ggml.c 412 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #elif defined(GGML_USE_OPENBLAS)
  118. #include <cblas.h>
  119. #elif defined(GGML_USE_CUBLAS)
  120. #include "ggml-cuda.h"
  121. #elif defined(GGML_USE_CLBLAST)
  122. #include "ggml-opencl.h"
  123. #endif
  124. #undef MIN
  125. #undef MAX
  126. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  127. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  128. // floating point type used to accumulate sums
  129. typedef double ggml_float;
  130. // 16-bit float
  131. // on Arm, we use __fp16
  132. // on x86, we use uint16_t
  133. #ifdef __ARM_NEON
  134. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  135. //
  136. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  137. //
  138. #include <arm_neon.h>
  139. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  140. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  141. #define GGML_FP16_TO_FP32(x) ((float) (x))
  142. #define GGML_FP32_TO_FP16(x) (x)
  143. #else
  144. #ifdef __wasm_simd128__
  145. #include <wasm_simd128.h>
  146. #else
  147. #ifdef __POWER9_VECTOR__
  148. #include <altivec.h>
  149. #undef bool
  150. #define bool _Bool
  151. #else
  152. #include <immintrin.h>
  153. #endif
  154. #endif
  155. #ifdef __F16C__
  156. #ifdef _MSC_VER
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  159. #else
  160. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  161. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  162. #endif
  163. #elif defined(__POWER9_VECTOR__)
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  166. /* the inline asm below is about 12% faster than the lookup method */
  167. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  168. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  169. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  170. register float f;
  171. register double d;
  172. __asm__(
  173. "mtfprd %0,%2\n"
  174. "xscvhpdp %0,%0\n"
  175. "frsp %1,%0\n" :
  176. /* temp */ "=d"(d),
  177. /* out */ "=f"(f):
  178. /* in */ "r"(h));
  179. return f;
  180. }
  181. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  182. register double d;
  183. register ggml_fp16_t r;
  184. __asm__( /* xscvdphp can work on double or single precision */
  185. "xscvdphp %0,%2\n"
  186. "mffprd %1,%0\n" :
  187. /* temp */ "=d"(d),
  188. /* out */ "=r"(r):
  189. /* in */ "f"(f));
  190. return r;
  191. }
  192. #else
  193. // FP16 <-> FP32
  194. // ref: https://github.com/Maratyszcza/FP16
  195. static inline float fp32_from_bits(uint32_t w) {
  196. union {
  197. uint32_t as_bits;
  198. float as_value;
  199. } fp32;
  200. fp32.as_bits = w;
  201. return fp32.as_value;
  202. }
  203. static inline uint32_t fp32_to_bits(float f) {
  204. union {
  205. float as_value;
  206. uint32_t as_bits;
  207. } fp32;
  208. fp32.as_value = f;
  209. return fp32.as_bits;
  210. }
  211. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  212. const uint32_t w = (uint32_t) h << 16;
  213. const uint32_t sign = w & UINT32_C(0x80000000);
  214. const uint32_t two_w = w + w;
  215. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  216. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  217. const float exp_scale = 0x1.0p-112f;
  218. #else
  219. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  220. #endif
  221. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  222. const uint32_t magic_mask = UINT32_C(126) << 23;
  223. const float magic_bias = 0.5f;
  224. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  225. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  226. const uint32_t result = sign |
  227. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  228. return fp32_from_bits(result);
  229. }
  230. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  231. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  232. const float scale_to_inf = 0x1.0p+112f;
  233. const float scale_to_zero = 0x1.0p-110f;
  234. #else
  235. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  236. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  237. #endif
  238. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  239. const uint32_t w = fp32_to_bits(f);
  240. const uint32_t shl1_w = w + w;
  241. const uint32_t sign = w & UINT32_C(0x80000000);
  242. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  243. if (bias < UINT32_C(0x71000000)) {
  244. bias = UINT32_C(0x71000000);
  245. }
  246. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  247. const uint32_t bits = fp32_to_bits(base);
  248. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  249. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  250. const uint32_t nonsign = exp_bits + mantissa_bits;
  251. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  252. }
  253. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  254. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  255. #endif // __F16C__
  256. #endif // __ARM_NEON
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t table_gelu_f16[1 << 16];
  262. // precomputed silu table for f16 (128 KB)
  263. static ggml_fp16_t table_silu_f16[1 << 16];
  264. // precomputed exp table for f16 (128 KB)
  265. static ggml_fp16_t table_exp_f16[1 << 16];
  266. // precomputed f32 table for f16 (256 KB)
  267. static float table_f32_f16[1 << 16];
  268. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  269. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  270. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  271. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  272. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  273. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  274. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  275. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  276. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  277. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  278. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  279. #endif
  280. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  281. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  282. // This is also true for POWER9.
