
  1094. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1095. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1096. } \
  1097. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1098. _mm256_extractf128_ps(x[0], 1)); \
  1099. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1100. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1101. }
  1102. // TODO: is this optimal ?
  1103. #define GGML_F32_VEC GGML_F32x8
  1104. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1105. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1106. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1107. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1108. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1109. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1110. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1111. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1112. // F16 AVX
  1113. #define GGML_F16_STEP 32
  1114. #define GGML_F16_EPR 8
  1115. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1116. #define GGML_F32Cx8 __m256
  1117. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1118. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1119. #if defined(__F16C__)
  1120. // the _mm256_cvt intrinsics require F16C
  1121. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1122. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1123. #else
  1124. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1125. float tmp[8];
  1126. for (int i = 0; i < 8; i++)
  1127. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1128. return _mm256_loadu_ps(tmp);
  1129. }
  1130. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1131. float arr[8];
  1132. _mm256_storeu_ps(arr, y);
  1133. for (int i = 0; i < 8; i++)
  1134. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1135. }
  1136. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1137. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1138. #endif
  1139. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1140. #define GGML_F32Cx8_ADD _mm256_add_ps
  1141. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1142. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1143. #define GGML_F16_VEC GGML_F32Cx8
  1144. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1145. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1146. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1147. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1148. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1149. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1150. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1151. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1152. #elif defined(__POWER9_VECTOR__)
  1153. #define GGML_SIMD
  1154. // F32 POWER9
  1155. #define GGML_F32_STEP 32
  1156. #define GGML_F32_EPR 4
  1157. #define GGML_F32x4 vector float
  1158. #define GGML_F32x4_ZERO 0.0f
  1159. #define GGML_F32x4_SET1 vec_splats
  1160. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1161. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1162. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1163. #define GGML_F32x4_ADD vec_add
  1164. #define GGML_F32x4_MUL vec_mul
  1165. #define GGML_F32x4_REDUCE(res, x) \
  1166. { \
  1167. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1168. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1169. } \
  1170. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1171. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1172. } \
  1173. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1174. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1175. } \
  1176. res = vec_extract(x[0], 0) + \
  1177. vec_extract(x[0], 1) + \
  1178. vec_extract(x[0], 2) + \
  1179. vec_extract(x[0], 3); \
  1180. }
  1181. #define GGML_F32_VEC GGML_F32x4
  1182. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1183. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1184. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1185. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1186. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1187. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1188. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1189. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1190. // F16 POWER9
  1191. #define GGML_F16_STEP GGML_F32_STEP
  1192. #define GGML_F16_EPR GGML_F32_EPR
  1193. #define GGML_F16_VEC GGML_F32x4
  1194. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1195. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1196. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1197. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1198. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1199. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1200. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1201. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1202. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1203. #define GGML_F16_VEC_STORE(p, r, i) \
  1204. if (i & 0x1) \
  1205. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1206. r[i - GGML_ENDIAN_BYTE(0)]), \
  1207. 0, p - GGML_F16_EPR)
  1208. #elif defined(__wasm_simd128__)
  1209. #define GGML_SIMD
  1210. // F32 WASM
  1211. #define GGML_F32_STEP 16
  1212. #define GGML_F32_EPR 4
  1213. #define GGML_F32x4 v128_t
  1214. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1215. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1216. #define GGML_F32x4_LOAD wasm_v128_load
  1217. #define GGML_F32x4_STORE wasm_v128_store
  1218. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1219. #define GGML_F32x4_ADD wasm_f32x4_add
  1220. #define GGML_F32x4_MUL wasm_f32x4_mul
  1221. #define GGML_F32x4_REDUCE(res, x) \
  1222. { \
  1223. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1224. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1225. } \
  1226. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1227. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1228. } \
  1229. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1230. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1231. } \
  1232. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1233. wasm_f32x4_extract_lane(x[0], 1) + \
  1234. wasm_f32x4_extract_lane(x[0], 2) + \
  1235. wasm_f32x4_extract_lane(x[0], 3); \
  1236. }
  1237. #define GGML_F32_VEC GGML_F32x4
  1238. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1239. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1240. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1241. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1242. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1243. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1244. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1245. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1246. // F16 WASM
  1247. #define GGML_F16_STEP 16
  1248. #define GGML_F16_EPR 4
  1249. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1250. float tmp[4];
  1251. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1252. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1253. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1254. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1255. return wasm_v128_load(tmp);
  1256. }
  1257. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1258. float tmp[4];
  1259. wasm_v128_store(tmp, x);
  1260. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1261. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1262. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1263. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1264. }
  1265. #define GGML_F16x4 v128_t
  1266. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1267. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1268. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1269. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1270. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1271. #define GGML_F16x4_ADD wasm_f32x4_add
  1272. #define GGML_F16x4_MUL wasm_f32x4_mul
  1273. #define GGML_F16x4_REDUCE(res, x) \
  1274. { \
  1275. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1276. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1277. } \
  1278. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1279. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1280. } \
  1281. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1282. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1283. } \
  1284. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1285. wasm_f32x4_extract_lane(x[0], 1) + \
  1286. wasm_f32x4_extract_lane(x[0], 2) + \
  1287. wasm_f32x4_extract_lane(x[0], 3); \
  1288. }
  1289. #define GGML_F16_VEC GGML_F16x4
  1290. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1291. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1292. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1293. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1294. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1295. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1296. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1297. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1298. #elif defined(__SSE3__)
  1299. #define GGML_SIMD
  1300. // F32 SSE
  1301. #define GGML_F32_STEP 32
  1302. #define GGML_F32_EPR 4
  1303. #define GGML_F32x4 __m128
  1304. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1305. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1306. #define GGML_F32x4_LOAD _mm_loadu_ps
  1307. #define GGML_F32x4_STORE _mm_storeu_ps
  1308. #if defined(__FMA__)
  1309. // TODO: Does this work?
  1310. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1311. #else
  1312. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1313. #endif
  1314. #define GGML_F32x4_ADD _mm_add_ps
  1315. #define GGML_F32x4_MUL _mm_mul_ps
  1316. #define GGML_F32x4_REDUCE(res, x) \
  1317. { \
  1318. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1319. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1320. } \
  1321. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1322. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1323. } \
  1324. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1325. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1326. } \
  1327. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1328. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1329. }
  1330. // TODO: is this optimal ?
  1331. #define GGML_F32_VEC GGML_F32x4
  1332. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1333. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1334. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1335. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1336. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1337. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1338. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1339. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1340. // F16 SSE
  1341. #define GGML_F16_STEP 32
  1342. #define GGML_F16_EPR 4
  1343. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1344. float tmp[4];
  1345. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1346. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1347. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1348. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1349. return _mm_loadu_ps(tmp);
  1350. }
  1351. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1352. float arr[4];
  1353. _mm_storeu_ps(arr, y);
  1354. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1355. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1356. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1357. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1358. }
  1359. #define GGML_F32Cx4 __m128
  1360. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1361. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1362. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1363. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1364. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1365. #define GGML_F32Cx4_ADD _mm_add_ps
  1366. #define GGML_F32Cx4_MUL _mm_mul_ps
  1367. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1368. #define GGML_F16_VEC GGML_F32Cx4
  1369. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1370. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1371. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1372. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1373. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1374. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1375. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1376. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1377. #endif
  1378. // GGML_F32_ARR / GGML_F16_ARR
  1379. // number of registers to use per step
  1380. #ifdef GGML_SIMD
  1381. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1382. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1383. #endif
  1384. //
  1385. // fundamental operations
  1386. //
  1387. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1388. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1389. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1390. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1391. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1392. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1393. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1394. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1395. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1396. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1397. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1398. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1399. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1400. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1401. #ifdef GGML_SIMD
  1402. float sumf = 0.0f;
  1403. const int np = (n & ~(GGML_F32_STEP - 1));
  1404. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1405. GGML_F32_VEC ax[GGML_F32_ARR];
  1406. GGML_F32_VEC ay[GGML_F32_ARR];
  1407. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1408. for (int j = 0; j < GGML_F32_ARR; j++) {
  1409. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1410. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1411. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1412. }
  1413. }
  1414. // reduce sum0..sum3 to sum0
  1415. GGML_F32_VEC_REDUCE(sumf, sum);
  1416. // leftovers
  1417. for (int i = np; i < n; ++i) {
  1418. sumf += x[i]*y[i];
  1419. }
  1420. #else
  1421. // scalar
  1422. ggml_float sumf = 0.0;
  1423. for (int i = 0; i < n; ++i) {
  1424. sumf += (ggml_float)(x[i]*y[i]);
  1425. }
  1426. #endif
  1427. *s = sumf;
  1428. }
  1429. #if __AVX512F__ && QK == 32
  1430. static inline __m512 dot_q4_0_oneblock_avx512(
  1431. __m512 acc,
  1432. const block_q4_0 * restrict x,
  1433. const block_q4_0 * restrict y,
  1434. int i
  1435. ) {
  1436. // Compute combined scale for the block
  1437. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1438. __m256i bx = bytesFromNibbles( x[i].qs );
  1439. __m256i by = bytesFromNibbles( y[i].qs );
  1440. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1441. const __m256i off = _mm256_set1_epi8( 8 );
  1442. bx = _mm256_sub_epi8( bx, off );
  1443. by = _mm256_sub_epi8( by, off );
  1444. // Sign-extend 16 signed bytes into int16_t
  1445. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1446. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1447. // Compute products of int16_t integers, add pairwise
  1448. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1449. // Convert int32_t to float
  1450. __m512 p = _mm512_cvtepi32_ps( i64 );
  1451. // Apply the scale, and accumulate
  1452. return _mm512_fmadd_ps( d, p, acc );
  1453. }
  1454. #endif
  1455. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1456. ggml_float sumf = 0.0;
  1457. #if defined(GGML_SIMD)
  1458. const int np = (n & ~(GGML_F16_STEP - 1));
  1459. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1460. GGML_F16_VEC ax[GGML_F16_ARR];
  1461. GGML_F16_VEC ay[GGML_F16_ARR];
  1462. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1463. for (int j = 0; j < GGML_F16_ARR; j++) {
  1464. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1465. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1466. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1467. }
  1468. }
  1469. // reduce sum0..sum3 to sum0
  1470. GGML_F16_VEC_REDUCE(sumf, sum);
  1471. // leftovers
  1472. for (int i = np; i < n; ++i) {
  1473. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1474. }
  1475. #else
  1476. for (int i = 0; i < n; ++i) {
  1477. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1478. }
  1479. #endif
  1480. *s = sumf;
  1481. }
  1482. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1483. const int nb = n / QK;
  1484. assert(n % QK == 0);
  1485. assert(nb % 2 == 0);
  1486. const block_q4_0 * restrict x = vx;
  1487. const block_q4_0 * restrict y = vy;
  1488. float sumf = 0.0;
  1489. #if defined(__ARM_NEON)
  1490. float sum0 = 0.0f;
  1491. float sum1 = 0.0f;
  1492. for (int i = 0; i < nb; i += 2) {
  1493. const block_q4_0 * restrict x0 = &x[i + 0];
  1494. const block_q4_0 * restrict y0 = &y[i + 0];
  1495. const block_q4_0 * restrict x1 = &x[i + 1];
  1496. const block_q4_0 * restrict y1 = &y[i + 1];
  1497. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1498. const int8x16_t s8b = vdupq_n_s8(0x8);
  1499. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1500. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1501. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1502. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1503. // 4-bit -> 8-bit
  1504. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1505. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1506. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1507. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1508. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1509. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1510. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1511. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1512. // sub 8
  1513. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1514. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1515. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1516. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1517. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1518. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1519. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1520. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1521. #if defined(__ARM_FEATURE_DOTPROD)
  1522. // dot product into int16x8_t
  1523. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1524. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1525. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1526. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1527. // scalar
  1528. #if defined(__ARM_FEATURE_QRDMX)
  1529. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1530. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1531. #else
  1532. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1533. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1534. #endif
  1535. #else
  1536. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1537. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1538. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1539. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1540. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1541. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1542. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1543. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1544. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1545. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1546. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1547. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1548. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1549. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1550. // scalar
  1551. #if defined(__ARM_FEATURE_QRDMX)
  1552. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1553. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1554. #else
  1555. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1556. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1557. #endif
  1558. #endif
  1559. }
  1560. sumf = sum0 + sum1;
  1561. #elif defined(__AVX512F__)
  1562. // Initialize accumulator with zeros
  1563. __m512 acc0 = _mm512_setzero_ps();
  1564. __m512 acc1 = _mm512_setzero_ps();
  1565. const int superblock_size = 8;
  1566. const int superblock_count = nb / superblock_size;
  1567. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1568. int i = superblock_ix * superblock_size;
  1569. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1570. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1571. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1572. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1573. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1574. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1575. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1576. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1577. }
  1578. // Remainders
  1579. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1580. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1581. }
  1582. // Horizontal sum of all lanes of the accumulator
  1583. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1584. #elif defined(__AVX2__)
  1585. // Initialize accumulator with zeros
  1586. __m256 acc = _mm256_setzero_ps();
  1587. /* Prepare the constants we will need during execution */
  1588. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1589. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1590. #define UNROLL_COUNT 8
  1591. // make sure we only unroll multiples of the block count
  1592. assert(nb % UNROLL_COUNT == 0);
  1593. // Main loop
  1594. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1595. // This loop will be unrolled by the compiler
  1596. for (int u=0;u<UNROLL_COUNT;u++) {
  1597. /* Compute combined scale for the block */
  1598. const __m256 scale = _mm256_mul_ps(
  1599. _mm256_broadcast_ss( &x[i+u].d ),
  1600. _mm256_broadcast_ss( &y[i+u].d ) );
  1601. /* get input from x
  1602. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1603. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1604. /* Load 16 bytes from memory */
  1605. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1606. /* Expand bytes into uint16_t values */
  1607. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1608. /* Unpack values into individual bytes */
  1609. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1610. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1611. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1612. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1613. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1614. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1615. /* get input from y
  1616. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1617. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1618. /* Load 16 bytes from memory */
  1619. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1620. /* Expand bytes into uint16_t values */
  1621. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1622. /* Unpack values into individual bytes */
  1623. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1624. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1625. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1626. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1627. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1628. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1629. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1630. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1631. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1632. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1633. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1634. /* Convert to vectore of 8 int32_t to 8 floats */
  1635. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1636. /* Multiply q with scale and accumulate */
  1637. acc = _mm256_fmadd_ps( scale, q, acc );
  1638. }
  1639. }
  1640. // Return horizontal sum of the acc vector
  1641. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1642. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1643. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1644. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1645. sumf = _mm_cvtss_f32( res );
  1646. #elif defined(__AVX__)
  1647. // Initialize accumulator with zeros
  1648. __m256 acc = _mm256_setzero_ps();
  1649. // Main loop
  1650. for (int i = 0; i < nb; ++i) {
  1651. // Compute combined scale for the block
  1652. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1653. __m128i i32[2];
  1654. for (int j = 0; j < 2; ++j) {
  1655. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1656. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1657. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1658. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1659. const __m128i off = _mm_set1_epi8( 8 );
  1660. bx = _mm_sub_epi8( bx, off );
  1661. by = _mm_sub_epi8( by, off );
  1662. // Get absolute values of x vectors
  1663. const __m128i ax = _mm_sign_epi8(bx, bx);
  1664. // Sign the values of the y vectors
  1665. const __m128i sy = _mm_sign_epi8(by, bx);
  1666. // Perform multiplication and create 16-bit values
  1667. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1668. const __m128i ones = _mm_set1_epi16(1);
  1669. i32[j] = _mm_madd_epi16(ones, dot);
  1670. }
  1671. // Convert int32_t to float
  1672. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1673. // Apply the scale, and accumulate
  1674. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1675. }
  1676. // Return horizontal sum of the acc vector
  1677. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1678. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1679. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1680. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1681. sumf = _mm_cvtss_f32( res );
  1682. #elif defined(__wasm_simd128__)
  1683. // wasm simd
  1684. float sum0 = 0.0f;
  1685. float sum1 = 0.0f;
  1686. for (int i = 0; i < nb; i += 2) {
  1687. const block_q4_0 * restrict x0 = &x[i + 0];
  1688. const block_q4_0 * restrict y0 = &y[i + 0];
  1689. const block_q4_0 * restrict x1 = &x[i + 1];
  1690. const block_q4_0 * restrict y1 = &y[i + 1];
  1691. const v128_t m4b = wasm_u8x16_splat(0xf);
  1692. const v128_t s8b = wasm_i8x16_splat(0x8);
  1693. const v128_t v0_0 = wasm_v128_load(x0->qs);
  1694. const v128_t v0_1 = wasm_v128_load(y0->qs);
  1695. const v128_t v1_0 = wasm_v128_load(x1->qs);
  1696. const v128_t v1_1 = wasm_v128_load(y1->qs);
  1697. // 4-bit -> 8-bit
  1698. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1699. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1700. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1701. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1702. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1703. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1704. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1705. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1706. // sub 8
  1707. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1708. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1709. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1710. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1711. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1712. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1713. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1714. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1715. // dot product into int16x8_t
  1716. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1717. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1718. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1719. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1720. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1721. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1722. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1723. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1724. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1725. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1726. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1727. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1728. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1729. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1730. sum0 += x0->d * y0->d * (
  1731. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1732. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1733. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1734. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1735. sum1 += x1->d * y1->d * (
  1736. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1737. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1738. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1739. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1740. }
  1741. sumf = sum0 + sum1;
  1742. #else
  1743. // scalar
  1744. for (int i = 0; i < nb; i++) {
  1745. const float d0 = x[i].d;
  1746. const float d1 = y[i].d;
  1747. const uint8_t * restrict p0 = x[i].qs;
  1748. const uint8_t * restrict p1 = y[i].qs;
  1749. for (int j = 0; j < QK/2; j++) {
  1750. const uint8_t v0 = p0[j];
  1751. const uint8_t v1 = p1[j];
  1752. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1753. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1754. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1755. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1756. sumf += f0*f2 + f1*f3;
  1757. }
  1758. }
  1759. #endif
  1760. *s = sumf;
  1761. }
  1762. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1763. const int nb = n / QK;
  1764. const block_q4_1 * restrict x = vx;
  1765. const block_q4_1 * restrict y = vy;
  1766. float sumf = 0.0;
  1767. #if defined(__AVX2__)
  1768. // Initialize accumulator with zeros
  1769. __m256 acc = _mm256_setzero_ps();
  1770. // Accumulator for constant offsets
  1771. float acc_offset = 0.0f;
  1772. // Main loop
  1773. for (int i = 0; i < nb; ++i) {
  1774. const float * d0 = &x[i].d;
  1775. const float * d1 = &y[i].d;
  1776. const float * m0 = &x[i].m;
  1777. const float * m1 = &y[i].m;
  1778. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1779. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1780. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1781. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1782. // Compute combined scale for the block
  1783. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1784. // Compute cross scales for the block
  1785. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1786. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1787. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1788. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1789. __m256i bx = bytesFromNibbles( x[i].qs );
  1790. __m256i by = bytesFromNibbles( y[i].qs );
  1791. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1792. // Sign-extend first 16 signed bytes into int16_t
  1793. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1794. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1795. // Compute products of int16_t integers, add pairwise
  1796. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1797. // Sign-extend last 16 signed bytes into int16_t vectors
  1798. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1799. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1800. // Accumulate products of int16_t integers
  1801. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1802. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1803. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1804. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1805. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1806. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1807. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1808. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1809. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1810. // Convert int32_t to float
  1811. __m256 p = _mm256_cvtepi32_ps( i32 );
  1812. // Apply the scale, and accumulate
  1813. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1814. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1815. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1816. // acc_offset += m0*m1 (for each entry in the block)
  1817. acc_offset += (*m0)*(*m1);
  1818. }
  1819. // Return horizontal sum of the acc vector
  1820. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1821. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1822. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1823. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1824. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1825. #elif defined(__ARM_NEON)
  1826. float sum00 = 0.0f;
  1827. float sum01 = 0.0f;
  1828. float sum10 = 0.0f;
  1829. float sum11 = 0.0f;
  1830. for (int i = 0; i < nb; ++i) {
  1831. const block_q4_1 * restrict x0 = &x[i + 0];
  1832. const block_q4_1 * restrict y0 = &y[i + 0];
  1833. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1834. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1835. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1836. // and with 0xf
  1837. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1838. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1839. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1840. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1841. // dot product into uint16x8_t
  1842. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1843. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1844. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1845. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1846. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1847. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1848. sum00 += x0->m*y0->m;
  1849. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1850. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1851. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1852. }
  1853. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1854. #else
  1855. // scalar
  1856. for (int i = 0; i < nb; i++) {
  1857. const float d0 = x[i].d;
  1858. const float d1 = y[i].d;
  1859. const float m0 = x[i].m;
  1860. const float m1 = y[i].m;
  1861. const uint8_t * restrict p0 = x[i].qs;
  1862. const uint8_t * restrict p1 = y[i].qs;
  1863. for (int j = 0; j < QK/2; j++) {
  1864. const uint8_t v0 = p0[j];
  1865. const uint8_t v1 = p1[j];
  1866. const float f0 = d0*(v0 & 0xf) + m0;
  1867. const float f1 = d0*(v0 >> 4) + m0;
  1868. const float f2 = d1*(v1 & 0xf) + m1;
  1869. const float f3 = d1*(v1 >> 4) + m1;
  1870. sumf += f0*f2 + f1*f3;
  1871. }
  1872. }
  1873. #endif
  1874. *s = sumf;
  1875. }
  1876. // compute GGML_VEC_DOT_UNROLL dot products at once
  1877. // xs - x row stride in bytes
  1878. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1879. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1880. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1881. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1882. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1883. }
  1884. #if defined(GGML_SIMD)
  1885. const int np = (n & ~(GGML_F16_STEP - 1));
  1886. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1887. GGML_F16_VEC ax[GGML_F16_ARR];
  1888. GGML_F16_VEC ay[GGML_F16_ARR];
  1889. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1890. for (int j = 0; j < GGML_F16_ARR; j++) {
  1891. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1892. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1893. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1894. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1895. }
  1896. }
  1897. }
  1898. // reduce sum0..sum3 to sum0
  1899. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1900. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1901. }
  1902. // leftovers
  1903. for (int i = np; i < n; ++i) {
  1904. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1905. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1906. }
  1907. }
  1908. #else
  1909. for (int i = 0; i < n; ++i) {
  1910. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1911. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1912. }
  1913. }
  1914. #endif
  1915. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1916. s[i] = sumf[i];
  1917. }
  1918. }
  1919. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1920. #if defined(GGML_SIMD)
  1921. const int np = (n & ~(GGML_F32_STEP - 1));
  1922. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1923. GGML_F32_VEC ax[GGML_F32_ARR];
  1924. GGML_F32_VEC ay[GGML_F32_ARR];
  1925. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1926. for (int j = 0; j < GGML_F32_ARR; j++) {
  1927. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1928. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1929. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1930. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1931. }
  1932. }
  1933. // leftovers
  1934. for (int i = np; i < n; ++i) {
  1935. y[i] += x[i]*v;
  1936. }
  1937. #else
  1938. // scalar
  1939. for (int i = 0; i < n; ++i) {
  1940. y[i] += x[i]*v;
  1941. }
  1942. #endif
  1943. }
  1944. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1945. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1946. #if defined(GGML_SIMD)
  1947. const int np = (n & ~(GGML_F32_STEP - 1));
  1948. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1949. GGML_F32_VEC ay[GGML_F32_ARR];
  1950. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1951. for (int j = 0; j < GGML_F32_ARR; j++) {
  1952. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1953. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1954. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1955. }
  1956. }
  1957. // leftovers
  1958. for (int i = np; i < n; ++i) {
  1959. y[i] *= v;
  1960. }
  1961. #else
  1962. // scalar
  1963. for (int i = 0; i < n; ++i) {
  1964. y[i] *= v;
  1965. }
  1966. #endif
  1967. }
  1968. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1969. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1970. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1971. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1972. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1973. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1974. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1975. static const float GELU_COEF_A = 0.044715f;
  1976. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1977. inline static float ggml_gelu_f32(float x) {
  1978. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1979. }
  1980. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1981. const uint16_t * i16 = (const uint16_t *) x;
  1982. for (int i = 0; i < n; ++i) {
  1983. y[i] = table_gelu_f16[i16[i]];
  1984. }
  1985. }
  1986. #ifdef GGML_GELU_FP16
  1987. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1988. uint16_t t;
  1989. for (int i = 0; i < n; ++i) {
  1990. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1991. memcpy(&t, &fp16, sizeof(uint16_t));
  1992. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1993. }
  1994. }
  1995. #else
  1996. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1997. for (int i = 0; i < n; ++i) {
  1998. y[i] = ggml_gelu_f32(x[i]);
  1999. }
  2000. }
  2001. #endif
  2002. // Sigmoid Linear Unit (SiLU) function
  2003. inline static float ggml_silu_f32(float x) {
  2004. return x/(1.0f + expf(-x));
  2005. }
  2006. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2007. const uint16_t * i16 = (const uint16_t *) x;
  2008. for (int i = 0; i < n; ++i) {
  2009. y[i] = table_silu_f16[i16[i]];
  2010. }
  2011. }
  2012. #ifdef GGML_SILU_FP16
  2013. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2014. uint16_t t;
  2015. for (int i = 0; i < n; ++i) {
  2016. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2017. memcpy(&t, &fp16, sizeof(uint16_t));
  2018. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2019. }
  2020. }
  2021. #else
  2022. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2023. for (int i = 0; i < n; ++i) {
  2024. y[i] = ggml_silu_f32(x[i]);
  2025. }
  2026. }
  2027. #endif
  2028. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2029. #ifndef GGML_USE_ACCELERATE
  2030. ggml_float sum = 0.0;
  2031. for (int i = 0; i < n; ++i) {
  2032. sum += (ggml_float)x[i];
  2033. }
  2034. *s = sum;
  2035. #else
  2036. vDSP_sve(x, 1, s, n);
  2037. #endif
  2038. }
  2039. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2040. #ifndef GGML_USE_ACCELERATE
  2041. float max = -INFINITY;
  2042. for (int i = 0; i < n; ++i) {
  2043. max = MAX(max, x[i]);
  2044. }
  2045. *s = max;
  2046. #else
  2047. vDSP_maxv(x, 1, s, n);
  2048. #endif
  2049. }
  2050. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2051. ggml_vec_norm_f32(n, s, x);
  2052. *s = 1.f/(*s);
  2053. }
  2054. //
  2055. // logging
  2056. //
  2057. #if (GGML_DEBUG >= 1)
  2058. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2059. #else
  2060. #define GGML_PRINT_DEBUG(...)
  2061. #endif
  2062. #if (GGML_DEBUG >= 5)
  2063. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2064. #else
  2065. #define GGML_PRINT_DEBUG_5(...)
  2066. #endif
  2067. #if (GGML_DEBUG >= 10)
  2068. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2069. #else
  2070. #define GGML_PRINT_DEBUG_10(...)
