llama.cpp 731 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_CLBLAST)
  13. # include "ggml-opencl.h"
  14. #elif defined(GGML_USE_VULKAN)
  15. # include "ggml-vulkan.h"
  16. #elif defined(GGML_USE_SYCL)
  17. # include "ggml-sycl.h"
  18. #elif defined(GGML_USE_KOMPUTE)
  19. # include "ggml-kompute.h"
  20. #endif
  21. #ifdef GGML_USE_METAL
  22. # include "ggml-metal.h"
  23. #endif
  24. // TODO: replace with ggml API call
  25. #define QK_K 256
  26. #ifdef __has_include
  27. #if __has_include(<unistd.h>)
  28. #include <unistd.h>
  29. #if defined(_POSIX_MAPPED_FILES)
  30. #include <sys/mman.h>
  31. #include <fcntl.h>
  32. #endif
  33. #if defined(_POSIX_MEMLOCK_RANGE)
  34. #include <sys/resource.h>
  35. #endif
  36. #endif
  37. #endif
  38. #if defined(_WIN32)
  39. #define WIN32_LEAN_AND_MEAN
  40. #ifndef NOMINMAX
  41. #define NOMINMAX
  42. #endif
  43. #include <windows.h>
  44. #ifndef PATH_MAX
  45. #define PATH_MAX MAX_PATH
  46. #endif
  47. #include <io.h>
  48. #endif
  49. #include <algorithm>
  50. #include <array>
  51. #include <cassert>
  52. #include <cctype>
  53. #include <cfloat>
  54. #include <cinttypes>
  55. #include <climits>
  56. #include <cmath>
  57. #include <cstdarg>
  58. #include <cstddef>
  59. #include <cstdint>
  60. #include <cstdio>
  61. #include <cstring>
  62. #include <ctime>
  63. #include <forward_list>
  64. #include <fstream>
  65. #include <functional>
  66. #include <future>
  67. #include <initializer_list>
  68. #include <locale>
  69. #include <map>
  70. #include <memory>
  71. #include <mutex>
  72. #include <numeric>
  73. #include <queue>
  74. #include <random>
  75. #include <regex>
  76. #include <set>
  77. #include <sstream>
  78. #include <thread>
  79. #include <type_traits>
  80. #include <unordered_map>
  81. #if defined(_MSC_VER)
  82. #pragma warning(disable: 4244 4267) // possible loss of data
  83. #endif
  84. #ifdef __GNUC__
  85. #ifdef __MINGW32__
  86. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  87. #else
  88. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  89. #endif
  90. #else
  91. #define LLAMA_ATTRIBUTE_FORMAT(...)
  92. #endif
  93. #define LLAMA_MAX_NODES 8192
  94. #define LLAMA_MAX_EXPERTS 60
  95. //
  96. // logging
  97. //
  98. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  99. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  100. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  101. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  102. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  103. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  104. //
  105. // helpers
  106. //
  107. static size_t utf8_len(char src) {
  108. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  109. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  110. return lookup[highbits];
  111. }
  112. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  113. std::string result;
  114. for (size_t pos = 0; ; pos += search.length()) {
  115. auto new_pos = s.find(search, pos);
  116. if (new_pos == std::string::npos) {
  117. result += s.substr(pos, s.size() - pos);
  118. break;
  119. }
  120. result += s.substr(pos, new_pos - pos) + replace;
  121. pos = new_pos;
  122. }
  123. s = std::move(result);
  124. }
  125. static bool is_float_close(float a, float b, float abs_tol) {
  126. // Check for non-negative tolerance
  127. if (abs_tol < 0.0) {
  128. throw std::invalid_argument("Tolerance must be non-negative");
  129. }
  130. // Exact equality check
  131. if (a == b) {
  132. return true;
  133. }
  134. // Check for infinities
  135. if (std::isinf(a) || std::isinf(b)) {
  136. return false;
  137. }
  138. // Regular comparison using the provided absolute tolerance
  139. return std::fabs(b - a) <= abs_tol;
  140. }
  141. static void zeros(std::ofstream & file, size_t n) {
  142. char zero = 0;
  143. for (size_t i = 0; i < n; ++i) {
  144. file.write(&zero, 1);
  145. }
  146. }
  147. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  148. static std::string format(const char * fmt, ...) {
  149. va_list ap;
  150. va_list ap2;
  151. va_start(ap, fmt);
  152. va_copy(ap2, ap);
  153. int size = vsnprintf(NULL, 0, fmt, ap);
  154. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  155. std::vector<char> buf(size + 1);
  156. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  157. GGML_ASSERT(size2 == size);
  158. va_end(ap2);
  159. va_end(ap);
  160. return std::string(buf.data(), size);
  161. }
  162. //
  163. // gguf constants (sync with gguf.py)
  164. //
  165. enum llm_arch {
  166. LLM_ARCH_LLAMA,
  167. LLM_ARCH_FALCON,
  168. LLM_ARCH_BAICHUAN,
  169. LLM_ARCH_GROK,
  170. LLM_ARCH_GPT2,
  171. LLM_ARCH_GPTJ,
  172. LLM_ARCH_GPTNEOX,
  173. LLM_ARCH_MPT,
  174. LLM_ARCH_STARCODER,
  175. LLM_ARCH_REFACT,
  176. LLM_ARCH_BERT,
  177. LLM_ARCH_NOMIC_BERT,
  178. LLM_ARCH_JINA_BERT_V2,
  179. LLM_ARCH_BLOOM,
  180. LLM_ARCH_STABLELM,
  181. LLM_ARCH_QWEN,
  182. LLM_ARCH_QWEN2,
  183. LLM_ARCH_QWEN2MOE,
  184. LLM_ARCH_PHI2,
  185. LLM_ARCH_PHI3,
  186. LLM_ARCH_PLAMO,
  187. LLM_ARCH_CODESHELL,
  188. LLM_ARCH_ORION,
  189. LLM_ARCH_INTERNLM2,
  190. LLM_ARCH_MINICPM,
  191. LLM_ARCH_GEMMA,
  192. LLM_ARCH_STARCODER2,
  193. LLM_ARCH_MAMBA,
  194. LLM_ARCH_XVERSE,
  195. LLM_ARCH_COMMAND_R,
  196. LLM_ARCH_DBRX,
  197. LLM_ARCH_OLMO,
  198. LLM_ARCH_UNKNOWN,
  199. };
  200. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  201. { LLM_ARCH_LLAMA, "llama" },
  202. { LLM_ARCH_FALCON, "falcon" },
  203. { LLM_ARCH_GROK, "grok" },
  204. { LLM_ARCH_GPT2, "gpt2" },
  205. { LLM_ARCH_GPTJ, "gptj" },
  206. { LLM_ARCH_GPTNEOX, "gptneox" },
  207. { LLM_ARCH_MPT, "mpt" },
  208. { LLM_ARCH_BAICHUAN, "baichuan" },
  209. { LLM_ARCH_STARCODER, "starcoder" },
  210. { LLM_ARCH_REFACT, "refact" },
  211. { LLM_ARCH_BERT, "bert" },
  212. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  213. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  214. { LLM_ARCH_BLOOM, "bloom" },
  215. { LLM_ARCH_STABLELM, "stablelm" },
  216. { LLM_ARCH_QWEN, "qwen" },
  217. { LLM_ARCH_QWEN2, "qwen2" },
  218. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  219. { LLM_ARCH_PHI2, "phi2" },
  220. { LLM_ARCH_PHI3, "phi3" },
  221. { LLM_ARCH_PLAMO, "plamo" },
  222. { LLM_ARCH_CODESHELL, "codeshell" },
  223. { LLM_ARCH_ORION, "orion" },
  224. { LLM_ARCH_INTERNLM2, "internlm2" },
  225. { LLM_ARCH_MINICPM, "minicpm" },
  226. { LLM_ARCH_GEMMA, "gemma" },
  227. { LLM_ARCH_STARCODER2, "starcoder2" },
  228. { LLM_ARCH_MAMBA, "mamba" },
  229. { LLM_ARCH_XVERSE, "xverse" },
  230. { LLM_ARCH_COMMAND_R, "command-r" },
  231. { LLM_ARCH_DBRX, "dbrx" },
  232. { LLM_ARCH_OLMO, "olmo" },
  233. { LLM_ARCH_UNKNOWN, "(unknown)" },
  234. };
  235. enum llm_kv {
  236. LLM_KV_GENERAL_ARCHITECTURE,
  237. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  238. LLM_KV_GENERAL_ALIGNMENT,
  239. LLM_KV_GENERAL_NAME,
  240. LLM_KV_GENERAL_AUTHOR,
  241. LLM_KV_GENERAL_VERSION,
  242. LLM_KV_GENERAL_URL,
  243. LLM_KV_GENERAL_DESCRIPTION,
  244. LLM_KV_GENERAL_LICENSE,
  245. LLM_KV_GENERAL_SOURCE_URL,
  246. LLM_KV_GENERAL_SOURCE_HF_REPO,
  247. LLM_KV_VOCAB_SIZE,
  248. LLM_KV_CONTEXT_LENGTH,
  249. LLM_KV_EMBEDDING_LENGTH,
  250. LLM_KV_BLOCK_COUNT,
  251. LLM_KV_FEED_FORWARD_LENGTH,
  252. LLM_KV_USE_PARALLEL_RESIDUAL,
  253. LLM_KV_TENSOR_DATA_LAYOUT,
  254. LLM_KV_EXPERT_COUNT,
  255. LLM_KV_EXPERT_USED_COUNT,
  256. LLM_KV_POOLING_TYPE,
  257. LLM_KV_LOGIT_SCALE,
  258. LLM_KV_ATTENTION_HEAD_COUNT,
  259. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  260. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  261. LLM_KV_ATTENTION_CLAMP_KQV,
  262. LLM_KV_ATTENTION_KEY_LENGTH,
  263. LLM_KV_ATTENTION_VALUE_LENGTH,
  264. LLM_KV_ATTENTION_LAYERNORM_EPS,
  265. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  266. LLM_KV_ATTENTION_CAUSAL,
  267. LLM_KV_ROPE_DIMENSION_COUNT,
  268. LLM_KV_ROPE_FREQ_BASE,
  269. LLM_KV_ROPE_SCALE_LINEAR,
  270. LLM_KV_ROPE_SCALING_TYPE,
  271. LLM_KV_ROPE_SCALING_FACTOR,
  272. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  273. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  274. LLM_KV_ROPE_SCALING_FINETUNED,
  275. LLM_KV_SPLIT_NO,
  276. LLM_KV_SPLIT_COUNT,
  277. LLM_KV_SPLIT_TENSORS_COUNT,
  278. LLM_KV_SSM_INNER_SIZE,
  279. LLM_KV_SSM_CONV_KERNEL,
  280. LLM_KV_SSM_STATE_SIZE,
  281. LLM_KV_SSM_TIME_STEP_RANK,
  282. LLM_KV_TOKENIZER_MODEL,
  283. LLM_KV_TOKENIZER_PRE,
  284. LLM_KV_TOKENIZER_LIST,
  285. LLM_KV_TOKENIZER_TOKEN_TYPE,
  286. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  287. LLM_KV_TOKENIZER_SCORES,
  288. LLM_KV_TOKENIZER_MERGES,
  289. LLM_KV_TOKENIZER_BOS_ID,
  290. LLM_KV_TOKENIZER_EOS_ID,
  291. LLM_KV_TOKENIZER_UNK_ID,
  292. LLM_KV_TOKENIZER_SEP_ID,
  293. LLM_KV_TOKENIZER_PAD_ID,
  294. LLM_KV_TOKENIZER_CLS_ID,
  295. LLM_KV_TOKENIZER_MASK_ID,
  296. LLM_KV_TOKENIZER_ADD_BOS,
  297. LLM_KV_TOKENIZER_ADD_EOS,
  298. LLM_KV_TOKENIZER_ADD_PREFIX,
  299. LLM_KV_TOKENIZER_HF_JSON,
  300. LLM_KV_TOKENIZER_RWKV,
  301. LLM_KV_TOKENIZER_PREFIX_ID,
  302. LLM_KV_TOKENIZER_SUFFIX_ID,
  303. LLM_KV_TOKENIZER_MIDDLE_ID,
  304. LLM_KV_TOKENIZER_EOT_ID,
  305. };
  306. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  307. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  308. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  309. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  310. { LLM_KV_GENERAL_NAME, "general.name" },
  311. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  312. { LLM_KV_GENERAL_VERSION, "general.version" },
  313. { LLM_KV_GENERAL_URL, "general.url" },
  314. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  315. { LLM_KV_GENERAL_LICENSE, "general.license" },
  316. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  317. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  318. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  319. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  320. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  321. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  322. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  323. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  324. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  325. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  326. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  327. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  328. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  329. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  330. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  331. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  332. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  333. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  334. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  335. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  336. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  337. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  338. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  339. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  340. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  341. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  342. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  343. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  344. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  345. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  346. { LLM_KV_SPLIT_NO, "split.no" },
  347. { LLM_KV_SPLIT_COUNT, "split.count" },
  348. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  349. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  350. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  351. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  352. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  353. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  354. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  355. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  356. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  357. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  358. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  359. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  360. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  361. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  362. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  363. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  364. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  365. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  366. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  367. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  368. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  369. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  370. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  371. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  372. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  373. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  374. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  375. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  376. };
  377. struct LLM_KV {
  378. LLM_KV(llm_arch arch) : arch(arch) {}
  379. llm_arch arch;
  380. std::string operator()(llm_kv kv) const {
  381. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  382. }
  383. };
  384. enum llm_tensor {
  385. LLM_TENSOR_TOKEN_EMBD,
  386. LLM_TENSOR_TOKEN_EMBD_NORM,
  387. LLM_TENSOR_TOKEN_TYPES,
  388. LLM_TENSOR_POS_EMBD,
  389. LLM_TENSOR_OUTPUT,
  390. LLM_TENSOR_OUTPUT_NORM,
  391. LLM_TENSOR_ROPE_FREQS,
  392. LLM_TENSOR_ROPE_FACTORS_LONG,
  393. LLM_TENSOR_ROPE_FACTORS_SHORT,
  394. LLM_TENSOR_ATTN_Q,
  395. LLM_TENSOR_ATTN_K,
  396. LLM_TENSOR_ATTN_V,
  397. LLM_TENSOR_ATTN_QKV,
  398. LLM_TENSOR_ATTN_OUT,
  399. LLM_TENSOR_ATTN_NORM,
  400. LLM_TENSOR_ATTN_NORM_2,
  401. LLM_TENSOR_ATTN_OUT_NORM,
  402. LLM_TENSOR_ATTN_ROT_EMBD,
  403. LLM_TENSOR_FFN_GATE_INP,
  404. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  405. LLM_TENSOR_FFN_NORM,
  406. LLM_TENSOR_FFN_GATE,
  407. LLM_TENSOR_FFN_DOWN,
  408. LLM_TENSOR_FFN_UP,
  409. LLM_TENSOR_FFN_ACT,
  410. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  411. LLM_TENSOR_FFN_GATE_EXP,
  412. LLM_TENSOR_FFN_UP_EXP,
  413. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  414. LLM_TENSOR_FFN_GATE_EXPS,
  415. LLM_TENSOR_FFN_UP_EXPS,
  416. LLM_TENSOR_FFN_DOWN_SHEXP,
  417. LLM_TENSOR_FFN_GATE_SHEXP,
  418. LLM_TENSOR_FFN_UP_SHEXP,
  419. LLM_TENSOR_ATTN_Q_NORM,
  420. LLM_TENSOR_ATTN_K_NORM,
  421. LLM_TENSOR_LAYER_OUT_NORM,
  422. LLM_TENSOR_SSM_IN,
  423. LLM_TENSOR_SSM_CONV1D,
  424. LLM_TENSOR_SSM_X,
  425. LLM_TENSOR_SSM_DT,
  426. LLM_TENSOR_SSM_A,
  427. LLM_TENSOR_SSM_D,
  428. LLM_TENSOR_SSM_OUT,
  429. };
  430. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  431. {
  432. LLM_ARCH_LLAMA,
  433. {
  434. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  435. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  436. { LLM_TENSOR_OUTPUT, "output" },
  437. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  438. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  439. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  440. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  441. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  442. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  443. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  444. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  445. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  446. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  447. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  448. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  449. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  450. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  451. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  452. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  453. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  454. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  455. },
  456. },
  457. {
  458. LLM_ARCH_BAICHUAN,
  459. {
  460. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  461. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  462. { LLM_TENSOR_OUTPUT, "output" },
  463. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  464. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  465. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  466. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  467. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  468. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  469. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  470. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  471. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  472. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  473. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  474. },
  475. },
  476. {
  477. LLM_ARCH_FALCON,
  478. {
  479. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  480. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  481. { LLM_TENSOR_OUTPUT, "output" },
  482. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  483. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  484. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  485. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  486. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  487. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  488. },
  489. },
  490. {
  491. LLM_ARCH_GROK,
  492. {
  493. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  494. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  495. { LLM_TENSOR_OUTPUT, "output" },
  496. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  497. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  498. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  499. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  500. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  501. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  502. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  503. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  504. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  505. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  506. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  507. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  508. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  509. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  510. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  511. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  512. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  513. },
  514. },
  515. {
  516. LLM_ARCH_GPT2,
  517. {
  518. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  519. { LLM_TENSOR_POS_EMBD, "position_embd" },
  520. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  521. { LLM_TENSOR_OUTPUT, "output" },
  522. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  523. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  524. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  525. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  526. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  527. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  528. },
  529. },
  530. {
  531. LLM_ARCH_GPTJ,
  532. {
  533. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  534. },
  535. },
  536. {
  537. LLM_ARCH_GPTNEOX,
  538. {
  539. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  540. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  541. { LLM_TENSOR_OUTPUT, "output" },
  542. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  543. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  544. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  545. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  546. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  547. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  548. },
  549. },
  550. {
  551. LLM_ARCH_MPT,
  552. {
  553. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  554. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  555. { LLM_TENSOR_OUTPUT, "output"},
  556. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  557. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  558. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  559. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  560. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  561. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  562. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  563. { LLM_TENSOR_POS_EMBD, "position_embd" },
  564. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  565. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  566. },
  567. },
  568. {
  569. LLM_ARCH_STARCODER,
  570. {
  571. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  572. { LLM_TENSOR_POS_EMBD, "position_embd" },
  573. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  574. { LLM_TENSOR_OUTPUT, "output" },
  575. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  576. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  577. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  578. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  579. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  580. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  581. },
  582. },
  583. {
  584. LLM_ARCH_REFACT,
  585. {
  586. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  587. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  588. { LLM_TENSOR_OUTPUT, "output" },
  589. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  590. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  591. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  592. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  593. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  594. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  595. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  596. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  597. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  598. },
  599. },
  600. {
  601. LLM_ARCH_BERT,
  602. {
  603. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  604. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  605. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  606. { LLM_TENSOR_POS_EMBD, "position_embd" },
  607. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  608. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  609. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  610. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  611. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  612. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  613. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  614. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  615. },
  616. },
  617. {
  618. LLM_ARCH_NOMIC_BERT,
  619. {
  620. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  621. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  622. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  623. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  624. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  625. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  626. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  627. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  628. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  629. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  630. },
  631. },
  632. {
  633. LLM_ARCH_JINA_BERT_V2,
  634. {
  635. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  636. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  637. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  638. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  639. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  640. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  641. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  642. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  643. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  644. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  645. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  646. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  647. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  648. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  649. },
  650. },
  651. {
  652. LLM_ARCH_BLOOM,
  653. {
  654. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  655. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  656. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  657. { LLM_TENSOR_OUTPUT, "output" },
  658. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  659. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  660. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  661. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  662. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  663. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  664. },
  665. },
  666. {
  667. LLM_ARCH_STABLELM,
  668. {
  669. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  670. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  671. { LLM_TENSOR_OUTPUT, "output" },
  672. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  673. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  674. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  675. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  676. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  677. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  678. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  679. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  680. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  681. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  682. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  683. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  684. },
  685. },
  686. {
  687. LLM_ARCH_QWEN,
  688. {
  689. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  690. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  691. { LLM_TENSOR_OUTPUT, "output" },
  692. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  693. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  694. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  695. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  696. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  697. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  698. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  699. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  700. },
  701. },
  702. {
  703. LLM_ARCH_QWEN2,
  704. {
  705. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  706. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  707. { LLM_TENSOR_OUTPUT, "output" },
  708. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  709. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  710. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  711. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  712. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  713. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  714. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  715. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  716. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  717. },
  718. },
  719. {
  720. LLM_ARCH_QWEN2MOE,
  721. {
  722. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  723. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  724. { LLM_TENSOR_OUTPUT, "output" },
  725. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  726. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  727. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  728. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  729. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  730. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  731. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  732. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  733. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  734. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  735. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  736. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  737. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  738. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  739. },
  740. },
  741. {
  742. LLM_ARCH_PHI2,
  743. {
  744. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  745. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  746. { LLM_TENSOR_OUTPUT, "output" },
  747. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  748. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  749. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  750. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  751. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  752. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  753. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  754. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  755. },
  756. },
  757. {
  758. LLM_ARCH_PHI3,
  759. {
  760. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  761. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  762. { LLM_TENSOR_OUTPUT, "output" },
  763. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  764. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  765. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  766. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  767. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  768. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  769. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  770. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  771. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  772. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  773. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  774. },
  775. },
  776. {
  777. LLM_ARCH_PLAMO,
  778. {
  779. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  780. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  781. { LLM_TENSOR_OUTPUT, "output" },
  782. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  783. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  784. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  785. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  786. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  787. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  788. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  789. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  790. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  791. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  792. },
  793. },
  794. {
  795. LLM_ARCH_CODESHELL,
  796. {
  797. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  798. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  799. { LLM_TENSOR_OUTPUT, "output" },
  800. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  801. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  802. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  803. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  804. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  805. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  806. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  807. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  808. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  809. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  810. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  811. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  812. },
  813. },
  814. {
  815. LLM_ARCH_ORION,
  816. {
  817. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  818. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  819. { LLM_TENSOR_OUTPUT, "output" },
  820. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  821. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  822. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  823. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  824. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  825. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  826. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  827. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  828. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  829. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  830. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  831. },
  832. },
  833. {
  834. LLM_ARCH_INTERNLM2,
  835. {
  836. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  837. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  838. { LLM_TENSOR_OUTPUT, "output" },
  839. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  840. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  841. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  842. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  843. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  844. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  845. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  846. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  847. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  848. },
  849. },
  850. {
  851. LLM_ARCH_MINICPM,
  852. {
  853. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  854. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  855. { LLM_TENSOR_OUTPUT, "output" },
  856. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  857. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  858. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  859. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  860. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  861. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  862. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  863. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  864. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  865. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  866. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  867. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  868. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  869. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  870. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  871. },
  872. },
  873. {
  874. LLM_ARCH_GEMMA,
  875. {
  876. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  877. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  878. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  879. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  880. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  881. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  882. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  883. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  884. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  885. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  886. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  887. },
  888. },
  889. {
  890. LLM_ARCH_STARCODER2,
  891. {
  892. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  893. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  894. { LLM_TENSOR_OUTPUT, "output" },
  895. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  896. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  897. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  898. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  899. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  900. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  901. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  902. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  903. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  904. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  905. },
  906. },
  907. {
  908. LLM_ARCH_MAMBA,
  909. {
  910. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  911. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  912. { LLM_TENSOR_OUTPUT, "output" },
  913. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  914. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  915. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  916. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  917. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  918. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  919. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  920. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  921. },
  922. },
  923. {
  924. LLM_ARCH_XVERSE,
  925. {
  926. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  927. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  928. { LLM_TENSOR_OUTPUT, "output" },
  929. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  930. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  931. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  932. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  933. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  934. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  935. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  936. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  937. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  938. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  939. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  940. },
  941. },
  942. {
  943. LLM_ARCH_COMMAND_R,
  944. {
  945. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  946. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  947. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  948. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  949. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  950. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  951. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  952. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  953. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  954. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  955. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  956. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  957. },
  958. },
  959. {
  960. LLM_ARCH_DBRX,
  961. {
  962. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  963. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  964. { LLM_TENSOR_OUTPUT, "output" },
  965. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  966. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  967. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  968. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  969. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  970. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  971. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  972. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  973. },
  974. },
  975. {
  976. LLM_ARCH_OLMO,
  977. {
  978. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  979. { LLM_TENSOR_OUTPUT, "output" },
  980. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  981. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  982. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  983. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  984. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  985. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  986. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  987. },
  988. },
  989. {
  990. LLM_ARCH_UNKNOWN,
  991. {
  992. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  993. },
  994. },
  995. };
  996. static llm_arch llm_arch_from_string(const std::string & name) {
  997. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  998. if (kv.second == name) {
  999. return kv.first;
  1000. }
  1001. }
  1002. return LLM_ARCH_UNKNOWN;
  1003. }
  1004. // helper to handle gguf constants
  1005. // usage:
  1006. //
  1007. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1008. //
  1009. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1010. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1011. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1012. //
  1013. struct LLM_TN {
  1014. LLM_TN(llm_arch arch) : arch(arch) {}
  1015. llm_arch arch;
  1016. std::string operator()(llm_tensor tensor) const {
  1017. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1018. return "__missing__";
  1019. }
  1020. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1021. }
  1022. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1023. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1024. return "__missing__";
  1025. }
  1026. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1027. }
  1028. std::string operator()(llm_tensor tensor, int bid) const {
  1029. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1030. return "__missing__";
  1031. }
  1032. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1033. }
  1034. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1035. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1036. return "__missing__";
  1037. }
  1038. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1039. }
  1040. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1041. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1042. return "__missing__";
  1043. }
  1044. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1045. }
  1046. };
  1047. //
  1048. // gguf helpers
  1049. //
  1050. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1051. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1052. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1053. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1054. };
  1055. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1056. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1057. if (kv.second == name) {
  1058. return (llama_rope_scaling_type) kv.first;
  1059. }
  1060. }
  1061. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1062. }
  1063. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1064. switch (type) {
  1065. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1066. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1067. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1068. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1069. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1070. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1071. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1072. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1073. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1074. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1075. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1076. default: return format("unknown type %d", type);
  1077. }
  1078. }
  1079. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1080. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1081. switch (type) {
  1082. case GGUF_TYPE_STRING:
  1083. return gguf_get_val_str(ctx_gguf, i);
  1084. case GGUF_TYPE_ARRAY:
  1085. {
  1086. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1087. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1088. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1089. std::stringstream ss;
  1090. ss << "[";
  1091. for (int j = 0; j < arr_n; j++) {
  1092. if (arr_type == GGUF_TYPE_STRING) {
  1093. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1094. // escape quotes
  1095. replace_all(val, "\\", "\\\\");
  1096. replace_all(val, "\"", "\\\"");
  1097. ss << '"' << val << '"';
  1098. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1099. ss << "???";
  1100. } else {
  1101. ss << gguf_data_to_str(arr_type, data, j);
  1102. }
  1103. if (j < arr_n - 1) {
  1104. ss << ", ";
  1105. }
  1106. }
  1107. ss << "]";
  1108. return ss.str();
  1109. }
  1110. default:
  1111. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1112. }
  1113. }
  1114. //
  1115. // llama helpers
  1116. //
  1117. #if defined(_WIN32)
  1118. static std::string llama_format_win_err(DWORD err) {
  1119. LPSTR buf;
  1120. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1121. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1122. if (!size) {
  1123. return "FormatMessageA failed";
  1124. }
  1125. std::string ret(buf, size);
  1126. LocalFree(buf);
  1127. return ret;
  1128. }
  1129. #endif
  1130. template <typename T>
  1131. struct no_init {
  1132. T value;
  1133. no_init() { /* do nothing */ }
  1134. };
  1135. struct llama_file {
  1136. // use FILE * so we don't have to re-open the file to mmap
  1137. FILE * fp;
  1138. size_t size;
  1139. llama_file(const char * fname, const char * mode) {
  1140. fp = ggml_fopen(fname, mode);
  1141. if (fp == NULL) {
  1142. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1143. }
  1144. seek(0, SEEK_END);
  1145. size = tell();
  1146. seek(0, SEEK_SET);
  1147. }
  1148. size_t tell() const {
  1149. #ifdef _WIN32
  1150. __int64 ret = _ftelli64(fp);
  1151. #else
  1152. long ret = std::ftell(fp);
  1153. #endif
  1154. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1155. return (size_t) ret;
  1156. }
  1157. void seek(size_t offset, int whence) const {
  1158. #ifdef _WIN32
  1159. int ret = _fseeki64(fp, (__int64) offset, whence);
  1160. #else
  1161. int ret = std::fseek(fp, (long) offset, whence);
  1162. #endif
  1163. GGML_ASSERT(ret == 0); // same
  1164. }
  1165. void read_raw(void * ptr, size_t len) const {
  1166. if (len == 0) {
  1167. return;
  1168. }
  1169. errno = 0;
  1170. std::size_t ret = std::fread(ptr, len, 1, fp);
  1171. if (ferror(fp)) {
  1172. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1173. }
  1174. if (ret != 1) {
  1175. throw std::runtime_error("unexpectedly reached end of file");
  1176. }
  1177. }
  1178. uint32_t read_u32() const {
  1179. uint32_t ret;
  1180. read_raw(&ret, sizeof(ret));
  1181. return ret;
  1182. }
  1183. void write_raw(const void * ptr, size_t len) const {
  1184. if (len == 0) {
  1185. return;
  1186. }
  1187. errno = 0;
  1188. size_t ret = std::fwrite(ptr, len, 1, fp);
  1189. if (ret != 1) {
  1190. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1191. }
  1192. }
  1193. void write_u32(std::uint32_t val) const {
  1194. write_raw(&val, sizeof(val));
  1195. }
  1196. ~llama_file() {
  1197. if (fp) {
  1198. std::fclose(fp);
  1199. }
  1200. }
  1201. };
  1202. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1203. struct llama_mmap {
  1204. void * addr;
  1205. size_t size;
  1206. llama_mmap(const llama_mmap &) = delete;
  1207. #ifdef _POSIX_MAPPED_FILES
  1208. static constexpr bool SUPPORTED = true;
  1209. // list of mapped fragments (first_offset, last_offset)
  1210. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1211. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1212. size = file->size;
  1213. int fd = fileno(file->fp);
  1214. int flags = MAP_SHARED;
  1215. // prefetch/readahead impairs performance on NUMA systems
  1216. if (numa) { prefetch = 0; }
  1217. #ifdef __linux__
  1218. // advise the kernel to read the file sequentially (increases readahead)
  1219. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1220. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1221. strerror(errno));
  1222. }
  1223. if (prefetch) { flags |= MAP_POPULATE; }
  1224. #endif
  1225. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1226. if (addr == MAP_FAILED) { // NOLINT
  1227. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1228. }
  1229. if (prefetch > 0) {
  1230. // advise the kernel to preload the mapped memory
  1231. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1232. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1233. strerror(errno));
  1234. }
  1235. }
  1236. if (numa) {
  1237. // advise the kernel not to use readahead
  1238. // (because the next page might not belong on the same node)
  1239. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1240. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1241. strerror(errno));
  1242. }
  1243. }
  1244. // initialize list of mapped_fragments
  1245. mapped_fragments.emplace_back(0, file->size);
  1246. }
  1247. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1248. // align first to the next page
  1249. size_t offset_in_page = *first & (page_size - 1);
  1250. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1251. *first += offset_to_page;
  1252. // align last to the previous page
  1253. *last = *last & ~(page_size - 1);
  1254. if (*last <= *first) {
  1255. *last = *first;
  1256. }
  1257. }
  1258. // partially unmap the file in the range [first, last)
  1259. void unmap_fragment(size_t first, size_t last) {
  1260. // note: this function must not be called multiple times with overlapping ranges
  1261. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1262. int page_size = sysconf(_SC_PAGESIZE);
  1263. align_range(&first, &last, page_size);
  1264. size_t len = last - first;
  1265. if (len == 0) {
  1266. return;
  1267. }
  1268. GGML_ASSERT(first % page_size == 0);
  1269. GGML_ASSERT(last % page_size == 0);
  1270. GGML_ASSERT(last > first);
  1271. void * next_page_start = (uint8_t *) addr + first;
  1272. // unmap the range
  1273. if (munmap(next_page_start, len)) {
  1274. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1275. }
  1276. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1277. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1278. for (const auto & frag : mapped_fragments) {
  1279. if (frag.first < first && frag.second > last) {
  1280. // the range is in the middle of the fragment, split it
  1281. new_mapped_fragments.emplace_back(frag.first, first);
  1282. new_mapped_fragments.emplace_back(last, frag.second);
  1283. } else if (frag.first < first && frag.second > first) {
  1284. // the range starts in the middle of the fragment
  1285. new_mapped_fragments.emplace_back(frag.first, first);
  1286. } else if (frag.first < last && frag.second > last) {
  1287. // the range ends in the middle of the fragment
  1288. new_mapped_fragments.emplace_back(last, frag.second);
  1289. } else if (frag.first >= first && frag.second <= last) {
  1290. // the range covers the entire fragment
  1291. } else {
  1292. // the range is outside the fragment
  1293. new_mapped_fragments.push_back(frag);
  1294. }
  1295. }
  1296. mapped_fragments = std::move(new_mapped_fragments);
  1297. }
  1298. ~llama_mmap() {
  1299. for (const auto & frag : mapped_fragments) {
  1300. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1301. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1302. }
  1303. }
  1304. }
  1305. #elif defined(_WIN32)
  1306. static constexpr bool SUPPORTED = true;
  1307. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1308. GGML_UNUSED(numa);
  1309. size = file->size;
  1310. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1311. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1312. if (hMapping == NULL) {
  1313. DWORD error = GetLastError();
  1314. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1315. }
  1316. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1317. DWORD error = GetLastError();
  1318. CloseHandle(hMapping);
  1319. if (addr == NULL) {
  1320. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1321. }
  1322. if (prefetch > 0) {
  1323. #if _WIN32_WINNT >= 0x602
  1324. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1325. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1326. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1327. // may fail on pre-Windows 8 systems
  1328. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1329. if (pPrefetchVirtualMemory) {
  1330. // advise the kernel to preload the mapped memory
  1331. WIN32_MEMORY_RANGE_ENTRY range;
  1332. range.VirtualAddress = addr;
  1333. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1334. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1335. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1336. llama_format_win_err(GetLastError()).c_str());
  1337. }
  1338. }
  1339. #else
  1340. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1341. #endif
  1342. }
  1343. }
  1344. void unmap_fragment(size_t first, size_t last) {
  1345. // not supported
  1346. GGML_UNUSED(first);
  1347. GGML_UNUSED(last);
  1348. }
  1349. ~llama_mmap() {
  1350. if (!UnmapViewOfFile(addr)) {
  1351. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1352. llama_format_win_err(GetLastError()).c_str());
  1353. }
  1354. }
  1355. #else
  1356. static constexpr bool SUPPORTED = false;
  1357. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1358. GGML_UNUSED(file);
  1359. GGML_UNUSED(prefetch);
  1360. GGML_UNUSED(numa);
  1361. throw std::runtime_error("mmap not supported");
  1362. }
  1363. void unmap_fragment(size_t first, size_t last) {
  1364. GGML_UNUSED(first);
  1365. GGML_UNUSED(last);
  1366. throw std::runtime_error("mmap not supported");
  1367. }
  1368. #endif
  1369. };
  1370. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1371. // Represents some region of memory being locked using mlock or VirtualLock;
  1372. // will automatically unlock on destruction.
  1373. struct llama_mlock {
  1374. void * addr = NULL;
  1375. size_t size = 0;
  1376. bool failed_already = false;
  1377. llama_mlock() {}
  1378. llama_mlock(const llama_mlock &) = delete;
  1379. ~llama_mlock() {
  1380. if (size) {
  1381. raw_unlock(addr, size);
  1382. }
  1383. }
  1384. void init(void * ptr) {
  1385. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1386. addr = ptr;
  1387. }
  1388. void grow_to(size_t target_size) {
  1389. GGML_ASSERT(addr);
  1390. if (failed_already) {
  1391. return;
  1392. }
  1393. size_t granularity = lock_granularity();
  1394. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1395. if (target_size > size) {
  1396. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1397. size = target_size;
  1398. } else {
  1399. failed_already = true;
  1400. }
  1401. }
  1402. }
  1403. #ifdef _POSIX_MEMLOCK_RANGE
  1404. static constexpr bool SUPPORTED = true;
  1405. static size_t lock_granularity() {
  1406. return (size_t) sysconf(_SC_PAGESIZE);
  1407. }
  1408. #ifdef __APPLE__
  1409. #define MLOCK_SUGGESTION \
  1410. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1411. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1412. #else
  1413. #define MLOCK_SUGGESTION \
  1414. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1415. #endif
  1416. bool raw_lock(const void * addr, size_t size) const {
  1417. if (!mlock(addr, size)) {
  1418. return true;
  1419. }
  1420. char* errmsg = std::strerror(errno);
  1421. bool suggest = (errno == ENOMEM);
  1422. // Check if the resource limit is fine after all
  1423. struct rlimit lock_limit;
  1424. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1425. suggest = false;
  1426. }
  1427. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1428. suggest = false;
  1429. }
  1430. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1431. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1432. return false;
  1433. }
  1434. #undef MLOCK_SUGGESTION
  1435. static void raw_unlock(void * addr, size_t size) {
  1436. if (munlock(addr, size)) {
  1437. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1438. }
  1439. }
  1440. #elif defined(_WIN32)
  1441. static constexpr bool SUPPORTED = true;
  1442. static size_t lock_granularity() {
  1443. SYSTEM_INFO si;
  1444. GetSystemInfo(&si);
  1445. return (size_t) si.dwPageSize;
  1446. }
  1447. bool raw_lock(void * ptr, size_t len) const {
  1448. for (int tries = 1; ; tries++) {
  1449. if (VirtualLock(ptr, len)) {
  1450. return true;
  1451. }
  1452. if (tries == 2) {
  1453. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1454. len, size, llama_format_win_err(GetLastError()).c_str());
  1455. return false;
  1456. }
  1457. // It failed but this was only the first try; increase the working
  1458. // set size and try again.
  1459. SIZE_T min_ws_size, max_ws_size;
  1460. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1461. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1462. llama_format_win_err(GetLastError()).c_str());
  1463. return false;
  1464. }
  1465. // Per MSDN: "The maximum number of pages that a process can lock
  1466. // is equal to the number of pages in its minimum working set minus
  1467. // a small overhead."
  1468. // Hopefully a megabyte is enough overhead:
  1469. size_t increment = len + 1048576;
  1470. // The minimum must be <= the maximum, so we need to increase both:
  1471. min_ws_size += increment;
  1472. max_ws_size += increment;
  1473. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1474. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1475. llama_format_win_err(GetLastError()).c_str());
  1476. return false;
  1477. }
  1478. }
  1479. }
  1480. static void raw_unlock(void * ptr, size_t len) {
  1481. if (!VirtualUnlock(ptr, len)) {
  1482. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1483. llama_format_win_err(GetLastError()).c_str());
  1484. }
  1485. }
  1486. #else
  1487. static constexpr bool SUPPORTED = false;
  1488. static size_t lock_granularity() {
  1489. return (size_t) 65536;
  1490. }
  1491. bool raw_lock(const void * addr, size_t len) const {
  1492. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1493. return false;
  1494. }
  1495. static void raw_unlock(const void * addr, size_t len) {}
  1496. #endif
  1497. };
  1498. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1499. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1500. std::vector<char> result(8, 0);
  1501. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1502. if (n_tokens < 0) {
  1503. result.resize(-n_tokens);
  1504. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1505. GGML_ASSERT(check == -n_tokens);
  1506. }
  1507. else {
  1508. result.resize(n_tokens);
  1509. }
  1510. return std::string(result.data(), result.size());
  1511. }
  1512. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1513. ggml_backend_buffer_type_t buft = nullptr;
  1514. #if defined(GGML_USE_CUDA)
  1515. // host buffers should only be used when data is expected to be copied to/from the GPU
  1516. if (host_buffer) {
  1517. buft = ggml_backend_cuda_host_buffer_type();
  1518. }
  1519. #elif defined(GGML_USE_SYCL)
  1520. if (host_buffer) {
  1521. buft = ggml_backend_sycl_host_buffer_type();
  1522. }
  1523. #elif defined(GGML_USE_CPU_HBM)
  1524. buft = ggml_backend_cpu_hbm_buffer_type();
  1525. #elif defined(GGML_USE_VULKAN)
  1526. if (host_buffer) {
  1527. buft = ggml_backend_vk_host_buffer_type();
  1528. }
  1529. #endif
  1530. if (buft == nullptr) {
  1531. buft = ggml_backend_cpu_buffer_type();
  1532. }
  1533. return buft;
  1534. GGML_UNUSED(host_buffer);
  1535. }
  1536. //
  1537. // globals
  1538. //
  1539. struct llama_state {
  1540. llama_state() {
  1541. #ifdef GGML_USE_METAL
  1542. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1543. #elif defined(GGML_USE_CUDA)
  1544. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1545. #endif
  1546. }
  1547. // We save the log callback globally
  1548. ggml_log_callback log_callback = llama_log_callback_default;
  1549. void * log_callback_user_data = nullptr;
  1550. };
  1551. static llama_state g_state;
  1552. // available llama models
  1553. enum e_model {
  1554. MODEL_UNKNOWN,
  1555. MODEL_14M,
  1556. MODEL_17M,
  1557. MODEL_22M,
  1558. MODEL_33M,
  1559. MODEL_70M,
  1560. MODEL_109M,
  1561. MODEL_137M,
  1562. MODEL_160M,
  1563. MODEL_335M,
  1564. MODEL_410M,
  1565. MODEL_0_5B,
  1566. MODEL_1B,
  1567. MODEL_1_4B,
  1568. MODEL_2B,
  1569. MODEL_2_8B,
  1570. MODEL_3B,
  1571. MODEL_4B,
  1572. MODEL_6_9B,
  1573. MODEL_7B,
  1574. MODEL_8B,
  1575. MODEL_12B,
  1576. MODEL_13B,
  1577. MODEL_14B,
  1578. MODEL_15B,
  1579. MODEL_20B,
  1580. MODEL_30B,
  1581. MODEL_34B,
  1582. MODEL_35B,
  1583. MODEL_40B,
  1584. MODEL_65B,
  1585. MODEL_70B,
  1586. MODEL_314B,
  1587. MODEL_SMALL,
  1588. MODEL_MEDIUM,
  1589. MODEL_LARGE,
  1590. MODEL_XL,
  1591. MODEL_A2_7B,
  1592. MODEL_8x7B,
  1593. MODEL_8x22B,
  1594. MODEL_16x12B,
  1595. };
  1596. static const size_t kiB = 1024;
  1597. static const size_t MiB = 1024*kiB;
  1598. static const size_t GiB = 1024*MiB;
  1599. struct llama_hparams {
  1600. bool vocab_only;
  1601. bool rope_finetuned;
  1602. bool use_par_res;
  1603. uint32_t n_vocab;
  1604. uint32_t n_ctx_train; // context size the model was trained on
  1605. uint32_t n_embd;
  1606. uint32_t n_head;
  1607. uint32_t n_head_kv;
  1608. uint32_t n_layer;
  1609. uint32_t n_rot;
  1610. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1611. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1612. uint32_t n_ff;
  1613. uint32_t n_expert = 0;
  1614. uint32_t n_expert_used = 0;
  1615. uint32_t n_vocab_type = 0; // for BERT-style token types
  1616. float f_norm_eps;
  1617. float f_norm_rms_eps;
  1618. float rope_attn_factor = 1.0f;
  1619. float rope_freq_base_train;
  1620. float rope_freq_scale_train;
  1621. uint32_t n_yarn_orig_ctx;
  1622. // for State Space Models
  1623. uint32_t ssm_d_conv = 0;
  1624. uint32_t ssm_d_inner = 0;
  1625. uint32_t ssm_d_state = 0;
  1626. uint32_t ssm_dt_rank = 0;
  1627. float f_clamp_kqv = 0.0f;
  1628. float f_max_alibi_bias = 0.0f;
  1629. float f_logit_scale = 0.0f;
  1630. bool causal_attn = true;
  1631. bool use_alibi = false;
  1632. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1633. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1634. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1635. bool operator!=(const llama_hparams & other) const {
  1636. if (this->vocab_only != other.vocab_only) return true;
  1637. if (this->n_vocab != other.n_vocab) return true;
  1638. if (this->n_ctx_train != other.n_ctx_train) return true;
  1639. if (this->n_embd != other.n_embd) return true;
  1640. if (this->n_head != other.n_head) return true;
  1641. if (this->n_head_kv != other.n_head_kv) return true;
  1642. if (this->n_layer != other.n_layer) return true;
  1643. if (this->n_rot != other.n_rot) return true;
  1644. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1645. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1646. if (this->n_ff != other.n_ff) return true;
  1647. if (this->n_expert != other.n_expert) return true;
  1648. if (this->n_expert_used != other.n_expert_used) return true;
  1649. if (this->rope_finetuned != other.rope_finetuned) return true;
  1650. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1651. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1652. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1653. if (this->ssm_d_state != other.ssm_d_state) return true;
  1654. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1655. const float EPSILON = 1e-9f;
  1656. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1657. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1658. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1659. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1660. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1661. return false;
  1662. }
  1663. uint32_t n_gqa() const {
  1664. if (n_head_kv == 0) {
  1665. return 0;
  1666. }
  1667. return n_head/n_head_kv;
  1668. }
  1669. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1670. return n_embd_head_k * n_head_kv;
  1671. }
  1672. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1673. return n_embd_head_v * n_head_kv;
  1674. }
  1675. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1676. // corresponds to Mamba's conv_states size
  1677. // TODO: maybe support other convolution strides than 1
  1678. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1679. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1680. }
  1681. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1682. // corresponds to Mamba's ssm_states size
  1683. return ssm_d_state * ssm_d_inner;
  1684. }
  1685. };
  1686. struct llama_cparams {
  1687. uint32_t n_ctx; // context size used during inference
  1688. uint32_t n_batch;
  1689. uint32_t n_ubatch;
  1690. uint32_t n_seq_max;
  1691. uint32_t n_threads; // number of threads to use for generation
  1692. uint32_t n_threads_batch; // number of threads to use for batch processing
  1693. float rope_freq_base;
  1694. float rope_freq_scale;
  1695. uint32_t n_yarn_orig_ctx;
  1696. // These hyperparameters are not exposed in GGUF, because all
  1697. // existing YaRN models use the same values for them.
  1698. float yarn_ext_factor;
  1699. float yarn_attn_factor;
  1700. float yarn_beta_fast;
  1701. float yarn_beta_slow;
  1702. float defrag_thold;
  1703. bool embeddings;
  1704. bool causal_attn;
  1705. bool offload_kqv;
  1706. bool flash_attn;
  1707. enum llama_pooling_type pooling_type;
  1708. ggml_backend_sched_eval_callback cb_eval;
  1709. void * cb_eval_user_data;
  1710. };
  1711. struct llama_layer {
  1712. // normalization
  1713. struct ggml_tensor * attn_norm;
  1714. struct ggml_tensor * attn_norm_b;
  1715. struct ggml_tensor * attn_norm_2;
  1716. struct ggml_tensor * attn_norm_2_b;
  1717. struct ggml_tensor * attn_q_norm;
  1718. struct ggml_tensor * attn_q_norm_b;
  1719. struct ggml_tensor * attn_k_norm;
  1720. struct ggml_tensor * attn_k_norm_b;
  1721. struct ggml_tensor * attn_out_norm;
  1722. struct ggml_tensor * attn_out_norm_b;
  1723. // attention
  1724. struct ggml_tensor * wq;
  1725. struct ggml_tensor * wk;
  1726. struct ggml_tensor * wv;
  1727. struct ggml_tensor * wo;
  1728. struct ggml_tensor * wqkv;
  1729. // attention bias
  1730. struct ggml_tensor * bq;
  1731. struct ggml_tensor * bk;
  1732. struct ggml_tensor * bv;
  1733. struct ggml_tensor * bo;
  1734. struct ggml_tensor * bqkv;
  1735. // normalization
  1736. struct ggml_tensor * ffn_norm;
  1737. struct ggml_tensor * ffn_norm_b;
  1738. struct ggml_tensor * layer_out_norm;
  1739. struct ggml_tensor * layer_out_norm_b;
  1740. // ff
  1741. struct ggml_tensor * ffn_gate; // w1
  1742. struct ggml_tensor * ffn_down; // w2
  1743. struct ggml_tensor * ffn_up; // w3
  1744. // ff MoE
  1745. struct ggml_tensor * ffn_gate_inp;
  1746. struct ggml_tensor * ffn_gate_exps;
  1747. struct ggml_tensor * ffn_down_exps;
  1748. struct ggml_tensor * ffn_up_exps ;
  1749. // ff shared expert (shexp)
  1750. struct ggml_tensor * ffn_gate_inp_shexp;
  1751. struct ggml_tensor * ffn_gate_shexp;
  1752. struct ggml_tensor * ffn_down_shexp;
  1753. struct ggml_tensor * ffn_up_shexp;
  1754. // ff bias
  1755. struct ggml_tensor * ffn_down_b; // b2
  1756. struct ggml_tensor * ffn_up_b; // b3
  1757. struct ggml_tensor * ffn_act;
  1758. // mamba proj
  1759. struct ggml_tensor * ssm_in;
  1760. struct ggml_tensor * ssm_x;
  1761. struct ggml_tensor * ssm_dt;
  1762. struct ggml_tensor * ssm_out;
  1763. // mamba
  1764. struct ggml_tensor * ssm_conv1d;
  1765. struct ggml_tensor * ssm_a;
  1766. struct ggml_tensor * ssm_d;
  1767. // mamba bias
  1768. struct ggml_tensor * ssm_conv1d_b;
  1769. struct ggml_tensor * ssm_dt_b;
  1770. // long rope factors
  1771. struct ggml_tensor * rope_long = nullptr;
  1772. struct ggml_tensor * rope_short = nullptr;
  1773. };
  1774. struct llama_kv_cell {
  1775. llama_pos pos = -1;
  1776. llama_pos delta = 0;
  1777. int32_t src = 0; // used by recurrent state models to copy states
  1778. std::set<llama_seq_id> seq_id;
  1779. bool has_seq_id(const llama_seq_id & id) const {
  1780. return seq_id.find(id) != seq_id.end();
  1781. }
  1782. bool is_empty() const {
  1783. return seq_id.empty();
  1784. }
  1785. bool is_same_seq(const llama_kv_cell & other) const {
  1786. return seq_id == other.seq_id;
  1787. }
  1788. };
  1789. // ring-buffer of cached KV data
  1790. struct llama_kv_cache {
  1791. bool has_shift = false;
  1792. bool do_defrag = false;
  1793. bool do_copy = false;
  1794. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1795. bool v_trans = true; // the value tensor is transposed
  1796. // Note: The value of head isn't only used to optimize searching
  1797. // for a free KV slot. llama_decode_internal also uses it, so it
  1798. // cannot be freely changed after a slot has been allocated.
  1799. uint32_t head = 0;
  1800. uint32_t size = 0;
  1801. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1802. // computed before each graph build
  1803. uint32_t n = 0;
  1804. ggml_type type_k = GGML_TYPE_F16;
  1805. ggml_type type_v = GGML_TYPE_F16;
  1806. std::vector<llama_kv_cell> cells;
  1807. std::vector<struct ggml_tensor *> k_l; // per layer
  1808. std::vector<struct ggml_tensor *> v_l;
  1809. std::vector<struct ggml_context *> ctxs;
  1810. std::vector<ggml_backend_buffer_t> bufs;
  1811. size_t total_size() const {
  1812. size_t size = 0;
  1813. for (ggml_backend_buffer_t buf : bufs) {
  1814. size += ggml_backend_buffer_get_size(buf);
  1815. }
  1816. return size;
  1817. }
  1818. ~llama_kv_cache() {
  1819. for (struct ggml_context * ctx : ctxs) {
  1820. ggml_free(ctx);
  1821. }
  1822. for (ggml_backend_buffer_t buf : bufs) {
  1823. ggml_backend_buffer_free(buf);
  1824. }
  1825. }
  1826. };
  1827. struct llama_control_vector {
  1828. std::vector<struct ggml_tensor *> tensors; // per layer
  1829. std::vector<struct ggml_context *> ctxs;
  1830. std::vector<ggml_backend_buffer_t> bufs;
  1831. int32_t layer_start = -1;
  1832. int32_t layer_end = -1;
  1833. ggml_tensor * tensor_for(int il) const {
  1834. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1835. return nullptr;
  1836. }
  1837. return tensors[il];
  1838. }
  1839. ~llama_control_vector() {
  1840. for (struct ggml_context * ctx : ctxs) {
  1841. ggml_free(ctx);
  1842. }
  1843. for (ggml_backend_buffer_t buf : bufs) {
  1844. ggml_backend_buffer_free(buf);
  1845. }
  1846. }
  1847. };
  1848. struct llama_vocab {
  1849. using id = int32_t;
  1850. using token = std::string;
  1851. using ttype = llama_token_type;
  1852. struct token_data {
  1853. token text;
  1854. float score;
  1855. ttype type;
  1856. };
  1857. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1858. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1859. std::unordered_map<token, id> token_to_id;
  1860. std::vector<token_data> id_to_token;
  1861. std::unordered_map<token, id> special_tokens_cache;
  1862. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1863. // default LLaMA special tokens
  1864. id special_bos_id = 1;
  1865. id special_eos_id = 2;
  1866. id special_unk_id = 0;
  1867. id special_sep_id = -1;
  1868. id special_pad_id = -1;
  1869. id special_cls_id = -1;
  1870. id special_mask_id = -1;
  1871. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1872. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1873. id linefeed_id = 13;
  1874. id special_prefix_id = -1;
  1875. id special_suffix_id = -1;
  1876. id special_middle_id = -1;
  1877. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1878. bool add_space_prefix = true;
  1879. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1880. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1881. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1882. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1883. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1884. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1885. if (it == bpe_ranks.end()) {
  1886. return -1;
  1887. }
  1888. return it->second;
  1889. }
  1890. };
  1891. struct llama_model {
  1892. e_model type = MODEL_UNKNOWN;
  1893. llm_arch arch = LLM_ARCH_UNKNOWN;
  1894. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1895. std::string name = "n/a";
  1896. llama_hparams hparams = {};
  1897. llama_vocab vocab;
  1898. struct ggml_tensor * tok_embd;
  1899. struct ggml_tensor * type_embd;
  1900. struct ggml_tensor * pos_embd;
  1901. struct ggml_tensor * tok_norm;
  1902. struct ggml_tensor * tok_norm_b;
  1903. struct ggml_tensor * output_norm;
  1904. struct ggml_tensor * output_norm_b;
  1905. struct ggml_tensor * output;
  1906. struct ggml_tensor * output_b;
  1907. std::vector<llama_layer> layers;
  1908. llama_split_mode split_mode;
  1909. int main_gpu;
  1910. int n_gpu_layers;
  1911. std::vector<std::string> rpc_servers;
  1912. // gguf metadata
  1913. std::unordered_map<std::string, std::string> gguf_kv;
  1914. // layer -> buffer type mapping
  1915. struct layer_buft {
  1916. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1917. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1918. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1919. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1920. ggml_backend_buffer_type_t buft; // everything else
  1921. };
  1922. layer_buft buft_input;
  1923. layer_buft buft_output;
  1924. std::vector<layer_buft> buft_layer;
  1925. // contexts where the model tensors metadata is stored
  1926. std::vector<struct ggml_context *> ctxs;
  1927. // the model memory buffers for the tensor data
  1928. std::vector<ggml_backend_buffer_t> bufs;
  1929. // model memory mapped files
  1930. llama_mmaps mappings;
  1931. // objects representing data potentially being locked in memory
  1932. llama_mlocks mlock_bufs;
  1933. llama_mlocks mlock_mmaps;
  1934. // for quantize-stats only
  1935. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1936. int64_t t_load_us = 0;
  1937. int64_t t_start_us = 0;
  1938. ~llama_model() {
  1939. for (struct ggml_context * ctx : ctxs) {
  1940. ggml_free(ctx);
  1941. }
  1942. for (ggml_backend_buffer_t buf : bufs) {
  1943. #ifdef GGML_USE_CUDA
  1944. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1945. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1946. }
  1947. #endif
  1948. ggml_backend_buffer_free(buf);
  1949. }
  1950. }
  1951. };
  1952. struct llama_context {
  1953. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1954. ~llama_context() {
  1955. ggml_backend_sched_free(sched);
  1956. for (ggml_backend_t backend : backends) {
  1957. ggml_backend_free(backend);
  1958. }
  1959. ggml_backend_buffer_free(buf_output);
  1960. }
  1961. llama_cparams cparams;
  1962. std::vector<ggml_backend_t> backends;
  1963. #ifdef GGML_USE_METAL
  1964. ggml_backend_t backend_metal = nullptr;
  1965. #endif
  1966. ggml_backend_t backend_cpu = nullptr;
  1967. const llama_model & model;
  1968. // key + value cache for the self attention
  1969. struct llama_kv_cache kv_self;
  1970. std::mt19937 rng;
  1971. bool has_evaluated_once = false;
  1972. int64_t t_start_us;
  1973. int64_t t_load_us;
  1974. int64_t t_sample_us = 0;
  1975. int64_t t_p_eval_us = 0;
  1976. int64_t t_eval_us = 0;
  1977. int64_t t_compute_start_us = 0;
  1978. int64_t n_queued_tokens = 0;
  1979. int32_t n_sample = 0; // number of tokens sampled
  1980. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1981. int32_t n_eval = 0; // number of eval calls
  1982. // host buffer for the model output (logits and embeddings)
  1983. ggml_backend_buffer_t buf_output = nullptr;
  1984. // decode output (2-dimensional array: [n_outputs][n_vocab])
  1985. size_t logits_size = 0; // capacity (of floats) for logits
  1986. float * logits = nullptr;
  1987. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  1988. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  1989. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  1990. bool logits_all = false;
  1991. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  1992. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  1993. size_t embd_size = 0; // capacity (of floats) for embeddings
  1994. float * embd = nullptr;
  1995. // sequence embeddings output (map of [n_embd] vectors)
  1996. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  1997. std::map<llama_seq_id, std::vector<float>> embd_seq;
  1998. // memory buffers used to evaluate the model
  1999. std::vector<uint8_t> buf_compute_meta;
  2000. ggml_backend_sched_t sched = nullptr;
  2001. ggml_abort_callback abort_callback = nullptr;
  2002. void * abort_callback_data = nullptr;
  2003. // input tensors
  2004. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2005. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2006. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2007. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2008. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2009. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2010. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2011. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2012. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2013. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2014. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2015. // control vectors
  2016. struct llama_control_vector cvec;
  2017. };
  2018. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2019. ggml_backend_buffer_type_t buft = nullptr;
  2020. #ifdef GGML_USE_RPC
  2021. std::string endpoint = model.rpc_servers[gpu];
  2022. buft = ggml_backend_rpc_buffer_type(endpoint.c_str());
  2023. #elif defined(GGML_USE_METAL)
  2024. buft = ggml_backend_metal_buffer_type();
  2025. #elif defined(GGML_USE_CUDA)
  2026. buft = ggml_backend_cuda_buffer_type(gpu);
  2027. #elif defined(GGML_USE_VULKAN)
  2028. buft = ggml_backend_vk_buffer_type(gpu);
  2029. #elif defined(GGML_USE_SYCL)
  2030. buft = ggml_backend_sycl_buffer_type(gpu);
  2031. #elif defined(GGML_USE_CLBLAST)
  2032. buft = ggml_backend_opencl_buffer_type();
  2033. #elif defined(GGML_USE_KOMPUTE)
  2034. buft = ggml_backend_kompute_buffer_type(gpu);
  2035. if (buft == nullptr) {
  2036. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2037. }
  2038. #endif
  2039. if (buft == nullptr) {
  2040. buft = llama_default_buffer_type_cpu(true);
  2041. }
  2042. return buft;
  2043. GGML_UNUSED(model);
  2044. GGML_UNUSED(gpu);
  2045. }
  2046. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2047. ggml_backend_buffer_type_t buft = nullptr;
  2048. #ifdef GGML_USE_CUDA
  2049. if (ggml_backend_cuda_get_device_count() > 1) {
  2050. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2051. }
  2052. #endif
  2053. #ifdef GGML_USE_SYCL
  2054. if (ggml_backend_sycl_get_device_count() > 1) {
  2055. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2056. }
  2057. #endif
  2058. if (buft == nullptr) {
  2059. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2060. }
  2061. return buft;
  2062. GGML_UNUSED(tensor_split);
  2063. }
  2064. static size_t llama_get_device_count(const llama_model & model) {
  2065. #if defined(GGML_USE_RPC)
  2066. return model.rpc_servers.size();
  2067. #elif defined(GGML_USE_CUDA)
  2068. return ggml_backend_cuda_get_device_count();
  2069. #elif defined(GGML_USE_SYCL)
  2070. return ggml_backend_sycl_get_device_count();
  2071. #elif defined(GGML_USE_VULKAN)
  2072. return ggml_backend_vk_get_device_count();
  2073. #else
  2074. return 1;
  2075. #endif
  2076. GGML_UNUSED(model);
  2077. }
  2078. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2079. #if defined(GGML_USE_RPC)
  2080. size_t total;
  2081. size_t free;
  2082. std::string endpoint = model.rpc_servers[device];
  2083. ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total);
  2084. return free;
  2085. #elif defined(GGML_USE_CUDA)
  2086. size_t total;
  2087. size_t free;
  2088. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2089. return free;
  2090. #elif defined(GGML_USE_SYCL)
  2091. size_t total;
  2092. size_t free;
  2093. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2094. return free;
  2095. #elif defined(GGML_USE_VULKAN)
  2096. size_t total;
  2097. size_t free;
  2098. ggml_backend_vk_get_device_memory(device, &free, &total);
  2099. return free;
  2100. #else
  2101. return 1;
  2102. #endif
  2103. GGML_UNUSED(model);
  2104. GGML_UNUSED(device);
  2105. }
  2106. //
  2107. // kv cache helpers
  2108. //
  2109. static bool llama_kv_cache_init(
  2110. struct llama_kv_cache & cache,
  2111. const llama_context * ctx,
  2112. ggml_type type_k,
  2113. ggml_type type_v,
  2114. uint32_t kv_size,
  2115. bool offload) {
  2116. const llama_model & model = ctx->model;
  2117. const llama_cparams & cparams = ctx->cparams;
  2118. const struct llama_hparams & hparams = model.hparams;
  2119. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2120. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2121. const int64_t n_layer = hparams.n_layer;
  2122. cache.has_shift = false;
  2123. // TODO: find a nicer way to add other recurrent model architectures
  2124. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2125. cache.v_trans = !cparams.flash_attn;
  2126. // TODO: support mixed recurrent Transformer architectures
  2127. // NOTE: (!a || b) is a logical implication (a -> b)
  2128. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2129. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2130. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2131. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2132. cache.head = 0;
  2133. cache.size = kv_size;
  2134. cache.used = 0;
  2135. cache.type_k = type_k;
  2136. cache.type_v = type_v;
  2137. cache.cells.clear();
  2138. cache.cells.resize(kv_size);
  2139. if (cache.recurrent) {
  2140. // init state copy sources
  2141. for (uint32_t i = 0; i < cache.size; ++i) {
  2142. cache.cells[i].src = i;
  2143. }
  2144. }
  2145. #ifdef GGML_USE_CLBLAST
  2146. offload = false;
  2147. #endif
  2148. // count used buffer types
  2149. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2150. if (offload) {
  2151. for (int64_t i = 0; i < n_layer; ++i) {
  2152. buft_layer_count[model.buft_layer[i].buft]++;
  2153. }
  2154. } else {
  2155. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2156. }
  2157. // create a context for each buffer type
  2158. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2159. for (auto & it : buft_layer_count) {
  2160. int n_layers = it.second;
  2161. struct ggml_init_params params = {
  2162. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2163. /*.mem_buffer =*/ NULL,
  2164. /*.no_alloc =*/ true,
  2165. };
  2166. ggml_context * ctx = ggml_init(params);
  2167. if (!ctx) {
  2168. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2169. return false;
  2170. }
  2171. ctx_map[it.first] = ctx;
  2172. cache.ctxs.push_back(ctx);
  2173. }
  2174. cache.k_l.reserve(n_layer);
  2175. cache.v_l.reserve(n_layer);
  2176. for (int i = 0; i < (int) n_layer; i++) {
  2177. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2178. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2179. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2180. ggml_format_name(k, "cache_k_l%d", i);
  2181. ggml_format_name(v, "cache_v_l%d", i);
  2182. cache.k_l.push_back(k);
  2183. cache.v_l.push_back(v);
  2184. }
  2185. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2186. for (auto it : ctx_map) {
  2187. ggml_backend_buffer_type_t buft = it.first;
  2188. ggml_context * ctx = it.second;
  2189. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2190. if (!buf) {
  2191. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2192. return false;
  2193. }
  2194. ggml_backend_buffer_clear(buf, 0);
  2195. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2196. cache.bufs.push_back(buf);
  2197. }
  2198. return true;
  2199. }
  2200. // find an empty slot of size "n_tokens" in the cache
  2201. // updates the cache head
  2202. // Note: On success, it's important that cache.head points
  2203. // to the first cell of the slot.
