ggml-backend.cpp 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019
  1. // Note: porting this file to C++ is a work in progress
  2. #ifdef _WIN32
  3. #define WIN32_LEAN_AND_MEAN
  4. #ifndef NOMINMAX
  5. # define NOMINMAX
  6. #endif
  7. #include <windows.h>
  8. #endif
  9. #include "ggml-backend.h"
  10. #include "ggml-backend-impl.h"
  11. #include "ggml-alloc.h"
  12. #include "ggml-impl.h"
  13. #include <assert.h>
  14. #include <limits.h>
  15. #include <stdarg.h>
  16. #include <stdio.h>
  17. #include <stdlib.h>
  18. #include <string.h>
  19. #include <string>
  20. #include <vector>
  21. #include <algorithm>
  22. #ifdef __APPLE__
  23. #include <sys/types.h>
  24. #include <sys/sysctl.h>
  25. #endif
  26. // backend buffer type
  27. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  28. return buft->iface.get_name(buft);
  29. }
  30. ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  31. if (size == 0) {
  32. // return a dummy buffer for zero-sized allocations
  33. return ggml_backend_buffer_init(buft, {}, NULL, 0);
  34. }
  35. return buft->iface.alloc_buffer(buft, size);
  36. }
  37. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  38. return buft->iface.get_alignment(buft);
  39. }
  40. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  41. // get_max_size is optional, defaults to SIZE_MAX
  42. if (buft->iface.get_max_size) {
  43. return buft->iface.get_max_size(buft);
  44. }
  45. return SIZE_MAX;
  46. }
  47. size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
  48. // get_alloc_size is optional, defaults to ggml_nbytes
  49. if (buft->iface.get_alloc_size) {
  50. size_t size = buft->iface.get_alloc_size(buft, tensor);
  51. assert(size >= ggml_nbytes(tensor));
  52. return size;
  53. }
  54. return ggml_nbytes(tensor);
  55. }
  56. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  57. if (buft->iface.is_host) {
  58. return buft->iface.is_host(buft);
  59. }
  60. return false;
  61. }
  62. ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
  63. return buft->device;
  64. }
  65. // backend buffer
  66. ggml_backend_buffer_t ggml_backend_buffer_init(
  67. ggml_backend_buffer_type_t buft,
  68. struct ggml_backend_buffer_i iface,
  69. void * context,
  70. size_t size) {
  71. ggml_backend_buffer_t buffer = new ggml_backend_buffer {
  72. /* .interface = */ iface,
  73. /* .buft = */ buft,
  74. /* .context = */ context,
  75. /* .size = */ size,
  76. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  77. };
  78. return buffer;
  79. }
  80. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  81. return ggml_backend_buft_name(ggml_backend_buffer_get_type(buffer));
  82. }
  83. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  84. if (buffer == NULL) {
  85. return;
  86. }
  87. if (buffer->iface.free_buffer != NULL) {
  88. buffer->iface.free_buffer(buffer);
  89. }
  90. delete buffer;
  91. }
  92. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  93. return buffer->size;
  94. }
  95. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  96. // get_base is optional if the buffer is zero-sized
  97. if (buffer->size == 0) {
  98. return NULL;
  99. }
  100. void * base = buffer->iface.get_base(buffer);
  101. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  102. return base;
  103. }
  104. enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  105. // init_tensor is optional
  106. if (buffer->iface.init_tensor) {
  107. return buffer->iface.init_tensor(buffer, tensor);
  108. }
  109. return GGML_STATUS_SUCCESS;
  110. }
  111. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  112. // clear is optional if the buffer is zero-sized
  113. if (buffer->size == 0) {
  114. return;
  115. }
  116. buffer->iface.clear(buffer, value);
  117. }
  118. size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
  119. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  120. }
  121. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  122. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  123. }
  124. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor) {
  125. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  126. }
  127. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  128. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  129. }
  130. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  131. buffer->usage = usage;
  132. // FIXME: add a generic callback to the buffer interface
  133. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  134. ggml_backend_multi_buffer_set_usage(buffer, usage);
  135. }
  136. }
  137. enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
  138. return buffer->usage;
  139. }
  140. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  141. return buffer->buft;
  142. }
  143. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  144. if (buffer->iface.reset) {
  145. buffer->iface.reset(buffer);
  146. }
  147. }
  148. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  149. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  150. if (dst_buf->iface.cpy_tensor) {
  151. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  152. }
  153. return false;
  154. }
  155. // backend
  156. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  157. if (backend == NULL) {
  158. return NULL;
  159. }
  160. return backend->guid;
  161. }
  162. const char * ggml_backend_name(ggml_backend_t backend) {
  163. if (backend == NULL) {
  164. return "NULL";
  165. }
  166. return backend->iface.get_name(backend);
  167. }
  168. void ggml_backend_free(ggml_backend_t backend) {
  169. if (backend == NULL) {
  170. return;
  171. }
  172. backend->iface.free(backend);
  173. }
  174. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  175. return ggml_backend_dev_buffer_type(backend->device);
  176. }
  177. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  178. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  179. }
  180. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  181. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  182. }
  183. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  184. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  185. }
  186. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  187. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  188. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  189. if (backend->iface.set_tensor_async == NULL) {
  190. ggml_backend_tensor_set(tensor, data, offset, size);
  191. } else {
  192. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  193. }
  194. }
  195. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  196. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  197. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  198. if (backend->iface.get_tensor_async == NULL) {
  199. ggml_backend_tensor_get(tensor, data, offset, size);
  200. } else {
  201. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  202. }
  203. }
  204. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  205. GGML_ASSERT(tensor);
  206. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  207. if (size == 0) {
  208. return;
  209. }
  210. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  211. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  212. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  213. buf->iface.set_tensor(buf, tensor, data, offset, size);
  214. }
  215. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  216. GGML_ASSERT(tensor);
  217. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  218. if (size == 0) {
  219. return;
  220. }
  221. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  222. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  223. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  224. buf->iface.get_tensor(buf, tensor, data, offset, size);
  225. }
  226. void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  227. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  228. if (size == 0) {
  229. return;
  230. }
  231. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  232. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  233. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  234. GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not implemented by backend buffer");