  2071. #endif
  2072. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2073. //
  2074. // data types
  2075. //
  2076. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2077. [GGML_TYPE_F32] = 1,
  2078. [GGML_TYPE_F16] = 1,
  2079. [GGML_TYPE_Q4_0] = QK,
  2080. [GGML_TYPE_Q4_1] = QK,
  2081. [GGML_TYPE_I8] = 1,
  2082. [GGML_TYPE_I16] = 1,
  2083. [GGML_TYPE_I32] = 1,
  2084. };
  2085. static_assert(GGML_TYPE_COUNT == 7, "GGML_BLCK_SIZE is outdated");
  2086. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2087. [GGML_TYPE_F32] = sizeof(float),
  2088. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2089. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2090. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2091. [GGML_TYPE_I8] = sizeof(int8_t),
  2092. [GGML_TYPE_I16] = sizeof(int16_t),
  2093. [GGML_TYPE_I32] = sizeof(int32_t),
  2094. };
  2095. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated");
  2096. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2097. "NONE",
  2098. "DUP",
  2099. "ADD",
  2100. "SUB",
  2101. "MUL",
  2102. "DIV",
  2103. "SQR",
  2104. "SQRT",
  2105. "SUM",
  2106. "MEAN",
  2107. "REPEAT",
  2108. "ABS",
  2109. "SGN",
  2110. "NEG",
  2111. "STEP",
  2112. "RELU",
  2113. "GELU",
  2114. "SILU",
  2115. "NORM",
  2116. "RMS_NORM",
  2117. "MUL_MAT",
  2118. "SCALE",
  2119. "CPY",
  2120. "CONT",
  2121. "RESHAPE",
  2122. "VIEW",
  2123. "PERMUTE",
  2124. "TRANSPOSE",
  2125. "GET_ROWS",
  2126. "DIAG_MASK_INF",
  2127. "SOFT_MAX",
  2128. "ROPE",
  2129. "CONV_1D_1S",
  2130. "CONV_1D_2S",
  2131. "FLASH_ATTN",
  2132. "FLASH_FF",
  2133. };
  2134. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2135. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2136. "none",
  2137. "x",
  2138. "x+y",
  2139. "x-y",
  2140. "x*y",
  2141. "x/y",
  2142. "x^2",
  2143. "√x",
  2144. "Σx",
  2145. "Σx/n",
  2146. "repeat(x)",
  2147. "abs(x)",
  2148. "sgn(x)",
  2149. "-x",
  2150. "step(x)",
  2151. "relu(x)",
  2152. "gelu(x)",
  2153. "silu(x)",
  2154. "norm(x)",
  2155. "rms_norm(x)",
  2156. "X*Y",
  2157. "x*v",
  2158. "x-\\>y",
  2159. "cont(x)",
  2160. "reshape(x)",
  2161. "view(x)",
  2162. "permute(x)",
  2163. "transpose(x)",
  2164. "get_rows(x)",
  2165. "diag_mask_inf(x)",
  2166. "soft_max(x)",
  2167. "rope(x)",
  2168. "conv_1d_1s(x)",
  2169. "conv_1d_2s(x)",
  2170. "flash_attn(x)",
  2171. "flash_ff(x)",
  2172. };
  2173. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2174. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2175. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2176. //
  2177. // ggml context
  2178. //
  2179. struct ggml_context {
  2180. size_t mem_size;
  2181. void * mem_buffer;
  2182. bool mem_buffer_owned;
  2183. bool no_alloc;
  2184. int n_objects;
  2185. struct ggml_object * objects_begin;
  2186. struct ggml_object * objects_end;
  2187. struct ggml_scratch scratch;
  2188. struct ggml_scratch scratch_save;
  2189. };
  2190. struct ggml_context_container {
  2191. bool used;
  2192. struct ggml_context context;
  2193. };
  2194. //
  2195. // compute types
  2196. //
  2197. enum ggml_task_type {
  2198. GGML_TASK_INIT = 0,
  2199. GGML_TASK_COMPUTE,
  2200. GGML_TASK_FINALIZE,
  2201. };
  2202. struct ggml_compute_params {
  2203. enum ggml_task_type type;
  2204. int ith, nth;
  2205. // work buffer for all threads
  2206. size_t wsize;
  2207. void * wdata;
  2208. };
  2209. //
  2210. // ggml state
  2211. //
  2212. struct ggml_state {
  2213. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2214. };
  2215. // global state
  2216. static struct ggml_state g_state;
  2217. static atomic_int g_state_barrier = 0;
  2218. // barrier via spin lock
  2219. inline static void ggml_critical_section_start(void) {
  2220. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2221. while (processing > 0) {
  2222. // wait for other threads to finish
  2223. atomic_fetch_sub(&g_state_barrier, 1);
  2224. sched_yield(); // TODO: reconsider this
  2225. processing = atomic_fetch_add(&g_state_barrier, 1);
  2226. }
  2227. }
  2228. // TODO: make this somehow automatically executed
  2229. // some sort of "sentry" mechanism
  2230. inline static void ggml_critical_section_end(void) {
  2231. atomic_fetch_sub(&g_state_barrier, 1);
  2232. }
  2233. ////////////////////////////////////////////////////////////////////////////////
  2234. void ggml_print_object(const struct ggml_object * obj) {
  2235. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2236. obj->offs, obj->size, (const void *) obj->next);
  2237. }
  2238. void ggml_print_objects(const struct ggml_context * ctx) {
  2239. struct ggml_object * obj = ctx->objects_begin;
  2240. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2241. while (obj != NULL) {
  2242. ggml_print_object(obj);
  2243. obj = obj->next;
  2244. }
  2245. GGML_PRINT("%s: --- end ---\n", __func__);
  2246. }
  2247. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2248. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2249. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2250. }
  2251. int ggml_nrows(const struct ggml_tensor * tensor) {
  2252. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2253. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2254. }
  2255. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2256. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2257. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2258. }
  2259. int ggml_blck_size(enum ggml_type type) {
  2260. return GGML_BLCK_SIZE[type];
  2261. }
  2262. size_t ggml_type_size(enum ggml_type type) {
  2263. return GGML_TYPE_SIZE[type];
  2264. }
  2265. float ggml_type_sizef(enum ggml_type type) {
  2266. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2267. }
  2268. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2269. return GGML_TYPE_SIZE[tensor->type];
  2270. }
  2271. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2272. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2273. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2274. }
  2275. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2276. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2277. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2278. }
  2279. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2280. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2281. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2282. }
  2283. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2284. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2285. return
  2286. (t0->ne[0] == t1->ne[0]) &&
  2287. (t0->ne[2] == t1->ne[2]) &&
  2288. (t0->ne[3] == t1->ne[3]);
  2289. }
  2290. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2291. return tensor->nb[0] > tensor->nb[1];
  2292. }
  2293. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2294. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2295. return
  2296. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2297. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2298. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2299. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2300. }
  2301. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2302. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2303. return
  2304. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2305. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2306. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2307. }
  2308. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2309. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2310. return
  2311. (t0->ne[0] == t1->ne[0] ) &&
  2312. (t0->ne[1] == t1->ne[1] ) &&
  2313. (t0->ne[2] == t1->ne[2] ) &&
  2314. (t0->ne[3] == t1->ne[3] );
  2315. }
  2316. // check if t1 can be represented as a repeatition of t0
  2317. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2318. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2319. return
  2320. (t1->ne[0]%t0->ne[0] == 0) &&
  2321. (t1->ne[1]%t0->ne[1] == 0) &&
  2322. (t1->ne[2]%t0->ne[2] == 0) &&
  2323. (t1->ne[3]%t0->ne[3] == 0);
  2324. }
  2325. static inline int ggml_up32(int n) {
  2326. return (n + 31) & ~31;
  2327. }
  2328. static inline int ggml_up64(int n) {
  2329. return (n + 63) & ~63;
  2330. }
  2331. static inline int ggml_up(int n, int m) {
  2332. // assert m is a power of 2
  2333. GGML_ASSERT((m & (m - 1)) == 0);
  2334. return (n + m - 1) & ~(m - 1);
  2335. }
  2336. // assert that pointer is aligned to GGML_MEM_ALIGN
  2337. #define ggml_assert_aligned(ptr) \
  2338. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2339. ////////////////////////////////////////////////////////////////////////////////
  2340. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2341. // make this function thread safe
  2342. ggml_critical_section_start();
  2343. static bool is_first_call = true;
  2344. if (is_first_call) {
  2345. // initialize time system (required on Windows)
  2346. ggml_time_init();
  2347. // initialize GELU, SILU and EXP F32 tables
  2348. {
  2349. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2350. ggml_fp16_t ii;
  2351. for (int i = 0; i < (1 << 16); ++i) {
  2352. uint16_t ui = i;
  2353. memcpy(&ii, &ui, sizeof(ii));
  2354. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2355. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2356. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2357. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2358. }
  2359. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2360. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2361. }
  2362. // initialize g_state
  2363. {
  2364. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2365. g_state = (struct ggml_state) {
  2366. /*.contexts =*/ { { 0 } },
  2367. };
  2368. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2369. g_state.contexts[i].used = false;
  2370. }
  2371. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2372. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2373. }
  2374. is_first_call = false;
  2375. }
  2376. // find non-used context in g_state
  2377. struct ggml_context * ctx = NULL;
  2378. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2379. if (!g_state.contexts[i].used) {
  2380. g_state.contexts[i].used = true;
  2381. ctx = &g_state.contexts[i].context;
  2382. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2383. break;
  2384. }
  2385. }
  2386. if (ctx == NULL) {
  2387. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2388. ggml_critical_section_end();
  2389. return NULL;
  2390. }
  2391. *ctx = (struct ggml_context) {
  2392. /*.mem_size =*/ params.mem_size,
  2393. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2394. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2395. /*.no_alloc =*/ params.no_alloc,
  2396. /*.n_objects =*/ 0,
  2397. /*.objects_begin =*/ NULL,
  2398. /*.objects_end =*/ NULL,
  2399. /*.scratch =*/ { 0, 0, NULL, },
  2400. /*.scratch_save =*/ { 0, 0, NULL, },
  2401. };
  2402. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2403. ggml_assert_aligned(ctx->mem_buffer);
  2404. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2405. ggml_critical_section_end();
  2406. return ctx;
  2407. }
  2408. void ggml_free(struct ggml_context * ctx) {
  2409. // make this function thread safe
  2410. ggml_critical_section_start();
  2411. bool found = false;
  2412. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2413. if (&g_state.contexts[i].context == ctx) {
  2414. g_state.contexts[i].used = false;
  2415. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2416. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2417. if (ctx->mem_buffer_owned) {
  2418. free(ctx->mem_buffer);
  2419. }
  2420. found = true;
  2421. break;
  2422. }
  2423. }
  2424. if (!found) {
  2425. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2426. }
  2427. ggml_critical_section_end();
  2428. }
  2429. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2430. return ctx->objects_end->offs + ctx->objects_end->size;
  2431. }
  2432. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2433. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2434. ctx->scratch = scratch;
  2435. return result;
  2436. }
  2437. ////////////////////////////////////////////////////////////////////////////////
  2438. struct ggml_tensor * ggml_new_tensor_impl(
  2439. struct ggml_context * ctx,
  2440. enum ggml_type type,
  2441. int n_dims,
  2442. const int64_t* ne,
  2443. void* data) {
  2444. // always insert objects at the end of the context's memory pool
  2445. struct ggml_object * obj_cur = ctx->objects_end;
  2446. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2447. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2448. const size_t cur_end = cur_offs + cur_size;
  2449. size_t size_needed = 0;
  2450. if (data == NULL && !ctx->no_alloc) {
  2451. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2452. for (int i = 1; i < n_dims; i++) {
  2453. size_needed *= ne[i];
  2454. }
  2455. // align to GGML_MEM_ALIGN
  2456. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2457. }
  2458. char * const mem_buffer = ctx->mem_buffer;
  2459. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2460. if (ctx->scratch.data == NULL || data != NULL) {
  2461. size_needed += sizeof(struct ggml_tensor);
  2462. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2463. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2464. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2465. assert(false);
  2466. return NULL;
  2467. }
  2468. *obj_new = (struct ggml_object) {
  2469. .offs = cur_end + GGML_OBJECT_SIZE,
  2470. .size = size_needed,
  2471. .next = NULL,
  2472. };
  2473. } else {
  2474. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2475. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2476. assert(false);
  2477. return NULL;
  2478. }
  2479. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2480. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2481. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2482. assert(false);
  2483. return NULL;
  2484. }
  2485. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2486. *obj_new = (struct ggml_object) {
  2487. .offs = cur_end + GGML_OBJECT_SIZE,
  2488. .size = sizeof(struct ggml_tensor),
  2489. .next = NULL,
  2490. };
  2491. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2492. ctx->scratch.offs += size_needed;
  2493. }
  2494. if (obj_cur != NULL) {
  2495. obj_cur->next = obj_new;
  2496. } else {
  2497. // this is the first object in this context
  2498. ctx->objects_begin = obj_new;
  2499. }
  2500. ctx->objects_end = obj_new;
  2501. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2502. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2503. ggml_assert_aligned(result);
  2504. *result = (struct ggml_tensor) {
  2505. /*.type =*/ type,
  2506. /*.n_dims =*/ n_dims,
  2507. /*.ne =*/ { 1, 1, 1, 1 },
  2508. /*.nb =*/ { 0, 0, 0, 0 },
  2509. /*.op =*/ GGML_OP_NONE,
  2510. /*.is_param =*/ false,
  2511. /*.grad =*/ NULL,
  2512. /*.src0 =*/ NULL,
  2513. /*.src1 =*/ NULL,
  2514. /*.opt =*/ { NULL },
  2515. /*.n_tasks =*/ 0,
  2516. /*.perf_runs =*/ 0,
  2517. /*.perf_cycles =*/ 0,
  2518. /*.perf_time_us =*/ 0,
  2519. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2520. /*.pad =*/ { 0 },
  2521. };
  2522. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2523. //ggml_assert_aligned(result->data);
  2524. for (int i = 0; i < n_dims; i++) {
  2525. result->ne[i] = ne[i];
  2526. }
  2527. result->nb[0] = GGML_TYPE_SIZE[type];
  2528. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2529. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2530. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2531. }
  2532. ctx->n_objects++;
  2533. return result;
  2534. }
  2535. struct ggml_tensor * ggml_new_tensor(
  2536. struct ggml_context * ctx,
  2537. enum ggml_type type,
  2538. int n_dims,
  2539. const int64_t * ne) {
  2540. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2541. }
  2542. struct ggml_tensor * ggml_new_tensor_1d(
  2543. struct ggml_context * ctx,
  2544. enum ggml_type type,
  2545. int64_t ne0) {
  2546. return ggml_new_tensor(ctx, type, 1, &ne0);
  2547. }
  2548. struct ggml_tensor * ggml_new_tensor_2d(
  2549. struct ggml_context * ctx,
  2550. enum ggml_type type,
  2551. int64_t ne0,
  2552. int64_t ne1) {
  2553. const int64_t ne[2] = { ne0, ne1 };
  2554. return ggml_new_tensor(ctx, type, 2, ne);
  2555. }
  2556. struct ggml_tensor * ggml_new_tensor_3d(
  2557. struct ggml_context * ctx,
  2558. enum ggml_type type,
  2559. int64_t ne0,
  2560. int64_t ne1,
  2561. int64_t ne2) {
  2562. const int64_t ne[3] = { ne0, ne1, ne2 };
  2563. return ggml_new_tensor(ctx, type, 3, ne);
  2564. }
  2565. struct ggml_tensor * ggml_new_tensor_4d(
  2566. struct ggml_context * ctx,
  2567. enum ggml_type type,
  2568. int64_t ne0,
  2569. int64_t ne1,
  2570. int64_t ne2,
  2571. int64_t ne3) {
  2572. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2573. return ggml_new_tensor(ctx, type, 4, ne);
  2574. }
  2575. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2576. ctx->scratch_save = ctx->scratch;
  2577. ctx->scratch.data = NULL;
  2578. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2579. ctx->scratch = ctx->scratch_save;
  2580. ggml_set_i32(result, value);
  2581. return result;
  2582. }
  2583. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2584. ctx->scratch_save = ctx->scratch;
  2585. ctx->scratch.data = NULL;
  2586. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2587. ctx->scratch = ctx->scratch_save;
  2588. ggml_set_f32(result, value);
  2589. return result;
  2590. }
  2591. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2592. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2593. }
  2594. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2595. memset(tensor->data, 0, ggml_nbytes(tensor));
  2596. return tensor;
  2597. }
  2598. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2599. const int n = ggml_nrows(tensor);
  2600. const int nc = tensor->ne[0];
  2601. const size_t n1 = tensor->nb[1];
  2602. char * const data = tensor->data;
  2603. switch (tensor->type) {
  2604. case GGML_TYPE_Q4_0:
  2605. {
  2606. GGML_ASSERT(false);
  2607. } break;
  2608. case GGML_TYPE_Q4_1:
  2609. {
  2610. GGML_ASSERT(false);
  2611. } break;
  2612. case GGML_TYPE_I8:
  2613. {
  2614. assert(tensor->nb[0] == sizeof(int8_t));
  2615. for (int i = 0; i < n; i++) {
  2616. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2617. }
  2618. } break;
  2619. case GGML_TYPE_I16:
  2620. {
  2621. assert(tensor->nb[0] == sizeof(int16_t));
  2622. for (int i = 0; i < n; i++) {
  2623. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2624. }
  2625. } break;
  2626. case GGML_TYPE_I32:
  2627. {
  2628. assert(tensor->nb[0] == sizeof(int32_t));
  2629. for (int i = 0; i < n; i++) {
  2630. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2631. }
  2632. } break;
  2633. case GGML_TYPE_F16:
  2634. {
  2635. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2636. for (int i = 0; i < n; i++) {
  2637. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2638. }
  2639. } break;
  2640. case GGML_TYPE_F32:
  2641. {
  2642. assert(tensor->nb[0] == sizeof(float));
  2643. for (int i = 0; i < n; i++) {
  2644. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2645. }
  2646. } break;
  2647. case GGML_TYPE_COUNT:
  2648. {
  2649. GGML_ASSERT(false);
  2650. } break;
  2651. }
  2652. return tensor;
  2653. }
  2654. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2655. const int n = ggml_nrows(tensor);
  2656. const int nc = tensor->ne[0];
  2657. const size_t n1 = tensor->nb[1];
  2658. char * const data = tensor->data;
  2659. switch (tensor->type) {
  2660. case GGML_TYPE_Q4_0:
  2661. {
  2662. GGML_ASSERT(false);
  2663. } break;
  2664. case GGML_TYPE_Q4_1:
  2665. {
  2666. GGML_ASSERT(false);
  2667. } break;
  2668. case GGML_TYPE_I8:
  2669. {
  2670. assert(tensor->nb[0] == sizeof(int8_t));
  2671. for (int i = 0; i < n; i++) {
  2672. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2673. }
  2674. } break;
  2675. case GGML_TYPE_I16:
  2676. {
  2677. assert(tensor->nb[0] == sizeof(int16_t));
  2678. for (int i = 0; i < n; i++) {
  2679. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2680. }
  2681. } break;
  2682. case GGML_TYPE_I32:
  2683. {
  2684. assert(tensor->nb[0] == sizeof(int32_t));
  2685. for (int i = 0; i < n; i++) {
  2686. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2687. }
  2688. } break;
  2689. case GGML_TYPE_F16:
  2690. {
  2691. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2692. for (int i = 0; i < n; i++) {
  2693. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2694. }
  2695. } break;
  2696. case GGML_TYPE_F32:
  2697. {
  2698. assert(tensor->nb[0] == sizeof(float));
  2699. for (int i = 0; i < n; i++) {
  2700. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2701. }
  2702. } break;
  2703. case GGML_TYPE_COUNT:
  2704. {
  2705. GGML_ASSERT(false);
  2706. } break;
  2707. }
  2708. return tensor;
  2709. }
  2710. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2711. switch (tensor->type) {
  2712. case GGML_TYPE_Q4_0:
  2713. {
  2714. GGML_ASSERT(false);
  2715. } break;
  2716. case GGML_TYPE_Q4_1:
  2717. {
  2718. GGML_ASSERT(false);
  2719. } break;
  2720. case GGML_TYPE_I8:
  2721. {
  2722. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2723. return ((int8_t *)(tensor->data))[i];
  2724. } break;
  2725. case GGML_TYPE_I16:
  2726. {
  2727. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2728. return ((int16_t *)(tensor->data))[i];
  2729. } break;
  2730. case GGML_TYPE_I32:
  2731. {
  2732. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2733. return ((int32_t *)(tensor->data))[i];
  2734. } break;
  2735. case GGML_TYPE_F16:
  2736. {
  2737. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2738. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2739. } break;
  2740. case GGML_TYPE_F32:
  2741. {
  2742. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2743. return ((float *)(tensor->data))[i];
  2744. } break;
  2745. case GGML_TYPE_COUNT:
  2746. {
  2747. GGML_ASSERT(false);
  2748. } break;
  2749. }
  2750. return 0.0f;
  2751. }
  2752. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2753. switch (tensor->type) {
  2754. case GGML_TYPE_Q4_0:
  2755. {
  2756. GGML_ASSERT(false);
  2757. } break;
  2758. case GGML_TYPE_Q4_1:
  2759. {
  2760. GGML_ASSERT(false);
  2761. } break;
  2762. case GGML_TYPE_I8:
  2763. {
  2764. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2765. ((int8_t *)(tensor->data))[i] = value;
  2766. } break;
  2767. case GGML_TYPE_I16:
  2768. {
  2769. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2770. ((int16_t *)(tensor->data))[i] = value;
  2771. } break;
  2772. case GGML_TYPE_I32:
  2773. {
  2774. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2775. ((int32_t *)(tensor->data))[i] = value;
  2776. } break;
  2777. case GGML_TYPE_F16:
  2778. {
  2779. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2780. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2781. } break;
  2782. case GGML_TYPE_F32:
  2783. {
  2784. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2785. ((float *)(tensor->data))[i] = value;
  2786. } break;
  2787. case GGML_TYPE_COUNT:
  2788. {
  2789. GGML_ASSERT(false);
  2790. } break;
  2791. }
  2792. }
  2793. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2794. switch (tensor->type) {
  2795. case GGML_TYPE_Q4_0:
  2796. {
  2797. GGML_ASSERT(false);
  2798. } break;
  2799. case GGML_TYPE_Q4_1:
  2800. {
  2801. GGML_ASSERT(false);
  2802. } break;
  2803. case GGML_TYPE_I8:
  2804. {
  2805. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2806. return ((int8_t *)(tensor->data))[i];
  2807. } break;
  2808. case GGML_TYPE_I16:
  2809. {
  2810. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2811. return ((int16_t *)(tensor->data))[i];
  2812. } break;
  2813. case GGML_TYPE_I32:
  2814. {
  2815. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2816. return ((int32_t *)(tensor->data))[i];
  2817. } break;
  2818. case GGML_TYPE_F16:
  2819. {
  2820. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2821. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2822. } break;
  2823. case GGML_TYPE_F32:
  2824. {
  2825. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2826. return ((float *)(tensor->data))[i];
  2827. } break;
  2828. case GGML_TYPE_COUNT:
  2829. {
  2830. GGML_ASSERT(false);
  2831. } break;
  2832. }
  2833. return 0.0f;
  2834. }
  2835. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2836. switch (tensor->type) {
  2837. case GGML_TYPE_Q4_0:
  2838. {
  2839. GGML_ASSERT(false);
  2840. } break;
  2841. case GGML_TYPE_Q4_1:
  2842. {
  2843. GGML_ASSERT(false);
  2844. } break;
  2845. case GGML_TYPE_I8:
  2846. {
  2847. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2848. ((int8_t *)(tensor->data))[i] = value;
  2849. } break;
  2850. case GGML_TYPE_I16:
  2851. {
  2852. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2853. ((int16_t *)(tensor->data))[i] = value;
  2854. } break;
  2855. case GGML_TYPE_I32:
  2856. {
  2857. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2858. ((int32_t *)(tensor->data))[i] = value;
  2859. } break;
  2860. case GGML_TYPE_F16:
  2861. {
  2862. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2863. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2864. } break;
  2865. case GGML_TYPE_F32:
  2866. {
  2867. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2868. ((float *)(tensor->data))[i] = value;
  2869. } break;
  2870. case GGML_TYPE_COUNT:
  2871. {
  2872. GGML_ASSERT(false);
  2873. } break;
  2874. }
  2875. }
  2876. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2877. return tensor->data;
  2878. }
  2879. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2880. assert(tensor->type == GGML_TYPE_F32);
  2881. return (float *)(tensor->data);
  2882. }
  2883. struct ggml_tensor * ggml_view_tensor(
  2884. struct ggml_context * ctx,
  2885. const struct ggml_tensor * src) {
  2886. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2887. result->nb[0] = src->nb[0];
  2888. result->nb[1] = src->nb[1];
  2889. result->nb[2] = src->nb[2];
  2890. result->nb[3] = src->nb[3];
  2891. return result;
  2892. }
  2893. ////////////////////////////////////////////////////////////////////////////////
  2894. // ggml_dup
  2895. struct ggml_tensor * ggml_dup_impl(
  2896. struct ggml_context * ctx,
  2897. struct ggml_tensor * a,
  2898. bool inplace) {
  2899. bool is_node = false;
  2900. if (!inplace && (a->grad)) {
  2901. is_node = true;
  2902. }
  2903. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2904. result->op = GGML_OP_DUP;
  2905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2906. result->src0 = a;
  2907. result->src1 = NULL;
  2908. return result;
  2909. }
  2910. struct ggml_tensor * ggml_dup(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a) {
  2913. return ggml_dup_impl(ctx, a, false);
  2914. }
  2915. struct ggml_tensor * ggml_dup_inplace(
  2916. struct ggml_context * ctx,
  2917. struct ggml_tensor * a) {
  2918. return ggml_dup_impl(ctx, a, true);
  2919. }
  2920. // ggml_add
  2921. struct ggml_tensor * ggml_add_impl(
  2922. struct ggml_context * ctx,
  2923. struct ggml_tensor * a,
  2924. struct ggml_tensor * b,
  2925. bool inplace) {
  2926. GGML_ASSERT(ggml_are_same_shape(a, b));
  2927. bool is_node = false;
  2928. if (!inplace && (a->grad || b->grad)) {
  2929. is_node = true;
  2930. }
  2931. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2932. result->op = GGML_OP_ADD;
  2933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2934. result->src0 = a;
  2935. result->src1 = b;
  2936. return result;
  2937. }
  2938. struct ggml_tensor * ggml_add(
  2939. struct ggml_context * ctx,
  2940. struct ggml_tensor * a,
  2941. struct ggml_tensor * b) {
  2942. return ggml_add_impl(ctx, a, b, false);
  2943. }
  2944. struct ggml_tensor * ggml_add_inplace(
  2945. struct ggml_context * ctx,
  2946. struct ggml_tensor * a,
  2947. struct ggml_tensor * b) {
  2948. return ggml_add_impl(ctx, a, b, true);
  2949. }
  2950. // ggml_sub
  2951. struct ggml_tensor * ggml_sub_impl(
  2952. struct ggml_context * ctx,
  2953. struct ggml_tensor * a,
  2954. struct ggml_tensor * b,
  2955. bool inplace) {
  2956. GGML_ASSERT(ggml_are_same_shape(a, b));
  2957. bool is_node = false;
  2958. if (!inplace && (a->grad || b->grad)) {
  2959. is_node = true;
  2960. }
  2961. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2962. result->op = GGML_OP_SUB;
  2963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2964. result->src0 = a;
  2965. result->src1 = b;
  2966. return result;
  2967. }
  2968. struct ggml_tensor * ggml_sub(
  2969. struct ggml_context * ctx,
  2970. struct ggml_tensor * a,
  2971. struct ggml_tensor * b) {
  2972. return ggml_sub_impl(ctx, a, b, false);
  2973. }
  2974. struct ggml_tensor * ggml_sub_inplace(
  2975. struct ggml_context * ctx,
  2976. struct ggml_tensor * a,
  2977. struct ggml_tensor * b) {
  2978. return ggml_sub_impl(ctx, a, b, true);
  2979. }
  2980. // ggml_mul
  2981. struct ggml_tensor * ggml_mul_impl(
  2982. struct ggml_context * ctx,
  2983. struct ggml_tensor * a,
  2984. struct ggml_tensor * b,
  2985. bool inplace) {
  2986. GGML_ASSERT(ggml_are_same_shape(a, b));
  2987. bool is_node = false;
  2988. if (!inplace && (a->grad || b->grad)) {
  2989. is_node = true;
  2990. }
  2991. if (inplace) {
  2992. GGML_ASSERT(is_node == false);
  2993. }
  2994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2995. result->op = GGML_OP_MUL;
  2996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2997. result->src0 = a;
  2998. result->src1 = b;
  2999. return result;
  3000. }
  3001. struct ggml_tensor * ggml_mul(
  3002. struct ggml_context * ctx,
  3003. struct ggml_tensor * a,
  3004. struct ggml_tensor * b) {
  3005. return ggml_mul_impl(ctx, a, b, false);
  3006. }
  3007. struct ggml_tensor * ggml_mul_inplace(
  3008. struct ggml_context * ctx,
  3009. struct ggml_tensor * a,
  3010. struct ggml_tensor * b) {
  3011. return ggml_mul_impl(ctx, a, b, true);
  3012. }
  3013. // ggml_div
  3014. struct ggml_tensor * ggml_div_impl(
  3015. struct ggml_context * ctx,
  3016. struct ggml_tensor * a,
  3017. struct ggml_tensor * b,
  3018. bool inplace) {
  3019. GGML_ASSERT(ggml_are_same_shape(a, b));
  3020. bool is_node = false;
  3021. if (!inplace && (a->grad || b->grad)) {
  3022. is_node = true;
  3023. }
  3024. if (inplace) {
  3025. GGML_ASSERT(is_node == false);
  3026. }
  3027. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3028. result->op = GGML_OP_DIV;
  3029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3030. result->src0 = a;
  3031. result->src1 = b;
  3032. return result;
  3033. }
  3034. struct ggml_tensor * ggml_div(
  3035. struct ggml_context * ctx,
  3036. struct ggml_tensor * a,
  3037. struct ggml_tensor * b) {
  3038. return ggml_div_impl(ctx, a, b, false);
  3039. }
  3040. struct ggml_tensor * ggml_div_inplace(
  3041. struct ggml_context * ctx,
  3042. struct ggml_tensor * a,
  3043. struct ggml_tensor * b) {
  3044. return ggml_div_impl(ctx, a, b, true);
  3045. }
  3046. // ggml_sqr
  3047. struct ggml_tensor * ggml_sqr_impl(
  3048. struct ggml_context * ctx,
  3049. struct ggml_tensor * a,
  3050. bool inplace) {
  3051. bool is_node = false;
  3052. if (!inplace && (a->grad)) {
  3053. is_node = true;
  3054. }
  3055. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3056. result->op = GGML_OP_SQR;
  3057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3058. result->src0 = a;
  3059. result->src1 = NULL;
  3060. return result;
  3061. }
  3062. struct ggml_tensor * ggml_sqr(
  3063. struct ggml_context * ctx,
  3064. struct ggml_tensor * a) {
  3065. return ggml_sqr_impl(ctx, a, false);
  3066. }
  3067. struct ggml_tensor * ggml_sqr_inplace(
  3068. struct ggml_context * ctx,
  3069. struct ggml_tensor * a) {
  3070. return ggml_sqr_impl(ctx, a, true);
  3071. }
  3072. // ggml_sqrt
  3073. struct ggml_tensor * ggml_sqrt_impl(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a,
  3076. bool inplace) {
  3077. bool is_node = false;
  3078. if (!inplace && (a->grad)) {
  3079. is_node = true;
  3080. }
  3081. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3082. result->op = GGML_OP_SQRT;
  3083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3084. result->src0 = a;
  3085. result->src1 = NULL;
  3086. return result;
  3087. }
  3088. struct ggml_tensor * ggml_sqrt(
  3089. struct ggml_context * ctx,
  3090. struct ggml_tensor * a) {
  3091. return ggml_sqrt_impl(ctx, a, false);
  3092. }
  3093. struct ggml_tensor * ggml_sqrt_inplace(
  3094. struct ggml_context * ctx,
  3095. struct ggml_tensor * a) {
  3096. return ggml_sqrt_impl(ctx, a, true);
  3097. }
  3098. // ggml_sum
  3099. struct ggml_tensor * ggml_sum(
  3100. struct ggml_context * ctx,
  3101. struct ggml_tensor * a) {
  3102. bool is_node = false;
  3103. if (a->grad) {
  3104. is_node = true;
  3105. }
  3106. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3107. result->op = GGML_OP_SUM;
  3108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3109. result->src0 = a;
  3110. result->src1 = NULL;
  3111. return result;
  3112. }
  3113. // ggml_mean
  3114. struct ggml_tensor * ggml_mean(
  3115. struct ggml_context * ctx,
  3116. struct ggml_tensor * a) {
  3117. bool is_node = false;
  3118. if (a->grad) {
  3119. GGML_ASSERT(false); // TODO: implement
  3120. is_node = true;
  3121. }
  3122. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3123. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3124. result->op = GGML_OP_MEAN;
  3125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3126. result->src0 = a;
  3127. result->src1 = NULL;
  3128. return result;
  3129. }
  3130. // ggml_repeat
  3131. struct ggml_tensor * ggml_repeat(
  3132. struct ggml_context * ctx,
  3133. struct ggml_tensor * a,
  3134. struct ggml_tensor * b) {
  3135. GGML_ASSERT(ggml_can_repeat(a, b));
  3136. bool is_node = false;
  3137. if (a->grad) {
  3138. is_node = true;
  3139. }
  3140. if (ggml_are_same_shape(a, b) && !is_node) {
  3141. return a;
  3142. }
  3143. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3144. result->op = GGML_OP_REPEAT;
  3145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3146. result->src0 = a;
  3147. result->src1 = b;
  3148. return result;
  3149. }
  3150. // ggml_abs
  3151. struct ggml_tensor * ggml_abs_impl(
  3152. struct ggml_context * ctx,
  3153. struct ggml_tensor * a,
  3154. bool inplace) {
  3155. bool is_node = false;
  3156. if (!inplace && (a->grad)) {
  3157. is_node = true;
  3158. }
  3159. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3160. result->op = GGML_OP_ABS;
  3161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3162. result->src0 = a;
  3163. result->src1 = NULL;
  3164. return result;
  3165. }
  3166. struct ggml_tensor * ggml_abs(
  3167. struct ggml_context * ctx,
  3168. struct ggml_tensor * a) {
  3169. return ggml_abs_impl(ctx, a, false);
  3170. }
  3171. struct ggml_tensor * ggml_abs_inplace(
  3172. struct ggml_context * ctx,
  3173. struct ggml_tensor * a) {
  3174. return ggml_abs_impl(ctx, a, true);
  3175. }
  3176. // ggml_sgn
  3177. struct ggml_tensor * ggml_sgn_impl(
  3178. struct ggml_context * ctx,
  3179. struct ggml_tensor * a,
  3180. bool inplace) {
  3181. bool is_node = false;
  3182. if (!inplace && (a->grad)) {
  3183. is_node = true;
  3184. }
  3185. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3186. result->op = GGML_OP_SGN;
  3187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3188. result->src0 = a;
  3189. result->src1 = NULL;
  3190. return result;
  3191. }
  3192. struct ggml_tensor * ggml_sgn(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. return ggml_sgn_impl(ctx, a, false);
  3196. }
  3197. struct ggml_tensor * ggml_sgn_inplace(
  3198. struct ggml_context * ctx,
  3199. struct ggml_tensor * a) {
  3200. return ggml_sgn_impl(ctx, a, true);
  3201. }
  3202. // ggml_neg
  3203. struct ggml_tensor * ggml_neg_impl(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a,
  3206. bool inplace) {
  3207. bool is_node = false;
  3208. if (!inplace && (a->grad)) {
  3209. is_node = true;
  3210. }
  3211. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3212. result->op = GGML_OP_NEG;
  3213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3214. result->src0 = a;
  3215. result->src1 = NULL;
  3216. return result;
  3217. }
  3218. struct ggml_tensor * ggml_neg(
  3219. struct ggml_context * ctx,
  3220. struct ggml_tensor * a) {
  3221. return ggml_neg_impl(ctx, a, false);
  3222. }
  3223. struct ggml_tensor * ggml_neg_inplace(
  3224. struct ggml_context * ctx,
  3225. struct ggml_tensor * a) {
  3226. return ggml_neg_impl(ctx, a, true);
  3227. }
  3228. // ggml_step
  3229. struct ggml_tensor * ggml_step_impl(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a,
  3232. bool inplace) {
  3233. bool is_node = false;
  3234. if (!inplace && (a->grad)) {
  3235. is_node = true;
  3236. }
  3237. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3238. result->op = GGML_OP_STEP;
  3239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3240. result->src0 = a;
  3241. result->src1 = NULL;
  3242. return result;
  3243. }
  3244. struct ggml_tensor * ggml_step(
  3245. struct ggml_context * ctx,
  3246. struct ggml_tensor * a) {
  3247. return ggml_step_impl(ctx, a, false);
  3248. }
  3249. struct ggml_tensor * ggml_step_inplace(
  3250. struct ggml_context * ctx,
  3251. struct ggml_tensor * a) {
  3252. return ggml_step_impl(ctx, a, true);
  3253. }
  3254. // ggml_relu
  3255. struct ggml_tensor * ggml_relu_impl(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a,
  3258. bool inplace) {
  3259. bool is_node = false;
  3260. if (!inplace && (a->grad)) {
  3261. is_node = true;
  3262. }
  3263. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3264. result->op = GGML_OP_RELU;
  3265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3266. result->src0 = a;
  3267. result->src1 = NULL;
  3268. return result;
  3269. }
  3270. struct ggml_tensor * ggml_relu(
  3271. struct ggml_context * ctx,
  3272. struct ggml_tensor * a) {
  3273. return ggml_relu_impl(ctx, a, false);
  3274. }
  3275. struct ggml_tensor * ggml_relu_inplace(
  3276. struct ggml_context * ctx,
  3277. struct ggml_tensor * a) {
  3278. return ggml_relu_impl(ctx, a, true);
  3279. }
  3280. // ggml_gelu
  3281. struct ggml_tensor * ggml_gelu_impl(
  3282. struct ggml_context * ctx,
  3283. struct ggml_tensor * a,
  3284. bool inplace) {
  3285. bool is_node = false;
  3286. if (!inplace && (a->grad)) {
  3287. is_node = true;
  3288. }
  3289. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3290. result->op = GGML_OP_GELU;
  3291. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3292. result->src0 = a;
  3293. result->src1 = NULL;
  3294. return result;
  3295. }
  3296. struct ggml_tensor * ggml_gelu(
  3297. struct ggml_context * ctx,
  3298. struct ggml_tensor * a) {
  3299. return ggml_gelu_impl(ctx, a, false);
  3300. }
  3301. struct ggml_tensor * ggml_gelu_inplace(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a) {
  3304. return ggml_gelu_impl(ctx, a, true);
  3305. }
  3306. // ggml_silu
  3307. struct ggml_tensor * ggml_silu_impl(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a,
  3310. bool inplace) {
  3311. bool is_node = false;
  3312. if (!inplace && (a->grad)) {
  3313. is_node = true;
  3314. }
  3315. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3316. result->op = GGML_OP_SILU;
  3317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3318. result->src0 = a;
  3319. result->src1 = NULL;
  3320. return result;
  3321. }
  3322. struct ggml_tensor * ggml_silu(
  3323. struct ggml_context * ctx,
  3324. struct ggml_tensor * a) {
  3325. return ggml_silu_impl(ctx, a, false);
  3326. }
  3327. struct ggml_tensor * ggml_silu_inplace(
  3328. struct ggml_context * ctx,
  3329. struct ggml_tensor * a) {
  3330. return ggml_silu_impl(ctx, a, true);
  3331. }
  3332. // ggml_norm
  3333. struct ggml_tensor * ggml_norm_impl(
  3334. struct ggml_context * ctx,
  3335. struct ggml_tensor * a,
  3336. bool inplace) {
  3337. bool is_node = false;
  3338. if (!inplace && (a->grad)) {
  3339. GGML_ASSERT(false); // TODO: implement backward
  3340. is_node = true;
  3341. }
  3342. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3343. result->op = GGML_OP_NORM;
  3344. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3345. result->src0 = a;
  3346. result->src1 = NULL; // TODO: maybe store epsilon here?