  283. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  284. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  285. uint16_t s;
  286. memcpy(&s, &f, sizeof(uint16_t));
  287. return table_f32_f16[s];
  288. }
  289. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  290. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  291. #endif
  292. // note: do not use these inside ggml.c
  293. // these are meant to be used via the ggml.h API
  294. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  295. return (float) GGML_FP16_TO_FP32(x);
  296. }
  297. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  298. return GGML_FP32_TO_FP16(x);
  299. }
  300. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  301. for (size_t i = 0; i < n; i++) {
  302. y[i] = GGML_FP16_TO_FP32(x[i]);
  303. }
  304. }
  305. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  306. size_t i = 0;
  307. #if defined(__F16C__)
  308. for (; i + 7 < n; i += 8) {
  309. __m256 x_vec = _mm256_loadu_ps(x + i);
  310. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  311. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  312. }
  313. for(; i + 3 < n; i += 4) {
  314. __m128 x_vec = _mm_loadu_ps(x + i);
  315. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  316. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  317. }
  318. #endif
  319. for (; i < n; i++) {
  320. y[i] = GGML_FP32_TO_FP16(x[i]);
  321. }
  322. }
  323. //
  324. // timing
  325. //
  326. #if defined(_MSC_VER) || defined(__MINGW32__)
  327. static int64_t timer_freq;
  328. void ggml_time_init(void) {
  329. LARGE_INTEGER frequency;
  330. QueryPerformanceFrequency(&frequency);
  331. timer_freq = frequency.QuadPart;
  332. }
  333. int64_t ggml_time_ms(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return (t.QuadPart * 1000) / timer_freq;
  337. }
  338. int64_t ggml_time_us(void) {
  339. LARGE_INTEGER t;
  340. QueryPerformanceCounter(&t);
  341. return (t.QuadPart * 1000000) / timer_freq;
  342. }
  343. #else
  344. void ggml_time_init(void) {}
  345. int64_t ggml_time_ms(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  349. }
  350. int64_t ggml_time_us(void) {
  351. struct timespec ts;
  352. clock_gettime(CLOCK_MONOTONIC, &ts);
  353. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  354. }
  355. #endif
  356. int64_t ggml_cycles(void) {
  357. return clock();
  358. }
  359. int64_t ggml_cycles_per_ms(void) {
  360. return CLOCKS_PER_SEC/1000;
  361. }
  362. #ifdef GGML_PERF
  363. #define ggml_perf_time_ms() ggml_time_ms()
  364. #define ggml_perf_time_us() ggml_time_us()
  365. #define ggml_perf_cycles() ggml_cycles()
  366. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  367. #else
  368. #define ggml_perf_time_ms() 0
  369. #define ggml_perf_time_us() 0
  370. #define ggml_perf_cycles() 0
  371. #define ggml_perf_cycles_per_ms() 0
  372. #endif
  373. //
  374. // cache line
  375. //
  376. #if defined(__cpp_lib_hardware_interference_size)
  377. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  378. #else
  379. #if defined(__POWER9_VECTOR__)
  380. #define CACHE_LINE_SIZE 128
  381. #else
  382. #define CACHE_LINE_SIZE 64
  383. #endif
  384. #endif
  385. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  386. //
  387. // quantization
  388. //
  389. #if __AVX__ || __AVX2__ || __AVX512F__
  390. // Unpack 16 4-bit fields into 16 bytes
  391. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  392. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  393. {
  394. // Load 8 bytes from memory
  395. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  396. // Expand bytes into uint16_t values
  397. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  398. // Unpack values into individual bytes
  399. const __m128i lowMask = _mm_set1_epi8( 0xF );
  400. __m128i high = _mm_andnot_si128( lowMask, bytes );
  401. __m128i low = _mm_and_si128( lowMask, bytes );
  402. high = _mm_slli_epi16( high, 4 );
  403. bytes = _mm_or_si128( low, high );
  404. return bytes;
  405. }
  406. // horizontally add 8 floats
  407. static inline float hsum_float_8(const __m256 x) {
  408. __m128 res = _mm256_extractf128_ps(x, 1);
  409. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  410. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  411. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  412. return _mm_cvtss_f32(res);
  413. }
  414. // horizontally add 8 int32_t
  415. static inline int hsum_i32_8(const __m256i a) {
  416. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  417. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  418. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  419. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  420. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  421. }
  422. // horizontally add 4 int32_t
  423. static inline int hsum_i32_4(const __m128i a) {