  2204. static bool llama_kv_cache_find_slot(
  2205. struct llama_kv_cache & cache,
  2206. const struct llama_batch & batch) {
  2207. const uint32_t n_tokens = batch.n_tokens;
  2208. if (cache.recurrent) {
  2209. // For recurrent state architectures (like Mamba),
  2210. // each KV cache cell can store the state for a whole sequence.
  2211. llama_seq_id min = cache.size - 1;
  2212. llama_seq_id max = 0;
  2213. for (uint32_t i = 0; i < n_tokens; ++i) {
  2214. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2215. llama_seq_id seq_id = batch.seq_id[i][j];
  2216. // make sure it's a valid seq_id
  2217. if ((uint32_t) seq_id < cache.size) {
  2218. if (seq_id > max) {
  2219. max = seq_id;
  2220. }
  2221. if (seq_id < min) {
  2222. min = seq_id;
  2223. }
  2224. // Assuming the tokens are in-order
  2225. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2226. // What should happen when the pos backtracks or skips a value?
  2227. // Clearing the state mid-batch would require special-casing which isn't done.
  2228. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2229. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2230. }
  2231. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2232. cache.used += 1;
  2233. }
  2234. cache.cells[seq_id].pos = batch.pos[i];
  2235. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2236. } else {
  2237. // too big seq_id
  2238. // TODO: would it be possible to resize the KV cache size instead?
  2239. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2240. return false;
  2241. }
  2242. }
  2243. }
  2244. // allow getting the range of used cells, from head to head + n
  2245. cache.head = min;
  2246. cache.n = max - min + 1;
  2247. // sanity check
  2248. return max >= min;
  2249. }
  2250. // otherwise, one cell per token.
  2251. if (n_tokens > cache.size) {
  2252. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  2253. return false;
  2254. }
  2255. uint32_t n_tested = 0;
  2256. while (true) {
  2257. if (cache.head + n_tokens > cache.size) {
  2258. n_tested += cache.size - cache.head;
  2259. cache.head = 0;
  2260. continue;
  2261. }
  2262. bool found = true;
  2263. for (uint32_t i = 0; i < n_tokens; i++) {
  2264. if (cache.cells[cache.head + i].pos >= 0) {
  2265. found = false;
  2266. cache.head += i + 1;
  2267. n_tested += i + 1;
  2268. break;
  2269. }
  2270. }
  2271. if (found) {
  2272. break;
  2273. }
  2274. if (n_tested >= cache.size) {
  2275. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2276. return false;
  2277. }
  2278. }
  2279. for (uint32_t i = 0; i < n_tokens; i++) {
  2280. cache.cells[cache.head + i].pos = batch.pos[i];
  2281. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2282. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2283. }
  2284. }
  2285. cache.used += n_tokens;
  2286. return true;
  2287. }
  2288. // find how many cells are currently in use
  2289. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2290. for (uint32_t i = cache.size; i > 0; --i) {
  2291. const llama_kv_cell & cell = cache.cells[i - 1];
  2292. if (cell.pos >= 0 && !cell.is_empty()) {
  2293. return i;
  2294. }
  2295. }
  2296. return 0;
  2297. }
  2298. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2299. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2300. cache.cells[i].pos = -1;
  2301. cache.cells[i].seq_id.clear();
  2302. }
  2303. cache.head = 0;
  2304. cache.used = 0;
  2305. for (auto & buf : cache.bufs) {
  2306. ggml_backend_buffer_clear(buf, 0);
  2307. }
  2308. }
  2309. static bool llama_kv_cache_seq_rm(
  2310. struct llama_kv_cache & cache,
  2311. llama_seq_id seq_id,
  2312. llama_pos p0,
  2313. llama_pos p1) {
  2314. uint32_t new_head = cache.size;
  2315. if (p0 < 0) p0 = 0;
  2316. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2317. // models like Mamba can't have a state partially erased
  2318. if (cache.recurrent) {
  2319. if (seq_id >= (int64_t) cache.size) {
  2320. // could be fatal
  2321. return false;
  2322. }
  2323. if (0 <= seq_id) {
  2324. // partial intersection is invalid
  2325. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2326. return false;
  2327. }
  2328. } else {
  2329. // seq_id is negative, then the range should include everything or nothing
  2330. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2331. return false;
  2332. }
  2333. }
  2334. }
  2335. for (uint32_t i = 0; i < cache.size; ++i) {
  2336. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2337. if (seq_id < 0) {
  2338. cache.cells[i].seq_id.clear();
  2339. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2340. cache.cells[i].seq_id.erase(seq_id);
  2341. } else {
  2342. continue;
  2343. }
  2344. if (cache.cells[i].is_empty()) {
  2345. // keep count of the number of used cells
  2346. if (cache.cells[i].pos >= 0) cache.used--;
  2347. cache.cells[i].pos = -1;
  2348. if (new_head == cache.size) new_head = i;
  2349. }
  2350. }
  2351. }
  2352. // If we freed up a slot, set head to it so searching can start there.
  2353. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2354. return true;
  2355. }
  2356. static void llama_kv_cache_seq_cp(
  2357. struct llama_kv_cache & cache,
  2358. llama_seq_id seq_id_src,
  2359. llama_seq_id seq_id_dst,
  2360. llama_pos p0,
  2361. llama_pos p1) {
  2362. if (p0 < 0) p0 = 0;
  2363. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2364. if (cache.recurrent) {
  2365. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2366. seq_id_src = cache.cells[seq_id_src].src;
  2367. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2368. // intent to "copy from"
  2369. // supports copy chains thanks to taking the source of the source
  2370. cache.cells[seq_id_dst].src = seq_id_src;
  2371. // preserve the "keep or clear" status of the copied sequence
  2372. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2373. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2374. } else {
  2375. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2376. }
  2377. cache.do_copy = true;
  2378. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2379. }
  2380. return;
  2381. }
  2382. // otherwise, this is the KV cache of a Transformer-like model
  2383. cache.head = 0;
  2384. for (uint32_t i = 0; i < cache.size; ++i) {
  2385. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2386. cache.cells[i].seq_id.insert(seq_id_dst);
  2387. }
  2388. }
  2389. }
  2390. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2391. uint32_t new_head = cache.size;
  2392. for (uint32_t i = 0; i < cache.size; ++i) {
  2393. if (!cache.cells[i].has_seq_id(seq_id)) {
  2394. if (cache.cells[i].pos >= 0) cache.used--;
  2395. cache.cells[i].pos = -1;
  2396. cache.cells[i].seq_id.clear();
  2397. if (new_head == cache.size) new_head = i;
  2398. } else {
  2399. cache.cells[i].seq_id.clear();
  2400. cache.cells[i].seq_id.insert(seq_id);
  2401. }
  2402. }
  2403. // If we freed up a slot, set head to it so searching can start there.
  2404. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2405. }
  2406. static void llama_kv_cache_seq_add(
  2407. struct llama_kv_cache & cache,
  2408. llama_seq_id seq_id,
  2409. llama_pos p0,
  2410. llama_pos p1,
  2411. llama_pos delta) {
  2412. uint32_t new_head = cache.size;
  2413. if (p0 < 0) p0 = 0;
  2414. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2415. if (cache.recurrent) {
  2416. // for Mamba-like models, only the pos needs to be shifted
  2417. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2418. llama_kv_cell & cell = cache.cells[seq_id];
  2419. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2420. cell.pos += delta;
  2421. }
  2422. }
  2423. return;
  2424. }
  2425. for (uint32_t i = 0; i < cache.size; ++i) {
  2426. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2427. cache.has_shift = true;
  2428. cache.cells[i].pos += delta;
  2429. cache.cells[i].delta += delta;
  2430. if (cache.cells[i].pos < 0) {
  2431. if (!cache.cells[i].is_empty()) {
  2432. cache.used--;
  2433. }
  2434. cache.cells[i].pos = -1;
  2435. cache.cells[i].seq_id.clear();
  2436. if (new_head == cache.size) {
  2437. new_head = i;
  2438. }
  2439. }
  2440. }
  2441. }
  2442. // If we freed up a slot, set head to it so searching can start there.
  2443. // Otherwise we just start the next search from the beginning.
  2444. cache.head = new_head != cache.size ? new_head : 0;
  2445. }
  2446. static void llama_kv_cache_seq_div(
  2447. struct llama_kv_cache & cache,
  2448. llama_seq_id seq_id,
  2449. llama_pos p0,
  2450. llama_pos p1,
  2451. int d) {
  2452. if (p0 < 0) p0 = 0;
  2453. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2454. if (cache.recurrent) {
  2455. // for Mamba-like models, only the pos needs to be changed
  2456. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2457. llama_kv_cell & cell = cache.cells[seq_id];
  2458. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2459. cell.pos /= d;
  2460. }
  2461. }
  2462. return;
  2463. }
  2464. for (uint32_t i = 0; i < cache.size; ++i) {
  2465. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2466. cache.has_shift = true;
  2467. {
  2468. llama_pos p_old = cache.cells[i].pos;
  2469. cache.cells[i].pos /= d;
  2470. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2471. }
  2472. }
  2473. }
  2474. }
  2475. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2476. llama_pos result = 0;
  2477. for (uint32_t i = 0; i < cache.size; ++i) {
  2478. if (cache.cells[i].has_seq_id(seq_id)) {
  2479. result = std::max(result, cache.cells[i].pos);
  2480. }
  2481. }
  2482. return result;
  2483. }
  2484. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2485. cache.do_defrag = true;
  2486. }
  2487. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2488. // the FA kernels require padding to avoid extra runtime boundary checks
  2489. return cparams.flash_attn ? 256u : 32u;
  2490. }
  2491. //
  2492. // model loading and saving
  2493. //
  2494. enum llama_fver {
  2495. GGUF_FILE_VERSION_V1 = 1,
  2496. GGUF_FILE_VERSION_V2 = 2,
  2497. GGUF_FILE_VERSION_V3 = 3,
  2498. };
  2499. static const char * llama_file_version_name(llama_fver version) {
  2500. switch (version) {
  2501. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2502. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2503. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2504. }
  2505. return "unknown";
  2506. }
  2507. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2508. char buf[256];
  2509. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2510. for (size_t i = 1; i < ne.size(); i++) {
  2511. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2512. }
  2513. return buf;
  2514. }
  2515. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2516. char buf[256];
  2517. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2518. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2519. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2520. }
  2521. return buf;
  2522. }
  2523. namespace GGUFMeta {
  2524. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2525. struct GKV_Base_Type {
  2526. static constexpr gguf_type gt = gt_;
  2527. static T getter(const gguf_context * ctx, const int kid) {
  2528. return gfun(ctx, kid);
  2529. }
  2530. };
  2531. template<typename T> struct GKV_Base;
  2532. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2533. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2534. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2535. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2536. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2537. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2538. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2539. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2540. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2541. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2542. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2543. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2544. template<> struct GKV_Base<std::string> {
  2545. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2546. static std::string getter(const gguf_context * ctx, const int kid) {
  2547. return gguf_get_val_str(ctx, kid);
  2548. }
  2549. };
  2550. struct ArrayInfo {
  2551. const gguf_type gt;
  2552. const size_t length;
  2553. const void * data;
  2554. };
  2555. template<> struct GKV_Base<ArrayInfo> {
  2556. public:
  2557. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2558. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2559. return ArrayInfo {
  2560. gguf_get_arr_type(ctx, k),
  2561. size_t(gguf_get_arr_n(ctx, k)),
  2562. gguf_get_arr_data(ctx, k),
  2563. };
  2564. }
  2565. };
  2566. template<typename T>
  2567. class GKV : public GKV_Base<T> {
  2568. GKV() = delete;
  2569. public:
  2570. static T get_kv(const gguf_context * ctx, const int k) {
  2571. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2572. if (kt != GKV::gt) {
  2573. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2574. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2575. }
  2576. return GKV::getter(ctx, k);
  2577. }
  2578. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2579. switch (ty) {
  2580. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2581. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2582. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2583. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2584. }
  2585. return "unknown";
  2586. }
  2587. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2588. if (!ovrd) { return false; }
  2589. if (ovrd->tag == expected_type) {
  2590. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2591. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2592. switch (ovrd->tag) {
  2593. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2594. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2595. } break;
  2596. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2597. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2598. } break;
  2599. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2600. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2601. } break;
  2602. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2603. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2604. } break;
  2605. default:
  2606. // Shouldn't be possible to end up here, but just in case...
  2607. throw std::runtime_error(
  2608. format("Unsupported attempt to override %s type for metadata key %s\n",
  2609. override_type_to_str(ovrd->tag), ovrd->key));
  2610. }
  2611. return true;
  2612. }
  2613. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2614. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2615. return false;
  2616. }
  2617. template<typename OT>
  2618. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2619. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2620. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2621. target = ovrd->val_bool;
  2622. return true;
  2623. }
  2624. return false;
  2625. }
  2626. template<typename OT>
  2627. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2628. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2629. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2630. target = ovrd->val_i64;
  2631. return true;
  2632. }
  2633. return false;
  2634. }
  2635. template<typename OT>
  2636. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2637. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2638. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2639. target = ovrd->val_f64;
  2640. return true;
  2641. }
  2642. return false;
  2643. }
  2644. template<typename OT>
  2645. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2646. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2647. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2648. target = ovrd->val_str;
  2649. return true;
  2650. }
  2651. return false;
  2652. }
  2653. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2654. if (try_override<T>(target, ovrd)) {
  2655. return true;
  2656. }
  2657. if (k < 0) { return false; }
  2658. target = get_kv(ctx, k);
  2659. return true;
  2660. }
  2661. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2662. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2663. }
  2664. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2665. return set(ctx, key.c_str(), target, ovrd);
  2666. }
  2667. };
  2668. }
  2669. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2670. struct llama_model_loader {
  2671. int n_kv = 0;
  2672. int n_tensors = 0;
  2673. int n_created = 0;
  2674. int64_t n_elements = 0;
  2675. size_t n_bytes = 0;
  2676. bool use_mmap = false;
  2677. bool check_tensors;
  2678. llama_files files;
  2679. llama_ftype ftype;
  2680. llama_fver fver;
  2681. llama_mmaps mappings;
  2682. // Holds information on a model weight
  2683. struct llama_tensor_weight {
  2684. uint16_t idx; // source file index
  2685. size_t offs; // tensor data offset in the original file
  2686. ggml_tensor * tensor;
  2687. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2688. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2689. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2690. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2691. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2692. }
  2693. }
  2694. };
  2695. std::vector<llama_tensor_weight> weights;
  2696. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2697. struct gguf_context * meta = NULL;
  2698. std::vector<ggml_context *> contexts;
  2699. std::string arch_name;
  2700. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2701. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2702. int trace = 0;
  2703. if (getenv("LLAMA_TRACE")) {
  2704. trace = atoi(getenv("LLAMA_TRACE"));
  2705. }
  2706. if (param_overrides_p != nullptr) {
  2707. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2708. kv_overrides.insert({std::string(p->key), *p});
  2709. }
  2710. }
  2711. struct ggml_context * ctx = NULL;
  2712. struct gguf_init_params params = {
  2713. /*.no_alloc = */ true,
  2714. /*.ctx = */ &ctx,
  2715. };
  2716. meta = gguf_init_from_file(fname.c_str(), params);
  2717. if (!meta) {
  2718. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2719. }
  2720. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2721. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2722. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2723. contexts.emplace_back(ctx);
  2724. // Save tensors data offset of the main file.
  2725. // For subsidiary files, `meta` tensor data offset must not be used,
  2726. // so we build a unified tensors index for weights.
  2727. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2728. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2729. }
  2730. uint16_t n_split = 0;
  2731. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2732. // Load additional GGML contexts
  2733. if (n_split > 1) {
  2734. uint16_t idx = 0;
  2735. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2736. if (idx != 0) {
  2737. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2738. }
  2739. char split_prefix[PATH_MAX] = {0};
  2740. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2741. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2742. }
  2743. if (trace > 0) {
  2744. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2745. }
  2746. char split_path[PATH_MAX] = {0};
  2747. for (idx = 1; idx < n_split; idx++) {
  2748. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2749. struct gguf_init_params split_params = {
  2750. /*.no_alloc = */ true,
  2751. /*.ctx = */ &ctx,
  2752. };
  2753. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2754. if (!ctx_gguf) {
  2755. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2756. }
  2757. files.emplace_back(new llama_file(split_path, "rb"));
  2758. contexts.emplace_back(ctx);
  2759. // Save tensors data offset info of the shard.
  2760. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2761. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2762. }
  2763. gguf_free(ctx_gguf);
  2764. }
  2765. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2766. // sanity check
  2767. {
  2768. const int n_tensors_loaded = (int) weights.size();
  2769. if (n_tensors != n_tensors_loaded) {
  2770. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2771. }
  2772. }
  2773. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2774. }
  2775. n_kv = gguf_get_n_kv(meta);
  2776. n_tensors = weights.size();
  2777. fver = (enum llama_fver) gguf_get_version(meta);
  2778. std::set<std::string> tensor_names;
  2779. for (auto & w : weights) {
  2780. n_elements += ggml_nelements(w.tensor);
  2781. n_bytes += ggml_nbytes(w.tensor);
  2782. // make sure there is no duplicated tensor names
  2783. const std::string name(w.tensor->name);
  2784. auto found = tensor_names.find(name);
  2785. if (found != tensor_names.end()) {
  2786. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2787. }
  2788. tensor_names.insert(name);
  2789. }
  2790. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2791. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2792. // determine file type based on the number of tensors for each quantization and print meta data
  2793. // TODO: make optional
  2794. {
  2795. std::map<enum ggml_type, uint32_t> n_type;
  2796. uint32_t n_type_max = 0;
  2797. enum ggml_type type_max = GGML_TYPE_F32;
  2798. for (int i = 0; i < n_tensors; i++) {
  2799. const ggml_tensor * tensor = weights.at(i).tensor;
  2800. enum ggml_type type = tensor->type;
  2801. n_type[type]++;
  2802. if (n_type_max < n_type[type]) {
  2803. n_type_max = n_type[type];
  2804. type_max = type;
  2805. }
  2806. if (trace > 0) {
  2807. const uint16_t sid = weights.at(i).idx;
  2808. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2809. }
  2810. }
  2811. switch (type_max) {
  2812. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2813. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2814. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2815. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2816. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2817. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2818. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2819. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2820. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2821. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2822. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2823. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2824. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2825. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2826. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2827. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2828. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2829. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2830. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2831. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2832. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2833. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2834. default:
  2835. {
  2836. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2837. ftype = LLAMA_FTYPE_ALL_F32;
  2838. } break;
  2839. }
  2840. // this is a way to mark that we have "guessed" the file type
  2841. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2842. {
  2843. const int kid = gguf_find_key(meta, "general.file_type");
  2844. if (kid >= 0) {
  2845. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2846. }
  2847. }
  2848. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2849. for (int i = 0; i < n_kv; i++) {
  2850. const char * name = gguf_get_key(meta, i);
  2851. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2852. const std::string type_name =
  2853. type == GGUF_TYPE_ARRAY
  2854. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2855. : gguf_type_name(type);
  2856. std::string value = gguf_kv_to_str(meta, i);
  2857. const size_t MAX_VALUE_LEN = 40;
  2858. if (value.size() > MAX_VALUE_LEN) {
  2859. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2860. }
  2861. replace_all(value, "\n", "\\n");
  2862. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2863. }
  2864. // print type counts
  2865. for (auto & kv : n_type) {
  2866. if (kv.second == 0) {
  2867. continue;
  2868. }
  2869. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2870. }
  2871. }
  2872. if (!llama_mmap::SUPPORTED) {
  2873. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2874. use_mmap = false;
  2875. }
  2876. this->use_mmap = use_mmap;
  2877. this->check_tensors = check_tensors;
  2878. }
  2879. ~llama_model_loader() {
  2880. if (meta) {
  2881. gguf_free(meta);
  2882. }
  2883. for (auto * ctx : contexts) {
  2884. ggml_free(ctx);
  2885. }
  2886. }
  2887. template<typename T>
  2888. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2889. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2890. const int kid = gguf_find_key(meta, key.c_str());
  2891. if (kid < 0) {
  2892. if (required) {
  2893. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2894. }
  2895. return false;
  2896. }
  2897. struct GGUFMeta::ArrayInfo arr_info =
  2898. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2899. result = arr_info.length;
  2900. return true;
  2901. }
  2902. template<typename T>
  2903. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2904. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2905. return get_arr_n(llm_kv(kid), result, required);
  2906. }
  2907. template<typename T>
  2908. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  2909. const int kid = gguf_find_key(meta, key.c_str());
  2910. if (kid < 0) {
  2911. if (required) {
  2912. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2913. }
  2914. return false;
  2915. }
  2916. struct GGUFMeta::ArrayInfo arr_info =
  2917. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2918. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  2919. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  2920. }
  2921. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  2922. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  2923. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  2924. result.resize(arr_info.length);
  2925. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  2926. return true;
  2927. }
  2928. template<typename T>
  2929. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  2930. return get_arr(llm_kv(kid), result, required);
  2931. }
  2932. template<typename T>
  2933. bool get_key(const std::string & key, T & result, const bool required = true) {
  2934. auto it = kv_overrides.find(key);
  2935. const struct llama_model_kv_override * override =
  2936. it != kv_overrides.end() ? &it->second : nullptr;
  2937. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2938. if (required && !found) {
  2939. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2940. }
  2941. return found;
  2942. }
  2943. template<typename T>
  2944. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2945. return get_key(llm_kv(kid), result, required);
  2946. }
  2947. std::string get_arch_name() const {
  2948. return arch_name;
  2949. }
  2950. enum llm_arch get_arch() const {
  2951. return llm_kv.arch;
  2952. }
  2953. const char * get_tensor_name(int i) const {
  2954. return weights.at(i).tensor->name;
  2955. }
  2956. const llama_tensor_weight * get_weight(const char * name) const {
  2957. for (const auto & weight : weights) {
  2958. if (strcmp(name, weight.tensor->name) == 0) {
  2959. return &weight;
  2960. }
  2961. }
  2962. return nullptr;
  2963. }
  2964. const llama_tensor_weight * get_weight(int i) const {
  2965. return get_weight(get_tensor_name(i));
  2966. }
  2967. const llama_tensor_weight & require_weight(const char * name) const {
  2968. const llama_tensor_weight * weight = get_weight(name);
  2969. if (!weight) {
  2970. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2971. }
  2972. return *weight;
  2973. }
  2974. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2975. const auto * weight = get_weight(name);
  2976. if (!weight) {
  2977. return nullptr;
  2978. }
  2979. return weight->tensor;
  2980. }
  2981. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2982. struct ggml_tensor * tensor = get_tensor_meta(name);
  2983. if (!tensor) {
  2984. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2985. }
  2986. return tensor;
  2987. }
  2988. struct ggml_tensor * get_tensor_meta(int i) const {
  2989. return get_tensor_meta(get_tensor_name(i));
  2990. }
  2991. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  2992. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2993. ggml_set_name(tensor, ggml_get_name(cur));
  2994. if (duplicated) {
  2995. size_data += ggml_nbytes(cur);
  2996. } else {
  2997. n_created++;
  2998. }
  2999. return tensor;
  3000. }
  3001. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3002. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3003. if (cur == NULL) {
  3004. if (!required) {
  3005. return NULL;
  3006. }
  3007. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3008. }
  3009. {
  3010. bool is_ok = true;
  3011. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3012. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3013. is_ok = false;
  3014. break;
  3015. }
  3016. }
  3017. if (!is_ok) {
  3018. throw std::runtime_error(
  3019. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3020. __func__, name.c_str(),
  3021. llama_format_tensor_shape(ne).c_str(),
  3022. llama_format_tensor_shape(cur).c_str()));
  3023. }
  3024. }
  3025. return cur;
  3026. }
  3027. static const int TENSOR_NOT_REQUIRED = 1;
  3028. static const int TENSOR_DUPLICATED = 2;
  3029. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3030. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3031. if (cur == NULL) {
  3032. return NULL;
  3033. }
  3034. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3035. }
  3036. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3037. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3038. if (cur == NULL) {
  3039. return NULL;
  3040. }
  3041. if (cur->type != base->type) {
  3042. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3043. }
  3044. std::array<int64_t, GGML_MAX_DIMS> dims;
  3045. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3046. dims[i] = i < ne.size() ? ne[i] : 1;
  3047. }
  3048. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3049. dims[0], dims[1], dims[2], dims[3],
  3050. cur->nb[1], cur->nb[2], cur->nb[3],
  3051. offset);
  3052. ggml_set_name(tensor, name.c_str());
  3053. n_created++;
  3054. return tensor;
  3055. }
  3056. void done_getting_tensors() const {
  3057. if (n_created != n_tensors) {
  3058. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3059. }
  3060. }
  3061. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3062. if (use_mmap) {
  3063. mappings.reserve(files.size());
  3064. mmaps_used.reserve(files.size());
  3065. for (const auto & file : files) {
  3066. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3067. mmaps_used.emplace_back(mapping->size, 0);
  3068. if (mlock_mmaps) {
  3069. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3070. mlock_mmap->init(mapping->addr);
  3071. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3072. }
  3073. mappings.emplace_back(std::move(mapping));
  3074. }
  3075. }
  3076. // compute the total size of all tensors for progress reporting
  3077. for (auto & w : weights) {
  3078. size_data += ggml_nbytes(w.tensor);
  3079. }
  3080. }
  3081. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3082. GGML_ASSERT(!mappings.empty());
  3083. const auto & mapping = mappings.at(idx);
  3084. *first = mapping->size;
  3085. *last = 0;
  3086. *addr = mapping->addr;
  3087. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3088. try {
  3089. const auto * weight = get_weight(ggml_get_name(tensor));
  3090. if (!weight) {
  3091. continue;
  3092. }
  3093. if (weight->idx != idx) {
  3094. continue;
  3095. }
  3096. *first = std::min(*first, weight->offs);
  3097. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3098. } catch(...) {
  3099. // the tensor is not in the model
  3100. }
  3101. }
  3102. }
  3103. // for backwards compatibility, does not support ggml-backend
  3104. void load_data_for(struct ggml_tensor * cur) const {
  3105. const auto & w = require_weight(ggml_get_name(cur));
  3106. if (use_mmap) {
  3107. const auto & mapping = mappings.at(w.idx);
  3108. if (cur->data == nullptr) {
  3109. cur->data = (uint8_t *)mapping->addr + w.offs;
  3110. } else {
  3111. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3112. }
  3113. } else {
  3114. GGML_ASSERT(cur->data != nullptr);
  3115. GGML_ASSERT(w.idx < files.size());
  3116. const auto & file = files.at(w.idx);
  3117. file->seek(w.offs, SEEK_SET);
  3118. file->read_raw(cur->data, ggml_nbytes(cur));
  3119. }
  3120. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3121. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3122. }
  3123. }
  3124. size_t size_done = 0;
  3125. size_t size_data = 0;
  3126. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3127. // Returns false if cancelled by progress_callback
  3128. bool load_all_data(
  3129. struct ggml_context * ctx,
  3130. llama_buf_map & bufs_mmap,
  3131. llama_mlocks * lmlocks,
  3132. llama_progress_callback progress_callback,
  3133. void * progress_callback_user_data) {
  3134. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3135. std::vector<no_init<uint8_t>> read_buf;
  3136. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3137. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3138. const auto * weight = get_weight(ggml_get_name(cur));
  3139. if (weight == nullptr) {
  3140. // this can happen with split experts models
  3141. continue;
  3142. }
  3143. if (progress_callback) {
  3144. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3145. return false;
  3146. }
  3147. }
  3148. size_t n_size = ggml_nbytes(cur);
  3149. if (use_mmap) {
  3150. const auto & mapping = mappings.at(weight->idx);
  3151. ggml_backend_buffer_t buf_mmap = nullptr;
  3152. if (bufs_mmap.count(weight->idx)) {
  3153. buf_mmap = bufs_mmap.at(weight->idx);
  3154. }
  3155. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3156. if (check_tensors) {
  3157. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3158. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3159. }));
  3160. }
  3161. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3162. if (buf_mmap && cur->data == nullptr) {
  3163. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3164. if (lmlocks) {
  3165. const auto & lmlock = lmlocks->at(weight->idx);
  3166. lmlock->grow_to(weight->offs + n_size);
  3167. }
  3168. auto & mmap_used = mmaps_used[weight->idx];
  3169. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3170. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3171. } else {
  3172. ggml_backend_tensor_set(cur, data, 0, n_size);
  3173. }
  3174. } else {
  3175. GGML_ASSERT(weight->idx < files.size());
  3176. const auto & file = files.at(weight->idx);
  3177. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3178. file->seek(weight->offs, SEEK_SET);
  3179. file->read_raw(cur->data, n_size);
  3180. if (check_tensors) {
  3181. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3182. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3183. }));
  3184. }
  3185. } else {
  3186. read_buf.resize(n_size);
  3187. file->seek(weight->offs, SEEK_SET);
  3188. file->read_raw(read_buf.data(), n_size);
  3189. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3190. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3191. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3192. }
  3193. }
  3194. }
  3195. size_done += n_size;
  3196. }
  3197. // check validation results
  3198. bool validation_failed = false;
  3199. for (auto & future : validation_result) {
  3200. auto result = future.get();
  3201. if (!result.second) {
  3202. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3203. validation_failed = true;
  3204. }
  3205. }
  3206. if (validation_failed) {
  3207. throw std::runtime_error("found tensors with invalid data");
  3208. }
  3209. // check if this is the last call and do final cleanup
  3210. if (size_done >= size_data) {
  3211. // unmap offloaded tensors and metadata
  3212. if (use_mmap) {
  3213. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3214. const auto & mmap_used = mmaps_used.at(idx);
  3215. auto & mapping = mappings.at(idx);
  3216. mapping->unmap_fragment(0, mmap_used.first);
  3217. if (mmap_used.second != 0) {
  3218. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3219. }
  3220. }
  3221. }
  3222. if (progress_callback) {
  3223. // Even though the model is done loading, we still honor
  3224. // cancellation since we need to free allocations.
  3225. return progress_callback(1.0f, progress_callback_user_data);
  3226. }
  3227. }
  3228. return true;
  3229. }
  3230. };
  3231. template<>
  3232. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3233. uint32_t tmp;
  3234. const bool found = get_key(kid, tmp, required);
  3235. if (found) {
  3236. result = (enum llama_pooling_type) tmp;
  3237. } else {
  3238. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3239. }
  3240. return found;
  3241. }
  3242. //
  3243. // load LLaMA models
  3244. //
  3245. static const char * llama_model_arch_name(llm_arch arch) {
  3246. auto it = LLM_ARCH_NAMES.find(arch);
  3247. if (it == LLM_ARCH_NAMES.end()) {
  3248. return "unknown";
  3249. }
  3250. return it->second;
  3251. }
  3252. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3253. if (ftype & LLAMA_FTYPE_GUESSED) {
  3254. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3255. }
  3256. switch (ftype) {
  3257. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3258. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3259. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3260. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3261. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3262. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3263. return "Q4_1, some F16";
  3264. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3265. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3266. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3267. // K-quants
  3268. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3269. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3270. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3271. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3272. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3273. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3274. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3275. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3276. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3277. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3278. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3279. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3280. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3281. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3282. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3283. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3284. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3285. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3286. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3287. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3288. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3289. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3290. default: return "unknown, may not work";
  3291. }
  3292. }
  3293. static const char * llama_model_type_name(e_model type) {
  3294. switch (type) {
  3295. case MODEL_14M: return "14M";
  3296. case MODEL_17M: return "17M";
  3297. case MODEL_22M: return "22M";
  3298. case MODEL_33M: return "33M";
  3299. case MODEL_70M: return "70M";
  3300. case MODEL_109M: return "109M";
  3301. case MODEL_137M: return "137M";
  3302. case MODEL_160M: return "160M";
  3303. case MODEL_335M: return "335M";
  3304. case MODEL_410M: return "410M";
  3305. case MODEL_0_5B: return "0.5B";
  3306. case MODEL_1B: return "1B";
  3307. case MODEL_1_4B: return "1.4B";
  3308. case MODEL_2B: return "2B";
  3309. case MODEL_2_8B: return "2.8B";
  3310. case MODEL_3B: return "3B";
  3311. case MODEL_4B: return "4B";
  3312. case MODEL_6_9B: return "6.9B";
  3313. case MODEL_7B: return "7B";
  3314. case MODEL_8B: return "8B";
  3315. case MODEL_12B: return "12B";
  3316. case MODEL_13B: return "13B";
  3317. case MODEL_14B: return "14B";
  3318. case MODEL_15B: return "15B";
  3319. case MODEL_20B: return "20B";
  3320. case MODEL_30B: return "30B";
  3321. case MODEL_34B: return "34B";
  3322. case MODEL_35B: return "35B";
  3323. case MODEL_40B: return "40B";
  3324. case MODEL_65B: return "65B";
  3325. case MODEL_70B: return "70B";
  3326. case MODEL_314B: return "314B";
  3327. case MODEL_SMALL: return "0.1B";
  3328. case MODEL_MEDIUM: return "0.4B";
  3329. case MODEL_LARGE: return "0.8B";
  3330. case MODEL_XL: return "1.5B";
  3331. case MODEL_A2_7B: return "A2.7B";
  3332. case MODEL_8x7B: return "8x7B";
  3333. case MODEL_8x22B: return "8x22B";
  3334. case MODEL_16x12B: return "16x12B";
  3335. default: return "?B";
  3336. }
  3337. }
  3338. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3339. switch (type) {
  3340. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3341. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3342. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3343. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3344. default: return "unknown";
  3345. }
  3346. }
  3347. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3348. model.arch = ml.get_arch();
  3349. if (model.arch == LLM_ARCH_UNKNOWN) {
  3350. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3351. }
  3352. }
  3353. static void llm_load_hparams(
  3354. llama_model_loader & ml,
  3355. llama_model & model) {
  3356. auto & hparams = model.hparams;
  3357. const gguf_context * ctx = ml.meta;
  3358. // get metadata as string
  3359. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3360. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3361. if (type == GGUF_TYPE_ARRAY) {
  3362. continue;
  3363. }
  3364. const char * name = gguf_get_key(ctx, i);
  3365. const std::string value = gguf_kv_to_str(ctx, i);
  3366. model.gguf_kv.emplace(name, value);
  3367. }
  3368. // get general kv
  3369. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3370. // get hparams kv
  3371. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3372. // everything past this point is not vocab-related
  3373. if (hparams.vocab_only) {
  3374. return;
  3375. }
  3376. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3377. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3378. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3379. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3380. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3381. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3382. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3383. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3384. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3385. if (hparams.n_expert > 0) {
  3386. GGML_ASSERT(hparams.n_expert_used > 0);
  3387. } else {
  3388. GGML_ASSERT(hparams.n_expert_used == 0);
  3389. }
  3390. // n_head_kv is optional, default to n_head
  3391. hparams.n_head_kv = hparams.n_head;
  3392. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3393. bool rope_finetuned = false;
  3394. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3395. hparams.rope_finetuned = rope_finetuned;
  3396. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3397. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3398. // rope_freq_base (optional)
  3399. hparams.rope_freq_base_train = 10000.0f;
  3400. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3401. std::string rope_scaling("linear");
  3402. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3403. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3404. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3405. // rope_freq_scale (inverse of the kv) is optional
  3406. float ropescale = 0.0f;
  3407. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3408. // try the old key name
  3409. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3410. }
  3411. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3412. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3413. // sanity check for n_rot (optional)
  3414. {
  3415. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3416. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3417. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3418. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3419. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3420. }
  3421. }
  3422. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3423. // gpt-j n_rot = rotary_dim
  3424. }
  3425. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3426. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3427. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3428. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3429. // arch-specific KVs
  3430. switch (model.arch) {
  3431. case LLM_ARCH_LLAMA:
  3432. {
  3433. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3434. if (hparams.n_expert == 8) {
  3435. switch (hparams.n_layer) {
  3436. case 32: model.type = e_model::MODEL_8x7B; break;
  3437. case 56: model.type = e_model::MODEL_8x22B; break;
  3438. default: model.type = e_model::MODEL_UNKNOWN;
  3439. }
  3440. } else {
  3441. switch (hparams.n_layer) {
  3442. case 22: model.type = e_model::MODEL_1B; break;
  3443. case 26: model.type = e_model::MODEL_3B; break;
  3444. case 32: model.type = hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B; break;
  3445. case 40: model.type = e_model::MODEL_13B; break;
  3446. case 48: model.type = e_model::MODEL_34B; break;
  3447. case 60: model.type = e_model::MODEL_30B; break;
  3448. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3449. default: model.type = e_model::MODEL_UNKNOWN;
  3450. }
  3451. }
  3452. } break;
  3453. case LLM_ARCH_MINICPM:
  3454. {
  3455. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3456. switch (hparams.n_layer) {
  3457. case 40: model.type = e_model::MODEL_2B; break;
  3458. default: model.type = e_model::MODEL_UNKNOWN;
  3459. }
  3460. } break;
  3461. case LLM_ARCH_GROK:
  3462. {
  3463. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3464. switch (hparams.n_layer) {
  3465. case 64: model.type = e_model::MODEL_314B; break;
  3466. default: model.type = e_model::MODEL_UNKNOWN;
  3467. }
  3468. } break;
  3469. case LLM_ARCH_FALCON:
  3470. {
  3471. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3472. switch (hparams.n_layer) {
  3473. case 32: model.type = e_model::MODEL_7B; break;
  3474. case 60: model.type = e_model::MODEL_40B; break;
  3475. default: model.type = e_model::MODEL_UNKNOWN;
  3476. }
  3477. } break;
  3478. case LLM_ARCH_BAICHUAN:
  3479. {
  3480. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3481. switch (hparams.n_layer) {
  3482. case 32: model.type = e_model::MODEL_7B; break;
  3483. case 40: model.type = e_model::MODEL_13B; break;
  3484. default: model.type = e_model::MODEL_UNKNOWN;
  3485. }
  3486. if (model.type == e_model::MODEL_13B) {
  3487. // TODO: become GGUF KV parameter
  3488. hparams.f_max_alibi_bias = 8.0f;
  3489. }
  3490. } break;
  3491. case LLM_ARCH_STARCODER:
  3492. {
  3493. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3494. switch (hparams.n_layer) {
  3495. case 24: model.type = e_model::MODEL_1B; break;
  3496. case 36: model.type = e_model::MODEL_3B; break;
  3497. case 42: model.type = e_model::MODEL_7B; break;
  3498. case 40: model.type = e_model::MODEL_15B; break;
  3499. default: model.type = e_model::MODEL_UNKNOWN;
  3500. }
  3501. } break;
  3502. case LLM_ARCH_REFACT:
  3503. {
  3504. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3505. switch (hparams.n_layer) {
  3506. case 32: model.type = e_model::MODEL_1B; break;
  3507. default: model.type = e_model::MODEL_UNKNOWN;
  3508. }
  3509. // TODO: become GGUF KV parameter
  3510. hparams.f_max_alibi_bias = 8.0f;
  3511. } break;
  3512. case LLM_ARCH_BERT:
  3513. {
  3514. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3515. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3516. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3517. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3518. switch (hparams.n_layer) {
  3519. case 3:
  3520. model.type = e_model::MODEL_17M; break; // bge-micro
  3521. case 6:
  3522. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3523. case 12:
  3524. switch (hparams.n_embd) {
  3525. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3526. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3527. } break;
  3528. case 24:
  3529. model.type = e_model::MODEL_335M; break; // bge-large
  3530. }
  3531. } break;
  3532. case LLM_ARCH_JINA_BERT_V2:
  3533. {
  3534. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3535. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3536. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3537. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3538. hparams.f_max_alibi_bias = 8.0f;
  3539. switch (hparams.n_layer) {
  3540. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3541. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3542. }
  3543. } break;
  3544. case LLM_ARCH_NOMIC_BERT:
  3545. {
  3546. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3547. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3548. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3549. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3550. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3551. model.type = e_model::MODEL_137M;
  3552. }
  3553. } break;
  3554. case LLM_ARCH_BLOOM:
  3555. {
  3556. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3557. switch (hparams.n_layer) {
  3558. case 24: model.type = e_model::MODEL_1B; break;
  3559. case 30:
  3560. switch (hparams.n_embd) {
  3561. case 2560: model.type = e_model::MODEL_3B; break;
  3562. case 4096: model.type = e_model::MODEL_7B; break;
  3563. } break;
  3564. }
  3565. // TODO: become GGUF KV parameter
  3566. hparams.f_max_alibi_bias = 8.0f;
  3567. } break;
  3568. case LLM_ARCH_MPT:
  3569. {
  3570. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3571. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3572. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3573. switch (hparams.n_layer) {
  3574. case 32: model.type = e_model::MODEL_7B; break;
  3575. case 48: model.type = e_model::MODEL_30B; break;
  3576. default: model.type = e_model::MODEL_UNKNOWN;
  3577. }
  3578. } break;
  3579. case LLM_ARCH_STABLELM:
  3580. {
  3581. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3582. switch (hparams.n_layer) {
  3583. case 24: model.type = e_model::MODEL_1B; break;
  3584. case 32: model.type = e_model::MODEL_3B; break;
  3585. case 40: model.type = e_model::MODEL_12B; break;
  3586. default: model.type = e_model::MODEL_UNKNOWN;
  3587. }
  3588. } break;
  3589. case LLM_ARCH_QWEN:
  3590. {
  3591. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3592. switch (hparams.n_layer) {
  3593. case 32: model.type = e_model::MODEL_7B; break;
  3594. case 40: model.type = e_model::MODEL_13B; break;
  3595. default: model.type = e_model::MODEL_UNKNOWN;
  3596. }
  3597. } break;
  3598. case LLM_ARCH_QWEN2:
  3599. {
  3600. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3601. switch (hparams.n_layer) {
  3602. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3603. case 32: model.type = e_model::MODEL_7B; break;
  3604. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3605. case 80: model.type = e_model::MODEL_70B; break;
  3606. default: model.type = e_model::MODEL_UNKNOWN;
  3607. }
  3608. } break;
  3609. case LLM_ARCH_QWEN2MOE:
  3610. {
  3611. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3612. switch (hparams.n_layer) {
  3613. case 24: model.type = e_model::MODEL_A2_7B; break;
  3614. default: model.type = e_model::MODEL_UNKNOWN;
  3615. }
  3616. } break;
  3617. case LLM_ARCH_PHI2:
  3618. {
  3619. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3620. switch (hparams.n_layer) {
  3621. case 24: model.type = e_model::MODEL_1B; break;
  3622. case 32: model.type = e_model::MODEL_3B; break;
  3623. default: model.type = e_model::MODEL_UNKNOWN;
  3624. }
  3625. } break;
  3626. case LLM_ARCH_PHI3:
  3627. {
  3628. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3629. switch (hparams.n_layer) {
  3630. case 24: model.type = e_model::MODEL_1B; break;
  3631. case 32: model.type = e_model::MODEL_3B; break;
  3632. case 40: model.type = e_model::MODEL_14B; break;
  3633. default: model.type = e_model::MODEL_UNKNOWN;
  3634. }
  3635. } break;
  3636. case LLM_ARCH_PLAMO:
  3637. {
  3638. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3639. switch (hparams.n_layer) {
  3640. case 40: model.type = e_model::MODEL_13B; break;
  3641. default: model.type = e_model::MODEL_UNKNOWN;
  3642. }
  3643. } break;
  3644. case LLM_ARCH_GPT2:
  3645. {
  3646. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3647. switch (hparams.n_layer) {
  3648. case 12: model.type = e_model::MODEL_SMALL; break;
  3649. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3650. case 36: model.type = e_model::MODEL_LARGE; break;
  3651. case 48: model.type = e_model::MODEL_XL; break;
  3652. default: model.type = e_model::MODEL_UNKNOWN;
  3653. }
  3654. } break;
  3655. case LLM_ARCH_CODESHELL:
  3656. {
  3657. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3658. switch (hparams.n_layer) {
  3659. case 42: model.type = e_model::MODEL_SMALL; break;
  3660. default: model.type = e_model::MODEL_UNKNOWN;
  3661. }
  3662. } break;
  3663. case LLM_ARCH_ORION:
  3664. {
  3665. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3666. switch (hparams.n_layer) {
  3667. case 40: model.type = e_model::MODEL_14B; break;
  3668. default: model.type = e_model::MODEL_UNKNOWN;
  3669. }
  3670. } break;
  3671. case LLM_ARCH_INTERNLM2:
  3672. {
  3673. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3674. switch (hparams.n_layer) {
  3675. case 32: model.type = e_model::MODEL_7B; break;
  3676. case 48: model.type = e_model::MODEL_20B; break;
  3677. default: model.type = e_model::MODEL_UNKNOWN;
  3678. }
  3679. } break;
  3680. case LLM_ARCH_GEMMA:
  3681. {
  3682. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3683. switch (hparams.n_layer) {
  3684. case 18: model.type = e_model::MODEL_2B; break;
  3685. case 28: model.type = e_model::MODEL_7B; break;
  3686. default: model.type = e_model::MODEL_UNKNOWN;
  3687. }
  3688. } break;
  3689. case LLM_ARCH_STARCODER2:
  3690. {
  3691. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3692. switch (hparams.n_layer) {
  3693. case 30: model.type = e_model::MODEL_3B; break;
  3694. case 32: model.type = e_model::MODEL_7B; break;
  3695. case 40: model.type = e_model::MODEL_15B; break;
  3696. default: model.type = e_model::MODEL_UNKNOWN;
  3697. }
  3698. } break;
  3699. case LLM_ARCH_MAMBA:
  3700. {
  3701. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3702. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3703. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3704. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3705. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3706. switch (hparams.n_layer) {
  3707. case 24:
  3708. switch (hparams.n_embd) {
  3709. case 768: model.type = e_model::MODEL_SMALL; break;
  3710. default: model.type = e_model::MODEL_UNKNOWN;
  3711. } break;
  3712. case 48:
  3713. switch (hparams.n_embd) {
  3714. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3715. case 1536: model.type = e_model::MODEL_LARGE; break;
  3716. case 2048: model.type = e_model::MODEL_XL; break;
  3717. default: model.type = e_model::MODEL_UNKNOWN;
  3718. } break;
  3719. case 64:
  3720. switch (hparams.n_embd) {
  3721. case 2560: model.type = e_model::MODEL_3B; break;
  3722. default: model.type = e_model::MODEL_UNKNOWN;
  3723. } break;
  3724. default: model.type = e_model::MODEL_UNKNOWN;
  3725. }
  3726. } break;
  3727. case LLM_ARCH_XVERSE:
  3728. {
  3729. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3730. switch (hparams.n_layer) {
  3731. case 32: model.type = e_model::MODEL_7B; break;
  3732. case 40: model.type = e_model::MODEL_13B; break;
  3733. case 80: model.type = e_model::MODEL_65B; break;
  3734. default: model.type = e_model::MODEL_UNKNOWN;
  3735. }
  3736. } break;
  3737. case LLM_ARCH_COMMAND_R:
  3738. {
  3739. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3740. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3741. switch (hparams.n_layer) {
  3742. case 40: model.type = e_model::MODEL_35B; break;
  3743. default: model.type = e_model::MODEL_UNKNOWN;
  3744. }
  3745. } break;
  3746. case LLM_ARCH_DBRX:
  3747. {
  3748. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3749. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3750. switch (hparams.n_layer) {
  3751. case 40: model.type = e_model::MODEL_16x12B; break;
  3752. default: model.type = e_model::MODEL_UNKNOWN;
  3753. }
  3754. } break;
  3755. case LLM_ARCH_OLMO:
  3756. {
  3757. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3758. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3759. switch (hparams.n_layer) {
  3760. case 22: model.type = e_model::MODEL_1B; break;
  3761. case 32: model.type = e_model::MODEL_7B; break;
  3762. case 80: model.type = e_model::MODEL_70B; break;
  3763. default: model.type = e_model::MODEL_UNKNOWN;
  3764. }
  3765. } break;
  3766. case LLM_ARCH_GPTNEOX:
  3767. {
  3768. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3769. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  3770. switch (hparams.n_layer) {
  3771. case 6:
  3772. switch (hparams.n_ff) {
  3773. case 512: model.type = e_model::MODEL_14M; break;
  3774. case 2048: model.type = e_model::MODEL_70M; break;
  3775. default: model.type = e_model::MODEL_UNKNOWN;
  3776. } break;
  3777. case 12:
  3778. switch (hparams.n_ff) {
  3779. case 3072: model.type = e_model::MODEL_160M; break;
  3780. default: model.type = e_model::MODEL_UNKNOWN;
  3781. } break;
  3782. case 16:
  3783. switch (hparams.n_ff) {
  3784. case 8192: model.type = e_model::MODEL_1B; break;
  3785. default: model.type = e_model::MODEL_UNKNOWN;
  3786. } break;
  3787. case 24:
  3788. switch (hparams.n_ff) {
  3789. case 4096: model.type = e_model::MODEL_410M; break;
  3790. case 8192: model.type = e_model::MODEL_1_4B; break;
  3791. default: model.type = e_model::MODEL_UNKNOWN;
  3792. } break;
  3793. case 32:
  3794. switch (hparams.n_ff) {
  3795. case 10240: model.type = e_model::MODEL_2_8B; break;
  3796. case 16384: model.type = e_model::MODEL_6_9B; break;
  3797. default: model.type = e_model::MODEL_UNKNOWN;
  3798. } break;
  3799. case 36:
  3800. switch (hparams.n_ff) {
  3801. case 20480: model.type = e_model::MODEL_12B; break;
  3802. default: model.type = e_model::MODEL_UNKNOWN;
  3803. } break;
  3804. case 44:
  3805. switch (hparams.n_ff) {
  3806. case 24576: model.type = e_model::MODEL_20B; break;
  3807. default: model.type = e_model::MODEL_UNKNOWN;
  3808. } break;
  3809. default: model.type = e_model::MODEL_UNKNOWN;
  3810. }
  3811. } break;
  3812. default: (void)0;
  3813. }
  3814. model.ftype = ml.ftype;
  3815. if (hparams.f_max_alibi_bias > 0.0f) {
  3816. hparams.use_alibi = true;
  3817. }
  3818. hparams.rope_type = llama_rope_type(&model);
  3819. }
  3820. // TODO: This should probably be in llama.h
  3821. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3822. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3823. );
  3824. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3825. static void llm_load_vocab(
  3826. llama_model_loader & ml,
  3827. llama_model & model) {
  3828. auto & vocab = model.vocab;
  3829. struct gguf_context * ctx = ml.meta;
  3830. const auto kv = LLM_KV(model.arch);
  3831. // determine vocab type
  3832. {
  3833. std::string tokenizer_model;
  3834. std::string tokenizer_pre;
  3835. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3836. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3837. if (tokenizer_model == "no_vocab") {
  3838. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3839. // default special tokens
  3840. vocab.special_bos_id = -1;
  3841. vocab.special_eos_id = -1;
  3842. vocab.special_unk_id = -1;
  3843. vocab.special_sep_id = -1;
  3844. vocab.special_pad_id = -1;
  3845. vocab.special_cls_id = -1;
  3846. vocab.special_mask_id = -1;
  3847. vocab.linefeed_id = -1;
  3848. return;
  3849. } else if (tokenizer_model == "llama") {
  3850. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3851. // default special tokens
  3852. vocab.special_bos_id = 1;
  3853. vocab.special_eos_id = 2;
  3854. vocab.special_unk_id = 0;
  3855. vocab.special_sep_id = -1;
  3856. vocab.special_pad_id = -1;
  3857. vocab.special_cls_id = -1;
  3858. vocab.special_mask_id = -1;
  3859. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3860. // prior to support of FIM special tokens in GGUF, the following
  3861. // will allow those models to continue to work. The general names
  3862. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3863. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3864. // new versions of these models have been published.
  3865. std::string gen_name;
  3866. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3867. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3868. [](unsigned char c){ return std::tolower(c); });
  3869. if (gen_name.find("code") != std::string::npos) {
  3870. if (model.arch == LLM_ARCH_LLAMA) {
  3871. vocab.special_prefix_id = 32007;
  3872. vocab.special_suffix_id = 32008;
  3873. vocab.special_middle_id = 32009;
  3874. vocab.special_eot_id = 32010;
  3875. } else if (model.arch == LLM_ARCH_GEMMA) {
  3876. vocab.special_prefix_id = 67;
  3877. vocab.special_suffix_id = 69;
  3878. vocab.special_middle_id = 68;
  3879. // TODO: this is not EOT, it is "file separator" token, needs fix
  3880. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3881. //vocab.special_eot_id = 70;
  3882. vocab.special_eot_id = 107;
  3883. }
  3884. }
  3885. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3886. if (add_space_prefix_keyidx != -1) {
  3887. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3888. } // The default value of add_space_prefix is true.