  3347. return result;
  3348. }
  3349. struct ggml_tensor * ggml_norm(
  3350. struct ggml_context * ctx,
  3351. struct ggml_tensor * a) {
  3352. return ggml_norm_impl(ctx, a, false);
  3353. }
  3354. struct ggml_tensor * ggml_norm_inplace(
  3355. struct ggml_context * ctx,
  3356. struct ggml_tensor * a) {
  3357. return ggml_norm_impl(ctx, a, true);
  3358. }
  3359. struct ggml_tensor * ggml_rms_norm_impl(
  3360. struct ggml_context * ctx,
  3361. struct ggml_tensor * a,
  3362. bool inplace) {
  3363. bool is_node = false;
  3364. if (!inplace && (a->grad)) {
  3365. GGML_ASSERT(false); // TODO: implement backward
  3366. is_node = true;
  3367. }
  3368. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3369. result->op = GGML_OP_RMS_NORM;
  3370. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3371. result->src0 = a;
  3372. result->src1 = NULL; // TODO: maybe store epsilon here?
  3373. return result;
  3374. }
  3375. struct ggml_tensor * ggml_rms_norm(
  3376. struct ggml_context * ctx,
  3377. struct ggml_tensor * a) {
  3378. return ggml_rms_norm_impl(ctx, a, false);
  3379. }
  3380. struct ggml_tensor * ggml_rms_norm_inplace(
  3381. struct ggml_context * ctx,
  3382. struct ggml_tensor * a) {
  3383. return ggml_rms_norm_impl(ctx, a, true);
  3384. }
  3385. // ggml_mul_mat
  3386. struct ggml_tensor * ggml_mul_mat(
  3387. struct ggml_context * ctx,
  3388. struct ggml_tensor * a,
  3389. struct ggml_tensor * b) {
  3390. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3391. GGML_ASSERT(!ggml_is_transposed(a));
  3392. bool is_node = false;
  3393. if (a->grad || b->grad) {
  3394. is_node = true;
  3395. }
  3396. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3397. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3398. result->op = GGML_OP_MUL_MAT;
  3399. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3400. result->src0 = a;
  3401. result->src1 = b;
  3402. return result;
  3403. }
  3404. // ggml_scale
  3405. struct ggml_tensor * ggml_scale_impl(
  3406. struct ggml_context * ctx,
  3407. struct ggml_tensor * a,
  3408. struct ggml_tensor * b,
  3409. bool inplace) {
  3410. GGML_ASSERT(ggml_is_scalar(b));
  3411. GGML_ASSERT(ggml_is_padded_1d(a));
  3412. bool is_node = false;
  3413. if (!inplace && (a->grad || b->grad)) {
  3414. GGML_ASSERT(false); // TODO: implement backward
  3415. is_node = true;
  3416. }
  3417. // TODO: when implement backward, fix this:
  3418. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3419. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3420. result->op = GGML_OP_SCALE;
  3421. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3422. result->src0 = a;
  3423. result->src1 = b;
  3424. return result;
  3425. }
  3426. struct ggml_tensor * ggml_scale(
  3427. struct ggml_context * ctx,
  3428. struct ggml_tensor * a,
  3429. struct ggml_tensor * b) {
  3430. return ggml_scale_impl(ctx, a, b, false);
  3431. }
  3432. struct ggml_tensor * ggml_scale_inplace(
  3433. struct ggml_context * ctx,
  3434. struct ggml_tensor * a,
  3435. struct ggml_tensor * b) {
  3436. return ggml_scale_impl(ctx, a, b, true);
  3437. }
  3438. // ggml_cpy
  3439. struct ggml_tensor * ggml_cpy_impl(
  3440. struct ggml_context * ctx,
  3441. struct ggml_tensor * a,
  3442. struct ggml_tensor * b,
  3443. bool inplace) {
  3444. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3445. bool is_node = false;
  3446. if (!inplace && (a->grad || b->grad)) {
  3447. GGML_ASSERT(false); // TODO: implement backward
  3448. is_node = true;
  3449. }
  3450. // make a view of the destination
  3451. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3452. result->op = GGML_OP_CPY;
  3453. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3454. result->src0 = a;
  3455. result->src1 = b;
  3456. return result;
  3457. }
  3458. struct ggml_tensor * ggml_cpy(
  3459. struct ggml_context * ctx,
  3460. struct ggml_tensor * a,
  3461. struct ggml_tensor * b) {
  3462. return ggml_cpy_impl(ctx, a, b, false);
  3463. }
  3464. struct ggml_tensor * ggml_cpy_inplace(
  3465. struct ggml_context * ctx,
  3466. struct ggml_tensor * a,
  3467. struct ggml_tensor * b) {
  3468. return ggml_cpy_impl(ctx, a, b, true);
  3469. }
  3470. // ggml_cont
  3471. struct ggml_tensor * ggml_cont_impl(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a,
  3474. bool inplace) {
  3475. bool is_node = false;
  3476. if (!inplace && a->grad) {
  3477. GGML_ASSERT(false); // TODO: implement backward
  3478. is_node = true;
  3479. }
  3480. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3481. result->op = GGML_OP_CONT;
  3482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3483. result->src0 = a;
  3484. result->src1 = NULL;
  3485. return result;
  3486. }
  3487. struct ggml_tensor * ggml_cont(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a) {
  3490. return ggml_cont_impl(ctx, a, false);
  3491. }
  3492. struct ggml_tensor * ggml_cont_inplace(
  3493. struct ggml_context * ctx,
  3494. struct ggml_tensor * a) {
  3495. return ggml_cont_impl(ctx, a, true);
  3496. }
  3497. // ggml_reshape
  3498. struct ggml_tensor * ggml_reshape(
  3499. struct ggml_context * ctx,
  3500. struct ggml_tensor * a,
  3501. struct ggml_tensor * b) {
  3502. GGML_ASSERT(ggml_is_contiguous(a));
  3503. GGML_ASSERT(ggml_is_contiguous(b));
  3504. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3505. bool is_node = false;
  3506. if (a->grad || b->grad) {
  3507. GGML_ASSERT(false); // TODO: implement backward
  3508. is_node = true;
  3509. }
  3510. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3511. result->op = GGML_OP_RESHAPE;
  3512. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3513. result->src0 = a;
  3514. result->src1 = NULL;
  3515. return result;
  3516. }
  3517. struct ggml_tensor * ggml_reshape_2d(
  3518. struct ggml_context * ctx,
  3519. struct ggml_tensor * a,
  3520. int64_t ne0,
  3521. int64_t ne1) {
  3522. GGML_ASSERT(ggml_is_contiguous(a));
  3523. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3524. bool is_node = false;
  3525. if (a->grad) {
  3526. GGML_ASSERT(false); // TODO: implement backward
  3527. is_node = true;
  3528. }
  3529. const int64_t ne[2] = { ne0, ne1 };
  3530. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3531. result->op = GGML_OP_RESHAPE;
  3532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3533. result->src0 = a;
  3534. result->src1 = NULL;
  3535. return result;
  3536. }
  3537. struct ggml_tensor * ggml_reshape_3d(
  3538. struct ggml_context * ctx,
  3539. struct ggml_tensor * a,
  3540. int64_t ne0,
  3541. int64_t ne1,
  3542. int64_t ne2) {
  3543. GGML_ASSERT(ggml_is_contiguous(a));
  3544. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3545. bool is_node = false;
  3546. if (a->grad) {
  3547. GGML_ASSERT(false); // TODO: implement backward
  3548. is_node = true;
  3549. }
  3550. const int64_t ne[3] = { ne0, ne1, ne2 };
  3551. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3552. result->op = GGML_OP_RESHAPE;
  3553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3554. result->src0 = a;
  3555. result->src1 = NULL;
  3556. return result;
  3557. }
  3558. // ggml_view_1d
  3559. struct ggml_tensor * ggml_view_1d(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a,
  3562. int64_t ne0,
  3563. size_t offset) {
  3564. if (a->grad) {
  3565. GGML_ASSERT(false); // gradient propagation is not supported
  3566. }
  3567. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3568. result->op = GGML_OP_VIEW;
  3569. result->grad = NULL;
  3570. result->src0 = a;
  3571. result->src1 = NULL; // TODO: maybe store the offset here?
  3572. return result;
  3573. }
  3574. // ggml_view_2d
  3575. struct ggml_tensor * ggml_view_2d(
  3576. struct ggml_context * ctx,
  3577. struct ggml_tensor * a,
  3578. int64_t ne0,
  3579. int64_t ne1,
  3580. size_t nb1,
  3581. size_t offset) {
  3582. if (a->grad) {
  3583. GGML_ASSERT(false); // gradient propagation is not supported
  3584. }
  3585. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3586. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3587. result->nb[1] = nb1;
  3588. result->nb[2] = result->nb[1]*ne1;
  3589. result->nb[3] = result->nb[2];
  3590. result->op = GGML_OP_VIEW;
  3591. result->grad = NULL;
  3592. result->src0 = a;
  3593. result->src1 = NULL; // TODO: maybe store the offset here?
  3594. return result;
  3595. }
  3596. // ggml_view_3d
  3597. struct ggml_tensor * ggml_view_3d(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * a,
  3600. int64_t ne0,
  3601. int64_t ne1,
  3602. int64_t ne2,
  3603. size_t nb1,
  3604. size_t nb2,
  3605. size_t offset) {
  3606. if (a->grad) {
  3607. GGML_ASSERT(false); // gradient propagation is not supported
  3608. }
  3609. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3610. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3611. result->nb[1] = nb1;
  3612. result->nb[2] = nb2;
  3613. result->nb[3] = result->nb[2]*ne2;
  3614. result->op = GGML_OP_VIEW;
  3615. result->grad = NULL;
  3616. result->src0 = a;
  3617. result->src1 = NULL; // TODO: maybe store the offset here?
  3618. return result;
  3619. }
  3620. // ggml_permute
  3621. struct ggml_tensor * ggml_permute(
  3622. struct ggml_context * ctx,
  3623. struct ggml_tensor * a,
  3624. int axis0,
  3625. int axis1,
  3626. int axis2,
  3627. int axis3) {
  3628. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3629. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3630. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3631. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3632. GGML_ASSERT(axis0 != axis1);
  3633. GGML_ASSERT(axis0 != axis2);
  3634. GGML_ASSERT(axis0 != axis3);
  3635. GGML_ASSERT(axis1 != axis2);
  3636. GGML_ASSERT(axis1 != axis3);
  3637. GGML_ASSERT(axis2 != axis3);
  3638. bool is_node = false;
  3639. if (a->grad) {
  3640. GGML_ASSERT(false); // TODO: implement backward
  3641. is_node = true;
  3642. }
  3643. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3644. int ne[GGML_MAX_DIMS];
  3645. int nb[GGML_MAX_DIMS];
  3646. ne[axis0] = a->ne[0];
  3647. ne[axis1] = a->ne[1];
  3648. ne[axis2] = a->ne[2];
  3649. ne[axis3] = a->ne[3];
  3650. nb[axis0] = a->nb[0];
  3651. nb[axis1] = a->nb[1];
  3652. nb[axis2] = a->nb[2];
  3653. nb[axis3] = a->nb[3];
  3654. result->ne[0] = ne[0];
  3655. result->ne[1] = ne[1];
  3656. result->ne[2] = ne[2];
  3657. result->ne[3] = ne[3];
  3658. result->nb[0] = nb[0];
  3659. result->nb[1] = nb[1];
  3660. result->nb[2] = nb[2];
  3661. result->nb[3] = nb[3];
  3662. result->op = GGML_OP_PERMUTE;
  3663. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3664. result->src0 = a;
  3665. result->src1 = NULL; // TODO: maybe store the permutation here?
  3666. return result;
  3667. }
  3668. // ggml_transpose
  3669. struct ggml_tensor * ggml_transpose(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a) {
  3672. bool is_node = false;
  3673. if (a->grad) {
  3674. GGML_ASSERT(false); // TODO: implement backward
  3675. is_node = true;
  3676. }
  3677. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3678. result->ne[0] = a->ne[1];
  3679. result->ne[1] = a->ne[0];
  3680. result->nb[0] = a->nb[1];
  3681. result->nb[1] = a->nb[0];
  3682. result->op = GGML_OP_TRANSPOSE;
  3683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3684. result->src0 = a;
  3685. result->src1 = NULL;
  3686. return result;
  3687. }
  3688. // ggml_get_rows
  3689. struct ggml_tensor * ggml_get_rows(
  3690. struct ggml_context * ctx,
  3691. struct ggml_tensor * a,
  3692. struct ggml_tensor * b) {
  3693. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3694. bool is_node = false;
  3695. if (a->grad || b->grad) {
  3696. GGML_ASSERT(false); // TODO: implement backward
  3697. is_node = true;
  3698. }
  3699. // TODO: implement non F32 return
  3700. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3701. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3702. result->op = GGML_OP_GET_ROWS;
  3703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3704. result->src0 = a;
  3705. result->src1 = b;
  3706. return result;
  3707. }
  3708. // ggml_diag_mask_inf
  3709. struct ggml_tensor * ggml_diag_mask_inf(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a,
  3712. int n_past) {
  3713. bool is_node = false;
  3714. if (a->grad) {
  3715. GGML_ASSERT(false); // TODO: implement backward
  3716. is_node = true;
  3717. }
  3718. // TODO: when implement backward, fix this:
  3719. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3720. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3721. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3722. result->op = GGML_OP_DIAG_MASK_INF;
  3723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3724. result->src0 = a;
  3725. result->src1 = b;
  3726. return result;
  3727. }
  3728. // ggml_soft_max
  3729. struct ggml_tensor * ggml_soft_max(
  3730. struct ggml_context * ctx,
  3731. struct ggml_tensor * a) {
  3732. bool is_node = false;
  3733. if (a->grad) {
  3734. GGML_ASSERT(false); // TODO: implement backward
  3735. is_node = true;
  3736. }
  3737. // TODO: when implement backward, fix this:
  3738. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3739. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3740. result->op = GGML_OP_SOFT_MAX;
  3741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3742. result->src0 = a;
  3743. result->src1 = NULL;
  3744. return result;
  3745. }
  3746. // ggml_rope
  3747. struct ggml_tensor * ggml_rope(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a,
  3750. int n_past,
  3751. int n_dims,
  3752. int mode) {
  3753. GGML_ASSERT(n_past >= 0);
  3754. bool is_node = false;
  3755. if (a->grad) {
  3756. GGML_ASSERT(false); // TODO: implement backward
  3757. is_node = true;
  3758. }
  3759. // TODO: when implement backward, fix this:
  3760. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3761. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3762. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3763. ((int32_t *) b->data)[0] = n_past;
  3764. ((int32_t *) b->data)[1] = n_dims;
  3765. ((int32_t *) b->data)[2] = mode;
  3766. result->op = GGML_OP_ROPE;
  3767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3768. result->src0 = a;
  3769. result->src1 = b;
  3770. return result;
  3771. }
  3772. // ggml_conv_1d_1s
  3773. struct ggml_tensor * ggml_conv_1d_1s(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a,
  3776. struct ggml_tensor * b) {
  3777. GGML_ASSERT(ggml_is_matrix(b));
  3778. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3779. GGML_ASSERT(a->ne[3] == 1);
  3780. bool is_node = false;
  3781. if (a->grad || b->grad) {
  3782. GGML_ASSERT(false); // TODO: implement backward
  3783. is_node = true;
  3784. }
  3785. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3786. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3787. result->op = GGML_OP_CONV_1D_1S;
  3788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3789. result->src0 = a;
  3790. result->src1 = b;
  3791. return result;
  3792. }
  3793. // ggml_conv_1d_2s
  3794. struct ggml_tensor * ggml_conv_1d_2s(
  3795. struct ggml_context * ctx,
  3796. struct ggml_tensor * a,
  3797. struct ggml_tensor * b) {
  3798. GGML_ASSERT(ggml_is_matrix(b));
  3799. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3800. GGML_ASSERT(a->ne[3] == 1);
  3801. bool is_node = false;
  3802. if (a->grad || b->grad) {
  3803. GGML_ASSERT(false); // TODO: implement backward
  3804. is_node = true;
  3805. }
  3806. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3807. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3808. result->op = GGML_OP_CONV_1D_2S;
  3809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3810. result->src0 = a;
  3811. result->src1 = b;
  3812. return result;
  3813. }
  3814. // ggml_flash_attn
  3815. struct ggml_tensor * ggml_flash_attn(
  3816. struct ggml_context * ctx,
  3817. struct ggml_tensor * q,
  3818. struct ggml_tensor * k,
  3819. struct ggml_tensor * v,
  3820. bool masked) {
  3821. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3822. // TODO: check if vT can be multiplied by (k*qT)
  3823. bool is_node = false;
  3824. if (q->grad || k->grad || v->grad) {
  3825. GGML_ASSERT(false); // TODO: implement backward
  3826. is_node = true;
  3827. }
  3828. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3829. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3830. result->op = GGML_OP_FLASH_ATTN;
  3831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3832. result->src0 = q;
  3833. result->src1 = k;
  3834. result->opt[0] = v;
  3835. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3836. return result;
  3837. }
  3838. // ggml_flash_ff
  3839. struct ggml_tensor * ggml_flash_ff(
  3840. struct ggml_context * ctx,
  3841. struct ggml_tensor * a,
  3842. struct ggml_tensor * b0,
  3843. struct ggml_tensor * b1,
  3844. struct ggml_tensor * c0,
  3845. struct ggml_tensor * c1) {
  3846. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3847. // TODO: more checks
  3848. bool is_node = false;
  3849. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3850. GGML_ASSERT(false); // TODO: implement backward
  3851. is_node = true;
  3852. }
  3853. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3854. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3855. result->op = GGML_OP_FLASH_FF;
  3856. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3857. result->src0 = a;
  3858. result->src1 = b0;
  3859. result->opt[0] = b1;
  3860. result->opt[1] = c0;
  3861. result->opt[2] = c1;
  3862. return result;
  3863. }
  3864. ////////////////////////////////////////////////////////////////////////////////
  3865. void ggml_set_param(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * tensor) {
  3868. tensor->is_param = true;
  3869. GGML_ASSERT(tensor->grad == NULL);
  3870. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3871. }
  3872. // ggml_compute_forward_dup
  3873. static void ggml_compute_forward_dup_f16(
  3874. const struct ggml_compute_params * params,
  3875. const struct ggml_tensor * src0,
  3876. struct ggml_tensor * dst) {
  3877. GGML_ASSERT(params->ith == 0);
  3878. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3879. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3880. return;
  3881. }
  3882. const int64_t ne00 = src0->ne[0];
  3883. const int64_t ne01 = src0->ne[1];
  3884. const int64_t ne02 = src0->ne[2];
  3885. const int64_t ne03 = src0->ne[3];
  3886. const size_t nb00 = src0->nb[0];
  3887. const size_t nb01 = src0->nb[1];
  3888. const size_t nb02 = src0->nb[2];
  3889. const size_t nb03 = src0->nb[3];
  3890. const size_t nb0 = dst->nb[0];
  3891. const size_t nb1 = dst->nb[1];
  3892. const size_t nb2 = dst->nb[2];
  3893. const size_t nb3 = dst->nb[3];
  3894. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3895. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3896. return;
  3897. }
  3898. if (src0->type == dst->type &&
  3899. src0->ne[0] == dst->ne[0] &&
  3900. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  3901. // copy by rows
  3902. const size_t rs = ne00*nb00;
  3903. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3904. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3905. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3906. memcpy(
  3907. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3908. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3909. rs);
  3910. }
  3911. }
  3912. }
  3913. return;
  3914. }
  3915. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  3916. if (ggml_is_contiguous(dst)) {
  3917. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3918. if (dst->type == GGML_TYPE_F16) {
  3919. size_t id = 0;
  3920. const size_t rs = ne00*nb00;
  3921. for (int i03 = 0; i03 < ne03; i03++) {
  3922. for (int i02 = 0; i02 < ne02; i02++) {
  3923. for (int i01 = 0; i01 < ne01; i01++) {
  3924. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3925. char * dst_ptr = (char *) dst->data + id*rs;
  3926. memcpy(dst_ptr, src0_ptr, rs);
  3927. id++;
  3928. }
  3929. }
  3930. }
  3931. } else if (dst->type == GGML_TYPE_F32) {
  3932. size_t id = 0;
  3933. float * dst_ptr = (float *) dst->data;
  3934. for (int i03 = 0; i03 < ne03; i03++) {
  3935. for (int i02 = 0; i02 < ne02; i02++) {
  3936. for (int i01 = 0; i01 < ne01; i01++) {
  3937. for (int i00 = 0; i00 < ne00; i00++) {
  3938. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3939. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3940. id++;
  3941. }
  3942. }
  3943. }
  3944. }
  3945. } else {
  3946. GGML_ASSERT(false); // TODO: implement
  3947. }
  3948. } else {
  3949. //printf("%s: this is not optimal - fix me\n", __func__);
  3950. if (dst->type == GGML_TYPE_F32) {
  3951. size_t id = 0;
  3952. float * dst_ptr = (float *) dst->data;
  3953. for (int i03 = 0; i03 < ne03; i03++) {
  3954. for (int i02 = 0; i02 < ne02; i02++) {
  3955. for (int i01 = 0; i01 < ne01; i01++) {
  3956. for (int i00 = 0; i00 < ne00; i00++) {
  3957. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3958. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3959. id++;
  3960. }
  3961. }
  3962. }
  3963. }
  3964. } else if (dst->type == GGML_TYPE_F16) {
  3965. size_t id = 0;
  3966. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3967. for (int i03 = 0; i03 < ne03; i03++) {
  3968. for (int i02 = 0; i02 < ne02; i02++) {
  3969. for (int i01 = 0; i01 < ne01; i01++) {
  3970. for (int i00 = 0; i00 < ne00; i00++) {
  3971. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3972. dst_ptr[id] = *src0_ptr;
  3973. id++;
  3974. }
  3975. }
  3976. }
  3977. }
  3978. } else {
  3979. GGML_ASSERT(false); // TODO: implement
  3980. }
  3981. }
  3982. return;
  3983. }
  3984. // dst counters
  3985. int64_t i10 = 0;
  3986. int64_t i11 = 0;
  3987. int64_t i12 = 0;
  3988. int64_t i13 = 0;
  3989. if (dst->type == GGML_TYPE_F16) {
  3990. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3991. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3992. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3993. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3994. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3995. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3996. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  3997. if (++i10 == ne00) {
  3998. i10 = 0;
  3999. if (++i11 == ne01) {
  4000. i11 = 0;
  4001. if (++i12 == ne02) {
  4002. i12 = 0;
  4003. if (++i13 == ne03) {
  4004. i13 = 0;
  4005. }
  4006. }
  4007. }
  4008. }
  4009. }
  4010. }
  4011. }
  4012. }
  4013. } else if (dst->type == GGML_TYPE_F32) {
  4014. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4015. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4016. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4017. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4018. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4019. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4020. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4021. if (++i10 == ne00) {
  4022. i10 = 0;
  4023. if (++i11 == ne01) {
  4024. i11 = 0;
  4025. if (++i12 == ne02) {
  4026. i12 = 0;
  4027. if (++i13 == ne03) {
  4028. i13 = 0;
  4029. }
  4030. }
  4031. }
  4032. }
  4033. }
  4034. }
  4035. }
  4036. }
  4037. } else {
  4038. GGML_ASSERT(false); // TODO: implement
  4039. }
  4040. }
  4041. static void ggml_compute_forward_dup_f32(
  4042. const struct ggml_compute_params * params,
  4043. const struct ggml_tensor * src0,
  4044. struct ggml_tensor * dst) {
  4045. GGML_ASSERT(params->ith == 0);
  4046. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4047. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4048. return;
  4049. }
  4050. const int64_t ne00 = src0->ne[0];
  4051. const int64_t ne01 = src0->ne[1];
  4052. const int64_t ne02 = src0->ne[2];
  4053. const int64_t ne03 = src0->ne[3];
  4054. const size_t nb00 = src0->nb[0];
  4055. const size_t nb01 = src0->nb[1];
  4056. const size_t nb02 = src0->nb[2];
  4057. const size_t nb03 = src0->nb[3];
  4058. const size_t nb0 = dst->nb[0];
  4059. const size_t nb1 = dst->nb[1];
  4060. const size_t nb2 = dst->nb[2];
  4061. const size_t nb3 = dst->nb[3];
  4062. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4063. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4064. return;
  4065. }
  4066. if (src0->type == dst->type &&
  4067. src0->ne[0] == dst->ne[0] &&
  4068. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4069. // copy by rows
  4070. const size_t rs = ne00*nb00;
  4071. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4072. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4073. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4074. memcpy(
  4075. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4076. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4077. rs);
  4078. }
  4079. }
  4080. }
  4081. return;
  4082. }
  4083. if (ggml_is_contiguous(dst)) {
  4084. // TODO: simplify
  4085. if (src0->nb[0] == sizeof(float)) {
  4086. if (dst->type == GGML_TYPE_F32) {
  4087. size_t id = 0;
  4088. const size_t rs = ne00*nb00;
  4089. for (int i03 = 0; i03 < ne03; i03++) {
  4090. for (int i02 = 0; i02 < ne02; i02++) {
  4091. for (int i01 = 0; i01 < ne01; i01++) {
  4092. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4093. char * dst_ptr = (char *) dst->data + id*rs;
  4094. memcpy(dst_ptr, src0_ptr, rs);
  4095. id++;
  4096. }
  4097. }
  4098. }
  4099. } else if (dst->type == GGML_TYPE_F16) {
  4100. size_t id = 0;
  4101. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4102. for (int i03 = 0; i03 < ne03; i03++) {
  4103. for (int i02 = 0; i02 < ne02; i02++) {
  4104. for (int i01 = 0; i01 < ne01; i01++) {
  4105. for (int i00 = 0; i00 < ne00; i00++) {
  4106. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4107. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4108. id++;
  4109. }
  4110. }
  4111. }
  4112. }
  4113. } else {
  4114. GGML_ASSERT(false); // TODO: implement
  4115. }
  4116. } else {
  4117. //printf("%s: this is not optimal - fix me\n", __func__);
  4118. if (dst->type == GGML_TYPE_F32) {
  4119. size_t id = 0;
  4120. float * dst_ptr = (float *) dst->data;
  4121. for (int i03 = 0; i03 < ne03; i03++) {
  4122. for (int i02 = 0; i02 < ne02; i02++) {
  4123. for (int i01 = 0; i01 < ne01; i01++) {
  4124. for (int i00 = 0; i00 < ne00; i00++) {
  4125. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4126. dst_ptr[id] = *src0_ptr;
  4127. id++;
  4128. }
  4129. }
  4130. }
  4131. }
  4132. } else if (dst->type == GGML_TYPE_F16) {
  4133. size_t id = 0;
  4134. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4135. for (int i03 = 0; i03 < ne03; i03++) {
  4136. for (int i02 = 0; i02 < ne02; i02++) {
  4137. for (int i01 = 0; i01 < ne01; i01++) {
  4138. for (int i00 = 0; i00 < ne00; i00++) {
  4139. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4140. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4141. id++;
  4142. }
  4143. }
  4144. }
  4145. }
  4146. } else {
  4147. GGML_ASSERT(false); // TODO: implement
  4148. }
  4149. }
  4150. return;
  4151. }
  4152. // dst counters
  4153. int64_t i10 = 0;
  4154. int64_t i11 = 0;
  4155. int64_t i12 = 0;
  4156. int64_t i13 = 0;
  4157. if (dst->type == GGML_TYPE_F32) {
  4158. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4159. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4160. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4161. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4162. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4163. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4164. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4165. if (++i10 == dst->ne[0]) {
  4166. i10 = 0;
  4167. if (++i11 == dst->ne[1]) {
  4168. i11 = 0;
  4169. if (++i12 == dst->ne[2]) {
  4170. i12 = 0;
  4171. if (++i13 == dst->ne[3]) {
  4172. i13 = 0;
  4173. }
  4174. }
  4175. }
  4176. }
  4177. }
  4178. }
  4179. }
  4180. }
  4181. } else if (dst->type == GGML_TYPE_F16) {
  4182. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4183. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4184. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4185. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4186. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4187. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4188. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4189. if (++i10 == dst->ne[0]) {
  4190. i10 = 0;
  4191. if (++i11 == dst->ne[1]) {
  4192. i11 = 0;
  4193. if (++i12 == dst->ne[2]) {
  4194. i12 = 0;
  4195. if (++i13 == dst->ne[3]) {
  4196. i13 = 0;
  4197. }
  4198. }
  4199. }
  4200. }
  4201. }
  4202. }
  4203. }
  4204. }
  4205. } else {
  4206. GGML_ASSERT(false); // TODO: implement
  4207. }
  4208. }
  4209. static void ggml_compute_forward_dup(
  4210. const struct ggml_compute_params * params,
  4211. const struct ggml_tensor * src0,
  4212. struct ggml_tensor * dst) {
  4213. switch (src0->type) {
  4214. case GGML_TYPE_F16:
  4215. {
  4216. ggml_compute_forward_dup_f16(params, src0, dst);
  4217. } break;
  4218. case GGML_TYPE_F32:
  4219. {
  4220. ggml_compute_forward_dup_f32(params, src0, dst);
  4221. } break;
  4222. case GGML_TYPE_Q4_0:
  4223. case GGML_TYPE_Q4_1:
  4224. case GGML_TYPE_I8:
  4225. case GGML_TYPE_I16:
  4226. case GGML_TYPE_I32:
  4227. case GGML_TYPE_COUNT:
  4228. {
  4229. GGML_ASSERT(false);
  4230. } break;
  4231. }
  4232. }
  4233. // ggml_compute_forward_add
  4234. static void ggml_compute_forward_add_f32(
  4235. const struct ggml_compute_params * params,
  4236. const struct ggml_tensor * src0,
  4237. const struct ggml_tensor * src1,
  4238. struct ggml_tensor * dst) {
  4239. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4240. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4241. return;
  4242. }
  4243. const int ith = params->ith;
  4244. const int nth = params->nth;
  4245. const int n = ggml_nrows(src0);
  4246. const int nc = src0->ne[0];
  4247. const size_t nb00 = src0->nb[0];
  4248. const size_t nb01 = src0->nb[1];
  4249. const size_t nb10 = src1->nb[0];
  4250. const size_t nb11 = src1->nb[1];
  4251. const size_t nb0 = dst->nb[0];
  4252. const size_t nb1 = dst->nb[1];
  4253. GGML_ASSERT( nb0 == sizeof(float));
  4254. GGML_ASSERT(nb00 == sizeof(float));
  4255. if (nb10 == sizeof(float)) {
  4256. for (int j = ith; j < n; j += nth) {
  4257. #ifdef GGML_USE_ACCELERATE
  4258. vDSP_vadd(
  4259. (float *) ((char *) src0->data + j*nb01), 1,
  4260. (float *) ((char *) src1->data + j*nb11), 1,
  4261. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4262. #else
  4263. ggml_vec_add_f32(nc,
  4264. (float *) ((char *) dst->data + j*nb1),
  4265. (float *) ((char *) src0->data + j*nb01),
  4266. (float *) ((char *) src1->data + j*nb11));
  4267. #endif
  4268. }
  4269. } else {
  4270. // src1 is not contiguous
  4271. for (int j = ith; j < n; j += nth) {