  235. buf->iface.memset_tensor(buf, tensor, value, offset, size);
  236. }
  237. void ggml_backend_synchronize(ggml_backend_t backend) {
  238. if (backend->iface.synchronize == NULL) {
  239. return;
  240. }
  241. backend->iface.synchronize(backend);
  242. }
  243. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  244. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  245. return backend->iface.graph_plan_create(backend, cgraph);
  246. }
  247. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  248. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  249. backend->iface.graph_plan_free(backend, plan);
  250. }
  251. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  252. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  253. return backend->iface.graph_plan_compute(backend, plan);
  254. }
  255. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  256. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  257. ggml_backend_synchronize(backend);
  258. return err;
  259. }
  260. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  261. return backend->iface.graph_compute(backend, cgraph);
  262. }
  263. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  264. return ggml_backend_dev_supports_op(backend->device, op);
  265. }
  266. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  267. return ggml_backend_dev_supports_buft(backend->device, buft);
  268. }
  269. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  270. return ggml_backend_dev_offload_op(backend->device, op);
  271. }
  272. ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
  273. return backend->device;
  274. }
  275. // backend copy
  276. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  277. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  278. if (src == dst) {
  279. return;
  280. }
  281. if (ggml_backend_buffer_is_host(src->buffer)) {
  282. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  283. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  284. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  285. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  286. #ifndef NDEBUG
  287. GGML_LOG_DEBUG("%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  288. #endif
  289. size_t nbytes = ggml_nbytes(src);
  290. void * data = malloc(nbytes);
  291. ggml_backend_tensor_get(src, data, 0, nbytes);
  292. ggml_backend_tensor_set(dst, data, 0, nbytes);
  293. free(data);
  294. }
  295. }
  296. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  297. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  298. if (src == dst) {
  299. return;
  300. }
  301. if (backend_dst->iface.cpy_tensor_async != NULL) {
  302. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  303. return;
  304. }
  305. }
  306. // an async copy would normally happen after all the queued operations on both backends are completed
  307. // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
  308. ggml_backend_synchronize(backend_src);
  309. ggml_backend_synchronize(backend_dst);
  310. ggml_backend_tensor_copy(src, dst);
  311. }
  312. // events
  313. ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) {
  314. // null device is allowed for the transition period to the device interface
  315. if (device == NULL || device->iface.event_new == NULL) {
  316. return NULL;
  317. }
  318. return device->iface.event_new(device);
  319. }
  320. void ggml_backend_event_free(ggml_backend_event_t event) {
  321. if (event == NULL) {
  322. return;
  323. }
  324. event->device->iface.event_free(event->device, event);
  325. }
  326. void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
  327. GGML_ASSERT(backend->iface.event_record != NULL);
  328. backend->iface.event_record(backend, event);
  329. }
  330. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  331. GGML_ASSERT(event->device->iface.event_synchronize);
  332. event->device->iface.event_synchronize(event->device, event);
  333. }
  334. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  335. GGML_ASSERT(backend->iface.event_wait != NULL);
  336. backend->iface.event_wait(backend, event);
  337. }
  338. // Backend device
  339. const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
  340. return device->iface.get_name(device);
  341. }
  342. const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
  343. return device->iface.get_description(device);
  344. }
  345. void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
  346. device->iface.get_memory(device, free, total);
  347. }
  348. enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
  349. return device->iface.get_type(device);
  350. }
  351. void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
  352. memset(props, 0, sizeof(*props));
  353. device->iface.get_props(device, props);
  354. }
  355. ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
  356. return device->reg;
  357. }
  358. ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
  359. return device->iface.init_backend(device, params);
  360. }
  361. ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
  362. return device->iface.get_buffer_type(device);
  363. }
  364. ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
  365. if (device->iface.get_host_buffer_type == NULL) {
  366. return NULL;
  367. }
  368. return device->iface.get_host_buffer_type(device);
  369. }
  370. ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
  371. return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
  372. }
  373. bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  374. return device->iface.supports_op(device, op);
  375. }
  376. bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
  377. return device->iface.supports_buft(device, buft);
  378. }
  379. bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  380. if (device->iface.offload_op != NULL) {
  381. return device->iface.offload_op(device, op);
  382. }
  383. return false;
  384. }
  385. // Backend (reg)
  386. const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
  387. return reg->iface.get_name(reg);
  388. }
  389. size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
  390. return reg->iface.get_device_count(reg);
  391. }
  392. ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
  393. return reg->iface.get_device(reg, index);
  394. }
  395. void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  396. if (!reg->iface.get_proc_address) {
  397. return NULL;
  398. }
  399. return reg->iface.get_proc_address(reg, name);
  400. }
  401. // multi-buffer buffer
  402. struct ggml_backend_multi_buffer_context {
  403. ggml_backend_buffer_t * buffers;
  404. size_t n_buffers;
  405. };
  406. static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  407. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  408. for (size_t i = 0; i < ctx->n_buffers; i++) {
  409. ggml_backend_buffer_free(ctx->buffers[i]);
  410. }
  411. free(ctx->buffers);
  412. free(ctx);
  413. }
  414. static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  415. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  416. for (size_t i = 0; i < ctx->n_buffers; i++) {
  417. ggml_backend_buffer_clear(ctx->buffers[i], value);
  418. }
  419. }
  420. static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
  421. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  422. /* .get_base = */ NULL,
  423. /* .init_tensor = */ NULL,
  424. /* .memset_tensor = */ NULL,
  425. /* .set_tensor = */ NULL,
  426. /* .get_tensor = */ NULL,
  427. /* .cpy_tensor = */ NULL,
  428. /* .clear = */ ggml_backend_multi_buffer_clear,
  429. /* .reset = */ NULL,
  430. };
  431. ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  432. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  433. ctx->n_buffers = n_buffers;
  434. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  435. GGML_ASSERT(ctx->buffers != NULL);
  436. size_t total_size = 0;
  437. for (size_t i = 0; i < n_buffers; i++) {
  438. ctx->buffers[i] = buffers[i];
  439. total_size += ggml_backend_buffer_get_size(buffers[i]);