  3889. } else if (tokenizer_model == "bert") {
  3890. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3891. // default special tokens
  3892. vocab.special_bos_id = -1;
  3893. vocab.special_eos_id = -1;
  3894. vocab.special_unk_id = 100;
  3895. vocab.special_sep_id = 102;
  3896. vocab.special_pad_id = 0;
  3897. vocab.special_cls_id = 101;
  3898. vocab.special_mask_id = 103;
  3899. vocab.add_space_prefix = false;
  3900. } else {
  3901. if (tokenizer_model == "gpt2") {
  3902. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3903. } else {
  3904. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
  3905. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3906. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3907. return;
  3908. }
  3909. // read bpe merges and populate bpe ranks
  3910. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3911. if (merges_keyidx == -1) {
  3912. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3913. }
  3914. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3915. for (int i = 0; i < n_merges; i++) {
  3916. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3917. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3918. std::string first;
  3919. std::string second;
  3920. const size_t pos = word.find(' ', 1);
  3921. if (pos != std::string::npos) {
  3922. first = word.substr(0, pos);
  3923. second = word.substr(pos + 1);
  3924. }
  3925. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3926. }
  3927. // default special tokens
  3928. vocab.special_bos_id = 11;
  3929. vocab.special_eos_id = 11;
  3930. vocab.special_unk_id = -1;
  3931. vocab.special_sep_id = -1;
  3932. vocab.special_pad_id = -1;
  3933. vocab.special_cls_id = -1;
  3934. vocab.special_mask_id = -1;
  3935. }
  3936. // for now, only BPE models have pre-tokenizers
  3937. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  3938. if (tokenizer_pre.empty()) {
  3939. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  3940. LLAMA_LOG_WARN("%s: \n", __func__);
  3941. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3942. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  3943. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  3944. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3945. LLAMA_LOG_WARN("%s: \n", __func__);
  3946. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3947. } else if (
  3948. tokenizer_pre == "default") {
  3949. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3950. } else if (
  3951. tokenizer_pre == "llama3" ||
  3952. tokenizer_pre == "llama-v3" ||
  3953. tokenizer_pre == "llama-bpe") {
  3954. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  3955. } else if (
  3956. tokenizer_pre == "deepseek-llm") {
  3957. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  3958. } else if (
  3959. tokenizer_pre == "deepseek-coder") {
  3960. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  3961. } else if (
  3962. tokenizer_pre == "falcon") {
  3963. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  3964. } else if (
  3965. tokenizer_pre == "mpt") {
  3966. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  3967. } else if (
  3968. tokenizer_pre == "starcoder") {
  3969. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  3970. } else if (
  3971. tokenizer_pre == "gpt-2" ||
  3972. tokenizer_pre == "jina-es" ||
  3973. tokenizer_pre == "jina-de" ||
  3974. tokenizer_pre == "jina-v2-es" ||
  3975. tokenizer_pre == "jina-v2-de") {
  3976. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  3977. } else if (
  3978. tokenizer_pre == "refact") {
  3979. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  3980. } else if (
  3981. tokenizer_pre == "command-r") {
  3982. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  3983. } else if (
  3984. tokenizer_pre == "qwen2") {
  3985. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  3986. } else if (
  3987. tokenizer_pre == "stablelm2") {
  3988. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  3989. } else if (
  3990. tokenizer_pre == "olmo") {
  3991. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  3992. } else if (
  3993. tokenizer_pre == "dbrx") {
  3994. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  3995. } else {
  3996. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  3997. }
  3998. } else {
  3999. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4000. }
  4001. }
  4002. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  4003. if (token_idx == -1) {
  4004. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  4005. }
  4006. const float * scores = nullptr;
  4007. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  4008. if (score_idx != -1) {
  4009. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  4010. }
  4011. const int * toktypes = nullptr;
  4012. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  4013. if (toktype_idx != -1) {
  4014. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  4015. }
  4016. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  4017. vocab.id_to_token.resize(n_vocab);
  4018. for (uint32_t i = 0; i < n_vocab; i++) {
  4019. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  4020. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4021. vocab.token_to_id[word] = i;
  4022. auto & token_data = vocab.id_to_token[i];
  4023. token_data.text = std::move(word);
  4024. token_data.score = scores ? scores[i] : 0.0f;
  4025. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  4026. }
  4027. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  4028. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  4029. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4030. try {
  4031. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  4032. } catch (const std::exception & e) {
  4033. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  4034. vocab.linefeed_id = vocab.special_pad_id;
  4035. }
  4036. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4037. vocab.linefeed_id = vocab.special_pad_id;
  4038. } else {
  4039. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  4040. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  4041. vocab.linefeed_id = ids[0];
  4042. }
  4043. // special tokens
  4044. {
  4045. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  4046. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  4047. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  4048. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4049. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4050. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4051. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4052. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4053. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4054. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4055. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4056. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4057. };
  4058. for (const auto & it : special_token_types) {
  4059. const std::string & key = kv(std::get<0>(it));
  4060. int32_t & id = std::get<1>(it);
  4061. uint32_t new_id;
  4062. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4063. continue;
  4064. }
  4065. if (new_id >= vocab.id_to_token.size()) {
  4066. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4067. __func__, key.c_str(), new_id, id);
  4068. } else {
  4069. id = new_id;
  4070. }
  4071. }
  4072. // Handle add_bos_token and add_eos_token
  4073. {
  4074. bool temp = true;
  4075. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4076. vocab.special_add_bos = int(temp);
  4077. }
  4078. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4079. vocab.special_add_eos = int(temp);
  4080. }
  4081. }
  4082. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4083. //
  4084. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4085. // for now, we apply this workaround to find the EOT token based on its text
  4086. if (vocab.special_eot_id == -1) {
  4087. for (const auto & t : vocab.token_to_id) {
  4088. if (
  4089. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4090. // need to fix convert script
  4091. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4092. (t.first == "<|eot_id|>" ||
  4093. t.first == "<|im_end|>" ||
  4094. t.first == "<|end|>" ||
  4095. t.first == "<end_of_turn>" ||
  4096. t.first == "<|endoftext|>"
  4097. )
  4098. ) {
  4099. vocab.special_eot_id = t.second;
  4100. break;
  4101. }
  4102. }
  4103. }
  4104. }
  4105. // build special tokens cache
  4106. {
  4107. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  4108. // and will always be correctly labeled in 'added_tokens.json' etc.
  4109. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  4110. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  4111. // are special tokens.
  4112. // From testing, this appears to correlate 1:1 with special tokens.
  4113. //
  4114. // Counting special tokens and verifying in only one direction
  4115. // is sufficient to detect difference in those two sets.
  4116. //
  4117. uint32_t special_tokens_count_by_type = 0;
  4118. uint32_t special_tokens_count_from_verification = 0;
  4119. bool special_tokens_definition_mismatch = false;
  4120. for (const auto & t : vocab.token_to_id) {
  4121. const auto & token = t.first;
  4122. const auto & id = t.second;
  4123. // Count all non-normal tokens in the vocab while iterating
  4124. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  4125. special_tokens_count_by_type++;
  4126. }
  4127. // Skip single character tokens
  4128. if (token.length() > 1) {
  4129. bool is_tokenizable = false;
  4130. // Split token string representation in two, in all possible ways
  4131. // and check if both halves can be matched to a valid token
  4132. for (unsigned i = 1; i < token.length();) {
  4133. const auto left = token.substr(0, i);
  4134. const auto right = token.substr(i);
  4135. // check if we didnt partition in the middle of a utf sequence
  4136. auto utf = utf8_len(left.at(left.length() - 1));
  4137. if (utf == 1) {
  4138. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  4139. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  4140. is_tokenizable = true;
  4141. break;
  4142. }
  4143. i++;
  4144. } else {
  4145. // skip over the rest of multibyte utf sequence
  4146. i += utf - 1;
  4147. }
  4148. }
  4149. if (!is_tokenizable) {
  4150. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  4151. // it's faster to re-filter them here, since there are way less candidates now
  4152. // Calculate a total "utf" length of a token string representation
  4153. size_t utf8_str_len = 0;
  4154. for (unsigned i = 0; i < token.length();) {
  4155. utf8_str_len++;
  4156. i += utf8_len(token.at(i));
  4157. }
  4158. // And skip the ones which are one character
  4159. if (utf8_str_len > 1) {
  4160. // At this point what we have left are special tokens only
  4161. vocab.special_tokens_cache[token] = id;
  4162. // Count manually found special tokens
  4163. special_tokens_count_from_verification++;
  4164. // If this manually found special token is not marked as such, flag a mismatch
  4165. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  4166. special_tokens_definition_mismatch = true;
  4167. }
  4168. }
  4169. }
  4170. }
  4171. }
  4172. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  4173. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  4174. __func__,
  4175. special_tokens_count_from_verification, vocab.id_to_token.size(),
  4176. special_tokens_count_by_type, vocab.id_to_token.size()
  4177. );
  4178. } else {
  4179. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  4180. __func__,
  4181. special_tokens_count_from_verification, vocab.id_to_token.size()
  4182. );
  4183. }
  4184. }
  4185. }
  4186. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4187. const auto & hparams = model.hparams;
  4188. const auto & vocab = model.vocab;
  4189. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4190. // hparams
  4191. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4192. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4193. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4194. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4195. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4196. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4197. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4198. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4199. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4200. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4201. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4202. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4203. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4204. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4205. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4206. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4207. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4208. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4209. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4210. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4211. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4212. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4213. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4214. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4215. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4216. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4217. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4218. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4219. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4220. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4221. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4222. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4223. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4224. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4225. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4226. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4227. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4228. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4229. if (ml.n_elements >= 1e12) {
  4230. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4231. } else if (ml.n_elements >= 1e9) {
  4232. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4233. } else if (ml.n_elements >= 1e6) {
  4234. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4235. } else {
  4236. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4237. }
  4238. if (ml.n_bytes < GiB) {
  4239. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4240. } else {
  4241. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4242. }
  4243. // general kv
  4244. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4245. // special tokens
  4246. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4247. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4248. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4249. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4250. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4251. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4252. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4253. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4254. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4255. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4256. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4257. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4258. }
  4259. // Returns false if cancelled by progress_callback
  4260. static bool llm_load_tensors(
  4261. llama_model_loader & ml,
  4262. llama_model & model,
  4263. int n_gpu_layers,
  4264. enum llama_split_mode split_mode,
  4265. int main_gpu,
  4266. const float * tensor_split,
  4267. bool use_mlock,
  4268. llama_progress_callback progress_callback,
  4269. void * progress_callback_user_data) {
  4270. model.t_start_us = ggml_time_us();
  4271. auto & hparams = model.hparams;
  4272. #ifdef GGML_USE_SYCL
  4273. // disable MoE with SYCL until mul_mat_id is updated
  4274. if (hparams.n_expert > 0) {
  4275. n_gpu_layers = 0;
  4276. }
  4277. #endif
  4278. model.split_mode = split_mode;
  4279. model.main_gpu = main_gpu;
  4280. model.n_gpu_layers = n_gpu_layers;
  4281. const int64_t n_layer = hparams.n_layer;
  4282. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4283. bool use_mmap_buffer = true;
  4284. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4285. model.buft_input = llama_default_buffer_type_cpu(true);
  4286. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4287. model.buft_layer.resize(n_layer);
  4288. // assign cpu layers
  4289. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4290. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4291. }
  4292. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4293. // calculate the split points
  4294. int device_count = llama_get_device_count(model);
  4295. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4296. std::vector<float> splits(device_count);
  4297. if (all_zero) {
  4298. // default split, by free memory
  4299. for (int i = 0; i < device_count; ++i) {
  4300. splits[i] = llama_get_device_memory(model, i);
  4301. }
  4302. } else {
  4303. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4304. }
  4305. // sum and normalize the splits to get the split points
  4306. float split_sum = 0.0f;
  4307. for (int i = 0; i < device_count; ++i) {
  4308. split_sum += splits[i];
  4309. splits[i] = split_sum;
  4310. }
  4311. for (int i = 0; i < device_count; ++i) {
  4312. splits[i] /= split_sum;
  4313. }
  4314. // assign the repeating layers to the devices according to the splits
  4315. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4316. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4317. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4318. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4319. }
  4320. // assign the output layer
  4321. if (n_gpu_layers > n_layer) {
  4322. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4323. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4324. } else {
  4325. model.buft_output = llama_default_buffer_type_cpu(true);
  4326. }
  4327. } else {
  4328. ggml_backend_buffer_type_t split_buft;
  4329. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4330. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4331. } else {
  4332. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4333. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4334. }
  4335. // assign the repeating layers
  4336. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4337. model.buft_layer[i] = {
  4338. split_buft,
  4339. llama_default_buffer_type_offload(model, main_gpu)
  4340. };
  4341. }
  4342. // assign the output layer
  4343. if (n_gpu_layers > n_layer) {
  4344. model.buft_output = {
  4345. split_buft,
  4346. llama_default_buffer_type_offload(model, main_gpu)
  4347. };
  4348. } else {
  4349. model.buft_output = llama_default_buffer_type_cpu(true);
  4350. }
  4351. }
  4352. // count used buffer types
  4353. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4354. buft_layer_count[model.buft_input.buft]++;
  4355. buft_layer_count[model.buft_input.buft_matrix]++;
  4356. buft_layer_count[model.buft_output.buft]++;
  4357. buft_layer_count[model.buft_output.buft_matrix]++;
  4358. for (int64_t i = 0; i < n_layer; ++i) {
  4359. buft_layer_count[model.buft_layer[i].buft]++;
  4360. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4361. }
  4362. // create one context per buffer type
  4363. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4364. // for moe merged tensors
  4365. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4366. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4367. for (auto & it : buft_layer_count) {
  4368. struct ggml_init_params params = {
  4369. /*.mem_size =*/ ctx_size,
  4370. /*.mem_buffer =*/ NULL,
  4371. /*.no_alloc =*/ true,
  4372. };
  4373. ggml_context * ctx = ggml_init(params);
  4374. if (!ctx) {
  4375. throw std::runtime_error(format("failed to create context"));
  4376. }
  4377. ctx_map[it.first] = ctx;
  4378. model.ctxs.push_back(ctx);
  4379. }
  4380. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4381. // create tensors for the weights
  4382. {
  4383. const int64_t n_embd = hparams.n_embd;
  4384. const int64_t n_embd_head = n_embd / hparams.n_head;
  4385. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4386. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4387. const int64_t n_embd_gqa = n_embd_v_gqa;
  4388. const int64_t n_vocab = hparams.n_vocab;
  4389. const int64_t n_vocab_type = hparams.n_vocab_type;
  4390. const int64_t n_ff = hparams.n_ff;
  4391. const int64_t n_expert = hparams.n_expert;
  4392. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4393. throw std::runtime_error("model has expert layers but no expert layers are used");
  4394. }
  4395. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4396. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4397. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4398. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4399. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4400. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4401. model.layers.resize(n_layer);
  4402. const auto tn = LLM_TN(model.arch);
  4403. switch (model.arch) {
  4404. case LLM_ARCH_LLAMA:
  4405. case LLM_ARCH_REFACT:
  4406. case LLM_ARCH_MINICPM:
  4407. {
  4408. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4409. // output
  4410. {
  4411. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4412. if (model.arch != LLM_ARCH_MINICPM){
  4413. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4414. // if output is NULL, init from the input tok embed
  4415. if (model.output == NULL) {
  4416. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4417. }
  4418. }
  4419. }
  4420. for (int i = 0; i < n_layer; ++i) {
  4421. ggml_context * ctx_layer = ctx_for_layer(i);
  4422. ggml_context * ctx_split = ctx_for_layer_split(i);
  4423. auto & layer = model.layers[i];
  4424. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4425. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4426. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4427. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4428. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4429. // optional bias tensors
  4430. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4431. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4432. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4433. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4434. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4435. if (n_expert == 0) {
  4436. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4437. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4438. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4439. } else {
  4440. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4441. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4442. if (layer.ffn_gate_exps) {
  4443. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4444. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4445. } else {
  4446. // merge split expert into a single tensor for compatibility with older models
  4447. // requires disabling mmap
  4448. use_mmap_buffer = false;
  4449. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4450. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4451. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4452. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4453. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4454. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4455. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4456. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4457. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4458. for (uint32_t x = 0; x < n_expert; ++x) {
  4459. // the individual experts are loaded into a view of the merged tensor
  4460. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4461. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4462. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4463. }
  4464. }
  4465. }
  4466. }
  4467. } break;
  4468. case LLM_ARCH_GROK:
  4469. {
  4470. if (n_expert == 0) {
  4471. throw std::runtime_error("Grok model cannot have zero experts");
  4472. }
  4473. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4474. // output
  4475. {
  4476. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4477. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4478. // if output is NULL, init from the input tok embed
  4479. if (model.output == NULL) {
  4480. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4481. }
  4482. }
  4483. for (int i = 0; i < n_layer; ++i) {
  4484. ggml_context * ctx_layer = ctx_for_layer(i);
  4485. ggml_context * ctx_split = ctx_for_layer_split(i);
  4486. auto & layer = model.layers[i];
  4487. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4488. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4489. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4490. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4491. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4492. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4493. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4494. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4495. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4496. if (layer.ffn_gate_exps) {
  4497. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4498. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4499. } else {
  4500. // merge split expert into a single tensor for compatibility with older models
  4501. // requires disabling mmap
  4502. use_mmap_buffer = false;
  4503. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4504. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4505. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4506. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4507. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4508. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4509. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4510. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4511. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4512. for (uint32_t x = 0; x < n_expert; ++x) {
  4513. // the individual experts are loaded into a view of the merged tensor
  4514. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4515. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4516. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4517. }
  4518. }
  4519. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4520. }
  4521. } break;
  4522. case LLM_ARCH_DBRX:
  4523. {
  4524. if (n_expert == 0) {
  4525. throw std::runtime_error("DBRX model cannot have zero experts");
  4526. }
  4527. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4528. // output
  4529. {
  4530. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4531. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4532. }
  4533. for (int i = 0; i < n_layer; ++i) {
  4534. ggml_context * ctx_layer = ctx_for_layer(i);
  4535. ggml_context * ctx_split = ctx_for_layer_split(i);
  4536. auto & layer = model.layers[i];
  4537. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4538. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4539. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4540. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4541. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4542. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4543. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4544. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4545. }
  4546. } break;
  4547. case LLM_ARCH_BAICHUAN:
  4548. {
  4549. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4550. {
  4551. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4552. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4553. }
  4554. for (int i = 0; i < n_layer; ++i) {
  4555. ggml_context * ctx_layer = ctx_for_layer(i);
  4556. ggml_context * ctx_split = ctx_for_layer_split(i);
  4557. auto & layer = model.layers[i];
  4558. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4559. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4560. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4561. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4562. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4563. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4564. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4565. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4566. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4567. }
  4568. } break;
  4569. case LLM_ARCH_FALCON:
  4570. {
  4571. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4572. // output
  4573. {
  4574. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4575. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4576. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4577. if (!model.output) {
  4578. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4579. }
  4580. }
  4581. for (int i = 0; i < n_layer; ++i) {
  4582. ggml_context * ctx_layer = ctx_for_layer(i);
  4583. ggml_context * ctx_split = ctx_for_layer_split(i);
  4584. auto & layer = model.layers[i];
  4585. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4586. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4587. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4588. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4589. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4590. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4591. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4592. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4593. }
  4594. } break;
  4595. case LLM_ARCH_STARCODER:
  4596. {
  4597. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4598. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4599. // output
  4600. {
  4601. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4602. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4603. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4604. if (!model.output) {
  4605. // needs to be on GPU
  4606. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4607. }
  4608. }
  4609. for (int i = 0; i < n_layer; ++i) {
  4610. ggml_context * ctx_layer = ctx_for_layer(i);
  4611. ggml_context * ctx_split = ctx_for_layer_split(i);
  4612. auto & layer = model.layers[i];
  4613. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4614. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4615. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4616. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4617. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4618. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4619. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4620. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4621. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4622. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4623. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4624. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4625. }
  4626. } break;
  4627. case LLM_ARCH_BERT:
  4628. case LLM_ARCH_NOMIC_BERT:
  4629. {
  4630. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4631. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4632. if (model.arch == LLM_ARCH_BERT) {
  4633. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4634. }
  4635. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4636. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4637. for (int i = 0; i < n_layer; ++i) {
  4638. ggml_context * ctx_layer = ctx_for_layer(i);
  4639. ggml_context * ctx_split = ctx_for_layer_split(i);
  4640. auto & layer = model.layers[i];
  4641. if (model.arch == LLM_ARCH_BERT) {
  4642. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4643. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4644. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4645. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4646. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4647. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4648. } else {
  4649. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4650. }
  4651. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4652. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4653. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4654. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4655. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4656. if (model.arch == LLM_ARCH_BERT) {
  4657. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4658. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4659. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4660. } else {
  4661. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4662. }
  4663. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4664. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4665. }
  4666. } break;
  4667. case LLM_ARCH_JINA_BERT_V2:
  4668. {
  4669. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  4670. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  4671. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  4672. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  4673. for (int i = 0; i < n_layer; ++i) {
  4674. ggml_context * ctx_layer = ctx_for_layer(i);
  4675. ggml_context * ctx_split = ctx_for_layer_split(i);
  4676. auto & layer = model.layers[i]; // JinaBertLayer
  4677. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4678. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4679. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4680. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4681. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4682. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4683. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4684. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4685. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4686. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4687. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  4688. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  4689. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  4690. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4691. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4692. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4693. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4694. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4695. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4696. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4697. }
  4698. } break;
  4699. case LLM_ARCH_BLOOM:
  4700. {
  4701. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4702. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4703. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4704. // output
  4705. {
  4706. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4707. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4708. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4709. }
  4710. for (int i = 0; i < n_layer; ++i) {
  4711. ggml_context * ctx_layer = ctx_for_layer(i);
  4712. ggml_context * ctx_split = ctx_for_layer_split(i);
  4713. auto & layer = model.layers[i];
  4714. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4715. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4716. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4717. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4718. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4719. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4720. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4721. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4722. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4723. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4724. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4725. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4726. }
  4727. } break;
  4728. case LLM_ARCH_MPT:
  4729. {
  4730. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4731. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4732. // output
  4733. {
  4734. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4735. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4736. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4737. if (!model.output) {
  4738. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4739. }
  4740. }
  4741. for (int i = 0; i < n_layer; ++i) {
  4742. ggml_context * ctx_layer = ctx_for_layer(i);
  4743. ggml_context * ctx_split = ctx_for_layer_split(i);
  4744. auto & layer = model.layers[i];
  4745. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4746. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4747. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4748. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4749. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4750. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4751. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4752. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4753. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4754. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4755. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4756. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4757. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4758. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4759. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4760. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4761. // AWQ ScaleActivation layer
  4762. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4763. }
  4764. } break;
  4765. case LLM_ARCH_STABLELM:
  4766. {
  4767. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4768. // output
  4769. {
  4770. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4771. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4772. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4773. }
  4774. for (int i = 0; i < n_layer; ++i) {
  4775. ggml_context * ctx_layer = ctx_for_layer(i);
  4776. ggml_context * ctx_split = ctx_for_layer_split(i);
  4777. auto & layer = model.layers[i];
  4778. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4779. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4780. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4781. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4782. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4783. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4784. // optional bias tensors, present in Stable LM 2 1.6B
  4785. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4786. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4787. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4788. // optional q and k layernorms, present in StableLM 2 12B
  4789. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4790. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4791. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4792. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4793. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4794. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4795. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4796. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4797. }
  4798. } break;
  4799. case LLM_ARCH_QWEN:
  4800. {
  4801. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4802. // output
  4803. {
  4804. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4805. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4806. }
  4807. for (int i = 0; i < n_layer; ++i) {
  4808. ggml_context * ctx_layer = ctx_for_layer(i);
  4809. ggml_context * ctx_split = ctx_for_layer_split(i);
  4810. auto & layer = model.layers[i];
  4811. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4812. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4813. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4814. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4815. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4816. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4817. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4818. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4819. }
  4820. } break;
  4821. case LLM_ARCH_QWEN2:
  4822. {
  4823. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4824. // output
  4825. {
  4826. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4827. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4828. // if output is NULL, init from the input tok embed
  4829. if (model.output == NULL) {
  4830. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4831. }
  4832. }
  4833. for (int i = 0; i < n_layer; ++i) {
  4834. ggml_context * ctx_layer = ctx_for_layer(i);
  4835. ggml_context * ctx_split = ctx_for_layer_split(i);
  4836. auto & layer = model.layers[i];
  4837. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4838. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4839. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4840. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4841. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4842. // optional bias tensors
  4843. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4844. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4845. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4846. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4847. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4848. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4849. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4850. }
  4851. } break;
  4852. case LLM_ARCH_QWEN2MOE:
  4853. {
  4854. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4855. // output
  4856. {
  4857. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4858. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4859. }
  4860. for (int i = 0; i < n_layer; ++i) {
  4861. ggml_context * ctx_layer = ctx_for_layer(i);
  4862. ggml_context * ctx_split = ctx_for_layer_split(i);
  4863. auto & layer = model.layers[i];
  4864. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4865. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4866. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4867. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4868. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4869. // optional bias tensors
  4870. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4871. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4872. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4873. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4874. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4875. GGML_ASSERT(hparams.n_expert > 0);
  4876. GGML_ASSERT(hparams.n_expert_used > 0);
  4877. // MoE branch
  4878. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4879. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4880. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4881. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4882. // Shared expert branch
  4883. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4884. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4885. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4886. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4887. }
  4888. } break;
  4889. case LLM_ARCH_PHI2:
  4890. {
  4891. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4892. // output
  4893. {
  4894. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4895. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4896. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4897. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4898. }
  4899. for (int i = 0; i < n_layer; ++i) {
  4900. ggml_context * ctx_layer = ctx_for_layer(i);
  4901. ggml_context * ctx_split = ctx_for_layer_split(i);
  4902. auto & layer = model.layers[i];
  4903. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4904. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4905. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4906. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4907. if (layer.wqkv == nullptr) {
  4908. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4909. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4910. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4911. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4912. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4913. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4914. }
  4915. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4916. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4917. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4918. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4919. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4920. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4921. }
  4922. } break;
  4923. case LLM_ARCH_PHI3:
  4924. {
  4925. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4926. // output
  4927. {
  4928. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4929. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4930. }
  4931. for (int i = 0; i < n_layer; ++i) {
  4932. ggml_context* ctx_layer = ctx_for_layer(i);
  4933. ggml_context* ctx_split = ctx_for_layer_split(i);
  4934. auto & layer = model.layers[i];
  4935. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4936. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  4937. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4938. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4939. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4940. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4941. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  4942. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  4943. }
  4944. } break;
  4945. case LLM_ARCH_PLAMO:
  4946. {
  4947. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4948. // output
  4949. {
  4950. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4951. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4952. }
  4953. for (int i = 0; i < n_layer; ++i) {
  4954. ggml_context * ctx_layer = ctx_for_layer(i);
  4955. ggml_context * ctx_split = ctx_for_layer_split(i);
  4956. auto & layer = model.layers[i];
  4957. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4958. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4959. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4960. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4961. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4962. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4963. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4964. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4965. }
  4966. } break;
  4967. case LLM_ARCH_GPT2:
  4968. {
  4969. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4970. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4971. // output
  4972. {
  4973. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4974. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4975. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4976. }
  4977. for (int i = 0; i < n_layer; ++i) {
  4978. ggml_context * ctx_layer = ctx_for_layer(i);
  4979. ggml_context * ctx_split = ctx_for_layer_split(i);
  4980. auto & layer = model.layers[i];
  4981. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4982. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4983. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4984. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4985. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4986. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4987. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4988. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4989. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4990. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4991. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4992. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4993. }
  4994. } break;
  4995. case LLM_ARCH_CODESHELL:
  4996. {
  4997. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4998. // output
  4999. {
  5000. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5001. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5002. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5003. }
  5004. for (int i = 0; i < n_layer; ++i) {
  5005. ggml_context * ctx_layer = ctx_for_layer(i);
  5006. ggml_context * ctx_split = ctx_for_layer_split(i);
  5007. auto & layer = model.layers[i];
  5008. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5009. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5010. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5011. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5012. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5013. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5014. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5015. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5016. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5017. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5018. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5019. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5020. }
  5021. } break;
  5022. case LLM_ARCH_ORION:
  5023. {
  5024. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5025. {
  5026. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5027. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5028. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5029. }
  5030. for (int i = 0; i < n_layer; ++i) {
  5031. ggml_context * ctx_layer = ctx_for_layer(i);
  5032. ggml_context * ctx_split = ctx_for_layer_split(i);
  5033. auto & layer = model.layers[i];
  5034. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5035. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5036. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5037. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5038. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5039. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5040. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5041. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5042. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5043. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5044. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5045. }
  5046. } break;
  5047. case LLM_ARCH_INTERNLM2:
  5048. {
  5049. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5050. // output
  5051. {
  5052. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5053. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5054. }
  5055. for (int i = 0; i < n_layer; ++i) {
  5056. ggml_context * ctx_layer = ctx_for_layer(i);
  5057. ggml_context * ctx_split = ctx_for_layer_split(i);
  5058. auto & layer = model.layers[i];
  5059. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5060. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5061. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5062. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5063. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5064. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5065. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5066. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5067. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5068. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5069. }
  5070. } break;
  5071. case LLM_ARCH_GEMMA:
  5072. {
  5073. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5074. // output
  5075. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5076. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  5077. const int64_t n_ff = hparams.n_ff;
  5078. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5079. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5080. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5081. for (uint32_t i = 0; i < n_layer; ++i) {
  5082. ggml_context * ctx_layer = ctx_for_layer(i);
  5083. ggml_context * ctx_split = ctx_for_layer_split(i);
  5084. auto & layer = model.layers[i];
  5085. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5086. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5087. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5088. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5089. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5090. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5091. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5092. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5093. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5094. }
  5095. } break;
  5096. case LLM_ARCH_STARCODER2:
  5097. {
  5098. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5099. // output
  5100. {
  5101. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5102. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5103. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5104. // if output is NULL, init from the input tok embed
  5105. if (model.output == NULL) {
  5106. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5107. }
  5108. }
  5109. for (int i = 0; i < n_layer; ++i) {
  5110. ggml_context * ctx_layer = ctx_for_layer(i);
  5111. ggml_context * ctx_split = ctx_for_layer_split(i);
  5112. auto & layer = model.layers[i];
  5113. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5114. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5115. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5116. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5117. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5118. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5119. // optional bias tensors
  5120. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5121. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5122. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5123. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5124. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5125. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5126. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5127. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5128. // optional bias tensors
  5129. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5130. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5131. }
  5132. } break;
  5133. case LLM_ARCH_MAMBA:
  5134. {
  5135. const int64_t d_conv = hparams.ssm_d_conv;
  5136. const int64_t d_inner = hparams.ssm_d_inner;
  5137. const int64_t d_state = hparams.ssm_d_state;
  5138. const int64_t dt_rank = hparams.ssm_dt_rank;
  5139. // only an expansion factor of 2 is supported for now
  5140. GGML_ASSERT(2 * n_embd == d_inner);
  5141. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5142. // output
  5143. {
  5144. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5145. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5146. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5147. if (model.output == NULL) {
  5148. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5149. }
  5150. }
  5151. for (int i = 0; i < n_layer; ++i) {
  5152. ggml_context * ctx_layer = ctx_for_layer(i);
  5153. ggml_context * ctx_split = ctx_for_layer_split(i);
  5154. auto & layer = model.layers[i];
  5155. // norm
  5156. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5157. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5158. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5159. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5160. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5161. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5162. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5163. // no "weight" suffix for these
  5164. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5165. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5166. // out_proj
  5167. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5168. }
  5169. } break;
  5170. case LLM_ARCH_XVERSE:
  5171. {
  5172. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5173. {
  5174. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5175. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5176. }
  5177. for (int i = 0; i < n_layer; ++i) {
  5178. ggml_context * ctx_layer = ctx_for_layer(i);
  5179. ggml_context * ctx_split = ctx_for_layer_split(i);
  5180. auto & layer = model.layers[i];
  5181. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5182. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5183. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5184. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5185. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5186. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5187. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5188. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5189. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5190. }
  5191. } break;
  5192. case LLM_ARCH_COMMAND_R:
  5193. {
  5194. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5195. // output
  5196. {
  5197. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5198. // init output from the input tok embed
  5199. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5200. }
  5201. for (int i = 0; i < n_layer; ++i) {
  5202. ggml_context * ctx_layer = ctx_for_layer(i);
  5203. ggml_context * ctx_split = ctx_for_layer_split(i);
  5204. auto & layer = model.layers[i];
  5205. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5206. if (n_layer >= 64){
  5207. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5208. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5209. }
  5210. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5211. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5212. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5213. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5214. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5215. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5216. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5217. }
  5218. } break;
  5219. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5220. {
  5221. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5222. // output
  5223. {
  5224. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5225. // if output is NULL, init from the input tok embed
  5226. if (model.output == NULL) {
  5227. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5228. }
  5229. }
  5230. for (int i = 0; i < n_layer; ++i) {
  5231. ggml_context * ctx_split = ctx_for_layer_split(i);
  5232. auto & layer = model.layers[i];
  5233. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5234. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5235. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5236. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5237. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5238. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5239. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5240. }
  5241. } break;
  5242. case LLM_ARCH_GPTNEOX:
  5243. {
  5244. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5245. // output
  5246. {
  5247. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5248. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5249. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5250. }
  5251. for (int i = 0; i < n_layer; ++i) {
  5252. ggml_context * ctx_layer = ctx_for_layer(i);
  5253. ggml_context * ctx_split = ctx_for_layer_split(i);
  5254. auto & layer = model.layers[i];
  5255. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5256. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5257. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5258. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5259. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5260. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5261. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5262. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5263. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5264. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5265. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5266. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5267. }
  5268. } break;
  5269. default:
  5270. throw std::runtime_error("unknown architecture");
  5271. }
  5272. }
  5273. ml.done_getting_tensors();
  5274. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5275. model.mappings.reserve(ml.mappings.size());
  5276. // create the backend buffers
  5277. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5278. ctx_bufs.reserve(ctx_map.size());
  5279. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5280. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5281. model.bufs.reserve(n_max_backend_buffer);
  5282. for (auto & it : ctx_map) {
  5283. ggml_backend_buffer_type_t buft = it.first;
  5284. ggml_context * ctx = it.second;
  5285. llama_buf_map bufs;
  5286. bufs.reserve(n_max_backend_buffer);
  5287. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5288. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5289. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5290. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5291. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5292. void * addr = nullptr;
  5293. size_t first, last;
  5294. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5295. if (first >= last) {
  5296. continue;
  5297. }
  5298. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5299. if (buf == nullptr) {
  5300. throw std::runtime_error("unable to allocate backend CPU buffer");
  5301. }
  5302. model.bufs.push_back(buf);
  5303. bufs.emplace(idx, buf);
  5304. #ifdef GGML_USE_CUDA
  5305. if (n_layer >= n_gpu_layers) {
  5306. ggml_backend_cuda_register_host_buffer(
  5307. ggml_backend_buffer_get_base(buf),
  5308. ggml_backend_buffer_get_size(buf));
  5309. }
  5310. #endif
  5311. }
  5312. }
  5313. #ifdef GGML_USE_METAL
  5314. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5315. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5316. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5317. void * addr = nullptr;
  5318. size_t first, last;
  5319. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5320. if (first >= last) {
  5321. continue;
  5322. }
  5323. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5324. if (buf == nullptr) {
  5325. throw std::runtime_error("unable to allocate backend metal buffer");
  5326. }
  5327. model.bufs.push_back(buf);
  5328. bufs.emplace(idx, buf);
  5329. }
  5330. }
  5331. #endif
  5332. else {
  5333. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5334. if (buf == nullptr) {
  5335. throw std::runtime_error("unable to allocate backend buffer");
  5336. }
  5337. model.bufs.push_back(buf);
  5338. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5339. model.mlock_bufs.emplace_back(new llama_mlock);
  5340. auto & mlock_buf = model.mlock_bufs.back();
  5341. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5342. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5343. }
  5344. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5345. bufs.emplace(idx, buf);
  5346. }
  5347. }
  5348. if (bufs.empty()) {
  5349. throw std::runtime_error("failed to allocate buffer");
  5350. }
  5351. for (auto & buf : bufs) {
  5352. // indicate that this buffer contains weights
  5353. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5354. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5355. }
  5356. ctx_bufs.emplace_back(ctx, bufs);
  5357. }
  5358. if (llama_supports_gpu_offload()) {
  5359. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5360. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5361. if (n_gpu_layers > (int) hparams.n_layer) {
  5362. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5363. }
  5364. const int max_backend_supported_layers = hparams.n_layer + 1;
  5365. const int max_offloadable_layers = hparams.n_layer + 1;
  5366. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5367. }
  5368. // print memory requirements
  5369. for (ggml_backend_buffer_t buf : model.bufs) {
  5370. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5371. }
  5372. // populate tensors_by_name
  5373. for (ggml_context * ctx : model.ctxs) {
  5374. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5375. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5376. }
  5377. }
  5378. // load tensor data
  5379. for (auto & it : ctx_bufs) {
  5380. ggml_context * ctx = it.first;
  5381. auto & bufs = it.second;
  5382. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5383. return false;
  5384. }
  5385. }
  5386. if (use_mmap_buffer) {
  5387. for (auto & mapping : ml.mappings) {
  5388. model.mappings.emplace_back(std::move(mapping));
  5389. }
  5390. }
  5391. // loading time will be recalculate after the first eval, so
  5392. // we take page faults deferred by mmap() into consideration
  5393. model.t_load_us = ggml_time_us() - model.t_start_us;
  5394. return true;
  5395. }
  5396. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5397. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5398. try {
  5399. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5400. model.hparams.vocab_only = params.vocab_only;
  5401. try {
  5402. llm_load_arch(ml, model);
  5403. } catch(const std::exception & e) {
  5404. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5405. }
  5406. try {
  5407. llm_load_hparams(ml, model);
  5408. } catch(const std::exception & e) {
  5409. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5410. }
  5411. try {
  5412. llm_load_vocab(ml, model);
  5413. } catch(const std::exception & e) {
  5414. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5415. }
  5416. llm_load_print_meta(ml, model);
  5417. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5418. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5419. throw std::runtime_error("vocab size mismatch");
  5420. }
  5421. if (params.vocab_only) {
  5422. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5423. return 0;
  5424. }
  5425. #ifdef GGML_USE_KOMPUTE
  5426. if (params.n_gpu_layers > 0 && (
  5427. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5428. || !(
  5429. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5430. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5431. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5432. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5433. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5434. )
  5435. )) {
  5436. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5437. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5438. params.n_gpu_layers = 0;
  5439. }
  5440. #endif
  5441. #ifdef GGML_USE_SYCL
  5442. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5443. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5444. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5445. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5446. } else {
  5447. ggml_backend_sycl_set_mul_device_mode();
  5448. }
  5449. #endif
  5450. if (!llm_load_tensors(
  5451. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5452. params.progress_callback, params.progress_callback_user_data
  5453. )) {
  5454. return -2;
  5455. }
  5456. } catch (const std::exception & err) {
  5457. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5458. return -1;
  5459. }
  5460. return 0;
  5461. }
  5462. //
  5463. // llm_build
  5464. //
  5465. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5466. enum llm_ffn_op_type {
  5467. LLM_FFN_SILU,
  5468. LLM_FFN_GELU,
  5469. LLM_FFN_RELU,
  5470. LLM_FFN_RELU_SQR,
  5471. };
  5472. enum llm_ffn_gate_type {
  5473. LLM_FFN_SEQ,
  5474. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5475. };
  5476. enum llm_norm_type {
  5477. LLM_NORM,
  5478. LLM_NORM_RMS,
  5479. };
  5480. static struct ggml_tensor * llm_build_inp_embd(
  5481. struct ggml_context * ctx,
  5482. struct llama_context & lctx,
  5483. const llama_hparams & hparams,
  5484. const llama_batch & batch,
  5485. struct ggml_tensor * tok_embd,
  5486. const llm_build_cb & cb) {
  5487. const int64_t n_embd = hparams.n_embd;
  5488. struct ggml_tensor * inpL;
  5489. if (batch.token) {
  5490. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5491. cb(lctx.inp_tokens, "inp_tokens", -1);
  5492. ggml_set_input(lctx.inp_tokens);
  5493. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5494. } else {
  5495. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5496. inpL = lctx.inp_embd;
  5497. ggml_set_input(lctx.inp_embd);
  5498. }
  5499. cb(inpL, "inp_embd", -1);
  5500. return inpL;
  5501. }
  5502. static void llm_build_kv_store(
  5503. struct ggml_context * ctx,
  5504. const llama_hparams & hparams,
  5505. const llama_cparams & cparams,
  5506. const llama_kv_cache & kv,
  5507. struct ggml_cgraph * graph,
  5508. struct ggml_tensor * k_cur,
  5509. struct ggml_tensor * v_cur,
  5510. int32_t n_tokens,
  5511. int32_t kv_head,
  5512. const llm_build_cb & cb,
  5513. int64_t il) {
  5514. const int64_t n_ctx = cparams.n_ctx;
  5515. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5516. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5517. GGML_ASSERT(kv.size == n_ctx);
  5518. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5519. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5520. cb(k_cache_view, "k_cache_view", il);
  5521. // note: storing RoPE-ed version of K in the KV cache
  5522. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5523. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5524. struct ggml_tensor * v_cache_view = nullptr;
  5525. if (cparams.flash_attn) {
  5526. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5527. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5528. } else {
  5529. // note: the V cache is transposed when not using flash attention
  5530. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5531. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5532. (kv_head)*ggml_element_size(kv.v_l[il]));
  5533. v_cur = ggml_transpose(ctx, v_cur);
  5534. }
  5535. cb(v_cache_view, "v_cache_view", il);
  5536. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5537. }
  5538. static struct ggml_tensor * llm_build_norm(
  5539. struct ggml_context * ctx,
  5540. struct ggml_tensor * cur,
  5541. const llama_hparams & hparams,
  5542. struct ggml_tensor * mw,
  5543. struct ggml_tensor * mb,
  5544. llm_norm_type type,
  5545. const llm_build_cb & cb,
  5546. int il) {
  5547. switch (type) {
  5548. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5549. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5550. }
  5551. if (mw || mb) {
  5552. cb(cur, "norm", il);
  5553. }
  5554. if (mw) {
  5555. cur = ggml_mul(ctx, cur, mw);
  5556. if (mb) {
  5557. cb(cur, "norm_w", il);
  5558. }
  5559. }
  5560. if (mb) {
  5561. cur = ggml_add(ctx, cur, mb);
  5562. }
  5563. return cur;
  5564. }
  5565. static struct ggml_tensor * llm_build_ffn(
  5566. struct ggml_context * ctx,
  5567. struct ggml_tensor * cur,
  5568. struct ggml_tensor * up,
  5569. struct ggml_tensor * up_b,
  5570. struct ggml_tensor * gate,
  5571. struct ggml_tensor * gate_b,
  5572. struct ggml_tensor * down,
  5573. struct ggml_tensor * down_b,
  5574. struct ggml_tensor * act_scales,
  5575. llm_ffn_op_type type_op,
  5576. llm_ffn_gate_type type_gate,
  5577. const llm_build_cb & cb,
  5578. int il) {
  5579. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  5580. cb(tmp, "ffn_up", il);
  5581. if (up_b) {
  5582. tmp = ggml_add(ctx, tmp, up_b);
  5583. cb(tmp, "ffn_up_b", il);
  5584. }
  5585. if (gate) {
  5586. switch (type_gate) {
  5587. case LLM_FFN_SEQ:
  5588. {
  5589. cur = ggml_mul_mat(ctx, gate, tmp);
  5590. cb(cur, "ffn_gate", il);
  5591. } break;
  5592. case LLM_FFN_PAR:
  5593. {
  5594. cur = ggml_mul_mat(ctx, gate, cur);
  5595. cb(cur, "ffn_gate", il);
  5596. } break;
  5597. }
  5598. if (gate_b) {
  5599. cur = ggml_add(ctx, cur, gate_b);
  5600. cb(cur, "ffn_gate_b", il);
  5601. }
  5602. } else {
  5603. cur = tmp;
  5604. }
  5605. switch (type_op) {
  5606. case LLM_FFN_SILU:
  5607. {
  5608. cur = ggml_silu(ctx, cur);
  5609. cb(cur, "ffn_silu", il);
  5610. } break;
  5611. case LLM_FFN_GELU:
  5612. {
  5613. cur = ggml_gelu(ctx, cur);
  5614. cb(cur, "ffn_gelu", il);
  5615. if (act_scales != NULL) {
  5616. cur = ggml_div(ctx, cur, act_scales);
  5617. cb(cur, "ffn_act", il);
  5618. }
  5619. } break;
  5620. case LLM_FFN_RELU:
  5621. {
  5622. cur = ggml_relu(ctx, cur);
  5623. cb(cur, "ffn_relu", il);
  5624. } break;
  5625. case LLM_FFN_RELU_SQR:
  5626. {
  5627. cur = ggml_relu(ctx, cur);
  5628. cb(cur, "ffn_relu", il);
  5629. cur = ggml_sqr(ctx, cur);
  5630. cb(cur, "ffn_sqr(relu)", il);
  5631. } break;
  5632. }
  5633. if (type_gate == LLM_FFN_PAR) {
  5634. cur = ggml_mul(ctx, cur, tmp);
  5635. cb(cur, "ffn_gate_par", il);
  5636. }
  5637. cur = ggml_mul_mat(ctx, down, cur);
  5638. if (down_b) {
  5639. cb(cur, "ffn_down", il);
  5640. }
  5641. if (down_b) {
  5642. cur = ggml_add(ctx, cur, down_b);
  5643. }
  5644. return cur;
  5645. }
  5646. static struct ggml_tensor * llm_build_moe_ffn(
  5647. struct ggml_context * ctx,
  5648. struct ggml_tensor * cur,
  5649. struct ggml_tensor * gate_inp,
  5650. struct ggml_tensor * up_exps,
  5651. struct ggml_tensor * gate_exps,
  5652. struct ggml_tensor * down_exps,
  5653. int64_t n_expert,
  5654. int64_t n_expert_used,
  5655. llm_ffn_op_type type_op,
  5656. bool norm_w,
  5657. const llm_build_cb & cb,
  5658. int il) {
  5659. int64_t n_embd = cur->ne[0];
  5660. int64_t n_tokens = cur->ne[1];
  5661. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5662. cb(logits, "ffn_moe_logits", il);
  5663. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5664. cb(probs, "ffn_moe_probs", il);
  5665. // select experts
  5666. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5667. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5668. cb(selected_experts, "ffn_moe_topk", il);
  5669. ggml_tensor * weights = ggml_get_rows(ctx,
  5670. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5671. cb(weights, "ffn_moe_weights", il);
  5672. if (norm_w) {
  5673. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5674. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5675. cb(weights_sum, "ffn_moe_weights_sum", il);
  5676. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5677. cb(weights, "ffn_moe_weights_norm", il);
  5678. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5679. }
  5680. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5681. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5682. cb(up, "ffn_moe_up", il);
  5683. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5684. cb(gate, "ffn_moe_gate", il);
  5685. switch (type_op) {
  5686. case LLM_FFN_SILU:
  5687. {
  5688. gate = ggml_silu(ctx, gate);
  5689. cb(gate, "ffn_moe_silu", il);
  5690. } break;
  5691. case LLM_FFN_GELU:
  5692. {
  5693. gate = ggml_gelu(ctx, gate);
  5694. cb(gate, "ffn_moe_gelu", il);
  5695. } break;
  5696. default:
  5697. GGML_ASSERT(false);
  5698. }
  5699. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5700. cb(par, "ffn_moe_gate_par", il);