  4272. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4273. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4274. for (int i = 0; i < nc; i++) {
  4275. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4276. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4277. }
  4278. }
  4279. }
  4280. }
  4281. static void ggml_compute_forward_add(
  4282. const struct ggml_compute_params * params,
  4283. const struct ggml_tensor * src0,
  4284. const struct ggml_tensor * src1,
  4285. struct ggml_tensor * dst) {
  4286. switch (src0->type) {
  4287. case GGML_TYPE_F32:
  4288. {
  4289. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4290. } break;
  4291. case GGML_TYPE_Q4_0:
  4292. case GGML_TYPE_Q4_1:
  4293. case GGML_TYPE_I8:
  4294. case GGML_TYPE_I16:
  4295. case GGML_TYPE_I32:
  4296. case GGML_TYPE_F16:
  4297. case GGML_TYPE_COUNT:
  4298. {
  4299. GGML_ASSERT(false);
  4300. } break;
  4301. }
  4302. }
  4303. // ggml_compute_forward_sub
  4304. static void ggml_compute_forward_sub_f32(
  4305. const struct ggml_compute_params * params,
  4306. const struct ggml_tensor * src0,
  4307. const struct ggml_tensor * src1,
  4308. struct ggml_tensor * dst) {
  4309. assert(params->ith == 0);
  4310. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4311. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4312. return;
  4313. }
  4314. const int n = ggml_nrows(src0);
  4315. const int nc = src0->ne[0];
  4316. assert( dst->nb[0] == sizeof(float));
  4317. assert(src0->nb[0] == sizeof(float));
  4318. assert(src1->nb[0] == sizeof(float));
  4319. for (int i = 0; i < n; i++) {
  4320. ggml_vec_sub_f32(nc,
  4321. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4322. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4323. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4324. }
  4325. }
  4326. static void ggml_compute_forward_sub(
  4327. const struct ggml_compute_params * params,
  4328. const struct ggml_tensor * src0,
  4329. const struct ggml_tensor * src1,
  4330. struct ggml_tensor * dst) {
  4331. switch (src0->type) {
  4332. case GGML_TYPE_F32:
  4333. {
  4334. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4335. } break;
  4336. case GGML_TYPE_Q4_0:
  4337. case GGML_TYPE_Q4_1:
  4338. case GGML_TYPE_I8:
  4339. case GGML_TYPE_I16:
  4340. case GGML_TYPE_I32:
  4341. case GGML_TYPE_F16:
  4342. case GGML_TYPE_COUNT:
  4343. {
  4344. GGML_ASSERT(false);
  4345. } break;
  4346. }
  4347. }
  4348. // ggml_compute_forward_mul
  4349. static void ggml_compute_forward_mul_f32(
  4350. const struct ggml_compute_params * params,
  4351. const struct ggml_tensor * src0,
  4352. const struct ggml_tensor * src1,
  4353. struct ggml_tensor * dst) {
  4354. assert(params->ith == 0);
  4355. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4357. return;
  4358. }
  4359. const int n = ggml_nrows(src0);
  4360. const int nc = src0->ne[0];
  4361. assert( dst->nb[0] == sizeof(float));
  4362. assert(src0->nb[0] == sizeof(float));
  4363. assert(src1->nb[0] == sizeof(float));
  4364. for (int i = 0; i < n; i++) {
  4365. ggml_vec_mul_f32(nc,
  4366. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4367. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4368. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4369. }
  4370. }
  4371. static void ggml_compute_forward_mul(
  4372. const struct ggml_compute_params * params,
  4373. const struct ggml_tensor * src0,
  4374. const struct ggml_tensor * src1,
  4375. struct ggml_tensor * dst) {
  4376. switch (src0->type) {
  4377. case GGML_TYPE_F32:
  4378. {
  4379. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4380. } break;
  4381. case GGML_TYPE_Q4_0:
  4382. case GGML_TYPE_Q4_1:
  4383. case GGML_TYPE_I8:
  4384. case GGML_TYPE_I16:
  4385. case GGML_TYPE_I32:
  4386. case GGML_TYPE_F16:
  4387. case GGML_TYPE_COUNT:
  4388. {
  4389. GGML_ASSERT(false);
  4390. } break;
  4391. }
  4392. }
  4393. // ggml_compute_forward_div
  4394. static void ggml_compute_forward_div_f32(
  4395. const struct ggml_compute_params * params,
  4396. const struct ggml_tensor * src0,
  4397. const struct ggml_tensor * src1,
  4398. struct ggml_tensor * dst) {
  4399. assert(params->ith == 0);
  4400. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4401. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4402. return;
  4403. }
  4404. const int n = ggml_nrows(src0);
  4405. const int nc = src0->ne[0];
  4406. assert( dst->nb[0] == sizeof(float));
  4407. assert(src0->nb[0] == sizeof(float));
  4408. assert(src1->nb[0] == sizeof(float));
  4409. for (int i = 0; i < n; i++) {
  4410. ggml_vec_div_f32(nc,
  4411. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4412. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4413. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4414. }
  4415. }
  4416. static void ggml_compute_forward_div(
  4417. const struct ggml_compute_params * params,
  4418. const struct ggml_tensor * src0,
  4419. const struct ggml_tensor * src1,
  4420. struct ggml_tensor * dst) {
  4421. switch (src0->type) {
  4422. case GGML_TYPE_F32:
  4423. {
  4424. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4425. } break;
  4426. case GGML_TYPE_Q4_0:
  4427. case GGML_TYPE_Q4_1:
  4428. case GGML_TYPE_I8:
  4429. case GGML_TYPE_I16:
  4430. case GGML_TYPE_I32:
  4431. case GGML_TYPE_F16:
  4432. case GGML_TYPE_COUNT:
  4433. {
  4434. GGML_ASSERT(false);
  4435. } break;
  4436. }
  4437. }
  4438. // ggml_compute_forward_sqr
  4439. static void ggml_compute_forward_sqr_f32(
  4440. const struct ggml_compute_params * params,
  4441. const struct ggml_tensor * src0,
  4442. struct ggml_tensor * dst) {
  4443. assert(params->ith == 0);
  4444. assert(ggml_are_same_shape(src0, dst));
  4445. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4446. return;
  4447. }
  4448. const int n = ggml_nrows(src0);
  4449. const int nc = src0->ne[0];
  4450. assert( dst->nb[0] == sizeof(float));
  4451. assert(src0->nb[0] == sizeof(float));
  4452. for (int i = 0; i < n; i++) {
  4453. ggml_vec_sqr_f32(nc,
  4454. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4455. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4456. }
  4457. }
  4458. static void ggml_compute_forward_sqr(
  4459. const struct ggml_compute_params * params,
  4460. const struct ggml_tensor * src0,
  4461. struct ggml_tensor * dst) {
  4462. switch (src0->type) {
  4463. case GGML_TYPE_F32:
  4464. {
  4465. ggml_compute_forward_sqr_f32(params, src0, dst);
  4466. } break;
  4467. case GGML_TYPE_Q4_0:
  4468. case GGML_TYPE_Q4_1:
  4469. case GGML_TYPE_I8:
  4470. case GGML_TYPE_I16:
  4471. case GGML_TYPE_I32:
  4472. case GGML_TYPE_F16:
  4473. case GGML_TYPE_COUNT:
  4474. {
  4475. GGML_ASSERT(false);
  4476. } break;
  4477. }
  4478. }
  4479. // ggml_compute_forward_sqrt
  4480. static void ggml_compute_forward_sqrt_f32(
  4481. const struct ggml_compute_params * params,
  4482. const struct ggml_tensor * src0,
  4483. struct ggml_tensor * dst) {
  4484. assert(params->ith == 0);
  4485. assert(ggml_are_same_shape(src0, dst));
  4486. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4487. return;
  4488. }
  4489. const int n = ggml_nrows(src0);
  4490. const int nc = src0->ne[0];
  4491. assert( dst->nb[0] == sizeof(float));
  4492. assert(src0->nb[0] == sizeof(float));
  4493. for (int i = 0; i < n; i++) {
  4494. ggml_vec_sqrt_f32(nc,
  4495. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4496. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4497. }
  4498. }
  4499. static void ggml_compute_forward_sqrt(
  4500. const struct ggml_compute_params * params,
  4501. const struct ggml_tensor * src0,
  4502. struct ggml_tensor * dst) {
  4503. switch (src0->type) {
  4504. case GGML_TYPE_F32:
  4505. {
  4506. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4507. } break;
  4508. case GGML_TYPE_Q4_0:
  4509. case GGML_TYPE_Q4_1:
  4510. case GGML_TYPE_I8:
  4511. case GGML_TYPE_I16:
  4512. case GGML_TYPE_I32:
  4513. case GGML_TYPE_F16:
  4514. case GGML_TYPE_COUNT:
  4515. {
  4516. GGML_ASSERT(false);
  4517. } break;
  4518. }
  4519. }
  4520. // ggml_compute_forward_sum
  4521. static void ggml_compute_forward_sum_f32(
  4522. const struct ggml_compute_params * params,
  4523. const struct ggml_tensor * src0,
  4524. struct ggml_tensor * dst) {
  4525. assert(params->ith == 0);
  4526. assert(ggml_is_scalar(dst));
  4527. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4528. return;
  4529. }
  4530. assert(ggml_is_scalar(dst));
  4531. assert(src0->nb[0] == sizeof(float));
  4532. const int64_t ne00 = src0->ne[0];
  4533. const int64_t ne01 = src0->ne[1];
  4534. const int64_t ne02 = src0->ne[2];
  4535. const int64_t ne03 = src0->ne[3];
  4536. const size_t nb01 = src0->nb[1];
  4537. const size_t nb02 = src0->nb[2];
  4538. const size_t nb03 = src0->nb[3];
  4539. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4540. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4541. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4542. ggml_vec_sum_f32(ne00,
  4543. (float *) (dst->data),
  4544. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4545. }
  4546. }
  4547. }
  4548. }
  4549. static void ggml_compute_forward_sum(
  4550. const struct ggml_compute_params * params,
  4551. const struct ggml_tensor * src0,
  4552. struct ggml_tensor * dst) {
  4553. switch (src0->type) {
  4554. case GGML_TYPE_F32:
  4555. {
  4556. ggml_compute_forward_sum_f32(params, src0, dst);
  4557. } break;
  4558. case GGML_TYPE_Q4_0:
  4559. case GGML_TYPE_Q4_1:
  4560. case GGML_TYPE_I8:
  4561. case GGML_TYPE_I16:
  4562. case GGML_TYPE_I32:
  4563. case GGML_TYPE_F16:
  4564. case GGML_TYPE_COUNT:
  4565. {
  4566. GGML_ASSERT(false);
  4567. } break;
  4568. }
  4569. }
  4570. // ggml_compute_forward_mean
  4571. static void ggml_compute_forward_mean_f32(
  4572. const struct ggml_compute_params * params,
  4573. const struct ggml_tensor * src0,
  4574. struct ggml_tensor * dst) {
  4575. assert(params->ith == 0);
  4576. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4577. return;
  4578. }
  4579. assert(src0->nb[0] == sizeof(float));
  4580. const int64_t ne00 = src0->ne[0];
  4581. const int64_t ne01 = src0->ne[1];
  4582. const int64_t ne02 = src0->ne[2];
  4583. const int64_t ne03 = src0->ne[3];
  4584. const size_t nb01 = src0->nb[1];
  4585. const size_t nb02 = src0->nb[2];
  4586. const size_t nb03 = src0->nb[3];
  4587. const int64_t ne0 = dst->ne[0];
  4588. const int64_t ne1 = dst->ne[1];
  4589. const int64_t ne2 = dst->ne[2];
  4590. const int64_t ne3 = dst->ne[3];
  4591. assert(ne0 == 1);
  4592. assert(ne1 == ne01);
  4593. assert(ne2 == ne02);
  4594. assert(ne3 == ne03);
  4595. UNUSED(ne0);
  4596. UNUSED(ne1);
  4597. UNUSED(ne2);
  4598. UNUSED(ne3);
  4599. const size_t nb1 = dst->nb[1];
  4600. const size_t nb2 = dst->nb[2];
  4601. const size_t nb3 = dst->nb[3];
  4602. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4603. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4604. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4605. ggml_vec_sum_f32(ne00,
  4606. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4607. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4608. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4609. }
  4610. }
  4611. }
  4612. }
  4613. static void ggml_compute_forward_mean(
  4614. const struct ggml_compute_params * params,
  4615. const struct ggml_tensor * src0,
  4616. struct ggml_tensor * dst) {
  4617. switch (src0->type) {
  4618. case GGML_TYPE_F32:
  4619. {
  4620. ggml_compute_forward_mean_f32(params, src0, dst);
  4621. } break;
  4622. case GGML_TYPE_Q4_0:
  4623. case GGML_TYPE_Q4_1:
  4624. case GGML_TYPE_I8:
  4625. case GGML_TYPE_I16:
  4626. case GGML_TYPE_I32:
  4627. case GGML_TYPE_F16:
  4628. case GGML_TYPE_COUNT:
  4629. {
  4630. GGML_ASSERT(false);
  4631. } break;
  4632. }
  4633. }
  4634. // ggml_compute_forward_repeat
  4635. static void ggml_compute_forward_repeat_f32(
  4636. const struct ggml_compute_params * params,
  4637. const struct ggml_tensor * src0,
  4638. struct ggml_tensor * dst) {
  4639. assert(params->ith == 0);
  4640. assert(ggml_can_repeat(src0, dst));
  4641. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4642. return;
  4643. }
  4644. // TODO: implement support for rank > 2 tensors
  4645. assert(src0->ne[2] == 1);
  4646. assert(src0->ne[3] == 1);
  4647. assert( dst->ne[2] == 1);
  4648. assert( dst->ne[3] == 1);
  4649. const int nc = dst->ne[0];
  4650. const int nr = dst->ne[1];
  4651. const int nc0 = src0->ne[0];
  4652. const int nr0 = src0->ne[1];
  4653. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4654. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4655. // TODO: support for transposed / permuted tensors
  4656. assert( dst->nb[0] == sizeof(float));
  4657. assert(src0->nb[0] == sizeof(float));
  4658. // TODO: maybe this is not optimal?
  4659. for (int i = 0; i < nrr; i++) {
  4660. for (int j = 0; j < ncr; j++) {
  4661. for (int k = 0; k < nr0; k++) {
  4662. ggml_vec_cpy_f32(nc0,
  4663. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4664. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4665. }
  4666. }
  4667. }
  4668. }
  4669. static void ggml_compute_forward_repeat(
  4670. const struct ggml_compute_params * params,
  4671. const struct ggml_tensor * src0,
  4672. struct ggml_tensor * dst) {
  4673. switch (src0->type) {
  4674. case GGML_TYPE_F32:
  4675. {
  4676. ggml_compute_forward_repeat_f32(params, src0, dst);
  4677. } break;
  4678. case GGML_TYPE_Q4_0:
  4679. case GGML_TYPE_Q4_1:
  4680. case GGML_TYPE_I8:
  4681. case GGML_TYPE_I16:
  4682. case GGML_TYPE_I32:
  4683. case GGML_TYPE_F16:
  4684. case GGML_TYPE_COUNT:
  4685. {
  4686. GGML_ASSERT(false);
  4687. } break;
  4688. }
  4689. }
  4690. // ggml_compute_forward_abs
  4691. static void ggml_compute_forward_abs_f32(
  4692. const struct ggml_compute_params * params,
  4693. const struct ggml_tensor * src0,
  4694. struct ggml_tensor * dst) {
  4695. assert(params->ith == 0);
  4696. assert(ggml_are_same_shape(src0, dst));
  4697. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4698. return;
  4699. }
  4700. const int n = ggml_nrows(src0);
  4701. const int nc = src0->ne[0];
  4702. assert(dst->nb[0] == sizeof(float));
  4703. assert(src0->nb[0] == sizeof(float));
  4704. for (int i = 0; i < n; i++) {
  4705. ggml_vec_abs_f32(nc,
  4706. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4707. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4708. }
  4709. }
  4710. static void ggml_compute_forward_abs(
  4711. const struct ggml_compute_params * params,
  4712. const struct ggml_tensor * src0,
  4713. struct ggml_tensor * dst) {
  4714. switch (src0->type) {
  4715. case GGML_TYPE_F32:
  4716. {
  4717. ggml_compute_forward_abs_f32(params, src0, dst);
  4718. } break;
  4719. case GGML_TYPE_Q4_0:
  4720. case GGML_TYPE_Q4_1:
  4721. case GGML_TYPE_I8:
  4722. case GGML_TYPE_I16:
  4723. case GGML_TYPE_I32:
  4724. case GGML_TYPE_F16:
  4725. case GGML_TYPE_COUNT:
  4726. {
  4727. GGML_ASSERT(false);
  4728. } break;
  4729. }
  4730. }
  4731. // ggml_compute_forward_sgn
  4732. static void ggml_compute_forward_sgn_f32(
  4733. const struct ggml_compute_params * params,
  4734. const struct ggml_tensor * src0,
  4735. struct ggml_tensor * dst) {
  4736. assert(params->ith == 0);
  4737. assert(ggml_are_same_shape(src0, dst));
  4738. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4739. return;
  4740. }
  4741. const int n = ggml_nrows(src0);
  4742. const int nc = src0->ne[0];
  4743. assert(dst->nb[0] == sizeof(float));
  4744. assert(src0->nb[0] == sizeof(float));
  4745. for (int i = 0; i < n; i++) {
  4746. ggml_vec_sgn_f32(nc,
  4747. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4748. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4749. }
  4750. }
  4751. static void ggml_compute_forward_sgn(
  4752. const struct ggml_compute_params * params,
  4753. const struct ggml_tensor * src0,
  4754. struct ggml_tensor * dst) {
  4755. switch (src0->type) {
  4756. case GGML_TYPE_F32:
  4757. {
  4758. ggml_compute_forward_sgn_f32(params, src0, dst);
  4759. } break;
  4760. case GGML_TYPE_Q4_0:
  4761. case GGML_TYPE_Q4_1:
  4762. case GGML_TYPE_I8:
  4763. case GGML_TYPE_I16:
  4764. case GGML_TYPE_I32:
  4765. case GGML_TYPE_F16:
  4766. case GGML_TYPE_COUNT:
  4767. {
  4768. GGML_ASSERT(false);
  4769. } break;
  4770. }
  4771. }
  4772. // ggml_compute_forward_neg
  4773. static void ggml_compute_forward_neg_f32(
  4774. const struct ggml_compute_params * params,
  4775. const struct ggml_tensor * src0,
  4776. struct ggml_tensor * dst) {
  4777. assert(params->ith == 0);
  4778. assert(ggml_are_same_shape(src0, dst));
  4779. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4780. return;
  4781. }
  4782. const int n = ggml_nrows(src0);
  4783. const int nc = src0->ne[0];
  4784. assert(dst->nb[0] == sizeof(float));
  4785. assert(src0->nb[0] == sizeof(float));
  4786. for (int i = 0; i < n; i++) {
  4787. ggml_vec_neg_f32(nc,
  4788. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4789. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4790. }
  4791. }
  4792. static void ggml_compute_forward_neg(
  4793. const struct ggml_compute_params * params,
  4794. const struct ggml_tensor * src0,
  4795. struct ggml_tensor * dst) {
  4796. switch (src0->type) {
  4797. case GGML_TYPE_F32:
  4798. {
  4799. ggml_compute_forward_neg_f32(params, src0, dst);
  4800. } break;
  4801. case GGML_TYPE_Q4_0:
  4802. case GGML_TYPE_Q4_1:
  4803. case GGML_TYPE_I8:
  4804. case GGML_TYPE_I16:
  4805. case GGML_TYPE_I32:
  4806. case GGML_TYPE_F16:
  4807. case GGML_TYPE_COUNT:
  4808. {
  4809. GGML_ASSERT(false);
  4810. } break;
  4811. }
  4812. }
  4813. // ggml_compute_forward_step
  4814. static void ggml_compute_forward_step_f32(
  4815. const struct ggml_compute_params * params,
  4816. const struct ggml_tensor * src0,
  4817. struct ggml_tensor * dst) {
  4818. assert(params->ith == 0);
  4819. assert(ggml_are_same_shape(src0, dst));
  4820. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4821. return;
  4822. }
  4823. const int n = ggml_nrows(src0);
  4824. const int nc = src0->ne[0];
  4825. assert(dst->nb[0] == sizeof(float));
  4826. assert(src0->nb[0] == sizeof(float));
  4827. for (int i = 0; i < n; i++) {
  4828. ggml_vec_step_f32(nc,
  4829. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4830. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4831. }
  4832. }
  4833. static void ggml_compute_forward_step(
  4834. const struct ggml_compute_params * params,
  4835. const struct ggml_tensor * src0,
  4836. struct ggml_tensor * dst) {
  4837. switch (src0->type) {
  4838. case GGML_TYPE_F32:
  4839. {
  4840. ggml_compute_forward_step_f32(params, src0, dst);
  4841. } break;
  4842. case GGML_TYPE_Q4_0:
  4843. case GGML_TYPE_Q4_1:
  4844. case GGML_TYPE_I8:
  4845. case GGML_TYPE_I16:
  4846. case GGML_TYPE_I32:
  4847. case GGML_TYPE_F16:
  4848. case GGML_TYPE_COUNT:
  4849. {
  4850. GGML_ASSERT(false);
  4851. } break;
  4852. }
  4853. }
  4854. // ggml_compute_forward_relu
  4855. static void ggml_compute_forward_relu_f32(
  4856. const struct ggml_compute_params * params,
  4857. const struct ggml_tensor * src0,
  4858. struct ggml_tensor * dst) {
  4859. assert(params->ith == 0);
  4860. assert(ggml_are_same_shape(src0, dst));
  4861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4862. return;
  4863. }
  4864. const int n = ggml_nrows(src0);
  4865. const int nc = src0->ne[0];
  4866. assert(dst->nb[0] == sizeof(float));
  4867. assert(src0->nb[0] == sizeof(float));
  4868. for (int i = 0; i < n; i++) {
  4869. ggml_vec_relu_f32(nc,
  4870. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4871. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4872. }
  4873. }
  4874. static void ggml_compute_forward_relu(
  4875. const struct ggml_compute_params * params,
  4876. const struct ggml_tensor * src0,
  4877. struct ggml_tensor * dst) {
  4878. switch (src0->type) {
  4879. case GGML_TYPE_F32:
  4880. {
  4881. ggml_compute_forward_relu_f32(params, src0, dst);
  4882. } break;
  4883. case GGML_TYPE_Q4_0:
  4884. case GGML_TYPE_Q4_1:
  4885. case GGML_TYPE_I8:
  4886. case GGML_TYPE_I16:
  4887. case GGML_TYPE_I32:
  4888. case GGML_TYPE_F16:
  4889. case GGML_TYPE_COUNT:
  4890. {
  4891. GGML_ASSERT(false);
  4892. } break;
  4893. }
  4894. }
  4895. // ggml_compute_forward_gelu
  4896. static void ggml_compute_forward_gelu_f32(
  4897. const struct ggml_compute_params * params,
  4898. const struct ggml_tensor * src0,
  4899. struct ggml_tensor * dst) {
  4900. GGML_ASSERT(ggml_is_contiguous(src0));
  4901. GGML_ASSERT(ggml_is_contiguous(dst));
  4902. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4903. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4904. return;
  4905. }
  4906. const int ith = params->ith;
  4907. const int nth = params->nth;
  4908. const int nc = src0->ne[0];
  4909. const int nr = ggml_nrows(src0);
  4910. // rows per thread
  4911. const int dr = (nr + nth - 1)/nth;
  4912. // row range for this thread
  4913. const int ir0 = dr*ith;
  4914. const int ir1 = MIN(ir0 + dr, nr);
  4915. for (int i1 = ir0; i1 < ir1; i1++) {
  4916. ggml_vec_gelu_f32(nc,
  4917. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4918. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4919. #ifndef NDEBUG
  4920. for (int k = 0; k < nc; k++) {
  4921. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4922. UNUSED(x);
  4923. assert(!isnan(x));
  4924. assert(!isinf(x));
  4925. }
  4926. #endif
  4927. }
  4928. }
  4929. static void ggml_compute_forward_gelu(
  4930. const struct ggml_compute_params * params,
  4931. const struct ggml_tensor * src0,
  4932. struct ggml_tensor * dst) {
  4933. switch (src0->type) {
  4934. case GGML_TYPE_F32:
  4935. {
  4936. ggml_compute_forward_gelu_f32(params, src0, dst);
  4937. } break;
  4938. case GGML_TYPE_Q4_0:
  4939. case GGML_TYPE_Q4_1:
  4940. case GGML_TYPE_I8:
  4941. case GGML_TYPE_I16:
  4942. case GGML_TYPE_I32:
  4943. case GGML_TYPE_F16:
  4944. case GGML_TYPE_COUNT:
  4945. {
  4946. GGML_ASSERT(false);
  4947. } break;
  4948. }
  4949. //printf("XXXXXXXX gelu\n");
  4950. }
  4951. // ggml_compute_forward_silu
  4952. static void ggml_compute_forward_silu_f32(
  4953. const struct ggml_compute_params * params,
  4954. const struct ggml_tensor * src0,
  4955. struct ggml_tensor * dst) {
  4956. GGML_ASSERT(ggml_is_contiguous(src0));
  4957. GGML_ASSERT(ggml_is_contiguous(dst));
  4958. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4960. return;
  4961. }
  4962. const int ith = params->ith;
  4963. const int nth = params->nth;
  4964. const int nc = src0->ne[0];
  4965. const int nr = ggml_nrows(src0);
  4966. // rows per thread
  4967. const int dr = (nr + nth - 1)/nth;
  4968. // row range for this thread
  4969. const int ir0 = dr*ith;
  4970. const int ir1 = MIN(ir0 + dr, nr);
  4971. for (int i1 = ir0; i1 < ir1; i1++) {
  4972. ggml_vec_silu_f32(nc,
  4973. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4974. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4975. #ifndef NDEBUG
  4976. for (int k = 0; k < nc; k++) {
  4977. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4978. UNUSED(x);
  4979. assert(!isnan(x));
  4980. assert(!isinf(x));
  4981. }
  4982. #endif
  4983. }
  4984. }
  4985. static void ggml_compute_forward_silu(
  4986. const struct ggml_compute_params * params,
  4987. const struct ggml_tensor * src0,
  4988. struct ggml_tensor * dst) {
  4989. switch (src0->type) {
  4990. case GGML_TYPE_F32:
  4991. {
  4992. ggml_compute_forward_silu_f32(params, src0, dst);
  4993. } break;
  4994. case GGML_TYPE_Q4_0:
  4995. case GGML_TYPE_Q4_1:
  4996. case GGML_TYPE_I8:
  4997. case GGML_TYPE_I16:
  4998. case GGML_TYPE_I32:
  4999. case GGML_TYPE_F16:
  5000. case GGML_TYPE_COUNT:
  5001. {
  5002. GGML_ASSERT(false);
  5003. } break;
  5004. }
  5005. }
  5006. // ggml_compute_forward_norm
  5007. static void ggml_compute_forward_norm_f32(
  5008. const struct ggml_compute_params * params,
  5009. const struct ggml_tensor * src0,
  5010. struct ggml_tensor * dst) {
  5011. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5013. return;
  5014. }
  5015. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5016. const int ith = params->ith;
  5017. const int nth = params->nth;
  5018. const int64_t ne00 = src0->ne[0];
  5019. const int64_t ne01 = src0->ne[1];
  5020. const int64_t ne02 = src0->ne[2];
  5021. const int64_t ne03 = src0->ne[3];
  5022. const size_t nb01 = src0->nb[1];
  5023. const size_t nb02 = src0->nb[2];
  5024. const size_t nb03 = src0->nb[3];
  5025. const size_t nb1 = dst->nb[1];
  5026. const size_t nb2 = dst->nb[2];
  5027. const size_t nb3 = dst->nb[3];
  5028. const float eps = 1e-5f; // TODO: make this a parameter
  5029. // TODO: optimize
  5030. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5031. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5032. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5033. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5034. ggml_float sum = 0.0;
  5035. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5036. sum += (ggml_float)x[i00];
  5037. }
  5038. float mean = sum/ne00;
  5039. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5040. ggml_float sum2 = 0.0;
  5041. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5042. float v = x[i00] - mean;
  5043. y[i00] = v;
  5044. sum2 += (ggml_float)(v*v);
  5045. }
  5046. float variance = sum2/ne00;
  5047. const float scale = 1.0f/sqrtf(variance + eps);
  5048. ggml_vec_scale_f32(ne00, y, scale);
  5049. }
  5050. }
  5051. }
  5052. }
  5053. static void ggml_compute_forward_norm(
  5054. const struct ggml_compute_params * params,
  5055. const struct ggml_tensor * src0,
  5056. struct ggml_tensor * dst) {
  5057. switch (src0->type) {
  5058. case GGML_TYPE_F32:
  5059. {
  5060. ggml_compute_forward_norm_f32(params, src0, dst);
  5061. } break;
  5062. case GGML_TYPE_Q4_0:
  5063. case GGML_TYPE_Q4_1:
  5064. case GGML_TYPE_I8:
  5065. case GGML_TYPE_I16:
  5066. case GGML_TYPE_I32:
  5067. case GGML_TYPE_F16:
  5068. case GGML_TYPE_COUNT:
  5069. {
  5070. GGML_ASSERT(false);
  5071. } break;
  5072. }
  5073. }
  5074. static void ggml_compute_forward_rms_norm_f32(
  5075. const struct ggml_compute_params * params,
  5076. const struct ggml_tensor * src0,
  5077. struct ggml_tensor * dst) {
  5078. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5079. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5080. return;
  5081. }
  5082. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5083. const int ith = params->ith;
  5084. const int nth = params->nth;
  5085. const int64_t ne00 = src0->ne[0];
  5086. const int64_t ne01 = src0->ne[1];
  5087. const int64_t ne02 = src0->ne[2];
  5088. const int64_t ne03 = src0->ne[3];
  5089. const size_t nb01 = src0->nb[1];
  5090. const size_t nb02 = src0->nb[2];
  5091. const size_t nb03 = src0->nb[3];
  5092. const size_t nb1 = dst->nb[1];
  5093. const size_t nb2 = dst->nb[2];
  5094. const size_t nb3 = dst->nb[3];
  5095. const float eps = 1e-6f; // TODO: make this a parameter
  5096. // TODO: optimize
  5097. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5098. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5099. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5100. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5101. ggml_float sum = 0.0;
  5102. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5103. sum += (ggml_float)(x[i00] * x[i00]);
  5104. }
  5105. float mean = sum/ne00;
  5106. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5107. memcpy(y, x, ne00 * sizeof(float));
  5108. // for (int i00 = 0; i00 < ne00; i00++) {
  5109. // y[i00] = x[i00];
  5110. // }
  5111. const float scale = 1.0f/sqrtf(mean + eps);
  5112. ggml_vec_scale_f32(ne00, y, scale);
  5113. }
  5114. }
  5115. }
  5116. }
  5117. static void ggml_compute_forward_rms_norm(
  5118. const struct ggml_compute_params * params,
  5119. const struct ggml_tensor * src0,
  5120. struct ggml_tensor * dst) {
  5121. switch (src0->type) {
  5122. case GGML_TYPE_F32:
  5123. {
  5124. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5125. } break;
  5126. case GGML_TYPE_Q4_0:
  5127. case GGML_TYPE_Q4_1:
  5128. case GGML_TYPE_I8:
  5129. case GGML_TYPE_I16:
  5130. case GGML_TYPE_I32:
  5131. case GGML_TYPE_F16:
  5132. case GGML_TYPE_COUNT:
  5133. {
  5134. GGML_ASSERT(false);
  5135. } break;
  5136. }
  5137. }
  5138. // ggml_compute_forward_mul_mat
  5139. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5140. // helper function to determine if it is better to use BLAS or not
  5141. // for large matrices, BLAS is faster
  5142. static bool ggml_compute_forward_mul_mat_use_blas(
  5143. const struct ggml_tensor * src0,
  5144. const struct ggml_tensor * src1,
  5145. struct ggml_tensor * dst) {
  5146. //const int64_t ne00 = src0->ne[0];
  5147. //const int64_t ne01 = src0->ne[1];
  5148. const int64_t ne10 = src1->ne[0];
  5149. const int64_t ne0 = dst->ne[0];
  5150. const int64_t ne1 = dst->ne[1];
  5151. // TODO: find the optimal values for these
  5152. if (ggml_is_contiguous(src0) &&
  5153. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5154. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5155. return true;
  5156. }
  5157. return false;
  5158. }
  5159. #endif
  5160. static void ggml_compute_forward_mul_mat_f32(
  5161. const struct ggml_compute_params * params,
  5162. const struct ggml_tensor * src0,
  5163. const struct ggml_tensor * src1,
  5164. struct ggml_tensor * dst) {
  5165. int64_t t0 = ggml_perf_time_us();
  5166. UNUSED(t0);
  5167. const int64_t ne00 = src0->ne[0];
  5168. const int64_t ne01 = src0->ne[1];
  5169. const int64_t ne02 = src0->ne[2];
  5170. const int64_t ne03 = src0->ne[3];
  5171. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5172. const int64_t ne10 = src1->ne[0];
  5173. #endif
  5174. const int64_t ne11 = src1->ne[1];
  5175. #ifndef NDEBUG
  5176. const int64_t ne12 = src1->ne[2];
  5177. const int64_t ne13 = src1->ne[3];
  5178. const int64_t ne0 = dst->ne[0];
  5179. const int64_t ne1 = dst->ne[1];
  5180. const int64_t ne2 = dst->ne[2];
  5181. const int64_t ne3 = dst->ne[3];
  5182. const int nb00 = src0->nb[0];
  5183. #endif
  5184. const int nb01 = src0->nb[1];
  5185. const int nb02 = src0->nb[2];
  5186. const int nb03 = src0->nb[3];
  5187. #ifndef NDEBUG
  5188. const int nb10 = src1->nb[0];
  5189. #endif
  5190. const int nb11 = src1->nb[1];
  5191. const int nb12 = src1->nb[2];
  5192. const int nb13 = src1->nb[3];
  5193. const int nb0 = dst->nb[0];
  5194. const int nb1 = dst->nb[1];
  5195. const int nb2 = dst->nb[2];
  5196. const int nb3 = dst->nb[3];
  5197. const int ith = params->ith;
  5198. const int nth = params->nth;
  5199. assert(ne02 == ne12);
  5200. assert(ne03 == ne13);
  5201. assert(ne2 == ne12);
  5202. assert(ne3 == ne13);