  440. }
  441. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_i, ctx, total_size);
  442. }
  443. bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  444. return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
  445. }
  446. void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  447. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  448. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  449. for (size_t i = 0; i < ctx->n_buffers; i++) {
  450. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  451. }
  452. }
  453. // creates a copy of the tensor with the same memory layout
  454. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  455. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  456. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  457. dup->nb[i] = tensor->nb[i];
  458. }
  459. return dup;
  460. }
  461. static bool ggml_is_view_op(enum ggml_op op) {
  462. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  463. }
  464. // scheduler
  465. #ifndef GGML_SCHED_MAX_BACKENDS
  466. #define GGML_SCHED_MAX_BACKENDS 16
  467. #endif
  468. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  469. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  470. #endif
  471. #ifndef GGML_SCHED_MAX_COPIES
  472. #define GGML_SCHED_MAX_COPIES 4
  473. #endif
  474. struct ggml_backend_sched_split {
  475. int backend_id;
  476. int i_start;
  477. int i_end;
  478. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  479. int n_inputs;
  480. // graph view of this split
  481. struct ggml_cgraph graph;
  482. };
  483. struct ggml_backend_sched {
  484. bool is_reset; // true if the scheduler has been reset since the last graph split
  485. bool is_alloc;
  486. int n_backends;
  487. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  488. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  489. ggml_gallocr_t galloc;
  490. // hash map of the nodes in the graph
  491. struct ggml_hash_set hash_set;
  492. int * hv_tensor_backend_ids; // [hash_set.size]
  493. struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
  494. int * node_backend_ids; // [graph_size]
  495. int * leaf_backend_ids; // [graph_size]
  496. int * prev_node_backend_ids; // [graph_size]
  497. int * prev_leaf_backend_ids; // [graph_size]
  498. // copy of the graph with modified inputs
  499. struct ggml_cgraph graph;
  500. // graph splits
  501. struct ggml_backend_sched_split * splits;
  502. int n_splits;
  503. int splits_capacity;
  504. // pipeline parallelism support
  505. int n_copies;
  506. int cur_copy;
  507. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  508. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  509. int n_graph_inputs;
  510. struct ggml_context * ctx;
  511. ggml_backend_sched_eval_callback callback_eval;
  512. void * callback_eval_user_data;
  513. char * context_buffer;
  514. size_t context_buffer_size;
  515. bool op_offload;
  516. int debug;
  517. };
  518. #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
  519. #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
  520. #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
  521. #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
  522. // returns the priority of the backend, lower id is higher priority
  523. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  524. for (int i = 0; i < sched->n_backends; i++) {
  525. if (sched->backends[i] == backend) {
  526. return i;
  527. }
  528. }
  529. return -1;
  530. }
  531. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  532. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  533. if (buffer == NULL) {
  534. return -1;
  535. }
  536. // find highest prio backend that supports the buffer type and the op
  537. for (int i = 0; i < sched->n_backends; i++) {
  538. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  539. ggml_backend_supports_op(sched->backends[i], op)) {
  540. return i;
  541. }
  542. }
  543. #ifndef NDEBUG
  544. GGML_LOG_DEBUG("%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  545. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  546. #endif
  547. return -1;
  548. }
  549. #if 0
  550. #define GGML_SCHED_MAX_SPLITS_DEBUG 4096
  551. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  552. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  553. #define GET_CAUSE(node) causes[hash_id(node)]
  554. #else
  555. #define SET_CAUSE(node, ...)
  556. #define GET_CAUSE(node) ""
  557. #endif
  558. // returns the backend that should be used for the node based on the current locations
  559. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  560. // assign pre-allocated nodes to their backend
  561. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  562. if (cur_backend_id != -1) {
  563. SET_CAUSE(tensor, "1.dst");
  564. return cur_backend_id;
  565. }
  566. // view_src
  567. if (tensor->view_src != NULL) {
  568. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  569. if (cur_backend_id != -1) {
  570. SET_CAUSE(tensor, "1.vsrc");
  571. return cur_backend_id;
  572. }
  573. }
  574. if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
  575. // since the tensor is pre-allocated, it cannot be moved to another backend
  576. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  577. GGML_ABORT("pre-allocated tensor (%s) in a buffer (%s) that cannot run the operation (%s)", tensor->name, ggml_backend_buffer_name(buffer), ggml_op_name(tensor->op));
  578. }
  579. // graph input
  580. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  581. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  582. SET_CAUSE(tensor, "1.inp");
  583. return cur_backend_id;
  584. }
  585. // operations with weights are preferably run on the same backend as the weights
  586. for (int i = 0; i < GGML_MAX_SRC; i++) {
  587. const struct ggml_tensor * src = tensor->src[i];
  588. if (src == NULL) {
  589. continue;
  590. }
  591. // skip ROPE since the rope freqs tensor is too small to choose a backend based on it
  592. // not an ideal solution
  593. if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  594. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  595. // check if a backend with higher prio wants to offload the op
  596. if (sched->op_offload && src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
  597. for (int b = 0; b < src_backend_id; b++) {
  598. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  599. SET_CAUSE(tensor, "1.off");
  600. return b;
  601. }
  602. }
  603. }
  604. SET_CAUSE(tensor, "1.wgt%d", i);
  605. return src_backend_id;
  606. }
  607. }
  608. return -1;
  609. }
  610. static char * fmt_size(size_t size) {
  611. static char buffer[128];
  612. if (size >= 1024*1024) {
  613. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  614. } else {
  615. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  616. }
  617. return buffer;
  618. }
  619. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  620. int cur_split = 0;
  621. for (int i = 0; i < graph->n_nodes; i++) {
  622. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  623. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  624. GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs", cur_split, ggml_backend_name(split_backend),
  625. sched->splits[cur_split].n_inputs);
  626. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  627. if (j == 0) {
  628. GGML_LOG_DEBUG(": ");
  629. }
  630. GGML_LOG_DEBUG("[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  631. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  632. }
  633. GGML_LOG_DEBUG("\n");
  634. cur_split++;
  635. }
  636. struct ggml_tensor * node = graph->nodes[i];
  637. if (ggml_is_view_op(node->op)) {
  638. continue;
  639. }
  640. if (sched->debug > 1) {
  641. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  642. GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s] use=%d:", i, ggml_op_name(node->op), node->name,
  643. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node),
  644. graph->use_counts[ggml_hash_find(&graph->visited_hash_set, node)]);
  645. for (int j = 0; j < GGML_MAX_SRC; j++) {
  646. struct ggml_tensor * src = node->src[j];