  424. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  425. const __m128i sum64 = _mm_add_epi32(hi64, a);
  426. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  427. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  428. }
  429. #if __AVX2__ || __AVX512F__
  430. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  431. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  432. uint32_t x32;
  433. memcpy(&x32, x, sizeof(uint32_t));
  434. const __m256i shuf_mask = _mm256_set_epi64x(
  435. 0x0303030303030303, 0x0202020202020202,
  436. 0x0101010101010101, 0x0000000000000000);
  437. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  438. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  439. bytes = _mm256_or_si256(bytes, bit_mask);
  440. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  441. }
  442. // Unpack 32 4-bit fields into 32 bytes
  443. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  444. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  445. {
  446. // Load 16 bytes from memory
  447. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  448. // Expand bytes into uint16_t values
  449. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  450. // Unpack values into individual bytes
  451. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  452. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  453. __m256i low = _mm256_and_si256( lowMask, bytes );
  454. high = _mm256_slli_epi16( high, 4 );
  455. bytes = _mm256_or_si256( low, high );
  456. return bytes;
  457. }
  458. // add int16_t pairwise and return as float vector
  459. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  460. const __m256i ones = _mm256_set1_epi16(1);
  461. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  462. return _mm256_cvtepi32_ps(summed_pairs);
  463. }
  464. // multiply int8_t, add results pairwise twice and return as float vector
  465. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  466. // Get absolute values of x vectors
  467. const __m256i ax = _mm256_sign_epi8(x, x);
  468. // Sign the values of the y vectors
  469. const __m256i sy = _mm256_sign_epi8(y, x);
  470. #if __AVXVNNI__
  471. const __m256i zero = _mm256_setzero_si256();
  472. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  473. return _mm256_cvtepi32_ps(summed_pairs);
  474. #else
  475. // Perform multiplication and create 16-bit values
  476. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  477. return sum_i16_pairs_float(dot);
  478. #endif
  479. }
  480. static inline __m128i packNibbles( __m256i bytes )
  481. {
  482. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  483. #if __AVX512F__
  484. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  485. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  486. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  487. #else
  488. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  489. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  490. __m256i low = _mm256_and_si256( lowByte, bytes );
  491. high = _mm256_srli_epi16( high, 4 );
  492. bytes = _mm256_or_si256( low, high );
  493. // Compress uint16_t lanes into bytes
  494. __m128i r0 = _mm256_castsi256_si128( bytes );
  495. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  496. return _mm_packus_epi16( r0, r1 );
  497. #endif
  498. }
  499. #else
  500. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  501. {
  502. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  503. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  504. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  505. __m128i low = _mm_and_si128( lowByte, bytes1 );
  506. high = _mm_srli_epi16( high, 4 );
  507. bytes1 = _mm_or_si128( low, high );
  508. high = _mm_andnot_si128( lowByte, bytes2 );
  509. low = _mm_and_si128( lowByte, bytes2 );
  510. high = _mm_srli_epi16( high, 4 );
  511. bytes2 = _mm_or_si128( low, high );
  512. return _mm_packus_epi16( bytes1, bytes2);
  513. }
  514. #endif
  515. #endif // __AVX__ || __AVX2__ || __AVX512F__
  516. #if __ARM_NEON
  517. #if !defined(__aarch64__)
  518. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  519. return
  520. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  521. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  522. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  523. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  524. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  525. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  526. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  527. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  528. }
  529. inline static int16_t vaddvq_s8(int8x16_t v) {
  530. return