  5203. // we don't support permuted src0 or src1
  5204. assert(nb00 == sizeof(float));
  5205. assert(nb10 == sizeof(float));
  5206. // dst cannot be transposed or permuted
  5207. assert(nb0 == sizeof(float));
  5208. assert(nb0 <= nb1);
  5209. assert(nb1 <= nb2);
  5210. assert(nb2 <= nb3);
  5211. assert(ne0 == ne01);
  5212. assert(ne1 == ne11);
  5213. assert(ne2 == ne02);
  5214. assert(ne3 == ne03);
  5215. // nb01 >= nb00 - src0 is not transposed
  5216. // compute by src0 rows
  5217. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5218. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5219. if (params->ith != 0) {
  5220. return;
  5221. }
  5222. if (params->type == GGML_TASK_INIT) {
  5223. return;
  5224. }
  5225. if (params->type == GGML_TASK_FINALIZE) {
  5226. return;
  5227. }
  5228. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5229. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5230. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5231. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5232. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5233. // zT = y * xT
  5234. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5235. ne11, ne01, ne10,
  5236. 1.0f, y, ne10,
  5237. x, ne10,
  5238. 0.0f, d, ne01);
  5239. }
  5240. }
  5241. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5242. return;
  5243. }
  5244. #endif
  5245. if (params->type == GGML_TASK_INIT) {
  5246. return;
  5247. }
  5248. if (params->type == GGML_TASK_FINALIZE) {
  5249. return;
  5250. }
  5251. // parallelize by src0 rows using ggml_vec_dot_f32
  5252. // total rows in src0
  5253. const int nr = ne01*ne02*ne03;
  5254. // rows per thread
  5255. const int dr = (nr + nth - 1)/nth;
  5256. // row range for this thread
  5257. const int ir0 = dr*ith;
  5258. const int ir1 = MIN(ir0 + dr, nr);
  5259. for (int ir = ir0; ir < ir1; ++ir) {
  5260. // src0 indices
  5261. const int i03 = ir/(ne02*ne01);
  5262. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5263. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5264. for (int64_t ic = 0; ic < ne11; ++ic) {
  5265. // src1 indices
  5266. const int i13 = i03;
  5267. const int i12 = i02;
  5268. const int i11 = ic;
  5269. // dst indices
  5270. const int i0 = i01;
  5271. const int i1 = i11;
  5272. const int i2 = i02;
  5273. const int i3 = i03;
  5274. ggml_vec_dot_f32(ne00,
  5275. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5276. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5277. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5278. }
  5279. }
  5280. //int64_t t1 = ggml_perf_time_us();
  5281. //static int64_t acc = 0;
  5282. //acc += t1 - t0;
  5283. //if (t1 - t0 > 10) {
  5284. // printf("\n");
  5285. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5286. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5287. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5288. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5289. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5290. //}
  5291. }
  5292. static void ggml_compute_forward_mul_mat_f16_f32(
  5293. const struct ggml_compute_params * params,
  5294. const struct ggml_tensor * src0,
  5295. const struct ggml_tensor * src1,
  5296. struct ggml_tensor * dst) {
  5297. int64_t t0 = ggml_perf_time_us();
  5298. UNUSED(t0);
  5299. const int64_t ne00 = src0->ne[0];
  5300. const int64_t ne01 = src0->ne[1];
  5301. const int64_t ne02 = src0->ne[2];
  5302. const int64_t ne03 = src0->ne[3];
  5303. const int64_t ne10 = src1->ne[0];
  5304. const int64_t ne11 = src1->ne[1];
  5305. const int64_t ne12 = src1->ne[2];
  5306. const int64_t ne13 = src1->ne[3];
  5307. const int64_t ne0 = dst->ne[0];
  5308. const int64_t ne1 = dst->ne[1];
  5309. const int64_t ne2 = dst->ne[2];
  5310. const int64_t ne3 = dst->ne[3];
  5311. //const int64_t ne = ne0*ne1*ne2*ne3;
  5312. const int nb00 = src0->nb[0];
  5313. const int nb01 = src0->nb[1];
  5314. const int nb02 = src0->nb[2];
  5315. const int nb03 = src0->nb[3];
  5316. const int nb10 = src1->nb[0];
  5317. const int nb11 = src1->nb[1];
  5318. const int nb12 = src1->nb[2];
  5319. const int nb13 = src1->nb[3];
  5320. const int nb0 = dst->nb[0];
  5321. const int nb1 = dst->nb[1];
  5322. const int nb2 = dst->nb[2];
  5323. const int nb3 = dst->nb[3];
  5324. const int ith = params->ith;
  5325. const int nth = params->nth;
  5326. GGML_ASSERT(ne02 == ne12);
  5327. GGML_ASSERT(ne03 == ne13);
  5328. GGML_ASSERT(ne2 == ne12);
  5329. GGML_ASSERT(ne3 == ne13);
  5330. // TODO: we don't support permuted src0
  5331. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5332. // dst cannot be transposed or permuted
  5333. GGML_ASSERT(nb0 == sizeof(float));
  5334. GGML_ASSERT(nb0 <= nb1);
  5335. GGML_ASSERT(nb1 <= nb2);
  5336. GGML_ASSERT(nb2 <= nb3);
  5337. GGML_ASSERT(ne0 == ne01);
  5338. GGML_ASSERT(ne1 == ne11);
  5339. GGML_ASSERT(ne2 == ne02);
  5340. GGML_ASSERT(ne3 == ne03);
  5341. // nb01 >= nb00 - src0 is not transposed
  5342. // compute by src0 rows
  5343. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5344. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5345. GGML_ASSERT(nb10 == sizeof(float));
  5346. if (params->ith != 0) {
  5347. return;
  5348. }
  5349. if (params->type == GGML_TASK_INIT) {
  5350. return;
  5351. }
  5352. if (params->type == GGML_TASK_FINALIZE) {
  5353. return;
  5354. }
  5355. float * const wdata = params->wdata;
  5356. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5357. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5358. {
  5359. size_t id = 0;
  5360. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5361. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5362. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5363. }
  5364. }
  5365. }
  5366. const float * x = wdata;
  5367. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5368. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5369. // zT = y * xT
  5370. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5371. ne11, ne01, ne10,
  5372. 1.0f, y, ne10,
  5373. x, ne10,
  5374. 0.0f, d, ne01);
  5375. }
  5376. }
  5377. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5378. return;
  5379. }
  5380. #endif
  5381. if (params->type == GGML_TASK_INIT) {
  5382. ggml_fp16_t * const wdata = params->wdata;
  5383. size_t id = 0;
  5384. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5385. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5386. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5387. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5388. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5389. }
  5390. }
  5391. }
  5392. }
  5393. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5394. return;
  5395. }
  5396. if (params->type == GGML_TASK_FINALIZE) {
  5397. return;
  5398. }
  5399. // fp16 -> half the size, so divide by 2
  5400. // TODO: do not support transposed src1
  5401. assert(nb10/2 == sizeof(ggml_fp16_t));
  5402. // parallelize by src0 rows using ggml_vec_dot_f16
  5403. // total rows in src0
  5404. const int nr = ne01*ne02*ne03;
  5405. // rows per thread
  5406. const int dr = (nr + nth - 1)/nth;
  5407. // row range for this thread
  5408. const int ir0 = dr*ith;
  5409. const int ir1 = MIN(ir0 + dr, nr);
  5410. ggml_fp16_t * wdata = params->wdata;
  5411. for (int ir = ir0; ir < ir1; ++ir) {
  5412. // src0 indices
  5413. const int i03 = ir/(ne02*ne01);
  5414. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5415. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5416. const int i13 = i03;
  5417. const int i12 = i02;
  5418. const int i0 = i01;
  5419. const int i2 = i02;
  5420. const int i3 = i03;
  5421. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5422. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5423. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5424. for (int64_t ic = 0; ic < ne11; ++ic) {
  5425. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5426. }
  5427. }
  5428. //int64_t t1 = ggml_time_us();
  5429. //static int64_t acc = 0;
  5430. //acc += t1 - t0;
  5431. //if (t1 - t0 > 10) {
  5432. // printf("\n");
  5433. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5434. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5435. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5436. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5437. //}
  5438. }
  5439. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5440. [GGML_TYPE_Q4_0] = {
  5441. .dequantize_row_q = dequantize_row_q4_0,
  5442. .quantize_row_q = quantize_row_q4_0,
  5443. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5444. .vec_dot_q = ggml_vec_dot_q4_0,
  5445. },
  5446. [GGML_TYPE_Q4_1] = {
  5447. .dequantize_row_q = dequantize_row_q4_1,
  5448. .quantize_row_q = quantize_row_q4_1,
  5449. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5450. .vec_dot_q = ggml_vec_dot_q4_1,
  5451. },
  5452. };
  5453. // For internal test use
  5454. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5455. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5456. return quantize_fns[i];
  5457. }
  5458. static void ggml_compute_forward_mul_mat_q_f32(
  5459. const struct ggml_compute_params * params,
  5460. const struct ggml_tensor * src0,
  5461. const struct ggml_tensor * src1,
  5462. struct ggml_tensor * dst) {
  5463. int64_t t0 = ggml_perf_time_us();
  5464. UNUSED(t0);
  5465. const int64_t ne00 = src0->ne[0];
  5466. const int64_t ne01 = src0->ne[1];
  5467. const int64_t ne02 = src0->ne[2];
  5468. const int64_t ne03 = src0->ne[3];
  5469. const int64_t ne10 = src1->ne[0];
  5470. const int64_t ne11 = src1->ne[1];
  5471. const int64_t ne12 = src1->ne[2];
  5472. const int64_t ne13 = src1->ne[3];
  5473. const int64_t ne0 = dst->ne[0];
  5474. const int64_t ne1 = dst->ne[1];
  5475. const int64_t ne2 = dst->ne[2];
  5476. const int64_t ne3 = dst->ne[3];
  5477. const int nb00 = src0->nb[0];
  5478. const int nb01 = src0->nb[1];
  5479. const int nb02 = src0->nb[2];
  5480. const int nb03 = src0->nb[3];
  5481. const int nb10 = src1->nb[0];
  5482. const int nb11 = src1->nb[1];
  5483. const int nb12 = src1->nb[2];
  5484. const int nb13 = src1->nb[3];
  5485. const int nb0 = dst->nb[0];
  5486. const int nb1 = dst->nb[1];
  5487. const int nb2 = dst->nb[2];
  5488. const int nb3 = dst->nb[3];
  5489. const int ith = params->ith;
  5490. const int nth = params->nth;
  5491. GGML_ASSERT(ne02 == ne12);
  5492. GGML_ASSERT(ne03 == ne13);
  5493. GGML_ASSERT(ne2 == ne12);
  5494. GGML_ASSERT(ne3 == ne13);
  5495. const enum ggml_type type = src0->type;
  5496. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5497. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5498. // we don't support permuted src0 or src1
  5499. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5500. GGML_ASSERT(nb10 == sizeof(float));
  5501. // dst cannot be transposed or permuted
  5502. GGML_ASSERT(nb0 == sizeof(float));
  5503. GGML_ASSERT(nb0 <= nb1);
  5504. GGML_ASSERT(nb1 <= nb2);
  5505. GGML_ASSERT(nb2 <= nb3);
  5506. GGML_ASSERT(ne0 == ne01);
  5507. GGML_ASSERT(ne1 == ne11);
  5508. GGML_ASSERT(ne2 == ne02);
  5509. GGML_ASSERT(ne3 == ne03);
  5510. // nb01 >= nb00 - src0 is not transposed
  5511. // compute by src0 rows
  5512. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5513. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5514. if (params->ith != 0) {
  5515. return;
  5516. }
  5517. if (params->type == GGML_TASK_INIT) {
  5518. return;
  5519. }
  5520. if (params->type == GGML_TASK_FINALIZE) {
  5521. return;
  5522. }
  5523. float * const wdata = params->wdata;
  5524. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5525. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5526. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5527. {
  5528. size_t id = 0;
  5529. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5530. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5531. id += ne00;
  5532. }
  5533. }
  5534. const float * x = wdata;
  5535. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5536. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5537. // zT = y * xT
  5538. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5539. ne11, ne01, ne10,
  5540. 1.0f, y, ne10,
  5541. x, ne10,
  5542. 0.0f, d, ne01);
  5543. }
  5544. }
  5545. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5546. return;
  5547. }
  5548. #endif
  5549. if (params->type == GGML_TASK_INIT) {
  5550. char * wdata = params->wdata;
  5551. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5552. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5553. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5554. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5555. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5556. wdata += row_size;
  5557. }
  5558. }
  5559. }
  5560. return;
  5561. }
  5562. if (params->type == GGML_TASK_FINALIZE) {
  5563. return;
  5564. }
  5565. // parallelize by src0 rows using ggml_vec_dot_q
  5566. // total rows in src0
  5567. const int nr = ne01*ne02*ne03;
  5568. // rows per thread
  5569. const int dr = (nr + nth - 1)/nth;
  5570. // row range for this thread
  5571. const int ir0 = dr*ith;
  5572. const int ir1 = MIN(ir0 + dr, nr);
  5573. void * wdata = params->wdata;
  5574. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5575. for (int ir = ir0; ir < ir1; ++ir) {
  5576. // src0 indices
  5577. const int i03 = ir/(ne02*ne01);
  5578. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5579. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5580. const int i13 = i03;
  5581. const int i12 = i02;
  5582. const int i0 = i01;
  5583. const int i2 = i02;
  5584. const int i3 = i03;
  5585. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5586. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5587. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5588. assert(ne00 % 32 == 0);
  5589. for (int64_t ic = 0; ic < ne11; ++ic) {
  5590. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5591. }
  5592. }
  5593. //int64_t t1 = ggml_time_us();
  5594. //static int64_t acc = 0;
  5595. //acc += t1 - t0;
  5596. //if (t1 - t0 > 10) {
  5597. // printf("\n");
  5598. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5599. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5600. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5601. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5602. //}
  5603. }
  5604. static void ggml_compute_forward_mul_mat(
  5605. const struct ggml_compute_params * params,
  5606. const struct ggml_tensor * src0,
  5607. const struct ggml_tensor * src1,
  5608. struct ggml_tensor * dst) {
  5609. switch (src0->type) {
  5610. case GGML_TYPE_Q4_0:
  5611. case GGML_TYPE_Q4_1:
  5612. {
  5613. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5614. } break;
  5615. case GGML_TYPE_F16:
  5616. {
  5617. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5618. } break;
  5619. case GGML_TYPE_F32:
  5620. {
  5621. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5622. } break;
  5623. case GGML_TYPE_I8:
  5624. case GGML_TYPE_I16:
  5625. case GGML_TYPE_I32:
  5626. case GGML_TYPE_COUNT:
  5627. {
  5628. GGML_ASSERT(false);
  5629. } break;
  5630. }
  5631. #if 0
  5632. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5633. static int first = 8;
  5634. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5635. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5636. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5637. if (first) {
  5638. --first;
  5639. } else {
  5640. for (int k = 0; k < dst->ne[1]; ++k) {
  5641. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5642. for (int i = 0; i < 16; ++i) {
  5643. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5644. }
  5645. printf("\n");
  5646. }
  5647. printf("\n");
  5648. }
  5649. printf("\n");
  5650. exit(0);
  5651. }
  5652. } else {
  5653. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5654. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5655. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5656. }
  5657. #endif
  5658. }
  5659. // ggml_compute_forward_scale
  5660. static void ggml_compute_forward_scale_f32(
  5661. const struct ggml_compute_params * params,
  5662. const struct ggml_tensor * src0,
  5663. const struct ggml_tensor * src1,
  5664. struct ggml_tensor * dst) {
  5665. GGML_ASSERT(ggml_is_contiguous(src0));
  5666. GGML_ASSERT(ggml_is_contiguous(dst));
  5667. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5668. GGML_ASSERT(ggml_is_scalar(src1));
  5669. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5670. return;
  5671. }
  5672. // scale factor
  5673. const float v = *(float *) src1->data;
  5674. const int ith = params->ith;
  5675. const int nth = params->nth;
  5676. const int nc = src0->ne[0];
  5677. const int nr = ggml_nrows(src0);
  5678. // rows per thread
  5679. const int dr = (nr + nth - 1)/nth;
  5680. // row range for this thread
  5681. const int ir0 = dr*ith;
  5682. const int ir1 = MIN(ir0 + dr, nr);
  5683. for (int i1 = ir0; i1 < ir1; i1++) {
  5684. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5685. }
  5686. }
  5687. static void ggml_compute_forward_scale(
  5688. const struct ggml_compute_params * params,
  5689. const struct ggml_tensor * src0,
  5690. const struct ggml_tensor * src1,
  5691. struct ggml_tensor * dst) {
  5692. switch (src0->type) {
  5693. case GGML_TYPE_F32:
  5694. {
  5695. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5696. } break;
  5697. case GGML_TYPE_Q4_0:
  5698. case GGML_TYPE_Q4_1:
  5699. case GGML_TYPE_I8:
  5700. case GGML_TYPE_I16:
  5701. case GGML_TYPE_I32:
  5702. case GGML_TYPE_F16:
  5703. case GGML_TYPE_COUNT:
  5704. {
  5705. GGML_ASSERT(false);
  5706. } break;
  5707. }
  5708. }
  5709. // ggml_compute_forward_cpy
  5710. static void ggml_compute_forward_cpy(
  5711. const struct ggml_compute_params * params,
  5712. const struct ggml_tensor * src0,
  5713. struct ggml_tensor * dst) {
  5714. ggml_compute_forward_dup(params, src0, dst);
  5715. }
  5716. // ggml_compute_forward_cont
  5717. static void ggml_compute_forward_cont(
  5718. const struct ggml_compute_params * params,
  5719. const struct ggml_tensor * src0,
  5720. struct ggml_tensor * dst) {
  5721. ggml_compute_forward_dup(params, src0, dst);
  5722. }
  5723. // ggml_compute_forward_reshape
  5724. static void ggml_compute_forward_reshape(
  5725. const struct ggml_compute_params * params,
  5726. const struct ggml_tensor * src0,
  5727. struct ggml_tensor * dst) {
  5728. // NOP
  5729. UNUSED(params);
  5730. UNUSED(src0);
  5731. UNUSED(dst);
  5732. }
  5733. // ggml_compute_forward_view
  5734. static void ggml_compute_forward_view(
  5735. const struct ggml_compute_params * params,
  5736. const struct ggml_tensor * src0) {
  5737. // NOP
  5738. UNUSED(params);
  5739. UNUSED(src0);
  5740. }
  5741. // ggml_compute_forward_permute
  5742. static void ggml_compute_forward_permute(
  5743. const struct ggml_compute_params * params,
  5744. const struct ggml_tensor * src0) {
  5745. // NOP
  5746. UNUSED(params);
  5747. UNUSED(src0);
  5748. }
  5749. // ggml_compute_forward_transpose
  5750. static void ggml_compute_forward_transpose(
  5751. const struct ggml_compute_params * params,
  5752. const struct ggml_tensor * src0) {
  5753. // NOP
  5754. UNUSED(params);
  5755. UNUSED(src0);
  5756. }
  5757. // ggml_compute_forward_get_rows
  5758. static void ggml_compute_forward_get_rows_q(
  5759. const struct ggml_compute_params * params,
  5760. const struct ggml_tensor * src0,
  5761. const struct ggml_tensor * src1,
  5762. struct ggml_tensor * dst) {
  5763. assert(params->ith == 0);
  5764. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5765. return;
  5766. }
  5767. const int nc = src0->ne[0];
  5768. const int nr = ggml_nelements(src1);
  5769. const enum ggml_type type = src0->type;
  5770. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5771. assert( dst->ne[0] == nc);
  5772. assert( dst->ne[1] == nr);
  5773. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5774. for (int i = 0; i < nr; ++i) {
  5775. const int r = ((int32_t *) src1->data)[i];
  5776. dequantize_row_q(
  5777. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5778. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5779. }
  5780. }
  5781. static void ggml_compute_forward_get_rows_f16(
  5782. const struct ggml_compute_params * params,
  5783. const struct ggml_tensor * src0,
  5784. const struct ggml_tensor * src1,
  5785. struct ggml_tensor * dst) {
  5786. assert(params->ith == 0);
  5787. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5788. return;
  5789. }
  5790. const int nc = src0->ne[0];
  5791. const int nr = ggml_nelements(src1);
  5792. assert( dst->ne[0] == nc);
  5793. assert( dst->ne[1] == nr);
  5794. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5795. for (int i = 0; i < nr; ++i) {
  5796. const int r = ((int32_t *) src1->data)[i];
  5797. for (int j = 0; j < nc; ++j) {
  5798. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5799. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5800. }
  5801. }
  5802. }
  5803. static void ggml_compute_forward_get_rows_f32(
  5804. const struct ggml_compute_params * params,
  5805. const struct ggml_tensor * src0,
  5806. const struct ggml_tensor * src1,
  5807. struct ggml_tensor * dst) {
  5808. assert(params->ith == 0);
  5809. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5810. return;
  5811. }
  5812. const int nc = src0->ne[0];
  5813. const int nr = ggml_nelements(src1);
  5814. assert( dst->ne[0] == nc);
  5815. assert( dst->ne[1] == nr);
  5816. assert(src0->nb[0] == sizeof(float));
  5817. for (int i = 0; i < nr; ++i) {
  5818. const int r = ((int32_t *) src1->data)[i];
  5819. ggml_vec_cpy_f32(nc,
  5820. (float *) ((char *) dst->data + i*dst->nb[1]),
  5821. (float *) ((char *) src0->data + r*src0->nb[1]));
  5822. }
  5823. }
  5824. static void ggml_compute_forward_get_rows(
  5825. const struct ggml_compute_params * params,
  5826. const struct ggml_tensor * src0,
  5827. const struct ggml_tensor * src1,
  5828. struct ggml_tensor * dst) {
  5829. switch (src0->type) {
  5830. case GGML_TYPE_Q4_0:
  5831. case GGML_TYPE_Q4_1:
  5832. {
  5833. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5834. } break;
  5835. case GGML_TYPE_F16:
  5836. {
  5837. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5838. } break;
  5839. case GGML_TYPE_F32:
  5840. {
  5841. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5842. } break;
  5843. case GGML_TYPE_I8:
  5844. case GGML_TYPE_I16:
  5845. case GGML_TYPE_I32:
  5846. case GGML_TYPE_COUNT:
  5847. {
  5848. GGML_ASSERT(false);
  5849. } break;
  5850. }
  5851. //static bool first = true;
  5852. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5853. //if (first) {
  5854. // first = false;
  5855. //} else {
  5856. // for (int k = 0; k < dst->ne[1]; ++k) {
  5857. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5858. // for (int i = 0; i < 16; ++i) {
  5859. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5860. // }
  5861. // printf("\n");
  5862. // }
  5863. // printf("\n");
  5864. // }
  5865. // printf("\n");
  5866. // exit(0);
  5867. //}
  5868. }
  5869. // ggml_compute_forward_diag_mask_inf
  5870. static void ggml_compute_forward_diag_mask_inf_f32(
  5871. const struct ggml_compute_params * params,
  5872. const struct ggml_tensor * src0,
  5873. const struct ggml_tensor * src1,
  5874. struct ggml_tensor * dst) {
  5875. assert(params->ith == 0);
  5876. assert(src1->type == GGML_TYPE_I32);
  5877. assert(ggml_nelements(src1) == 1);
  5878. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5879. return;
  5880. }
  5881. const int n_past = ((int32_t *) src1->data)[0];
  5882. // TODO: handle transposed/permuted matrices
  5883. const int n = ggml_nrows(src0);
  5884. const int nc = src0->ne[0];
  5885. const int nr = src0->ne[1];
  5886. const int nz = n/nr;
  5887. assert( dst->nb[0] == sizeof(float));
  5888. assert(src0->nb[0] == sizeof(float));
  5889. for (int k = 0; k < nz; k++) {
  5890. for (int j = 0; j < nr; j++) {
  5891. for (int i = n_past; i < nc; i++) {
  5892. if (i > n_past + j) {
  5893. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5894. }
  5895. }
  5896. }
  5897. }
  5898. }
  5899. static void ggml_compute_forward_diag_mask_inf(
  5900. const struct ggml_compute_params * params,
  5901. const struct ggml_tensor * src0,
  5902. const struct ggml_tensor * src1,
  5903. struct ggml_tensor * dst) {
  5904. switch (src0->type) {
  5905. case GGML_TYPE_F32:
  5906. {
  5907. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5908. } break;
  5909. case GGML_TYPE_Q4_0:
  5910. case GGML_TYPE_Q4_1:
  5911. case GGML_TYPE_I8:
  5912. case GGML_TYPE_I16:
  5913. case GGML_TYPE_I32:
  5914. case GGML_TYPE_F16:
  5915. case GGML_TYPE_COUNT:
  5916. {
  5917. GGML_ASSERT(false);
  5918. } break;
  5919. }
  5920. }
  5921. // ggml_compute_forward_soft_max
  5922. static void ggml_compute_forward_soft_max_f32(
  5923. const struct ggml_compute_params * params,
  5924. const struct ggml_tensor * src0,
  5925. struct ggml_tensor * dst) {
  5926. GGML_ASSERT(ggml_is_contiguous(src0));
  5927. GGML_ASSERT(ggml_is_contiguous(dst));
  5928. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5930. return;
  5931. }
  5932. // TODO: handle transposed/permuted matrices
  5933. const int ith = params->ith;
  5934. const int nth = params->nth;
  5935. const int nc = src0->ne[0];
  5936. const int nr = ggml_nrows(src0);
  5937. // rows per thread
  5938. const int dr = (nr + nth - 1)/nth;
  5939. // row range for this thread
  5940. const int ir0 = dr*ith;
  5941. const int ir1 = MIN(ir0 + dr, nr);
  5942. for (int i1 = ir0; i1 < ir1; i1++) {
  5943. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5944. #ifndef NDEBUG
  5945. for (int i = 0; i < nc; ++i) {
  5946. //printf("p[%d] = %f\n", i, p[i]);
  5947. assert(!isnan(p[i]));
  5948. }
  5949. #endif
  5950. float max = -INFINITY;
  5951. ggml_vec_max_f32(nc, &max, p);
  5952. ggml_float sum = 0.0;
  5953. uint16_t scvt;
  5954. for (int i = 0; i < nc; i++) {
  5955. if (p[i] == -INFINITY) {
  5956. p[i] = 0.0f;
  5957. } else {
  5958. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5959. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5960. memcpy(&scvt, &s, sizeof(scvt));
  5961. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5962. sum += (ggml_float)val;
  5963. p[i] = val;
  5964. }
  5965. }
  5966. assert(sum > 0.0);
  5967. sum = 1.0/sum;
  5968. ggml_vec_scale_f32(nc, p, sum);
  5969. #ifndef NDEBUG
  5970. for (int i = 0; i < nc; ++i) {
  5971. assert(!isnan(p[i]));
  5972. assert(!isinf(p[i]));
  5973. }
  5974. #endif
  5975. }
  5976. }
  5977. static void ggml_compute_forward_soft_max(
  5978. const struct ggml_compute_params * params,
  5979. const struct ggml_tensor * src0,
  5980. struct ggml_tensor * dst) {
  5981. switch (src0->type) {
  5982. case GGML_TYPE_F32:
  5983. {
  5984. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5985. } break;
  5986. case GGML_TYPE_Q4_0:
  5987. case GGML_TYPE_Q4_1:
  5988. case GGML_TYPE_I8:
  5989. case GGML_TYPE_I16:
  5990. case GGML_TYPE_I32:
  5991. case GGML_TYPE_F16:
  5992. case GGML_TYPE_COUNT:
  5993. {
  5994. GGML_ASSERT(false);
  5995. } break;
  5996. }
  5997. }
  5998. // ggml_compute_forward_rope
  5999. static void ggml_compute_forward_rope_f32(
  6000. const struct ggml_compute_params * params,
  6001. const struct ggml_tensor * src0,
  6002. const struct ggml_tensor * src1,
  6003. struct ggml_tensor * dst) {
  6004. assert(src1->type == GGML_TYPE_I32);
  6005. assert(ggml_nelements(src1) == 3);
  6006. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6007. return;
  6008. }
  6009. const int n_past = ((int32_t *) src1->data)[0];
  6010. const int n_dims = ((int32_t *) src1->data)[1];
  6011. const int mode = ((int32_t *) src1->data)[2];
  6012. //const int64_t ne0 = src0->ne[0];
  6013. const int64_t ne1 = src0->ne[1];
  6014. const int64_t ne2 = src0->ne[2];
  6015. const int64_t ne3 = src0->ne[3];
  6016. const int nb0 = src0->nb[0];
  6017. const int nb1 = src0->nb[1];
  6018. const int nb2 = src0->nb[2];
  6019. const int nb3 = src0->nb[3];
  6020. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6021. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6022. assert(nb0 == sizeof(float));
  6023. const int ith = params->ith;
  6024. const int nth = params->nth;
  6025. const int nr = ggml_nrows(src0);
  6026. // rows per thread
  6027. const int dr = (nr + nth - 1)/nth;
  6028. // row range for this thread
  6029. const int ir0 = dr*ith;
  6030. const int ir1 = MIN(ir0 + dr, nr);
  6031. // row index used to determine which thread to use
  6032. int ir = 0;
  6033. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6034. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6035. const int p = (mode == 0 ? n_past + i2 : i2);
  6036. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6037. if (ir++ < ir0) continue;
  6038. if (ir > ir1) break;
  6039. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6040. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  6041. const float cos_theta = cosf(p*theta);
  6042. const float sin_theta = sinf(p*theta);
  6043. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6044. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6045. const float x0 = src[0];
  6046. const float x1 = src[1];
  6047. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6048. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6049. }
  6050. }
  6051. }
  6052. }
  6053. }
  6054. static void ggml_compute_forward_rope_f16(
  6055. const struct ggml_compute_params * params,
  6056. const struct ggml_tensor * src0,
  6057. const struct ggml_tensor * src1,
  6058. struct ggml_tensor * dst) {
  6059. assert(src1->type == GGML_TYPE_I32);
  6060. assert(ggml_nelements(src1) == 3);
  6061. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6062. return;
  6063. }
  6064. const int n_past = ((int32_t *) src1->data)[0];
  6065. const int n_dims = ((int32_t *) src1->data)[1];
  6066. const int mode = ((int32_t *) src1->data)[2];
  6067. //const int64_t ne0 = src0->ne[0];
  6068. const int64_t ne1 = src0->ne[1];
  6069. const int64_t ne2 = src0->ne[2];
  6070. const int64_t ne3 = src0->ne[3];
  6071. const int nb0 = src0->nb[0];
  6072. const int nb1 = src0->nb[1];
  6073. const int nb2 = src0->nb[2];
  6074. const int nb3 = src0->nb[3];
  6075. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6076. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6077. assert(nb0 == sizeof(ggml_fp16_t));
  6078. const int ith = params->ith;
  6079. const int nth = params->nth;
  6080. const int nr = ggml_nrows(src0);
  6081. // rows per thread
  6082. const int dr = (nr + nth - 1)/nth;
  6083. // row range for this thread
  6084. const int ir0 = dr*ith;
  6085. const int ir1 = MIN(ir0 + dr, nr);
  6086. // row index used to determine which thread to use
  6087. int ir = 0;