  5701. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5702. cb(experts, "ffn_moe_down", il);
  5703. experts = ggml_mul(ctx, experts, weights);
  5704. // aggregate experts
  5705. ggml_tensor * moe_out = nullptr;
  5706. for (int i = 0; i < n_expert_used; ++i) {
  5707. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5708. experts->nb[2], i*experts->nb[1]);
  5709. if (i == 0) {
  5710. moe_out = cur_expert;
  5711. } else {
  5712. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5713. }
  5714. }
  5715. if (n_expert_used == 1) {
  5716. // avoid returning a non-contiguous tensor
  5717. moe_out = ggml_cont(ctx, moe_out);
  5718. }
  5719. return moe_out;
  5720. }
  5721. static struct ggml_tensor * llm_build_kqv(
  5722. struct ggml_context * ctx,
  5723. const llama_model & model,
  5724. const llama_hparams & hparams,
  5725. const llama_cparams & cparams,
  5726. const llama_kv_cache & kv,
  5727. struct ggml_cgraph * graph,
  5728. struct ggml_tensor * wo,
  5729. struct ggml_tensor * wo_b,
  5730. struct ggml_tensor * q_cur,
  5731. struct ggml_tensor * kq_mask,
  5732. int32_t n_tokens,
  5733. int32_t n_kv,
  5734. float kq_scale,
  5735. const llm_build_cb & cb,
  5736. int il) {
  5737. const int64_t n_ctx = cparams.n_ctx;
  5738. const int64_t n_head = hparams.n_head;
  5739. const int64_t n_head_kv = hparams.n_head_kv;
  5740. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5741. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5742. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5743. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5744. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5745. cb(q, "q", il);
  5746. struct ggml_tensor * k =
  5747. ggml_view_3d(ctx, kv.k_l[il],
  5748. n_embd_head_k, n_kv, n_head_kv,
  5749. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5750. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5751. 0);
  5752. cb(k, "k", il);
  5753. struct ggml_tensor * cur;
  5754. if (cparams.flash_attn) {
  5755. GGML_UNUSED(model);
  5756. GGML_UNUSED(n_ctx);
  5757. // split cached v into n_head heads (not transposed)
  5758. struct ggml_tensor * v =
  5759. ggml_view_3d(ctx, kv.v_l[il],
  5760. n_embd_head_v, n_kv, n_head_kv,
  5761. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  5762. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  5763. 0);
  5764. cb(v, "v", il);
  5765. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5766. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  5767. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  5768. }
  5769. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  5770. } else {
  5771. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5772. cb(kq, "kq", il);
  5773. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  5774. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5775. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5776. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5777. }
  5778. if (model.arch == LLM_ARCH_GROK) {
  5779. // need to do the following:
  5780. // multiply by attn_output_multiplyer of 0.08838834764831845
  5781. // and then :
  5782. // kq = 30 * tanh(kq / 30)
  5783. // before the softmax below
  5784. //try from phi2
  5785. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5786. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5787. kq = ggml_scale(ctx, kq, 30);
  5788. }
  5789. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5790. cb(kq, "kq_soft_max_ext", il);
  5791. GGML_ASSERT(kv.size == n_ctx);
  5792. // split cached v into n_head heads
  5793. struct ggml_tensor * v =
  5794. ggml_view_3d(ctx, kv.v_l[il],
  5795. n_kv, n_embd_head_v, n_head_kv,
  5796. ggml_element_size(kv.v_l[il])*n_ctx,
  5797. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5798. 0);
  5799. cb(v, "v", il);
  5800. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5801. cb(kqv, "kqv", il);
  5802. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5803. cb(kqv_merged, "kqv_merged", il);
  5804. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  5805. cb(cur, "kqv_merged_cont", il);
  5806. }
  5807. ggml_build_forward_expand(graph, cur);
  5808. cur = ggml_mul_mat(ctx, wo, cur);
  5809. if (wo_b) {
  5810. cb(cur, "kqv_wo", il);
  5811. }
  5812. if (wo_b) {
  5813. cur = ggml_add(ctx, cur, wo_b);
  5814. }
  5815. return cur;
  5816. }
  5817. static struct ggml_tensor * llm_build_kv(
  5818. struct ggml_context * ctx,
  5819. const llama_model & model,
  5820. const llama_hparams & hparams,
  5821. const llama_cparams & cparams,
  5822. const llama_kv_cache & kv,
  5823. struct ggml_cgraph * graph,
  5824. struct ggml_tensor * wo,
  5825. struct ggml_tensor * wo_b,
  5826. struct ggml_tensor * k_cur,
  5827. struct ggml_tensor * v_cur,
  5828. struct ggml_tensor * q_cur,
  5829. struct ggml_tensor * kq_mask,
  5830. int32_t n_tokens,
  5831. int32_t kv_head,
  5832. int32_t n_kv,
  5833. float kq_scale,
  5834. const llm_build_cb & cb,
  5835. int il) {
  5836. // these nodes are added to the graph together so that they are not reordered
  5837. // by doing so, the number of splits in the graph is reduced
  5838. ggml_build_forward_expand(graph, q_cur);
  5839. ggml_build_forward_expand(graph, k_cur);
  5840. ggml_build_forward_expand(graph, v_cur);
  5841. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  5842. struct ggml_tensor * cur;
  5843. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  5844. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  5845. cb(cur, "kqv_out", il);
  5846. return cur;
  5847. }
  5848. struct llm_build_context {
  5849. const llama_model & model;
  5850. llama_context & lctx;
  5851. const llama_hparams & hparams;
  5852. const llama_cparams & cparams;
  5853. const llama_batch & batch;
  5854. const llama_kv_cache & kv_self;
  5855. const int64_t n_embd;
  5856. const int64_t n_layer;
  5857. const int64_t n_rot;
  5858. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5859. const int64_t n_head;
  5860. const int64_t n_head_kv;
  5861. const int64_t n_embd_head_k;
  5862. const int64_t n_embd_k_gqa;
  5863. const int64_t n_embd_head_v;
  5864. const int64_t n_embd_v_gqa;
  5865. const int64_t n_expert;
  5866. const int64_t n_expert_used;
  5867. const float freq_base;
  5868. const float freq_scale;
  5869. const float ext_factor;
  5870. const float attn_factor;
  5871. const float beta_fast;
  5872. const float beta_slow;
  5873. const float norm_eps;
  5874. const float norm_rms_eps;
  5875. const int32_t n_tokens;
  5876. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5877. const int32_t n_outputs;
  5878. const int32_t kv_head; // index of where we store new KV data in the cache
  5879. const int32_t n_orig_ctx;
  5880. const bool flash_attn;
  5881. const enum llama_pooling_type pooling_type;
  5882. const enum llama_rope_type rope_type;
  5883. const llm_build_cb & cb;
  5884. std::vector<uint8_t> & buf_compute_meta;
  5885. struct ggml_context * ctx0 = nullptr;
  5886. // TODO: consider making the entire interface noexcept
  5887. llm_build_context(
  5888. llama_context & lctx,
  5889. const llama_batch & batch,
  5890. const llm_build_cb & cb,
  5891. bool worst_case) :
  5892. model (lctx.model),
  5893. lctx (lctx),
  5894. hparams (model.hparams),
  5895. cparams (lctx.cparams),
  5896. batch (batch),
  5897. kv_self (lctx.kv_self),
  5898. n_embd (hparams.n_embd),
  5899. n_layer (hparams.n_layer),
  5900. n_rot (hparams.n_rot),
  5901. n_ctx (cparams.n_ctx),
  5902. n_head (hparams.n_head),
  5903. n_head_kv (hparams.n_head_kv),
  5904. n_embd_head_k (hparams.n_embd_head_k),
  5905. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5906. n_embd_head_v (hparams.n_embd_head_v),
  5907. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5908. n_expert (hparams.n_expert),
  5909. n_expert_used (hparams.n_expert_used),
  5910. freq_base (cparams.rope_freq_base),
  5911. freq_scale (cparams.rope_freq_scale),
  5912. ext_factor (cparams.yarn_ext_factor),
  5913. attn_factor (cparams.yarn_attn_factor),
  5914. beta_fast (cparams.yarn_beta_fast),
  5915. beta_slow (cparams.yarn_beta_slow),
  5916. norm_eps (hparams.f_norm_eps),
  5917. norm_rms_eps (hparams.f_norm_rms_eps),
  5918. n_tokens (batch.n_tokens),
  5919. n_kv (worst_case ? kv_self.size : kv_self.n),
  5920. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5921. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5922. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5923. flash_attn (cparams.flash_attn),
  5924. pooling_type (cparams.pooling_type),
  5925. rope_type (hparams.rope_type),
  5926. cb (cb),
  5927. buf_compute_meta (lctx.buf_compute_meta) {
  5928. // all initializations should be done in init()
  5929. }
  5930. void init() {
  5931. struct ggml_init_params params = {
  5932. /*.mem_size =*/ buf_compute_meta.size(),
  5933. /*.mem_buffer =*/ buf_compute_meta.data(),
  5934. /*.no_alloc =*/ true,
  5935. };
  5936. ctx0 = ggml_init(params);
  5937. lctx.inp_tokens = nullptr;
  5938. lctx.inp_embd = nullptr;
  5939. lctx.inp_pos = nullptr;
  5940. lctx.inp_out_ids = nullptr;
  5941. lctx.inp_KQ_mask = nullptr;
  5942. lctx.inp_K_shift = nullptr;
  5943. lctx.inp_mean = nullptr;
  5944. lctx.inp_cls = nullptr;
  5945. lctx.inp_s_copy = nullptr;
  5946. lctx.inp_s_mask = nullptr;
  5947. lctx.inp_s_seq = nullptr;
  5948. }
  5949. void free() {
  5950. if (ctx0) {
  5951. ggml_free(ctx0);
  5952. ctx0 = nullptr;
  5953. }
  5954. }
  5955. struct ggml_cgraph * build_k_shift() {
  5956. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5957. GGML_ASSERT(kv_self.size == n_ctx);
  5958. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5959. cb(lctx.inp_K_shift, "K_shift", -1);
  5960. ggml_set_input(lctx.inp_K_shift);
  5961. for (int il = 0; il < n_layer; ++il) {
  5962. struct ggml_tensor * rope_factors = build_rope_factors(il);
  5963. struct ggml_tensor * tmp =
  5964. // we rotate only the first n_rot dimensions
  5965. ggml_rope_ext_inplace(ctx0,
  5966. ggml_view_3d(ctx0, kv_self.k_l[il],
  5967. n_embd_head_k, n_head_kv, n_ctx,
  5968. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5969. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5970. 0),
  5971. lctx.inp_K_shift, rope_factors, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5972. ext_factor, attn_factor, beta_fast, beta_slow);
  5973. cb(tmp, "K_shifted", il);
  5974. ggml_build_forward_expand(gf, tmp);
  5975. }
  5976. return gf;
  5977. }
  5978. struct ggml_cgraph * build_s_copy() {
  5979. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5980. GGML_ASSERT(kv_self.recurrent);
  5981. struct ggml_tensor * state_copy = build_inp_s_copy();
  5982. for (int il = 0; il < n_layer; ++il) {
  5983. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5984. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5985. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5986. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5987. // TODO: name the intermediate tensors with cb()
  5988. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5989. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5990. }
  5991. return gf;
  5992. }
  5993. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5994. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5995. for (uint32_t i = 0; i < ids.size(); ++i) {
  5996. const uint32_t id = ids[i];
  5997. if (i == id || id == ids.size()) {
  5998. continue;
  5999. }
  6000. uint32_t nm = 1;
  6001. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  6002. nm++;
  6003. }
  6004. for (int il = 0; il < n_layer; ++il) {
  6005. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  6006. n_embd_k_gqa, nm,
  6007. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6008. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  6009. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  6010. n_embd_k_gqa, nm,
  6011. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6012. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  6013. ggml_tensor * view_v_src;
  6014. ggml_tensor * view_v_dst;
  6015. if (flash_attn) {
  6016. // NOTE: the V cache is not transposed when using flash attention
  6017. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6018. n_embd_v_gqa, nm,
  6019. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6020. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  6021. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6022. n_embd_v_gqa, nm,
  6023. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6024. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  6025. } else {
  6026. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6027. nm, n_embd_v_gqa,
  6028. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6029. ggml_row_size(kv_self.v_l[il]->type, i));
  6030. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6031. nm, n_embd_v_gqa,
  6032. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6033. ggml_row_size(kv_self.v_l[il]->type, id));
  6034. }
  6035. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  6036. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  6037. }
  6038. i += nm - 1;
  6039. }
  6040. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  6041. return gf;
  6042. }
  6043. struct ggml_tensor * build_inp_pos() {
  6044. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6045. cb(lctx.inp_pos, "inp_pos", -1);
  6046. ggml_set_input(lctx.inp_pos);
  6047. return lctx.inp_pos;
  6048. }
  6049. struct ggml_tensor * build_rope_factors(int il) {
  6050. // choose long/short freq factors based on the context size
  6051. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  6052. if (n_ctx_pre_seq > hparams.n_yarn_orig_ctx) {
  6053. return model.layers[il].rope_long;
  6054. }
  6055. return model.layers[il].rope_short;
  6056. }
  6057. struct ggml_tensor * build_inp_out_ids() {
  6058. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6059. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6060. ggml_set_input(lctx.inp_out_ids);
  6061. return lctx.inp_out_ids;
  6062. }
  6063. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6064. if (causal) {
  6065. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6066. } else {
  6067. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6068. }
  6069. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6070. ggml_set_input(lctx.inp_KQ_mask);
  6071. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6072. }
  6073. struct ggml_tensor * build_inp_mean() {
  6074. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6075. cb(lctx.inp_mean, "inp_mean", -1);
  6076. ggml_set_input(lctx.inp_mean);
  6077. return lctx.inp_mean;
  6078. }
  6079. struct ggml_tensor * build_inp_cls() {
  6080. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6081. cb(lctx.inp_cls, "inp_cls", -1);
  6082. ggml_set_input(lctx.inp_cls);
  6083. return lctx.inp_cls;
  6084. }
  6085. struct ggml_tensor * build_inp_s_copy() {
  6086. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6087. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6088. ggml_set_input(lctx.inp_s_copy);
  6089. return lctx.inp_s_copy;
  6090. }
  6091. struct ggml_tensor * build_inp_s_mask() {
  6092. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6093. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6094. ggml_set_input(lctx.inp_s_mask);
  6095. return lctx.inp_s_mask;
  6096. }
  6097. struct ggml_tensor * build_inp_s_seq() {
  6098. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6099. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6100. ggml_set_input(lctx.inp_s_seq);
  6101. return lctx.inp_s_seq;
  6102. }
  6103. struct ggml_cgraph * build_llama() {
  6104. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6105. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6106. int32_t n_tokens = this->n_tokens;
  6107. const int64_t n_embd_head = hparams.n_embd_head_v;
  6108. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6109. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6110. struct ggml_tensor * cur;
  6111. struct ggml_tensor * inpL;
  6112. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6113. // inp_pos - contains the positions
  6114. struct ggml_tensor * inp_pos = build_inp_pos();
  6115. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6116. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6117. for (int il = 0; il < n_layer; ++il) {
  6118. struct ggml_tensor * inpSA = inpL;
  6119. // norm
  6120. cur = llm_build_norm(ctx0, inpL, hparams,
  6121. model.layers[il].attn_norm, NULL,
  6122. LLM_NORM_RMS, cb, il);
  6123. cb(cur, "attn_norm", il);
  6124. // self-attention
  6125. {
  6126. // compute Q and K and RoPE them
  6127. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6128. cb(Qcur, "Qcur", il);
  6129. if (model.layers[il].bq) {
  6130. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6131. cb(Qcur, "Qcur", il);
  6132. }
  6133. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6134. cb(Kcur, "Kcur", il);
  6135. if (model.layers[il].bk) {
  6136. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6137. cb(Kcur, "Kcur", il);
  6138. }
  6139. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6140. cb(Vcur, "Vcur", il);
  6141. if (model.layers[il].bv) {
  6142. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6143. cb(Vcur, "Vcur", il);
  6144. }
  6145. Qcur = ggml_rope_ext(
  6146. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6147. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6148. ext_factor, attn_factor, beta_fast, beta_slow
  6149. );
  6150. cb(Qcur, "Qcur", il);
  6151. Kcur = ggml_rope_ext(
  6152. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6153. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6154. ext_factor, attn_factor, beta_fast, beta_slow
  6155. );
  6156. cb(Kcur, "Kcur", il);
  6157. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6158. model.layers[il].wo, model.layers[il].bo,
  6159. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6160. }
  6161. if (il == n_layer - 1) {
  6162. // skip computing output for unused tokens
  6163. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6164. n_tokens = n_outputs;
  6165. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6166. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6167. }
  6168. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6169. cb(ffn_inp, "ffn_inp", il);
  6170. // feed-forward network
  6171. if (model.layers[il].ffn_gate_inp == nullptr) {
  6172. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6173. model.layers[il].ffn_norm, NULL,
  6174. LLM_NORM_RMS, cb, il);
  6175. cb(cur, "ffn_norm", il);
  6176. cur = llm_build_ffn(ctx0, cur,
  6177. model.layers[il].ffn_up, NULL,
  6178. model.layers[il].ffn_gate, NULL,
  6179. model.layers[il].ffn_down, NULL,
  6180. NULL,
  6181. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6182. cb(cur, "ffn_out", il);
  6183. } else {
  6184. // MoE branch
  6185. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6186. model.layers[il].ffn_norm, NULL,
  6187. LLM_NORM_RMS, cb, il);
  6188. cb(cur, "ffn_norm", il);
  6189. cur = llm_build_moe_ffn(ctx0, cur,
  6190. model.layers[il].ffn_gate_inp,
  6191. model.layers[il].ffn_up_exps,
  6192. model.layers[il].ffn_gate_exps,
  6193. model.layers[il].ffn_down_exps,
  6194. n_expert, n_expert_used,
  6195. LLM_FFN_SILU, true,
  6196. cb, il);
  6197. cb(cur, "ffn_moe_out", il);
  6198. }
  6199. cur = ggml_add(ctx0, cur, ffn_inp);
  6200. cb(cur, "ffn_out", il);
  6201. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6202. if (layer_dir != nullptr) {
  6203. cur = ggml_add(ctx0, cur, layer_dir);
  6204. }
  6205. cb(cur, "l_out", il);
  6206. // input for next layer
  6207. inpL = cur;
  6208. }
  6209. cur = inpL;
  6210. cur = llm_build_norm(ctx0, cur, hparams,
  6211. model.output_norm, NULL,
  6212. LLM_NORM_RMS, cb, -1);
  6213. cb(cur, "result_norm", -1);
  6214. // lm_head
  6215. cur = ggml_mul_mat(ctx0, model.output, cur);
  6216. cb(cur, "result_output", -1);
  6217. ggml_build_forward_expand(gf, cur);
  6218. return gf;
  6219. }
  6220. struct ggml_cgraph * build_baichuan() {
  6221. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6222. const int64_t n_embd_head = hparams.n_embd_head_v;
  6223. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6224. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6225. struct ggml_tensor * cur;
  6226. struct ggml_tensor * inpL;
  6227. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6228. // inp_pos - contains the positions
  6229. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6230. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6231. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6232. for (int il = 0; il < n_layer; ++il) {
  6233. struct ggml_tensor * inpSA = inpL;
  6234. cur = llm_build_norm(ctx0, inpL, hparams,
  6235. model.layers[il].attn_norm, NULL,
  6236. LLM_NORM_RMS, cb, il);
  6237. cb(cur, "attn_norm", il);
  6238. // self-attention
  6239. {
  6240. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6241. cb(Qcur, "Qcur", il);
  6242. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6243. cb(Kcur, "Kcur", il);
  6244. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6245. cb(Vcur, "Vcur", il);
  6246. switch (model.type) {
  6247. case MODEL_7B:
  6248. Qcur = ggml_rope_ext(
  6249. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6250. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6251. ext_factor, attn_factor, beta_fast, beta_slow
  6252. );
  6253. Kcur = ggml_rope_ext(
  6254. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6255. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6256. ext_factor, attn_factor, beta_fast, beta_slow
  6257. );
  6258. break;
  6259. case MODEL_13B:
  6260. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6261. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6262. break;
  6263. default:
  6264. GGML_ASSERT(false);
  6265. }
  6266. cb(Qcur, "Qcur", il);
  6267. cb(Kcur, "Kcur", il);
  6268. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6269. model.layers[il].wo, NULL,
  6270. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6271. }
  6272. if (il == n_layer - 1) {
  6273. // skip computing output for unused tokens
  6274. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6275. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6276. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6277. }
  6278. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6279. cb(ffn_inp, "ffn_inp", il);
  6280. // feed-forward network
  6281. {
  6282. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6283. model.layers[il].ffn_norm, NULL,
  6284. LLM_NORM_RMS, cb, il);
  6285. cb(cur, "ffn_norm", il);
  6286. cur = llm_build_ffn(ctx0, cur,
  6287. model.layers[il].ffn_up, NULL,
  6288. model.layers[il].ffn_gate, NULL,
  6289. model.layers[il].ffn_down, NULL,
  6290. NULL,
  6291. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6292. cb(cur, "ffn_out", il);
  6293. }
  6294. cur = ggml_add(ctx0, cur, ffn_inp);
  6295. cb(cur, "l_out", il);
  6296. // input for next layer
  6297. inpL = cur;
  6298. }
  6299. cur = inpL;
  6300. cur = llm_build_norm(ctx0, cur, hparams,
  6301. model.output_norm, NULL,
  6302. LLM_NORM_RMS, cb, -1);
  6303. cb(cur, "result_norm", -1);
  6304. // lm_head
  6305. cur = ggml_mul_mat(ctx0, model.output, cur);
  6306. cb(cur, "result_output", -1);
  6307. ggml_build_forward_expand(gf, cur);
  6308. return gf;
  6309. }
  6310. struct ggml_cgraph * build_xverse() {
  6311. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6312. const int64_t n_embd_head = hparams.n_embd_head_v;
  6313. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6314. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6315. struct ggml_tensor * cur;
  6316. struct ggml_tensor * inpL;
  6317. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6318. // inp_pos - contains the positions
  6319. struct ggml_tensor * inp_pos = build_inp_pos();
  6320. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6321. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6322. for (int il = 0; il < n_layer; ++il) {
  6323. struct ggml_tensor * inpSA = inpL;
  6324. cur = llm_build_norm(ctx0, inpL, hparams,
  6325. model.layers[il].attn_norm, NULL,
  6326. LLM_NORM_RMS, cb, il);
  6327. cb(cur, "attn_norm", il);
  6328. // self-attention
  6329. {
  6330. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6331. cb(Qcur, "Qcur", il);
  6332. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6333. cb(Kcur, "Kcur", il);
  6334. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6335. cb(Vcur, "Vcur", il);
  6336. Qcur = ggml_rope_ext(
  6337. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6338. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6339. ext_factor, attn_factor, beta_fast, beta_slow
  6340. );
  6341. cb(Qcur, "Qcur", il);
  6342. Kcur = ggml_rope_ext(
  6343. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6344. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6345. ext_factor, attn_factor, beta_fast, beta_slow
  6346. );
  6347. cb(Kcur, "Kcur", il);
  6348. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6349. model.layers[il].wo, NULL,
  6350. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6351. }
  6352. if (il == n_layer - 1) {
  6353. // skip computing output for unused tokens
  6354. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6355. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6356. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6357. }
  6358. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6359. cb(ffn_inp, "ffn_inp", il);
  6360. // feed-forward network
  6361. {
  6362. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6363. model.layers[il].ffn_norm, NULL,
  6364. LLM_NORM_RMS, cb, il);
  6365. cb(cur, "ffn_norm", il);
  6366. cur = llm_build_ffn(ctx0, cur,
  6367. model.layers[il].ffn_up, NULL,
  6368. model.layers[il].ffn_gate, NULL,
  6369. model.layers[il].ffn_down, NULL,
  6370. NULL,
  6371. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6372. cb(cur, "ffn_out", il);
  6373. }
  6374. cur = ggml_add(ctx0, cur, ffn_inp);
  6375. cb(cur, "l_out", il);
  6376. // input for next layer
  6377. inpL = cur;
  6378. }
  6379. cur = inpL;
  6380. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6381. cb(cur, "result_norm", -1);
  6382. // lm_head
  6383. cur = ggml_mul_mat(ctx0, model.output, cur);
  6384. cb(cur, "result_output", -1);
  6385. ggml_build_forward_expand(gf, cur);
  6386. return gf;
  6387. }
  6388. struct ggml_cgraph * build_falcon() {
  6389. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6390. const int64_t n_embd_head = hparams.n_embd_head_v;
  6391. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6392. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6393. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6394. struct ggml_tensor * cur;
  6395. struct ggml_tensor * inpL;
  6396. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6397. // inp_pos - contains the positions
  6398. struct ggml_tensor * inp_pos = build_inp_pos();
  6399. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6400. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6401. for (int il = 0; il < n_layer; ++il) {
  6402. struct ggml_tensor * attn_norm;
  6403. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6404. model.layers[il].attn_norm,
  6405. model.layers[il].attn_norm_b,
  6406. LLM_NORM, cb, il);
  6407. cb(attn_norm, "attn_norm", il);
  6408. // self-attention
  6409. {
  6410. if (model.layers[il].attn_norm_2) {
  6411. // Falcon-40B
  6412. cur = llm_build_norm(ctx0, inpL, hparams,
  6413. model.layers[il].attn_norm_2,
  6414. model.layers[il].attn_norm_2_b,
  6415. LLM_NORM, cb, il);
  6416. cb(cur, "attn_norm_2", il);
  6417. } else {
  6418. cur = attn_norm;
  6419. }
  6420. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6421. cb(cur, "wqkv", il);
  6422. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6423. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6424. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6425. cb(Qcur, "Qcur", il);
  6426. cb(Kcur, "Kcur", il);
  6427. cb(Vcur, "Vcur", il);
  6428. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6429. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6430. // using mode = 2 for neox mode
  6431. Qcur = ggml_rope_ext(
  6432. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6433. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6434. );
  6435. cb(Qcur, "Qcur", il);
  6436. Kcur = ggml_rope_ext(
  6437. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6438. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6439. );
  6440. cb(Kcur, "Kcur", il);
  6441. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6442. model.layers[il].wo, NULL,
  6443. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6444. }
  6445. if (il == n_layer - 1) {
  6446. // skip computing output for unused tokens
  6447. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6448. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6449. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6450. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6451. }
  6452. struct ggml_tensor * ffn_inp = cur;
  6453. // feed forward
  6454. {
  6455. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6456. model.layers[il].ffn_up, NULL,
  6457. NULL, NULL,
  6458. model.layers[il].ffn_down, NULL,
  6459. NULL,
  6460. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6461. cb(cur, "ffn_out", il);
  6462. }
  6463. cur = ggml_add(ctx0, cur, ffn_inp);
  6464. cb(cur, "l_out", il);
  6465. cur = ggml_add(ctx0, cur, inpL);
  6466. cb(cur, "l_out", il);
  6467. // input for next layer
  6468. inpL = cur;
  6469. }
  6470. cur = inpL;
  6471. // norm
  6472. cur = llm_build_norm(ctx0, cur, hparams,
  6473. model.output_norm,
  6474. model.output_norm_b,
  6475. LLM_NORM, cb, -1);
  6476. cb(cur, "result_norm", -1);
  6477. cur = ggml_mul_mat(ctx0, model.output, cur);
  6478. cb(cur, "result_output", -1);
  6479. ggml_build_forward_expand(gf, cur);
  6480. return gf;
  6481. }
  6482. struct ggml_cgraph * build_grok() {
  6483. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6484. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6485. int32_t n_tokens = this->n_tokens;
  6486. const int64_t n_embd_head = hparams.n_embd_head_v;
  6487. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6488. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6489. struct ggml_tensor * cur;
  6490. struct ggml_tensor * inpL;
  6491. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6492. // multiply by embedding_multiplier_scale of 78.38367176906169
  6493. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6494. // inp_pos - contains the positions
  6495. struct ggml_tensor * inp_pos = build_inp_pos();
  6496. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6497. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6498. for (int il = 0; il < n_layer; ++il) {
  6499. struct ggml_tensor * inpSA = inpL;
  6500. // norm
  6501. cur = llm_build_norm(ctx0, inpL, hparams,
  6502. model.layers[il].attn_norm, NULL,
  6503. LLM_NORM_RMS, cb, il);
  6504. cb(cur, "attn_norm", il);
  6505. // self-attention
  6506. {
  6507. // compute Q and K and RoPE them
  6508. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6509. cb(Qcur, "Qcur", il);
  6510. if (model.layers[il].bq) {
  6511. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6512. cb(Qcur, "Qcur", il);
  6513. }
  6514. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6515. cb(Kcur, "Kcur", il);
  6516. if (model.layers[il].bk) {
  6517. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6518. cb(Kcur, "Kcur", il);
  6519. }
  6520. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6521. cb(Vcur, "Vcur", il);
  6522. if (model.layers[il].bv) {
  6523. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6524. cb(Vcur, "Vcur", il);
  6525. }
  6526. Qcur = ggml_rope_ext(
  6527. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6528. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6529. ext_factor, attn_factor, beta_fast, beta_slow
  6530. );
  6531. cb(Qcur, "Qcur", il);
  6532. Kcur = ggml_rope_ext(
  6533. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6534. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6535. ext_factor, attn_factor, beta_fast, beta_slow
  6536. );
  6537. cb(Kcur, "Kcur", il);
  6538. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6539. model.layers[il].wo, model.layers[il].bo,
  6540. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6541. }
  6542. if (il == n_layer - 1) {
  6543. // skip computing output for unused tokens
  6544. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6545. n_tokens = n_outputs;
  6546. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6547. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6548. }
  6549. // Grok
  6550. // if attn_out_norm is present then apply it before adding the input
  6551. if (model.layers[il].attn_out_norm) {
  6552. cur = llm_build_norm(ctx0, cur, hparams,
  6553. model.layers[il].attn_out_norm, NULL,
  6554. LLM_NORM_RMS, cb, il);
  6555. cb(cur, "attn_out_norm", il);
  6556. }
  6557. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6558. cb(ffn_inp, "ffn_inp", il);
  6559. // feed-forward network
  6560. // MoE branch
  6561. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6562. model.layers[il].ffn_norm, NULL,
  6563. LLM_NORM_RMS, cb, il);
  6564. cb(cur, "ffn_norm", il);
  6565. cur = llm_build_moe_ffn(ctx0, cur,
  6566. model.layers[il].ffn_gate_inp,
  6567. model.layers[il].ffn_up_exps,
  6568. model.layers[il].ffn_gate_exps,
  6569. model.layers[il].ffn_down_exps,
  6570. n_expert, n_expert_used,
  6571. LLM_FFN_GELU, true,
  6572. cb, il);
  6573. cb(cur, "ffn_moe_out", il);
  6574. // Grok
  6575. // if layer_out_norm is present then apply it before adding the input
  6576. // Idea: maybe ffn_out_norm is a better name
  6577. if (model.layers[il].layer_out_norm) {
  6578. cur = llm_build_norm(ctx0, cur, hparams,
  6579. model.layers[il].layer_out_norm, NULL,
  6580. LLM_NORM_RMS, cb, il);
  6581. cb(cur, "layer_out_norm", il);
  6582. }
  6583. cur = ggml_add(ctx0, cur, ffn_inp);
  6584. cb(cur, "ffn_out", il);
  6585. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6586. if (layer_dir != nullptr) {
  6587. cur = ggml_add(ctx0, cur, layer_dir);
  6588. }
  6589. cb(cur, "l_out", il);
  6590. // input for next layer
  6591. inpL = cur;
  6592. }
  6593. cur = inpL;
  6594. cur = llm_build_norm(ctx0, cur, hparams,
  6595. model.output_norm, NULL,
  6596. LLM_NORM_RMS, cb, -1);
  6597. cb(cur, "result_norm", -1);
  6598. // lm_head
  6599. cur = ggml_mul_mat(ctx0, model.output, cur);
  6600. // Grok
  6601. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6602. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6603. cb(cur, "result_output", -1);
  6604. ggml_build_forward_expand(gf, cur);
  6605. return gf;
  6606. }
  6607. struct ggml_cgraph * build_dbrx() {
  6608. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6609. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6610. int32_t n_tokens = this->n_tokens;
  6611. const int64_t n_embd_head = hparams.n_embd_head_v;
  6612. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6613. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6614. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6615. struct ggml_tensor * cur;
  6616. struct ggml_tensor * inpL;
  6617. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6618. // inp_pos - contains the positions
  6619. struct ggml_tensor * inp_pos = build_inp_pos();
  6620. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6621. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6622. for (int il = 0; il < n_layer; ++il) {
  6623. struct ggml_tensor * inpSA = inpL;
  6624. // norm
  6625. cur = llm_build_norm(ctx0, inpL, hparams,
  6626. model.layers[il].attn_norm, NULL,
  6627. LLM_NORM, cb, il);
  6628. cb(cur, "attn_norm", il);
  6629. // self-attention
  6630. {
  6631. struct ggml_tensor * Qcur = nullptr;
  6632. struct ggml_tensor * Kcur = nullptr;
  6633. struct ggml_tensor * Vcur = nullptr;
  6634. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6635. cb(cur, "wqkv", il);
  6636. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6637. cb(cur, "wqkv_clamped", il);
  6638. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6639. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6640. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6641. cb(Qcur, "Qcur", il);
  6642. cb(Kcur, "Kcur", il);
  6643. cb(Vcur, "Vcur", il);
  6644. Qcur = ggml_rope_ext(
  6645. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6646. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6647. ext_factor, attn_factor, beta_fast, beta_slow
  6648. );
  6649. cb(Qcur, "Qcur", il);
  6650. Kcur = ggml_rope_ext(
  6651. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6652. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6653. ext_factor, attn_factor, beta_fast, beta_slow
  6654. );
  6655. cb(Kcur, "Kcur", il);
  6656. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6657. model.layers[il].wo, NULL,
  6658. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6659. }
  6660. if (il == n_layer - 1) {
  6661. // skip computing output for unused tokens
  6662. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6663. n_tokens = n_outputs;
  6664. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6665. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6666. }
  6667. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6668. cb(ffn_inp, "ffn_inp", il);
  6669. // feed-forward network
  6670. // MoE branch
  6671. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6672. model.layers[il].attn_out_norm, NULL,
  6673. LLM_NORM, cb, il);
  6674. cb(cur, "attn_out_norm", il);
  6675. cur = llm_build_moe_ffn(ctx0, cur,
  6676. model.layers[il].ffn_gate_inp,
  6677. model.layers[il].ffn_up_exps,
  6678. model.layers[il].ffn_gate_exps,
  6679. model.layers[il].ffn_down_exps,
  6680. n_expert, n_expert_used,
  6681. LLM_FFN_SILU, true,
  6682. cb, il);
  6683. cb(cur, "ffn_moe_out", il);
  6684. cur = ggml_add(ctx0, cur, ffn_inp);
  6685. cb(cur, "ffn_out", il);
  6686. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6687. if (layer_dir != nullptr) {
  6688. cur = ggml_add(ctx0, cur, layer_dir);
  6689. }
  6690. cb(cur, "l_out", il);
  6691. // input for next layer
  6692. inpL = cur;
  6693. }
  6694. cur = inpL;
  6695. cur = llm_build_norm(ctx0, cur, hparams,
  6696. model.output_norm, NULL,
  6697. LLM_NORM, cb, -1);
  6698. cb(cur, "result_norm", -1);
  6699. // lm_head
  6700. cur = ggml_mul_mat(ctx0, model.output, cur);
  6701. cb(cur, "result_output", -1);
  6702. ggml_build_forward_expand(gf, cur);
  6703. return gf;
  6704. }
  6705. struct ggml_cgraph * build_starcoder() {
  6706. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6707. const int64_t n_embd_head = hparams.n_embd_head_v;
  6708. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6709. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6710. struct ggml_tensor * cur;
  6711. struct ggml_tensor * inpL;
  6712. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6713. // inp_pos - contains the positions
  6714. struct ggml_tensor * inp_pos = build_inp_pos();
  6715. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6716. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6717. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6718. cb(pos, "pos_embd", -1);
  6719. inpL = ggml_add(ctx0, inpL, pos);
  6720. cb(inpL, "inpL", -1);
  6721. for (int il = 0; il < n_layer; ++il) {
  6722. cur = llm_build_norm(ctx0, inpL, hparams,
  6723. model.layers[il].attn_norm,
  6724. model.layers[il].attn_norm_b,
  6725. LLM_NORM, cb, il);
  6726. cb(cur, "attn_norm", il);
  6727. // self-attention
  6728. {
  6729. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6730. cb(cur, "wqkv", il);
  6731. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6732. cb(cur, "bqkv", il);
  6733. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6734. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6735. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6736. cb(Qcur, "Qcur", il);
  6737. cb(Kcur, "Kcur", il);
  6738. cb(Vcur, "Vcur", il);
  6739. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6740. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6741. model.layers[il].wo, model.layers[il].bo,
  6742. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6743. }
  6744. if (il == n_layer - 1) {
  6745. // skip computing output for unused tokens
  6746. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6747. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6748. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6749. }
  6750. // add the input
  6751. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6752. cb(ffn_inp, "ffn_inp", il);
  6753. // FF
  6754. {
  6755. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6756. model.layers[il].ffn_norm,
  6757. model.layers[il].ffn_norm_b,
  6758. LLM_NORM, cb, il);
  6759. cb(cur, "ffn_norm", il);
  6760. cur = llm_build_ffn(ctx0, cur,
  6761. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6762. NULL, NULL,
  6763. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6764. NULL,
  6765. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6766. cb(cur, "ffn_out", il);
  6767. }
  6768. inpL = ggml_add(ctx0, cur, ffn_inp);
  6769. cb(inpL, "l_out", il);
  6770. }
  6771. cur = llm_build_norm(ctx0, inpL, hparams,
  6772. model.output_norm,
  6773. model.output_norm_b,
  6774. LLM_NORM, cb, -1);
  6775. cb(cur, "result_norm", -1);
  6776. cur = ggml_mul_mat(ctx0, model.output, cur);
  6777. cb(cur, "result_output", -1);
  6778. ggml_build_forward_expand(gf, cur);
  6779. return gf;
  6780. }
  6781. struct ggml_cgraph * build_refact() {
  6782. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6783. const int64_t n_embd_head = hparams.n_embd_head_v;
  6784. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6785. struct ggml_tensor * cur;
  6786. struct ggml_tensor * inpL;
  6787. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6788. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6789. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6790. for (int il = 0; il < n_layer; ++il) {
  6791. struct ggml_tensor * inpSA = inpL;
  6792. cur = llm_build_norm(ctx0, inpL, hparams,
  6793. model.layers[il].attn_norm, NULL,
  6794. LLM_NORM_RMS, cb, il);
  6795. cb(cur, "attn_norm", il);
  6796. // self-attention
  6797. {
  6798. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6799. cb(Qcur, "Qcur", il);
  6800. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6801. cb(Kcur, "Kcur", il);
  6802. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6803. cb(Vcur, "Vcur", il);
  6804. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6805. cb(Kcur, "Kcur", il);
  6806. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6807. cb(Qcur, "Qcur", il);
  6808. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6809. model.layers[il].wo, NULL,
  6810. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6811. }
  6812. if (il == n_layer - 1) {
  6813. // skip computing output for unused tokens
  6814. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6815. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6816. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6817. }
  6818. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6819. cb(ffn_inp, "ffn_inp", il);
  6820. // feed-forward network
  6821. {
  6822. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6823. model.layers[il].ffn_norm, NULL,
  6824. LLM_NORM_RMS, cb, il);
  6825. cb(cur, "ffn_norm", il);
  6826. cur = llm_build_ffn(ctx0, cur,
  6827. model.layers[il].ffn_up, NULL,
  6828. model.layers[il].ffn_gate, NULL,
  6829. model.layers[il].ffn_down, NULL,
  6830. NULL,
  6831. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6832. cb(cur, "ffn_out", il);
  6833. }
  6834. cur = ggml_add(ctx0, cur, ffn_inp);
  6835. cb(cur, "l_out", il);
  6836. // input for next layer
  6837. inpL = cur;
  6838. }
  6839. cur = inpL;
  6840. cur = llm_build_norm(ctx0, cur, hparams,
  6841. model.output_norm, NULL,
  6842. LLM_NORM_RMS, cb, -1);
  6843. cb(cur, "result_norm", -1);
  6844. // lm_head
  6845. cur = ggml_mul_mat(ctx0, model.output, cur);
  6846. cb(cur, "result_output", -1);
  6847. ggml_build_forward_expand(gf, cur);
  6848. return gf;
  6849. }
  6850. struct ggml_cgraph * build_bert() {
  6851. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6852. const int64_t n_embd_head = hparams.n_embd_head_v;
  6853. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6854. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6855. struct ggml_tensor * cur;
  6856. struct ggml_tensor * inpL;
  6857. struct ggml_tensor * inp_pos = nullptr;
  6858. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  6859. inp_pos = build_inp_pos();
  6860. }
  6861. struct ggml_tensor * inp_mean = build_inp_mean();
  6862. struct ggml_tensor * inp_cls = build_inp_cls();
  6863. // construct input embeddings (token, type, position)
  6864. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6865. // token types are hardcoded to zero ("Sentence A")
  6866. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6867. inpL = ggml_add(ctx0, inpL, type_row0);
  6868. if (model.arch == LLM_ARCH_BERT) {
  6869. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6870. }
  6871. cb(inpL, "inp_embd", -1);
  6872. // embed layer norm
  6873. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6874. cb(inpL, "inp_norm", -1);
  6875. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6876. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6877. // iterate layers
  6878. for (int il = 0; il < n_layer; ++il) {
  6879. struct ggml_tensor * cur = inpL;
  6880. struct ggml_tensor * Qcur;
  6881. struct ggml_tensor * Kcur;
  6882. struct ggml_tensor * Vcur;
  6883. // self-attention
  6884. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  6885. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6886. cb(Qcur, "Qcur", il);
  6887. if (model.layers[il].attn_q_norm) {
  6888. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6889. model.layers[il].attn_q_norm,
  6890. model.layers[il].attn_q_norm_b,
  6891. LLM_NORM, cb, il);
  6892. }
  6893. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6894. cb(Kcur, "Kcur", il);
  6895. if (model.layers[il].attn_k_norm) {
  6896. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  6897. model.layers[il].attn_k_norm,
  6898. model.layers[il].attn_k_norm_b,
  6899. LLM_NORM, cb, il);
  6900. }
  6901. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6902. cb(Vcur, "Vcur", il);
  6903. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6904. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6905. } else {
  6906. // compute Q and K and RoPE them
  6907. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6908. cb(cur, "wqkv", il);
  6909. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6910. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6911. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6912. cb(Qcur, "Qcur", il);
  6913. cb(Kcur, "Kcur", il);
  6914. cb(Vcur, "Vcur", il);
  6915. Qcur = ggml_rope_ext(
  6916. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6917. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6918. ext_factor, attn_factor, beta_fast, beta_slow
  6919. );
  6920. cb(Qcur, "Qcur", il);
  6921. Kcur = ggml_rope_ext(
  6922. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6923. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6924. ext_factor, attn_factor, beta_fast, beta_slow
  6925. );
  6926. cb(Kcur, "Kcur", il);
  6927. }
  6928. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6929. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6930. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6931. cb(kq, "kq", il);
  6932. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6933. cb(kq, "kq_soft_max_ext", il);
  6934. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6935. cb(v, "v", il);
  6936. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6937. cb(kqv, "kqv", il);
  6938. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6939. cb(kqv_merged, "kqv_merged", il);
  6940. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6941. cb(cur, "kqv_merged_cont", il);
  6942. ggml_build_forward_expand(gf, cur);
  6943. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6944. if (model.layers[il].bo) {
  6945. cb(cur, "kqv_wo", il);
  6946. }
  6947. if (model.layers[il].bo) {
  6948. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6949. }
  6950. cb(cur, "kqv_out", il);
  6951. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6952. // skip computing output for unused tokens
  6953. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6954. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6955. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6956. }
  6957. // re-add the layer input
  6958. cur = ggml_add(ctx0, cur, inpL);
  6959. // attention layer norm
  6960. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6961. struct ggml_tensor * ffn_inp = cur;
  6962. cb(ffn_inp, "ffn_inp", il);
  6963. // feed-forward network
  6964. if (model.arch == LLM_ARCH_BERT) {
  6965. cur = llm_build_ffn(ctx0, cur,
  6966. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6967. NULL, NULL,
  6968. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6969. NULL,
  6970. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6971. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  6972. cur = llm_build_ffn(ctx0, cur,
  6973. model.layers[il].ffn_up, NULL,
  6974. model.layers[il].ffn_gate, NULL,
  6975. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6976. NULL,
  6977. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  6978. } else {
  6979. cur = llm_build_ffn(ctx0, cur,
  6980. model.layers[il].ffn_up, NULL,
  6981. model.layers[il].ffn_gate, NULL,
  6982. model.layers[il].ffn_down, NULL,
  6983. NULL,
  6984. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6985. }
  6986. cb(cur, "ffn_out", il);
  6987. // attentions bypass the intermediate layer
  6988. cur = ggml_add(ctx0, cur, ffn_inp);
  6989. // output layer norm
  6990. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6991. // input for next layer
  6992. inpL = cur;
  6993. }
  6994. // final output
  6995. cur = inpL;
  6996. cb(cur, "result_embd", -1);
  6997. // pooling layer
  6998. switch (pooling_type) {
  6999. case LLAMA_POOLING_TYPE_NONE:
  7000. {
  7001. // nop
  7002. } break;
  7003. case LLAMA_POOLING_TYPE_MEAN:
  7004. {
  7005. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7006. cb(cur, "result_embd_pooled", -1);
  7007. } break;
  7008. case LLAMA_POOLING_TYPE_CLS:
  7009. {
  7010. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7011. cb(cur, "result_embd_pooled", -1);
  7012. } break;
  7013. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7014. {
  7015. GGML_ASSERT(false && "Invalid pooling type");
  7016. } break;
  7017. }
  7018. ggml_build_forward_expand(gf, cur);
  7019. return gf;
  7020. }
  7021. struct ggml_cgraph * build_bloom() {
  7022. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7023. const int64_t n_embd_head = hparams.n_embd_head_v;
  7024. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7025. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7026. struct ggml_tensor * cur;
  7027. struct ggml_tensor * inpL;
  7028. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7029. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7030. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7031. inpL = llm_build_norm(ctx0, inpL, hparams,
  7032. model.tok_norm,
  7033. model.tok_norm_b,
  7034. LLM_NORM, cb, -1);
  7035. cb(inpL, "inp_norm", -1);
  7036. for (int il = 0; il < n_layer; ++il) {
  7037. cur = llm_build_norm(ctx0, inpL, hparams,
  7038. model.layers[il].attn_norm,
  7039. model.layers[il].attn_norm_b,
  7040. LLM_NORM, cb, il);
  7041. cb(cur, "attn_norm", il);
  7042. // self-attention
  7043. {
  7044. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7045. cb(cur, "wqkv", il);
  7046. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7047. cb(cur, "bqkv", il);
  7048. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7049. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7050. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7051. cb(Qcur, "Qcur", il);
  7052. cb(Kcur, "Kcur", il);
  7053. cb(Vcur, "Vcur", il);
  7054. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7055. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7056. model.layers[il].wo, model.layers[il].bo,
  7057. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7058. }
  7059. if (il == n_layer - 1) {
  7060. // skip computing output for unused tokens
  7061. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7062. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7063. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7064. }
  7065. // Add the input
  7066. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7067. cb(ffn_inp, "ffn_inp", il);
  7068. // FF
  7069. {
  7070. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7071. model.layers[il].ffn_norm,
  7072. model.layers[il].ffn_norm_b,
  7073. LLM_NORM, cb, il);
  7074. cb(cur, "ffn_norm", il);
  7075. cur = llm_build_ffn(ctx0, cur,
  7076. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7077. NULL, NULL,
  7078. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7079. NULL,
  7080. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7081. cb(cur, "ffn_out", il);
  7082. }
  7083. inpL = ggml_add(ctx0, cur, ffn_inp);
  7084. cb(inpL, "l_out", il);
  7085. }
  7086. cur = llm_build_norm(ctx0, inpL, hparams,
  7087. model.output_norm,
  7088. model.output_norm_b,
  7089. LLM_NORM, cb, -1);
  7090. cb(cur, "result_norm", -1);
  7091. cur = ggml_mul_mat(ctx0, model.output, cur);
  7092. cb(cur, "result_output", -1);
  7093. ggml_build_forward_expand(gf, cur);
  7094. return gf;
  7095. }
  7096. struct ggml_cgraph * build_mpt() {
  7097. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7098. const int64_t n_embd_head = hparams.n_embd_head_v;
  7099. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7100. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7101. struct ggml_tensor * cur;
  7102. struct ggml_tensor * pos;
  7103. struct ggml_tensor * inpL;
  7104. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7105. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7106. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7107. if (model.pos_embd) {
  7108. // inp_pos - contains the positions
  7109. struct ggml_tensor * inp_pos = build_inp_pos();
  7110. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7111. cb(pos, "pos_embd", -1);
  7112. inpL = ggml_add(ctx0, inpL, pos);
  7113. cb(inpL, "inpL", -1);
  7114. }
  7115. for (int il = 0; il < n_layer; ++il) {
  7116. struct ggml_tensor * attn_norm;
  7117. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7118. model.layers[il].attn_norm,
  7119. model.layers[il].attn_norm_b,
  7120. LLM_NORM, cb, il);
  7121. cb(attn_norm, "attn_norm", il);
  7122. // self-attention
  7123. {
  7124. cur = attn_norm;
  7125. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7126. cb(cur, "wqkv", il);
  7127. if (model.layers[il].bqkv){
  7128. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7129. cb(cur, "bqkv", il);
  7130. }
  7131. if (hparams.f_clamp_kqv > 0.0f) {
  7132. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7133. cb(cur, "wqkv_clamped", il);
  7134. }
  7135. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7136. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7137. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7138. cb(Qcur, "Qcur", il);
  7139. cb(Kcur, "Kcur", il);
  7140. cb(Vcur, "Vcur", il);
  7141. // Q/K Layernorm
  7142. if (model.layers[il].attn_q_norm) {
  7143. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7144. model.layers[il].attn_q_norm,
  7145. model.layers[il].attn_q_norm_b,
  7146. LLM_NORM, cb, il);
  7147. cb(Qcur, "Qcur", il);
  7148. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7149. model.layers[il].attn_k_norm,
  7150. model.layers[il].attn_k_norm_b,
  7151. LLM_NORM, cb, il);
  7152. cb(Kcur, "Kcur", il);
  7153. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7154. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7155. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7156. model.layers[il].wo, model.layers[il].bo,
  7157. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7158. } else {
  7159. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7160. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7161. model.layers[il].wo, model.layers[il].bo,
  7162. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7163. }
  7164. }
  7165. if (il == n_layer - 1) {
  7166. // skip computing output for unused tokens
  7167. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7168. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7169. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7170. }
  7171. // Add the input
  7172. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7173. cb(ffn_inp, "ffn_inp", il);
  7174. // feed forward
  7175. {
  7176. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7177. model.layers[il].ffn_norm,
  7178. model.layers[il].ffn_norm_b,
  7179. LLM_NORM, cb, il);
  7180. cb(cur, "ffn_norm", il);
  7181. cur = llm_build_ffn(ctx0, cur,
  7182. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7183. NULL, NULL,
  7184. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7185. model.layers[il].ffn_act,
  7186. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7187. cb(cur, "ffn_out", il);
  7188. }
  7189. cur = ggml_add(ctx0, cur, ffn_inp);
  7190. cb(cur, "l_out", il);
  7191. // input for next layer
  7192. inpL = cur;
  7193. }
  7194. cur = inpL;
  7195. cur = llm_build_norm(ctx0, cur, hparams,
  7196. model.output_norm,
  7197. model.output_norm_b,
  7198. LLM_NORM, cb, -1);
  7199. cb(cur, "result_norm", -1);
  7200. cur = ggml_mul_mat(ctx0, model.output, cur);
  7201. cb(cur, "result_output", -1);
  7202. ggml_build_forward_expand(gf, cur);
  7203. return gf;
  7204. }
  7205. struct ggml_cgraph * build_stablelm() {
  7206. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7207. const int64_t n_embd_head = hparams.n_embd_head_v;
  7208. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7209. struct ggml_tensor * cur;
  7210. struct ggml_tensor * inpL;
  7211. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7212. // inp_pos - contains the positions
  7213. struct ggml_tensor * inp_pos = build_inp_pos();
  7214. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7215. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7216. for (int il = 0; il < n_layer; ++il) {
  7217. // norm
  7218. cur = llm_build_norm(ctx0, inpL, hparams,
  7219. model.layers[il].attn_norm,
  7220. model.layers[il].attn_norm_b,
  7221. LLM_NORM, cb, il);
  7222. cb(cur, "attn_norm", il);
  7223. struct ggml_tensor * inpSA = cur;
  7224. // self-attention
  7225. {
  7226. // compute Q and K and RoPE them
  7227. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7228. cb(Qcur, "Qcur", il);
  7229. if (model.layers[il].bq) {
  7230. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7231. cb(Qcur, "Qcur", il);
  7232. }
  7233. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7234. cb(Kcur, "Kcur", il);
  7235. if (model.layers[il].bk) {
  7236. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7237. cb(Kcur, "Kcur", il);
  7238. }
  7239. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7240. cb(Vcur, "Vcur", il);
  7241. if (model.layers[il].bv) {
  7242. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7243. cb(Vcur, "Vcur", il);
  7244. }
  7245. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7246. cb(Qcur, "Qcur", il);
  7247. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7248. cb(Kcur, "Kcur", il);
  7249. if (model.layers[il].attn_q_norm) {
  7250. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7251. model.layers[il].attn_q_norm,
  7252. NULL,
  7253. LLM_NORM, cb, il);
  7254. cb(Qcur, "Qcur", il);
  7255. }
  7256. if (model.layers[il].attn_k_norm) {
  7257. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7258. model.layers[il].attn_k_norm,
  7259. NULL,
  7260. LLM_NORM, cb, il);
  7261. cb(Kcur, "Kcur", il);
  7262. }
  7263. Qcur = ggml_rope_ext(
  7264. ctx0, Qcur, inp_pos, nullptr,
  7265. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7266. ext_factor, attn_factor, beta_fast, beta_slow
  7267. );
  7268. cb(Qcur, "Qcur", il);
  7269. Kcur = ggml_rope_ext(
  7270. ctx0, Kcur, inp_pos, nullptr,
  7271. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7272. ext_factor, attn_factor, beta_fast, beta_slow
  7273. );
  7274. cb(Kcur, "Kcur", il);
  7275. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7276. model.layers[il].wo, NULL,
  7277. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7278. }
  7279. if (il == n_layer - 1) {
  7280. // skip computing output for unused tokens
  7281. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7282. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7283. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7284. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7285. }
  7286. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7287. cb(ffn_inp, "ffn_inp", il);
  7288. // feed-forward network
  7289. {
  7290. if (model.layers[il].ffn_norm) {
  7291. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7292. model.layers[il].ffn_norm,
  7293. model.layers[il].ffn_norm_b,
  7294. LLM_NORM, cb, il);
  7295. cb(cur, "ffn_norm", il);
  7296. } else {
  7297. // parallel residual
  7298. cur = inpSA;
  7299. }
  7300. cur = llm_build_ffn(ctx0, cur,
  7301. model.layers[il].ffn_up, NULL,
  7302. model.layers[il].ffn_gate, NULL,
  7303. model.layers[il].ffn_down, NULL,
  7304. NULL,
  7305. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7306. cb(cur, "ffn_out", il);
  7307. }
  7308. cur = ggml_add(ctx0, cur, ffn_inp);
  7309. cb(cur, "l_out", il);
  7310. // input for next layer
  7311. inpL = cur;
  7312. }
  7313. cur = inpL;
  7314. cur = llm_build_norm(ctx0, cur, hparams,
  7315. model.output_norm,
  7316. model.output_norm_b,
  7317. LLM_NORM, cb, -1);
  7318. cb(cur, "result_norm", -1);
  7319. // lm_head
  7320. cur = ggml_mul_mat(ctx0, model.output, cur);
  7321. cb(cur, "result_output", -1);
  7322. ggml_build_forward_expand(gf, cur);
  7323. return gf;
  7324. }
  7325. struct ggml_cgraph * build_qwen() {
  7326. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7327. const int64_t n_embd_head = hparams.n_embd_head_v;
  7328. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7329. struct ggml_tensor * cur;
  7330. struct ggml_tensor * inpL;
  7331. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7332. // inp_pos - contains the positions
  7333. struct ggml_tensor * inp_pos = build_inp_pos();
  7334. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7335. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7336. for (int il = 0; il < n_layer; ++il) {
  7337. struct ggml_tensor * inpSA = inpL;
  7338. cur = llm_build_norm(ctx0, inpL, hparams,
  7339. model.layers[il].attn_norm, NULL,
  7340. LLM_NORM_RMS, cb, il);
  7341. cb(cur, "attn_norm", il);
  7342. // self-attention
  7343. {
  7344. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7345. cb(cur, "wqkv", il);
  7346. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7347. cb(cur, "bqkv", il);
  7348. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7349. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7350. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7351. cb(Qcur, "Qcur", il);
  7352. cb(Kcur, "Kcur", il);
  7353. cb(Vcur, "Vcur", il);
  7354. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7355. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7356. // using mode = 2 for neox mode
  7357. Qcur = ggml_rope_ext(
  7358. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7359. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7360. );
  7361. cb(Qcur, "Qcur", il);
  7362. Kcur = ggml_rope_ext(
  7363. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7364. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7365. );
  7366. cb(Kcur, "Kcur", il);
  7367. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7368. model.layers[il].wo, NULL,
  7369. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7370. }
  7371. if (il == n_layer - 1) {
  7372. // skip computing output for unused tokens
  7373. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7374. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7375. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7376. }
  7377. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7378. cb(ffn_inp, "ffn_inp", il);
  7379. // feed-forward forward
  7380. {
  7381. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7382. model.layers[il].ffn_norm, NULL,
  7383. LLM_NORM_RMS, cb, il);
  7384. cb(cur, "ffn_norm", il);
  7385. cur = llm_build_ffn(ctx0, cur,
  7386. model.layers[il].ffn_up, NULL,
  7387. model.layers[il].ffn_gate, NULL,
  7388. model.layers[il].ffn_down, NULL,
  7389. NULL,
  7390. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7391. cb(cur, "ffn_out", il);
  7392. }
  7393. cur = ggml_add(ctx0, cur, ffn_inp);
  7394. cb(cur, "l_out", il);
  7395. // input for next layer
  7396. inpL = cur;
  7397. }
  7398. cur = inpL;
  7399. cur = llm_build_norm(ctx0, cur, hparams,
  7400. model.output_norm, NULL,
  7401. LLM_NORM_RMS, cb, -1);
  7402. cb(cur, "result_norm", -1);
  7403. // lm_head
  7404. cur = ggml_mul_mat(ctx0, model.output, cur);
  7405. cb(cur, "result_output", -1);
  7406. ggml_build_forward_expand(gf, cur);
  7407. return gf;
  7408. }
  7409. struct ggml_cgraph * build_qwen2() {
  7410. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7411. const int64_t n_embd_head = hparams.n_embd_head_v;
  7412. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7413. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7414. struct ggml_tensor * cur;
  7415. struct ggml_tensor * inpL;
  7416. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7417. // inp_pos - contains the positions
  7418. struct ggml_tensor * inp_pos = build_inp_pos();
  7419. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7420. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7421. for (int il = 0; il < n_layer; ++il) {
  7422. struct ggml_tensor * inpSA = inpL;
  7423. // norm
  7424. cur = llm_build_norm(ctx0, inpL, hparams,
  7425. model.layers[il].attn_norm, NULL,
  7426. LLM_NORM_RMS, cb, il);
  7427. cb(cur, "attn_norm", il);
  7428. // self-attention
  7429. {
  7430. // compute Q and K and RoPE them
  7431. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7432. cb(Qcur, "Qcur", il);
  7433. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7434. cb(Qcur, "Qcur", il);
  7435. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7436. cb(Kcur, "Kcur", il);
  7437. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7438. cb(Kcur, "Kcur", il);
  7439. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7440. cb(Vcur, "Vcur", il);
  7441. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7442. cb(Vcur, "Vcur", il);
  7443. Qcur = ggml_rope_ext(
  7444. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7445. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7446. ext_factor, attn_factor, beta_fast, beta_slow
  7447. );
  7448. cb(Qcur, "Qcur", il);
  7449. Kcur = ggml_rope_ext(
  7450. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7451. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7452. ext_factor, attn_factor, beta_fast, beta_slow
  7453. );
  7454. cb(Kcur, "Kcur", il);
  7455. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7456. model.layers[il].wo, model.layers[il].bo,
  7457. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7458. }
  7459. if (il == n_layer - 1) {
  7460. // skip computing output for unused tokens
  7461. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7462. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7463. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7464. }
  7465. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7466. cb(ffn_inp, "ffn_inp", il);
  7467. // feed-forward network
  7468. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7469. model.layers[il].ffn_norm, NULL,
  7470. LLM_NORM_RMS, cb, il);
  7471. cb(cur, "ffn_norm", il);
  7472. cur = llm_build_ffn(ctx0, cur,
  7473. model.layers[il].ffn_up, NULL,
  7474. model.layers[il].ffn_gate, NULL,
  7475. model.layers[il].ffn_down, NULL,
  7476. NULL,
  7477. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7478. cb(cur, "ffn_out", il);
  7479. cur = ggml_add(ctx0, cur, ffn_inp);
  7480. cb(cur, "l_out", il);
  7481. // input for next layer
  7482. inpL = cur;
  7483. }
  7484. cur = inpL;
  7485. cur = llm_build_norm(ctx0, cur, hparams,
  7486. model.output_norm, NULL,
  7487. LLM_NORM_RMS, cb, -1);
  7488. cb(cur, "result_norm", -1);
  7489. // lm_head
  7490. cur = ggml_mul_mat(ctx0, model.output, cur);
  7491. cb(cur, "result_output", -1);
  7492. ggml_build_forward_expand(gf, cur);
  7493. return gf;
  7494. }
  7495. struct ggml_cgraph * build_qwen2moe() {
  7496. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7497. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7498. int32_t n_tokens = this->n_tokens;
  7499. const int64_t n_embd_head = hparams.n_embd_head_v;
  7500. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7501. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7502. struct ggml_tensor * cur;
  7503. struct ggml_tensor * inpL;
  7504. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7505. // inp_pos - contains the positions
  7506. struct ggml_tensor * inp_pos = build_inp_pos();
  7507. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7508. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7509. for (int il = 0; il < n_layer; ++il) {
  7510. struct ggml_tensor * inpSA = inpL;
  7511. // norm
  7512. cur = llm_build_norm(ctx0, inpL, hparams,
  7513. model.layers[il].attn_norm, NULL,
  7514. LLM_NORM_RMS, cb, il);
  7515. cb(cur, "attn_norm", il);
  7516. // self_attention
  7517. {
  7518. // compute Q and K and RoPE them
  7519. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7520. cb(Qcur, "Qcur", il);
  7521. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7522. cb(Qcur, "Qcur", il);
  7523. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7524. cb(Kcur, "Kcur", il);
  7525. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7526. cb(Kcur, "Kcur", il);
  7527. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7528. cb(Vcur, "Vcur", il);
  7529. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7530. cb(Vcur, "Vcur", il);
  7531. Qcur = ggml_rope_ext(
  7532. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7533. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7534. ext_factor, attn_factor, beta_fast, beta_slow
  7535. );
  7536. cb(Qcur, "Qcur", il);
  7537. Kcur = ggml_rope_ext(
  7538. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7539. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7540. ext_factor, attn_factor, beta_fast, beta_slow
  7541. );
  7542. cb(Kcur, "Kcur", il);
  7543. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7544. model.layers[il].wo, model.layers[il].bo,
  7545. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7546. }
  7547. if (il == n_layer - 1) {
  7548. // skip computing output for unused tokens
  7549. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7550. n_tokens = n_outputs;
  7551. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7552. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7553. }
  7554. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7555. cb(ffn_inp, "ffn_inp", il);
  7556. // MoE branch
  7557. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7558. model.layers[il].ffn_norm, NULL,
  7559. LLM_NORM_RMS, cb, il);
  7560. cb(cur, "ffn_norm", il);
  7561. ggml_tensor * moe_out =
  7562. llm_build_moe_ffn(ctx0, cur,
  7563. model.layers[il].ffn_gate_inp,
  7564. model.layers[il].ffn_up_exps,
  7565. model.layers[il].ffn_gate_exps,
  7566. model.layers[il].ffn_down_exps,
  7567. n_expert, n_expert_used,
  7568. LLM_FFN_SILU, false,
  7569. cb, il);
  7570. cb(cur, "ffn_moe_out", il);
  7571. // FFN shared expert
  7572. {
  7573. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7574. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7575. // sigmoid
  7576. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7577. cb(cur_gate, "ffn_shexp_gate", il);
  7578. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7579. model.layers[il].ffn_up_shexp, NULL,
  7580. model.layers[il].ffn_gate_shexp, NULL,
  7581. model.layers[il].ffn_down_shexp, NULL,
  7582. NULL,
  7583. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7584. cb(cur_ffn, "ffn_shexp", il);
  7585. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7586. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7587. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7588. cb(moe_out, "ffn_out", il);
  7589. cur = moe_out;
  7590. }
  7591. cur = ggml_add(ctx0, cur, ffn_inp);
  7592. cb(cur, "l_out", il);
  7593. // input for next layer
  7594. inpL = cur;
  7595. }
  7596. cur = inpL;
  7597. cur = llm_build_norm(ctx0, cur, hparams,
  7598. model.output_norm, NULL,
  7599. LLM_NORM_RMS, cb, -1);
  7600. cb(cur, "result_norm", -1);
  7601. // lm_head
  7602. cur = ggml_mul_mat(ctx0, model.output, cur);
  7603. cb(cur, "result_output", -1);
  7604. ggml_build_forward_expand(gf, cur);
  7605. return gf;
  7606. }
  7607. struct ggml_cgraph * build_phi2() {
  7608. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7609. const int64_t n_embd_head = hparams.n_embd_head_v;
  7610. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7611. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7612. struct ggml_tensor * cur;
  7613. struct ggml_tensor * attn_norm_output;
  7614. struct ggml_tensor * ffn_output;
  7615. struct ggml_tensor * inpL;
  7616. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7617. // inp_pos - contains the positions
  7618. struct ggml_tensor * inp_pos = build_inp_pos();
  7619. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7620. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7621. for (int il = 0; il < n_layer; ++il) {
  7622. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7623. model.layers[il].attn_norm,
  7624. model.layers[il].attn_norm_b,
  7625. LLM_NORM, cb, il);
  7626. cb(attn_norm_output, "attn_norm", il);
  7627. // self-attention
  7628. {
  7629. struct ggml_tensor * Qcur = nullptr;
  7630. struct ggml_tensor * Kcur = nullptr;
  7631. struct ggml_tensor * Vcur = nullptr;
  7632. if (model.layers[il].wqkv) {
  7633. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7634. cb(cur, "wqkv", il);
  7635. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7636. cb(cur, "bqkv", il);
  7637. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7638. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7639. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7640. } else {