  531. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  532. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  533. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  534. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  535. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  536. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  537. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  538. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  539. }
  540. inline static int32_t vaddvq_s16(int16x8_t v) {
  541. return
  542. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  543. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  544. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  545. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  546. }
  547. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  548. return
  549. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  550. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  551. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  552. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  553. }
  554. inline static int32_t vaddvq_s32(int32x4_t v) {
  555. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  556. }
  557. inline static float vaddvq_f32(float32x4_t v) {
  558. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  559. }
  560. float vminvq_f32(float32x4_t v) {
  561. return
  562. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  563. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  564. }
  565. float vmaxvq_f32(float32x4_t v) {
  566. return
  567. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  568. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  569. }
  570. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  571. return vget_low_s8(vcombine_s8(a, b));
  572. }
  573. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  574. return vget_high_s8(vcombine_s8(a, b));
  575. }
  576. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  577. return vget_low_u8(vcombine_u8(a, b));
  578. }
  579. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  580. return vget_high_u8(vcombine_u8(a, b));
  581. }
  582. int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) {
  583. return vcombine_s8(vget_low_s8(a), vget_low_s8(b));
  584. }
  585. int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) {
  586. return vcombine_s8(vget_high_s8(a), vget_high_s8(b));
  587. }
  588. uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) {
  589. return vcombine_u8(vget_low_u8(a), vget_low_u8(b));
  590. }
  591. uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) {
  592. return vcombine_u8(vget_high_u8(a), vget_high_u8(b));
  593. }
  594. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  595. int32x4_t res;
  596. res[0] = roundf(vgetq_lane_f32(v, 0));
  597. res[1] = roundf(vgetq_lane_f32(v, 1));
  598. res[2] = roundf(vgetq_lane_f32(v, 2));
  599. res[3] = roundf(vgetq_lane_f32(v, 3));
  600. return res;
  601. }
  602. #endif
  603. #endif
  604. #define QK4_0 32
  605. typedef struct {
  606. float d; // delta
  607. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  608. } block_q4_0;
  609. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  610. #define QK4_1 32
  611. typedef struct {
  612. float d; // delta
  613. float m; // min
  614. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  615. } block_q4_1;
  616. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  617. #define QK4_2 16
  618. typedef struct {
  619. ggml_fp16_t d; // delta
  620. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  621. } block_q4_2;
  622. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  623. #define QK5_0 32
  624. typedef struct {
  625. ggml_fp16_t d; // delta
  626. uint8_t qh[4]; // 5-th bit of quants
  627. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  628. } block_q5_0;
  629. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  630. #define QK5_1 32
  631. typedef struct {
  632. ggml_fp16_t d; // delta
  633. ggml_fp16_t m; // min
  634. uint8_t qh[4]; // 5-th bit of quants
  635. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  636. } block_q5_1;
  637. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  638. #define QK8_0 32
  639. typedef struct {
  640. float d; // delta
  641. int8_t qs[QK8_0]; // quants
  642. } block_q8_0;
  643. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  644. #define QK8_1 32
  645. typedef struct {
  646. float d; // delta
  647. float s0; // d * sum(qs[i]) low
  648. float s1; // d * sum(qs[i]) high
  649. int8_t qs[QK8_1]; // quants
  650. } block_q8_1;
  651. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  652. // reference implementation for deterministic creation of model files
  653. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  654. assert(k % QK4_0 == 0);
  655. const int nb = k / QK4_0;
  656. uint8_t pp[QK4_0/2];
  657. for (int i = 0; i < nb; i++) {
  658. float amax = 0.0f; // absolute max
  659. float max = 0.0f;