  6088. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6089. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6090. const int p = (mode == 0 ? n_past + i2 : i2);
  6091. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6092. if (ir++ < ir0) continue;
  6093. if (ir > ir1) break;
  6094. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6095. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  6096. const float cos_theta = cosf(p*theta);
  6097. const float sin_theta = sinf(p*theta);
  6098. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6099. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6100. const float x0 = ggml_fp16_to_fp32(src[0]);
  6101. const float x1 = ggml_fp16_to_fp32(src[1]);
  6102. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6103. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6104. }
  6105. }
  6106. }
  6107. }
  6108. }
  6109. static void ggml_compute_forward_rope(
  6110. const struct ggml_compute_params * params,
  6111. const struct ggml_tensor * src0,
  6112. const struct ggml_tensor * src1,
  6113. struct ggml_tensor * dst) {
  6114. switch (src0->type) {
  6115. case GGML_TYPE_F16:
  6116. {
  6117. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6118. } break;
  6119. case GGML_TYPE_F32:
  6120. {
  6121. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6122. } break;
  6123. case GGML_TYPE_Q4_0:
  6124. case GGML_TYPE_Q4_1:
  6125. case GGML_TYPE_I8:
  6126. case GGML_TYPE_I16:
  6127. case GGML_TYPE_I32:
  6128. case GGML_TYPE_COUNT:
  6129. {
  6130. GGML_ASSERT(false);
  6131. } break;
  6132. }
  6133. }
  6134. // ggml_compute_forward_conv_1d_1s
  6135. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6136. const struct ggml_compute_params * params,
  6137. const struct ggml_tensor * src0,
  6138. const struct ggml_tensor * src1,
  6139. struct ggml_tensor * dst) {
  6140. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6141. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6142. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6143. int64_t t0 = ggml_perf_time_us();
  6144. UNUSED(t0);
  6145. const int64_t ne00 = src0->ne[0];
  6146. const int64_t ne01 = src0->ne[1];
  6147. const int64_t ne02 = src0->ne[2];
  6148. //const int64_t ne03 = src0->ne[3];
  6149. const int64_t ne10 = src1->ne[0];
  6150. const int64_t ne11 = src1->ne[1];
  6151. //const int64_t ne12 = src1->ne[2];
  6152. //const int64_t ne13 = src1->ne[3];
  6153. //const int64_t ne0 = dst->ne[0];
  6154. //const int64_t ne1 = dst->ne[1];
  6155. //const int64_t ne2 = dst->ne[2];
  6156. //const int64_t ne3 = dst->ne[3];
  6157. //const int64_t ne = ne0*ne1*ne2*ne3;
  6158. const int nb00 = src0->nb[0];
  6159. const int nb01 = src0->nb[1];
  6160. const int nb02 = src0->nb[2];
  6161. //const int nb03 = src0->nb[3];
  6162. const int nb10 = src1->nb[0];
  6163. const int nb11 = src1->nb[1];
  6164. //const int nb12 = src1->nb[2];
  6165. //const int nb13 = src1->nb[3];
  6166. //const int nb0 = dst->nb[0];
  6167. const int nb1 = dst->nb[1];
  6168. //const int nb2 = dst->nb[2];
  6169. //const int nb3 = dst->nb[3];
  6170. const int ith = params->ith;
  6171. const int nth = params->nth;
  6172. const int nk = ne00;
  6173. const int nh = nk/2;
  6174. const int ew0 = ggml_up32(ne01);
  6175. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6176. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6177. GGML_ASSERT(nb10 == sizeof(float));
  6178. if (params->type == GGML_TASK_INIT) {
  6179. // TODO: fix this memset (wsize is overestimated)
  6180. memset(params->wdata, 0, params->wsize);
  6181. // prepare kernel data (src0)
  6182. {
  6183. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6184. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6185. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6186. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6187. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6188. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6189. dst_data[i00*ew0 + i01] = src[i00];
  6190. }
  6191. }
  6192. }
  6193. }
  6194. // prepare source data (src1)
  6195. {
  6196. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6197. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6198. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6199. ggml_fp16_t * dst_data = wdata;
  6200. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6201. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6202. }
  6203. }
  6204. }
  6205. return;
  6206. }
  6207. if (params->type == GGML_TASK_FINALIZE) {
  6208. return;
  6209. }
  6210. // total rows in dst
  6211. const int nr = ne02;
  6212. // rows per thread
  6213. const int dr = (nr + nth - 1)/nth;
  6214. // row range for this thread
  6215. const int ir0 = dr*ith;
  6216. const int ir1 = MIN(ir0 + dr, nr);
  6217. for (int i1 = ir0; i1 < ir1; i1++) {
  6218. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6219. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6220. dst_data[i0] = 0;
  6221. for (int k = -nh; k <= nh; k++) {
  6222. float v = 0.0f;
  6223. ggml_vec_dot_f16(ew0, &v,
  6224. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6225. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6226. dst_data[i0] += v;
  6227. }
  6228. }
  6229. }
  6230. }
  6231. static void ggml_compute_forward_conv_1d_1s_f32(
  6232. const struct ggml_compute_params * params,
  6233. const struct ggml_tensor * src0,
  6234. const struct ggml_tensor * src1,
  6235. struct ggml_tensor * dst) {
  6236. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6237. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6238. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6239. int64_t t0 = ggml_perf_time_us();
  6240. UNUSED(t0);
  6241. const int64_t ne00 = src0->ne[0];
  6242. const int64_t ne01 = src0->ne[1];
  6243. const int64_t ne02 = src0->ne[2];
  6244. //const int64_t ne03 = src0->ne[3];
  6245. const int64_t ne10 = src1->ne[0];
  6246. const int64_t ne11 = src1->ne[1];
  6247. //const int64_t ne12 = src1->ne[2];
  6248. //const int64_t ne13 = src1->ne[3];
  6249. //const int64_t ne0 = dst->ne[0];
  6250. //const int64_t ne1 = dst->ne[1];
  6251. //const int64_t ne2 = dst->ne[2];
  6252. //const int64_t ne3 = dst->ne[3];
  6253. //const int64_t ne = ne0*ne1*ne2*ne3;
  6254. const int nb00 = src0->nb[0];
  6255. const int nb01 = src0->nb[1];
  6256. const int nb02 = src0->nb[2];
  6257. //const int nb03 = src0->nb[3];
  6258. const int nb10 = src1->nb[0];
  6259. const int nb11 = src1->nb[1];
  6260. //const int nb12 = src1->nb[2];
  6261. //const int nb13 = src1->nb[3];
  6262. //const int nb0 = dst->nb[0];
  6263. const int nb1 = dst->nb[1];
  6264. //const int nb2 = dst->nb[2];
  6265. //const int nb3 = dst->nb[3];
  6266. const int ith = params->ith;
  6267. const int nth = params->nth;
  6268. const int nk = ne00;
  6269. const int nh = nk/2;
  6270. const int ew0 = ggml_up32(ne01);
  6271. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6272. GGML_ASSERT(nb00 == sizeof(float));
  6273. GGML_ASSERT(nb10 == sizeof(float));
  6274. if (params->type == GGML_TASK_INIT) {
  6275. // TODO: fix this memset (wsize is overestimated)
  6276. memset(params->wdata, 0, params->wsize);
  6277. // prepare kernel data (src0)
  6278. {
  6279. float * const wdata = (float *) params->wdata + 0;
  6280. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6281. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6282. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6283. float * dst_data = wdata + i02*ew0*ne00;
  6284. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6285. dst_data[i00*ew0 + i01] = src[i00];
  6286. }
  6287. }
  6288. }
  6289. }
  6290. // prepare source data (src1)
  6291. {
  6292. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6293. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6294. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6295. float * dst_data = wdata;
  6296. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6297. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6298. }
  6299. }
  6300. }
  6301. return;
  6302. }
  6303. if (params->type == GGML_TASK_FINALIZE) {
  6304. return;
  6305. }
  6306. // total rows in dst
  6307. const int nr = ne02;
  6308. // rows per thread
  6309. const int dr = (nr + nth - 1)/nth;
  6310. // row range for this thread
  6311. const int ir0 = dr*ith;
  6312. const int ir1 = MIN(ir0 + dr, nr);
  6313. for (int i1 = ir0; i1 < ir1; i1++) {
  6314. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6315. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6316. dst_data[i0] = 0;
  6317. for (int k = -nh; k <= nh; k++) {
  6318. float v = 0.0f;
  6319. ggml_vec_dot_f32(ew0, &v,
  6320. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6321. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6322. dst_data[i0] += v;
  6323. }
  6324. }
  6325. }
  6326. }
  6327. static void ggml_compute_forward_conv_1d_1s(
  6328. const struct ggml_compute_params * params,
  6329. const struct ggml_tensor * src0,
  6330. const struct ggml_tensor * src1,
  6331. struct ggml_tensor * dst) {
  6332. switch (src0->type) {
  6333. case GGML_TYPE_F16:
  6334. {
  6335. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6336. } break;
  6337. case GGML_TYPE_F32:
  6338. {
  6339. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6340. } break;
  6341. case GGML_TYPE_Q4_0:
  6342. case GGML_TYPE_Q4_1:
  6343. case GGML_TYPE_I8:
  6344. case GGML_TYPE_I16:
  6345. case GGML_TYPE_I32:
  6346. case GGML_TYPE_COUNT:
  6347. {
  6348. GGML_ASSERT(false);
  6349. } break;
  6350. }
  6351. }
  6352. // ggml_compute_forward_conv_1d_2s
  6353. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6354. const struct ggml_compute_params * params,
  6355. const struct ggml_tensor * src0,
  6356. const struct ggml_tensor * src1,
  6357. struct ggml_tensor * dst) {
  6358. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6359. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6360. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6361. int64_t t0 = ggml_perf_time_us();
  6362. UNUSED(t0);
  6363. const int64_t ne00 = src0->ne[0];
  6364. const int64_t ne01 = src0->ne[1];
  6365. const int64_t ne02 = src0->ne[2];
  6366. //const int64_t ne03 = src0->ne[3];
  6367. const int64_t ne10 = src1->ne[0];
  6368. const int64_t ne11 = src1->ne[1];
  6369. //const int64_t ne12 = src1->ne[2];
  6370. //const int64_t ne13 = src1->ne[3];
  6371. //const int64_t ne0 = dst->ne[0];
  6372. //const int64_t ne1 = dst->ne[1];
  6373. //const int64_t ne2 = dst->ne[2];
  6374. //const int64_t ne3 = dst->ne[3];
  6375. //const int64_t ne = ne0*ne1*ne2*ne3;
  6376. const int nb00 = src0->nb[0];
  6377. const int nb01 = src0->nb[1];
  6378. const int nb02 = src0->nb[2];
  6379. //const int nb03 = src0->nb[3];
  6380. const int nb10 = src1->nb[0];
  6381. const int nb11 = src1->nb[1];
  6382. //const int nb12 = src1->nb[2];
  6383. //const int nb13 = src1->nb[3];
  6384. //const int nb0 = dst->nb[0];
  6385. const int nb1 = dst->nb[1];
  6386. //const int nb2 = dst->nb[2];
  6387. //const int nb3 = dst->nb[3];
  6388. const int ith = params->ith;
  6389. const int nth = params->nth;
  6390. const int nk = ne00;
  6391. const int nh = nk/2;
  6392. const int ew0 = ggml_up32(ne01);
  6393. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6394. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6395. GGML_ASSERT(nb10 == sizeof(float));
  6396. if (params->type == GGML_TASK_INIT) {
  6397. // TODO: fix this memset (wsize is overestimated)
  6398. memset(params->wdata, 0, params->wsize);
  6399. // prepare kernel data (src0)
  6400. {
  6401. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6402. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6403. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6404. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6405. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6406. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6407. dst_data[i00*ew0 + i01] = src[i00];
  6408. }
  6409. }
  6410. }
  6411. }
  6412. // prepare source data (src1)
  6413. {
  6414. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6415. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6416. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6417. ggml_fp16_t * dst_data = wdata;
  6418. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6419. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6420. }
  6421. }
  6422. }
  6423. return;
  6424. }
  6425. if (params->type == GGML_TASK_FINALIZE) {
  6426. return;
  6427. }
  6428. // total rows in dst
  6429. const int nr = ne02;
  6430. // rows per thread
  6431. const int dr = (nr + nth - 1)/nth;
  6432. // row range for this thread
  6433. const int ir0 = dr*ith;
  6434. const int ir1 = MIN(ir0 + dr, nr);
  6435. for (int i1 = ir0; i1 < ir1; i1++) {
  6436. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6437. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6438. dst_data[i0/2] = 0;
  6439. for (int k = -nh; k <= nh; k++) {
  6440. float v = 0.0f;
  6441. ggml_vec_dot_f16(ew0, &v,
  6442. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6443. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6444. dst_data[i0/2] += v;
  6445. }
  6446. }
  6447. }
  6448. }
  6449. static void ggml_compute_forward_conv_1d_2s_f32(
  6450. const struct ggml_compute_params * params,
  6451. const struct ggml_tensor * src0,
  6452. const struct ggml_tensor * src1,
  6453. struct ggml_tensor * dst) {
  6454. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6455. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6456. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6457. int64_t t0 = ggml_perf_time_us();
  6458. UNUSED(t0);
  6459. const int64_t ne00 = src0->ne[0];
  6460. const int64_t ne01 = src0->ne[1];
  6461. const int64_t ne02 = src0->ne[2];
  6462. //const int64_t ne03 = src0->ne[3];
  6463. const int64_t ne10 = src1->ne[0];
  6464. const int64_t ne11 = src1->ne[1];
  6465. //const int64_t ne12 = src1->ne[2];
  6466. //const int64_t ne13 = src1->ne[3];
  6467. //const int64_t ne0 = dst->ne[0];
  6468. //const int64_t ne1 = dst->ne[1];
  6469. //const int64_t ne2 = dst->ne[2];
  6470. //const int64_t ne3 = dst->ne[3];
  6471. //const int64_t ne = ne0*ne1*ne2*ne3;
  6472. const int nb00 = src0->nb[0];
  6473. const int nb01 = src0->nb[1];
  6474. const int nb02 = src0->nb[2];
  6475. //const int nb03 = src0->nb[3];
  6476. const int nb10 = src1->nb[0];
  6477. const int nb11 = src1->nb[1];
  6478. //const int nb12 = src1->nb[2];
  6479. //const int nb13 = src1->nb[3];
  6480. //const int nb0 = dst->nb[0];
  6481. const int nb1 = dst->nb[1];
  6482. //const int nb2 = dst->nb[2];
  6483. //const int nb3 = dst->nb[3];
  6484. const int ith = params->ith;
  6485. const int nth = params->nth;
  6486. const int nk = ne00;
  6487. const int nh = nk/2;
  6488. const int ew0 = ggml_up32(ne01);
  6489. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6490. GGML_ASSERT(nb00 == sizeof(float));
  6491. GGML_ASSERT(nb10 == sizeof(float));
  6492. if (params->type == GGML_TASK_INIT) {
  6493. // TODO: fix this memset (wsize is overestimated)
  6494. memset(params->wdata, 0, params->wsize);
  6495. // prepare kernel data (src0)
  6496. {
  6497. float * const wdata = (float *) params->wdata + 0;
  6498. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6499. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6500. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6501. float * dst_data = wdata + i02*ew0*ne00;
  6502. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6503. dst_data[i00*ew0 + i01] = src[i00];
  6504. }
  6505. }
  6506. }
  6507. }
  6508. // prepare source data (src1)
  6509. {
  6510. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6511. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6512. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6513. float * dst_data = wdata;
  6514. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6515. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6516. }
  6517. }
  6518. }
  6519. return;
  6520. }
  6521. if (params->type == GGML_TASK_FINALIZE) {
  6522. return;
  6523. }
  6524. // total rows in dst
  6525. const int nr = ne02;
  6526. // rows per thread
  6527. const int dr = (nr + nth - 1)/nth;
  6528. // row range for this thread
  6529. const int ir0 = dr*ith;
  6530. const int ir1 = MIN(ir0 + dr, nr);
  6531. for (int i1 = ir0; i1 < ir1; i1++) {
  6532. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6533. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6534. dst_data[i0/2] = 0;
  6535. for (int k = -nh; k <= nh; k++) {
  6536. float v = 0.0f;
  6537. ggml_vec_dot_f32(ew0, &v,
  6538. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6539. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6540. dst_data[i0/2] += v;
  6541. }
  6542. }
  6543. }
  6544. }
  6545. static void ggml_compute_forward_conv_1d_2s(
  6546. const struct ggml_compute_params * params,
  6547. const struct ggml_tensor * src0,
  6548. const struct ggml_tensor * src1,
  6549. struct ggml_tensor * dst) {
  6550. switch (src0->type) {
  6551. case GGML_TYPE_F16:
  6552. {
  6553. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6554. } break;
  6555. case GGML_TYPE_F32:
  6556. {
  6557. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6558. } break;
  6559. case GGML_TYPE_Q4_0:
  6560. case GGML_TYPE_Q4_1:
  6561. case GGML_TYPE_I8:
  6562. case GGML_TYPE_I16:
  6563. case GGML_TYPE_I32:
  6564. case GGML_TYPE_COUNT:
  6565. {
  6566. GGML_ASSERT(false);
  6567. } break;
  6568. }
  6569. }
  6570. // ggml_compute_forward_flash_attn
  6571. static void ggml_compute_forward_flash_attn_f32(
  6572. const struct ggml_compute_params * params,
  6573. const struct ggml_tensor * q,
  6574. const struct ggml_tensor * k,
  6575. const struct ggml_tensor * v,
  6576. const bool masked,
  6577. struct ggml_tensor * dst) {
  6578. int64_t t0 = ggml_perf_time_us();
  6579. UNUSED(t0);
  6580. const int64_t neq0 = q->ne[0];
  6581. const int64_t neq1 = q->ne[1];
  6582. const int64_t neq2 = q->ne[2];
  6583. const int64_t neq3 = q->ne[3];
  6584. const int64_t nek0 = k->ne[0];
  6585. const int64_t nek1 = k->ne[1];
  6586. //const int64_t nek2 = k->ne[2];
  6587. //const int64_t nek3 = k->ne[3];
  6588. //const int64_t nev0 = v->ne[0];
  6589. const int64_t nev1 = v->ne[1];
  6590. //const int64_t nev2 = v->ne[2];
  6591. //const int64_t nev3 = v->ne[3];
  6592. const int64_t ne0 = dst->ne[0];
  6593. const int64_t ne1 = dst->ne[1];
  6594. //const int64_t ne2 = dst->ne[2];
  6595. //const int64_t ne3 = dst->ne[3];
  6596. const int nbk0 = k->nb[0];
  6597. const int nbk1 = k->nb[1];
  6598. const int nbk2 = k->nb[2];
  6599. const int nbk3 = k->nb[3];
  6600. const int nbq0 = q->nb[0];
  6601. const int nbq1 = q->nb[1];
  6602. const int nbq2 = q->nb[2];
  6603. const int nbq3 = q->nb[3];
  6604. const int nbv0 = v->nb[0];
  6605. const int nbv1 = v->nb[1];
  6606. const int nbv2 = v->nb[2];
  6607. const int nbv3 = v->nb[3];
  6608. const int nb0 = dst->nb[0];
  6609. const int nb1 = dst->nb[1];
  6610. const int nb2 = dst->nb[2];
  6611. const int nb3 = dst->nb[3];
  6612. const int ith = params->ith;
  6613. const int nth = params->nth;
  6614. const int64_t D = neq0;
  6615. const int64_t N = neq1;
  6616. const int64_t P = nek1 - N;
  6617. const int64_t M = P + N;
  6618. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6619. GGML_ASSERT(ne0 == D);
  6620. GGML_ASSERT(ne1 == N);
  6621. GGML_ASSERT(P >= 0);
  6622. GGML_ASSERT(nbq0 == sizeof(float));
  6623. GGML_ASSERT(nbk0 == sizeof(float));
  6624. GGML_ASSERT(nbv0 == sizeof(float));
  6625. GGML_ASSERT(neq0 == D);
  6626. GGML_ASSERT(nek0 == D);
  6627. GGML_ASSERT(nev1 == D);
  6628. GGML_ASSERT(neq1 == N);
  6629. GGML_ASSERT(nek1 == N + P);
  6630. GGML_ASSERT(nev1 == D);
  6631. // dst cannot be transposed or permuted
  6632. GGML_ASSERT(nb0 == sizeof(float));
  6633. GGML_ASSERT(nb0 <= nb1);
  6634. GGML_ASSERT(nb1 <= nb2);
  6635. GGML_ASSERT(nb2 <= nb3);
  6636. if (params->type == GGML_TASK_INIT) {
  6637. return;
  6638. }
  6639. if (params->type == GGML_TASK_FINALIZE) {
  6640. return;
  6641. }
  6642. // parallelize by q rows using ggml_vec_dot_f32
  6643. // total rows in q
  6644. const int nr = neq1*neq2*neq3;
  6645. // rows per thread
  6646. const int dr = (nr + nth - 1)/nth;
  6647. // row range for this thread
  6648. const int ir0 = dr*ith;
  6649. const int ir1 = MIN(ir0 + dr, nr);
  6650. const float scale = 1.0f/sqrtf(D);
  6651. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6652. for (int ir = ir0; ir < ir1; ++ir) {
  6653. // q indices
  6654. const int iq3 = ir/(neq2*neq1);
  6655. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6656. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6657. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6658. for (int i = M; i < Mup; ++i) {
  6659. S[i] = -INFINITY;
  6660. }
  6661. for (int64_t ic = 0; ic < nek1; ++ic) {
  6662. // k indices
  6663. const int ik3 = iq3;
  6664. const int ik2 = iq2;
  6665. const int ik1 = ic;
  6666. // S indices
  6667. const int i1 = ik1;
  6668. ggml_vec_dot_f32(neq0,
  6669. S + i1,
  6670. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6671. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6672. }
  6673. // scale
  6674. ggml_vec_scale_f32(nek1, S, scale);
  6675. if (masked) {
  6676. for (int64_t i = P; i < M; i++) {
  6677. if (i > P + iq1) {
  6678. S[i] = -INFINITY;
  6679. }
  6680. }
  6681. }
  6682. // softmax
  6683. {
  6684. float max = -INFINITY;
  6685. ggml_vec_max_f32(M, &max, S);
  6686. ggml_float sum = 0.0;
  6687. {
  6688. #ifdef GGML_SOFT_MAX_ACCELERATE
  6689. max = -max;
  6690. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6691. vvexpf(S, S, &Mup);
  6692. ggml_vec_sum_f32(Mup, &sum, S);
  6693. #else
  6694. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6695. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6696. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6697. float * SS = S + i;
  6698. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6699. if (SS[j] == -INFINITY) {
  6700. SS[j] = 0.0f;
  6701. } else {
  6702. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6703. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6704. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6705. sump[j] += (ggml_float)val;
  6706. SS[j] = val;
  6707. }
  6708. }
  6709. }
  6710. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6711. sum += sump[i];
  6712. }
  6713. #endif
  6714. }
  6715. assert(sum > 0.0);
  6716. sum = 1.0/sum;
  6717. ggml_vec_scale_f32(M, S, sum);
  6718. #ifndef NDEBUG
  6719. for (int i = 0; i < M; ++i) {
  6720. assert(!isnan(S[i]));
  6721. assert(!isinf(S[i]));
  6722. }
  6723. #endif
  6724. }
  6725. for (int64_t ic = 0; ic < nev1; ++ic) {
  6726. // dst indices
  6727. const int i1 = iq1;
  6728. const int i2 = iq2;
  6729. const int i3 = iq3;
  6730. ggml_vec_dot_f32(nek1,
  6731. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6732. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6733. S);
  6734. }
  6735. }
  6736. }
  6737. static void ggml_compute_forward_flash_attn_f16(
  6738. const struct ggml_compute_params * params,
  6739. const struct ggml_tensor * q,
  6740. const struct ggml_tensor * k,
  6741. const struct ggml_tensor * v,
  6742. const bool masked,
  6743. struct ggml_tensor * dst) {
  6744. int64_t t0 = ggml_perf_time_us();
  6745. UNUSED(t0);
  6746. const int64_t neq0 = q->ne[0];
  6747. const int64_t neq1 = q->ne[1];
  6748. const int64_t neq2 = q->ne[2];
  6749. const int64_t neq3 = q->ne[3];
  6750. const int64_t nek0 = k->ne[0];
  6751. const int64_t nek1 = k->ne[1];
  6752. //const int64_t nek2 = k->ne[2];
  6753. //const int64_t nek3 = k->ne[3];
  6754. //const int64_t nev0 = v->ne[0];
  6755. const int64_t nev1 = v->ne[1];
  6756. //const int64_t nev2 = v->ne[2];
  6757. //const int64_t nev3 = v->ne[3];
  6758. const int64_t ne0 = dst->ne[0];
  6759. const int64_t ne1 = dst->ne[1];
  6760. //const int64_t ne2 = dst->ne[2];
  6761. //const int64_t ne3 = dst->ne[3];
  6762. const int nbk0 = k->nb[0];
  6763. const int nbk1 = k->nb[1];
  6764. const int nbk2 = k->nb[2];
  6765. const int nbk3 = k->nb[3];
  6766. const int nbq0 = q->nb[0];
  6767. const int nbq1 = q->nb[1];
  6768. const int nbq2 = q->nb[2];
  6769. const int nbq3 = q->nb[3];
  6770. const int nbv0 = v->nb[0];
  6771. const int nbv1 = v->nb[1];
  6772. const int nbv2 = v->nb[2];
  6773. const int nbv3 = v->nb[3];
  6774. const int nb0 = dst->nb[0];
  6775. const int nb1 = dst->nb[1];
  6776. const int nb2 = dst->nb[2];
  6777. const int nb3 = dst->nb[3];
  6778. const int ith = params->ith;
  6779. const int nth = params->nth;
  6780. const int64_t D = neq0;
  6781. const int64_t N = neq1;
  6782. const int64_t P = nek1 - N;
  6783. const int64_t M = P + N;
  6784. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6785. GGML_ASSERT(ne0 == D);
  6786. GGML_ASSERT(ne1 == N);
  6787. GGML_ASSERT(P >= 0);
  6788. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6789. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6790. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6791. GGML_ASSERT(neq0 == D);
  6792. GGML_ASSERT(nek0 == D);
  6793. GGML_ASSERT(nev1 == D);
  6794. GGML_ASSERT(neq1 == N);
  6795. GGML_ASSERT(nek1 == N + P);
  6796. GGML_ASSERT(nev1 == D);
  6797. // dst cannot be transposed or permuted
  6798. GGML_ASSERT(nb0 == sizeof(float));
  6799. GGML_ASSERT(nb0 <= nb1);
  6800. GGML_ASSERT(nb1 <= nb2);
  6801. GGML_ASSERT(nb2 <= nb3);
  6802. if (params->type == GGML_TASK_INIT) {
  6803. return;
  6804. }
  6805. if (params->type == GGML_TASK_FINALIZE) {
  6806. return;
  6807. }
  6808. // parallelize by q rows using ggml_vec_dot_f32
  6809. // total rows in q
  6810. const int nr = neq1*neq2*neq3;
  6811. // rows per thread
  6812. const int dr = (nr + nth - 1)/nth;
  6813. // row range for this thread
  6814. const int ir0 = dr*ith;
  6815. const int ir1 = MIN(ir0 + dr, nr);
  6816. const float scale = 1.0f/sqrtf(D);
  6817. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6818. for (int ir = ir0; ir < ir1; ++ir) {
  6819. // q indices
  6820. const int iq3 = ir/(neq2*neq1);
  6821. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6822. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6823. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6824. for (int i = M; i < Mup; ++i) {
  6825. S[i] = -INFINITY;
  6826. }
  6827. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6828. for (int64_t ic = 0; ic < nek1; ++ic) {
  6829. // k indices
  6830. const int ik3 = iq3;
  6831. const int ik2 = iq2;
  6832. const int ik1 = ic;
  6833. // S indices
  6834. const int i1 = ik1;
  6835. ggml_vec_dot_f16(neq0,
  6836. S + i1,
  6837. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6838. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6839. }
  6840. } else {
  6841. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6842. // k indices
  6843. const int ik3 = iq3;
  6844. const int ik2 = iq2;
  6845. const int ik1 = ic;
  6846. // S indices
  6847. const int i1 = ik1;
  6848. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6849. S + i1,
  6850. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6851. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6852. }
  6853. }
  6854. // scale
  6855. ggml_vec_scale_f32(nek1, S, scale);
  6856. if (masked) {
  6857. for (int64_t i = P; i < M; i++) {
  6858. if (i > P + iq1) {
  6859. S[i] = -INFINITY;
  6860. }
  6861. }
  6862. }
  6863. // softmax
  6864. {
  6865. float max = -INFINITY;
  6866. ggml_vec_max_f32(M, &max, S);
  6867. ggml_float sum = 0.0;
  6868. {
  6869. #ifdef GGML_SOFT_MAX_ACCELERATE
  6870. max = -max;
  6871. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6872. vvexpf(S, S, &Mup);
  6873. ggml_vec_sum_f32(Mup, &sum, S);
  6874. #else
  6875. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6876. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6877. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6878. float * SS = S + i;
  6879. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6880. if (SS[j] == -INFINITY) {
  6881. SS[j] = 0.0f;
  6882. } else {
  6883. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6884. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6885. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6886. sump[j] += (ggml_float)val;
  6887. SS[j] = val;
  6888. }
  6889. }
  6890. }
  6891. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6892. sum += sump[i];
  6893. }
  6894. #endif
  6895. }
  6896. assert(sum > 0.0);
  6897. sum = 1.0/sum;
  6898. ggml_vec_scale_f32(M, S, sum);
  6899. #ifndef NDEBUG
  6900. for (int i = 0; i < M; ++i) {
  6901. assert(!isnan(S[i]));
  6902. assert(!isinf(S[i]));
  6903. }
  6904. #endif
  6905. }
  6906. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6907. for (int64_t i = 0; i < M; i++) {
  6908. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6909. }
  6910. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6911. for (int64_t ic = 0; ic < nev1; ++ic) {
  6912. // dst indices
  6913. const int i1 = iq1;
  6914. const int i2 = iq2;
  6915. const int i3 = iq3;
  6916. ggml_vec_dot_f16(nek1,
  6917. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6918. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6919. S16);
  6920. }
  6921. } else {
  6922. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6923. // dst indices
  6924. const int i1 = iq1;
  6925. const int i2 = iq2;
  6926. const int i3 = iq3;
  6927. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6928. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6929. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6930. S16);
  6931. }
  6932. }
  6933. }
  6934. }
  6935. static void ggml_compute_forward_flash_attn(
  6936. const struct ggml_compute_params * params,
  6937. const struct ggml_tensor * q,
  6938. const struct ggml_tensor * k,
  6939. const struct ggml_tensor * v,
  6940. const bool masked,
  6941. struct ggml_tensor * dst) {
  6942. switch (q->type) {
  6943. case GGML_TYPE_F16:
  6944. {
  6945. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6946. } break;
  6947. case GGML_TYPE_F32:
  6948. {
  6949. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6950. } break;
  6951. case GGML_TYPE_Q4_0:
  6952. case GGML_TYPE_Q4_1:
  6953. case GGML_TYPE_I8:
  6954. case GGML_TYPE_I16:
  6955. case GGML_TYPE_I32:
  6956. case GGML_TYPE_COUNT:
  6957. {
  6958. GGML_ASSERT(false);
  6959. } break;
  6960. }
  6961. }
  6962. // ggml_compute_forward_flash_ff
  6963. static void ggml_compute_forward_flash_ff_f16(
  6964. const struct ggml_compute_params * params,
  6965. const struct ggml_tensor * a, // F16
  6966. const struct ggml_tensor * b0, // F16 fc_w
  6967. const struct ggml_tensor * b1, // F32 fc_b
  6968. const struct ggml_tensor * c0, // F16 proj_w
  6969. const struct ggml_tensor * c1, // F32 proj_b
  6970. struct ggml_tensor * dst) {
  6971. int64_t t0 = ggml_perf_time_us();
  6972. UNUSED(t0);