  7641. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7642. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7643. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7644. }
  7645. cb(Qcur, "Qcur", il);
  7646. cb(Kcur, "Kcur", il);
  7647. cb(Vcur, "Vcur", il);
  7648. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7649. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7650. Qcur = ggml_rope_ext(
  7651. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7652. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7653. );
  7654. cb(Qcur, "Qcur", il);
  7655. // with phi2, we scale the Q to avoid precision issues
  7656. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7657. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7658. cb(Qcur, "Qcur", il);
  7659. Kcur = ggml_rope_ext(
  7660. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7661. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7662. );
  7663. cb(Kcur, "Kcur", il);
  7664. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7665. model.layers[il].wo, model.layers[il].bo,
  7666. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7667. }
  7668. if (il == n_layer - 1) {
  7669. // skip computing output for unused tokens
  7670. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7671. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7672. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7673. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7674. }
  7675. // FF
  7676. {
  7677. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7678. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7679. NULL, NULL,
  7680. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7681. NULL,
  7682. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7683. cb(ffn_output, "ffn_out", il);
  7684. }
  7685. cur = ggml_add(ctx0, cur, ffn_output);
  7686. cb(cur, "l_out", il);
  7687. cur = ggml_add(ctx0, cur, inpL);
  7688. cb(cur, "l_out", il);
  7689. inpL = cur;
  7690. }
  7691. cur = llm_build_norm(ctx0, inpL, hparams,
  7692. model.output_norm,
  7693. model.output_norm_b,
  7694. LLM_NORM, cb, -1);
  7695. cb(cur, "result_norm", -1);
  7696. cur = ggml_mul_mat(ctx0, model.output, cur);
  7697. cb(cur, "result_output_no_bias", -1);
  7698. cur = ggml_add(ctx0, cur, model.output_b);
  7699. cb(cur, "result_output", -1);
  7700. ggml_build_forward_expand(gf, cur);
  7701. return gf;
  7702. }
  7703. struct ggml_cgraph * build_phi3() {
  7704. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7705. const int64_t n_embd_head = hparams.n_embd_head_v;
  7706. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7707. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7708. struct ggml_tensor * cur;
  7709. struct ggml_tensor * inpL;
  7710. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7711. // inp_pos - contains the positions
  7712. struct ggml_tensor * inp_pos = build_inp_pos();
  7713. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7714. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7715. for (int il = 0; il < n_layer; ++il) {
  7716. auto residual = inpL;
  7717. // self-attention
  7718. {
  7719. // rope freq factors for 128k context
  7720. struct ggml_tensor * rope_factors = build_rope_factors(il);
  7721. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7722. model.layers[il].attn_norm,
  7723. NULL,
  7724. LLM_NORM_RMS, cb, il);
  7725. cb(attn_norm_output, "attn_norm", il);
  7726. struct ggml_tensor * Qcur = nullptr;
  7727. struct ggml_tensor * Kcur = nullptr;
  7728. struct ggml_tensor * Vcur = nullptr;
  7729. if (model.layers[il].wqkv) {
  7730. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7731. cb(cur, "wqkv", il);
  7732. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7733. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7734. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7735. }
  7736. else {
  7737. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7738. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7739. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7740. }
  7741. cb(Qcur, "Qcur", il);
  7742. cb(Kcur, "Kcur", il);
  7743. cb(Vcur, "Vcur", il);
  7744. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7745. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7746. Qcur = ggml_rope_ext(
  7747. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  7748. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7749. );
  7750. cb(Qcur, "Qcur", il);
  7751. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7752. cb(Qcur, "Qcur", il);
  7753. Kcur = ggml_rope_ext(
  7754. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  7755. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7756. );
  7757. cb(Kcur, "Kcur", il);
  7758. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7759. model.layers[il].wo, model.layers[il].bo,
  7760. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7761. }
  7762. if (il == n_layer - 1) {
  7763. // skip computing output for unused tokens
  7764. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7765. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7766. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7767. }
  7768. cur = ggml_add(ctx0, cur, residual);
  7769. residual = cur;
  7770. cur = llm_build_norm(ctx0, cur, hparams,
  7771. model.layers[il].ffn_norm, NULL,
  7772. LLM_NORM_RMS, cb, il);
  7773. cb(cur, "ffn_norm", il);
  7774. // FF
  7775. // special-case: the up and gate tensors are merged into a single tensor
  7776. // TOOD: support into llm_build_ffn
  7777. {
  7778. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7779. cb(up, "ffn_up", il);
  7780. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7781. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7782. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7783. cb(y, "ffn_gate", il);
  7784. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7785. cb(down, "ffn_down", il);
  7786. cur = down;
  7787. cb(cur, "ffn_out", il);
  7788. }
  7789. cur = ggml_add(ctx0, residual, cur);
  7790. cb(cur, "l_out", il);
  7791. inpL = cur;
  7792. }
  7793. cur = llm_build_norm(ctx0, inpL, hparams,
  7794. model.output_norm,
  7795. NULL,
  7796. LLM_NORM_RMS, cb, -1);
  7797. cb(cur, "result_norm", -1);
  7798. cur = ggml_mul_mat(ctx0, model.output, cur);
  7799. cb(cur, "result_output", -1);
  7800. ggml_build_forward_expand(gf, cur);
  7801. return gf;
  7802. }
  7803. struct ggml_cgraph * build_plamo() {
  7804. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7805. const int64_t n_embd_head = hparams.n_embd_head_v;
  7806. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7807. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7808. struct ggml_tensor * cur;
  7809. struct ggml_tensor * inpL;
  7810. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7811. // inp_pos - contains the positions
  7812. struct ggml_tensor * inp_pos = build_inp_pos();
  7813. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7814. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7815. for (int il = 0; il < n_layer; ++il) {
  7816. // norm
  7817. cur = llm_build_norm(ctx0, inpL, hparams,
  7818. model.layers[il].attn_norm, NULL,
  7819. LLM_NORM_RMS, cb, il);
  7820. cb(cur, "attn_norm", il);
  7821. struct ggml_tensor * attention_norm = cur;
  7822. // self-attention
  7823. {
  7824. // compute Q and K and RoPE them
  7825. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7826. cb(Qcur, "Qcur", il);
  7827. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7828. cb(Kcur, "Kcur", il);
  7829. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7830. cb(Vcur, "Vcur", il);
  7831. Qcur = ggml_rope_ext(
  7832. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  7833. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7834. ext_factor, attn_factor, beta_fast, beta_slow);
  7835. cb(Qcur, "Qcur", il);
  7836. Kcur = ggml_rope_ext(
  7837. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  7838. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7839. ext_factor, attn_factor, beta_fast, beta_slow);
  7840. cb(Kcur, "Kcur", il);
  7841. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7842. model.layers[il].wo, NULL,
  7843. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7844. }
  7845. struct ggml_tensor * sa_out = cur;
  7846. cur = attention_norm;
  7847. if (il == n_layer - 1) {
  7848. // skip computing output for unused tokens
  7849. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7850. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7851. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7852. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7853. }
  7854. // feed-forward network
  7855. {
  7856. cur = llm_build_ffn(ctx0, cur,
  7857. model.layers[il].ffn_up, NULL,
  7858. model.layers[il].ffn_gate, NULL,
  7859. model.layers[il].ffn_down, NULL,
  7860. NULL,
  7861. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7862. cb(cur, "ffn_out", il);
  7863. }
  7864. cur = ggml_add(ctx0, cur, sa_out);
  7865. cb(cur, "l_out", il);
  7866. cur = ggml_add(ctx0, cur, inpL);
  7867. cb(cur, "l_out", il);
  7868. // input for next layer
  7869. inpL = cur;
  7870. }
  7871. cur = inpL;
  7872. cur = llm_build_norm(ctx0, cur, hparams,
  7873. model.output_norm, NULL,
  7874. LLM_NORM_RMS, cb, -1);
  7875. cb(cur, "result_norm", -1);
  7876. // lm_head
  7877. cur = ggml_mul_mat(ctx0, model.output, cur);
  7878. cb(cur, "result_output", -1);
  7879. ggml_build_forward_expand(gf, cur);
  7880. return gf;
  7881. }
  7882. struct ggml_cgraph * build_gpt2() {
  7883. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7884. const int64_t n_embd_head = hparams.n_embd_head_v;
  7885. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7886. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7887. struct ggml_tensor * cur;
  7888. struct ggml_tensor * pos;
  7889. struct ggml_tensor * inpL;
  7890. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7891. // inp_pos - contains the positions
  7892. struct ggml_tensor * inp_pos = build_inp_pos();
  7893. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7894. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7895. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7896. cb(pos, "pos_embd", -1);
  7897. inpL = ggml_add(ctx0, inpL, pos);
  7898. cb(inpL, "inpL", -1);
  7899. for (int il = 0; il < n_layer; ++il) {
  7900. cur = llm_build_norm(ctx0, inpL, hparams,
  7901. model.layers[il].attn_norm,
  7902. model.layers[il].attn_norm_b,
  7903. LLM_NORM, cb, il);
  7904. cb(cur, "attn_norm", il);
  7905. // self-attention
  7906. {
  7907. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7908. cb(cur, "wqkv", il);
  7909. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7910. cb(cur, "bqkv", il);
  7911. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7912. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7913. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7914. cb(Qcur, "Qcur", il);
  7915. cb(Kcur, "Kcur", il);
  7916. cb(Vcur, "Vcur", il);
  7917. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7918. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7919. model.layers[il].wo, model.layers[il].bo,
  7920. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7921. }
  7922. if (il == n_layer - 1) {
  7923. // skip computing output for unused tokens
  7924. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7925. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7926. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7927. }
  7928. // add the input
  7929. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7930. cb(ffn_inp, "ffn_inp", il);
  7931. // FF
  7932. {
  7933. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7934. model.layers[il].ffn_norm,
  7935. model.layers[il].ffn_norm_b,
  7936. LLM_NORM, cb, il);
  7937. cb(cur, "ffn_norm", il);
  7938. cur = llm_build_ffn(ctx0, cur,
  7939. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7940. NULL, NULL,
  7941. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7942. NULL,
  7943. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7944. cb(cur, "ffn_out", il);
  7945. }
  7946. inpL = ggml_add(ctx0, cur, ffn_inp);
  7947. cb(inpL, "l_out", il);
  7948. }
  7949. cur = llm_build_norm(ctx0, inpL, hparams,
  7950. model.output_norm,
  7951. model.output_norm_b,
  7952. LLM_NORM, cb, -1);
  7953. cb(cur, "result_norm", -1);
  7954. cur = ggml_mul_mat(ctx0, model.output, cur);
  7955. cb(cur, "result_output", -1);
  7956. ggml_build_forward_expand(gf, cur);
  7957. return gf;
  7958. }
  7959. struct ggml_cgraph * build_codeshell() {
  7960. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7961. const int64_t n_embd_head = hparams.n_embd_head_v;
  7962. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7963. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7964. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7965. struct ggml_tensor * cur;
  7966. struct ggml_tensor * inpL;
  7967. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7968. // inp_pos - contains the positions
  7969. struct ggml_tensor * inp_pos = build_inp_pos();
  7970. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7971. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7972. for (int il = 0; il < n_layer; ++il) {
  7973. cur = llm_build_norm(ctx0, inpL, hparams,
  7974. model.layers[il].attn_norm,
  7975. model.layers[il].attn_norm_b,
  7976. LLM_NORM, cb, il);
  7977. cb(cur, "attn_norm", il);
  7978. // self-attention
  7979. {
  7980. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7981. cb(cur, "wqkv", il);
  7982. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7983. cb(cur, "bqkv", il);
  7984. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7985. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7986. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7987. cb(tmpq, "tmpq", il);
  7988. cb(tmpk, "tmpk", il);
  7989. cb(Vcur, "Vcur", il);
  7990. struct ggml_tensor * Qcur = ggml_rope_ext(
  7991. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7992. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7993. ext_factor, attn_factor, beta_fast, beta_slow
  7994. );
  7995. cb(Qcur, "Qcur", il);
  7996. struct ggml_tensor * Kcur = ggml_rope_ext(
  7997. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7998. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7999. ext_factor, attn_factor, beta_fast, beta_slow
  8000. );
  8001. cb(Kcur, "Kcur", il);
  8002. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8003. model.layers[il].wo, model.layers[il].bo,
  8004. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8005. }
  8006. if (il == n_layer - 1) {
  8007. // skip computing output for unused tokens
  8008. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8009. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8010. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8011. }
  8012. // add the input
  8013. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8014. cb(ffn_inp, "ffn_inp", il);
  8015. // FF
  8016. {
  8017. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8018. model.layers[il].ffn_norm,
  8019. model.layers[il].ffn_norm_b,
  8020. LLM_NORM, cb, il);
  8021. cb(cur, "ffn_norm", il);
  8022. cur = llm_build_ffn(ctx0, cur,
  8023. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8024. NULL, NULL,
  8025. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8026. NULL,
  8027. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8028. cb(cur, "ffn_out", il);
  8029. }
  8030. inpL = ggml_add(ctx0, cur, ffn_inp);
  8031. cb(inpL, "l_out", il);
  8032. }
  8033. cur = llm_build_norm(ctx0, inpL, hparams,
  8034. model.output_norm,
  8035. model.output_norm_b,
  8036. LLM_NORM, cb, -1);
  8037. cb(cur, "result_norm", -1);
  8038. cur = ggml_mul_mat(ctx0, model.output, cur);
  8039. cb(cur, "result_output", -1);
  8040. ggml_build_forward_expand(gf, cur);
  8041. return gf;
  8042. }
  8043. struct ggml_cgraph * build_orion() {
  8044. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8045. const int64_t n_embd_head = hparams.n_embd_head_v;
  8046. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8047. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8048. struct ggml_tensor * cur;
  8049. struct ggml_tensor * inpL;
  8050. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8051. // inp_pos - contains the positions
  8052. struct ggml_tensor * inp_pos = build_inp_pos();
  8053. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8054. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8055. for (int il = 0; il < n_layer; ++il) {
  8056. struct ggml_tensor * inpSA = inpL;
  8057. // norm
  8058. cur = llm_build_norm(ctx0, inpL, hparams,
  8059. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8060. LLM_NORM, cb, il);
  8061. cb(cur, "attn_norm", il);
  8062. // self-attention
  8063. {
  8064. // compute Q and K and RoPE them
  8065. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8066. cb(Qcur, "Qcur", il);
  8067. // if (model.layers[il].bq) {
  8068. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8069. // cb(Qcur, "Qcur", il);
  8070. // }
  8071. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8072. cb(Kcur, "Kcur", il);
  8073. // if (model.layers[il].bk) {
  8074. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8075. // cb(Kcur, "Kcur", il);
  8076. // }
  8077. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8078. cb(Vcur, "Vcur", il);
  8079. // if (model.layers[il].bv) {
  8080. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8081. // cb(Vcur, "Vcur", il);
  8082. // }
  8083. Qcur = ggml_rope_ext(
  8084. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8085. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8086. ext_factor, attn_factor, beta_fast, beta_slow
  8087. );
  8088. cb(Qcur, "Qcur", il);
  8089. Kcur = ggml_rope_ext(
  8090. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8091. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8092. ext_factor, attn_factor, beta_fast, beta_slow
  8093. );
  8094. cb(Kcur, "Kcur", il);
  8095. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8096. model.layers[il].wo, NULL,
  8097. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8098. }
  8099. if (il == n_layer - 1) {
  8100. // skip computing output for unused tokens
  8101. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8102. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8103. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8104. }
  8105. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8106. cb(ffn_inp, "ffn_inp", il);
  8107. // feed-forward network
  8108. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8109. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8110. LLM_NORM, cb, il);
  8111. cb(cur, "ffn_norm", il);
  8112. cur = llm_build_ffn(ctx0, cur,
  8113. model.layers[il].ffn_up, NULL,
  8114. model.layers[il].ffn_gate, NULL,
  8115. model.layers[il].ffn_down, NULL,
  8116. NULL,
  8117. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8118. cb(cur, "ffn_out", il);
  8119. cur = ggml_add(ctx0, cur, ffn_inp);
  8120. cb(cur, "l_out", il);
  8121. // input for next layer
  8122. inpL = cur;
  8123. }
  8124. cur = inpL;
  8125. cur = llm_build_norm(ctx0, cur, hparams,
  8126. model.output_norm, model.output_norm_b,
  8127. LLM_NORM, cb, -1);
  8128. cb(cur, "result_norm", -1);
  8129. // lm_head
  8130. cur = ggml_mul_mat(ctx0, model.output, cur);
  8131. cb(cur, "result_output", -1);
  8132. ggml_build_forward_expand(gf, cur);
  8133. return gf;
  8134. }
  8135. struct ggml_cgraph * build_internlm2() {
  8136. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8137. const int64_t n_embd_head = hparams.n_embd_head_v;
  8138. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8139. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8140. struct ggml_tensor * cur;
  8141. struct ggml_tensor * inpL;
  8142. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8143. // inp_pos - contains the positions
  8144. struct ggml_tensor * inp_pos = build_inp_pos();
  8145. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8146. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8147. for (int il = 0; il < n_layer; ++il) {
  8148. struct ggml_tensor * inpSA = inpL;
  8149. // norm
  8150. cur = llm_build_norm(ctx0, inpL, hparams,
  8151. model.layers[il].attn_norm, NULL,
  8152. LLM_NORM_RMS, cb, il);
  8153. cb(cur, "attn_norm", il);
  8154. // self-attention
  8155. {
  8156. // compute Q and K and RoPE them
  8157. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8158. cb(Qcur, "Qcur", il);
  8159. if (model.layers[il].bq) {
  8160. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8161. cb(Qcur, "Qcur", il);
  8162. }
  8163. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8164. cb(Kcur, "Kcur", il);
  8165. if (model.layers[il].bk) {
  8166. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8167. cb(Kcur, "Kcur", il);
  8168. }
  8169. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8170. cb(Vcur, "Vcur", il);
  8171. if (model.layers[il].bv) {
  8172. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8173. cb(Vcur, "Vcur", il);
  8174. }
  8175. Qcur = ggml_rope_ext(
  8176. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8177. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8178. ext_factor, attn_factor, beta_fast, beta_slow
  8179. );
  8180. cb(Qcur, "Qcur", il);
  8181. Kcur = ggml_rope_ext(
  8182. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8183. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8184. ext_factor, attn_factor, beta_fast, beta_slow
  8185. );
  8186. cb(Kcur, "Kcur", il);
  8187. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8188. model.layers[il].wo, model.layers[il].bo,
  8189. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8190. }
  8191. if (il == n_layer - 1) {
  8192. // skip computing output for unused tokens
  8193. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8194. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8195. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8196. }
  8197. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8198. cb(ffn_inp, "ffn_inp", il);
  8199. // feed-forward network
  8200. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8201. model.layers[il].ffn_norm, NULL,
  8202. LLM_NORM_RMS, cb, il);
  8203. cb(cur, "ffn_norm", il);
  8204. cur = llm_build_ffn(ctx0, cur,
  8205. model.layers[il].ffn_up, NULL,
  8206. model.layers[il].ffn_gate, NULL,
  8207. model.layers[il].ffn_down, NULL,
  8208. NULL,
  8209. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8210. cb(cur, "ffn_out", il);
  8211. cur = ggml_add(ctx0, cur, ffn_inp);
  8212. cb(cur, "l_out", il);
  8213. // input for next layer
  8214. inpL = cur;
  8215. }
  8216. cur = inpL;
  8217. cur = llm_build_norm(ctx0, cur, hparams,
  8218. model.output_norm, NULL,
  8219. LLM_NORM_RMS, cb, -1);
  8220. cb(cur, "result_norm", -1);
  8221. // lm_head
  8222. cur = ggml_mul_mat(ctx0, model.output, cur);
  8223. cb(cur, "result_output", -1);
  8224. ggml_build_forward_expand(gf, cur);
  8225. return gf;
  8226. }
  8227. // ref: https://arxiv.org/abs/2203.03466
  8228. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8229. // based on the original build_llama() function
  8230. struct ggml_cgraph * build_minicpm() {
  8231. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8232. const int64_t n_embd_head = hparams.n_embd_head_v;
  8233. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8234. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8235. const int64_t n_embd = hparams.n_embd;
  8236. //TODO: if the model varies, these parameters need to be read from the model
  8237. const int64_t n_embd_base = 256;
  8238. const float scale_embd = 12.0f;
  8239. const float scale_depth = 1.4f;
  8240. struct ggml_tensor * cur;
  8241. struct ggml_tensor * inpL;
  8242. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8243. // scale the input embeddings
  8244. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8245. cb(inpL, "inp_scaled", -1);
  8246. // inp_pos - contains the positions
  8247. struct ggml_tensor * inp_pos = build_inp_pos();
  8248. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8249. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8250. for (int il = 0; il < n_layer; ++il) {
  8251. struct ggml_tensor * inpSA = inpL;
  8252. // norm
  8253. cur = llm_build_norm(ctx0, inpL, hparams,
  8254. model.layers[il].attn_norm, NULL,
  8255. LLM_NORM_RMS, cb, il);
  8256. cb(cur, "attn_norm", il);
  8257. // self-attention
  8258. {
  8259. // compute Q and K and RoPE them
  8260. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8261. cb(Qcur, "Qcur", il);
  8262. if (model.layers[il].bq) {
  8263. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8264. cb(Qcur, "Qcur", il);
  8265. }
  8266. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8267. cb(Kcur, "Kcur", il);
  8268. if (model.layers[il].bk) {
  8269. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8270. cb(Kcur, "Kcur", il);
  8271. }
  8272. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8273. cb(Vcur, "Vcur", il);
  8274. if (model.layers[il].bv) {
  8275. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8276. cb(Vcur, "Vcur", il);
  8277. }
  8278. Qcur = ggml_rope_ext(
  8279. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8280. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8281. ext_factor, attn_factor, beta_fast, beta_slow
  8282. );
  8283. cb(Qcur, "Qcur", il);
  8284. Kcur = ggml_rope_ext(
  8285. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8286. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8287. ext_factor, attn_factor, beta_fast, beta_slow
  8288. );
  8289. cb(Kcur, "Kcur", il);
  8290. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8291. model.layers[il].wo, model.layers[il].bo,
  8292. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8293. }
  8294. if (il == n_layer - 1) {
  8295. // skip computing output for unused tokens
  8296. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8297. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8298. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8299. }
  8300. // scale_res - scale the hidden states for residual connection
  8301. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8302. cur = ggml_scale(ctx0, cur, scale_res);
  8303. cb(cur, "hidden_scaled", -1);
  8304. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8305. cb(ffn_inp, "ffn_inp", il);
  8306. // feed-forward network
  8307. {
  8308. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8309. model.layers[il].ffn_norm, NULL,
  8310. LLM_NORM_RMS, cb, il);
  8311. cb(cur, "ffn_norm", il);
  8312. cur = llm_build_ffn(ctx0, cur,
  8313. model.layers[il].ffn_up, NULL,
  8314. model.layers[il].ffn_gate, NULL,
  8315. model.layers[il].ffn_down, NULL,
  8316. NULL,
  8317. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8318. cb(cur, "ffn_out", il);
  8319. }
  8320. // scale the hidden states for residual connection
  8321. cur = ggml_scale(ctx0, cur, scale_res);
  8322. cb(cur, "hidden_scaled_ffn", -1);
  8323. cur = ggml_add(ctx0, cur, ffn_inp);
  8324. cb(cur, "l_out", il);
  8325. // input for next layer
  8326. inpL = cur;
  8327. }
  8328. cur = inpL;
  8329. cur = llm_build_norm(ctx0, cur, hparams,
  8330. model.output_norm, NULL,
  8331. LLM_NORM_RMS, cb, -1);
  8332. cb(cur, "result_norm", -1);
  8333. // lm_head scaling
  8334. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8335. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8336. cb(cur, "lmhead_scaling", -1);
  8337. // lm_head
  8338. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8339. cb(cur, "result_output", -1);
  8340. ggml_build_forward_expand(gf, cur);
  8341. return gf;
  8342. }
  8343. struct ggml_cgraph * build_gemma() {
  8344. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8345. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8346. struct ggml_tensor * cur;
  8347. struct ggml_tensor * inpL;
  8348. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8349. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8350. cb(inpL, "inp_scaled", -1);
  8351. // inp_pos - contains the positions
  8352. struct ggml_tensor * inp_pos = build_inp_pos();
  8353. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8354. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8355. for (int il = 0; il < n_layer; ++il) {
  8356. // norm
  8357. cur = llm_build_norm(ctx0, inpL, hparams,
  8358. model.layers[il].attn_norm, NULL,
  8359. LLM_NORM_RMS, cb, il);
  8360. cb(cur, "attn_norm", il);
  8361. // self-attention
  8362. {
  8363. // compute Q and K and RoPE them
  8364. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8365. cb(Qcur, "Qcur", il);
  8366. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8367. cb(Kcur, "Kcur", il);
  8368. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8369. cb(Vcur, "Vcur", il);
  8370. Qcur = ggml_rope_ext(
  8371. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8372. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8373. ext_factor, attn_factor, beta_fast, beta_slow);
  8374. cb(Qcur, "Qcur", il);
  8375. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8376. cb(Qcur, "Qcur_scaled", il);
  8377. Kcur = ggml_rope_ext(
  8378. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8379. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8380. ext_factor, attn_factor, beta_fast, beta_slow);
  8381. cb(Kcur, "Kcur", il);
  8382. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8383. model.layers[il].wo, NULL,
  8384. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8385. }
  8386. if (il == n_layer - 1) {
  8387. // skip computing output for unused tokens
  8388. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8389. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8390. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8391. }
  8392. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8393. cb(sa_out, "sa_out", il);
  8394. cur = llm_build_norm(ctx0, sa_out, hparams,
  8395. model.layers[il].ffn_norm, NULL,
  8396. LLM_NORM_RMS, cb, il);
  8397. cb(cur, "ffn_norm", il);
  8398. // feed-forward network
  8399. {
  8400. cur = llm_build_ffn(ctx0, cur,
  8401. model.layers[il].ffn_up, NULL,
  8402. model.layers[il].ffn_gate, NULL,
  8403. model.layers[il].ffn_down, NULL,
  8404. NULL,
  8405. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8406. cb(cur, "ffn_out", il);
  8407. }
  8408. cur = ggml_add(ctx0, cur, sa_out);
  8409. cb(cur, "l_out", il);
  8410. // input for next layer
  8411. inpL = cur;
  8412. }
  8413. cur = inpL;
  8414. cur = llm_build_norm(ctx0, cur, hparams,
  8415. model.output_norm, NULL,
  8416. LLM_NORM_RMS, cb, -1);
  8417. cb(cur, "result_norm", -1);
  8418. // lm_head
  8419. cur = ggml_mul_mat(ctx0, model.output, cur);
  8420. cb(cur, "result_output", -1);
  8421. ggml_build_forward_expand(gf, cur);
  8422. return gf;
  8423. }
  8424. struct ggml_cgraph * build_starcoder2() {
  8425. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8426. const int64_t n_embd_head = hparams.n_embd_head_v;
  8427. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8428. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8429. struct ggml_tensor * cur;
  8430. struct ggml_tensor * inpL;
  8431. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8432. // inp_pos - contains the positions
  8433. struct ggml_tensor * inp_pos = build_inp_pos();
  8434. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8435. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8436. for (int il = 0; il < n_layer; ++il) {
  8437. struct ggml_tensor * inpSA = inpL;
  8438. // norm
  8439. cur = llm_build_norm(ctx0, inpL, hparams,
  8440. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8441. LLM_NORM, cb, il);
  8442. cb(cur, "attn_norm", il);
  8443. // self-attention
  8444. {
  8445. // compute Q and K and RoPE them
  8446. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8447. cb(Qcur, "Qcur", il);
  8448. if (model.layers[il].bq) {
  8449. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8450. cb(Qcur, "Qcur", il);
  8451. }
  8452. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8453. cb(Kcur, "Kcur", il);
  8454. if (model.layers[il].bk) {
  8455. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8456. cb(Kcur, "Kcur", il);
  8457. }
  8458. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8459. cb(Vcur, "Vcur", il);
  8460. if (model.layers[il].bv) {
  8461. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8462. cb(Vcur, "Vcur", il);
  8463. }
  8464. Qcur = ggml_rope_ext(
  8465. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8466. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8467. ext_factor, attn_factor, beta_fast, beta_slow
  8468. );
  8469. cb(Qcur, "Qcur", il);
  8470. Kcur = ggml_rope_ext(
  8471. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8472. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8473. ext_factor, attn_factor, beta_fast, beta_slow
  8474. );
  8475. cb(Kcur, "Kcur", il);
  8476. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8477. model.layers[il].wo, model.layers[il].bo,
  8478. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8479. }
  8480. if (il == n_layer - 1) {
  8481. // skip computing output for unused tokens
  8482. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8483. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8484. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8485. }
  8486. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8487. cb(ffn_inp, "ffn_inp", il);
  8488. // feed-forward network
  8489. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8490. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8491. LLM_NORM, cb, il);
  8492. cb(cur, "ffn_norm", il);
  8493. cur = llm_build_ffn(ctx0, cur,
  8494. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8495. NULL, NULL,
  8496. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8497. NULL,
  8498. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8499. cb(cur, "ffn_out", il);
  8500. cur = ggml_add(ctx0, cur, ffn_inp);
  8501. cb(cur, "l_out", il);
  8502. // input for next layer
  8503. inpL = cur;
  8504. }
  8505. cur = inpL;
  8506. cur = llm_build_norm(ctx0, cur, hparams,
  8507. model.output_norm, model.output_norm_b,
  8508. LLM_NORM, cb, -1);
  8509. cb(cur, "result_norm", -1);
  8510. // lm_head
  8511. cur = ggml_mul_mat(ctx0, model.output, cur);
  8512. cb(cur, "result_output", -1);
  8513. ggml_build_forward_expand(gf, cur);
  8514. return gf;
  8515. }
  8516. struct ggml_cgraph * build_mamba() {
  8517. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8518. const int64_t d_model = n_embd;
  8519. const int64_t d_conv = hparams.ssm_d_conv;
  8520. const int64_t d_inner = hparams.ssm_d_inner;
  8521. GGML_ASSERT(2 * d_model == d_inner);
  8522. const int64_t d_state = hparams.ssm_d_state;
  8523. const int64_t dt_rank = hparams.ssm_dt_rank;
  8524. struct ggml_tensor * cur;
  8525. struct ggml_tensor * inpL;
  8526. // {n_embd, n_tokens}
  8527. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8528. struct ggml_tensor * state_mask = build_inp_s_mask();
  8529. struct ggml_tensor * state_seq = build_inp_s_seq();
  8530. for (int il = 0; il < n_layer; ++il) {
  8531. // (ab)using the KV cache to store the states
  8532. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8533. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8534. // clear states of sequences which are starting at the beginning of this batch
  8535. {
  8536. conv_states = ggml_mul(ctx0,
  8537. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8538. state_mask);
  8539. ssm_states = ggml_mul(ctx0,
  8540. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8541. state_mask);
  8542. }
  8543. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8544. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8545. // norm
  8546. cur = llm_build_norm(ctx0, inpL, hparams,
  8547. model.layers[il].attn_norm, NULL,
  8548. LLM_NORM_RMS, cb, il);
  8549. cb(cur, "attn_norm", il);
  8550. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8551. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8552. // split the above in two
  8553. // => {d_inner, n_tokens}
  8554. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8555. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8556. // conv
  8557. {
  8558. // Custom operator which is needed only to ease simultaneous sequence processing.
  8559. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8560. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8561. // then element-wise multiply that with the conv1d weigth,
  8562. // then sum the elements of each row,
  8563. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8564. // then permute away the ne[0] dimension,
  8565. // and then you're left with the resulting x tensor.
  8566. // The new conv_states is the last (d_conv - 1) columns
  8567. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8568. // For simultaneous sequences, it's more complicated.
  8569. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8570. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8571. ggml_build_forward_expand(gf,
  8572. ggml_cpy(ctx0,
  8573. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8574. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8575. // extract x from x_conv
  8576. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8577. // bias
  8578. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8579. x = ggml_silu(ctx0, x);
  8580. }
  8581. // ssm
  8582. {
  8583. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8584. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8585. // split
  8586. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8587. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8588. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8589. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8590. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8591. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8592. // Custom operator to optimize the parallel associative scan
  8593. // as described in the Annex D of the Mamba paper.
  8594. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8595. // because only a single tensor can be returned.
  8596. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8597. // store last states (the second part of y_ssm_states)
  8598. ggml_build_forward_expand(gf,
  8599. ggml_cpy(ctx0,
  8600. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8601. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8602. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8603. if (il == n_layer - 1) {
  8604. // skip computing output for unused tokens
  8605. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8606. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8607. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8608. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8609. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8610. }
  8611. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8612. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8613. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8614. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8615. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8616. }
  8617. // residual
  8618. cur = ggml_add(ctx0, cur, inpL);
  8619. cb(cur, "l_out", il);
  8620. // input for next layer
  8621. inpL = cur;
  8622. }
  8623. // final rmsnorm
  8624. cur = llm_build_norm(ctx0, inpL, hparams,
  8625. model.output_norm, NULL,
  8626. LLM_NORM_RMS, cb, -1);
  8627. cb(cur, "result_norm", -1);
  8628. // lm_head
  8629. cur = ggml_mul_mat(ctx0, model.output, cur);
  8630. cb(cur, "result_output", -1);
  8631. ggml_build_forward_expand(gf, cur);
  8632. return gf;
  8633. }
  8634. struct ggml_cgraph * build_command_r() {
  8635. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8636. const int64_t n_embd_head = hparams.n_embd_head_v;
  8637. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8638. const float f_logit_scale = hparams.f_logit_scale;
  8639. struct ggml_tensor * cur;
  8640. struct ggml_tensor * inpL;
  8641. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8642. // inp_pos - contains the positions
  8643. struct ggml_tensor * inp_pos = build_inp_pos();
  8644. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8645. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8646. for (int il = 0; il < n_layer; ++il) {
  8647. // norm
  8648. cur = llm_build_norm(ctx0, inpL, hparams,
  8649. model.layers[il].attn_norm, NULL,
  8650. LLM_NORM, cb, il);
  8651. cb(cur, "attn_norm", il);
  8652. struct ggml_tensor * ffn_inp = cur;
  8653. // self-attention
  8654. {
  8655. // compute Q and K and RoPE them
  8656. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8657. cb(Qcur, "Qcur", il);
  8658. if (model.layers[il].bq) {
  8659. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8660. cb(Qcur, "Qcur", il);
  8661. }
  8662. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8663. cb(Kcur, "Kcur", il);
  8664. if (model.layers[il].bk) {
  8665. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8666. cb(Kcur, "Kcur", il);
  8667. }
  8668. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8669. cb(Vcur, "Vcur", il);
  8670. if (model.layers[il].bv) {
  8671. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8672. cb(Vcur, "Vcur", il);
  8673. }
  8674. if (model.layers[il].attn_q_norm) {
  8675. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8676. ggml_element_size(Qcur) * n_embd_head,
  8677. ggml_element_size(Qcur) * n_embd_head * n_head,
  8678. 0);
  8679. cb(Qcur, "Qcur", il);
  8680. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8681. ggml_element_size(Kcur) * n_embd_head,
  8682. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8683. 0);
  8684. cb(Kcur, "Kcur", il);
  8685. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8686. model.layers[il].attn_q_norm,
  8687. NULL,
  8688. LLM_NORM, cb, il);
  8689. cb(Qcur, "Qcur", il);
  8690. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8691. model.layers[il].attn_k_norm,
  8692. NULL,
  8693. LLM_NORM, cb, il);
  8694. cb(Kcur, "Kcur", il);
  8695. }
  8696. Qcur = ggml_rope_ext(
  8697. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8698. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8699. ext_factor, attn_factor, beta_fast, beta_slow
  8700. );
  8701. cb(Qcur, "Qcur", il);
  8702. Kcur = ggml_rope_ext(
  8703. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8704. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8705. ext_factor, attn_factor, beta_fast, beta_slow
  8706. );
  8707. cb(Kcur, "Kcur", il);
  8708. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8709. model.layers[il].wo, model.layers[il].bo,
  8710. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8711. }
  8712. if (il == n_layer - 1) {
  8713. // skip computing output for unused tokens
  8714. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8715. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8716. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8717. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8718. }
  8719. struct ggml_tensor * attn_out = cur;
  8720. // feed-forward network
  8721. {
  8722. cur = llm_build_ffn(ctx0, ffn_inp,
  8723. model.layers[il].ffn_up, NULL,
  8724. model.layers[il].ffn_gate, NULL,
  8725. model.layers[il].ffn_down, NULL,
  8726. NULL,
  8727. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8728. cb(cur, "ffn_out", il);
  8729. }
  8730. // add together residual + FFN + self-attention
  8731. cur = ggml_add(ctx0, cur, inpL);
  8732. cur = ggml_add(ctx0, cur, attn_out);
  8733. cb(cur, "l_out", il);
  8734. // input for next layer
  8735. inpL = cur;
  8736. }
  8737. cur = inpL;
  8738. cur = llm_build_norm(ctx0, cur, hparams,
  8739. model.output_norm, NULL,
  8740. LLM_NORM, cb, -1);
  8741. cb(cur, "result_norm", -1);
  8742. // lm_head
  8743. cur = ggml_mul_mat(ctx0, model.output, cur);
  8744. if (f_logit_scale) {
  8745. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8746. }
  8747. cb(cur, "result_output", -1);
  8748. ggml_build_forward_expand(gf, cur);
  8749. return gf;
  8750. }
  8751. // ref: https://allenai.org/olmo
  8752. // based on the original build_llama() function, changes:
  8753. // * non-parametric layer norm
  8754. // * clamp qkv
  8755. // * removed bias
  8756. // * removed MoE
  8757. struct ggml_cgraph * build_olmo() {
  8758. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8759. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8760. int32_t n_tokens = this->n_tokens;
  8761. const int64_t n_embd_head = hparams.n_embd_head_v;
  8762. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8763. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8764. struct ggml_tensor * cur;
  8765. struct ggml_tensor * inpL;
  8766. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8767. // inp_pos - contains the positions
  8768. struct ggml_tensor * inp_pos = build_inp_pos();
  8769. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8770. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8771. for (int il = 0; il < n_layer; ++il) {
  8772. struct ggml_tensor * inpSA = inpL;
  8773. // norm
  8774. cur = llm_build_norm(ctx0, inpL, hparams,
  8775. NULL, NULL,
  8776. LLM_NORM, cb, il);
  8777. cb(cur, "attn_norm", il);
  8778. // self-attention
  8779. {
  8780. // compute Q and K and RoPE them
  8781. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8782. cb(Qcur, "Qcur", il);
  8783. if (hparams.f_clamp_kqv > 0.0f) {
  8784. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8785. cb(Qcur, "Qcur", il);
  8786. }
  8787. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8788. cb(Kcur, "Kcur", il);
  8789. if (hparams.f_clamp_kqv > 0.0f) {
  8790. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8791. cb(Kcur, "Kcur", il);
  8792. }
  8793. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8794. cb(Vcur, "Vcur", il);
  8795. if (hparams.f_clamp_kqv > 0.0f) {
  8796. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8797. cb(Vcur, "Vcur", il);
  8798. }
  8799. Qcur = ggml_rope_ext(
  8800. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8801. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8802. ext_factor, attn_factor, beta_fast, beta_slow
  8803. );
  8804. cb(Qcur, "Qcur", il);
  8805. Kcur = ggml_rope_ext(
  8806. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8807. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8808. ext_factor, attn_factor, beta_fast, beta_slow
  8809. );
  8810. cb(Kcur, "Kcur", il);
  8811. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8812. model.layers[il].wo, nullptr,
  8813. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8814. }
  8815. if (il == n_layer - 1) {
  8816. // skip computing output for unused tokens
  8817. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8818. n_tokens = n_outputs;
  8819. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8820. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8821. }
  8822. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8823. cb(ffn_inp, "ffn_inp", il);
  8824. // feed-forward network
  8825. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8826. NULL, NULL,
  8827. LLM_NORM, cb, il);
  8828. cb(cur, "ffn_norm", il);
  8829. cur = llm_build_ffn(ctx0, cur,
  8830. model.layers[il].ffn_up, NULL,
  8831. model.layers[il].ffn_gate, NULL,
  8832. model.layers[il].ffn_down, NULL,
  8833. NULL,
  8834. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8835. cb(cur, "ffn_out", il);
  8836. cur = ggml_add(ctx0, cur, ffn_inp);
  8837. cb(cur, "ffn_out", il);
  8838. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8839. if (layer_dir != nullptr) {
  8840. cur = ggml_add(ctx0, cur, layer_dir);
  8841. }
  8842. cb(cur, "l_out", il);
  8843. // input for next layer
  8844. inpL = cur;
  8845. }
  8846. cur = inpL;
  8847. cur = llm_build_norm(ctx0, cur, hparams,
  8848. NULL, NULL,
  8849. LLM_NORM, cb, -1);
  8850. cb(cur, "result_norm", -1);
  8851. // lm_head
  8852. cur = ggml_mul_mat(ctx0, model.output, cur);
  8853. cb(cur, "result_output", -1);
  8854. ggml_build_forward_expand(gf, cur);
  8855. return gf;
  8856. }
  8857. struct ggml_cgraph * build_gptneox() {
  8858. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8859. const int64_t n_embd_head = hparams.n_embd_head_v;
  8860. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8861. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8862. struct ggml_tensor * cur;
  8863. struct ggml_tensor * inpL;
  8864. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8865. // inp_pos - contains the positions
  8866. struct ggml_tensor * inp_pos = build_inp_pos();
  8867. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8868. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8869. for (int il = 0; il < n_layer; ++il) {
  8870. cur = llm_build_norm(ctx0, inpL, hparams,
  8871. model.layers[il].attn_norm,
  8872. model.layers[il].attn_norm_b,
  8873. LLM_NORM, cb, il);
  8874. cb(cur, "attn_norm", il);
  8875. // self-attention
  8876. {
  8877. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8878. cb(cur, "wqkv", il);
  8879. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8880. cb(cur, "bqkv", il);
  8881. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8882. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8883. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8884. cb(Qcur, "Qcur", il);
  8885. cb(Kcur, "Kcur", il);
  8886. cb(Vcur, "Vcur", il);
  8887. Qcur = ggml_rope_ext(
  8888. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8889. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8890. ext_factor, attn_factor, beta_fast, beta_slow
  8891. );
  8892. cb(Qcur, "Qcur", il);
  8893. Kcur = ggml_rope_ext(
  8894. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8895. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8896. ext_factor, attn_factor, beta_fast, beta_slow
  8897. );
  8898. cb(Kcur, "Kcur", il);
  8899. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8900. model.layers[il].wo, model.layers[il].bo,
  8901. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8902. }
  8903. if (il == n_layer - 1) {
  8904. // skip computing output for unused tokens
  8905. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8906. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8907. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8908. }
  8909. // ffn
  8910. if (hparams.use_par_res) {
  8911. // attention and ffn are computed in parallel
  8912. // x = x + attn(ln1(x)) + ffn(ln2(x))
  8913. struct ggml_tensor * attn_out = cur;
  8914. cur = llm_build_norm(ctx0, inpL, hparams,
  8915. model.layers[il].ffn_norm,
  8916. model.layers[il].ffn_norm_b,
  8917. LLM_NORM, cb, il);
  8918. cb(cur, "ffn_norm", il);
  8919. cur = llm_build_ffn(ctx0, cur,
  8920. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8921. NULL, NULL,
  8922. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8923. NULL,
  8924. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8925. cb(cur, "ffn_out", il);
  8926. cur = ggml_add(ctx0, cur, inpL);
  8927. cb(cur, "ffn_out", il);
  8928. inpL = ggml_add(ctx0, cur, attn_out);
  8929. cb(inpL, "l_out", il);
  8930. } else {
  8931. // attention and ffn are computed sequentially
  8932. // x = x + attn(ln1(x))
  8933. // x = x + ffn(ln2(x))
  8934. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8935. cb(ffn_inp, "ffn_inp", il);
  8936. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8937. model.layers[il].ffn_norm,
  8938. model.layers[il].ffn_norm_b,
  8939. LLM_NORM, cb, il);
  8940. cb(cur, "ffn_norm", il);
  8941. cur = llm_build_ffn(ctx0, cur,
  8942. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8943. NULL, NULL,
  8944. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8945. NULL,
  8946. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8947. cb(cur, "ffn_out", il);
  8948. inpL = ggml_add(ctx0, cur, ffn_inp);
  8949. cb(inpL, "l_out", il);
  8950. }
  8951. }
  8952. cur = llm_build_norm(ctx0, inpL, hparams,
  8953. model.output_norm,
  8954. model.output_norm_b,
  8955. LLM_NORM, cb, -1);
  8956. cb(cur, "result_norm", -1);
  8957. cur = ggml_mul_mat(ctx0, model.output, cur);
  8958. cb(cur, "result_output", -1);
  8959. ggml_build_forward_expand(gf, cur);
  8960. return gf;
  8961. }
  8962. };
  8963. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8964. llama_batch dummy;
  8965. dummy.n_tokens = 0;
  8966. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8967. struct llm_build_context llm(lctx, dummy, cb, false);
  8968. llm.init();
  8969. struct ggml_cgraph * result = llm.build_defrag(ids);
  8970. llm.free();
  8971. return result;
  8972. }
  8973. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8974. llama_batch dummy;
  8975. dummy.n_tokens = 0;
  8976. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8977. struct llm_build_context llm(lctx, dummy, cb, false);
  8978. llm.init();
  8979. struct ggml_cgraph * result = llm.build_k_shift();
  8980. llm.free();
  8981. return result;
  8982. }
  8983. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8984. llama_batch dummy;
  8985. dummy.n_tokens = 0;
  8986. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8987. struct llm_build_context llm(lctx, dummy, cb, false);
  8988. llm.init();
  8989. struct ggml_cgraph * result = llm.build_s_copy();
  8990. llm.free();
  8991. return result;
  8992. }
  8993. static struct ggml_cgraph * llama_build_graph(
  8994. llama_context & lctx,
  8995. const llama_batch & batch,
  8996. bool worst_case) {
  8997. const auto & model = lctx.model;
  8998. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8999. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9000. if (il >= 0) {
  9001. ggml_format_name(cur, "%s-%d", name, il);
  9002. } else {
  9003. ggml_set_name(cur, name);
  9004. }
  9005. if (!lctx.cparams.offload_kqv) {
  9006. if (strcmp(name, "kqv_merged_cont") == 0) {
  9007. // all nodes between the KV store and the attention output are run on the CPU
  9008. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9009. }
  9010. }
  9011. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9012. // FIXME: fix in ggml_backend_sched
  9013. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9014. if (batch.n_tokens < 32 || full_offload) {
  9015. if (il != -1 && strcmp(name, "norm") == 0) {
  9016. for (auto * backend : lctx.backends) {
  9017. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  9018. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9019. break;
  9020. }
  9021. }
  9022. }
  9023. }
  9024. };
  9025. struct ggml_cgraph * result = NULL;
  9026. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9027. llm.init();
  9028. switch (model.arch) {
  9029. case LLM_ARCH_LLAMA:
  9030. {
  9031. result = llm.build_llama();
  9032. } break;
  9033. case LLM_ARCH_BAICHUAN:
  9034. {
  9035. result = llm.build_baichuan();
  9036. } break;
  9037. case LLM_ARCH_FALCON:
  9038. {
  9039. result = llm.build_falcon();
  9040. } break;
  9041. case LLM_ARCH_GROK:
  9042. {
  9043. result = llm.build_grok();
  9044. } break;
  9045. case LLM_ARCH_STARCODER:
  9046. {
  9047. result = llm.build_starcoder();
  9048. } break;
  9049. case LLM_ARCH_REFACT:
  9050. {
  9051. result = llm.build_refact();
  9052. } break;
  9053. case LLM_ARCH_BERT:
  9054. case LLM_ARCH_JINA_BERT_V2:
  9055. case LLM_ARCH_NOMIC_BERT:
  9056. {
  9057. result = llm.build_bert();
  9058. } break;
  9059. case LLM_ARCH_BLOOM:
  9060. {
  9061. result = llm.build_bloom();
  9062. } break;
  9063. case LLM_ARCH_MPT:
  9064. {
  9065. result = llm.build_mpt();
  9066. } break;
  9067. case LLM_ARCH_STABLELM:
  9068. {
  9069. result = llm.build_stablelm();
  9070. } break;
  9071. case LLM_ARCH_QWEN:
  9072. {
  9073. result = llm.build_qwen();
  9074. } break;
  9075. case LLM_ARCH_QWEN2:
  9076. {
  9077. result = llm.build_qwen2();
  9078. } break;
  9079. case LLM_ARCH_QWEN2MOE:
  9080. {
  9081. result = llm.build_qwen2moe();
  9082. } break;
  9083. case LLM_ARCH_PHI2:
  9084. {
  9085. result = llm.build_phi2();
  9086. } break;
  9087. case LLM_ARCH_PHI3:
  9088. {
  9089. result = llm.build_phi3();
  9090. } break;
  9091. case LLM_ARCH_PLAMO:
  9092. {
  9093. result = llm.build_plamo();
  9094. } break;
  9095. case LLM_ARCH_GPT2:
  9096. {
  9097. result = llm.build_gpt2();
  9098. } break;
  9099. case LLM_ARCH_CODESHELL:
  9100. {
  9101. result = llm.build_codeshell();
  9102. } break;
  9103. case LLM_ARCH_ORION:
  9104. {
  9105. result = llm.build_orion();
  9106. } break;
  9107. case LLM_ARCH_INTERNLM2:
  9108. {
  9109. result = llm.build_internlm2();
  9110. } break;
  9111. case LLM_ARCH_MINICPM:
  9112. {
  9113. result = llm.build_minicpm();
  9114. } break;
  9115. case LLM_ARCH_GEMMA:
  9116. {
  9117. result = llm.build_gemma();
  9118. } break;
  9119. case LLM_ARCH_STARCODER2:
  9120. {
  9121. result = llm.build_starcoder2();
  9122. } break;
  9123. case LLM_ARCH_MAMBA:
  9124. {
  9125. result = llm.build_mamba();
  9126. } break;
  9127. case LLM_ARCH_XVERSE:
  9128. {
  9129. result = llm.build_xverse();
  9130. } break;
  9131. case LLM_ARCH_COMMAND_R:
  9132. {
  9133. result = llm.build_command_r();
  9134. } break;
  9135. case LLM_ARCH_DBRX:
  9136. {
  9137. result = llm.build_dbrx();
  9138. } break;
  9139. case LLM_ARCH_OLMO:
  9140. {
  9141. result = llm.build_olmo();
  9142. } break;
  9143. case LLM_ARCH_GPTNEOX:
  9144. {
  9145. result = llm.build_gptneox();
  9146. } break;
  9147. default:
  9148. GGML_ASSERT(false);
  9149. }
  9150. llm.free();
  9151. return result;
  9152. }
  9153. static void llama_set_k_shift(llama_context & lctx) {
  9154. const int64_t kv_size = lctx.kv_self.size;
  9155. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9156. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9157. for (int i = 0; i < kv_size; ++i) {
  9158. data[i] = lctx.kv_self.cells[i].delta;
  9159. }
  9160. }
  9161. static void llama_set_s_copy(llama_context & lctx) {
  9162. const int64_t kv_size = lctx.kv_self.size;
  9163. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9164. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9165. for (int i = 0; i < kv_size; ++i) {
  9166. data[i] = lctx.kv_self.cells[i].src;
  9167. }
  9168. }
  9169. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9170. //
  9171. // set input data
  9172. //
  9173. const auto & hparams = lctx.model.hparams;
  9174. const auto & cparams = lctx.cparams;
  9175. const auto & kv_self = lctx.kv_self;
  9176. if (batch.token) {
  9177. const int64_t n_tokens = batch.n_tokens;
  9178. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9179. }
  9180. if (batch.embd) {
  9181. const int64_t n_embd = hparams.n_embd;
  9182. const int64_t n_tokens = batch.n_tokens;
  9183. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9184. }
  9185. if (batch.pos && lctx.inp_pos) {
  9186. const int64_t n_tokens = batch.n_tokens;
  9187. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9188. }
  9189. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9190. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9191. const int64_t n_tokens = batch.n_tokens;
  9192. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9193. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9194. if (lctx.n_outputs == n_tokens) {
  9195. for (int i = 0; i < n_tokens; ++i) {
  9196. data[i] = i;
  9197. }
  9198. } else if (batch.logits) {
  9199. int32_t n_outputs = 0;
  9200. for (int i = 0; i < n_tokens; ++i) {
  9201. if (batch.logits[i]) {
  9202. data[n_outputs++] = i;
  9203. }
  9204. }
  9205. // the graph needs to have been passed the correct number of outputs
  9206. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9207. } else if (lctx.n_outputs == 1) {
  9208. // only keep last output
  9209. data[0] = n_tokens - 1;
  9210. } else {
  9211. GGML_ASSERT(lctx.n_outputs == 0);
  9212. }
  9213. }
  9214. GGML_ASSERT(
  9215. // (!a || b) is a logical implication (a -> b)
  9216. // !hparams.causal_attn -> !cparams.causal_attn
  9217. (hparams.causal_attn || !cparams.causal_attn) &&
  9218. "causal attention with embedding models is not supported"
  9219. );
  9220. if (lctx.inp_KQ_mask) {
  9221. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9222. if (cparams.causal_attn) {
  9223. const int64_t n_kv = kv_self.n;
  9224. const int64_t n_tokens = batch.n_tokens;
  9225. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9226. float * data = (float *) lctx.inp_KQ_mask->data;
  9227. // For causal attention, use only the previous KV cells
  9228. // of the correct sequence for each token of the batch.
  9229. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9230. for (int h = 0; h < 1; ++h) {
  9231. for (int j = 0; j < n_tokens; ++j) {
  9232. const llama_pos pos = batch.pos[j];
  9233. const llama_seq_id seq_id = batch.seq_id[j][0];
  9234. for (int i = 0; i < n_kv; ++i) {
  9235. float f;
  9236. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9237. f = -INFINITY;
  9238. } else {
  9239. if (hparams.use_alibi) {
  9240. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9241. } else {
  9242. f = 0.0f;
  9243. }
  9244. }
  9245. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9246. }
  9247. }
  9248. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  9249. for (int j = 0; j < n_kv; ++j) {
  9250. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  9251. }
  9252. }
  9253. }
  9254. } else {
  9255. // when using kv cache, the mask needs to match the kv cache size
  9256. const int64_t n_tokens = batch.n_tokens;
  9257. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9258. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9259. float * data = (float *) lctx.inp_KQ_mask->data;
  9260. for (int h = 0; h < 1; ++h) {
  9261. for (int j = 0; j < n_tokens; ++j) {
  9262. const llama_seq_id seq_id = batch.seq_id[j][0];
  9263. for (int i = 0; i < n_tokens; ++i) {
  9264. float f = -INFINITY;
  9265. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9266. if (batch.seq_id[i][s] == seq_id) {
  9267. if (hparams.use_alibi) {
  9268. f = -fabs(batch.pos[i] - batch.pos[j]);
  9269. } else {
  9270. f = 0.0f;
  9271. }
  9272. break;
  9273. }
  9274. }
  9275. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9276. }
  9277. for (int i = n_tokens; i < n_stride; ++i) {
  9278. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9279. }
  9280. }
  9281. }
  9282. }
  9283. }
  9284. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9285. const int64_t n_tokens = batch.n_tokens;
  9286. GGML_ASSERT(lctx.inp_mean);
  9287. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9288. float * data = (float *) lctx.inp_mean->data;
  9289. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9290. std::vector<uint64_t> sum(n_tokens, 0);
  9291. for (int i = 0; i < n_tokens; ++i) {
  9292. const llama_seq_id seq_id = batch.seq_id[i][0];
  9293. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9294. sum[seq_id] += 1;
  9295. }
  9296. std::vector<float> div(n_tokens, 0.0f);
  9297. for (int i = 0; i < n_tokens; ++i) {
  9298. const uint64_t s = sum[i];
  9299. if (s > 0) {
  9300. div[i] = 1.0f/float(s);
  9301. }
  9302. }
  9303. for (int i = 0; i < n_tokens; ++i) {
  9304. const llama_seq_id seq_id = batch.seq_id[i][0];
  9305. data[seq_id*n_tokens + i] = div[seq_id];
  9306. }
  9307. }
  9308. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9309. const int64_t n_tokens = batch.n_tokens;
  9310. GGML_ASSERT(lctx.inp_cls);
  9311. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9312. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9313. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9314. for (int i = 0; i < n_tokens; ++i) {
  9315. const llama_seq_id seq_id = batch.seq_id[i][0];
  9316. const llama_pos pos = batch.pos[i];
  9317. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9318. if (pos == 0) {
  9319. data[seq_id] = i;
  9320. }
  9321. }
  9322. }
  9323. if (kv_self.recurrent) {
  9324. const int64_t n_kv = kv_self.n;
  9325. if (lctx.inp_s_mask) {
  9326. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9327. float * data = (float *) lctx.inp_s_mask->data;
  9328. // states which are not affected by the current batch are left untouched
  9329. for (int i = 0; i < n_kv; ++i) {
  9330. llama_seq_id seq_id = i + lctx.kv_self.head;
  9331. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9332. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9333. data[i] = (float) has_self_seq;
  9334. // ensure current sequences will be kept
  9335. if (!has_self_seq && kv_cell.pos >= 0) {
  9336. kv_cell.seq_id.insert(seq_id);
  9337. }
  9338. }
  9339. }
  9340. // For Mamba (and other recurrent architectures),
  9341. // update the correct state(s)/sequence(s) for each token of the batch.
  9342. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9343. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9344. if (lctx.inp_s_seq) {
  9345. const int64_t n_tokens = batch.n_tokens;
  9346. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9347. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9348. for (int j = 0; j < n_tokens; ++j) {
  9349. const int32_t n_seq = batch.n_seq_id[j];
  9350. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9351. for (int i = 0; i < n_kv; ++i) {
  9352. if (i < n_seq) {
  9353. // for this type of model, the head is the minimum seq_id of the batch
  9354. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9355. } else {
  9356. data[j*n_kv + i] = -1;
  9357. }
  9358. }
  9359. }
  9360. }
  9361. }
  9362. }
  9363. // Make sure enough space is available for outputs.
  9364. // Returns max number of outputs for which space was reserved.
  9365. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9366. const auto & cparams = lctx.cparams;
  9367. const auto & hparams = lctx.model.hparams;
  9368. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9369. const auto n_batch = cparams.n_batch;
  9370. const auto n_vocab = hparams.n_vocab;
  9371. const auto n_embd = hparams.n_embd;
  9372. // TODO: use a per-batch flag for logits presence instead
  9373. const bool has_logits = cparams.causal_attn;
  9374. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9375. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9376. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9377. if (lctx.output_ids.empty()) {
  9378. // init, never resized afterwards
  9379. lctx.output_ids.resize(n_batch);
  9380. }
  9381. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9382. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9383. // alloc only when more than the current capacity is required
  9384. // TODO: also consider shrinking the buffer
  9385. if (!lctx.buf_output || prev_size < new_size) {
  9386. if (lctx.buf_output) {
  9387. #ifndef NDEBUG
  9388. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9389. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9390. #endif
  9391. ggml_backend_buffer_free(lctx.buf_output);
  9392. lctx.buf_output = nullptr;
  9393. lctx.logits = nullptr;
  9394. lctx.embd = nullptr;
  9395. }
  9396. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9397. if (lctx.buf_output == nullptr) {
  9398. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9399. return 0;
  9400. }
  9401. }
  9402. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9403. lctx.logits = has_logits ? output_base : nullptr;
  9404. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9405. lctx.output_size = n_outputs_max;
  9406. lctx.logits_size = logits_size;
  9407. lctx.embd_size = embd_size;
  9408. // set all ids as invalid (negative)
  9409. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9410. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9411. lctx.n_outputs = 0;
  9412. return n_outputs_max;
  9413. }
  9414. static void llama_graph_compute(
  9415. llama_context & lctx,
  9416. ggml_cgraph * gf,
  9417. int n_threads) {
  9418. #ifdef GGML_USE_METAL
  9419. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9420. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9421. }
  9422. #endif
  9423. if (lctx.backend_cpu != nullptr) {
  9424. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9425. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9426. }
  9427. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9428. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9429. }
  9430. // decode a batch of tokens by evaluating the transformer
  9431. //
  9432. // - lctx: llama context
  9433. // - batch: batch to evaluate
  9434. //
  9435. // return 0 on success
  9436. // return positive int on warning
  9437. // return negative int on error
  9438. //
  9439. static int llama_decode_internal(
  9440. llama_context & lctx,
  9441. llama_batch batch_all) { // TODO: rename back to batch
  9442. const uint32_t n_tokens_all = batch_all.n_tokens;
  9443. if (n_tokens_all == 0) {
  9444. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9445. return -1;
  9446. }
  9447. const auto & model = lctx.model;
  9448. const auto & hparams = model.hparams;
  9449. const auto & cparams = lctx.cparams;
  9450. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9451. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9452. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9453. if (lctx.t_compute_start_us == 0) {
  9454. lctx.t_compute_start_us = ggml_time_us();
  9455. }
  9456. lctx.n_queued_tokens += n_tokens_all;
  9457. auto & kv_self = lctx.kv_self;
  9458. const int64_t n_embd = hparams.n_embd;
  9459. const int64_t n_vocab = hparams.n_vocab;
  9460. uint32_t n_outputs = 0;
  9461. uint32_t n_outputs_prev = 0;
  9462. const auto n_ubatch = cparams.n_ubatch;
  9463. std::vector<llama_pos> pos;
  9464. std::vector<int32_t> n_seq_id;
  9465. std::vector<llama_seq_id *> seq_id_arr;
  9466. std::vector<std::vector<llama_seq_id>> seq_id;
  9467. // count outputs
  9468. if (batch_all.logits) {
  9469. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9470. n_outputs += batch_all.logits[i] != 0;
  9471. }
  9472. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9473. n_outputs = n_tokens_all;
  9474. } else {
  9475. // keep last output only
  9476. n_outputs = 1;
  9477. }
  9478. // reserve output buffer
  9479. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9480. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9481. return -2;
  9482. };
  9483. // set output mappings
  9484. if (batch_all.logits) {
  9485. int32_t i_logits = 0;
  9486. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9487. if (batch_all.logits[i]) {
  9488. lctx.output_ids[i] = i_logits++;
  9489. }
  9490. }
  9491. } else {
  9492. for (uint32_t i = 0; i < n_outputs; ++i) {
  9493. lctx.output_ids[i] = i;
  9494. }
  9495. }
  9496. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9497. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9498. llama_batch u_batch = {
  9499. /* .n_tokens = */ (int32_t) n_tokens,
  9500. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9501. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9502. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9503. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9504. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9505. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9506. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9507. /* .all_pos_1 = */ batch_all.all_pos_1,
  9508. /* .all_seq_id = */ batch_all.all_seq_id,
  9509. };
  9510. // count the outputs in this u_batch
  9511. {
  9512. int32_t n_outputs_new = 0;
  9513. if (u_batch.logits) {
  9514. for (uint32_t i = 0; i < n_tokens; i++) {
  9515. n_outputs_new += u_batch.logits[i] != 0;
  9516. }
  9517. } else if (n_outputs == n_tokens_all) {
  9518. n_outputs_new = n_tokens;
  9519. } else {
  9520. // keep last output only
  9521. if (cur_token + n_tokens >= n_tokens_all) {
  9522. n_outputs_new = 1;
  9523. }
  9524. }
  9525. // needs to happen before the graph is built
  9526. lctx.n_outputs = n_outputs_new;
  9527. }
  9528. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9529. GGML_ASSERT(n_threads > 0);
  9530. // helpers for smoother batch API transition
  9531. // after deprecating the llama_eval calls, these will be removed
  9532. if (u_batch.pos == nullptr) {
  9533. pos.resize(n_tokens);
  9534. for (uint32_t i = 0; i < n_tokens; i++) {
  9535. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9536. }
  9537. u_batch.pos = pos.data();
  9538. }
  9539. if (u_batch.seq_id == nullptr) {
  9540. n_seq_id.resize(n_tokens);
  9541. seq_id.resize(n_tokens);
  9542. seq_id_arr.resize(n_tokens);
  9543. for (uint32_t i = 0; i < n_tokens; i++) {
  9544. n_seq_id[i] = 1;
  9545. seq_id[i].resize(1);
  9546. seq_id[i][0] = u_batch.all_seq_id;
  9547. seq_id_arr[i] = seq_id[i].data();
  9548. }
  9549. u_batch.n_seq_id = n_seq_id.data();
  9550. u_batch.seq_id = seq_id_arr.data();
  9551. }
  9552. // non-causal masks do not use the KV cache
  9553. if (hparams.causal_attn) {
  9554. llama_kv_cache_update(&lctx);
  9555. // if we have enough unused cells before the current head ->
  9556. // better to start searching from the beginning of the cache, hoping to fill it
  9557. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9558. kv_self.head = 0;
  9559. }
  9560. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9561. return 1;
  9562. }
  9563. if (!kv_self.recurrent) {
  9564. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9565. // after enough generations, the benefit from this heuristic disappears
  9566. // if we start defragmenting the cache, the benefit from this will be more important
  9567. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  9568. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  9569. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9570. }
  9571. }
  9572. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9573. ggml_backend_sched_reset(lctx.sched);
  9574. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9575. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9576. // the output is always the last tensor in the graph
  9577. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9578. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9579. if (lctx.n_outputs == 0) {
  9580. // no output
  9581. res = nullptr;
  9582. embd = nullptr;
  9583. } else if (!hparams.causal_attn) {
  9584. res = nullptr; // do not extract logits for embedding models such as BERT
  9585. // token or sequence embeddings
  9586. embd = gf->nodes[gf->n_nodes - 1];
  9587. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9588. } else if (cparams.embeddings) {
  9589. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9590. int i_embd = gf->n_nodes - 2;
  9591. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9592. i_embd = gf->n_nodes - i;
  9593. if (i_embd < 0) { break; }
  9594. embd = gf->nodes[i_embd];
  9595. }
  9596. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9597. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9598. if (!cparams.causal_attn) {
  9599. res = nullptr; // do not extract logits when not needed
  9600. // skip computing logits
  9601. // TODO: is this safe?