  647. if (src == NULL) {
  648. continue;
  649. }
  650. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  651. GGML_LOG_DEBUG(" %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  652. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  653. }
  654. GGML_LOG_DEBUG("\n");
  655. }
  656. }
  657. }
  658. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  659. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  660. ggml_backend_buffer_type_t buft = NULL;
  661. if (buf) {
  662. // the tensor is already allocated
  663. buft = buf->buft;
  664. } else {
  665. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  666. int tensor_backend_id = tensor_backend_id(t);
  667. if (tensor_backend_id == -1 && t->view_src) {
  668. tensor_backend_id = tensor_backend_id(t->view_src);
  669. }
  670. if (tensor_backend_id != -1) {
  671. buft = sched->bufts[tensor_backend_id];
  672. }
  673. }
  674. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  675. }
  676. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  677. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  678. *node_backend_id = cur_backend_id;
  679. SET_CAUSE(node, "2.sup");
  680. }
  681. }
  682. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  683. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  684. // reset splits
  685. sched->n_splits = 0;
  686. sched->n_graph_inputs = 0;
  687. sched->is_reset = false;
  688. struct ggml_init_params params = {
  689. /* .mem_size = */ sched->context_buffer_size,
  690. /* .mem_buffer = */ sched->context_buffer,
  691. /* .no_alloc = */ true
  692. };
  693. ggml_free(sched->ctx);
  694. sched->ctx = ggml_init(params);
  695. if (sched->ctx == NULL) {
  696. GGML_ABORT("%s: failed to initialize context\n", __func__);
  697. }
  698. // pass 1: assign backends to ops with pre-allocated inputs
  699. for (int i = 0; i < graph->n_leafs; i++) {
  700. struct ggml_tensor * leaf = graph->leafs[i];
  701. int * leaf_backend_id = &tensor_backend_id(leaf);
  702. // do not overwrite user assignments
  703. if (*leaf_backend_id == -1) {
  704. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  705. }
  706. }
  707. for (int i = 0; i < graph->n_nodes; i++) {
  708. struct ggml_tensor * node = graph->nodes[i];
  709. int * node_backend_id = &tensor_backend_id(node);
  710. // do not overwrite user assignments
  711. if (*node_backend_id == -1) {
  712. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  713. #if 0
  714. // src
  715. if (node->op == GGML_OP_NONE) {
  716. continue;
  717. }
  718. for (int j = 0; j < GGML_MAX_SRC; j++) {
  719. struct ggml_tensor * src = node->src[j];
  720. if (src == NULL) {
  721. continue;
  722. }
  723. int * src_backend_id = &tensor_backend_id(src);
  724. if (*src_backend_id == -1) {
  725. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  726. }
  727. }
  728. #endif
  729. }
  730. }
  731. // pass 2: expand current backend assignments
  732. // assign the same backend to adjacent nodes
  733. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  734. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  735. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  736. // expand gpu down
  737. {
  738. int cur_backend_id = -1;
  739. for (int i = 0; i < graph->n_nodes; i++) {
  740. struct ggml_tensor * node = graph->nodes[i];
  741. if (ggml_is_view_op(node->op)) {
  742. continue;
  743. }
  744. int * node_backend_id = &tensor_backend_id(node);
  745. if (*node_backend_id != -1) {
  746. if (*node_backend_id == sched->n_backends - 1) {
  747. // skip cpu (lowest prio backend)
  748. cur_backend_id = -1;
  749. } else {
  750. cur_backend_id = *node_backend_id;
  751. }
  752. } else if (cur_backend_id != -1) {
  753. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  754. }
  755. }
  756. }
  757. // expand gpu up
  758. {
  759. int cur_backend_id = -1;
  760. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  761. struct ggml_tensor * node = graph->nodes[i];
  762. if (ggml_is_view_op(node->op)) {
  763. continue;
  764. }
  765. int * node_backend_id = &tensor_backend_id(node);
  766. if (*node_backend_id != -1) {
  767. if (*node_backend_id == sched->n_backends - 1) {
  768. // skip cpu (lowest prio backend)
  769. cur_backend_id = -1;
  770. } else {
  771. cur_backend_id = *node_backend_id;
  772. }
  773. } else if (cur_backend_id != -1) {
  774. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  775. }
  776. }
  777. }
  778. // expand rest down
  779. {
  780. int cur_backend_id = -1;
  781. for (int i = 0; i < graph->n_nodes; i++) {
  782. struct ggml_tensor * node = graph->nodes[i];
  783. if (ggml_is_view_op(node->op)) {
  784. continue;
  785. }
  786. int * node_backend_id = &tensor_backend_id(node);
  787. if (*node_backend_id != -1) {
  788. cur_backend_id = *node_backend_id;
  789. } else if (cur_backend_id != -1) {
  790. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  791. }
  792. }
  793. }
  794. // expand rest up
  795. {
  796. int cur_backend_id = -1;
  797. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  798. struct ggml_tensor * node = graph->nodes[i];
  799. if (ggml_is_view_op(node->op)) {
  800. continue;
  801. }
  802. int * node_backend_id = &tensor_backend_id(node);
  803. if (*node_backend_id != -1) {
  804. cur_backend_id = *node_backend_id;
  805. } else if (cur_backend_id != -1) {
  806. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  807. }
  808. }
  809. }
  810. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  811. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  812. // however, we also need to verify that the sources are in compatible buffer types
  813. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  814. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  815. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  816. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  817. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  818. for (int i = 0; i < graph->n_nodes; i++) {
  819. struct ggml_tensor * node = graph->nodes[i];
  820. if (ggml_is_view_op(node->op)) {
  821. continue;
  822. }
  823. int * node_backend_id = &tensor_backend_id(node);
  824. if (*node_backend_id == -1) {
  825. // unassigned node: find the backend with the most supported inputs
  826. int n_supported_best = -1;
  827. for (int b = 0; b < sched->n_backends; b++) {
  828. if (ggml_backend_supports_op(sched->backends[b], node)) {
  829. int n_supported = 0;
  830. for (int j = 0; j < GGML_MAX_SRC; j++) {
  831. struct ggml_tensor * src = node->src[j];
  832. if (src == NULL) {
  833. continue;
  834. }
  835. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  836. n_supported++;
  837. }
  838. }
  839. if (n_supported > n_supported_best) {
  840. n_supported_best = n_supported;
  841. *node_backend_id = b;
  842. SET_CAUSE(node, "3.best");
  843. }
  844. }
  845. }
  846. } else {
  847. // assigned node: upgrade to higher prio backend if possible
  848. for (int b = 0; b < *node_backend_id; b++) {
  849. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  850. bool supported = true;
  851. for (int j = 0; j < GGML_MAX_SRC; j++) {
  852. struct ggml_tensor * src = node->src[j];
  853. if (src == NULL) {
  854. continue;
  855. }
  856. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  857. supported = false;
  858. break;
  859. }
  860. }
  861. if (supported) {
  862. *node_backend_id = b;
  863. SET_CAUSE(node, "3.upg");
  864. break;
  865. }
  866. }
  867. }
  868. }
  869. }
  870. // pass 4: assign backends to remaining src from dst and view_src
  871. for (int i = 0; i < graph->n_nodes; i++) {
  872. struct ggml_tensor * node = graph->nodes[i];
  873. int * cur_backend_id = &tensor_backend_id(node);
  874. if (node->view_src != NULL && *cur_backend_id == -1) {
  875. *cur_backend_id = tensor_backend_id(node->view_src);
  876. SET_CAUSE(node, "4.vsrc");
  877. }
  878. for (int j = 0; j < GGML_MAX_SRC; j++) {
  879. struct ggml_tensor * src = node->src[j];
  880. if (src == NULL) {
  881. continue;
  882. }
  883. int * src_backend_id = &tensor_backend_id(src);
  884. if (*src_backend_id == -1) {