  6973. const int64_t nea0 = a->ne[0];
  6974. const int64_t nea1 = a->ne[1];
  6975. const int64_t nea2 = a->ne[2];
  6976. const int64_t nea3 = a->ne[3];
  6977. const int64_t neb00 = b0->ne[0];
  6978. const int64_t neb01 = b0->ne[1];
  6979. //const int64_t neb02 = b0->ne[2];
  6980. //const int64_t neb03 = b0->ne[3];
  6981. const int64_t neb10 = b1->ne[0];
  6982. const int64_t neb11 = b1->ne[1];
  6983. //const int64_t neb12 = b1->ne[2];
  6984. //const int64_t neb13 = b1->ne[3];
  6985. const int64_t nec00 = c0->ne[0];
  6986. const int64_t nec01 = c0->ne[1];
  6987. //const int64_t nec02 = c0->ne[2];
  6988. //const int64_t nec03 = c0->ne[3];
  6989. const int64_t nec10 = c1->ne[0];
  6990. const int64_t nec11 = c1->ne[1];
  6991. //const int64_t nec12 = c1->ne[2];
  6992. //const int64_t nec13 = c1->ne[3];
  6993. const int64_t ne0 = dst->ne[0];
  6994. const int64_t ne1 = dst->ne[1];
  6995. const int64_t ne2 = dst->ne[2];
  6996. //const int64_t ne3 = dst->ne[3];
  6997. const int nba0 = a->nb[0];
  6998. const int nba1 = a->nb[1];
  6999. const int nba2 = a->nb[2];
  7000. const int nba3 = a->nb[3];
  7001. const int nbb00 = b0->nb[0];
  7002. const int nbb01 = b0->nb[1];
  7003. const int nbb02 = b0->nb[2];
  7004. const int nbb03 = b0->nb[3];
  7005. const int nbb10 = b1->nb[0];
  7006. //const int nbb11 = b1->nb[1];
  7007. //const int nbb12 = b1->nb[2];
  7008. //const int nbb13 = b1->nb[3];
  7009. const int nbc00 = c0->nb[0];
  7010. const int nbc01 = c0->nb[1];
  7011. const int nbc02 = c0->nb[2];
  7012. const int nbc03 = c0->nb[3];
  7013. const int nbc10 = c1->nb[0];
  7014. //const int nbc11 = c1->nb[1];
  7015. //const int nbc12 = c1->nb[2];
  7016. //const int nbc13 = c1->nb[3];
  7017. const int nb0 = dst->nb[0];
  7018. const int nb1 = dst->nb[1];
  7019. const int nb2 = dst->nb[2];
  7020. const int nb3 = dst->nb[3];
  7021. const int ith = params->ith;
  7022. const int nth = params->nth;
  7023. const int64_t D = nea0;
  7024. //const int64_t N = nea1;
  7025. const int64_t M = neb01;
  7026. GGML_ASSERT(ne0 == nea0);
  7027. GGML_ASSERT(ne1 == nea1);
  7028. GGML_ASSERT(ne2 == nea2);
  7029. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7030. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7031. GGML_ASSERT(nbb10 == sizeof(float));
  7032. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7033. GGML_ASSERT(nbc10 == sizeof(float));
  7034. GGML_ASSERT(neb00 == D);
  7035. GGML_ASSERT(neb01 == M);
  7036. GGML_ASSERT(neb10 == M);
  7037. GGML_ASSERT(neb11 == 1);
  7038. GGML_ASSERT(nec00 == M);
  7039. GGML_ASSERT(nec01 == D);
  7040. GGML_ASSERT(nec10 == D);
  7041. GGML_ASSERT(nec11 == 1);
  7042. // dst cannot be transposed or permuted
  7043. GGML_ASSERT(nb0 == sizeof(float));
  7044. GGML_ASSERT(nb0 <= nb1);
  7045. GGML_ASSERT(nb1 <= nb2);
  7046. GGML_ASSERT(nb2 <= nb3);
  7047. if (params->type == GGML_TASK_INIT) {
  7048. return;
  7049. }
  7050. if (params->type == GGML_TASK_FINALIZE) {
  7051. return;
  7052. }
  7053. // parallelize by a rows using ggml_vec_dot_f32
  7054. // total rows in a
  7055. const int nr = nea1*nea2*nea3;
  7056. // rows per thread
  7057. const int dr = (nr + nth - 1)/nth;
  7058. // row range for this thread
  7059. const int ir0 = dr*ith;
  7060. const int ir1 = MIN(ir0 + dr, nr);
  7061. for (int ir = ir0; ir < ir1; ++ir) {
  7062. // a indices
  7063. const int ia3 = ir/(nea2*nea1);
  7064. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7065. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7066. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7067. for (int64_t ic = 0; ic < neb01; ++ic) {
  7068. // b0 indices
  7069. const int ib03 = ia3;
  7070. const int ib02 = ia2;
  7071. const int ib01 = ic;
  7072. // S indices
  7073. const int i1 = ib01;
  7074. ggml_vec_dot_f16(nea0,
  7075. S + i1,
  7076. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7077. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7078. }
  7079. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7080. //ggml_vec_gelu_f32(neb01, S, S);
  7081. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7082. for (int64_t i = 0; i < M; i++) {
  7083. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7084. }
  7085. ggml_vec_gelu_f16(neb01, S16, S16);
  7086. {
  7087. // dst indices
  7088. const int i1 = ia1;
  7089. const int i2 = ia2;
  7090. const int i3 = ia3;
  7091. for (int64_t ic = 0; ic < nec01; ++ic) {
  7092. ggml_vec_dot_f16(neb01,
  7093. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7094. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7095. S16);
  7096. }
  7097. ggml_vec_add_f32(nec01,
  7098. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7099. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7100. (float *) c1->data);
  7101. }
  7102. }
  7103. }
  7104. static void ggml_compute_forward_flash_ff(
  7105. const struct ggml_compute_params * params,
  7106. const struct ggml_tensor * a,
  7107. const struct ggml_tensor * b0,
  7108. const struct ggml_tensor * b1,
  7109. const struct ggml_tensor * c0,
  7110. const struct ggml_tensor * c1,
  7111. struct ggml_tensor * dst) {
  7112. switch (b0->type) {
  7113. case GGML_TYPE_F16:
  7114. {
  7115. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7116. } break;
  7117. case GGML_TYPE_F32:
  7118. {
  7119. GGML_ASSERT(false); // TODO
  7120. } break;
  7121. case GGML_TYPE_Q4_0:
  7122. case GGML_TYPE_Q4_1:
  7123. case GGML_TYPE_I8:
  7124. case GGML_TYPE_I16:
  7125. case GGML_TYPE_I32:
  7126. case GGML_TYPE_COUNT:
  7127. {
  7128. GGML_ASSERT(false);
  7129. } break;
  7130. }
  7131. }
  7132. /////////////////////////////////
  7133. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7134. GGML_ASSERT(params);
  7135. switch (tensor->op) {
  7136. case GGML_OP_DUP:
  7137. {
  7138. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7139. } break;
  7140. case GGML_OP_ADD:
  7141. {
  7142. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7143. } break;
  7144. case GGML_OP_SUB:
  7145. {
  7146. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7147. } break;
  7148. case GGML_OP_MUL:
  7149. {
  7150. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7151. } break;
  7152. case GGML_OP_DIV:
  7153. {
  7154. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7155. } break;
  7156. case GGML_OP_SQR:
  7157. {
  7158. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7159. } break;
  7160. case GGML_OP_SQRT:
  7161. {
  7162. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7163. } break;
  7164. case GGML_OP_SUM:
  7165. {
  7166. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7167. } break;
  7168. case GGML_OP_MEAN:
  7169. {
  7170. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7171. } break;
  7172. case GGML_OP_REPEAT:
  7173. {
  7174. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7175. } break;
  7176. case GGML_OP_ABS:
  7177. {
  7178. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7179. } break;
  7180. case GGML_OP_SGN:
  7181. {
  7182. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7183. } break;
  7184. case GGML_OP_NEG:
  7185. {
  7186. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7187. } break;
  7188. case GGML_OP_STEP:
  7189. {
  7190. ggml_compute_forward_step(params, tensor->src0, tensor);
  7191. } break;
  7192. case GGML_OP_RELU:
  7193. {
  7194. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7195. } break;
  7196. case GGML_OP_GELU:
  7197. {
  7198. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7199. } break;
  7200. case GGML_OP_SILU:
  7201. {
  7202. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7203. } break;
  7204. case GGML_OP_NORM:
  7205. {
  7206. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7207. } break;
  7208. case GGML_OP_RMS_NORM:
  7209. {
  7210. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7211. } break;
  7212. case GGML_OP_MUL_MAT:
  7213. {
  7214. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7215. } break;
  7216. case GGML_OP_SCALE:
  7217. {
  7218. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7219. } break;
  7220. case GGML_OP_CPY:
  7221. {
  7222. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7223. } break;
  7224. case GGML_OP_CONT:
  7225. {
  7226. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7227. } break;
  7228. case GGML_OP_RESHAPE:
  7229. {
  7230. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7231. } break;
  7232. case GGML_OP_VIEW:
  7233. {
  7234. ggml_compute_forward_view(params, tensor->src0);
  7235. } break;
  7236. case GGML_OP_PERMUTE:
  7237. {
  7238. ggml_compute_forward_permute(params, tensor->src0);
  7239. } break;
  7240. case GGML_OP_TRANSPOSE:
  7241. {
  7242. ggml_compute_forward_transpose(params, tensor->src0);
  7243. } break;
  7244. case GGML_OP_GET_ROWS:
  7245. {
  7246. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7247. } break;
  7248. case GGML_OP_DIAG_MASK_INF:
  7249. {
  7250. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7251. } break;
  7252. case GGML_OP_SOFT_MAX:
  7253. {
  7254. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7255. } break;
  7256. case GGML_OP_ROPE:
  7257. {
  7258. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7259. } break;
  7260. case GGML_OP_CONV_1D_1S:
  7261. {
  7262. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7263. } break;
  7264. case GGML_OP_CONV_1D_2S:
  7265. {
  7266. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7267. } break;
  7268. case GGML_OP_FLASH_ATTN:
  7269. {
  7270. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7271. GGML_ASSERT(t == 0 || t == 1);
  7272. bool masked = t != 0;
  7273. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7274. } break;
  7275. case GGML_OP_FLASH_FF:
  7276. {
  7277. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7278. } break;
  7279. case GGML_OP_NONE:
  7280. {
  7281. // nop
  7282. } break;
  7283. case GGML_OP_COUNT:
  7284. {
  7285. GGML_ASSERT(false);
  7286. } break;
  7287. }
  7288. }
  7289. ////////////////////////////////////////////////////////////////////////////////
  7290. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7291. struct ggml_tensor * src0 = tensor->src0;
  7292. struct ggml_tensor * src1 = tensor->src1;
  7293. switch (tensor->op) {
  7294. case GGML_OP_DUP:
  7295. {
  7296. if (src0->grad) {
  7297. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7298. }
  7299. } break;
  7300. case GGML_OP_ADD:
  7301. {
  7302. if (src0->grad) {
  7303. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7304. }
  7305. if (src1->grad) {
  7306. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7307. }
  7308. } break;
  7309. case GGML_OP_SUB:
  7310. {
  7311. if (src0->grad) {
  7312. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7313. }
  7314. if (src1->grad) {
  7315. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7316. }
  7317. } break;
  7318. case GGML_OP_MUL:
  7319. {
  7320. if (src0->grad) {
  7321. src0->grad =
  7322. ggml_add_impl(ctx,
  7323. src0->grad,
  7324. ggml_mul(ctx, src1, tensor->grad),
  7325. inplace);
  7326. }
  7327. if (src1->grad) {
  7328. src1->grad =
  7329. ggml_add_impl(ctx,
  7330. src1->grad,
  7331. ggml_mul(ctx, src0, tensor->grad),
  7332. inplace);
  7333. }
  7334. } break;
  7335. case GGML_OP_DIV:
  7336. {
  7337. if (src0->grad) {
  7338. src0->grad =
  7339. ggml_add_impl(ctx,
  7340. src0->grad,
  7341. ggml_div(ctx, tensor->grad, src1),
  7342. inplace);
  7343. }
  7344. if (src1->grad) {
  7345. src1->grad =
  7346. ggml_sub_impl(ctx,
  7347. src1->grad,
  7348. ggml_mul(ctx,
  7349. tensor->grad,
  7350. ggml_div(ctx, tensor, src1)),
  7351. inplace);
  7352. }
  7353. } break;
  7354. case GGML_OP_SQR:
  7355. {
  7356. if (src0->grad) {
  7357. src0->grad =
  7358. ggml_add_impl(ctx,
  7359. src0->grad,
  7360. ggml_mul(ctx,
  7361. ggml_mul(ctx, src0, tensor->grad),
  7362. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7363. inplace);
  7364. }
  7365. } break;
  7366. case GGML_OP_SQRT:
  7367. {
  7368. if (src0->grad) {
  7369. src0->grad =
  7370. ggml_add_impl(ctx,
  7371. src0->grad,
  7372. ggml_div(ctx,
  7373. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7374. tensor),
  7375. inplace);
  7376. }
  7377. } break;
  7378. case GGML_OP_SUM:
  7379. {
  7380. if (src0->grad) {
  7381. src0->grad =
  7382. ggml_add_impl(ctx,
  7383. src0->grad,
  7384. ggml_repeat(ctx, tensor->grad, src0->grad),
  7385. inplace);
  7386. }
  7387. } break;
  7388. case GGML_OP_MEAN:
  7389. {
  7390. GGML_ASSERT(false); // TODO: implement
  7391. } break;
  7392. case GGML_OP_REPEAT:
  7393. {
  7394. if (src0->grad) {
  7395. src0->grad =
  7396. ggml_add_impl(ctx,
  7397. src0->grad,
  7398. ggml_sum(ctx, tensor->grad),
  7399. inplace);
  7400. }
  7401. } break;
  7402. case GGML_OP_ABS:
  7403. {
  7404. if (src0->grad) {
  7405. src0->grad =
  7406. ggml_add_impl(ctx,
  7407. src0->grad,
  7408. ggml_mul(ctx,
  7409. ggml_sgn(ctx, src0),
  7410. tensor->grad),
  7411. inplace);
  7412. }
  7413. } break;
  7414. case GGML_OP_SGN:
  7415. {
  7416. if (src0->grad) {
  7417. // noop
  7418. }
  7419. } break;
  7420. case GGML_OP_NEG:
  7421. {
  7422. if (src0->grad) {
  7423. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7424. }
  7425. } break;
  7426. case GGML_OP_STEP:
  7427. {
  7428. if (src0->grad) {
  7429. // noop
  7430. }
  7431. } break;
  7432. case GGML_OP_RELU:
  7433. {
  7434. if (src0->grad) {
  7435. src0->grad = ggml_sub_impl(ctx,
  7436. src0->grad,
  7437. ggml_mul(ctx,
  7438. ggml_step(ctx, src0),
  7439. tensor->grad),
  7440. inplace);
  7441. }
  7442. } break;
  7443. case GGML_OP_GELU:
  7444. {
  7445. GGML_ASSERT(false); // TODO: not implemented
  7446. } break;
  7447. case GGML_OP_SILU:
  7448. {
  7449. GGML_ASSERT(false); // TODO: not implemented
  7450. } break;
  7451. case GGML_OP_NORM:
  7452. {
  7453. GGML_ASSERT(false); // TODO: not implemented
  7454. } break;
  7455. case GGML_OP_RMS_NORM:
  7456. {
  7457. GGML_ASSERT(false); // TODO: not implemented
  7458. } break;
  7459. case GGML_OP_MUL_MAT:
  7460. {
  7461. if (src0->grad) {
  7462. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7463. GGML_ASSERT(false);
  7464. }
  7465. if (src1->grad) {
  7466. src1->grad =
  7467. ggml_add_impl(ctx,
  7468. src1->grad,
  7469. ggml_mul_mat(ctx,
  7470. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  7471. tensor->grad),
  7472. inplace);
  7473. }
  7474. } break;
  7475. case GGML_OP_SCALE:
  7476. {
  7477. GGML_ASSERT(false); // TODO: not implemented
  7478. } break;
  7479. case GGML_OP_CPY:
  7480. {
  7481. GGML_ASSERT(false); // TODO: not implemented
  7482. } break;
  7483. case GGML_OP_CONT:
  7484. {
  7485. GGML_ASSERT(false); // TODO: not implemented
  7486. } break;
  7487. case GGML_OP_RESHAPE:
  7488. {
  7489. GGML_ASSERT(false); // TODO: not implemented
  7490. } break;
  7491. case GGML_OP_VIEW:
  7492. {
  7493. GGML_ASSERT(false); // not supported
  7494. } break;
  7495. case GGML_OP_PERMUTE:
  7496. {
  7497. GGML_ASSERT(false); // TODO: not implemented
  7498. } break;
  7499. case GGML_OP_TRANSPOSE:
  7500. {
  7501. GGML_ASSERT(false); // TODO: not implemented
  7502. } break;
  7503. case GGML_OP_GET_ROWS:
  7504. {
  7505. GGML_ASSERT(false); // TODO: not implemented
  7506. } break;
  7507. case GGML_OP_DIAG_MASK_INF:
  7508. {
  7509. GGML_ASSERT(false); // TODO: not implemented
  7510. } break;
  7511. case GGML_OP_SOFT_MAX:
  7512. {
  7513. GGML_ASSERT(false); // TODO: not implemented
  7514. } break;
  7515. case GGML_OP_ROPE:
  7516. {
  7517. GGML_ASSERT(false); // TODO: not implemented
  7518. } break;
  7519. case GGML_OP_CONV_1D_1S:
  7520. {
  7521. GGML_ASSERT(false); // TODO: not implemented
  7522. } break;
  7523. case GGML_OP_CONV_1D_2S:
  7524. {
  7525. GGML_ASSERT(false); // TODO: not implemented
  7526. } break;
  7527. case GGML_OP_FLASH_ATTN:
  7528. {
  7529. GGML_ASSERT(false); // not supported
  7530. } break;
  7531. case GGML_OP_FLASH_FF:
  7532. {
  7533. GGML_ASSERT(false); // not supported
  7534. } break;
  7535. case GGML_OP_NONE:
  7536. {
  7537. // nop
  7538. } break;
  7539. case GGML_OP_COUNT:
  7540. {
  7541. GGML_ASSERT(false);
  7542. } break;
  7543. }
  7544. }
  7545. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7546. if (node->grad == NULL) {
  7547. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7548. // it can also happen during forward pass, if the user performs computations with constants
  7549. if (node->op != GGML_OP_NONE) {
  7550. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7551. }
  7552. }
  7553. // check if already visited
  7554. for (int i = 0; i < cgraph->n_nodes; i++) {
  7555. if (cgraph->nodes[i] == node) {
  7556. return;
  7557. }
  7558. }
  7559. for (int i = 0; i < cgraph->n_leafs; i++) {
  7560. if (cgraph->leafs[i] == node) {
  7561. return;
  7562. }
  7563. }
  7564. if (node->src0) {
  7565. ggml_visit_parents(cgraph, node->src0);
  7566. }
  7567. if (node->src1) {
  7568. ggml_visit_parents(cgraph, node->src1);
  7569. }
  7570. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7571. if (node->opt[i]) {
  7572. ggml_visit_parents(cgraph, node->opt[i]);
  7573. }
  7574. }
  7575. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7576. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7577. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7578. cgraph->leafs[cgraph->n_leafs] = node;
  7579. cgraph->n_leafs++;
  7580. } else {
  7581. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7582. cgraph->nodes[cgraph->n_nodes] = node;
  7583. cgraph->grads[cgraph->n_nodes] = node->grad;
  7584. cgraph->n_nodes++;
  7585. }
  7586. }
  7587. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7588. if (!expand) {
  7589. cgraph->n_nodes = 0;
  7590. cgraph->n_leafs = 0;
  7591. }
  7592. const int n0 = cgraph->n_nodes;
  7593. UNUSED(n0);
  7594. ggml_visit_parents(cgraph, tensor);
  7595. const int n_new = cgraph->n_nodes - n0;
  7596. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7597. if (n_new > 0) {
  7598. // the last added node should always be starting point
  7599. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7600. }
  7601. }
  7602. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7603. ggml_build_forward_impl(cgraph, tensor, true);
  7604. }
  7605. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7606. struct ggml_cgraph result = {
  7607. /*.n_nodes =*/ 0,
  7608. /*.n_leafs =*/ 0,
  7609. /*.n_threads =*/ 0,
  7610. /*.work_size =*/ 0,
  7611. /*.work =*/ NULL,
  7612. /*.nodes =*/ { NULL },
  7613. /*.grads =*/ { NULL },
  7614. /*.leafs =*/ { NULL },
  7615. /*.perf_runs =*/ 0,
  7616. /*.perf_cycles =*/ 0,
  7617. /*.perf_time_us =*/ 0,
  7618. };
  7619. ggml_build_forward_impl(&result, tensor, false);
  7620. return result;
  7621. }
  7622. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7623. struct ggml_cgraph result = *gf;
  7624. GGML_ASSERT(gf->n_nodes > 0);
  7625. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7626. if (keep) {
  7627. for (int i = 0; i < gf->n_nodes; i++) {
  7628. struct ggml_tensor * node = gf->nodes[i];
  7629. if (node->grad) {
  7630. node->grad = ggml_dup_tensor(ctx, node);
  7631. gf->grads[i] = node->grad;
  7632. }
  7633. }
  7634. }
  7635. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7636. struct ggml_tensor * node = gf->nodes[i];
  7637. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7638. if (node->grad) {
  7639. ggml_compute_backward(ctx, node, keep);
  7640. }
  7641. }
  7642. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7643. struct ggml_tensor * node = gf->nodes[i];
  7644. if (node->is_param) {
  7645. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7646. ggml_build_forward_impl(&result, node->grad, true);
  7647. }
  7648. }
  7649. return result;
  7650. }
  7651. //
  7652. // thread data
  7653. //
  7654. // synchronization is done via busy loops
  7655. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7656. //
  7657. #ifdef __APPLE__
  7658. //#include <os/lock.h>
  7659. //
  7660. //typedef os_unfair_lock ggml_lock_t;
  7661. //
  7662. //#define ggml_lock_init(x) UNUSED(x)
  7663. //#define ggml_lock_destroy(x) UNUSED(x)
  7664. //#define ggml_lock_lock os_unfair_lock_lock
  7665. //#define ggml_lock_unlock os_unfair_lock_unlock
  7666. //
  7667. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7668. typedef int ggml_lock_t;
  7669. #define ggml_lock_init(x) UNUSED(x)
  7670. #define ggml_lock_destroy(x) UNUSED(x)
  7671. #define ggml_lock_lock(x) UNUSED(x)
  7672. #define ggml_lock_unlock(x) UNUSED(x)
  7673. #define GGML_LOCK_INITIALIZER 0
  7674. typedef pthread_t ggml_thread_t;
  7675. #define ggml_thread_create pthread_create
  7676. #define ggml_thread_join pthread_join
  7677. #else
  7678. //typedef pthread_spinlock_t ggml_lock_t;
  7679. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7680. //#define ggml_lock_destroy pthread_spin_destroy
  7681. //#define ggml_lock_lock pthread_spin_lock
  7682. //#define ggml_lock_unlock pthread_spin_unlock
  7683. typedef int ggml_lock_t;
  7684. #define ggml_lock_init(x) UNUSED(x)
  7685. #define ggml_lock_destroy(x) UNUSED(x)
  7686. #define ggml_lock_lock(x) UNUSED(x)
  7687. #define ggml_lock_unlock(x) UNUSED(x)
  7688. #define GGML_LOCK_INITIALIZER 0
  7689. typedef pthread_t ggml_thread_t;
  7690. #define ggml_thread_create pthread_create
  7691. #define ggml_thread_join pthread_join
  7692. #endif
  7693. struct ggml_compute_state_shared {
  7694. ggml_lock_t spin;
  7695. int n_threads;
  7696. // synchronization primitives
  7697. atomic_int n_ready;
  7698. atomic_bool has_work;
  7699. atomic_bool stop; // stop all threads
  7700. };
  7701. struct ggml_compute_state {
  7702. ggml_thread_t thrd;
  7703. struct ggml_compute_params params;
  7704. struct ggml_tensor * node;
  7705. struct ggml_compute_state_shared * shared;
  7706. };
  7707. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7708. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7709. const int n_threads = state->shared->n_threads;
  7710. while (true) {
  7711. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7712. atomic_store(&state->shared->has_work, false);
  7713. } else {
  7714. while (atomic_load(&state->shared->has_work)) {
  7715. if (atomic_load(&state->shared->stop)) {
  7716. return 0;
  7717. }
  7718. ggml_lock_lock (&state->shared->spin);
  7719. ggml_lock_unlock(&state->shared->spin);
  7720. }
  7721. }
  7722. atomic_fetch_sub(&state->shared->n_ready, 1);
  7723. // wait for work
  7724. while (!atomic_load(&state->shared->has_work)) {
  7725. if (atomic_load(&state->shared->stop)) {
  7726. return 0;
  7727. }
  7728. ggml_lock_lock (&state->shared->spin);
  7729. ggml_lock_unlock(&state->shared->spin);
  7730. }
  7731. // check if we should stop
  7732. if (atomic_load(&state->shared->stop)) {
  7733. break;
  7734. }
  7735. if (state->node) {
  7736. if (state->params.ith < state->params.nth) {
  7737. ggml_compute_forward(&state->params, state->node);
  7738. }
  7739. state->node = NULL;
  7740. } else {
  7741. break;
  7742. }
  7743. }
  7744. return 0;
  7745. }
  7746. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7747. const int n_threads = cgraph->n_threads;
  7748. struct ggml_compute_state_shared state_shared = {
  7749. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7750. /*.n_threads =*/ n_threads,
  7751. /*.n_ready =*/ 0,
  7752. /*.has_work =*/ false,
  7753. /*.stop =*/ false,
  7754. };
  7755. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7756. // create thread pool
  7757. if (n_threads > 1) {
  7758. ggml_lock_init(&state_shared.spin);
  7759. atomic_store(&state_shared.has_work, true);
  7760. for (int j = 0; j < n_threads - 1; j++) {
  7761. workers[j] = (struct ggml_compute_state) {
  7762. .thrd = 0,
  7763. .params = {
  7764. .type = GGML_TASK_COMPUTE,
  7765. .ith = j + 1,
  7766. .nth = n_threads,
  7767. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7768. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7769. },
  7770. .node = NULL,
  7771. .shared = &state_shared,
  7772. };
  7773. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7774. GGML_ASSERT(rc == 0);
  7775. UNUSED(rc);
  7776. }
  7777. }
  7778. // initialize tasks + work buffer
  7779. {
  7780. size_t work_size = 0;
  7781. // thread scheduling for the different operations
  7782. for (int i = 0; i < cgraph->n_nodes; i++) {
  7783. struct ggml_tensor * node = cgraph->nodes[i];
  7784. switch (node->op) {
  7785. case GGML_OP_DUP:
  7786. {
  7787. node->n_tasks = 1;
  7788. } break;
  7789. case GGML_OP_ADD:
  7790. {
  7791. node->n_tasks = n_threads;
  7792. } break;
  7793. case GGML_OP_SUB:
  7794. case GGML_OP_MUL:
  7795. case GGML_OP_DIV:
  7796. case GGML_OP_SQR:
  7797. case GGML_OP_SQRT:
  7798. case GGML_OP_SUM:
  7799. case GGML_OP_MEAN:
  7800. case GGML_OP_REPEAT:
  7801. case GGML_OP_ABS:
  7802. case GGML_OP_SGN:
  7803. case GGML_OP_NEG:
  7804. case GGML_OP_STEP:
  7805. case GGML_OP_RELU:
  7806. {
  7807. node->n_tasks = 1;
  7808. } break;
  7809. case GGML_OP_GELU:
  7810. {
  7811. node->n_tasks = n_threads;
  7812. } break;
  7813. case GGML_OP_SILU:
  7814. {
  7815. node->n_tasks = n_threads;
  7816. } break;
  7817. case GGML_OP_NORM:
  7818. case GGML_OP_RMS_NORM:
  7819. {
  7820. node->n_tasks = n_threads;
  7821. } break;
  7822. case GGML_OP_MUL_MAT:
  7823. {
  7824. node->n_tasks = n_threads;
  7825. // TODO: use different scheduling for different matrix sizes
  7826. //const int nr0 = ggml_nrows(node->src0);
  7827. //const int nr1 = ggml_nrows(node->src1);
  7828. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7829. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7830. size_t cur = 0;
  7831. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7832. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7833. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7834. node->n_tasks = 1; // TODO: this actually is doing nothing
  7835. // the threads are still spinning
  7836. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7837. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7838. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7839. //printf("cur = %zu\n", cur);
  7840. } else {
  7841. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7842. }
  7843. #else
  7844. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7845. #endif
  7846. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7847. cur = 0;
  7848. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7849. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7850. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7851. node->n_tasks = 1;
  7852. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7853. } else
  7854. #endif
  7855. {
  7856. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7857. }
  7858. } else {
  7859. GGML_ASSERT(false);
  7860. }
  7861. work_size = MAX(work_size, cur);
  7862. } break;
  7863. case GGML_OP_SCALE:
  7864. {
  7865. node->n_tasks = n_threads;
  7866. } break;
  7867. case GGML_OP_CPY:
  7868. case GGML_OP_CONT:
  7869. case GGML_OP_RESHAPE:
  7870. case GGML_OP_VIEW:
  7871. case GGML_OP_PERMUTE:
  7872. case GGML_OP_TRANSPOSE:
  7873. case GGML_OP_GET_ROWS:
  7874. case GGML_OP_DIAG_MASK_INF:
  7875. {
  7876. node->n_tasks = 1;
  7877. } break;
  7878. case GGML_OP_SOFT_MAX:
  7879. {
  7880. node->n_tasks = n_threads;
  7881. } break;
  7882. case GGML_OP_ROPE:
  7883. {
  7884. node->n_tasks = n_threads;
  7885. } break;
  7886. case GGML_OP_CONV_1D_1S:
  7887. case GGML_OP_CONV_1D_2S:
  7888. {
  7889. node->n_tasks = n_threads;
  7890. GGML_ASSERT(node->src0->ne[3] == 1);
  7891. GGML_ASSERT(node->src1->ne[2] == 1);
  7892. GGML_ASSERT(node->src1->ne[3] == 1);
  7893. size_t cur = 0;
  7894. const int nk = node->src0->ne[0];
  7895. if (node->src0->type == GGML_TYPE_F16 &&
  7896. node->src1->type == GGML_TYPE_F32) {
  7897. cur = sizeof(ggml_fp16_t)*(
  7898. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7899. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7900. );
  7901. } else if (node->src0->type == GGML_TYPE_F32 &&
  7902. node->src1->type == GGML_TYPE_F32) {
  7903. cur = sizeof(float)*(
  7904. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7905. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7906. );
  7907. } else {
  7908. GGML_ASSERT(false);
  7909. }
  7910. work_size = MAX(work_size, cur);
  7911. } break;
  7912. case GGML_OP_FLASH_ATTN:
  7913. {
  7914. node->n_tasks = n_threads;
  7915. size_t cur = 0;
  7916. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7917. if (node->src1->type == GGML_TYPE_F32) {
  7918. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7919. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7920. }
  7921. if (node->src1->type == GGML_TYPE_F16) {
  7922. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7923. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7924. }
  7925. work_size = MAX(work_size, cur);
  7926. } break;
  7927. case GGML_OP_FLASH_FF:
  7928. {
  7929. node->n_tasks = n_threads;
  7930. size_t cur = 0;
  7931. if (node->src1->type == GGML_TYPE_F32) {
  7932. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7933. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7934. }
  7935. if (node->src1->type == GGML_TYPE_F16) {
  7936. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7937. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7938. }
  7939. work_size = MAX(work_size, cur);
  7940. } break;
  7941. case GGML_OP_NONE:
  7942. {
  7943. node->n_tasks = 1;
  7944. } break;
  7945. case GGML_OP_COUNT:
  7946. {
  7947. GGML_ASSERT(false);
  7948. } break;
  7949. }
  7950. }
  7951. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7952. GGML_ASSERT(false); // TODO: better handling
  7953. }
  7954. if (work_size > 0 && cgraph->work == NULL) {
  7955. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7956. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7957. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7958. }
  7959. }
  7960. const int64_t perf_start_cycles = ggml_perf_cycles();
  7961. const int64_t perf_start_time_us = ggml_perf_time_us();
  7962. for (int i = 0; i < cgraph->n_nodes; i++) {
  7963. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7964. struct ggml_tensor * node = cgraph->nodes[i];
  7965. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7966. //if (node->grad == NULL && node->perf_runs > 0) {
  7967. // continue;
  7968. //}
  7969. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7970. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7971. // INIT
  7972. struct ggml_compute_params params = {
  7973. /*.type =*/ GGML_TASK_INIT,
  7974. /*.ith =*/ 0,
  7975. /*.nth =*/ node->n_tasks,
  7976. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7977. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7978. };
  7979. ggml_compute_forward(&params, node);
  7980. // COMPUTE
  7981. if (node->n_tasks > 1) {