  9602. gf->n_nodes = i_embd + 1;
  9603. }
  9604. } else {
  9605. embd = nullptr; // do not extract embeddings when not needed
  9606. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9607. }
  9608. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9609. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9610. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9611. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9612. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9613. // with the BLAS calls. need a better solution
  9614. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9615. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9616. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9617. n_threads = std::min(4, n_threads);
  9618. }
  9619. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9620. llama_set_inputs(lctx, u_batch);
  9621. llama_graph_compute(lctx, gf, n_threads);
  9622. // update the kv ring buffer
  9623. {
  9624. kv_self.head += n_tokens;
  9625. // Ensure kv cache head points to a valid index.
  9626. if (kv_self.head >= kv_self.size) {
  9627. kv_self.head = 0;
  9628. }
  9629. }
  9630. #ifdef GGML_PERF
  9631. // print timing information per ggml operation (for debugging purposes)
  9632. // requires GGML_PERF to be defined
  9633. ggml_graph_print(gf);
  9634. #endif
  9635. // plot the computation graph in dot format (for debugging purposes)
  9636. //if (n_past%100 == 0) {
  9637. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9638. //}
  9639. // extract logits
  9640. if (res) {
  9641. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9642. GGML_ASSERT(backend_res != nullptr);
  9643. GGML_ASSERT(lctx.logits != nullptr);
  9644. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9645. const int32_t n_outputs_new = lctx.n_outputs;
  9646. if (n_outputs_new) {
  9647. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9648. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9649. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9650. }
  9651. }
  9652. // extract embeddings
  9653. if (embd) {
  9654. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9655. GGML_ASSERT(backend_embd != nullptr);
  9656. switch (cparams.pooling_type) {
  9657. case LLAMA_POOLING_TYPE_NONE:
  9658. {
  9659. // extract token embeddings
  9660. GGML_ASSERT(lctx.embd != nullptr);
  9661. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9662. const int32_t n_outputs_new = lctx.n_outputs;
  9663. if (n_outputs_new) {
  9664. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9665. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9666. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9667. }
  9668. } break;
  9669. case LLAMA_POOLING_TYPE_CLS:
  9670. case LLAMA_POOLING_TYPE_MEAN:
  9671. {
  9672. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9673. // extract sequence embeddings
  9674. auto & embd_seq_out = lctx.embd_seq;
  9675. embd_seq_out.clear();
  9676. for (uint32_t i = 0; i < n_tokens; i++) {
  9677. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9678. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9679. continue;
  9680. }
  9681. embd_seq_out[seq_id].resize(n_embd);
  9682. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9683. }
  9684. } break;
  9685. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9686. {
  9687. GGML_ASSERT(false && "unknown pooling type");
  9688. } break;
  9689. }
  9690. }
  9691. n_outputs_prev += lctx.n_outputs;
  9692. }
  9693. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9694. lctx.n_outputs = n_outputs;
  9695. // wait for the computation to finish (automatically done when obtaining the model output)
  9696. //llama_synchronize(&lctx);
  9697. // decide if we need to defrag the kv cache
  9698. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9699. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9700. // queue defragmentation for next llama_kv_cache_update
  9701. if (fragmentation > cparams.defrag_thold) {
  9702. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9703. llama_kv_cache_defrag(kv_self);
  9704. }
  9705. }
  9706. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  9707. // overlap with device computation.
  9708. ggml_backend_sched_reset(lctx.sched);
  9709. return 0;
  9710. }
  9711. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9712. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9713. auto & kv_self = lctx.kv_self;
  9714. const auto & hparams = lctx.model.hparams;
  9715. const uint32_t n_layer = hparams.n_layer;
  9716. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9717. const uint32_t n_used = kv_self.used;
  9718. assert(n_used <= n_kv);
  9719. //const int64_t t_start = ggml_time_us();
  9720. // number of cells moved
  9721. uint32_t n_moves = 0;
  9722. // each move requires 6*n_layer tensors (see build_defrag)
  9723. // - source view, destination view, copy operation
  9724. // - x2 for keys and values
  9725. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9726. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  9727. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  9728. // determine which KV cells to move where
  9729. //
  9730. // cell i moves to ids[i]
  9731. //
  9732. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9733. //
  9734. std::vector<uint32_t> ids(n_kv, n_kv);
  9735. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9736. const auto & cell0 = kv_self.cells[i0];
  9737. if (!cell0.is_empty()) {
  9738. ids[i0] = i0;
  9739. continue;
  9740. }
  9741. // found a hole - fill it with data from the end of the cache
  9742. uint32_t nh = 1;
  9743. // determine the size of the hole
  9744. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9745. nh++;
  9746. }
  9747. uint32_t nf = 0;
  9748. uint32_t is = n_kv - 1;
  9749. // starting from the end, find nh non-empty cells
  9750. for (; is > i0; --is) {
  9751. const auto & cell1 = kv_self.cells[is];
  9752. if (cell1.is_empty() || ids[is] != n_kv) {
  9753. continue;
  9754. }
  9755. // non-empty cell which is not yet moved
  9756. nf++;
  9757. if (nf == nh) {
  9758. break;
  9759. }
  9760. }
  9761. // this can only happen if `n_used` is not accurate, which would be a bug
  9762. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9763. nf = 0;
  9764. uint32_t i1 = is;
  9765. // are we moving a continuous block of memory?
  9766. bool cont = false;
  9767. // should we stop searching for the next move?
  9768. bool stop = false;
  9769. // go back and move the nf cells to the hole
  9770. for (; i1 < n_kv; ++i1) {
  9771. auto & cell1 = kv_self.cells[i1];
  9772. if (cell1.is_empty() || ids[i1] != n_kv) {
  9773. if (n_moves == max_moves) {
  9774. stop = true;
  9775. break;
  9776. }
  9777. cont = false;
  9778. continue;
  9779. }
  9780. // this cell goes to (i0 + nf)
  9781. ids[i1] = i0 + nf;
  9782. // move the cell meta data
  9783. kv_self.cells[i0 + nf] = cell1;
  9784. // clear the old cell and move the head there
  9785. cell1 = llama_kv_cell();
  9786. kv_self.head = n_used;
  9787. if (!cont) {
  9788. n_moves++;
  9789. cont = true;
  9790. }
  9791. nf++;
  9792. if (nf == nh) {
  9793. break;
  9794. }
  9795. }
  9796. if (stop || n_moves == max_moves) {
  9797. break;
  9798. }
  9799. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9800. i0 += nh - 1;
  9801. }
  9802. if (n_moves == 0) {
  9803. return;
  9804. }
  9805. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9806. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9807. #if 0
  9808. // CPU defrag
  9809. //
  9810. // TODO: optimizations are possible:
  9811. // - multiple threads
  9812. // - avoid copying to the host memory when already there
  9813. //
  9814. // likely not worth the effort, as we have ggml_graph based defrag
  9815. //
  9816. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9817. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9818. const uint32_t kv_size = kv_self.size;
  9819. std::vector<uint8_t> buf_k;
  9820. std::vector<uint8_t> buf_v;
  9821. for (uint32_t il = 0; il < n_layer; ++il) {
  9822. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9823. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9824. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9825. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9826. buf_k.resize(k_size);
  9827. buf_v.resize(v_size);
  9828. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9829. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9830. // batch move [i, i+nm) to [id, id+nm)
  9831. // note: cells can move only to a lower index
  9832. for (uint32_t i = 0; i < n_kv; ++i) {
  9833. const uint32_t id = ids[i];
  9834. if (i == id || id == n_kv) {
  9835. continue;
  9836. }
  9837. uint32_t nm = 1;
  9838. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9839. nm++;
  9840. }
  9841. // move keys
  9842. {
  9843. const int64_t os = i*k_size_row;
  9844. const int64_t od = id*k_size_row;
  9845. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9846. }
  9847. // move values (note: they are transposed)
  9848. {
  9849. const int64_t os = i;
  9850. const int64_t od = id;
  9851. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9852. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9853. }
  9854. }
  9855. i += nm - 1;
  9856. }
  9857. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9858. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9859. }
  9860. #else
  9861. // ggml_graph defrag
  9862. ggml_backend_sched_reset(lctx.sched);
  9863. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9864. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9865. #endif
  9866. //const int64_t t_end = ggml_time_us();
  9867. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9868. }
  9869. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9870. bool need_reserve = false;
  9871. // apply K-shift if needed
  9872. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9873. {
  9874. ggml_backend_sched_reset(lctx.sched);
  9875. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9876. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9877. llama_set_k_shift(lctx);
  9878. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9879. need_reserve = true;
  9880. }
  9881. {
  9882. auto & kv_self = lctx.kv_self;
  9883. kv_self.has_shift = false;
  9884. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9885. kv_self.cells[i].delta = 0;
  9886. }
  9887. }
  9888. }
  9889. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9890. {
  9891. ggml_backend_sched_reset(lctx.sched);
  9892. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9893. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9894. llama_set_s_copy(lctx);
  9895. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9896. need_reserve = true;
  9897. }
  9898. {
  9899. auto & kv_self = lctx.kv_self;
  9900. kv_self.do_copy = false;
  9901. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9902. kv_self.cells[i].src = i;
  9903. }
  9904. }
  9905. }
  9906. // defragment the KV cache if needed
  9907. if (lctx.kv_self.do_defrag) {
  9908. llama_kv_cache_defrag_internal(lctx);
  9909. need_reserve = true;
  9910. lctx.kv_self.do_defrag = false;
  9911. }
  9912. // reserve a worst case graph again
  9913. if (need_reserve) {
  9914. // TODO: extract to a function
  9915. // build worst-case graph
  9916. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9917. int n_past = lctx.cparams.n_ctx - n_tokens;
  9918. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9919. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9920. // initialize scheduler with the worst-case graph
  9921. ggml_backend_sched_reset(lctx.sched);
  9922. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9923. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9924. }
  9925. }
  9926. }
  9927. //
  9928. // tokenizer
  9929. //
  9930. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9931. return vocab.type;
  9932. }
  9933. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9934. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9935. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9936. }
  9937. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9938. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9939. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9940. }
  9941. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9942. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9943. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9944. }
  9945. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9946. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9947. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9948. }
  9949. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9950. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9951. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9952. }
  9953. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9954. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9955. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9956. const auto & token_data = vocab.id_to_token.at(id);
  9957. switch (llama_vocab_get_type(vocab)) {
  9958. case LLAMA_VOCAB_TYPE_SPM: {
  9959. auto buf = token_data.text.substr(3, 2);
  9960. return strtol(buf.c_str(), NULL, 16);
  9961. }
  9962. case LLAMA_VOCAB_TYPE_BPE: {
  9963. GGML_ASSERT(false);
  9964. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  9965. }
  9966. case LLAMA_VOCAB_TYPE_WPM: {
  9967. GGML_ASSERT(false);
  9968. }
  9969. default:
  9970. GGML_ASSERT(false);
  9971. }
  9972. }
  9973. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9974. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9975. static const char * hex = "0123456789ABCDEF";
  9976. switch (llama_vocab_get_type(vocab)) {
  9977. case LLAMA_VOCAB_TYPE_SPM: {
  9978. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9979. auto token = vocab.token_to_id.find(buf);
  9980. if (token != vocab.token_to_id.end()) {
  9981. return (*token).second;
  9982. }
  9983. // Try to fall back to just the byte as a string
  9984. const char buf2[2] = { (char)ch, 0 };
  9985. return vocab.token_to_id.at(buf2);
  9986. }
  9987. case LLAMA_VOCAB_TYPE_WPM:
  9988. case LLAMA_VOCAB_TYPE_BPE: {
  9989. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9990. }
  9991. default:
  9992. GGML_ASSERT(false);
  9993. }
  9994. }
  9995. static void llama_escape_whitespace(std::string & text) {
  9996. replace_all(text, " ", "\xe2\x96\x81");
  9997. }
  9998. static void llama_unescape_whitespace(std::string & word) {
  9999. replace_all(word, "\xe2\x96\x81", " ");
  10000. }
  10001. struct llm_symbol {
  10002. using index = int;
  10003. index prev;
  10004. index next;
  10005. const char * text;
  10006. size_t n;
  10007. };
  10008. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10009. // SPM tokenizer
  10010. // original implementation:
  10011. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10012. struct llm_bigram_spm {
  10013. struct comparator {
  10014. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10015. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10016. }
  10017. };
  10018. using queue_storage = std::vector<llm_bigram_spm>;
  10019. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10020. llm_symbol::index left;
  10021. llm_symbol::index right;
  10022. float score;
  10023. size_t size;
  10024. };
  10025. struct llm_tokenizer_spm {
  10026. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10027. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10028. // split string into utf8 chars
  10029. int index = 0;
  10030. size_t offs = 0;
  10031. while (offs < text.size()) {
  10032. llm_symbol sym;
  10033. size_t len = utf8_len(text[offs]);
  10034. sym.text = text.c_str() + offs;
  10035. sym.n = std::min(len, text.size() - offs);
  10036. offs += sym.n;
  10037. sym.prev = index - 1;
  10038. sym.next = offs == text.size() ? -1 : index + 1;
  10039. index++;
  10040. symbols.emplace_back(sym);
  10041. }
  10042. // seed the work queue with all possible 2-character tokens.
  10043. for (size_t i = 1; i < symbols.size(); ++i) {
  10044. try_add_bigram(i - 1, i);
  10045. }
  10046. // keep substituting the highest frequency pairs for as long as we can.
  10047. while (!work_queue.empty()) {
  10048. auto bigram = work_queue.top();
  10049. work_queue.pop();
  10050. auto & left_sym = symbols[bigram.left];
  10051. auto & right_sym = symbols[bigram.right];
  10052. // if one of the symbols already got merged, skip it.
  10053. if (left_sym.n == 0 || right_sym.n == 0 ||
  10054. left_sym.n + right_sym.n != bigram.size) {
  10055. continue;
  10056. }
  10057. // merge the right sym into the left one
  10058. left_sym.n += right_sym.n;
  10059. right_sym.n = 0;
  10060. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10061. // remove the right sym from the chain
  10062. left_sym.next = right_sym.next;
  10063. if (right_sym.next >= 0) {
  10064. symbols[right_sym.next].prev = bigram.left;
  10065. }
  10066. // find more substitutions
  10067. try_add_bigram(left_sym.prev, bigram.left);
  10068. try_add_bigram(bigram.left, left_sym.next);
  10069. }
  10070. for (int i = 0; i != -1; i = symbols[i].next) {
  10071. auto & symbol = symbols[i];
  10072. resegment(symbol, output);
  10073. }
  10074. }
  10075. private:
  10076. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10077. auto text = std::string(symbol.text, symbol.n);
  10078. auto token = vocab.token_to_id.find(text);
  10079. // Do we need to support is_unused?
  10080. if (token != vocab.token_to_id.end()) {
  10081. output.push_back((*token).second);
  10082. return;
  10083. }
  10084. const auto p = rev_merge.find(text);
  10085. if (p == rev_merge.end()) {
  10086. // output any symbols that did not form tokens as bytes.
  10087. output.reserve(output.size() + symbol.n);
  10088. for (int j = 0; j < (int)symbol.n; ++j) {
  10089. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10090. output.push_back(token_id);
  10091. }
  10092. return;
  10093. }
  10094. resegment(symbols[p->second.first], output);
  10095. resegment(symbols[p->second.second], output);
  10096. }
  10097. void try_add_bigram(int left, int right) {
  10098. if (left == -1 || right == -1) {
  10099. return;
  10100. }
  10101. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10102. auto token = vocab.token_to_id.find(text);
  10103. if (token == vocab.token_to_id.end()) {
  10104. return;
  10105. }
  10106. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10107. return;
  10108. }
  10109. const auto & tok_data = vocab.id_to_token[(*token).second];
  10110. llm_bigram_spm bigram;
  10111. bigram.left = left;
  10112. bigram.right = right;
  10113. bigram.score = tok_data.score;
  10114. bigram.size = text.size();
  10115. work_queue.push(bigram);
  10116. // Do we need to support is_unused?
  10117. rev_merge[text] = std::make_pair(left, right);
  10118. }
  10119. const llama_vocab & vocab;
  10120. std::vector<llm_symbol> symbols;
  10121. llm_bigram_spm::queue work_queue;
  10122. std::map<std::string, std::pair<int, int>> rev_merge;
  10123. };
  10124. // BPE tokenizer
  10125. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10126. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10127. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10128. struct llm_bigram_bpe {
  10129. struct comparator {
  10130. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10131. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10132. }
  10133. };
  10134. using queue_storage = std::vector<llm_bigram_bpe>;
  10135. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10136. llm_symbol::index left;
  10137. llm_symbol::index right;
  10138. std::string text;
  10139. int rank;
  10140. size_t size;
  10141. };
  10142. struct llm_tokenizer_bpe {
  10143. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  10144. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10145. int final_prev_index = -1;
  10146. bool ignore_merges = false;
  10147. std::vector<std::string> word_collection;
  10148. switch (vocab.type) {
  10149. case LLAMA_VOCAB_TYPE_BPE:
  10150. switch (vocab.type_pre) {
  10151. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10152. ignore_merges = true;
  10153. word_collection = unicode_regex_split(text, {
  10154. // original regex from tokenizer.json
  10155. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10156. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10157. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10158. });
  10159. break;
  10160. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10161. word_collection = unicode_regex_split(text, {
  10162. // same as llama3
  10163. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10164. });
  10165. break;
  10166. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10167. word_collection = unicode_regex_split(text, {
  10168. "[\r\n]",
  10169. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10170. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10171. "\\s+$",
  10172. "[一-龥ࠀ-一가-퟿]+",
  10173. "\\p{N}+",
  10174. });
  10175. break;
  10176. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10177. word_collection = unicode_regex_split(text, {
  10178. "[\r\n]",
  10179. "\\s?\\p{L}+",
  10180. "\\s?\\p{P}+",
  10181. "[一-龥ࠀ-一가-퟿]+",
  10182. "\\p{N}",
  10183. });
  10184. break;
  10185. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10186. word_collection = unicode_regex_split(text, {
  10187. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10188. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10189. "[0-9][0-9][0-9]",
  10190. });
  10191. break;
  10192. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10193. // TODO: MPT pre-tokenization regexes are unknown
  10194. // the following are close, but not exact. run the following:
  10195. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10196. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10197. word_collection = unicode_regex_split(text, {
  10198. "\\s?\\p{L}+",
  10199. "\\s?\\p{P}+",
  10200. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10201. });
  10202. break;
  10203. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10204. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10205. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10206. word_collection = unicode_regex_split(text, {
  10207. "\\p{N}",
  10208. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10209. });
  10210. break;
  10211. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10212. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10213. word_collection = unicode_regex_split(text, {
  10214. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10215. });
  10216. break;
  10217. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  10218. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10219. word_collection = unicode_regex_split(text, {
  10220. // original regex from tokenizer.json
  10221. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10222. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10223. });
  10224. break;
  10225. default:
  10226. // default regex for BPE tokenization pre-processing
  10227. word_collection = unicode_regex_split(text, {
  10228. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10229. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10230. "\\p{N}+",
  10231. "[0-9][0-9][0-9]",
  10232. });
  10233. break;
  10234. }
  10235. break;
  10236. default:
  10237. GGML_ASSERT(false);
  10238. break;
  10239. }
  10240. symbols_final.clear();
  10241. for (auto & word : word_collection) {
  10242. work_queue = llm_bigram_bpe::queue();
  10243. symbols.clear();
  10244. int index = 0;
  10245. size_t offset = 0;
  10246. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  10247. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  10248. offset = word.size();
  10249. }
  10250. while (offset < word.size()) {
  10251. llm_symbol sym;
  10252. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10253. sym.text = word.c_str() + offset;
  10254. sym.n = char_len;
  10255. offset += sym.n;
  10256. sym.prev = index - 1;
  10257. sym.next = offset == word.size() ? -1 : index + 1;
  10258. index++;
  10259. symbols.emplace_back(sym);
  10260. }
  10261. for (size_t i = 1; i < symbols.size(); ++i) {
  10262. add_new_bigram(i - 1, i);
  10263. }
  10264. // build token(s)
  10265. while (!work_queue.empty()) {
  10266. auto bigram = work_queue.top();
  10267. work_queue.pop();
  10268. auto & left_symbol = symbols[bigram.left];
  10269. auto & right_symbol = symbols[bigram.right];
  10270. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10271. continue;
  10272. }
  10273. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10274. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10275. if (left_token + right_token != bigram.text) {
  10276. continue; // Skip this bigram if it's outdated
  10277. }
  10278. // merge the right sym into the left one
  10279. left_symbol.n += right_symbol.n;
  10280. right_symbol.n = 0;
  10281. // remove the right sym from the chain
  10282. left_symbol.next = right_symbol.next;
  10283. if (right_symbol.next >= 0) {
  10284. symbols[right_symbol.next].prev = bigram.left;
  10285. }
  10286. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10287. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10288. }
  10289. // add the finished tokens to the final list keeping correct order for next and prev
  10290. for (auto & sym : symbols) {
  10291. if (sym.n > 0) {
  10292. sym.prev = final_prev_index;
  10293. sym.next = -1;
  10294. if (final_prev_index != -1) {
  10295. symbols_final[final_prev_index].next = symbols_final.size();
  10296. }
  10297. symbols_final.emplace_back(sym);
  10298. final_prev_index = symbols_final.size() - 1;
  10299. }
  10300. }
  10301. }
  10302. symbols = symbols_final;
  10303. if (!symbols.empty()) {
  10304. for (int i = 0; i != -1; i = symbols[i].next) {
  10305. auto & symbol = symbols[i];
  10306. if (symbol.n == 0) {
  10307. continue;
  10308. }
  10309. const std::string str = std::string(symbol.text, symbol.n);
  10310. const auto token = vocab.token_to_id.find(str);
  10311. if (token == vocab.token_to_id.end()) {
  10312. for (auto j = str.begin(); j != str.end(); ++j) {
  10313. std::string byte_str(1, *j);
  10314. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10315. if (token_multibyte == vocab.token_to_id.end()) {
  10316. throw std::runtime_error("ERROR: byte not found in vocab");
  10317. }
  10318. output.push_back((*token_multibyte).second);
  10319. }
  10320. } else {
  10321. output.push_back((*token).second);
  10322. }
  10323. }
  10324. }
  10325. }
  10326. private:
  10327. void add_new_bigram(int left, int right) {
  10328. if (left == -1 || right == -1) {
  10329. return;
  10330. }
  10331. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10332. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10333. int rank_found = -1;
  10334. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10335. if (rank_found < 0) {
  10336. return;
  10337. }
  10338. llm_bigram_bpe bigram;
  10339. bigram.left = left;
  10340. bigram.right = right;
  10341. bigram.text = left_token + right_token;
  10342. bigram.size = left_token.size() + right_token.size();
  10343. bigram.rank = rank_found;
  10344. work_queue.push(bigram);
  10345. }
  10346. const llama_vocab & vocab;
  10347. std::vector<llm_symbol> symbols;
  10348. std::vector<llm_symbol> symbols_final;
  10349. llm_bigram_bpe::queue work_queue;
  10350. };
  10351. struct llm_tokenizer_wpm {
  10352. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10353. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10354. auto * token_map = &vocab.token_to_id;
  10355. // normalize and split by whitespace
  10356. std::vector<std::string> words = preprocess(text);
  10357. // bos token prepended already
  10358. // find the longest tokens that form the words
  10359. for (const std::string &word : words) {
  10360. // skip empty words
  10361. if (word.size() == 0) {
  10362. continue;
  10363. }
  10364. // prepend phantom space
  10365. std::string word1 = "\xe2\x96\x81" + word;
  10366. int n = word1.size();
  10367. // we're at the start of a new word
  10368. int i = 0;
  10369. bool match_any = false;
  10370. // move through character position in word
  10371. while (i < n) {
  10372. // loop through possible match length
  10373. bool match = false;
  10374. for (int j = n; j > i; j--) {
  10375. auto it = token_map->find(word1.substr(i, j - i));
  10376. if (it != token_map->end()) {
  10377. output.push_back(it->second);
  10378. match = true;
  10379. match_any = true;
  10380. i = j;
  10381. break;
  10382. }
  10383. }
  10384. // must be an unknown character
  10385. if (!match) {
  10386. i++;
  10387. }
  10388. }
  10389. // we didn't find any matches for this word
  10390. if (!match_any) {
  10391. output.push_back(vocab.special_unk_id);
  10392. }
  10393. }
  10394. }
  10395. std::vector<std::string> preprocess(const std::string & text) {
  10396. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10397. // strip accents, strip control, uniformize whitespace,
  10398. // to lowercase, pad chinese characters, pad punctuation
  10399. std::string new_str = "";
  10400. for (uint32_t code : cpts_nfd) {
  10401. const codepoint_flags flags = unicode_cpt_flags(code);
  10402. if (flags.is_accent_mark || flags.is_control) {
  10403. continue;
  10404. }
  10405. code = unicode_tolower(code);
  10406. if (flags.is_separator || flags.is_whitespace) { //####FIXME: is_separator ?
  10407. code = ' ';
  10408. }
  10409. std::string s = unicode_cpt_to_utf8(code);
  10410. if (flags.is_punctuation || is_ascii_punct(code) || is_chinese_char(code)) {
  10411. new_str += " ";
  10412. new_str += s;
  10413. new_str += " ";
  10414. } else {
  10415. new_str += s;
  10416. }
  10417. }
  10418. // split by whitespace
  10419. uint64_t l = 0;
  10420. uint64_t r = 0;
  10421. std::vector<std::string> words;
  10422. while (r < new_str.size()) {
  10423. // if is whitespace
  10424. if (isspace(new_str[r], std::locale::classic())) {
  10425. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10426. l = r + 1;
  10427. r = l;
  10428. } else {
  10429. r += 1;
  10430. }
  10431. }
  10432. if (r > l) {
  10433. words.push_back(new_str.substr(l, (r - l)));
  10434. }
  10435. return words;
  10436. }
  10437. bool is_ascii_punct(uint32_t code) {
  10438. if (code > 0xFF) {
  10439. return false;
  10440. }
  10441. auto c = char(static_cast<unsigned char>(code));
  10442. return ispunct(c, std::locale::classic());
  10443. }
  10444. bool is_chinese_char(uint32_t cpt) {
  10445. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10446. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10447. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10448. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10449. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10450. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10451. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10452. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10453. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10454. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10455. return true; // NOLINT
  10456. }
  10457. return false;
  10458. }
  10459. const llama_vocab & vocab;
  10460. };
  10461. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10462. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10463. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10464. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10465. struct fragment_buffer_variant {
  10466. fragment_buffer_variant(llama_vocab::id _token)
  10467. :
  10468. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10469. token(_token),
  10470. raw_text(_dummy),
  10471. offset(0),
  10472. length(0) {}
  10473. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10474. :
  10475. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10476. token((llama_vocab::id) - 1),
  10477. raw_text(_raw_text),
  10478. offset(_offset),
  10479. length(_length){
  10480. GGML_ASSERT(_offset >= 0);
  10481. GGML_ASSERT(_length >= 1);
  10482. GGML_ASSERT(offset + length <= raw_text.length());
  10483. }
  10484. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10485. const llama_vocab::id token;
  10486. const std::string _dummy;
  10487. const std::string & raw_text;
  10488. const uint64_t offset;
  10489. const uint64_t length;
  10490. };
  10491. // #define PRETOKENIZERDEBUG
  10492. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10493. // for each special token
  10494. for (const auto & st: vocab.special_tokens_cache) {
  10495. const auto & special_token = st.first;
  10496. const auto & special_id = st.second;
  10497. // for each text fragment
  10498. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10499. while (it != buffer.end()) {
  10500. auto & fragment = (*it);
  10501. // if a fragment is text ( not yet processed )
  10502. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10503. auto * raw_text = &(fragment.raw_text);
  10504. auto raw_text_base_offset = fragment.offset;
  10505. auto raw_text_base_length = fragment.length;
  10506. // loop over the text
  10507. while (true) {
  10508. // find the first occurrence of a given special token in this fragment
  10509. // passing offset argument only limit the "search area" but match coordinates
  10510. // are still relative to the source full raw_text
  10511. auto match = raw_text->find(special_token, raw_text_base_offset);
  10512. // no occurrences found, stop processing this fragment for a given special token
  10513. if (match == std::string::npos) break;
  10514. // check if match is within bounds of offset <-> length
  10515. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10516. #ifdef PRETOKENIZERDEBUG
  10517. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10518. #endif
  10519. auto source = std::distance(buffer.begin(), it);
  10520. // if match is further than base offset
  10521. // then we have some text to the left of it
  10522. if (match > raw_text_base_offset) {
  10523. // left
  10524. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10525. const int64_t left_reminder_length = match - raw_text_base_offset;
  10526. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10527. #ifdef PRETOKENIZERDEBUG
  10528. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10529. #endif
  10530. it++;
  10531. }
  10532. // special token
  10533. buffer.emplace_after(it, special_id);
  10534. it++;
  10535. // right
  10536. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10537. const int64_t right_reminder_offset = match + special_token.length();
  10538. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10539. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10540. #ifdef PRETOKENIZERDEBUG
  10541. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10542. #endif
  10543. it++;
  10544. if (source == 0) {
  10545. buffer.erase_after(buffer.before_begin());
  10546. } else {
  10547. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10548. }
  10549. // repeat for the right side
  10550. raw_text_base_offset = right_reminder_offset;
  10551. raw_text_base_length = right_reminder_length;
  10552. #ifdef PRETOKENIZERDEBUG
  10553. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10554. #endif
  10555. } else {
  10556. if (source == 0) {
  10557. buffer.erase_after(buffer.before_begin());
  10558. } else {
  10559. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10560. }
  10561. break;
  10562. }
  10563. }
  10564. }
  10565. it++;
  10566. }
  10567. }
  10568. }
  10569. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10570. std::vector<llama_vocab::id> output;
  10571. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10572. if (!raw_text.empty()) {
  10573. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10574. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10575. }
  10576. switch (vocab.type) {
  10577. case LLAMA_VOCAB_TYPE_SPM:
  10578. {
  10579. // OG tokenizer behavior:
  10580. //
  10581. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10582. // tokenizer.encode('', add_special_tokens=False) returns []
  10583. static const bool rtrim = true; //TODO: as param
  10584. bool is_prev_special = false;
  10585. bool special_token_rtrim = false;
  10586. if (add_special && vocab.special_add_bos != 0) {
  10587. GGML_ASSERT(vocab.special_bos_id != -1);
  10588. output.push_back(vocab.special_bos_id);
  10589. is_prev_special = true;
  10590. }
  10591. for (const auto & fragment : fragment_buffer) {
  10592. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10593. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10594. // TODO: It's likely possible to get rid of this string copy entirely
  10595. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10596. // and passing 'add space prefix' as bool argument
  10597. //
  10598. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10599. if (special_token_rtrim) {
  10600. size_t num_whitespaces = 0;
  10601. while (isspace(raw_text[num_whitespaces])) {
  10602. num_whitespaces++;
  10603. }
  10604. if (num_whitespaces == raw_text.size()) {
  10605. continue; // skip if all whitespaces
  10606. }
  10607. raw_text = raw_text.substr(num_whitespaces);
  10608. }
  10609. if (vocab.add_space_prefix) {
  10610. if (!output.size() || is_prev_special) { // prefix with space if first token
  10611. raw_text = " " + raw_text;
  10612. }
  10613. }
  10614. #ifdef PRETOKENIZERDEBUG
  10615. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10616. #endif
  10617. llm_tokenizer_spm tokenizer(vocab);
  10618. llama_escape_whitespace(raw_text);
  10619. tokenizer.tokenize(raw_text, output);
  10620. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10621. output.push_back(fragment.token);
  10622. is_prev_special = true;
  10623. // phi-3 special tokens without rtrim, works fine for llama-spm too
  10624. special_token_rtrim = rtrim
  10625. && fragment.token != vocab.special_bos_id
  10626. && fragment.token != vocab.special_unk_id
  10627. && fragment.token != vocab.special_eos_id;
  10628. }
  10629. }
  10630. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10631. LLAMA_LOG_WARN(
  10632. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10633. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10634. "Are you sure this is what you want?\n", __FUNCTION__);
  10635. }
  10636. if (add_special && vocab.special_add_eos == 1) {
  10637. GGML_ASSERT(vocab.special_eos_id != -1);
  10638. output.push_back(vocab.special_eos_id);
  10639. }
  10640. } break;
  10641. case LLAMA_VOCAB_TYPE_BPE:
  10642. {
  10643. if (add_special && vocab.special_add_bos != 0) {
  10644. GGML_ASSERT(vocab.special_bos_id != -1);
  10645. output.push_back(vocab.special_bos_id);
  10646. }
  10647. for (const auto & fragment : fragment_buffer) {
  10648. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10649. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10650. #ifdef PRETOKENIZERDEBUG
  10651. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10652. #endif
  10653. llm_tokenizer_bpe tokenizer(vocab);
  10654. tokenizer.tokenize(raw_text, output);
  10655. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10656. output.push_back(fragment.token);
  10657. }
  10658. }
  10659. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10660. LLAMA_LOG_WARN(
  10661. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10662. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10663. "Are you sure this is what you want?\n", __FUNCTION__);
  10664. }
  10665. if (add_special && vocab.special_add_eos == 1) {
  10666. GGML_ASSERT(vocab.special_add_eos != -1);
  10667. output.push_back(vocab.special_eos_id);
  10668. }
  10669. } break;
  10670. case LLAMA_VOCAB_TYPE_WPM:
  10671. {
  10672. if (add_special) {
  10673. GGML_ASSERT(vocab.special_cls_id != -1);
  10674. output.push_back(vocab.special_cls_id);
  10675. }
  10676. for (const auto & fragment : fragment_buffer) {
  10677. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10678. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10679. #ifdef PRETOKENIZERDEBUG
  10680. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10681. #endif
  10682. llm_tokenizer_wpm tokenizer(vocab);
  10683. tokenizer.tokenize(raw_text, output);
  10684. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10685. output.push_back(fragment.token);
  10686. }
  10687. }
  10688. if (add_special) {
  10689. GGML_ASSERT(vocab.special_sep_id != -1);
  10690. output.push_back(vocab.special_sep_id);
  10691. }
  10692. } break;
  10693. case LLAMA_VOCAB_TYPE_NONE:
  10694. GGML_ASSERT(false);
  10695. }
  10696. return output;
  10697. }
  10698. //
  10699. // grammar - internal
  10700. //
  10701. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10702. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10703. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10704. const std::string & src,
  10705. llama_partial_utf8 partial_start) {
  10706. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10707. const char * pos = src.c_str();
  10708. std::vector<uint32_t> code_points;
  10709. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10710. code_points.reserve(src.size() + 1);
  10711. uint32_t value = partial_start.value;
  10712. int n_remain = partial_start.n_remain;
  10713. // continue previous decode, if applicable
  10714. while (*pos != 0 && n_remain > 0) {
  10715. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10716. if ((next_byte >> 6) != 2) {
  10717. // invalid sequence, abort
  10718. code_points.push_back(0);
  10719. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10720. }
  10721. value = (value << 6) + (next_byte & 0x3F);
  10722. ++pos;
  10723. --n_remain;
  10724. }
  10725. if (partial_start.n_remain > 0 && n_remain == 0) {
  10726. code_points.push_back(value);
  10727. }
  10728. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10729. while (*pos != 0) {
  10730. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10731. uint8_t highbits = first_byte >> 4;
  10732. n_remain = lookup[highbits] - 1;
  10733. if (n_remain < 0) {
  10734. // invalid sequence, abort
  10735. code_points.clear();
  10736. code_points.push_back(0);
  10737. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10738. }
  10739. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10740. value = first_byte & mask;
  10741. ++pos;
  10742. while (*pos != 0 && n_remain > 0) {
  10743. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10744. ++pos;
  10745. --n_remain;
  10746. }
  10747. if (n_remain == 0) {
  10748. code_points.push_back(value);
  10749. }
  10750. }
  10751. code_points.push_back(0);
  10752. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10753. }
  10754. // returns true iff pos points to the end of one of the definitions of a rule
  10755. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10756. switch (pos->type) {
  10757. case LLAMA_GRETYPE_END: return true; // NOLINT
  10758. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10759. default: return false;
  10760. }
  10761. }
  10762. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10763. // asserts that pos is pointing to a char range element
  10764. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10765. const llama_grammar_element * pos,
  10766. const uint32_t chr) {
  10767. bool found = false;
  10768. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10769. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10770. do {
  10771. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10772. // inclusive range, e.g. [a-z]
  10773. found = found || (pos->value <= chr && chr <= pos[1].value);
  10774. pos += 2;
  10775. } else {
  10776. // exact char match, e.g. [a] or "a"
  10777. found = found || pos->value == chr;
  10778. pos += 1;
  10779. }
  10780. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10781. return std::make_pair(found == is_positive_char, pos);
  10782. }
  10783. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10784. // range at pos (regular or inverse range)
  10785. // asserts that pos is pointing to a char range element
  10786. static bool llama_grammar_match_partial_char(
  10787. const llama_grammar_element * pos,
  10788. const llama_partial_utf8 partial_utf8) {
  10789. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10790. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10791. uint32_t partial_value = partial_utf8.value;
  10792. int n_remain = partial_utf8.n_remain;
  10793. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10794. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10795. return false;
  10796. }
  10797. // range of possible code points this partial UTF-8 sequence could complete to
  10798. uint32_t low = partial_value << (n_remain * 6);
  10799. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10800. if (low == 0) {
  10801. if (n_remain == 2) {
  10802. low = 1 << 11;
  10803. } else if (n_remain == 3) {
  10804. low = 1 << 16;
  10805. }
  10806. }
  10807. do {
  10808. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10809. // inclusive range, e.g. [a-z]
  10810. if (pos->value <= high && low <= pos[1].value) {
  10811. return is_positive_char;
  10812. }
  10813. pos += 2;
  10814. } else {
  10815. // exact char match, e.g. [a] or "a"
  10816. if (low <= pos->value && pos->value <= high) {
  10817. return is_positive_char;
  10818. }
  10819. pos += 1;
  10820. }
  10821. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10822. return !is_positive_char;
  10823. }
  10824. // transforms a grammar pushdown stack into N possible stacks, all ending
  10825. // at a character range (terminal element)
  10826. static void llama_grammar_advance_stack(
  10827. const std::vector<std::vector<llama_grammar_element>> & rules,
  10828. const std::vector<const llama_grammar_element *> & stack,
  10829. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10830. if (stack.empty()) {
  10831. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10832. new_stacks.emplace_back(stack);
  10833. }
  10834. return;
  10835. }
  10836. const llama_grammar_element * pos = stack.back();
  10837. switch (pos->type) {
  10838. case LLAMA_GRETYPE_RULE_REF: {
  10839. const size_t rule_id = static_cast<size_t>(pos->value);
  10840. const llama_grammar_element * subpos = rules[rule_id].data();
  10841. do {
  10842. // init new stack without the top (pos)
  10843. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10844. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10845. // if this rule ref is followed by another element, add that to stack
  10846. new_stack.push_back(pos + 1);
  10847. }
  10848. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10849. // if alternate is nonempty, add to stack
  10850. new_stack.push_back(subpos);
  10851. }
  10852. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10853. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10854. // scan to end of alternate def
  10855. subpos++;
  10856. }
  10857. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10858. // there's another alternate def of this rule to process
  10859. subpos++;
  10860. } else {
  10861. break;
  10862. }
  10863. } while (true);
  10864. break;
  10865. }
  10866. case LLAMA_GRETYPE_CHAR:
  10867. case LLAMA_GRETYPE_CHAR_NOT:
  10868. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10869. // only add the stack if it's not a duplicate of one we already have
  10870. new_stacks.emplace_back(stack);
  10871. }
  10872. break;
  10873. default:
  10874. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10875. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10876. // those
  10877. GGML_ASSERT(false);
  10878. }
  10879. }
  10880. // takes a set of possible pushdown stacks on a grammar, which are required to
  10881. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10882. // produces the N possible stacks if the given char is accepted at those
  10883. // positions
  10884. void llama_grammar_accept(
  10885. const std::vector<std::vector<llama_grammar_element>> & rules,
  10886. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10887. const uint32_t chr,
  10888. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10889. new_stacks.clear();
  10890. for (const auto & stack : stacks) {
  10891. if (stack.empty()) {
  10892. continue;
  10893. }
  10894. auto match = llama_grammar_match_char(stack.back(), chr);
  10895. if (match.first) {
  10896. const llama_grammar_element * pos = match.second;
  10897. // update top of stack to next element, if any
  10898. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10899. if (!llama_grammar_is_end_of_sequence(pos)) {
  10900. new_stack.push_back(pos);
  10901. }
  10902. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10903. }
  10904. }
  10905. }
  10906. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10907. const std::vector<std::vector<llama_grammar_element>> & rules,
  10908. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10909. const std::vector<llama_grammar_candidate> & candidates);
  10910. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10911. const std::vector<std::vector<llama_grammar_element>> & rules,
  10912. const std::vector<const llama_grammar_element *> & stack,
  10913. const std::vector<llama_grammar_candidate> & candidates) {
  10914. std::vector<llama_grammar_candidate> rejects;
  10915. rejects.reserve(candidates.size());
  10916. if (stack.empty()) {
  10917. for (const auto & tok : candidates) {
  10918. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10919. rejects.push_back(tok);
  10920. }
  10921. }
  10922. return rejects;
  10923. }
  10924. const llama_grammar_element * stack_pos = stack.back();
  10925. std::vector<llama_grammar_candidate> next_candidates;
  10926. next_candidates.reserve(candidates.size());
  10927. for (const auto & tok : candidates) {
  10928. if (*tok.code_points == 0) {
  10929. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10930. // that cannot satisfy this position in grammar
  10931. if (tok.partial_utf8.n_remain != 0 &&
  10932. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10933. rejects.push_back(tok);
  10934. }
  10935. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10936. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10937. } else {
  10938. rejects.push_back(tok);
  10939. }
  10940. }
  10941. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10942. // update top of stack to next element, if any
  10943. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10944. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10945. stack_after.push_back(stack_pos_after);
  10946. }
  10947. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10948. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10949. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10950. for (const auto & tok : next_rejects) {
  10951. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10952. }
  10953. return rejects;
  10954. }
  10955. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10956. const std::vector<std::vector<llama_grammar_element>> & rules,
  10957. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10958. const std::vector<llama_grammar_candidate> & candidates) {
  10959. GGML_ASSERT(!stacks.empty()); // REVIEW
  10960. if (candidates.empty()) {
  10961. return std::vector<llama_grammar_candidate>();
  10962. }
  10963. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10964. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10965. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10966. }
  10967. return rejects;
  10968. }
  10969. static bool llama_grammar_detect_left_recursion(
  10970. const std::vector<std::vector<llama_grammar_element>> & rules,
  10971. size_t rule_index,
  10972. std::vector<bool> * rules_visited,
  10973. std::vector<bool> * rules_in_progress,
  10974. std::vector<bool> * rules_may_be_empty) {
  10975. if ((*rules_in_progress)[rule_index]) {
  10976. return true;
  10977. }
  10978. (*rules_in_progress)[rule_index] = true;
  10979. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  10980. // First check if the rule might produce the empty string. This could be done combined with the second
  10981. // step but it's more readable as two steps.
  10982. bool at_rule_start = true;
  10983. for (size_t i = 0; i < rule.size(); i++) {
  10984. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  10985. if (at_rule_start) {
  10986. (*rules_may_be_empty)[rule_index] = true;
  10987. break;
  10988. }
  10989. at_rule_start = true;
  10990. } else {
  10991. at_rule_start = false;
  10992. }
  10993. }
  10994. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  10995. // be empty)
  10996. bool recurse_into_nonterminal = true;
  10997. for (size_t i = 0; i < rule.size(); i++) {
  10998. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  10999. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  11000. return true;
  11001. }
  11002. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  11003. recurse_into_nonterminal = false;
  11004. }
  11005. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11006. recurse_into_nonterminal = true;
  11007. } else {
  11008. recurse_into_nonterminal = false;
  11009. }
  11010. }
  11011. (*rules_in_progress)[rule_index] = false;
  11012. (*rules_visited)[rule_index] = true;
  11013. return false;
  11014. }
  11015. //
  11016. // grammar - external
  11017. //
  11018. struct llama_grammar * llama_grammar_init(
  11019. const llama_grammar_element ** rules,
  11020. size_t n_rules,
  11021. size_t start_rule_index) {
  11022. const llama_grammar_element * pos;
  11023. // copy rule definitions into vectors
  11024. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  11025. for (size_t i = 0; i < n_rules; i++) {
  11026. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  11027. vec_rules[i].push_back(*pos);
  11028. }
  11029. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  11030. }
  11031. // Check for left recursion
  11032. std::vector<bool> rules_visited(n_rules);
  11033. std::vector<bool> rules_in_progress(n_rules);
  11034. std::vector<bool> rules_may_be_empty(n_rules);
  11035. for (size_t i = 0; i < n_rules; i++) {
  11036. if (rules_visited[i]) {
  11037. continue;
  11038. }
  11039. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11040. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11041. }
  11042. }
  11043. // loop over alternates of start rule to build initial stacks
  11044. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11045. pos = vec_rules[start_rule_index].data();
  11046. do {
  11047. std::vector<const llama_grammar_element *> stack;
  11048. if (!llama_grammar_is_end_of_sequence(pos)) {
  11049. // if alternate is nonempty, add to stack
  11050. stack.push_back(pos);
  11051. }
  11052. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11053. while (!llama_grammar_is_end_of_sequence(pos)) {
  11054. // scan to end of alternate def
  11055. pos++;
  11056. }
  11057. if (pos->type == LLAMA_GRETYPE_ALT) {
  11058. // there's another alternate def of this rule to process
  11059. pos++;
  11060. } else {
  11061. break;
  11062. }
  11063. } while (true);
  11064. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11065. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11066. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11067. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11068. }
  11069. void llama_grammar_free(struct llama_grammar * grammar) {
  11070. delete grammar;
  11071. }
  11072. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11073. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11074. // redirect elements in stacks to point to new rules
  11075. for (size_t is = 0; is < result->stacks.size(); is++) {
  11076. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11077. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11078. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11079. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11080. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11081. }
  11082. }
  11083. }
  11084. }
  11085. }
  11086. return result;
  11087. }
  11088. //
  11089. // sampling
  11090. //
  11091. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11092. if (seed == LLAMA_DEFAULT_SEED) {
  11093. seed = time(NULL);
  11094. }
  11095. ctx->rng.seed(seed);
  11096. }
  11097. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11098. GGML_ASSERT(candidates->size > 0);
  11099. const int64_t t_start_sample_us = ggml_time_us();
  11100. // Sort the logits in descending order
  11101. if (!candidates->sorted) {
  11102. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11103. return a.logit > b.logit;
  11104. });
  11105. candidates->sorted = true;
  11106. }
  11107. float max_l = candidates->data[0].logit;
  11108. float cum_sum = 0.0f;
  11109. for (size_t i = 0; i < candidates->size; ++i) {
  11110. float p = expf(candidates->data[i].logit - max_l);
  11111. candidates->data[i].p = p;
  11112. cum_sum += p;
  11113. }
  11114. for (size_t i = 0; i < candidates->size; ++i) {
  11115. candidates->data[i].p /= cum_sum;
  11116. }
  11117. if (ctx) {
  11118. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11119. }
  11120. }
  11121. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11122. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11123. // if (k >= (int32_t)candidates->size) {
  11124. // return;
  11125. // }
  11126. const int64_t t_start_sample_us = ggml_time_us();
  11127. if (k <= 0) {
  11128. k = candidates->size;
  11129. }
  11130. k = std::max(k, (int) min_keep);
  11131. k = std::min(k, (int) candidates->size);
  11132. // Sort scores in descending order
  11133. if (!candidates->sorted) {
  11134. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11135. return a.logit > b.logit;
  11136. };
  11137. if (k <= 128) {
  11138. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11139. } else {
  11140. constexpr int nbuckets = 128;
  11141. constexpr float bucket_low = -10.0f;
  11142. constexpr float bucket_high = 10.0f;
  11143. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11144. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11145. std::vector<int> bucket_idx(candidates->size);
  11146. std::vector<int> histo(nbuckets, 0);
  11147. for (int i = 0; i < (int)candidates->size; ++i) {
  11148. const float val = candidates->data[i].logit;
  11149. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11150. ib = std::max(0, std::min(nbuckets-1, ib));
  11151. bucket_idx[i] = ib;
  11152. ++histo[ib];
  11153. }
  11154. int nhave = 0;
  11155. int ib = nbuckets - 1;
  11156. for ( ; ib >= 0; --ib) {
  11157. nhave += histo[ib];
  11158. if (nhave >= k) break;
  11159. }
  11160. std::vector<llama_token_data> tmp_tokens(nhave);
  11161. auto ptr = tmp_tokens.data();
  11162. std::vector<llama_token_data*> bucket_ptrs;
  11163. bucket_ptrs.reserve(nbuckets - ib);
  11164. for (int j = nbuckets - 1; j >= ib; --j) {
  11165. bucket_ptrs.push_back(ptr);
  11166. ptr += histo[j];
  11167. }
  11168. for (int i = 0; i < (int)candidates->size; ++i) {
  11169. int j = bucket_idx[i];
  11170. if (j >= ib) {
  11171. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11172. }
  11173. }
  11174. ptr = tmp_tokens.data();
  11175. int ndone = 0;
  11176. for (int j = nbuckets-1; j > ib; --j) {
  11177. std::sort(ptr, ptr + histo[j], comp);
  11178. ptr += histo[j];
  11179. ndone += histo[j];
  11180. }
  11181. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11182. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11183. }
  11184. candidates->sorted = true;
  11185. }
  11186. candidates->size = k;
  11187. if (ctx) {
  11188. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11189. }
  11190. }
  11191. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11192. if (p >= 1.0f) {
  11193. return;
  11194. }
  11195. llama_sample_softmax(ctx, candidates);
  11196. const int64_t t_start_sample_us = ggml_time_us();
  11197. // Compute the cumulative probabilities
  11198. float cum_sum = 0.0f;
  11199. size_t last_idx = candidates->size;
  11200. for (size_t i = 0; i < candidates->size; ++i) {
  11201. cum_sum += candidates->data[i].p;
  11202. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11203. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11204. if (cum_sum >= p && i + 1 >= min_keep) {
  11205. last_idx = i + 1;
  11206. break;
  11207. }
  11208. }
  11209. // Resize the output vector to keep only the top-p tokens
  11210. candidates->size = last_idx;
  11211. if (ctx) {
  11212. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11213. }
  11214. }
  11215. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11216. if (p <= 0.0f || !candidates->size) {
  11217. return;
  11218. }
  11219. const int64_t t_start_sample_us = ggml_time_us();
  11220. bool min_p_applied = false;
  11221. // if the candidates aren't sorted, try the unsorted implementation first
  11222. if (!candidates->sorted) {
  11223. std::vector<llama_token_data> filtered_tokens;
  11224. float max_logit = -FLT_MAX;
  11225. for (size_t i = 0; i < candidates->size; ++i) {
  11226. max_logit = std::max(max_logit, candidates->data[i].logit);
  11227. }
  11228. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11229. for (size_t i = 0; i < candidates->size; ++i) {
  11230. if (candidates->data[i].logit >= min_logit) {
  11231. filtered_tokens.push_back(candidates->data[i]);
  11232. }
  11233. }
  11234. // if we have enough values the operation was a success
  11235. if (filtered_tokens.size() >= min_keep) {
  11236. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11237. candidates->size = filtered_tokens.size();
  11238. min_p_applied = true;
  11239. }
  11240. }
  11241. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11242. if (!min_p_applied) {
  11243. // Sort the logits in descending order
  11244. if (!candidates->sorted) {
  11245. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11246. return a.logit > b.logit;
  11247. });
  11248. candidates->sorted = true;
  11249. }
  11250. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11251. size_t i = 1; // first token always matches
  11252. for (; i < candidates->size; ++i) {
  11253. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11254. break; // prob too small
  11255. }
  11256. }
  11257. // Resize the output vector to keep only the matching tokens
  11258. candidates->size = i;
  11259. }
  11260. if (ctx) {
  11261. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11262. }
  11263. }
  11264. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11265. if (z >= 1.0f || candidates->size <= 2) {
  11266. return;
  11267. }
  11268. llama_sample_softmax(nullptr, candidates);
  11269. const int64_t t_start_sample_us = ggml_time_us();
  11270. // Compute the first and second derivatives
  11271. std::vector<float> first_derivatives(candidates->size - 1);
  11272. std::vector<float> second_derivatives(candidates->size - 2);
  11273. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11274. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11275. }
  11276. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11277. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11278. }
  11279. // Calculate absolute value of second derivatives
  11280. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11281. second_derivatives[i] = std::abs(second_derivatives[i]);
  11282. }
  11283. // Normalize the second derivatives
  11284. {
  11285. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11286. if (second_derivatives_sum > 1e-6f) {
  11287. for (float & value : second_derivatives) {
  11288. value /= second_derivatives_sum;
  11289. }
  11290. } else {
  11291. for (float & value : second_derivatives) {
  11292. value = 1.0f / second_derivatives.size();
  11293. }
  11294. }
  11295. }
  11296. float cum_sum = 0.0f;
  11297. size_t last_idx = candidates->size;
  11298. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11299. cum_sum += second_derivatives[i];
  11300. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11301. if (cum_sum > z && i >= min_keep) {
  11302. last_idx = i;
  11303. break;
  11304. }
  11305. }
  11306. // Resize the output vector to keep only the tokens above the tail location
  11307. candidates->size = last_idx;
  11308. if (ctx) {
  11309. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11310. }
  11311. }
  11312. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11313. // Reference implementation:
  11314. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11315. if (p >= 1.0f) {
  11316. return;
  11317. }
  11318. // Compute the softmax of logits and calculate entropy
  11319. llama_sample_softmax(nullptr, candidates);
  11320. const int64_t t_start_sample_us = ggml_time_us();
  11321. float entropy = 0.0f;
  11322. for (size_t i = 0; i < candidates->size; ++i) {
  11323. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11324. }
  11325. // Compute the absolute difference between negative log probability and entropy for each candidate
  11326. std::vector<float> shifted_scores;
  11327. for (size_t i = 0; i < candidates->size; ++i) {
  11328. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11329. shifted_scores.push_back(shifted_score);
  11330. }
  11331. // Sort tokens based on the shifted_scores and their corresponding indices
  11332. std::vector<size_t> indices(candidates->size);
  11333. std::iota(indices.begin(), indices.end(), 0);
  11334. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11335. return shifted_scores[a] < shifted_scores[b];
  11336. });
  11337. // Compute the cumulative probabilities
  11338. float cum_sum = 0.0f;
  11339. size_t last_idx = indices.size();
  11340. for (size_t i = 0; i < indices.size(); ++i) {
  11341. size_t idx = indices[i];
  11342. cum_sum += candidates->data[idx].p;
  11343. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11344. if (cum_sum > p && i >= min_keep - 1) {
  11345. last_idx = i + 1;
  11346. break;
  11347. }
  11348. }
  11349. // Resize the output vector to keep only the locally typical tokens
  11350. std::vector<llama_token_data> new_candidates;
  11351. for (size_t i = 0; i < last_idx; ++i) {
  11352. size_t idx = indices[i];
  11353. new_candidates.push_back(candidates->data[idx]);
  11354. }
  11355. // Replace the data in candidates with the new_candidates data
  11356. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11357. candidates->size = new_candidates.size();
  11358. candidates->sorted = false;
  11359. if (ctx) {
  11360. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11361. }
  11362. }
  11363. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11364. const int64_t t_start_sample_us = ggml_time_us();
  11365. // no need to do anything if there is only one (or zero) candidates
  11366. if(candidates_p->size <= 1) {
  11367. return;
  11368. }
  11369. // Calculate maximum possible entropy
  11370. float max_entropy = -logf(1.0f / candidates_p->size);
  11371. llama_sample_softmax(nullptr, candidates_p);
  11372. // Calculate entropy of the softmax probabilities
  11373. float entropy = 0.0f;
  11374. for (size_t i = 0; i < candidates_p->size; ++i) {
  11375. float prob = candidates_p->data[i].p;
  11376. if (prob > 0.0f) { // Ensure no log(0)
  11377. entropy -= prob * logf(prob);
  11378. }
  11379. }
  11380. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11381. float normalized_entropy = entropy / max_entropy;
  11382. // Map the normalized entropy to the desired temperature range using the power function
  11383. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11384. #ifdef DEBUG
  11385. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11386. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11387. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11388. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11389. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11390. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11391. #endif
  11392. // Apply the dynamically calculated temperature scaling
  11393. for (size_t i = 0; i < candidates_p->size; ++i) {
  11394. candidates_p->data[i].logit /= dyn_temp;
  11395. }
  11396. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11397. double max_l_double = candidates_p->data[0].logit;
  11398. double cum_sum_double = 0.0;
  11399. for (size_t i = 0; i < candidates_p->size; ++i) {
  11400. double p = exp(candidates_p->data[i].logit - max_l_double);
  11401. candidates_p->data[i].p = p; // Store the scaled probability
  11402. cum_sum_double += p;
  11403. }
  11404. for (size_t i = 0; i < candidates_p->size; ++i) {
  11405. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11406. }
  11407. #ifdef DEBUG
  11408. // Print the updated top 25 probabilities after temperature scaling
  11409. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11410. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11411. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11412. }
  11413. #endif
  11414. if (ctx) {
  11415. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11416. }
  11417. }
  11418. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11419. const int64_t t_start_sample_us = ggml_time_us();
  11420. for (size_t i = 0; i < candidates_p->size; ++i) {
  11421. candidates_p->data[i].logit /= temp;
  11422. }
  11423. if (ctx) {
  11424. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11425. }
  11426. }
  11427. void llama_sample_repetition_penalties(
  11428. struct llama_context * ctx,
  11429. llama_token_data_array * candidates,
  11430. const llama_token * last_tokens,
  11431. size_t penalty_last_n,
  11432. float penalty_repeat,
  11433. float penalty_freq,
  11434. float penalty_present) {
  11435. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11436. return;
  11437. }
  11438. const int64_t t_start_sample_us = ggml_time_us();
  11439. // Create a frequency map to count occurrences of each token in last_tokens
  11440. std::unordered_map<llama_token, int> token_count;
  11441. for (size_t i = 0; i < penalty_last_n; ++i) {
  11442. token_count[last_tokens[i]]++;
  11443. }
  11444. // Apply frequency and presence penalties to the candidates
  11445. for (size_t i = 0; i < candidates->size; ++i) {
  11446. const auto token_iter = token_count.find(candidates->data[i].id);
  11447. if (token_iter == token_count.end()) {
  11448. continue;
  11449. }
  11450. const int count = token_iter->second;
  11451. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11452. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11453. if (candidates->data[i].logit <= 0) {
  11454. candidates->data[i].logit *= penalty_repeat;
  11455. } else {
  11456. candidates->data[i].logit /= penalty_repeat;
  11457. }
  11458. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11459. }
  11460. candidates->sorted = false;
  11461. if (ctx) {
  11462. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11463. }
  11464. }
  11465. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11466. GGML_ASSERT(ctx);
  11467. const int64_t t_start_sample_us = ggml_time_us();
  11468. bool allow_eog = false;
  11469. for (const auto & stack : grammar->stacks) {
  11470. if (stack.empty()) {
  11471. allow_eog = true;
  11472. break;
  11473. }
  11474. }
  11475. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11476. candidates_decoded.reserve(candidates->size);
  11477. std::vector<llama_grammar_candidate> candidates_grammar;
  11478. candidates_grammar.reserve(candidates->size);
  11479. for (size_t i = 0; i < candidates->size; ++i) {
  11480. const llama_token id = candidates->data[i].id;
  11481. const std::string piece = llama_token_to_piece(ctx, id, false);
  11482. if (llama_token_is_eog(&ctx->model, id)) {
  11483. if (!allow_eog) {
  11484. candidates->data[i].logit = -INFINITY;
  11485. }
  11486. } else if (piece.empty() || piece[0] == 0) {
  11487. candidates->data[i].logit = -INFINITY;
  11488. } else {
  11489. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11490. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11491. }
  11492. }
  11493. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11494. for (const auto & reject : rejects) {
  11495. candidates->data[reject.index].logit = -INFINITY;
  11496. }
  11497. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11498. }
  11499. static void llama_log_softmax(float * array, size_t size) {
  11500. float max_l = *std::max_element(array, array + size);
  11501. float sum = 0.f;
  11502. for (size_t i = 0; i < size; ++i) {
  11503. float p = expf(array[i] - max_l);
  11504. sum += p;
  11505. array[i] = p;
  11506. }
  11507. for (size_t i = 0; i < size; ++i) {
  11508. array[i] = logf(array[i] / sum);
  11509. }
  11510. }
  11511. void llama_sample_apply_guidance(
  11512. struct llama_context * ctx,
  11513. float * logits,
  11514. float * logits_guidance,
  11515. float scale) {
  11516. GGML_ASSERT(ctx);
  11517. const auto t_start_sample_us = ggml_time_us();
  11518. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11519. llama_log_softmax(logits, n_vocab);
  11520. llama_log_softmax(logits_guidance, n_vocab);
  11521. for (int i = 0; i < n_vocab; ++i) {
  11522. auto & l = logits[i];
  11523. const auto & g = logits_guidance[i];
  11524. l = scale * (l - g) + g;
  11525. }
  11526. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11527. }
  11528. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11529. GGML_ASSERT(ctx);
  11530. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11531. int64_t t_start_sample_us;
  11532. t_start_sample_us = ggml_time_us();
  11533. llama_sample_softmax(nullptr, candidates);
  11534. // Estimate s_hat using the most probable m tokens
  11535. float s_hat = 0.0;
  11536. float sum_ti_bi = 0.0;
  11537. float sum_ti_sq = 0.0;
  11538. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11539. float t_i = logf(float(i + 2) / float(i + 1));
  11540. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11541. sum_ti_bi += t_i * b_i;
  11542. sum_ti_sq += t_i * t_i;
  11543. }
  11544. s_hat = sum_ti_bi / sum_ti_sq;
  11545. // Compute k from the estimated s_hat and target surprise value
  11546. float epsilon_hat = s_hat - 1;
  11547. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11548. // Sample the next word X using top-k sampling
  11549. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11550. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11551. llama_token X = llama_sample_token(ctx, candidates);
  11552. t_start_sample_us = ggml_time_us();
  11553. // Compute error as the difference between observed surprise and target surprise value
  11554. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11555. return candidate.id == X;
  11556. }));
  11557. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11558. float e = observed_surprise - tau;
  11559. // Update mu using the learning rate and error
  11560. *mu = *mu - eta * e;
  11561. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11562. return X;
  11563. }
  11564. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11565. int64_t t_start_sample_us;
  11566. t_start_sample_us = ggml_time_us();
  11567. llama_sample_softmax(ctx, candidates);
  11568. // Truncate the words with surprise values greater than mu
  11569. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11570. return -log2f(candidate.p) > *mu;
  11571. }));
  11572. if (candidates->size == 0) {
  11573. candidates->size = 1;
  11574. }
  11575. if (ctx) {
  11576. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11577. }
  11578. // Normalize the probabilities of the remaining words
  11579. llama_sample_softmax(ctx, candidates);
  11580. // Sample the next word X from the remaining words
  11581. llama_token X = llama_sample_token(ctx, candidates);
  11582. t_start_sample_us = ggml_time_us();
  11583. // Compute error as the difference between observed surprise and target surprise value
  11584. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11585. return candidate.id == X;
  11586. }));
  11587. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11588. float e = observed_surprise - tau;
  11589. // Update mu using the learning rate and error
  11590. *mu = *mu - eta * e;
  11591. if (ctx) {
  11592. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11593. }
  11594. return X;
  11595. }
  11596. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11597. const int64_t t_start_sample_us = ggml_time_us();
  11598. // Find max element
  11599. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11600. return a.logit < b.logit;
  11601. });
  11602. llama_token result = max_iter->id;
  11603. if (ctx) {
  11604. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11605. ctx->n_sample++;
  11606. }
  11607. return result;
  11608. }
  11609. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11610. GGML_ASSERT(ctx);
  11611. const int64_t t_start_sample_us = ggml_time_us();
  11612. llama_sample_softmax(nullptr, candidates);
  11613. std::vector<float> probs;
  11614. probs.reserve(candidates->size);
  11615. for (size_t i = 0; i < candidates->size; ++i) {
  11616. probs.push_back(candidates->data[i].p);
  11617. }
  11618. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11619. int idx = dist(rng);
  11620. llama_token result = candidates->data[idx].id;
  11621. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11622. ctx->n_sample++;
  11623. return result;
  11624. }
  11625. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11626. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11627. }
  11628. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11629. const int64_t t_start_sample_us = ggml_time_us();
  11630. if (llama_token_is_eog(&ctx->model, token)) {
  11631. for (const auto & stack : grammar->stacks) {
  11632. if (stack.empty()) {
  11633. return;
  11634. }
  11635. }
  11636. GGML_ASSERT(false);
  11637. }
  11638. const std::string piece = llama_token_to_piece(ctx, token, false);
  11639. // Note terminating 0 in decoded string
  11640. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11641. const auto & code_points = decoded.first;
  11642. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11643. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11644. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11645. grammar->stacks = tmp_new_stacks;
  11646. }
  11647. grammar->partial_utf8 = decoded.second;
  11648. GGML_ASSERT(!grammar->stacks.empty());
  11649. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11650. }
  11651. //
  11652. // Beam search
  11653. //
  11654. struct llama_beam {
  11655. std::vector<llama_token> tokens;
  11656. float p; // Cumulative beam probability (renormalized relative to all beams)
  11657. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11658. // Sort beams by probability. In case of ties, prefer beams at eob.