  885. if (src->view_src != NULL) {
  886. // views are always on the same backend as the source
  887. *src_backend_id = tensor_backend_id(src->view_src);
  888. SET_CAUSE(src, "4.vsrc");
  889. } else {
  890. *src_backend_id = *cur_backend_id;
  891. SET_CAUSE(src, "4.cur");
  892. }
  893. }
  894. }
  895. }
  896. // pass 5: split graph, find tensors that need to be copied
  897. {
  898. int i_split = 0;
  899. struct ggml_backend_sched_split * split = &sched->splits[0];
  900. // find the backend of the first split, skipping view ops
  901. int i = 0;
  902. for (; i < graph->n_nodes; i++) {
  903. struct ggml_tensor * node = graph->nodes[i];
  904. if (!ggml_is_view_op(node->op)) {
  905. split->backend_id = tensor_backend_id(node);
  906. break;
  907. }
  908. }
  909. split->i_start = 0;
  910. split->n_inputs = 0;
  911. int cur_backend_id = split->backend_id;
  912. for (; i < graph->n_nodes; i++) {
  913. struct ggml_tensor * node = graph->nodes[i];
  914. if (ggml_is_view_op(node->op)) {
  915. continue;
  916. }
  917. const int node_backend_id = tensor_backend_id(node);
  918. assert(node_backend_id != -1); // all nodes should be assigned by now, this can happen if there is no CPU fallback
  919. // check if we should start a new split based on the sources of the current node
  920. bool need_new_split = false;
  921. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  922. for (int j = 0; j < GGML_MAX_SRC; j++) {
  923. struct ggml_tensor * src = node->src[j];
  924. if (src == NULL) {
  925. continue;
  926. }
  927. // check if a weight is on a different and incompatible backend
  928. // by starting a new split, the memory of the previously offloaded weights can be reused
  929. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  930. int src_backend_id = tensor_backend_id(src);
  931. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  932. need_new_split = true;
  933. break;
  934. }
  935. }
  936. // check if the split has too many inputs
  937. // FIXME: count the number of inputs instead of only checking when full
  938. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  939. const size_t id = hash_id(src);
  940. int src_backend_id = sched->hv_tensor_backend_ids[id];
  941. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  942. if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
  943. need_new_split = true;
  944. break;
  945. }
  946. }
  947. }
  948. }
  949. if (node_backend_id != cur_backend_id || need_new_split) {
  950. split->i_end = i;
  951. i_split++;
  952. if (i_split >= sched->splits_capacity) {
  953. sched->splits_capacity *= 2;
  954. sched->splits = (ggml_backend_sched_split *)
  955. realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  956. GGML_ASSERT(sched->splits != NULL);
  957. }
  958. split = &sched->splits[i_split];
  959. split->backend_id = node_backend_id;
  960. split->i_start = i;
  961. split->n_inputs = 0;
  962. cur_backend_id = node_backend_id;
  963. }
  964. // find inputs that are not on the same backend
  965. for (int j = 0; j < GGML_MAX_SRC; j++) {
  966. struct ggml_tensor * src = node->src[j];
  967. if (src == NULL) {
  968. continue;
  969. }
  970. size_t src_id = hash_id(src);
  971. const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
  972. assert(src_backend_id != -1); // all inputs should be assigned by now
  973. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  974. if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
  975. ggml_backend_t backend = sched->backends[src_backend_id];
  976. for (int c = 0; c < sched->n_copies; c++) {
  977. struct ggml_tensor * tensor_copy;
  978. if (c == sched->cur_copy) {
  979. tensor_copy = src; // use the original tensor as the current copy
  980. } else {
  981. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  982. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  983. }
  984. if (sched->n_copies > 1) {
  985. ggml_set_input(tensor_copy);
  986. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  987. }
  988. tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
  989. SET_CAUSE(tensor_copy, "4.cpy");
  990. }
  991. int n_graph_inputs = sched->n_graph_inputs++;
  992. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  993. sched->graph_inputs[n_graph_inputs] = src;
  994. }
  995. }
  996. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  997. // create a copy of the input in the split's backend
  998. if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
  999. ggml_backend_t backend = sched->backends[cur_backend_id];
  1000. for (int c = 0; c < sched->n_copies; c++) {
  1001. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1002. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1003. if (sched->n_copies > 1) {
  1004. ggml_set_input(tensor_copy);
  1005. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1006. }
  1007. tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
  1008. SET_CAUSE(tensor_copy, "4.cpy");
  1009. }
  1010. int n_inputs = split->n_inputs++;
  1011. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1012. split->inputs[n_inputs] = src;
  1013. }
  1014. node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
  1015. }
  1016. }
  1017. }
  1018. split->i_end = graph->n_nodes;
  1019. sched->n_splits = i_split + 1;
  1020. }
  1021. if (sched->debug) {
  1022. ggml_backend_sched_print_assignments(sched, graph);
  1023. }
  1024. // swap node_backend_ids and leaf _backend_ids with prevs
  1025. {
  1026. int * tmp = sched->node_backend_ids;
  1027. sched->node_backend_ids = sched->prev_node_backend_ids;
  1028. sched->prev_node_backend_ids = tmp;
  1029. tmp = sched->leaf_backend_ids;
  1030. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1031. sched->prev_leaf_backend_ids = tmp;
  1032. }
  1033. int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
  1034. if (sched->graph.size < graph_size) {
  1035. sched->graph.size = graph_size;
  1036. sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
  1037. sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
  1038. GGML_ASSERT(sched->graph.nodes != NULL);
  1039. GGML_ASSERT(sched->graph.leafs != NULL);
  1040. }
  1041. sched->graph.n_nodes = 0;
  1042. sched->graph.n_leafs = 0;
  1043. struct ggml_cgraph * graph_copy = &sched->graph;
  1044. for (int i = 0; i < sched->n_splits; i++) {
  1045. struct ggml_backend_sched_split * split = &sched->splits[i];
  1046. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1047. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1048. for (int j = 0; j < split->n_inputs; j++) {
  1049. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1050. struct ggml_tensor * input = split->inputs[j];
  1051. const size_t input_id = hash_id(input);
  1052. struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
  1053. // add a dependency to the input source so that it is not freed before the copy is done
  1054. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1055. input_dep->src[0] = input;
  1056. sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
  1057. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1058. // add a dependency to the input copy so that it is allocated at the start of the split
  1059. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1060. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1061. }
  1062. for (int j = split->i_start; j < split->i_end; j++) {
  1063. assert(graph_copy->size > graph_copy->n_nodes);
  1064. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1065. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1066. }
  1067. }
  1068. if (sched->n_copies > 1) {
  1069. // add input copies as leafs so that they are allocated first
  1070. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1071. struct ggml_tensor * input = sched->graph_inputs[i];
  1072. size_t id = hash_id(input);
  1073. int backend_id = tensor_backend_id(input);
  1074. for (int c = 0; c < sched->n_copies; c++) {
  1075. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1076. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1077. assert(graph_copy->size > graph_copy->n_leafs);
  1078. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1079. }