  7982. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7983. atomic_store(&state_shared.has_work, false);
  7984. }
  7985. while (atomic_load(&state_shared.has_work)) {
  7986. ggml_lock_lock (&state_shared.spin);
  7987. ggml_lock_unlock(&state_shared.spin);
  7988. }
  7989. // launch thread pool
  7990. for (int j = 0; j < n_threads - 1; j++) {
  7991. workers[j].params = (struct ggml_compute_params) {
  7992. .type = GGML_TASK_COMPUTE,
  7993. .ith = j + 1,
  7994. .nth = node->n_tasks,
  7995. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7996. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7997. };
  7998. workers[j].node = node;
  7999. }
  8000. atomic_fetch_sub(&state_shared.n_ready, 1);
  8001. while (atomic_load(&state_shared.n_ready) > 0) {
  8002. ggml_lock_lock (&state_shared.spin);
  8003. ggml_lock_unlock(&state_shared.spin);
  8004. }
  8005. atomic_store(&state_shared.has_work, true);
  8006. }
  8007. params.type = GGML_TASK_COMPUTE;
  8008. ggml_compute_forward(&params, node);
  8009. // wait for thread pool
  8010. if (node->n_tasks > 1) {
  8011. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8012. atomic_store(&state_shared.has_work, false);
  8013. }
  8014. while (atomic_load(&state_shared.has_work)) {
  8015. ggml_lock_lock (&state_shared.spin);
  8016. ggml_lock_unlock(&state_shared.spin);
  8017. }
  8018. atomic_fetch_sub(&state_shared.n_ready, 1);
  8019. while (atomic_load(&state_shared.n_ready) != 0) {
  8020. ggml_lock_lock (&state_shared.spin);
  8021. ggml_lock_unlock(&state_shared.spin);
  8022. }
  8023. }
  8024. // FINALIZE
  8025. if (node->n_tasks > 1) {
  8026. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8027. atomic_store(&state_shared.has_work, false);
  8028. }
  8029. while (atomic_load(&state_shared.has_work)) {
  8030. ggml_lock_lock (&state_shared.spin);
  8031. ggml_lock_unlock(&state_shared.spin);
  8032. }
  8033. // launch thread pool
  8034. for (int j = 0; j < n_threads - 1; j++) {
  8035. workers[j].params = (struct ggml_compute_params) {
  8036. .type = GGML_TASK_FINALIZE,
  8037. .ith = j + 1,
  8038. .nth = node->n_tasks,
  8039. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8040. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8041. };
  8042. workers[j].node = node;
  8043. }
  8044. atomic_fetch_sub(&state_shared.n_ready, 1);
  8045. while (atomic_load(&state_shared.n_ready) > 0) {
  8046. ggml_lock_lock (&state_shared.spin);
  8047. ggml_lock_unlock(&state_shared.spin);
  8048. }
  8049. atomic_store(&state_shared.has_work, true);
  8050. }
  8051. params.type = GGML_TASK_FINALIZE;
  8052. ggml_compute_forward(&params, node);
  8053. // wait for thread pool
  8054. if (node->n_tasks > 1) {
  8055. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8056. atomic_store(&state_shared.has_work, false);
  8057. }
  8058. while (atomic_load(&state_shared.has_work)) {
  8059. ggml_lock_lock (&state_shared.spin);
  8060. ggml_lock_unlock(&state_shared.spin);
  8061. }
  8062. atomic_fetch_sub(&state_shared.n_ready, 1);
  8063. while (atomic_load(&state_shared.n_ready) != 0) {
  8064. ggml_lock_lock (&state_shared.spin);
  8065. ggml_lock_unlock(&state_shared.spin);
  8066. }
  8067. }
  8068. // performance stats (node)
  8069. {
  8070. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8071. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8072. node->perf_runs++;
  8073. node->perf_cycles += perf_cycles_cur;
  8074. node->perf_time_us += perf_time_us_cur;
  8075. }
  8076. }
  8077. // join thread pool
  8078. if (n_threads > 1) {
  8079. atomic_store(&state_shared.stop, true);
  8080. atomic_store(&state_shared.has_work, true);
  8081. for (int j = 0; j < n_threads - 1; j++) {
  8082. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8083. GGML_ASSERT(rc == 0);
  8084. UNUSED(rc);
  8085. }
  8086. ggml_lock_destroy(&state_shared.spin);
  8087. }
  8088. // performance stats (graph)
  8089. {
  8090. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8091. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8092. cgraph->perf_runs++;
  8093. cgraph->perf_cycles += perf_cycles_cur;
  8094. cgraph->perf_time_us += perf_time_us_cur;
  8095. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8096. __func__, cgraph->perf_runs,
  8097. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8098. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8099. (double) perf_time_us_cur / 1000.0,
  8100. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8101. }
  8102. }
  8103. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8104. for (int i = 0; i < cgraph->n_nodes; i++) {
  8105. struct ggml_tensor * grad = cgraph->grads[i];
  8106. if (grad) {
  8107. ggml_set_zero(grad);
  8108. }
  8109. }
  8110. }
  8111. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8112. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8113. GGML_PRINT("=== GRAPH ===\n");
  8114. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8115. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  8116. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8117. for (int i = 0; i < cgraph->n_nodes; i++) {
  8118. struct ggml_tensor * node = cgraph->nodes[i];
  8119. perf_total_per_op_us[node->op] += node->perf_time_us;
  8120. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8121. i,
  8122. node->ne[0], node->ne[1], node->ne[2],
  8123. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8124. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8125. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8126. (double) node->perf_time_us / 1000.0,
  8127. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8128. }
  8129. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8130. for (int i = 0; i < cgraph->n_leafs; i++) {
  8131. struct ggml_tensor * node = cgraph->leafs[i];
  8132. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8133. i,
  8134. node->ne[0], node->ne[1],
  8135. GGML_OP_LABEL[node->op]);
  8136. }
  8137. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8138. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8139. }
  8140. GGML_PRINT("========================================\n");
  8141. }
  8142. // check if node is part of the graph
  8143. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8144. if (cgraph == NULL) {
  8145. return true;
  8146. }
  8147. for (int i = 0; i < cgraph->n_nodes; i++) {
  8148. if (cgraph->nodes[i] == node) {
  8149. return true;
  8150. }
  8151. }
  8152. return false;
  8153. }
  8154. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8155. for (int i = 0; i < cgraph->n_nodes; i++) {
  8156. struct ggml_tensor * parent = cgraph->nodes[i];
  8157. if (parent->grad == node) {
  8158. return parent;
  8159. }
  8160. }
  8161. return NULL;
  8162. }
  8163. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8164. char color[16];
  8165. FILE * fp = fopen(filename, "w");
  8166. GGML_ASSERT(fp);
  8167. fprintf(fp, "digraph G {\n");
  8168. fprintf(fp, " newrank = true;\n");
  8169. fprintf(fp, " rankdir = LR;\n");
  8170. for (int i = 0; i < gb->n_nodes; i++) {
  8171. struct ggml_tensor * node = gb->nodes[i];
  8172. if (ggml_graph_get_parent(gb, node) != NULL) {
  8173. continue;
  8174. }
  8175. if (node->is_param) {
  8176. snprintf(color, sizeof(color), "yellow");
  8177. } else if (node->grad) {
  8178. if (ggml_graph_find(gf, node)) {
  8179. snprintf(color, sizeof(color), "green");
  8180. } else {
  8181. snprintf(color, sizeof(color), "lightblue");
  8182. }
  8183. } else {
  8184. snprintf(color, sizeof(color), "white");
  8185. }
  8186. fprintf(fp, " \"%p\" [ \
  8187. style = filled; fillcolor = %s; shape = record; \
  8188. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8189. (void *) node, color,
  8190. i, node->ne[0], node->ne[1],
  8191. GGML_OP_SYMBOL[node->op]);
  8192. if (node->grad) {
  8193. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8194. } else {
  8195. fprintf(fp, "\"; ]\n");
  8196. }
  8197. }
  8198. for (int i = 0; i < gb->n_leafs; i++) {
  8199. struct ggml_tensor * node = gb->leafs[i];
  8200. snprintf(color, sizeof(color), "pink");
  8201. if (ggml_nelements(node) == 1) {
  8202. fprintf(fp, " \"%p\" [ \
  8203. style = filled; fillcolor = %s; shape = record; \
  8204. label=\"<x>%.1e\"; ]\n",
  8205. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8206. } else {
  8207. fprintf(fp, " \"%p\" [ \
  8208. style = filled; fillcolor = %s; shape = record; \
  8209. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8210. (void *) node, color,
  8211. i, node->ne[0], node->ne[1]);
  8212. }
  8213. }
  8214. for (int i = 0; i < gb->n_nodes; i++) {
  8215. struct ggml_tensor * node = gb->nodes[i];
  8216. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8217. if (node->src0) {
  8218. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8219. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8220. parent0 ? (void *) parent0 : (void *) node->src0,
  8221. parent0 ? "g" : "x",
  8222. parent ? (void *) parent : (void *) node,
  8223. parent ? "g" : "x",
  8224. parent ? "empty" : "vee",
  8225. parent ? "dashed" : "solid");
  8226. }
  8227. if (node->src1) {
  8228. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8229. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8230. parent1 ? (void *) parent1 : (void *) node->src1,
  8231. parent1 ? "g" : "x",
  8232. parent ? (void *) parent : (void *) node,
  8233. parent ? "g" : "x",
  8234. parent ? "empty" : "vee",
  8235. parent ? "dashed" : "solid");
  8236. }
  8237. }
  8238. for (int i = 0; i < gb->n_leafs; i++) {
  8239. struct ggml_tensor * node = gb->leafs[i];
  8240. if (node->src0) {
  8241. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8242. (void *) node->src0, "x",
  8243. (void *) node, "x");
  8244. }
  8245. if (node->src1) {
  8246. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8247. (void *) node->src1, "x",
  8248. (void *) node, "x");
  8249. }
  8250. }
  8251. fprintf(fp, "}\n");
  8252. fclose(fp);
  8253. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8254. }
  8255. ////////////////////////////////////////////////////////////////////////////////
  8256. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8257. int i = 0;
  8258. for (int p = 0; p < np; ++p) {
  8259. const int64_t ne = ggml_nelements(ps[p]) ;
  8260. // TODO: add function to set tensor from array
  8261. for (int64_t j = 0; j < ne; ++j) {
  8262. ggml_set_f32_1d(ps[p], j, x[i++]);
  8263. }
  8264. }
  8265. }
  8266. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8267. int i = 0;
  8268. for (int p = 0; p < np; ++p) {
  8269. const int64_t ne = ggml_nelements(ps[p]) ;
  8270. // TODO: add function to get all elements at once
  8271. for (int64_t j = 0; j < ne; ++j) {
  8272. x[i++] = ggml_get_f32_1d(ps[p], j);
  8273. }
  8274. }
  8275. }
  8276. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8277. int i = 0;
  8278. for (int p = 0; p < np; ++p) {
  8279. const int64_t ne = ggml_nelements(ps[p]) ;
  8280. // TODO: add function to get all elements at once
  8281. for (int64_t j = 0; j < ne; ++j) {
  8282. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8283. }
  8284. }
  8285. }
  8286. //
  8287. // ADAM
  8288. //
  8289. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8290. //
  8291. static enum ggml_opt_result ggml_opt_adam(
  8292. struct ggml_context * ctx,
  8293. struct ggml_opt_params params,
  8294. struct ggml_tensor * f,
  8295. struct ggml_cgraph * gf,
  8296. struct ggml_cgraph * gb) {
  8297. GGML_ASSERT(ggml_is_scalar(f));
  8298. gf->n_threads = params.n_threads;
  8299. gb->n_threads = params.n_threads;
  8300. // these will store the parameters we want to optimize
  8301. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8302. int np = 0;
  8303. int nx = 0;
  8304. for (int i = 0; i < gf->n_nodes; ++i) {
  8305. if (gf->nodes[i]->is_param) {
  8306. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8307. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8308. ps[np++] = gf->nodes[i];
  8309. nx += ggml_nelements(gf->nodes[i]);
  8310. }
  8311. }
  8312. // constants
  8313. const float alpha = params.adam.alpha;
  8314. const float beta1 = params.adam.beta1;
  8315. const float beta2 = params.adam.beta2;
  8316. const float eps = params.adam.eps;
  8317. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8318. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8319. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8320. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8321. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8322. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8323. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8324. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8325. // initialize
  8326. ggml_vec_set_f32(nx, m, 0.0f);
  8327. ggml_vec_set_f32(nx, v, 0.0f);
  8328. // update view
  8329. ggml_opt_get_params(np, ps, x);
  8330. // compute the function value
  8331. ggml_graph_reset (gf);
  8332. ggml_set_f32 (f->grad, 1.0f);
  8333. ggml_graph_compute(ctx, gb);
  8334. float fx_prev = ggml_get_f32_1d(f, 0);
  8335. if (pf) {
  8336. pf[0] = fx_prev;
  8337. }
  8338. int n_no_improvement = 0;
  8339. float fx_best = fx_prev;
  8340. // run the optimizer
  8341. for (int t = 0; t < params.adam.n_iter; ++t) {
  8342. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8343. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8344. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8345. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8346. for (int i = 0; i < np; ++i) {
  8347. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8348. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8349. }
  8350. const int64_t t_start_wall = ggml_time_us();
  8351. const int64_t t_start_cpu = ggml_cycles();
  8352. UNUSED(t_start_wall);
  8353. UNUSED(t_start_cpu);
  8354. {
  8355. // update the gradient
  8356. ggml_opt_get_grad(np, ps, g1);
  8357. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8358. ggml_vec_scale_f32(nx, m, beta1);
  8359. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8360. // g2 = g1^2
  8361. ggml_vec_sqr_f32 (nx, g2, g1);
  8362. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8363. ggml_vec_scale_f32(nx, v, beta2);
  8364. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8365. // m^hat = m_t / (1 - beta1^t)
  8366. // v^hat = v_t / (1 - beta2^t)
  8367. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8368. ggml_vec_cpy_f32 (nx, mh, m);
  8369. ggml_vec_cpy_f32 (nx, vh, v);
  8370. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8371. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8372. ggml_vec_sqrt_f32 (nx, vh, vh);
  8373. ggml_vec_acc1_f32 (nx, vh, eps);
  8374. ggml_vec_div_f32 (nx, mh, mh, vh);
  8375. ggml_vec_sub_f32 (nx, x, x, mh);
  8376. // update the parameters
  8377. ggml_opt_set_params(np, ps, x);
  8378. }
  8379. ggml_graph_reset (gf);
  8380. ggml_set_f32 (f->grad, 1.0f);
  8381. ggml_graph_compute(ctx, gb);
  8382. const float fx = ggml_get_f32_1d(f, 0);
  8383. // check convergence
  8384. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8385. GGML_PRINT_DEBUG("converged\n");
  8386. return GGML_OPT_OK;
  8387. }
  8388. // delta-based convergence test
  8389. if (pf != NULL) {
  8390. // need at least params.past iterations to start checking for convergence
  8391. if (params.past <= t) {
  8392. const float rate = (pf[t%params.past] - fx)/fx;
  8393. if (fabsf(rate) < params.delta) {
  8394. return GGML_OPT_OK;
  8395. }
  8396. }
  8397. pf[t%params.past] = fx;
  8398. }
  8399. // check for improvement
  8400. if (params.max_no_improvement > 0) {
  8401. if (fx_best > fx) {
  8402. fx_best = fx;
  8403. n_no_improvement = 0;
  8404. } else {
  8405. ++n_no_improvement;
  8406. if (n_no_improvement >= params.max_no_improvement) {
  8407. return GGML_OPT_OK;
  8408. }
  8409. }
  8410. }
  8411. fx_prev = fx;
  8412. {
  8413. const int64_t t_end_cpu = ggml_cycles();
  8414. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8415. UNUSED(t_end_cpu);
  8416. const int64_t t_end_wall = ggml_time_us();
  8417. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8418. UNUSED(t_end_wall);
  8419. }
  8420. }
  8421. return GGML_OPT_DID_NOT_CONVERGE;
  8422. }
  8423. //
  8424. // L-BFGS
  8425. //
  8426. // the L-BFGS implementation below is based on the following implementation:
  8427. //
  8428. // https://github.com/chokkan/liblbfgs
  8429. //
  8430. struct ggml_lbfgs_iteration_data {
  8431. float alpha;
  8432. float ys;
  8433. float * s;
  8434. float * y;
  8435. };
  8436. static enum ggml_opt_result linesearch_backtracking(
  8437. struct ggml_context * ctx,
  8438. const struct ggml_opt_params * params,
  8439. int nx,
  8440. float * x,
  8441. float * fx,
  8442. float * g,
  8443. float * d,
  8444. float * step,
  8445. const float * xp,
  8446. struct ggml_tensor * f,
  8447. struct ggml_cgraph * gf,
  8448. struct ggml_cgraph * gb,
  8449. const int np,
  8450. struct ggml_tensor * ps[]) {
  8451. int count = 0;
  8452. float width = 0.0f;
  8453. float dg = 0.0f;
  8454. float finit = 0.0f;
  8455. float dginit = 0.0f;
  8456. float dgtest = 0.0f;
  8457. const float dec = 0.5f;
  8458. const float inc = 2.1f;
  8459. if (*step <= 0.f) {
  8460. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8461. }
  8462. // compute the initial gradient in the search direction
  8463. ggml_vec_dot_f32(nx, &dginit, g, d);
  8464. // make sure that d points to a descent direction
  8465. if (0 < dginit) {
  8466. return GGML_LINESEARCH_FAIL;
  8467. }
  8468. // initialize local variables
  8469. finit = *fx;
  8470. dgtest = params->lbfgs.ftol*dginit;
  8471. while (true) {
  8472. ggml_vec_cpy_f32(nx, x, xp);
  8473. ggml_vec_mad_f32(nx, x, d, *step);
  8474. // evaluate the function and gradient values
  8475. {
  8476. ggml_opt_set_params(np, ps, x);
  8477. ggml_graph_reset (gf);
  8478. ggml_set_f32 (f->grad, 1.0f);
  8479. ggml_graph_compute(ctx, gb);
  8480. ggml_opt_get_grad(np, ps, g);
  8481. *fx = ggml_get_f32_1d(f, 0);
  8482. }
  8483. ++count;
  8484. if (*fx > finit + (*step)*dgtest) {
  8485. width = dec;
  8486. } else {
  8487. // Armijo condition is satisfied
  8488. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8489. return count;
  8490. }
  8491. ggml_vec_dot_f32(nx, &dg, g, d);
  8492. // check the Wolfe condition
  8493. if (dg < params->lbfgs.wolfe * dginit) {
  8494. width = inc;
  8495. } else {
  8496. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8497. // regular Wolfe conditions
  8498. return count;
  8499. }
  8500. if(dg > -params->lbfgs.wolfe*dginit) {
  8501. width = dec;
  8502. } else {
  8503. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8504. return count;
  8505. }
  8506. return count;
  8507. }
  8508. }
  8509. if (*step < params->lbfgs.min_step) {
  8510. return GGML_LINESEARCH_MINIMUM_STEP;
  8511. }
  8512. if (*step > params->lbfgs.max_step) {
  8513. return GGML_LINESEARCH_MAXIMUM_STEP;
  8514. }
  8515. if (params->lbfgs.max_linesearch <= count) {
  8516. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8517. }
  8518. (*step) *= width;
  8519. }
  8520. return GGML_LINESEARCH_FAIL;
  8521. }
  8522. static enum ggml_opt_result ggml_opt_lbfgs(
  8523. struct ggml_context * ctx,
  8524. struct ggml_opt_params params,
  8525. struct ggml_tensor * f,
  8526. struct ggml_cgraph * gf,
  8527. struct ggml_cgraph * gb) {
  8528. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8529. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8530. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8531. return GGML_OPT_INVALID_WOLFE;
  8532. }
  8533. }
  8534. gf->n_threads = params.n_threads;
  8535. gb->n_threads = params.n_threads;
  8536. const int m = params.lbfgs.m;
  8537. // these will store the parameters we want to optimize
  8538. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8539. int np = 0;
  8540. int nx = 0;
  8541. for (int i = 0; i < gf->n_nodes; ++i) {
  8542. if (gf->nodes[i]->is_param) {
  8543. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8544. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8545. ps[np++] = gf->nodes[i];
  8546. nx += ggml_nelements(gf->nodes[i]);
  8547. }
  8548. }
  8549. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8550. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8551. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8552. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8553. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8554. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8555. float fx = 0.0f; // cost function value
  8556. float xnorm = 0.0f; // ||x||
  8557. float gnorm = 0.0f; // ||g||
  8558. float step = 0.0f;
  8559. // initialize x from the graph nodes
  8560. ggml_opt_get_params(np, ps, x);
  8561. // the L-BFGS memory
  8562. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8563. for (int i = 0; i < m; ++i) {
  8564. lm[i].alpha = 0.0f;
  8565. lm[i].ys = 0.0f;
  8566. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8567. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8568. }
  8569. // evaluate the function value and its gradient
  8570. {
  8571. ggml_opt_set_params(np, ps, x);
  8572. ggml_graph_reset (gf);
  8573. ggml_set_f32 (f->grad, 1.0f);
  8574. ggml_graph_compute(ctx, gb);
  8575. ggml_opt_get_grad(np, ps, g);
  8576. fx = ggml_get_f32_1d(f, 0);
  8577. }
  8578. if (pf) {
  8579. pf[0] = fx;
  8580. }
  8581. float fx_best = fx;
  8582. // search direction = -gradient
  8583. ggml_vec_neg_f32(nx, d, g);
  8584. // ||x||, ||g||
  8585. ggml_vec_norm_f32(nx, &xnorm, x);
  8586. ggml_vec_norm_f32(nx, &gnorm, g);
  8587. if (xnorm < 1.0f) {
  8588. xnorm = 1.0f;
  8589. }
  8590. // already optimized
  8591. if (gnorm/xnorm <= params.lbfgs.eps) {
  8592. return GGML_OPT_OK;
  8593. }
  8594. // initial step
  8595. ggml_vec_norm_inv_f32(nx, &step, d);
  8596. int j = 0;
  8597. int k = 1;
  8598. int ls = 0;
  8599. int end = 0;
  8600. int bound = 0;
  8601. int n_no_improvement = 0;
  8602. float ys = 0.0f;
  8603. float yy = 0.0f;
  8604. float beta = 0.0f;
  8605. while (true) {
  8606. // store the current position and gradient vectors
  8607. ggml_vec_cpy_f32(nx, xp, x);
  8608. ggml_vec_cpy_f32(nx, gp, g);
  8609. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8610. if (ls < 0) {
  8611. // linesearch failed - go back to the previous point and return
  8612. ggml_vec_cpy_f32(nx, x, xp);
  8613. ggml_vec_cpy_f32(nx, g, gp);
  8614. return ls;
  8615. }
  8616. ggml_vec_norm_f32(nx, &xnorm, x);
  8617. ggml_vec_norm_f32(nx, &gnorm, g);
  8618. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8619. if (xnorm < 1.0f) {
  8620. xnorm = 1.0f;
  8621. }
  8622. if (gnorm/xnorm <= params.lbfgs.eps) {
  8623. // converged
  8624. return GGML_OPT_OK;
  8625. }
  8626. // delta-based convergence test
  8627. if (pf != NULL) {
  8628. // need at least params.past iterations to start checking for convergence
  8629. if (params.past <= k) {
  8630. const float rate = (pf[k%params.past] - fx)/fx;
  8631. if (fabsf(rate) < params.delta) {
  8632. return GGML_OPT_OK;
  8633. }
  8634. }
  8635. pf[k%params.past] = fx;
  8636. }
  8637. // check for improvement
  8638. if (params.max_no_improvement > 0) {
  8639. if (fx < fx_best) {
  8640. fx_best = fx;
  8641. n_no_improvement = 0;
  8642. } else {
  8643. n_no_improvement++;
  8644. if (n_no_improvement >= params.max_no_improvement) {
  8645. return GGML_OPT_OK;
  8646. }
  8647. }
  8648. }
  8649. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8650. // reached the maximum number of iterations
  8651. return GGML_OPT_DID_NOT_CONVERGE;
  8652. }
  8653. // update vectors s and y:
  8654. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8655. // y_{k+1} = g_{k+1} - g_{k}.
  8656. //
  8657. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8658. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8659. // compute scalars ys and yy:
  8660. // ys = y^t \cdot s -> 1 / \rho.
  8661. // yy = y^t \cdot y.
  8662. //
  8663. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8664. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8665. lm[end].ys = ys;
  8666. // find new search direction
  8667. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8668. bound = (m <= k) ? m : k;
  8669. k++;
  8670. end = (end + 1)%m;
  8671. // initialize search direction with -g
  8672. ggml_vec_neg_f32(nx, d, g);
  8673. j = end;
  8674. for (int i = 0; i < bound; ++i) {
  8675. j = (j + m - 1) % m;
  8676. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8677. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8678. lm[j].alpha /= lm[j].ys;
  8679. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8680. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8681. }
  8682. ggml_vec_scale_f32(nx, d, ys/yy);
  8683. for (int i = 0; i < bound; ++i) {
  8684. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8685. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8686. beta /= lm[j].ys;
  8687. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8688. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8689. j = (j + 1)%m;
  8690. }
  8691. step = 1.0;
  8692. }
  8693. return GGML_OPT_DID_NOT_CONVERGE;
  8694. }
  8695. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8696. struct ggml_opt_params result;
  8697. switch (type) {
  8698. case GGML_OPT_ADAM:
  8699. {
  8700. result = (struct ggml_opt_params) {
  8701. .type = GGML_OPT_ADAM,
  8702. .n_threads = 1,
  8703. .past = 0,
  8704. .delta = 1e-5f,
  8705. .max_no_improvement = 100,
  8706. .print_forward_graph = true,
  8707. .print_backward_graph = true,
  8708. .adam = {
  8709. .n_iter = 10000,
  8710. .alpha = 0.001f,
  8711. .beta1 = 0.9f,
  8712. .beta2 = 0.999f,
  8713. .eps = 1e-8f,
  8714. .eps_f = 1e-5f,
  8715. .eps_g = 1e-3f,
  8716. },
  8717. };
  8718. } break;
  8719. case GGML_OPT_LBFGS:
  8720. {
  8721. result = (struct ggml_opt_params) {
  8722. .type = GGML_OPT_LBFGS,
  8723. .n_threads = 1,
  8724. .past = 0,
  8725. .delta = 1e-5f,
  8726. .max_no_improvement = 0,
  8727. .print_forward_graph = true,
  8728. .print_backward_graph = true,
  8729. .lbfgs = {
  8730. .m = 6,
  8731. .n_iter = 100,
  8732. .max_linesearch = 20,
  8733. .eps = 1e-5f,
  8734. .ftol = 1e-4f,
  8735. .wolfe = 0.9f,
  8736. .min_step = 1e-20f,
  8737. .max_step = 1e+20f,
  8738. .linesearch = GGML_LINESEARCH_DEFAULT,
  8739. },
  8740. };
  8741. } break;
  8742. }
  8743. return result;
  8744. }
  8745. enum ggml_opt_result ggml_opt(
  8746. struct ggml_context * ctx,
  8747. struct ggml_opt_params params,
  8748. struct ggml_tensor * f) {
  8749. bool free_ctx = false;
  8750. if (ctx == NULL) {
  8751. struct ggml_init_params params_ctx = {
  8752. .mem_size = 16*1024*1024,
  8753. .mem_buffer = NULL,
  8754. .no_alloc = false,
  8755. };
  8756. ctx = ggml_init(params_ctx);
  8757. if (ctx == NULL) {
  8758. return GGML_OPT_NO_CONTEXT;
  8759. }
  8760. free_ctx = true;
  8761. }
  8762. enum ggml_opt_result result = GGML_OPT_OK;
  8763. // build forward + backward compute graphs
  8764. struct ggml_cgraph gf = ggml_build_forward (f);
  8765. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8766. switch (params.type) {
  8767. case GGML_OPT_ADAM:
  8768. {
  8769. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8770. } break;
  8771. case GGML_OPT_LBFGS:
  8772. {
  8773. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8774. } break;
  8775. }
  8776. if (params.print_forward_graph) {
  8777. ggml_graph_print (&gf);
  8778. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8779. }
  8780. if (params.print_backward_graph) {
  8781. ggml_graph_print (&gb);
  8782. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8783. }
  8784. if (free_ctx) {
  8785. ggml_free(ctx);
  8786. }
  8787. return result;
  8788. }
  8789. ////////////////////////////////////////////////////////////////////////////////
  8790. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8791. assert(k % QK == 0);
  8792. const int nb = k / QK;
  8793. for (int j = 0; j < n; j += k) {
  8794. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8795. quantize_row_q4_0_reference(src + j, y, k);
  8796. for (int i = 0; i < nb; i++) {
  8797. for (int l = 0; l < QK; l += 2) {
  8798. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8799. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8800. hist[vi0]++;
  8801. hist[vi1]++;
  8802. }
  8803. }
  8804. }
  8805. return (n/QK*sizeof(block_q4_0));
  8806. }
  8807. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8808. assert(k % QK == 0);
  8809. const int nb = k / QK;
  8810. for (int j = 0; j < n; j += k) {
  8811. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8812. quantize_row_q4_1_reference(src + j, y, k);
  8813. for (int i = 0; i < nb; i++) {
  8814. for (int l = 0; l < QK; l += 2) {
  8815. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8816. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8817. hist[vi0]++;
  8818. hist[vi1]++;
  8819. }
  8820. }
  8821. }
  8822. return (n/QK*sizeof(block_q4_1));
  8823. }
  8824. ////////////////////////////////////////////////////////////////////////////////
  8825. int ggml_cpu_has_avx(void) {
  8826. #if defined(__AVX__)
  8827. return 1;
  8828. #else
  8829. return 0;
  8830. #endif
  8831. }
  8832. int ggml_cpu_has_avx2(void) {
  8833. #if defined(__AVX2__)
  8834. return 1;
  8835. #else
  8836. return 0;
  8837. #endif
  8838. }
  8839. int ggml_cpu_has_avx512(void) {
  8840. #if defined(__AVX512F__)
  8841. return 1;
  8842. #else
  8843. return 0;
  8844. #endif
  8845. }
  8846. int ggml_cpu_has_fma(void) {
  8847. #if defined(__FMA__)
  8848. return 1;
  8849. #else
  8850. return 0;
  8851. #endif
  8852. }
  8853. int ggml_cpu_has_neon(void) {
  8854. #if defined(__ARM_NEON)
  8855. return 1;
  8856. #else
  8857. return 0;
  8858. #endif
  8859. }
  8860. int ggml_cpu_has_arm_fma(void) {
  8861. #if defined(__ARM_FEATURE_FMA)
  8862. return 1;
  8863. #else
  8864. return 0;
  8865. #endif
  8866. }
  8867. int ggml_cpu_has_f16c(void) {
  8868. #if defined(__F16C__)
  8869. return 1;
  8870. #else
  8871. return 0;
  8872. #endif
  8873. }
  8874. int ggml_cpu_has_fp16_va(void) {
  8875. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8876. return 1;
  8877. #else
  8878. return 0;
  8879. #endif
  8880. }
  8881. int ggml_cpu_has_wasm_simd(void) {
  8882. #if defined(__wasm_simd128__)
  8883. return 1;
  8884. #else
  8885. return 0;
  8886. #endif
  8887. }
  8888. int ggml_cpu_has_blas(void) {
  8889. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8890. return 1;
  8891. #else
  8892. return 0;
  8893. #endif
  8894. }
  8895. int ggml_cpu_has_sse3(void) {
  8896. #if defined(__SSE3__)
  8897. return 1;
  8898. #else
  8899. return 0;
  8900. #endif
  8901. }
  8902. int ggml_cpu_has_vsx(void) {
  8903. #if defined(__POWER9_VECTOR__)
  8904. return 1;
  8905. #else
  8906. return 0;
  8907. #endif
  8908. }
  8909. ////////////////////////////////////////////////////////////////////////////////