  11659. bool operator<(const llama_beam & rhs) const {
  11660. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11661. }
  11662. // Shift off first n tokens and discard them.
  11663. void shift_tokens(const size_t n) {
  11664. if (n) {
  11665. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11666. tokens.resize(tokens.size() - n);
  11667. }
  11668. }
  11669. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11670. };
  11671. // A struct for calculating logit-related info.
  11672. struct llama_logit_info {
  11673. const float * const logits;
  11674. const int n_vocab;
  11675. const float max_l;
  11676. const float normalizer;
  11677. struct sum_exp {
  11678. float max_l;
  11679. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11680. };
  11681. llama_logit_info(llama_context * ctx)
  11682. : logits(llama_get_logits(ctx))
  11683. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11684. , max_l(*std::max_element(logits, logits + n_vocab))
  11685. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11686. { }
  11687. llama_token_data get_token_data(const llama_token token_id) const {
  11688. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11689. return {token_id, logits[token_id], p};
  11690. }
  11691. // Return top k token_data by logit.
  11692. std::vector<llama_token_data> top_k(size_t k) {
  11693. std::vector<llama_token_data> min_heap; // min-heap by logit
  11694. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11695. min_heap.reserve(k_min);
  11696. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11697. min_heap.push_back(get_token_data(token_id));
  11698. }
  11699. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11700. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11701. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11702. if (min_heap.front().logit < logits[token_id]) {
  11703. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11704. min_heap.back().id = token_id;
  11705. min_heap.back().logit = logits[token_id];
  11706. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11707. }
  11708. }
  11709. return min_heap;
  11710. }
  11711. float probability_from_logit(float logit) const {
  11712. return normalizer * std::exp(logit - max_l);
  11713. }
  11714. };
  11715. struct llama_beam_search_data {
  11716. llama_context * ctx;
  11717. size_t n_beams;
  11718. int n_past;
  11719. int n_predict;
  11720. std::vector<llama_beam> beams;
  11721. std::vector<llama_beam> next_beams;
  11722. // Re-calculated on each loop iteration
  11723. size_t common_prefix_length;
  11724. // Used to communicate to/from callback on beams state.
  11725. std::vector<llama_beam_view> beam_views;
  11726. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11727. : ctx(ctx)
  11728. , n_beams(n_beams)
  11729. , n_past(n_past)
  11730. , n_predict(n_predict)
  11731. , beam_views(n_beams) {
  11732. beams.reserve(n_beams);
  11733. next_beams.reserve(n_beams);
  11734. }
  11735. // Collapse beams to a single beam given by index.
  11736. void collapse_beams(const size_t beam_idx) {
  11737. if (0u < beam_idx) {
  11738. std::swap(beams[0], beams[beam_idx]);
  11739. }
  11740. beams.resize(1);
  11741. }
  11742. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11743. // The repetitive patterns below reflect the 2 stages of heaps:
  11744. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11745. // * If the heap is full and a new element is found that should be included, pop the
  11746. // least element to the back(), replace it with the new, then push it into the heap.
  11747. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11748. // Min-heaps use a greater-than comparator.
  11749. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11750. if (beam.eob) {
  11751. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11752. if (next_beams.size() < n_beams) {
  11753. next_beams.push_back(std::move(beam));
  11754. if (next_beams.size() == n_beams) {
  11755. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11756. }
  11757. } else if (next_beams.front().p < beam.p) {
  11758. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11759. next_beams.back() = std::move(beam);
  11760. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11761. }
  11762. } else {
  11763. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11764. if (!beam.tokens.empty()) {
  11765. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11766. }
  11767. llama_logit_info logit_info(ctx);
  11768. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11769. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11770. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11771. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11772. size_t i=0;
  11773. if (next_beams.size() < n_beams) {
  11774. for (; next_beams.size() < n_beams ; ++i) {
  11775. llama_beam next_beam = beam;
  11776. next_beam.tokens.push_back(next_tokens[i].id);
  11777. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11778. next_beams.push_back(std::move(next_beam));
  11779. }
  11780. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11781. } else {
  11782. for (; next_beams.front().p == 0.0f ; ++i) {
  11783. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11784. next_beams.back() = beam;
  11785. next_beams.back().tokens.push_back(next_tokens[i].id);
  11786. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11787. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11788. }
  11789. }
  11790. for (; i < n_beams ; ++i) {
  11791. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11792. if (next_beams.front().p < next_p) {
  11793. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11794. next_beams.back() = beam;
  11795. next_beams.back().tokens.push_back(next_tokens[i].id);
  11796. next_beams.back().p = next_p;
  11797. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11798. }
  11799. }
  11800. }
  11801. }
  11802. // Find common_prefix_length based on beams.
  11803. // Requires beams is not empty.
  11804. size_t find_common_prefix_length() {
  11805. size_t common_prefix_length = beams[0].tokens.size();
  11806. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11807. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11808. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11809. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11810. common_prefix_length = j;
  11811. break;
  11812. }
  11813. }
  11814. }
  11815. return common_prefix_length;
  11816. }
  11817. // Construct beams_state to send back to caller via the callback function.
  11818. // Side effect: set common_prefix_length = find_common_prefix_length();
  11819. llama_beams_state get_beams_state(const bool last_call) {
  11820. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11821. beam_views[i] = beams[i].view();
  11822. }
  11823. common_prefix_length = find_common_prefix_length();
  11824. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11825. }
  11826. // Loop:
  11827. // * while i < n_predict, AND
  11828. // * any of the beams have not yet reached end-of-beam (eob), AND
  11829. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11830. // (since all other beam probabilities can only decrease)
  11831. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11832. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11833. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11834. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11835. !beams[top_beam_index()].eob ; ++i) {
  11836. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11837. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11838. if (common_prefix_length) {
  11839. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11840. n_past += common_prefix_length;
  11841. }
  11842. // Zero-out next_beam probabilities to place them last in following min-heap.
  11843. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11844. for (llama_beam & beam : beams) {
  11845. beam.shift_tokens(common_prefix_length);
  11846. fill_next_beams_by_top_probabilities(beam);
  11847. }
  11848. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11849. beams.swap(next_beams);
  11850. renormalize_beam_probabilities(beams);
  11851. }
  11852. collapse_beams(top_beam_index());
  11853. callback(callback_data, get_beams_state(true));
  11854. }
  11855. // As beams grow, the cumulative probabilities decrease.
  11856. // Renormalize them to avoid floating point underflow.
  11857. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11858. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11859. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11860. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11861. }
  11862. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11863. size_t top_beam_index() {
  11864. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11865. }
  11866. // Copy (p,eob) for each beam which may have been changed by the callback.
  11867. void update_beams_from_beam_views() {
  11868. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11869. beams[i].p = beam_views[i].p;
  11870. beams[i].eob = beam_views[i].eob;
  11871. }
  11872. }
  11873. };
  11874. void llama_beam_search(llama_context * ctx,
  11875. llama_beam_search_callback_fn_t callback, void * callback_data,
  11876. size_t n_beams, int n_past, int n_predict) {
  11877. assert(ctx);
  11878. const int64_t t_start_sample_us = ggml_time_us();
  11879. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11880. beam_search_data.loop(callback, callback_data);
  11881. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11882. ctx->n_sample++;
  11883. }
  11884. //
  11885. // quantization
  11886. //
  11887. struct quantize_state_internal {
  11888. const llama_model & model;
  11889. const llama_model_quantize_params * params;
  11890. int n_attention_wv = 0;
  11891. int n_ffn_down = 0;
  11892. int n_ffn_gate = 0;
  11893. int n_ffn_up = 0;
  11894. int i_attention_wv = 0;
  11895. int i_ffn_down = 0;
  11896. int i_ffn_gate = 0;
  11897. int i_ffn_up = 0;
  11898. int n_k_quantized = 0;
  11899. int n_fallback = 0;
  11900. bool has_imatrix = false;
  11901. // used to figure out if a model shares tok_embd with the output weight
  11902. bool has_output = false;
  11903. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11904. : model(model)
  11905. , params(params)
  11906. {}
  11907. };
  11908. static void llama_tensor_dequantize_internal(
  11909. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11910. const size_t nelements, const int nthread
  11911. ) {
  11912. if (output.size() < nelements) {
  11913. output.resize(nelements);
  11914. }
  11915. float * f32_output = (float *) output.data();
  11916. ggml_type_traits_t qtype;
  11917. if (ggml_is_quantized(tensor->type)) {
  11918. qtype = ggml_internal_get_type_traits(tensor->type);
  11919. if (qtype.to_float == NULL) {
  11920. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11921. }
  11922. } else if (tensor->type != GGML_TYPE_F16 &&
  11923. tensor->type != GGML_TYPE_BF16) {
  11924. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11925. }
  11926. if (nthread < 2) {
  11927. if (tensor->type == GGML_TYPE_F16) {
  11928. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11929. } else if (tensor->type == GGML_TYPE_BF16) {
  11930. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  11931. } else if (ggml_is_quantized(tensor->type)) {
  11932. qtype.to_float(tensor->data, f32_output, nelements);
  11933. } else {
  11934. GGML_ASSERT(false); // unreachable
  11935. }
  11936. return;
  11937. }
  11938. size_t block_size;
  11939. if (tensor->type == GGML_TYPE_F16 ||
  11940. tensor->type == GGML_TYPE_BF16) {
  11941. block_size = 1;
  11942. } else {
  11943. block_size = (size_t)ggml_blck_size(tensor->type);
  11944. }
  11945. size_t block_size_bytes = ggml_type_size(tensor->type);
  11946. GGML_ASSERT(nelements % block_size == 0);
  11947. size_t nblocks = nelements / block_size;
  11948. size_t blocks_per_thread = nblocks / nthread;
  11949. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11950. size_t in_buff_offs = 0;
  11951. size_t out_buff_offs = 0;
  11952. for (int tnum = 0; tnum < nthread; tnum++) {
  11953. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11954. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11955. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11956. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11957. if (typ == GGML_TYPE_F16) {
  11958. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11959. } else if (typ == GGML_TYPE_BF16) {
  11960. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  11961. } else {
  11962. qtype.to_float(inbuf, outbuf, nels);
  11963. }
  11964. };
  11965. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11966. in_buff_offs += thr_block_bytes;
  11967. out_buff_offs += thr_elems;
  11968. }
  11969. for (auto & w : workers) { w.join(); }
  11970. workers.clear();
  11971. }
  11972. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11973. const std::string name = ggml_get_name(tensor);
  11974. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11975. const llm_arch arch = qs.model.arch;
  11976. const auto tn = LLM_TN(arch);
  11977. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11978. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11979. };
  11980. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11981. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11982. if (n_expert > 1) {
  11983. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11984. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11985. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11986. // tensor name.
  11987. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11988. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11989. }
  11990. if (i_layer < 0 || i_layer >= n_layer) {
  11991. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11992. }
  11993. }
  11994. return std::make_pair(i_layer, n_layer);
  11995. };
  11996. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11997. // with the quantization of the output tensor
  11998. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11999. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  12000. new_type = qs.params->output_tensor_type;
  12001. } else {
  12002. int nx = tensor->ne[0];
  12003. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  12004. new_type = GGML_TYPE_Q8_0;
  12005. }
  12006. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12007. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12008. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12009. new_type = GGML_TYPE_Q5_K;
  12010. }
  12011. else if (new_type != GGML_TYPE_Q8_0) {
  12012. new_type = GGML_TYPE_Q6_K;
  12013. }
  12014. }
  12015. } else if (name == "token_embd.weight") {
  12016. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12017. new_type = qs.params->token_embedding_type;
  12018. } else {
  12019. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12020. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12021. new_type = GGML_TYPE_Q2_K;
  12022. }
  12023. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12024. new_type = GGML_TYPE_IQ3_S;
  12025. }
  12026. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12027. new_type = GGML_TYPE_IQ3_S;
  12028. }
  12029. }
  12030. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12031. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12032. if (name.find("attn_v.weight") != std::string::npos) {
  12033. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12034. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12035. ++qs.i_attention_wv;
  12036. }
  12037. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12038. new_type = GGML_TYPE_Q4_K;
  12039. }
  12040. else if (name.find("ffn_down") != std::string::npos) {
  12041. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12042. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12043. }
  12044. ++qs.i_ffn_down;
  12045. }
  12046. else if (name.find("attn_output.weight") != std::string::npos) {
  12047. if (qs.model.hparams.n_expert == 8) {
  12048. new_type = GGML_TYPE_Q5_K;
  12049. } else {
  12050. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12051. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12052. }
  12053. }
  12054. } else if (name.find("attn_v.weight") != std::string::npos) {
  12055. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12056. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12057. }
  12058. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12059. new_type = GGML_TYPE_Q4_K;
  12060. }
  12061. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12062. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12063. }
  12064. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12065. new_type = GGML_TYPE_Q4_K;
  12066. }
  12067. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12068. new_type = GGML_TYPE_Q4_K;
  12069. }
  12070. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12071. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12072. }
  12073. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12074. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12075. new_type = GGML_TYPE_Q5_K;
  12076. }
  12077. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12078. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12079. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12080. if (qs.model.type == MODEL_70B) {
  12081. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12082. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12083. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12084. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12085. }
  12086. if (qs.model.hparams.n_expert == 8) {
  12087. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12088. // TODO: explore better strategies
  12089. new_type = GGML_TYPE_Q8_0;
  12090. }
  12091. ++qs.i_attention_wv;
  12092. } else if (name.find("attn_k.weight") != std::string::npos) {
  12093. if (qs.model.hparams.n_expert == 8) {
  12094. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12095. // TODO: explore better strategies
  12096. new_type = GGML_TYPE_Q8_0;
  12097. }
  12098. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12099. new_type = GGML_TYPE_IQ3_XXS;
  12100. }
  12101. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12102. new_type = GGML_TYPE_IQ2_S;
  12103. }
  12104. } else if (name.find("attn_q.weight") != std::string::npos) {
  12105. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12106. new_type = GGML_TYPE_IQ3_XXS;
  12107. }
  12108. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12109. new_type = GGML_TYPE_IQ2_S;
  12110. }
  12111. } else if (name.find("ffn_down") != std::string::npos) {
  12112. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12113. int i_layer = info.first, n_layer = info.second;
  12114. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12115. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12116. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12117. }
  12118. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12119. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12120. }
  12121. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12122. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12123. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12124. : GGML_TYPE_Q3_K;
  12125. }
  12126. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12127. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12128. new_type = GGML_TYPE_Q4_K;
  12129. }
  12130. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12131. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12132. }
  12133. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12134. if (arch == LLM_ARCH_FALCON) {
  12135. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12136. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12137. } else {
  12138. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12139. }
  12140. }
  12141. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12142. new_type = GGML_TYPE_Q5_K;
  12143. }
  12144. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12145. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12146. new_type = GGML_TYPE_Q5_K;
  12147. }
  12148. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12149. && qs.has_imatrix && i_layer < n_layer/8) {
  12150. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12151. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12152. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12153. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12154. }
  12155. ++qs.i_ffn_down;
  12156. } else if (name.find("attn_output.weight") != std::string::npos) {
  12157. if (arch != LLM_ARCH_FALCON) {
  12158. if (qs.model.hparams.n_expert == 8) {
  12159. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12160. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12161. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12162. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12163. new_type = GGML_TYPE_Q5_K;
  12164. }
  12165. } else {
  12166. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12167. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12168. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12169. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12170. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12171. }
  12172. } else {
  12173. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12174. }
  12175. }
  12176. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12177. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12178. new_type = GGML_TYPE_Q4_K;
  12179. }
  12180. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12181. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12182. }
  12183. else if (name.find("ffn_gate") != std::string::npos) {
  12184. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12185. int i_layer = info.first, n_layer = info.second;
  12186. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12187. new_type = GGML_TYPE_IQ3_XXS;
  12188. }
  12189. ++qs.i_ffn_gate;
  12190. }
  12191. else if (name.find("ffn_up") != std::string::npos) {
  12192. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12193. int i_layer = info.first, n_layer = info.second;
  12194. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12195. new_type = GGML_TYPE_IQ3_XXS;
  12196. }
  12197. ++qs.i_ffn_up;
  12198. }
  12199. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12200. //}
  12201. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12202. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12203. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12204. //}
  12205. // This can be used to reduce the size of the Q5_K_S model.
  12206. // The associated PPL increase is fully in line with the size reduction
  12207. //else {
  12208. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12209. //}
  12210. bool convert_incompatible_tensor = false;
  12211. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12212. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12213. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12214. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12215. new_type == GGML_TYPE_IQ1_M) {
  12216. int nx = tensor->ne[0];
  12217. int ny = tensor->ne[1];
  12218. if (nx % QK_K != 0) {
  12219. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12220. convert_incompatible_tensor = true;
  12221. } else {
  12222. ++qs.n_k_quantized;
  12223. }
  12224. }
  12225. if (convert_incompatible_tensor) {
  12226. switch (new_type) {
  12227. case GGML_TYPE_IQ2_XXS:
  12228. case GGML_TYPE_IQ2_XS:
  12229. case GGML_TYPE_IQ2_S:
  12230. case GGML_TYPE_IQ3_XXS:
  12231. case GGML_TYPE_IQ3_S:
  12232. case GGML_TYPE_IQ1_S:
  12233. case GGML_TYPE_IQ1_M:
  12234. case GGML_TYPE_Q2_K:
  12235. case GGML_TYPE_Q3_K:
  12236. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12237. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12238. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12239. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12240. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12241. }
  12242. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12243. ++qs.n_fallback;
  12244. }
  12245. return new_type;
  12246. }
  12247. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12248. if (nthread < 2) {
  12249. // single-thread
  12250. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12251. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12252. throw std::runtime_error("quantized data validation failed");
  12253. }
  12254. return new_size;
  12255. }
  12256. std::mutex mutex;
  12257. int64_t counter = 0;
  12258. size_t new_size = 0;
  12259. bool valid = true;
  12260. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12261. nrows, n_per_row, imatrix]() {
  12262. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12263. size_t local_size = 0;
  12264. while (true) {
  12265. std::unique_lock<std::mutex> lock(mutex);
  12266. int64_t first_row = counter; counter += nrows_per_chunk;
  12267. if (first_row >= nrows) {
  12268. if (local_size > 0) {
  12269. new_size += local_size;
  12270. }
  12271. break;
  12272. }
  12273. lock.unlock();
  12274. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12275. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12276. local_size += this_size;
  12277. // validate the quantized data
  12278. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12279. void * this_data = (char *) new_data + first_row * row_size;
  12280. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12281. std::unique_lock<std::mutex> lock(mutex);
  12282. valid = false;
  12283. break;
  12284. }
  12285. }
  12286. };
  12287. for (int it = 0; it < nthread - 1; ++it) {
  12288. workers.emplace_back(compute);
  12289. }
  12290. compute();
  12291. for (auto & w : workers) { w.join(); }
  12292. workers.clear();
  12293. if (!valid) {
  12294. throw std::runtime_error("quantized data validation failed");
  12295. }
  12296. return new_size;
  12297. }
  12298. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12299. ggml_type default_type;
  12300. llama_ftype ftype = params->ftype;
  12301. switch (params->ftype) {
  12302. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12303. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12304. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12305. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12306. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12307. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12308. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12309. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12310. // K-quants
  12311. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12312. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12313. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12314. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12315. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12316. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12317. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12318. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12319. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12320. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12321. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12322. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12323. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12324. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12325. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12326. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12327. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12328. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12329. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12330. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12331. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12332. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12333. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12334. }
  12335. int nthread = params->nthread;
  12336. if (nthread <= 0) {
  12337. nthread = std::thread::hardware_concurrency();
  12338. }
  12339. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12340. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12341. #if defined(__linux__) || defined(_WIN32)
  12342. constexpr bool use_mmap = true;
  12343. #else
  12344. constexpr bool use_mmap = false;
  12345. #endif
  12346. llama_model_kv_override * kv_overrides = nullptr;
  12347. if (params->kv_overrides) {
  12348. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12349. kv_overrides = v->data();
  12350. }
  12351. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12352. ml.init_mappings(false); // no prefetching
  12353. llama_model model;
  12354. llm_load_arch(ml, model);
  12355. llm_load_hparams(ml, model);
  12356. struct quantize_state_internal qs(model, params);
  12357. if (params->only_copy) {
  12358. ftype = model.ftype;
  12359. }
  12360. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12361. if (params->imatrix) {
  12362. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12363. if (imatrix_data) {
  12364. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12365. qs.has_imatrix = true;
  12366. }
  12367. }
  12368. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12369. struct gguf_context * ctx_out = gguf_init_empty();
  12370. // copy the KV pairs from the input file
  12371. gguf_set_kv (ctx_out, ml.meta);
  12372. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12373. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12374. // Remove split metadata
  12375. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12376. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12377. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12378. if (params->kv_overrides) {
  12379. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12380. for (auto & o : overrides) {
  12381. if (o.key[0] == 0) break;
  12382. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12383. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12384. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12385. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12386. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12387. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12388. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12389. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12390. } else {
  12391. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12392. }
  12393. }
  12394. }
  12395. for (int i = 0; i < ml.n_tensors; ++i) {
  12396. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12397. const std::string name = ggml_get_name(meta);
  12398. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12399. if (name.find("attn_v.weight") != std::string::npos ||
  12400. name.find("attn_qkv.weight") != std::string::npos) {
  12401. ++qs.n_attention_wv;
  12402. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12403. qs.has_output = true;
  12404. }
  12405. }
  12406. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12407. // sanity checks
  12408. //
  12409. // - qs.n_attention_wv == 0 for Mamba models
  12410. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12411. //
  12412. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12413. size_t total_size_org = 0;
  12414. size_t total_size_new = 0;
  12415. std::vector<std::thread> workers;
  12416. workers.reserve(nthread);
  12417. int idx = 0;
  12418. std::vector<no_init<uint8_t>> read_data;
  12419. std::vector<no_init<uint8_t>> work;
  12420. std::vector<no_init<float>> f32_conv_buf;
  12421. uint16_t n_split = 1;
  12422. // Assume split index is continuous
  12423. if (params->keep_split) {
  12424. for (int i = 0; i < ml.n_tensors; ++i) {
  12425. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12426. }
  12427. }
  12428. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12429. ctx_outs[0] = ctx_out;
  12430. // populate the original tensors so we get an initial meta data
  12431. for (int i = 0; i < ml.n_tensors; ++i) {
  12432. auto weight = ml.get_weight(i);
  12433. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12434. struct ggml_tensor * tensor = weight->tensor;
  12435. if (ctx_outs[i_split] == NULL) {
  12436. ctx_outs[i_split] = gguf_init_empty();
  12437. }
  12438. gguf_add_tensor(ctx_outs[i_split], tensor);
  12439. }
  12440. // Set split info if needed
  12441. if (n_split > 1) {
  12442. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12443. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12444. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12445. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12446. }
  12447. }
  12448. int cur_split = -1;
  12449. std::ofstream fout;
  12450. auto close_ofstream = [&]() {
  12451. // Write metadata and close file handler
  12452. if (fout.is_open()) {
  12453. fout.seekp(0);
  12454. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12455. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12456. fout.write((const char *) data.data(), data.size());
  12457. fout.close();
  12458. }
  12459. };
  12460. auto new_ofstream = [&](int index) {
  12461. cur_split = index;
  12462. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12463. std::string fname = fname_out;
  12464. if (params->keep_split) {
  12465. char split_path[PATH_MAX] = {0};
  12466. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12467. fname = std::string(split_path);
  12468. }
  12469. fout = std::ofstream(fname, std::ios::binary);
  12470. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12471. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12472. // placeholder for the meta data
  12473. ::zeros(fout, meta_size);
  12474. };
  12475. const auto tn = LLM_TN(model.arch);
  12476. new_ofstream(0);
  12477. for (int i = 0; i < ml.n_tensors; ++i) {
  12478. auto weight = ml.get_weight(i);
  12479. struct ggml_tensor * tensor = weight->tensor;
  12480. if (weight->idx != cur_split && params->keep_split) {
  12481. close_ofstream();
  12482. new_ofstream(weight->idx);
  12483. }
  12484. const std::string name = ggml_get_name(tensor);
  12485. if (!ml.use_mmap) {
  12486. if (read_data.size() < ggml_nbytes(tensor)) {
  12487. read_data.resize(ggml_nbytes(tensor));
  12488. }
  12489. tensor->data = read_data.data();
  12490. }
  12491. ml.load_data_for(tensor);
  12492. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12493. ++idx, ml.n_tensors,
  12494. ggml_get_name(tensor),
  12495. llama_format_tensor_shape(tensor).c_str(),
  12496. ggml_type_name(tensor->type));
  12497. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12498. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12499. // quantize only 2D and 3D tensors (experts)
  12500. quantize &= (ggml_n_dims(tensor) >= 2);
  12501. // do not quantize norm tensors
  12502. quantize &= name.find("_norm.weight") == std::string::npos;
  12503. quantize &= params->quantize_output_tensor || name != "output.weight";
  12504. quantize &= !params->only_copy;
  12505. // do not quantize expert gating tensors
  12506. // NOTE: can't use LLM_TN here because the layer number is not known
  12507. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12508. // do not quantize positional embeddings and token types (BERT)
  12509. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12510. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12511. // do not quantize Mamba's small yet 2D weights
  12512. // NOTE: can't use LLM_TN here because the layer number is not known
  12513. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12514. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12515. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12516. enum ggml_type new_type;
  12517. void * new_data;
  12518. size_t new_size;
  12519. if (quantize) {
  12520. new_type = default_type;
  12521. // get more optimal quantization type based on the tensor shape, layer, etc.
  12522. if (!params->pure && ggml_is_quantized(default_type)) {
  12523. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12524. }
  12525. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12526. new_type = params->token_embedding_type;
  12527. }
  12528. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12529. new_type = params->output_tensor_type;
  12530. }
  12531. // If we've decided to quantize to the same type the tensor is already
  12532. // in then there's nothing to do.
  12533. quantize = tensor->type != new_type;
  12534. }
  12535. if (!quantize) {
  12536. new_type = tensor->type;
  12537. new_data = tensor->data;
  12538. new_size = ggml_nbytes(tensor);
  12539. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12540. } else {
  12541. const int64_t nelements = ggml_nelements(tensor);
  12542. const float * imatrix = nullptr;
  12543. if (imatrix_data) {
  12544. auto it = imatrix_data->find(tensor->name);
  12545. if (it == imatrix_data->end()) {
  12546. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12547. } else {
  12548. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12549. imatrix = it->second.data();
  12550. } else {
  12551. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12552. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12553. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12554. // this is a significant error and it may be good idea to abort the process if this happens,
  12555. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12556. // tok_embd should be ignored in this case, since it always causes this warning
  12557. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12558. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12559. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12560. }
  12561. }
  12562. }
  12563. }
  12564. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12565. new_type == GGML_TYPE_IQ2_XS ||
  12566. new_type == GGML_TYPE_IQ2_S ||
  12567. new_type == GGML_TYPE_IQ1_S ||
  12568. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12569. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12570. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12571. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12572. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12573. LLAMA_LOG_ERROR("============================================================\n\n");
  12574. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12575. }
  12576. float * f32_data;
  12577. if (tensor->type == GGML_TYPE_F32) {
  12578. f32_data = (float *) tensor->data;
  12579. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12580. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12581. } else {
  12582. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12583. f32_data = (float *) f32_conv_buf.data();
  12584. }
  12585. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12586. fflush(stdout);
  12587. if (work.size() < (size_t)nelements * 4) {
  12588. work.resize(nelements * 4); // upper bound on size
  12589. }
  12590. new_data = work.data();
  12591. const int64_t n_per_row = tensor->ne[0];
  12592. const int64_t nrows = tensor->ne[1];
  12593. static const int64_t min_chunk_size = 32 * 512;
  12594. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12595. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12596. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12597. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12598. // quantize each expert separately since they have different importance matrices
  12599. new_size = 0;
  12600. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12601. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12602. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12603. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12604. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12605. }
  12606. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12607. }
  12608. total_size_org += ggml_nbytes(tensor);
  12609. total_size_new += new_size;
  12610. // update the gguf meta data as we go
  12611. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12612. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12613. // write tensor data + padding
  12614. fout.write((const char *) new_data, new_size);
  12615. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12616. }
  12617. close_ofstream();
  12618. for (auto & c:ctx_outs) {
  12619. gguf_free(c);
  12620. }
  12621. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12622. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12623. if (qs.n_fallback > 0) {
  12624. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12625. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12626. }
  12627. }
  12628. static int llama_apply_lora_from_file_internal(
  12629. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12630. ) {
  12631. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12632. const int64_t t_start_lora_us = ggml_time_us();
  12633. llama_file fin(path_lora, "rb");
  12634. // verify magic and version
  12635. {
  12636. uint32_t magic = fin.read_u32();
  12637. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12638. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12639. return 1;
  12640. }
  12641. uint32_t format_version = fin.read_u32();
  12642. if (format_version != 1) {
  12643. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12644. return 1;
  12645. }
  12646. }
  12647. int32_t lora_r = fin.read_u32();
  12648. int32_t lora_alpha = fin.read_u32();
  12649. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12650. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12651. // load base model
  12652. std::unique_ptr<llama_model_loader> ml;
  12653. if (path_base_model) {
  12654. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12655. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12656. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12657. }
  12658. struct tensor_meta {
  12659. std::string name;
  12660. ggml_type type;
  12661. int32_t ne[2];
  12662. size_t offset;
  12663. };
  12664. std::map<std::string, tensor_meta> tensor_meta_map;
  12665. // load all tensor meta
  12666. while (true) {
  12667. if (fin.tell() == fin.size) {
  12668. // eof
  12669. break;
  12670. }
  12671. int32_t n_dims;
  12672. int32_t name_len;
  12673. int32_t ftype;
  12674. fin.read_raw(&n_dims, sizeof(n_dims));
  12675. fin.read_raw(&name_len, sizeof(name_len));
  12676. fin.read_raw(&ftype, sizeof(ftype));
  12677. if (n_dims != 1 && n_dims != 2) {
  12678. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12679. return 1;
  12680. }
  12681. int32_t ne[2] = { 1, 1 };
  12682. for (int i = 0; i < n_dims; ++i) {
  12683. fin.read_raw(&ne[i], sizeof(ne[i]));
  12684. }
  12685. std::string name;
  12686. {
  12687. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12688. char buf[GGML_MAX_NAME];
  12689. fin.read_raw(buf, name_len);
  12690. name = std::string(buf, name_len);
  12691. }
  12692. // check for lora suffix
  12693. std::string lora_suffix;
  12694. if (name.length() > 6) {
  12695. lora_suffix = name.substr(name.length() - 6);
  12696. }
  12697. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12698. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12699. return 1;
  12700. }
  12701. // tensor type
  12702. ggml_type wtype;
  12703. switch (ftype) {
  12704. case 0: wtype = GGML_TYPE_F32; break;
  12705. case 1: wtype = GGML_TYPE_F16; break;
  12706. default:
  12707. {
  12708. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12709. __func__, ftype);
  12710. return 1;
  12711. }
  12712. }
  12713. // data offset
  12714. size_t offset = fin.tell();
  12715. offset = (offset + 31) & -32;
  12716. // skip tensor data
  12717. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12718. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12719. }
  12720. bool warned = false;
  12721. int n_tensors = 0;
  12722. // apply
  12723. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12724. if (backend_cpu == nullptr) {
  12725. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12726. return 1;
  12727. }
  12728. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12729. std::vector<no_init<uint8_t>> read_buf;
  12730. for (const auto & it : model.tensors_by_name) {
  12731. const std::string & base_name = it.first;
  12732. ggml_tensor * model_t = it.second;
  12733. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12734. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12735. continue;
  12736. }
  12737. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12738. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12739. ggml_init_params lora_init_params = {
  12740. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12741. /* .mem_buffer */ nullptr,
  12742. /* .no_alloc */ true,
  12743. };
  12744. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12745. if (lora_ctx == nullptr) {
  12746. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12747. ggml_backend_free(backend_cpu);
  12748. return 1;
  12749. }
  12750. // create tensors
  12751. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12752. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12753. ggml_set_name(loraA, metaA.name.c_str());
  12754. ggml_set_name(loraB, metaB.name.c_str());
  12755. ggml_tensor * base_t;
  12756. if (ml) {
  12757. if (!ml->get_tensor_meta(base_name.c_str())) {
  12758. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12759. return 1;
  12760. }
  12761. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12762. } else {
  12763. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12764. }
  12765. ggml_set_name(base_t, base_name.c_str());
  12766. // allocate in backend buffer
  12767. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12768. if (lora_buf == nullptr) {
  12769. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12770. return 1;
  12771. }
  12772. // load tensor data
  12773. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12774. read_buf.resize(ggml_nbytes(tensor));
  12775. fin.seek(tensor_meta.offset, SEEK_SET);
  12776. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12777. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12778. };
  12779. load_tensor(metaA, loraA);
  12780. load_tensor(metaB, loraB);
  12781. // load base model tensor data
  12782. if (ml) {
  12783. ml->load_data_for(base_t);
  12784. } else {
  12785. ggml_backend_tensor_copy(model_t, base_t);
  12786. }
  12787. if (ggml_is_quantized(base_t->type) && !warned) {
  12788. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12789. "use a f16 or f32 base model with --lora-base\n", __func__);
  12790. warned = true;
  12791. }
  12792. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12793. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12794. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12795. ggml_free(lora_ctx);
  12796. ggml_backend_buffer_free(lora_buf);
  12797. ggml_backend_free(backend_cpu);
  12798. return 1;
  12799. }
  12800. auto build_lora_graph = [&]() {
  12801. // w = w + BA*s
  12802. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12803. ggml_set_name(BA, "BA");
  12804. if (scaling != 1.0f) {
  12805. BA = ggml_scale(lora_ctx, BA, scaling);
  12806. ggml_set_name(BA, "BA_scaled");
  12807. }
  12808. ggml_tensor * r;
  12809. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12810. ggml_set_name(r, "r_add");
  12811. if (base_t->type != model_t->type) {
  12812. // convert the result to the model type
  12813. r = ggml_cast(lora_ctx, r, model_t->type);
  12814. ggml_set_name(r, "r_cast");
  12815. }
  12816. return r;
  12817. };
  12818. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12819. ggml_tensor * r = build_lora_graph();
  12820. ggml_build_forward_expand(gf, r);
  12821. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12822. if (graph_buf == nullptr) {
  12823. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12824. ggml_free(lora_ctx);
  12825. ggml_backend_buffer_free(lora_buf);
  12826. ggml_backend_free(backend_cpu);
  12827. return 1;
  12828. }
  12829. ggml_backend_graph_compute(backend_cpu, gf);
  12830. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12831. #if 0
  12832. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12833. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12834. // sched compute
  12835. ggml_build_forward_expand(gf, build_graph());
  12836. ggml_backend_sched_init_measure(sched, gf);
  12837. // create the graph again, since the previous one was destroyed by the measure
  12838. ggml_graph_clear(gf);
  12839. ggml_build_forward_expand(gf, build_graph());
  12840. ggml_backend_sched_graph_compute(sched, gf);
  12841. ggml_backend_sched_free(sched);
  12842. #endif
  12843. ggml_backend_buffer_free(lora_buf);
  12844. ggml_backend_buffer_free(graph_buf);
  12845. ggml_free(lora_ctx);
  12846. n_tensors++;
  12847. if (n_tensors % 4 == 0) {
  12848. LLAMA_LOG_INFO(".");
  12849. }
  12850. }
  12851. ggml_backend_free(backend_cpu);
  12852. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12853. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12854. return 0;
  12855. }
  12856. //
  12857. // interface implementation
  12858. //
  12859. struct llama_model_params llama_model_default_params() {
  12860. struct llama_model_params result = {
  12861. /*.n_gpu_layers =*/ 0,
  12862. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12863. /*.main_gpu =*/ 0,
  12864. /*.tensor_split =*/ nullptr,
  12865. /*.rpc_servers =*/ nullptr,
  12866. /*.progress_callback =*/ nullptr,
  12867. /*.progress_callback_user_data =*/ nullptr,
  12868. /*.kv_overrides =*/ nullptr,
  12869. /*.vocab_only =*/ false,
  12870. /*.use_mmap =*/ true,
  12871. /*.use_mlock =*/ false,
  12872. /*.check_tensors =*/ false,
  12873. };
  12874. #ifdef GGML_USE_METAL
  12875. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12876. result.n_gpu_layers = 999;
  12877. #endif
  12878. return result;
  12879. }
  12880. struct llama_context_params llama_context_default_params() {
  12881. struct llama_context_params result = {
  12882. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12883. /*.n_ctx =*/ 512,
  12884. /*.n_batch =*/ 2048,
  12885. /*.n_ubatch =*/ 512,
  12886. /*.n_seq_max =*/ 1,
  12887. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12888. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12889. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12890. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12891. /*.rope_freq_base =*/ 0.0f,
  12892. /*.rope_freq_scale =*/ 0.0f,
  12893. /*.yarn_ext_factor =*/ -1.0f,
  12894. /*.yarn_attn_factor =*/ 1.0f,
  12895. /*.yarn_beta_fast =*/ 32.0f,
  12896. /*.yarn_beta_slow =*/ 1.0f,
  12897. /*.yarn_orig_ctx =*/ 0,
  12898. /*.defrag_thold =*/ -1.0f,
  12899. /*.cb_eval =*/ nullptr,
  12900. /*.cb_eval_user_data =*/ nullptr,
  12901. /*.type_k =*/ GGML_TYPE_F16,
  12902. /*.type_v =*/ GGML_TYPE_F16,
  12903. /*.logits_all =*/ false,
  12904. /*.embeddings =*/ false,
  12905. /*.offload_kqv =*/ true,
  12906. /*.flash_attn =*/ false,
  12907. /*.abort_callback =*/ nullptr,
  12908. /*.abort_callback_data =*/ nullptr,
  12909. };
  12910. return result;
  12911. }
  12912. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12913. struct llama_model_quantize_params result = {
  12914. /*.nthread =*/ 0,
  12915. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12916. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12917. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12918. /*.allow_requantize =*/ false,
  12919. /*.quantize_output_tensor =*/ true,
  12920. /*.only_copy =*/ false,
  12921. /*.pure =*/ false,
  12922. /*.keep_split =*/ false,
  12923. /*.imatrix =*/ nullptr,
  12924. /*.kv_overrides =*/ nullptr,
  12925. };
  12926. return result;
  12927. }
  12928. size_t llama_max_devices(void) {
  12929. #if defined(GGML_USE_RPC)
  12930. return GGML_RPC_MAX_SERVERS;
  12931. #elif defined(GGML_USE_METAL)
  12932. return 1;
  12933. #elif defined(GGML_USE_CUDA)
  12934. return GGML_CUDA_MAX_DEVICES;
  12935. #elif defined(GGML_USE_SYCL)
  12936. return GGML_SYCL_MAX_DEVICES;
  12937. #elif defined(GGML_USE_VULKAN)
  12938. return GGML_VK_MAX_DEVICES;
  12939. #else
  12940. return 1;
  12941. #endif
  12942. }
  12943. bool llama_supports_mmap(void) {
  12944. return llama_mmap::SUPPORTED;
  12945. }
  12946. bool llama_supports_mlock(void) {
  12947. return llama_mlock::SUPPORTED;
  12948. }
  12949. bool llama_supports_gpu_offload(void) {
  12950. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12951. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  12952. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12953. return true;
  12954. #else
  12955. return false;
  12956. #endif
  12957. }
  12958. void llama_backend_init(void) {
  12959. ggml_time_init();
  12960. // needed to initialize f16 tables
  12961. {
  12962. struct ggml_init_params params = { 0, NULL, false };
  12963. struct ggml_context * ctx = ggml_init(params);
  12964. ggml_free(ctx);
  12965. }
  12966. }
  12967. void llama_numa_init(enum ggml_numa_strategy numa) {
  12968. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12969. ggml_numa_init(numa);
  12970. }
  12971. }
  12972. void llama_backend_free(void) {
  12973. ggml_quantize_free();
  12974. }
  12975. int64_t llama_time_us(void) {
  12976. return ggml_time_us();
  12977. }
  12978. struct llama_model * llama_load_model_from_file(
  12979. const char * path_model,
  12980. struct llama_model_params params) {
  12981. ggml_time_init();
  12982. llama_model * model = new llama_model;
  12983. unsigned cur_percentage = 0;
  12984. if (params.progress_callback == NULL) {
  12985. params.progress_callback_user_data = &cur_percentage;
  12986. params.progress_callback = [](float progress, void * ctx) {
  12987. unsigned * cur_percentage_p = (unsigned *) ctx;
  12988. unsigned percentage = (unsigned) (100 * progress);
  12989. while (percentage > *cur_percentage_p) {
  12990. *cur_percentage_p = percentage;
  12991. LLAMA_LOG_INFO(".");
  12992. if (percentage >= 100) {
  12993. LLAMA_LOG_INFO("\n");
  12994. }
  12995. }
  12996. return true;
  12997. };
  12998. }
  12999. if (params.rpc_servers != nullptr) {
  13000. // split the servers set them into model->rpc_servers
  13001. std::string servers(params.rpc_servers);
  13002. size_t pos = 0;
  13003. while ((pos = servers.find(",")) != std::string::npos) {
  13004. std::string server = servers.substr(0, pos);
  13005. model->rpc_servers.push_back(server);
  13006. servers.erase(0, pos + 1);
  13007. }
  13008. model->rpc_servers.push_back(servers);
  13009. }
  13010. int status = llama_model_load(path_model, *model, params);
  13011. GGML_ASSERT(status <= 0);
  13012. if (status < 0) {
  13013. if (status == -1) {
  13014. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13015. } else if (status == -2) {
  13016. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13017. }
  13018. delete model;
  13019. return nullptr;
  13020. }
  13021. return model;
  13022. }
  13023. void llama_free_model(struct llama_model * model) {
  13024. delete model;
  13025. }
  13026. struct llama_context * llama_new_context_with_model(
  13027. struct llama_model * model,
  13028. struct llama_context_params params) {
  13029. if (!model) {
  13030. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13031. return nullptr;
  13032. }
  13033. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13034. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13035. return nullptr;
  13036. }
  13037. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13038. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13039. return nullptr;
  13040. }
  13041. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13042. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13043. params.flash_attn = false;
  13044. }
  13045. llama_context * ctx = new llama_context(*model);
  13046. const auto & hparams = model->hparams;
  13047. auto & cparams = ctx->cparams;
  13048. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13049. cparams.n_threads = params.n_threads;
  13050. cparams.n_threads_batch = params.n_threads_batch;
  13051. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13052. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13053. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13054. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13055. cparams.defrag_thold = params.defrag_thold;
  13056. cparams.embeddings = params.embeddings;
  13057. cparams.offload_kqv = params.offload_kqv;
  13058. cparams.flash_attn = params.flash_attn;
  13059. cparams.pooling_type = params.pooling_type;
  13060. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13061. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13062. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13063. // this is necessary due to kv_self.n being padded later during inference
  13064. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13065. // with causal attention, the batch size is limited by the context size
  13066. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13067. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13068. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13069. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13070. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13071. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13072. cparams.n_batch = GGML_KQ_MASK_PAD;
  13073. }
  13074. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13075. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13076. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  13077. hparams.n_ctx_train;
  13078. cparams.cb_eval = params.cb_eval;
  13079. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13080. auto rope_scaling_type = params.rope_scaling_type;
  13081. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13082. rope_scaling_type = hparams.rope_scaling_type_train;
  13083. }
  13084. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13085. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13086. }
  13087. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13088. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13089. }
  13090. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  13091. cparams.causal_attn = hparams.causal_attn;
  13092. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13093. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13094. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13095. } else {
  13096. cparams.pooling_type = hparams.pooling_type;
  13097. }
  13098. }
  13099. if (params.seed == LLAMA_DEFAULT_SEED) {
  13100. params.seed = time(NULL);
  13101. }
  13102. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13103. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13104. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13105. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13106. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13107. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13108. ctx->abort_callback = params.abort_callback;
  13109. ctx->abort_callback_data = params.abort_callback_data;
  13110. ctx->rng = std::mt19937(params.seed);
  13111. ctx->logits_all = params.logits_all;
  13112. uint32_t kv_size = cparams.n_ctx;
  13113. ggml_type type_k = params.type_k;
  13114. ggml_type type_v = params.type_v;
  13115. // Mamba only needs a constant number of KV cache cells per sequence
  13116. if (model->arch == LLM_ARCH_MAMBA) {
  13117. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13118. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13119. // it's probably best to keep as much precision as possible for the states
  13120. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13121. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13122. }
  13123. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13124. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13125. if (!hparams.vocab_only) {
  13126. // initialize backends
  13127. #if defined(GGML_USE_RPC)
  13128. for (auto & server : model->rpc_servers) {
  13129. ggml_backend_t backend = ggml_backend_rpc_init(server.c_str());
  13130. if (backend == nullptr) {
  13131. LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str());
  13132. llama_free(ctx);
  13133. return nullptr;
  13134. }
  13135. ctx->backends.push_back(backend);
  13136. }
  13137. #elif defined(GGML_USE_METAL)
  13138. if (model->n_gpu_layers > 0) {
  13139. ctx->backend_metal = ggml_backend_metal_init();
  13140. if (ctx->backend_metal == nullptr) {
  13141. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13142. llama_free(ctx);
  13143. return nullptr;
  13144. }
  13145. ctx->backends.push_back(ctx->backend_metal);
  13146. }
  13147. #elif defined(GGML_USE_CUDA)
  13148. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13149. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13150. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13151. if (backend == nullptr) {
  13152. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13153. llama_free(ctx);
  13154. return nullptr;
  13155. }
  13156. ctx->backends.push_back(backend);
  13157. } else {
  13158. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13159. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13160. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13161. if (backend == nullptr) {
  13162. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13163. llama_free(ctx);
  13164. return nullptr;
  13165. }
  13166. ctx->backends.push_back(backend);
  13167. }
  13168. }
  13169. #elif defined(GGML_USE_VULKAN)
  13170. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13171. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13172. llama_free(ctx);
  13173. return nullptr;
  13174. }
  13175. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13176. ggml_backend_t backend = ggml_backend_vk_init(0);
  13177. if (backend == nullptr) {
  13178. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13179. llama_free(ctx);
  13180. return nullptr;
  13181. }
  13182. ctx->backends.push_back(backend);
  13183. } else {
  13184. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13185. ggml_backend_t backend = ggml_backend_vk_init(device);
  13186. if (backend == nullptr) {
  13187. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13188. llama_free(ctx);
  13189. return nullptr;
  13190. }
  13191. ctx->backends.push_back(backend);
  13192. }
  13193. }
  13194. #elif defined(GGML_USE_SYCL)
  13195. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13196. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13197. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13198. if (backend == nullptr) {
  13199. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  13200. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  13201. llama_free(ctx);
  13202. return nullptr;
  13203. }
  13204. ctx->backends.push_back(backend);
  13205. } else {
  13206. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13207. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13208. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13209. if (backend == nullptr) {
  13210. int id_list[GGML_SYCL_MAX_DEVICES];
  13211. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13212. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13213. llama_free(ctx);
  13214. return nullptr;
  13215. }
  13216. ctx->backends.push_back(backend);
  13217. }
  13218. }
  13219. #elif defined(GGML_USE_KOMPUTE)
  13220. if (model->n_gpu_layers > 0) {
  13221. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13222. if (backend == nullptr) {
  13223. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13224. llama_free(ctx);
  13225. return nullptr;
  13226. }
  13227. ctx->backends.push_back(backend);
  13228. }
  13229. #endif
  13230. ctx->backend_cpu = ggml_backend_cpu_init();
  13231. if (ctx->backend_cpu == nullptr) {
  13232. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13233. llama_free(ctx);
  13234. return nullptr;
  13235. }
  13236. ctx->backends.push_back(ctx->backend_cpu);
  13237. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13238. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13239. llama_free(ctx);
  13240. return nullptr;
  13241. }
  13242. {
  13243. size_t memory_size_k = 0;
  13244. size_t memory_size_v = 0;
  13245. for (auto & k : ctx->kv_self.k_l) {
  13246. memory_size_k += ggml_nbytes(k);
  13247. }
  13248. for (auto & v : ctx->kv_self.v_l) {
  13249. memory_size_v += ggml_nbytes(v);
  13250. }
  13251. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13252. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13253. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13254. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13255. }
  13256. // graph outputs buffer
  13257. {
  13258. // resized during inference when a batch uses more outputs
  13259. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13260. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13261. llama_free(ctx);
  13262. return nullptr;
  13263. }
  13264. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13265. ggml_backend_buffer_name(ctx->buf_output),
  13266. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13267. }
  13268. // scheduler and compute buffers
  13269. {
  13270. // buffer types used for the compute buffer of each backend
  13271. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13272. for (auto * backend : ctx->backends) {
  13273. if (ggml_backend_is_cpu(backend)) {
  13274. // use host buffers for the CPU backend compute buffer
  13275. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13276. } else {
  13277. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13278. }
  13279. }
  13280. // buffer used to store the computation graph and the tensor meta data
  13281. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13282. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13283. bool pipeline_parallel =
  13284. llama_get_device_count(*model) > 1 &&
  13285. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13286. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13287. params.offload_kqv;
  13288. #ifndef GGML_USE_CUDA
  13289. // pipeline parallelism requires support for async compute and events
  13290. // currently this is only implemented in the CUDA backend
  13291. pipeline_parallel = false;
  13292. #endif
  13293. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13294. if (pipeline_parallel) {
  13295. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13296. }
  13297. // build worst-case graph
  13298. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13299. int n_past = cparams.n_ctx - n_tokens;
  13300. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13301. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13302. // initialize scheduler with the worst-case graph
  13303. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13304. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13305. llama_free(ctx);
  13306. return nullptr;
  13307. }
  13308. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13309. ggml_backend_t backend = ctx->backends[i];
  13310. ggml_backend_buffer_type_t buft = backend_buft[i];
  13311. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13312. if (size > 1) {
  13313. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13314. ggml_backend_buft_name(buft),
  13315. size / 1024.0 / 1024.0);
  13316. }
  13317. }
  13318. // note: the number of splits during measure is higher than during inference due to the kv shift
  13319. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13320. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13321. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13322. }
  13323. }
  13324. return ctx;
  13325. }
  13326. void llama_free(struct llama_context * ctx) {
  13327. delete ctx;
  13328. }
  13329. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13330. return &ctx->model;
  13331. }
  13332. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13333. return ctx->cparams.n_ctx;
  13334. }
  13335. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13336. return ctx->cparams.n_batch;
  13337. }
  13338. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13339. return ctx->cparams.n_ubatch;
  13340. }
  13341. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13342. return ctx->kv_self.size;
  13343. }
  13344. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13345. return model->vocab.type;
  13346. }
  13347. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13348. switch (model->arch) {
  13349. // these models do not use RoPE
  13350. case LLM_ARCH_GPT2:
  13351. case LLM_ARCH_GPTJ:
  13352. case LLM_ARCH_MPT:
  13353. case LLM_ARCH_REFACT:
  13354. case LLM_ARCH_BLOOM:
  13355. case LLM_ARCH_MAMBA:
  13356. case LLM_ARCH_JINA_BERT_V2:
  13357. return LLAMA_ROPE_TYPE_NONE;
  13358. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13359. case LLM_ARCH_LLAMA:
  13360. case LLM_ARCH_BAICHUAN:
  13361. case LLM_ARCH_STARCODER:
  13362. case LLM_ARCH_PLAMO:
  13363. case LLM_ARCH_CODESHELL:
  13364. case LLM_ARCH_ORION:
  13365. case LLM_ARCH_INTERNLM2:
  13366. case LLM_ARCH_MINICPM:
  13367. case LLM_ARCH_XVERSE:
  13368. case LLM_ARCH_COMMAND_R:
  13369. case LLM_ARCH_OLMO:
  13370. return LLAMA_ROPE_TYPE_NORM;
  13371. // the pairs of head values are offset by n_rot/2
  13372. case LLM_ARCH_FALCON:
  13373. case LLM_ARCH_GROK:
  13374. case LLM_ARCH_DBRX:
  13375. case LLM_ARCH_BERT:
  13376. case LLM_ARCH_NOMIC_BERT:
  13377. case LLM_ARCH_STABLELM:
  13378. case LLM_ARCH_QWEN:
  13379. case LLM_ARCH_QWEN2:
  13380. case LLM_ARCH_QWEN2MOE:
  13381. case LLM_ARCH_PHI2:
  13382. case LLM_ARCH_PHI3:
  13383. case LLM_ARCH_GEMMA:
  13384. case LLM_ARCH_STARCODER2:
  13385. case LLM_ARCH_GPTNEOX:
  13386. return LLAMA_ROPE_TYPE_NEOX;
  13387. // all model arches should be listed explicitly here
  13388. case LLM_ARCH_UNKNOWN:
  13389. GGML_ASSERT(false && "unknown architecture");
  13390. break;
  13391. }
  13392. return LLAMA_ROPE_TYPE_NONE;
  13393. }
  13394. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13395. return ctx->cparams.pooling_type;
  13396. }
  13397. int32_t llama_n_vocab(const struct llama_model * model) {
  13398. return model->hparams.n_vocab;
  13399. }
  13400. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13401. return model->hparams.n_ctx_train;
  13402. }
  13403. int32_t llama_n_embd(const struct llama_model * model) {
  13404. return model->hparams.n_embd;
  13405. }
  13406. int32_t llama_n_layer(const struct llama_model * model) {
  13407. return model->hparams.n_layer;
  13408. }
  13409. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13410. return model->hparams.rope_freq_scale_train;