  1080. }
  1081. for (int i = 0; i < sched->n_splits; i++) {
  1082. struct ggml_backend_sched_split * split = &sched->splits[i];
  1083. int backend_id = split->backend_id;
  1084. for (int j = 0; j < split->n_inputs; j++) {
  1085. struct ggml_tensor * input = split->inputs[j];
  1086. size_t id = hash_id(input);
  1087. for (int c = 0; c < sched->n_copies; c++) {
  1088. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1089. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1090. assert(graph_copy->size > graph_copy->n_leafs);
  1091. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1092. }
  1093. }
  1094. }
  1095. }
  1096. // add leafs from the original graph
  1097. for (int i = 0; i < graph->n_leafs; i++) {
  1098. struct ggml_tensor * leaf = graph->leafs[i];
  1099. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1100. assert(graph_copy->size > graph_copy->n_leafs);
  1101. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1102. }
  1103. }
  1104. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1105. bool backend_ids_changed = false;
  1106. for (int i = 0; i < sched->graph.n_nodes; i++) {
  1107. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1108. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1109. backend_ids_changed = true;
  1110. break;
  1111. }
  1112. }
  1113. if (!backend_ids_changed) {
  1114. for (int i = 0; i < sched->graph.n_leafs; i++) {
  1115. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1116. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1117. backend_ids_changed = true;
  1118. break;
  1119. }
  1120. }
  1121. }
  1122. // allocate graph
  1123. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1124. // the re-allocation may cause the split inputs to be moved to a different address
  1125. // synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
  1126. for (int i = 0; i < sched->n_backends; i++) {
  1127. ggml_backend_synchronize(sched->backends[i]);
  1128. }
  1129. #ifndef NDEBUG
  1130. GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
  1131. #endif
  1132. ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1133. if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1134. GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);
  1135. return false;
  1136. }
  1137. }
  1138. return true;
  1139. }
  1140. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1141. struct ggml_backend_sched_split * splits = sched->splits;
  1142. for (int i = 0; i < sched->n_splits; i++) {
  1143. struct ggml_backend_sched_split * split = &splits[i];
  1144. int split_backend_id = split->backend_id;
  1145. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1146. // copy the input tensors to the split backend
  1147. for (int j = 0; j < split->n_inputs; j++) {
  1148. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1149. struct ggml_tensor * input = split->inputs[j];
  1150. struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
  1151. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1152. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1153. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1154. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1155. } else {
  1156. ggml_backend_synchronize(split_backend);
  1157. }
  1158. ggml_backend_tensor_copy(input, input_cpy);
  1159. } else {
  1160. // wait for the split backend to finish using the input before overwriting it
  1161. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1162. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1163. } else {
  1164. ggml_backend_synchronize(split_backend);
  1165. }
  1166. // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
  1167. // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
  1168. if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
  1169. ggml_backend_synchronize(input_backend);
  1170. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1171. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1172. } else {
  1173. ggml_backend_synchronize(split_backend);
  1174. }
  1175. ggml_backend_tensor_copy(input, input_cpy);
  1176. }
  1177. }
  1178. }
  1179. if (!sched->callback_eval) {
  1180. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1181. if (ec != GGML_STATUS_SUCCESS) {
  1182. return ec;
  1183. }
  1184. } else {
  1185. // similar to ggml_backend_compare_graph_backend
  1186. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1187. struct ggml_tensor * t = split->graph.nodes[j0];
  1188. // check if the user needs data from this node
  1189. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1190. int j1 = j0;
  1191. // determine the range [j0, j1] of nodes that can be computed together
  1192. while (!need && j1 < split->graph.n_nodes - 1) {
  1193. t = split->graph.nodes[++j1];
  1194. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1195. }
  1196. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1197. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1198. if (ec != GGML_STATUS_SUCCESS) {
  1199. return ec;
  1200. }
  1201. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1202. ggml_backend_synchronize(split_backend);
  1203. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1204. break;
  1205. }
  1206. j0 = j1;
  1207. }
  1208. }
  1209. // record the event of this copy
  1210. if (split->n_inputs > 0) {
  1211. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1212. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend);
  1213. }
  1214. }
  1215. }
  1216. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1217. return GGML_STATUS_SUCCESS;
  1218. }
  1219. ggml_backend_sched_t ggml_backend_sched_new(
  1220. ggml_backend_t * backends,
  1221. ggml_backend_buffer_type_t * bufts,
  1222. int n_backends,
  1223. size_t graph_size,
  1224. bool parallel,
  1225. bool op_offload) {
  1226. GGML_ASSERT(n_backends > 0);
  1227. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1228. GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
  1229. struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));
  1230. const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
  1231. sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
  1232. sched->n_backends = n_backends;
  1233. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1234. // initialize hash table
  1235. // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
  1236. sched->hash_set = ggml_hash_set_new(graph_size);
  1237. sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1238. sched->hv_tensor_copies = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1239. const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
  1240. const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1241. sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1242. sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1243. sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1244. sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1245. sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
  1246. sched->context_buffer = (char *) malloc(sched->context_buffer_size);
  1247. const int initial_splits_capacity = 16;
  1248. sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1249. sched->splits_capacity = initial_splits_capacity;
  1250. for (int b = 0; b < n_backends; b++) {
  1251. sched->backends[b] = backends[b];
  1252. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1253. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1254. if (sched->n_copies > 1) {
  1255. for (int c = 0; c < sched->n_copies; c++) {
  1256. sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
  1257. }
  1258. }
  1259. }
  1260. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1261. sched->op_offload = op_offload;
  1262. ggml_backend_sched_reset(sched);
  1263. return sched;
  1264. }
  1265. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1266. if (sched == NULL) {
  1267. return;
  1268. }
  1269. for (int b = 0; b < sched->n_backends; b++) {
  1270. for (int c = 0; c < sched->n_copies; c++) {
  1271. ggml_backend_event_free(sched->events[b][c]);
  1272. }
  1273. }
  1274. ggml_gallocr_free(sched->galloc);
  1275. ggml_free(sched->ctx);
  1276. ggml_hash_set_free(&sched->hash_set);