  660. for (int l = 0; l < QK4_0; l++) {
  661. const float v = x[i*QK4_0 + l];
  662. if (amax < fabsf(v)) {
  663. amax = fabsf(v);
  664. max = v;
  665. }
  666. }
  667. const float d = max / -8;
  668. const float id = d ? 1.0f/d : 0.0f;
  669. y[i].d = d;
  670. for (int l = 0; l < QK4_0; l += 2) {
  671. const float v0 = x[i*QK4_0 + l + 0]*id;
  672. const float v1 = x[i*QK4_0 + l + 1]*id;
  673. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  674. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  675. assert(vi0 < 16);
  676. assert(vi1 < 16);
  677. pp[l/2] = vi0 | (vi1 << 4);
  678. }
  679. memcpy(y[i].qs, pp, sizeof(pp));
  680. }
  681. }
  682. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  683. assert(k % QK4_0 == 0);
  684. const int nb = k / QK4_0;
  685. block_q4_0 * restrict y = vy;
  686. #if defined(__POWER9_VECTOR__)
  687. const vector float v85 = vec_splats(8.5f);
  688. const vector signed int v15 = vec_splats(15);
  689. for (int i = 0; i < nb; i++) {
  690. float max = 0.0f;
  691. float min = 0.0f;
  692. vector float asrcv [8];
  693. vector float srcv [8];
  694. vector float maxv[8];
  695. vector float minv[8];
  696. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  697. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  698. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  699. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  700. maxv[0] = vec_max(maxv[0], maxv[2]);
  701. maxv[4] = vec_max(maxv[4], maxv[6]);
  702. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  703. maxv[0] = vec_max(maxv[0], maxv[4]);
  704. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  705. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  706. minv[0] = vec_min(minv[0], minv[2]);
  707. minv[4] = vec_min(minv[4], minv[6]);
  708. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  709. minv[0] = vec_min(minv[0], minv[4]);
  710. max = MAX(
  711. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  712. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  713. min = MIN(
  714. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  715. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  716. const float magnitude = max >= fabsf(min) ? max : min;
  717. const float d = magnitude / -8;
  718. const float id = d ? 1.0/d : 0.0;
  719. y[i].d = d;
  720. const vector float vid = vec_splats(id);
  721. uint8_t * restrict pb = y[i].qs;
  722. for (int l = 0; l < 8; l++) {
  723. const vector float vf = vec_madd(srcv[l], vid, v85);
  724. const vector signed int vi = vec_signed(vf);
  725. const vector signed int vc = vec_min(vi, v15);
  726. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  727. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  728. }
  729. }
  730. #elif __ARM_NEON
  731. for (int i = 0; i < nb; i++) {
  732. float32x4_t srcv [8];
  733. float32x4_t maxv[8];
  734. float32x4_t minv[8];
  735. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  736. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  737. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  738. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  739. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  740. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  741. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  742. const float max = vmaxvq_f32(maxv[0]);
  743. const float min = vminvq_f32(minv[0]);
  744. const float magnitude = max >= fabsf(min) ? max : min;
  745. const float d = magnitude / -8;
  746. const float id = d ? 1.0f/d : 0.0f;
  747. y[i].d = d;
  748. for (int l = 0; l < 8; l++) {
  749. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  750. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  751. const int32x4_t vi = vcvtq_s32_f32(vf);
  752. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  753. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  754. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  755. }
  756. }
  757. #elif defined(__AVX2__)
  758. for (int i = 0; i < nb; i++) {
  759. // Load elements into 4 AVX vectors
  760. __m256 v0 = _mm256_loadu_ps( x );
  761. __m256 v1 = _mm256_loadu_ps( x + 8 );
  762. __m256 v2 = _mm256_loadu_ps( x + 16 );
  763. __m256 v3 = _mm256_loadu_ps( x + 24 );
  764. x += 32;
  765. // Compute max for the block
  766. __m256 max = _mm256_max_ps( v0, v1 );
  767. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  768. max = _mm256_max_ps( max, maxTmp );
  769. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  770. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  771. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  772. const float maxScalar = _mm_cvtss_f32( max4 );
  773. // Compute min for the block
  774. __m256 min = _mm256_min_ps( v0, v1 );
  775. __m256 minTmp = _mm256_min_ps( v2, v3 );
  776. min = _mm256_min_ps( min, minTmp );