  13411. }
  13412. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13413. const auto & it = model->gguf_kv.find(key);
  13414. if (it == model->gguf_kv.end()) {
  13415. if (buf_size > 0) {
  13416. buf[0] = '\0';
  13417. }
  13418. return -1;
  13419. }
  13420. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13421. }
  13422. int32_t llama_model_meta_count(const struct llama_model * model) {
  13423. return (int)model->gguf_kv.size();
  13424. }
  13425. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13426. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13427. if (buf_size > 0) {
  13428. buf[0] = '\0';
  13429. }
  13430. return -1;
  13431. }
  13432. auto it = model->gguf_kv.begin();
  13433. std::advance(it, i);
  13434. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13435. }
  13436. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13437. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13438. if (buf_size > 0) {
  13439. buf[0] = '\0';
  13440. }
  13441. return -1;
  13442. }
  13443. auto it = model->gguf_kv.begin();
  13444. std::advance(it, i);
  13445. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13446. }
  13447. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13448. return snprintf(buf, buf_size, "%s %s %s",
  13449. llama_model_arch_name(model->arch),
  13450. llama_model_type_name(model->type),
  13451. llama_model_ftype_name(model->ftype).c_str());
  13452. }
  13453. uint64_t llama_model_size(const struct llama_model * model) {
  13454. uint64_t size = 0;
  13455. for (const auto & it : model->tensors_by_name) {
  13456. size += ggml_nbytes(it.second);
  13457. }
  13458. return size;
  13459. }
  13460. uint64_t llama_model_n_params(const struct llama_model * model) {
  13461. uint64_t nparams = 0;
  13462. for (const auto & it : model->tensors_by_name) {
  13463. nparams += ggml_nelements(it.second);
  13464. }
  13465. return nparams;
  13466. }
  13467. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13468. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13469. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13470. return it.first == name;
  13471. });
  13472. if (it == model->tensors_by_name.end()) {
  13473. return nullptr;
  13474. }
  13475. return it->second;
  13476. }
  13477. uint32_t llama_model_quantize(
  13478. const char * fname_inp,
  13479. const char * fname_out,
  13480. const llama_model_quantize_params * params) {
  13481. try {
  13482. llama_model_quantize_internal(fname_inp, fname_out, params);
  13483. return 0;
  13484. } catch (const std::exception & err) {
  13485. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13486. return 1;
  13487. }
  13488. }
  13489. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13490. try {
  13491. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13492. } catch (const std::exception & err) {
  13493. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13494. return 1;
  13495. }
  13496. }
  13497. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13498. GGML_ASSERT(cvec.tensors.empty());
  13499. GGML_ASSERT(cvec.ctxs.empty());
  13500. GGML_ASSERT(cvec.bufs.empty());
  13501. // count layer buffer types
  13502. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13503. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13504. buft_layer_count[model.buft_layer[i].buft]++;
  13505. }
  13506. // allocate contexts
  13507. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13508. for (auto & it : buft_layer_count) {
  13509. int n_layers = it.second;
  13510. struct ggml_init_params params = {
  13511. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13512. /*.mem_buffer =*/ NULL,
  13513. /*.no_alloc =*/ true,
  13514. };
  13515. ggml_context * ctx = ggml_init(params);
  13516. if (!ctx) {
  13517. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13518. return 1;
  13519. }
  13520. ctx_map[it.first] = ctx;
  13521. }
  13522. // make tensors
  13523. cvec.tensors.reserve(model.hparams.n_layer);
  13524. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13525. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13526. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13527. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13528. cvec.tensors.push_back(tensor);
  13529. }
  13530. // allocate tensors / buffers and zero
  13531. cvec.ctxs.reserve(ctx_map.size());
  13532. cvec.bufs.reserve(ctx_map.size());
  13533. for (auto it : ctx_map) {
  13534. ggml_backend_buffer_type_t buft = it.first;
  13535. ggml_context * ctx = it.second;
  13536. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13537. if (!buf) {
  13538. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13539. return false;
  13540. }
  13541. ggml_backend_buffer_clear(buf, 0);
  13542. cvec.ctxs.push_back(ctx);
  13543. cvec.bufs.push_back(buf);
  13544. }
  13545. return true;
  13546. }
  13547. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13548. const llama_model & model = lctx->model;
  13549. llama_control_vector & cvec = lctx->cvec;
  13550. if (data == nullptr) {
  13551. // disable the current control vector (but leave allocated for later)
  13552. cvec.layer_start = -1;
  13553. cvec.layer_end = -1;
  13554. return 0;
  13555. }
  13556. if (n_embd != (int) model.hparams.n_embd) {
  13557. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13558. return 1;
  13559. }
  13560. if (cvec.tensors.empty()) {
  13561. if (!llama_control_vector_init(cvec, model)) {
  13562. return 1;
  13563. }
  13564. }
  13565. cvec.layer_start = il_start;
  13566. cvec.layer_end = il_end;
  13567. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13568. assert(cvec.tensors[il] != nullptr);
  13569. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13570. if (off + n_embd <= len) {
  13571. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13572. }
  13573. }
  13574. return 0;
  13575. }
  13576. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13577. struct llama_kv_cache_view result = {
  13578. /*.n_cells = */ 0,
  13579. /*.n_seq_max = */ n_seq_max,
  13580. /*.token_count = */ 0,
  13581. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13582. /*.max_contiguous = */ 0,
  13583. /*.max_contiguous_idx = */ -1,
  13584. /*.cells = */ nullptr,
  13585. /*.cells_sequences = */ nullptr,
  13586. };
  13587. return result;
  13588. }
  13589. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13590. if (view->cells != nullptr) {
  13591. free(view->cells);
  13592. view->cells = nullptr;
  13593. }
  13594. if (view->cells_sequences != nullptr) {
  13595. free(view->cells_sequences);
  13596. view->cells_sequences = nullptr;
  13597. }
  13598. }
  13599. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13600. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13601. view->n_cells = int32_t(ctx->kv_self.size);
  13602. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13603. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13604. view->cells = (struct llama_kv_cache_view_cell *)p;
  13605. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13606. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13607. view->cells_sequences = (llama_seq_id *)p;
  13608. }
  13609. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13610. llama_kv_cache_view_cell * c_curr = view->cells;
  13611. llama_seq_id * cs_curr = view->cells_sequences;
  13612. int32_t used_cells = 0;
  13613. int32_t token_count = 0;
  13614. int32_t curr_contig_idx = -1;
  13615. uint32_t max_contig = 0;
  13616. int32_t max_contig_idx = -1;
  13617. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13618. const size_t curr_size = kv_cells[i].seq_id.size();
  13619. token_count += curr_size;
  13620. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13621. if (curr_size > 0) {
  13622. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13623. max_contig = i - curr_contig_idx;
  13624. max_contig_idx = curr_contig_idx;
  13625. }
  13626. curr_contig_idx = -1;
  13627. } else if (curr_contig_idx < 0) {
  13628. curr_contig_idx = i;
  13629. }
  13630. int seq_idx = 0;
  13631. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13632. if (seq_idx >= view->n_seq_max) {
  13633. break;
  13634. }
  13635. cs_curr[seq_idx] = it;
  13636. seq_idx++;
  13637. }
  13638. if (seq_idx != 0) {
  13639. used_cells++;
  13640. }
  13641. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13642. cs_curr[seq_idx] = -1;
  13643. }
  13644. }
  13645. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13646. max_contig_idx = curr_contig_idx;
  13647. max_contig = kv_cells.size() - curr_contig_idx;
  13648. }
  13649. view->max_contiguous = max_contig;
  13650. view->max_contiguous_idx = max_contig_idx;
  13651. view->token_count = token_count;
  13652. view->used_cells = used_cells;
  13653. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13654. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13655. __func__, ctx->kv_self.used, used_cells);
  13656. }
  13657. }
  13658. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13659. int result = 0;
  13660. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13661. result += ctx->kv_self.cells[i].seq_id.size();
  13662. }
  13663. return result;
  13664. }
  13665. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13666. return ctx->kv_self.used;
  13667. }
  13668. void llama_kv_cache_clear(struct llama_context * ctx) {
  13669. llama_kv_cache_clear(ctx->kv_self);
  13670. }
  13671. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13672. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13673. }
  13674. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13675. if (seq_id_src == seq_id_dst) {
  13676. return;
  13677. }
  13678. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13679. }
  13680. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13681. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13682. }
  13683. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13684. if (delta == 0) {
  13685. return;
  13686. }
  13687. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13688. }
  13689. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13690. if (d == 1) {
  13691. return;
  13692. }
  13693. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13694. }
  13695. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13696. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13697. }
  13698. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13699. llama_kv_cache_defrag(ctx->kv_self);
  13700. }
  13701. void llama_kv_cache_update(struct llama_context * ctx) {
  13702. llama_kv_cache_update_internal(*ctx);
  13703. }
  13704. // deprecated
  13705. size_t llama_get_state_size(const struct llama_context * ctx) {
  13706. return llama_state_get_size(ctx);
  13707. }
  13708. // deprecated
  13709. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13710. return llama_state_get_data(ctx, dst);
  13711. }
  13712. // deprecated
  13713. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13714. return llama_state_set_data(ctx, src);
  13715. }
  13716. // deprecated
  13717. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13718. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13719. }
  13720. // deprecated
  13721. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13722. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13723. }
  13724. // Returns the *maximum* size of the state
  13725. size_t llama_state_get_size(const struct llama_context * ctx) {
  13726. const auto & cparams = ctx->cparams;
  13727. const auto & hparams = ctx->model.hparams;
  13728. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13729. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13730. const size_t s_rng_size = sizeof(size_t);
  13731. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13732. const size_t s_n_outputs = sizeof(size_t);
  13733. // assume worst case for outputs although only currently set ones are serialized
  13734. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13735. const size_t s_logits_size = sizeof(size_t);
  13736. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13737. const size_t s_embedding_size = sizeof(size_t);
  13738. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13739. const size_t s_kv_buf_size = sizeof(size_t);
  13740. const size_t s_kv_head = sizeof(uint32_t);
  13741. const size_t s_kv_size = sizeof(uint32_t);
  13742. const size_t s_kv_used = sizeof(uint32_t);
  13743. const size_t s_v_trans = sizeof(uint32_t);
  13744. const size_t s_kv = ctx->kv_self.total_size();
  13745. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13746. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13747. const size_t s_total = (
  13748. + s_rng_size
  13749. + s_rng
  13750. + s_n_outputs
  13751. + s_output_pos
  13752. + s_logits_size
  13753. + s_logits
  13754. + s_embedding_size
  13755. + s_embedding
  13756. + s_kv_buf_size
  13757. + s_kv_head
  13758. + s_kv_size
  13759. + s_kv_used
  13760. + s_v_trans
  13761. + s_kv
  13762. + s_kv_cells
  13763. );
  13764. // on session change it is very likely that the state size has changed - so we need to update this function
  13765. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  13766. return s_total;
  13767. }
  13768. // llama_context_data
  13769. struct llama_data_context {
  13770. virtual void write(const void * src, size_t size) = 0;
  13771. virtual size_t get_size_written() = 0;
  13772. virtual ~llama_data_context() = default;
  13773. };
  13774. struct llama_data_buffer_context : llama_data_context {
  13775. uint8_t * ptr;
  13776. size_t size_written = 0;
  13777. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13778. void write(const void * src, size_t size) override {
  13779. memcpy(ptr, src, size);
  13780. ptr += size;
  13781. size_written += size;
  13782. }
  13783. size_t get_size_written() override {
  13784. return size_written;
  13785. }
  13786. };
  13787. struct llama_data_file_context : llama_data_context {
  13788. llama_file * file;
  13789. size_t size_written = 0;
  13790. llama_data_file_context(llama_file * f) : file(f) {}
  13791. void write(const void * src, size_t size) override {
  13792. file->write_raw(src, size);
  13793. size_written += size;
  13794. }
  13795. size_t get_size_written() override {
  13796. return size_written;
  13797. }
  13798. };
  13799. /** copy state data into either a buffer or file depending on the passed in context
  13800. *
  13801. * file context:
  13802. * llama_file file("/path", "wb");
  13803. * llama_data_file_context data_ctx(&file);
  13804. * llama_state_get_data(ctx, &data_ctx);
  13805. *
  13806. * buffer context:
  13807. * std::vector<uint8_t> buf(max_size, 0);
  13808. * llama_data_buffer_context data_ctx(&buf.data());
  13809. * llama_state_get_data(ctx, &data_ctx);
  13810. *
  13811. */
  13812. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13813. llama_synchronize(ctx);
  13814. // copy rng
  13815. {
  13816. std::ostringstream rng_ss;
  13817. rng_ss << ctx->rng;
  13818. const std::string & rng_str = rng_ss.str();
  13819. const size_t rng_size = rng_str.size();
  13820. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13821. data_ctx->write(&rng_size, sizeof(rng_size));
  13822. data_ctx->write(rng_str.data(), rng_size);
  13823. }
  13824. // copy outputs
  13825. {
  13826. // Can't use ctx->n_outputs because it's not for the
  13827. // entire last batch when n_ubatch is smaller than n_batch
  13828. size_t n_outputs = 0;
  13829. // copy output ids
  13830. {
  13831. std::vector<int32_t> output_pos;
  13832. const size_t n_batch = ctx->cparams.n_batch;
  13833. const auto & output_ids = ctx->output_ids;
  13834. output_pos.resize(ctx->output_size);
  13835. // build a more compact representation of the output ids
  13836. for (size_t i = 0; i < n_batch; ++i) {
  13837. // map an output id to a position in the batch
  13838. int32_t pos = output_ids[i];
  13839. if (pos >= 0) {
  13840. if ((size_t) pos >= n_outputs) {
  13841. n_outputs = pos + 1;
  13842. }
  13843. GGML_ASSERT((size_t) pos < ctx->output_size);
  13844. output_pos[pos] = i;
  13845. }
  13846. }
  13847. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13848. if (n_outputs) {
  13849. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13850. }
  13851. }
  13852. // copy logits
  13853. {
  13854. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13855. data_ctx->write(&logits_size, sizeof(logits_size));
  13856. if (logits_size) {
  13857. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13858. }
  13859. }
  13860. // copy embeddings
  13861. {
  13862. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13863. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13864. if (embeddings_size) {
  13865. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13866. }
  13867. }
  13868. }
  13869. // copy kv cache
  13870. {
  13871. const auto & kv_self = ctx->kv_self;
  13872. const auto & hparams = ctx->model.hparams;
  13873. const uint32_t n_layer = hparams.n_layer;
  13874. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13875. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13876. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13877. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13878. const uint32_t kv_size = kv_self.size;
  13879. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13880. const uint32_t kv_used = kv_self.used;
  13881. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  13882. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13883. data_ctx->write(&kv_head, sizeof(kv_head));
  13884. data_ctx->write(&kv_size, sizeof(kv_size));
  13885. data_ctx->write(&kv_used, sizeof(kv_used));
  13886. data_ctx->write(&v_trans, sizeof(v_trans));
  13887. if (kv_buf_size) {
  13888. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13889. std::vector<uint8_t> tmp_buf;
  13890. for (int il = 0; il < (int) n_layer; ++il) {
  13891. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13892. tmp_buf.resize(k_size);
  13893. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13894. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13895. if (kv_self.recurrent || !kv_self.v_trans) {
  13896. // v is contiguous for recurrent models
  13897. // TODO: use other tensors for state models than k and v
  13898. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13899. tmp_buf.resize(v_size);
  13900. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13901. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13902. continue;
  13903. }
  13904. // v is not contiguous, copy row by row
  13905. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13906. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13907. tmp_buf.resize(v_row_size);
  13908. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13909. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13910. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13911. }
  13912. }
  13913. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13914. }
  13915. for (uint32_t i = 0; i < kv_head; ++i) {
  13916. const auto & cell = kv_self.cells[i];
  13917. const llama_pos pos = cell.pos;
  13918. const size_t seq_id_size = cell.seq_id.size();
  13919. data_ctx->write(&pos, sizeof(pos));
  13920. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13921. for (auto seq_id : cell.seq_id) {
  13922. data_ctx->write(&seq_id, sizeof(seq_id));
  13923. }
  13924. }
  13925. }
  13926. }
  13927. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13928. llama_data_buffer_context data_ctx(dst);
  13929. llama_state_get_data_internal(ctx, &data_ctx);
  13930. return data_ctx.get_size_written();
  13931. }
  13932. // Sets the state reading from the specified source address
  13933. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13934. llama_synchronize(ctx);
  13935. const uint8_t * inp = src;
  13936. // set rng
  13937. {
  13938. size_t rng_size;
  13939. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13940. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13941. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13942. std::istringstream rng_ss(rng_str);
  13943. rng_ss >> ctx->rng;
  13944. GGML_ASSERT(!rng_ss.fail());
  13945. }
  13946. // set output ids
  13947. {
  13948. size_t n_outputs;
  13949. std::vector<int32_t> output_pos;
  13950. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13951. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13952. if (n_outputs) {
  13953. output_pos.resize(n_outputs);
  13954. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13955. inp += n_outputs * sizeof(int32_t);
  13956. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13957. int32_t id = output_pos[i];
  13958. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13959. ctx->output_ids[id] = i;
  13960. }
  13961. ctx->n_outputs = n_outputs;
  13962. }
  13963. }
  13964. // set logits
  13965. {
  13966. size_t logits_size;
  13967. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13968. GGML_ASSERT(ctx->logits_size >= logits_size);
  13969. if (logits_size) {
  13970. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13971. inp += logits_size * sizeof(float);
  13972. }
  13973. }
  13974. // set embeddings
  13975. {
  13976. size_t embeddings_size;
  13977. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13978. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13979. if (embeddings_size) {
  13980. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13981. inp += embeddings_size * sizeof(float);
  13982. }
  13983. }
  13984. // set kv cache
  13985. {
  13986. const auto & kv_self = ctx->kv_self;
  13987. const auto & hparams = ctx->model.hparams;
  13988. const uint32_t n_layer = hparams.n_layer;
  13989. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13990. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13991. size_t kv_buf_size;
  13992. uint32_t kv_head;
  13993. uint32_t kv_size;
  13994. uint32_t kv_used;
  13995. uint32_t v_trans;
  13996. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13997. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13998. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13999. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14000. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14001. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14002. if (kv_self.size != kv_size) {
  14003. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14004. GGML_ASSERT(kv_self.size >= kv_head);
  14005. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14006. __func__, kv_head, kv_size, kv_self.size);
  14007. }
  14008. llama_kv_cache_clear(ctx);
  14009. if (kv_buf_size) {
  14010. const size_t pre_kv_buf_size = inp - src;
  14011. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14012. for (int il = 0; il < (int) n_layer; ++il) {
  14013. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14014. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14015. inp += k_size;
  14016. if (kv_self.recurrent || !kv_self.v_trans) {
  14017. // v is contiguous for recurrent models
  14018. // TODO: use other tensors for state models than k and v
  14019. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14020. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14021. inp += v_size;
  14022. continue;
  14023. }
  14024. // v is not contiguous, copy row by row
  14025. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14026. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14027. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14028. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14029. inp += v_row_size;
  14030. }
  14031. }
  14032. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14033. }
  14034. ctx->kv_self.head = kv_head;
  14035. ctx->kv_self.used = kv_used;
  14036. for (uint32_t i = 0; i < kv_head; ++i) {
  14037. llama_pos pos;
  14038. size_t seq_id_size;
  14039. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14040. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14041. ctx->kv_self.cells[i].pos = pos;
  14042. llama_seq_id seq_id;
  14043. for (size_t j = 0; j < seq_id_size; ++j) {
  14044. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14045. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14046. }
  14047. }
  14048. }
  14049. const size_t nread = inp - src;
  14050. const size_t max_size = llama_state_get_size(ctx);
  14051. GGML_ASSERT(nread <= max_size);
  14052. return nread;
  14053. }
  14054. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14055. llama_file file(path_session, "rb");
  14056. // sanity checks
  14057. {
  14058. const uint32_t magic = file.read_u32();
  14059. const uint32_t version = file.read_u32();
  14060. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14061. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14062. return false;
  14063. }
  14064. llama_hparams session_hparams;
  14065. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14066. if (session_hparams != ctx->model.hparams) {
  14067. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14068. return false;
  14069. }
  14070. }
  14071. // load the prompt
  14072. {
  14073. const uint32_t n_token_count = file.read_u32();
  14074. if (n_token_count > n_token_capacity) {
  14075. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14076. return false;
  14077. }
  14078. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14079. *n_token_count_out = n_token_count;
  14080. }
  14081. // restore the context state
  14082. {
  14083. const size_t n_state_size_cur = file.size - file.tell();
  14084. const size_t n_state_size_max = llama_state_get_size(ctx);
  14085. if (n_state_size_cur > n_state_size_max) {
  14086. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14087. return false;
  14088. }
  14089. std::vector<uint8_t> state_data(n_state_size_max);
  14090. file.read_raw(state_data.data(), n_state_size_cur);
  14091. llama_state_set_data(ctx, state_data.data());
  14092. }
  14093. return true;
  14094. }
  14095. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14096. try {
  14097. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14098. } catch (const std::exception & err) {
  14099. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14100. return false;
  14101. }
  14102. }
  14103. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14104. llama_file file(path_session, "wb");
  14105. file.write_u32(LLAMA_SESSION_MAGIC);
  14106. file.write_u32(LLAMA_SESSION_VERSION);
  14107. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14108. // save the prompt
  14109. file.write_u32((uint32_t) n_token_count);
  14110. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14111. // save the context state using stream saving
  14112. llama_data_file_context data_ctx(&file);
  14113. llama_state_get_data_internal(ctx, &data_ctx);
  14114. return true;
  14115. }
  14116. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14117. try {
  14118. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14119. } catch (const std::exception & err) {
  14120. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14121. return false;
  14122. }
  14123. }
  14124. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14125. // save the size of size_t as a uint32_t for safety check
  14126. const size_t size_t_size_size = sizeof(uint32_t);
  14127. // other values
  14128. const size_t s_cell_count_size = sizeof(uint32_t);
  14129. const size_t s_layer_count_size = sizeof(uint32_t);
  14130. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14131. size_t s_cell_count = 0;
  14132. size_t s_cell_data_size = 0;
  14133. const auto & kv_self = ctx->kv_self;
  14134. const auto & hparams = ctx->model.hparams;
  14135. const uint32_t n_layer = hparams.n_layer;
  14136. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14137. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14138. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14139. const auto & cell = kv_self.cells[i];
  14140. if (cell.seq_id.count(seq_id) > 0) {
  14141. ++s_cell_count;
  14142. s_cell_data_size += sizeof(llama_pos);
  14143. }
  14144. }
  14145. for (int il = 0; il < (int)n_layer; ++il) {
  14146. // types of keys and values
  14147. s_cell_data_size += sizeof(int32_t) * 2;
  14148. // k_size_row and v_size_el values of layer
  14149. s_cell_data_size += sizeof(size_t) * 2;
  14150. // keys
  14151. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14152. s_cell_data_size += k_size_row * s_cell_count;
  14153. // values (transposed)
  14154. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14155. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14156. }
  14157. const size_t s_total = (
  14158. size_t_size_size +
  14159. s_cell_count_size +
  14160. s_layer_count_size +
  14161. n_embd_v_gqa_size +
  14162. s_cell_data_size
  14163. );
  14164. return s_total;
  14165. }
  14166. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14167. llama_synchronize(ctx);
  14168. const auto & kv_self = ctx->kv_self;
  14169. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14170. // Save the size of size_t as a uint32_t for safety check
  14171. const uint32_t size_t_size = sizeof(size_t);
  14172. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14173. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14174. uint32_t cell_count = 0;
  14175. // Count the number of cells with the specified seq_id
  14176. // Find all the ranges of cells with this seq id
  14177. {
  14178. uint32_t cell_range_begin = kv_self.size;
  14179. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14180. const auto & cell = kv_self.cells[i];
  14181. if (cell.has_seq_id(seq_id)) {
  14182. ++cell_count;
  14183. if (cell_range_begin == kv_self.size) {
  14184. cell_range_begin = i;
  14185. }
  14186. }
  14187. else {
  14188. if (cell_range_begin != kv_self.size) {
  14189. cell_ranges.emplace_back(cell_range_begin, i);
  14190. cell_range_begin = kv_self.size;
  14191. }
  14192. }
  14193. }
  14194. if (cell_range_begin != kv_self.size) {
  14195. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14196. }
  14197. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14198. uint32_t cell_count_check = 0;
  14199. for (const auto & range : cell_ranges) {
  14200. cell_count_check += range.second - range.first;
  14201. }
  14202. GGML_ASSERT(cell_count == cell_count_check);
  14203. }
  14204. // Write the cell count
  14205. data_ctx.write(&cell_count, sizeof(cell_count));
  14206. const auto & hparams = ctx->model.hparams;
  14207. const uint32_t n_layer = hparams.n_layer;
  14208. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14209. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14210. // Write the layer count
  14211. data_ctx.write(&n_layer, sizeof(n_layer));
  14212. // Write n_embd_v_gqa
  14213. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14214. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14215. for (const auto & range : cell_ranges) {
  14216. for (uint32_t i = range.first; i < range.second; ++i) {
  14217. const auto & cell = kv_self.cells[i];
  14218. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14219. }
  14220. }
  14221. // Iterate and write all the keys first, each row is a cell
  14222. // Get whole range at a time
  14223. std::vector<uint8_t> tmp_buf;
  14224. for (int il = 0; il < (int)n_layer; ++il) {
  14225. // Write key type
  14226. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14227. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14228. // Write row size of key
  14229. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14230. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14231. // Read each range of cells of k_size length each into tmp_buf and write out
  14232. for (const auto & range : cell_ranges) {
  14233. const size_t range_size = range.second - range.first;
  14234. tmp_buf.resize(range_size * k_size_row);
  14235. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14236. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14237. }
  14238. }
  14239. // TODO: simplify, reduce copy-paste
  14240. if (!kv_self.v_trans) {
  14241. for (int il = 0; il < (int)n_layer; ++il) {
  14242. // Write value type
  14243. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14244. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14245. // Write row size of value
  14246. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14247. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14248. // Read each range of cells of v_size length each into tmp_buf and write out
  14249. for (const auto & range : cell_ranges) {
  14250. const size_t range_size = range.second - range.first;
  14251. tmp_buf.resize(range_size * v_size_row);
  14252. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14253. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14254. }
  14255. }
  14256. } else {
  14257. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14258. const uint32_t kv_size = kv_self.size;
  14259. for (int il = 0; il < (int)n_layer; ++il) {
  14260. // Write value type
  14261. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14262. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14263. // Write element size
  14264. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14265. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14266. // For each row, we get the element values of each cell
  14267. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14268. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14269. for (const auto & range : cell_ranges) {
  14270. const size_t range_size = range.second - range.first;
  14271. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14272. tmp_buf.resize(range_size * v_size_el);
  14273. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14274. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14275. }
  14276. }
  14277. }
  14278. }
  14279. return data_ctx.get_size_written();
  14280. }
  14281. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14282. llama_data_buffer_context data_ctx(dst);
  14283. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14284. }
  14285. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14286. llama_synchronize(ctx);
  14287. auto & kv_self = ctx->kv_self;
  14288. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14289. // Wipe the slot
  14290. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14291. const uint8_t * inp = src;
  14292. // Read size of size_t
  14293. uint32_t size_t_size;
  14294. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14295. inp += sizeof(size_t_size);
  14296. if (size_t_size != sizeof(size_t)) {
  14297. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14298. return 0;
  14299. }
  14300. // Read the cell count
  14301. uint32_t cell_count;
  14302. memcpy(&cell_count, inp, sizeof(cell_count));
  14303. inp += sizeof(cell_count);
  14304. // Read the layer count
  14305. uint32_t n_layer_ref;
  14306. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14307. inp += sizeof(n_layer_ref);
  14308. // Read n_embd_v_gqa
  14309. uint32_t n_embd_v_gqa_ref;
  14310. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14311. inp += sizeof(n_embd_v_gqa_ref);
  14312. // Sanity check model compatibility
  14313. const auto & hparams = ctx->model.hparams;
  14314. const uint32_t n_layer = hparams.n_layer;
  14315. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14316. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14317. if (n_layer != n_layer_ref) {
  14318. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14319. return 0;
  14320. }
  14321. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14322. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14323. return 0;
  14324. }
  14325. // Allocate the new cells for the slot
  14326. if (cell_count) {
  14327. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14328. batch.n_tokens = cell_count;
  14329. for (uint32_t i = 0; i < cell_count; ++i) {
  14330. llama_pos pos;
  14331. memcpy(&pos, inp, sizeof(pos));
  14332. inp += sizeof(pos);
  14333. batch.pos[i] = pos;
  14334. batch.n_seq_id[i] = 1;
  14335. batch.seq_id[i][0] = dest_seq_id;
  14336. }
  14337. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14338. llama_batch_free(batch);
  14339. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14340. return 0;
  14341. }
  14342. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14343. // Assume that this is one contiguous block of cells
  14344. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14345. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14346. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14347. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14348. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14349. // Cleanup
  14350. llama_batch_free(batch);
  14351. }
  14352. const uint32_t kv_size = kv_self.size;
  14353. const uint32_t kv_head = kv_self.head;
  14354. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14355. for (int il = 0; il < (int)n_layer; ++il) {
  14356. // Read type of key
  14357. int32_t k_type_i_ref;
  14358. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14359. inp += sizeof(k_type_i_ref);
  14360. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14361. if (k_type_i != k_type_i_ref) {
  14362. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14363. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14364. return 0;
  14365. }
  14366. // Read row size of key
  14367. size_t k_size_row_ref;
  14368. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14369. inp += sizeof(k_size_row_ref);
  14370. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14371. if (k_size_row != k_size_row_ref) {
  14372. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14373. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14374. return 0;
  14375. }
  14376. if (cell_count) {
  14377. // Read and set the keys for the whole cell range
  14378. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14379. inp += cell_count * k_size_row;
  14380. }
  14381. }
  14382. // TODO: simplify, reduce copy-paste
  14383. if (!kv_self.v_trans) {
  14384. for (int il = 0; il < (int)n_layer; ++il) {
  14385. // Read type of value
  14386. int32_t v_type_i_ref;
  14387. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14388. inp += sizeof(v_type_i_ref);
  14389. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14390. if (v_type_i != v_type_i_ref) {
  14391. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14392. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14393. return 0;
  14394. }
  14395. // Read row size of value
  14396. size_t v_size_row_ref;
  14397. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14398. inp += sizeof(v_size_row_ref);
  14399. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14400. if (v_size_row != v_size_row_ref) {
  14401. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14402. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14403. return 0;
  14404. }
  14405. if (cell_count) {
  14406. // Read and set the values for the whole cell range
  14407. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14408. inp += cell_count * v_size_row;
  14409. }
  14410. }
  14411. } else {
  14412. // For each layer, read the values for each cell (transposed)
  14413. for (int il = 0; il < (int)n_layer; ++il) {
  14414. // Read type of value
  14415. int32_t v_type_i_ref;
  14416. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14417. inp += sizeof(v_type_i_ref);
  14418. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14419. if (v_type_i != v_type_i_ref) {
  14420. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14421. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14422. return 0;
  14423. }
  14424. // Read element size of value
  14425. size_t v_size_el_ref;
  14426. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14427. inp += sizeof(v_size_el_ref);
  14428. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14429. if (v_size_el != v_size_el_ref) {
  14430. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14431. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14432. return 0;
  14433. }
  14434. if (cell_count) {
  14435. // For each row in the transposed matrix, read the values for the whole cell range
  14436. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14437. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14438. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14439. inp += cell_count * v_size_el;
  14440. }
  14441. }
  14442. }
  14443. }
  14444. const size_t nread = inp - src;
  14445. return nread;
  14446. }
  14447. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14448. llama_file file(filepath, "wb");
  14449. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14450. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14451. // save the prompt
  14452. file.write_u32((uint32_t)n_token_count);
  14453. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14454. // save the context state using stream saving
  14455. llama_data_file_context data_ctx(&file);
  14456. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14457. const size_t res = file.tell();
  14458. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14459. return res;
  14460. }
  14461. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14462. llama_file file(filepath, "rb");
  14463. // version checks
  14464. {
  14465. const uint32_t magic = file.read_u32();
  14466. const uint32_t version = file.read_u32();
  14467. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14468. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14469. return 0;
  14470. }
  14471. }
  14472. // load the prompt
  14473. {
  14474. const uint32_t n_token_count = file.read_u32();
  14475. if (n_token_count > n_token_capacity) {
  14476. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14477. return 0;
  14478. }
  14479. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14480. *n_token_count_out = n_token_count;
  14481. }
  14482. // restore the context state
  14483. {
  14484. const size_t state_size = file.size - file.tell();
  14485. std::vector<uint8_t> state_data(state_size);
  14486. file.read_raw(state_data.data(), state_size);
  14487. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14488. if (!nread) {
  14489. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14490. return 0;
  14491. }
  14492. GGML_ASSERT(nread <= state_size);
  14493. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14494. }
  14495. return file.tell();
  14496. }
  14497. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14498. try {
  14499. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14500. } catch (const std::exception & err) {
  14501. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14502. return 0;
  14503. }
  14504. }
  14505. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14506. try {
  14507. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14508. } catch (const std::exception & err) {
  14509. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14510. return 0;
  14511. }
  14512. }
  14513. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14514. ctx->cparams.n_threads = n_threads;
  14515. ctx->cparams.n_threads_batch = n_threads_batch;
  14516. }
  14517. uint32_t llama_n_threads(struct llama_context * ctx) {
  14518. return ctx->cparams.n_threads;
  14519. }
  14520. uint32_t llama_n_threads_batch(struct llama_context * ctx) {
  14521. return ctx->cparams.n_threads_batch;
  14522. }
  14523. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14524. ctx->abort_callback = abort_callback;
  14525. ctx->abort_callback_data = abort_callback_data;
  14526. }
  14527. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14528. ctx->cparams.causal_attn = causal_attn;
  14529. }
  14530. struct llama_batch llama_batch_get_one(
  14531. llama_token * tokens,
  14532. int32_t n_tokens,
  14533. llama_pos pos_0,
  14534. llama_seq_id seq_id) {
  14535. return {
  14536. /*n_tokens =*/ n_tokens,
  14537. /*tokens =*/ tokens,
  14538. /*embd =*/ nullptr,
  14539. /*pos =*/ nullptr,
  14540. /*n_seq_id =*/ nullptr,
  14541. /*seq_id =*/ nullptr,
  14542. /*logits =*/ nullptr,
  14543. /*all_pos_0 =*/ pos_0,
  14544. /*all_pos_1 =*/ 1,
  14545. /*all_seq_id =*/ seq_id,
  14546. };
  14547. }
  14548. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14549. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14550. if (embd) {
  14551. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14552. } else {
  14553. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14554. }
  14555. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14556. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14557. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14558. for (int i = 0; i < n_tokens_alloc; ++i) {
  14559. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14560. }
  14561. batch.seq_id[n_tokens_alloc] = nullptr;
  14562. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14563. return batch;
  14564. }
  14565. void llama_batch_free(struct llama_batch batch) {
  14566. if (batch.token) free(batch.token);
  14567. if (batch.embd) free(batch.embd);
  14568. if (batch.pos) free(batch.pos);
  14569. if (batch.n_seq_id) free(batch.n_seq_id);
  14570. if (batch.seq_id) {
  14571. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14572. free(batch.seq_id[i]);
  14573. }
  14574. free(batch.seq_id);
  14575. }
  14576. if (batch.logits) free(batch.logits);
  14577. }
  14578. int32_t llama_decode(
  14579. struct llama_context * ctx,
  14580. struct llama_batch batch) {
  14581. const int ret = llama_decode_internal(*ctx, batch);
  14582. if (ret < 0) {
  14583. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14584. }
  14585. return ret;
  14586. }
  14587. void llama_synchronize(struct llama_context * ctx) {
  14588. ggml_backend_sched_synchronize(ctx->sched);
  14589. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14590. // the stats will be added to the prompt evaluation stats
  14591. // this should only happen when using batch size 1 to evaluate a batch
  14592. // add the evaluation to the stats
  14593. if (ctx->n_queued_tokens == 1) {
  14594. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14595. ctx->n_eval++;
  14596. } else if (ctx->n_queued_tokens > 1) {
  14597. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14598. ctx->n_p_eval += ctx->n_queued_tokens;
  14599. }
  14600. // get a more accurate load time, upon first eval
  14601. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14602. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14603. ctx->has_evaluated_once = true;
  14604. }
  14605. ctx->n_queued_tokens = 0;
  14606. ctx->t_compute_start_us = 0;
  14607. }
  14608. float * llama_get_logits(struct llama_context * ctx) {
  14609. llama_synchronize(ctx);
  14610. return ctx->logits;
  14611. }
  14612. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14613. int32_t j = -1;
  14614. llama_synchronize(ctx);
  14615. try {
  14616. if (ctx->logits == nullptr) {
  14617. throw std::runtime_error("no logits");
  14618. }
  14619. if (i < 0) {
  14620. j = ctx->n_outputs + i;
  14621. if (j < 0) {
  14622. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14623. }
  14624. } else if ((size_t) i >= ctx->output_ids.size()) {
  14625. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14626. } else {
  14627. j = ctx->output_ids[i];
  14628. }
  14629. if (j < 0) {
  14630. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14631. }
  14632. if (j >= ctx->n_outputs) {
  14633. // This should not happen
  14634. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14635. }
  14636. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14637. } catch (const std::exception & err) {
  14638. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14639. #ifndef NDEBUG
  14640. GGML_ASSERT(false);
  14641. #endif
  14642. return nullptr;
  14643. }
  14644. }
  14645. float * llama_get_embeddings(struct llama_context * ctx) {
  14646. llama_synchronize(ctx);
  14647. return ctx->embd;
  14648. }
  14649. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14650. int32_t j = -1;
  14651. llama_synchronize(ctx);
  14652. try {
  14653. if (ctx->embd == nullptr) {
  14654. throw std::runtime_error("no embeddings");
  14655. }
  14656. if (i < 0) {
  14657. j = ctx->n_outputs + i;
  14658. if (j < 0) {
  14659. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14660. }
  14661. } else if ((size_t) i >= ctx->output_ids.size()) {
  14662. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14663. } else {
  14664. j = ctx->output_ids[i];
  14665. }
  14666. if (j < 0) {
  14667. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14668. }
  14669. if (j >= ctx->n_outputs) {
  14670. // This should not happen
  14671. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14672. }
  14673. return ctx->embd + j*ctx->model.hparams.n_embd;
  14674. } catch (const std::exception & err) {
  14675. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14676. #ifndef NDEBUG
  14677. GGML_ASSERT(false);
  14678. #endif
  14679. return nullptr;
  14680. }
  14681. }
  14682. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14683. llama_synchronize(ctx);
  14684. auto it = ctx->embd_seq.find(seq_id);
  14685. if (it == ctx->embd_seq.end()) {
  14686. return nullptr;
  14687. }
  14688. return it->second.data();
  14689. }
  14690. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14691. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14692. return model->vocab.id_to_token[token].text.c_str();
  14693. }
  14694. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14695. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14696. return model->vocab.id_to_token[token].score;
  14697. }
  14698. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14699. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14700. return model->vocab.id_to_token[token].type;
  14701. }
  14702. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14703. return token != -1 && (
  14704. token == llama_token_eos(model) ||
  14705. token == llama_token_eot(model)
  14706. );
  14707. }
  14708. llama_token llama_token_bos(const struct llama_model * model) {
  14709. return model->vocab.special_bos_id;
  14710. }
  14711. llama_token llama_token_eos(const struct llama_model * model) {
  14712. return model->vocab.special_eos_id;
  14713. }
  14714. llama_token llama_token_cls(const struct llama_model * model) {
  14715. return model->vocab.special_cls_id;
  14716. }
  14717. llama_token llama_token_sep(const struct llama_model * model) {
  14718. return model->vocab.special_sep_id;
  14719. }
  14720. llama_token llama_token_nl(const struct llama_model * model) {
  14721. return model->vocab.linefeed_id;
  14722. }
  14723. int32_t llama_add_bos_token(const struct llama_model * model) {
  14724. return model->vocab.special_add_bos;
  14725. }
  14726. int32_t llama_add_eos_token(const struct llama_model * model) {
  14727. return model->vocab.special_add_eos;
  14728. }
  14729. llama_token llama_token_prefix(const struct llama_model * model) {
  14730. return model->vocab.special_prefix_id;
  14731. }
  14732. llama_token llama_token_middle(const struct llama_model * model) {
  14733. return model->vocab.special_middle_id;
  14734. }
  14735. llama_token llama_token_suffix(const struct llama_model * model) {
  14736. return model->vocab.special_suffix_id;
  14737. }
  14738. llama_token llama_token_eot(const struct llama_model * model) {
  14739. return model->vocab.special_eot_id;
  14740. }
  14741. int32_t llama_tokenize(
  14742. const struct llama_model * model,
  14743. const char * text,
  14744. int32_t text_len,
  14745. llama_token * tokens,
  14746. int32_t n_tokens_max,
  14747. bool add_special,
  14748. bool parse_special) {
  14749. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14750. if (n_tokens_max < (int) res.size()) {
  14751. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14752. return -((int) res.size());
  14753. }
  14754. for (size_t i = 0; i < res.size(); i++) {
  14755. tokens[i] = res[i];
  14756. }
  14757. return res.size();
  14758. }
  14759. static std::string llama_decode_text(const std::string & text) {
  14760. std::string decoded_text;
  14761. const auto cpts = unicode_cpts_from_utf8(text);
  14762. for (const auto cpt : cpts) {
  14763. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt));
  14764. }
  14765. return decoded_text;
  14766. }
  14767. // does not write null-terminator to buf
  14768. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14769. if (0 <= token && token < llama_n_vocab(model)) {
  14770. switch (llama_vocab_get_type(model->vocab)) {
  14771. case LLAMA_VOCAB_TYPE_WPM:
  14772. case LLAMA_VOCAB_TYPE_SPM: {
  14773. // NOTE: we accept all unsupported token types,
  14774. // suppressing them like CONTROL tokens.
  14775. if (llama_is_normal_token(model->vocab, token)) {
  14776. std::string result = model->vocab.id_to_token[token].text;
  14777. llama_unescape_whitespace(result);
  14778. if (length < (int) result.length()) {
  14779. return -(int) result.length();
  14780. }
  14781. memcpy(buf, result.c_str(), result.length());
  14782. return result.length();
  14783. } else if (
  14784. (llama_is_user_defined_token(model->vocab, token)) ||
  14785. (llama_is_control_token (model->vocab, token) && special)) {
  14786. std::string result = model->vocab.id_to_token[token].text;
  14787. if (length < (int) result.length()) {
  14788. return -(int) result.length();
  14789. }
  14790. memcpy(buf, result.c_str(), result.length());
  14791. return result.length();
  14792. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14793. if (length < 3) {
  14794. return -3;
  14795. }
  14796. memcpy(buf, "\xe2\x96\x85", 3);
  14797. return 3;
  14798. } else if (llama_is_byte_token(model->vocab, token)) {
  14799. if (length < 1) {
  14800. return -1;
  14801. }
  14802. buf[0] = llama_token_to_byte(model->vocab, token);
  14803. return 1;
  14804. }
  14805. break;
  14806. }
  14807. case LLAMA_VOCAB_TYPE_BPE: {
  14808. // NOTE: we accept all unsupported token types,
  14809. // suppressing them like CONTROL tokens.
  14810. if (llama_is_normal_token(model->vocab, token)) {
  14811. std::string result = model->vocab.id_to_token[token].text;
  14812. result = llama_decode_text(result);
  14813. if (length < (int) result.length()) {
  14814. return -(int) result.length();
  14815. }
  14816. memcpy(buf, result.c_str(), result.length());
  14817. return result.length();
  14818. } else if (
  14819. (llama_is_user_defined_token(model->vocab, token)) ||
  14820. (llama_is_control_token (model->vocab, token) && special)) {
  14821. std::string result = model->vocab.id_to_token[token].text;
  14822. if (length < (int) result.length()) {
  14823. return -(int) result.length();
  14824. }
  14825. memcpy(buf, result.c_str(), result.length());
  14826. return result.length();
  14827. }
  14828. break;
  14829. }
  14830. default:
  14831. GGML_ASSERT(false);
  14832. }
  14833. }
  14834. return 0;
  14835. }
  14836. // trim whitespace from the beginning and end of a string
  14837. static std::string trim(const std::string & str) {
  14838. size_t start = 0;
  14839. size_t end = str.size();
  14840. while (start < end && isspace(str[start])) {
  14841. start += 1;
  14842. }
  14843. while (end > start && isspace(str[end - 1])) {
  14844. end -= 1;
  14845. }
  14846. return str.substr(start, end - start);
  14847. }
  14848. // Simple version of "llama_apply_chat_template" that only works with strings
  14849. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14850. static int32_t llama_chat_apply_template_internal(
  14851. const std::string & tmpl,
  14852. const std::vector<const llama_chat_message *> & chat,
  14853. std::string & dest, bool add_ass) {
  14854. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14855. std::stringstream ss;
  14856. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14857. // chatml template
  14858. for (auto message : chat) {
  14859. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14860. }
  14861. if (add_ass) {
  14862. ss << "<|im_start|>assistant\n";
  14863. }
  14864. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14865. // llama2 template and its variants
  14866. // [variant] support system message
  14867. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14868. // [variant] space before + after response
  14869. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14870. // [variant] add BOS inside history
  14871. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14872. // [variant] trim spaces from the input message
  14873. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14874. // construct the prompt
  14875. bool is_inside_turn = true; // skip BOS at the beginning
  14876. ss << "[INST] ";
  14877. for (auto message : chat) {
  14878. std::string content = strip_message ? trim(message->content) : message->content;
  14879. std::string role(message->role);
  14880. if (!is_inside_turn) {
  14881. is_inside_turn = true;
  14882. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14883. }
  14884. if (role == "system") {
  14885. if (support_system_message) {
  14886. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14887. } else {
  14888. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14889. ss << content << "\n";
  14890. }
  14891. } else if (role == "user") {
  14892. ss << content << " [/INST]";
  14893. } else {
  14894. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14895. is_inside_turn = false;
  14896. }
  14897. }
  14898. // llama2 templates seem to not care about "add_generation_prompt"
  14899. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14900. // zephyr template
  14901. for (auto message : chat) {
  14902. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14903. }
  14904. if (add_ass) {
  14905. ss << "<|assistant|>\n";
  14906. }
  14907. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14908. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14909. for (auto message : chat) {
  14910. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14911. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14912. }
  14913. if (add_ass) {
  14914. ss << "<s>assistant\n";
  14915. }
  14916. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14917. // google/gemma-7b-it
  14918. std::string system_prompt = "";
  14919. for (auto message : chat) {
  14920. std::string role(message->role);
  14921. if (role == "system") {
  14922. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14923. system_prompt = trim(message->content);
  14924. continue;
  14925. }
  14926. // in gemma, "assistant" is "model"
  14927. role = role == "assistant" ? "model" : message->role;
  14928. ss << "<start_of_turn>" << role << "\n";
  14929. if (!system_prompt.empty() && role != "model") {
  14930. ss << system_prompt << "\n\n";
  14931. system_prompt = "";
  14932. }
  14933. ss << trim(message->content) << "<end_of_turn>\n";
  14934. }
  14935. if (add_ass) {
  14936. ss << "<start_of_turn>model\n";
  14937. }
  14938. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14939. // OrionStarAI/Orion-14B-Chat
  14940. std::string system_prompt = "";
  14941. for (auto message : chat) {
  14942. std::string role(message->role);
  14943. if (role == "system") {
  14944. // there is no system message support, we will merge it with user prompt
  14945. system_prompt = message->content;
  14946. continue;
  14947. } else if (role == "user") {
  14948. ss << "Human: ";
  14949. if (!system_prompt.empty()) {
  14950. ss << system_prompt << "\n\n";
  14951. system_prompt = "";
  14952. }
  14953. ss << message->content << "\n\nAssistant: </s>";
  14954. } else {
  14955. ss << message->content << "</s>";
  14956. }
  14957. }
  14958. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14959. // openchat/openchat-3.5-0106,
  14960. for (auto message : chat) {
  14961. std::string role(message->role);
  14962. if (role == "system") {
  14963. ss << message->content << "<|end_of_turn|>";
  14964. } else {
  14965. role[0] = toupper(role[0]);
  14966. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14967. }
  14968. }
  14969. if (add_ass) {
  14970. ss << "GPT4 Correct Assistant:";
  14971. }
  14972. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14973. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14974. for (auto message : chat) {
  14975. std::string role(message->role);
  14976. if (role == "system") {
  14977. // Orca-Vicuna variant uses a system prefix
  14978. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14979. ss << "SYSTEM: " << message->content << "\n";
  14980. } else {
  14981. ss << message->content << "\n\n";
  14982. }
  14983. } else if (role == "user") {
  14984. ss << "USER: " << message->content << "\n";
  14985. } else if (role == "assistant") {
  14986. ss << "ASSISTANT: " << message->content << "</s>\n";
  14987. }
  14988. }
  14989. if (add_ass) {
  14990. ss << "ASSISTANT:";
  14991. }
  14992. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14993. // deepseek-ai/deepseek-coder-33b-instruct
  14994. for (auto message : chat) {
  14995. std::string role(message->role);
  14996. if (role == "system") {
  14997. ss << message->content;
  14998. } else if (role == "user") {
  14999. ss << "### Instruction:\n" << message->content << "\n";
  15000. } else if (role == "assistant") {
  15001. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15002. }
  15003. }
  15004. if (add_ass) {
  15005. ss << "### Response:\n";
  15006. }
  15007. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15008. // CohereForAI/c4ai-command-r-plus
  15009. for (auto message : chat) {
  15010. std::string role(message->role);
  15011. if (role == "system") {
  15012. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15013. } else if (role == "user") {
  15014. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15015. } else if (role == "assistant") {
  15016. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15017. }
  15018. }
  15019. if (add_ass) {
  15020. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15021. }
  15022. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15023. // Llama 3
  15024. for (auto message : chat) {
  15025. std::string role(message->role);
  15026. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15027. }
  15028. if (add_ass) {
  15029. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15030. }
  15031. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
  15032. // Phi 3
  15033. for (auto message : chat) {
  15034. std::string role(message->role);
  15035. ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
  15036. }
  15037. if (add_ass) {
  15038. ss << "<|assistant|>\n";
  15039. }
  15040. } else {
  15041. // template not supported
  15042. return -1;
  15043. }
  15044. dest = ss.str();
  15045. return dest.size();
  15046. }
  15047. LLAMA_API int32_t llama_chat_apply_template(
  15048. const struct llama_model * model,
  15049. const char * tmpl,
  15050. const struct llama_chat_message * chat,
  15051. size_t n_msg,
  15052. bool add_ass,
  15053. char * buf,
  15054. int32_t length) {
  15055. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15056. if (tmpl == nullptr) {
  15057. GGML_ASSERT(model != nullptr);
  15058. // load template from model
  15059. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15060. std::string template_key = "tokenizer.chat_template";
  15061. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15062. if (res < 0) {
  15063. // worst case: there is no information about template, we will use chatml by default
  15064. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15065. } else {
  15066. curr_tmpl = std::string(model_template.data(), model_template.size());
  15067. }
  15068. }
  15069. // format the chat to string
  15070. std::vector<const llama_chat_message *> chat_vec;
  15071. chat_vec.resize(n_msg);
  15072. for (size_t i = 0; i < n_msg; i++) {
  15073. chat_vec[i] = &chat[i];
  15074. }
  15075. std::string formatted_chat;
  15076. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15077. if (res < 0) {
  15078. return res;
  15079. }
  15080. if (buf && length > 0) {
  15081. strncpy(buf, formatted_chat.c_str(), length);
  15082. }
  15083. return res;
  15084. }
  15085. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15086. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15087. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15088. return strlen(split_path);
  15089. }
  15090. return 0;
  15091. }
  15092. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15093. std::string str_split_path(split_path);
  15094. char postfix[32];
  15095. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15096. std::string str_postfix(postfix);
  15097. // check if dest ends with postfix
  15098. int size_prefix = str_split_path.size() - str_postfix.size();
  15099. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15100. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15101. return size_prefix;
  15102. }
  15103. return 0;
  15104. }
  15105. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15106. struct llama_timings result = {
  15107. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15108. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15109. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15110. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15111. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15112. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15113. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15114. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15115. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15116. };
  15117. return result;
  15118. }
  15119. void llama_print_timings(struct llama_context * ctx) {
  15120. const llama_timings timings = llama_get_timings(ctx);
  15121. LLAMA_LOG_INFO("\n");
  15122. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15123. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15124. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15125. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15126. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15127. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15128. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15129. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15130. }
  15131. void llama_reset_timings(struct llama_context * ctx) {
  15132. ctx->t_start_us = ggml_time_us();
  15133. ctx->t_sample_us = ctx->n_sample = 0;
  15134. ctx->t_eval_us = ctx->n_eval = 0;
  15135. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15136. }
  15137. const char * llama_print_system_info(void) {
  15138. static std::string s;
  15139. s = "";
  15140. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15141. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15142. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15143. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15144. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15145. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15146. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  15147. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15148. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15149. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15150. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15151. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15152. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15153. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15154. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15155. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15156. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15157. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15158. #ifdef GGML_USE_LLAMAFILE
  15159. s += "LLAMAFILE = 1 | ";
  15160. #else
  15161. s += "LLAMAFILE = 0 | ";
  15162. #endif
  15163. return s.c_str();
  15164. }
  15165. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15166. fprintf(stream, "\n");
  15167. fprintf(stream, "###########\n");
  15168. fprintf(stream, "# Timings #\n");
  15169. fprintf(stream, "###########\n");
  15170. fprintf(stream, "\n");
  15171. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15172. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15173. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15174. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15175. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15176. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15177. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15178. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15179. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15180. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15181. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15182. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15183. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15184. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15185. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15186. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15187. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15188. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15189. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15190. }
  15191. // For internal test use
  15192. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15193. struct llama_context * ctx
  15194. ) {
  15195. return ctx->model.tensors_by_name;
  15196. }
  15197. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15198. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15199. g_state.log_callback_user_data = user_data;
  15200. #ifdef GGML_USE_METAL
  15201. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15202. #elif defined(GGML_USE_CUDA)
  15203. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15204. #endif
  15205. }
  15206. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15207. va_list args_copy;
  15208. va_copy(args_copy, args);
  15209. char buffer[128];
  15210. int len = vsnprintf(buffer, 128, format, args);
  15211. if (len < 128) {
  15212. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15213. } else {
  15214. char* buffer2 = new char[len+1];
  15215. vsnprintf(buffer2, len+1, format, args_copy);
  15216. buffer2[len] = 0;
  15217. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15218. delete[] buffer2;
  15219. }
  15220. va_end(args_copy);
  15221. }
  15222. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15223. va_list args;
  15224. va_start(args, format);
  15225. llama_log_internal_v(level, format, args);
  15226. va_end(args);
  15227. }
  15228. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15229. (void) level;
  15230. (void) user_data;
  15231. fputs(text, stderr);
  15232. fflush(stderr);
  15233. }