  1277. free(sched->splits);
  1278. free(sched->hv_tensor_backend_ids);
  1279. free(sched->hv_tensor_copies);
  1280. free(sched->node_backend_ids);
  1281. free(sched->leaf_backend_ids);
  1282. free(sched->prev_node_backend_ids);
  1283. free(sched->prev_leaf_backend_ids);
  1284. free(sched->context_buffer);
  1285. free(sched->graph.nodes);
  1286. free(sched->graph.leafs);
  1287. free(sched);
  1288. }
  1289. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1290. // reset state for the next run
  1291. if (!sched->is_reset) {
  1292. ggml_hash_set_reset(&sched->hash_set);
  1293. memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1294. memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1295. sched->is_reset = true;
  1296. }
  1297. sched->is_alloc = false;
  1298. }
  1299. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1300. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
  1301. ggml_backend_sched_split_graph(sched, measure_graph);
  1302. ggml_backend_sched_synchronize(sched);
  1303. if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1304. return false;
  1305. }
  1306. ggml_backend_sched_reset(sched);
  1307. return true;
  1308. }
  1309. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1310. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
  1311. ggml_backend_sched_split_graph(sched, graph);
  1312. if (!ggml_backend_sched_alloc_splits(sched)) {
  1313. return false;
  1314. }
  1315. sched->is_alloc = true;
  1316. return true;
  1317. }
  1318. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1319. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1320. ggml_backend_sched_synchronize(sched);
  1321. return err;
  1322. }
  1323. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1324. if (!sched->is_reset && !sched->is_alloc) {
  1325. ggml_backend_sched_reset(sched);
  1326. }
  1327. if (!sched->is_alloc) {
  1328. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1329. return GGML_STATUS_ALLOC_FAILED;
  1330. }
  1331. }
  1332. return ggml_backend_sched_compute_splits(sched);
  1333. }
  1334. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1335. for (int i = 0; i < sched->n_backends; i++) {
  1336. ggml_backend_synchronize(sched->backends[i]);
  1337. }
  1338. if (!sched->is_alloc) {
  1339. // if the graph is not already allocated, always use copy 0 after a synchronization
  1340. // this ensures that during generation the same copy is used every time,
  1341. // which avoids changes in the graph that could cause CUDA or other graphs to be disabled
  1342. sched->cur_copy = 0;
  1343. }
  1344. }
  1345. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1346. sched->callback_eval = callback;
  1347. sched->callback_eval_user_data = user_data;
  1348. }
  1349. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1350. return sched->n_splits;
  1351. }
  1352. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1353. return sched->n_copies;
  1354. }
  1355. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1356. return sched->n_backends;
  1357. }
  1358. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1359. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1360. return sched->backends[i];
  1361. }
  1362. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1363. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1364. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1365. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1366. }
  1367. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1368. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1369. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1370. tensor_backend_id(node) = backend_index;
  1371. SET_CAUSE(node, "usr");
  1372. sched->is_reset = false;
  1373. }
  1374. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1375. int backend_index = tensor_backend_id(node);
  1376. if (backend_index == -1) {
  1377. return NULL;
  1378. }
  1379. return sched->backends[backend_index];
  1380. }
  1381. // utils
  1382. enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
  1383. GGML_ASSERT(tensor->buffer == NULL);
  1384. GGML_ASSERT(tensor->view_src != NULL);
  1385. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1386. GGML_ASSERT(tensor->view_src->data != NULL);
  1387. tensor->buffer = tensor->view_src->buffer;
  1388. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1389. return ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1390. }
  1391. enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1392. GGML_ASSERT(tensor->buffer == NULL);
  1393. GGML_ASSERT(tensor->data == NULL);
  1394. GGML_ASSERT(tensor->view_src == NULL);
  1395. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1396. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1397. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1398. tensor->buffer = buffer;
  1399. tensor->data = addr;
  1400. return ggml_backend_buffer_init_tensor(buffer, tensor);
  1401. }
  1402. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1403. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1404. GGML_ASSERT(src != NULL);
  1405. GGML_ASSERT(src->data && "graph must be allocated");
  1406. size_t id = ggml_hash_insert(&hash_set, src);
  1407. if (id == GGML_HASHSET_ALREADY_EXISTS) {
  1408. return node_copies[ggml_hash_find(&hash_set, src)];
  1409. }
  1410. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1411. if (src->view_src != NULL) {
  1412. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1413. dst->view_offs = src->view_offs;
  1414. }
  1415. dst->op = src->op;
  1416. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1417. ggml_set_name(dst, src->name);
  1418. // copy src
  1419. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1420. struct ggml_tensor * s = src->src[i];
  1421. if (s == NULL) {
  1422. continue;
  1423. }
  1424. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1425. }
  1426. node_copies[id] = dst;
  1427. return dst;
  1428. }
  1429. static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1430. size_t id = ggml_hash_find(hash_set, src);
  1431. if (node_init[id]) {
  1432. return;
  1433. }
  1434. node_init[id] = true;
  1435. struct ggml_tensor * dst = node_copies[id];
  1436. if (dst->view_src != NULL) {
  1437. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1438. enum ggml_status status = ggml_backend_view_init(dst);
  1439. GGML_ASSERT(status == GGML_STATUS_SUCCESS);
  1440. }
  1441. else {
  1442. ggml_backend_tensor_copy(src, dst);
  1443. }
  1444. // init src
  1445. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1446. struct ggml_tensor * s = src->src[i];
  1447. if (s == NULL) {
  1448. continue;
  1449. }
  1450. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1451. }
  1452. }
  1453. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1454. struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
  1455. struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1456. bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
  1457. struct ggml_init_params params = {
  1458. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1459. /* .mem_buffer = */ NULL,
  1460. /* .no_alloc = */ true
  1461. };
  1462. struct ggml_context * ctx_allocated = ggml_init(params);
  1463. struct ggml_context * ctx_unallocated = ggml_init(params);
  1464. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1465. GGML_LOG_ERROR("%s: failed to allocate context for graph copy\n", __func__);
  1466. ggml_hash_set_free(&hash_set);
  1467. free(node_copies);
  1468. free(node_init);
  1469. ggml_free(ctx_allocated);
  1470. ggml_free(ctx_unallocated);
  1471. return {
  1472. /* .buffer = */ NULL,
  1473. /* .ctx_allocated = */ NULL,
  1474. /* .ctx_unallocated = */ NULL,
  1475. /* .graph = */ NULL,
  1476. };
  1477. }
  1478. // dup nodes
  1479. for (int i = 0; i < graph->n_nodes; i++) {
  1480. struct ggml_tensor * node = graph->nodes[i];
  1481. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1482. }
  1483. // allocate nodes
  1484. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1485. if (buffer == NULL) {
  1486. GGML_LOG_ERROR("%s: failed to allocate buffer for graph copy\n", __func__);
  1487. ggml_hash_set_free(&hash_set);
  1488. free(node_copies);
  1489. free(node_init);
  1490. ggml_free(ctx_allocated);
  1491. ggml_free(ctx_unallocated);
  1492. return {
  1493. /* .buffer = */ NULL,
  1494. /* .ctx_allocated = */ NULL,
  1495. /* .ctx_unallocated = */ NULL,
  1496. /* .graph = */ NULL,
  1497. };
  1498. }
  1499. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1500. // copy data and init views
  1501. for (int i = 0; i < graph->n_nodes; i++) {
  1502. struct ggml_tensor * node = graph->nodes[i];
  1503. graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
  1504. }
  1505. // build graph copy
  1506. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1507. for (int i = 0; i < graph->n_nodes; i++) {
  1508. struct ggml_tensor * node = graph->nodes[i];
  1509. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
  1510. graph_copy->nodes[i] = node_copy;
  1511. }
  1512. graph_copy->n_nodes = graph->n_nodes;
  1513. ggml_hash_set_free(&hash_set);
  1514. free(node_copies);
  1515. free(node_init);
  1516. return {
  1517. /* .buffer = */ buffer,
  1518. /* .ctx_allocated = */ ctx_allocated,
  1519. /* .ctx_unallocated = */ ctx_unallocated,
  1520. /* .graph = */ graph_copy,
  1521. };
  1522. }
  1523. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1524. ggml_backend_buffer_free(copy.buffer);
  1525. ggml_free(copy.ctx_allocated);
  1526. ggml_free(copy.ctx_unallocated);
  1527. }
  1528. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node) {
  1529. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1530. if (copy.buffer == NULL) {
  1531. return false;
  1532. }
  1533. struct ggml_cgraph * g1 = graph;
  1534. struct ggml_cgraph * g2 = copy.graph;
  1535. assert(g1->n_nodes == g2->n_nodes);
  1536. if (test_node != nullptr) {
  1537. // Compute the whole graph and only test the output for a specific tensor
  1538. ggml_backend_graph_compute(backend1, g1);
  1539. ggml_backend_graph_compute(backend2, g2);
  1540. int test_node_idx = -1;
  1541. for (int i = 0; i < g1->n_nodes; i++) {
  1542. struct ggml_tensor * t1 = g1->nodes[i];
  1543. if (t1 == test_node) {
  1544. test_node_idx = i;
  1545. break;
  1546. }
  1547. }
  1548. GGML_ASSERT(test_node_idx != -1);
  1549. callback(test_node_idx, g1->nodes[test_node_idx], g2->nodes[test_node_idx], user_data);
  1550. } else {
  1551. for (int i = 0; i < g1->n_nodes; i++) {
  1552. struct ggml_tensor * t1 = g1->nodes[i];
  1553. struct ggml_tensor * t2 = g2->nodes[i];
  1554. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1555. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1556. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1557. ggml_backend_graph_compute(backend1, &g1v);
  1558. ggml_backend_graph_compute(backend2, &g2v);
  1559. if (ggml_is_view_op(t1->op)) {
  1560. continue;
  1561. }
  1562. // compare results, calculate rms etc
  1563. if (!callback(i, t1, t2, user_data)) {
  1564. break;
  1565. }
  1566. }
  1567. }
  1568. ggml_backend_graph_copy_free(copy);
  1569. return true;
  1570. }
  1571. // CPU backend - buffer
  1572. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  1573. uintptr_t data = (uintptr_t)buffer->context;
  1574. // align the buffer
  1575. if (data % TENSOR_ALIGNMENT != 0) {
  1576. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  1577. }
  1578. return (void *)data;
  1579. }
  1580. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  1581. ggml_aligned_free(buffer->context, buffer->size);
  1582. }
  1583. static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  1584. memset((char *)tensor->data + offset, value, size);
  1585. GGML_UNUSED(buffer);
  1586. }
  1587. static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1588. memcpy((char *)tensor->data + offset, data, size);
  1589. GGML_UNUSED(buffer);
  1590. }
  1591. static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1592. memcpy(data, (const char *)tensor->data + offset, size);
  1593. GGML_UNUSED(buffer);
  1594. }
  1595. static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  1596. if (ggml_backend_buffer_is_host(src->buffer)) {
  1597. memcpy(dst->data, src->data, ggml_nbytes(src));
  1598. return true;
  1599. }
  1600. return false;
  1601. GGML_UNUSED(buffer);
  1602. }
  1603. static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  1604. memset(buffer->context, value, buffer->size);
  1605. }
  1606. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
  1607. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  1608. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1609. /* .init_tensor = */ NULL, // no initialization required
  1610. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1611. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1612. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1613. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1614. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1615. /* .reset = */ NULL,
  1616. };
  1617. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
  1618. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  1619. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1620. /* .init_tensor = */ NULL, // no initialization required
  1621. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1622. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1623. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1624. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1625. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1626. /* .reset = */ NULL,
  1627. };
  1628. // CPU backend buffer type
  1629. // this buffer type is defined here to make it available to all backends
  1630. static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  1631. return "CPU";
  1632. GGML_UNUSED(buft);
  1633. }
  1634. static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  1635. void * data = ggml_aligned_malloc(size);
  1636. if (data == NULL) {
  1637. GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n", __func__, size);
  1638. return NULL;
  1639. }
  1640. return ggml_backend_buffer_init(buft, ggml_backend_cpu_buffer_i, data, size);
  1641. }
  1642. static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  1643. return TENSOR_ALIGNMENT;
  1644. GGML_UNUSED(buft);
  1645. }
  1646. static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  1647. return true;
  1648. GGML_UNUSED(buft);
  1649. }
  1650. ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  1651. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1652. /* .iface = */ {
  1653. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  1654. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1655. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1656. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1657. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1658. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1659. },
  1660. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1661. /* .context = */ NULL,
  1662. };
  1663. return &ggml_backend_cpu_buffer_type;
  1664. }
  1665. static const char * ggml_backend_cpu_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
  1666. return "CPU_Mapped";
  1667. GGML_UNUSED(buft);
  1668. }
  1669. static ggml_backend_buffer_type_t ggml_backend_cpu_buffer_from_ptr_type(void) {
  1670. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1671. /* .iface = */ {
  1672. /* .get_name = */ ggml_backend_cpu_buffer_from_ptr_type_get_name,
  1673. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1674. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1675. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1676. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1677. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1678. },
  1679. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1680. /* .context = */ NULL,
  1681. };
  1682. return &ggml_backend_cpu_buffer_type;
  1683. }
  1684. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  1685. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  1686. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_from_ptr_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
  1687. }