  777. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  778. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  779. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  780. const float minScalar = _mm_cvtss_f32( min4 );
  781. // Quantize these floats
  782. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  783. const float d = magnitude / -8.0f;
  784. y[i].d = d;
  785. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  786. const __m256 mul = _mm256_set1_ps( id );
  787. // Apply the multiplier
  788. v0 = _mm256_mul_ps( v0, mul );
  789. v1 = _mm256_mul_ps( v1, mul );
  790. v2 = _mm256_mul_ps( v2, mul );
  791. v3 = _mm256_mul_ps( v3, mul );
  792. // Round to nearest integer
  793. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  794. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  795. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  796. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  797. // Convert floats to integers
  798. __m256i i0 = _mm256_cvtps_epi32( v0 );
  799. __m256i i1 = _mm256_cvtps_epi32( v1 );
  800. __m256i i2 = _mm256_cvtps_epi32( v2 );
  801. __m256i i3 = _mm256_cvtps_epi32( v3 );
  802. // Convert int32 to int16
  803. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  804. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  805. // Convert int16 to int8
  806. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  807. // We got our precious signed bytes, but the order is now wrong
  808. // These AVX2 pack instructions process 16-byte pieces independently
  809. // The following instruction is fixing the order
  810. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  811. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  812. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  813. const __m256i off = _mm256_set1_epi8( 8 );
  814. i0 = _mm256_add_epi8( i0, off );
  815. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  816. i0 = _mm256_min_epi8( i0, maxNibble );
  817. // Compress the vector into 4 bit/value, and store
  818. __m128i res = packNibbles( i0 );
  819. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  820. }
  821. #elif defined(__AVX__)
  822. for (int i = 0; i < nb; i++) {
  823. // Load elements into 4 AVX vectors
  824. __m256 v0 = _mm256_loadu_ps( x );
  825. __m256 v1 = _mm256_loadu_ps( x + 8 );
  826. __m256 v2 = _mm256_loadu_ps( x + 16 );
  827. __m256 v3 = _mm256_loadu_ps( x + 24 );
  828. x += 32;
  829. // Compute max for the block
  830. __m256 max = _mm256_max_ps( v0, v1 );
  831. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  832. max = _mm256_max_ps( max, maxTmp );
  833. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  834. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  835. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  836. const float maxScalar = _mm_cvtss_f32( max4 );
  837. // Compute min for the block
  838. __m256 min = _mm256_min_ps( v0, v1 );
  839. __m256 minTmp = _mm256_min_ps( v2, v3 );
  840. min = _mm256_min_ps( min, minTmp );
  841. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  842. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  843. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  844. const float minScalar = _mm_cvtss_f32( min4 );
  845. // Quantize these floats
  846. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  847. const float d = magnitude / -8.0f;
  848. y[i].d = d;
  849. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  850. const __m256 mul = _mm256_set1_ps( id );
  851. // Apply the multiplier
  852. v0 = _mm256_mul_ps( v0, mul );
  853. v1 = _mm256_mul_ps( v1, mul );
  854. v2 = _mm256_mul_ps( v2, mul );
  855. v3 = _mm256_mul_ps( v3, mul );
  856. // Round to nearest integer
  857. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  858. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  859. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  860. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  861. // Convert floats to integers
  862. __m256i i0 = _mm256_cvtps_epi32( v0 );
  863. __m256i i1 = _mm256_cvtps_epi32( v1 );
  864. __m256i i2 = _mm256_cvtps_epi32( v2 );
  865. __m256i i3 = _mm256_cvtps_epi32( v3 );
  866. // Since we don't have in AVX some necessary functions,
  867. // we split the registers in half and call AVX2 analogs from SSE
  868. __m128i ni0 = _mm256_castsi256_si128( i0 );
  869. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  870. __m128i ni2 = _mm256_castsi256_si128( i1 );
  871. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  872. __m128i ni4 = _mm256_castsi256_si128( i2 );
  873. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  874. __m128i ni6 = _mm256_castsi256_si128( i3 );
  875. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  876. // Convert int32 to int16
  877. ni0 = _mm_packs_epi32( ni0, ni1 );
  878. ni2 = _mm_packs_epi32( ni2, ni3 );
  879. ni4 = _mm_packs_epi32( ni4, ni5 );
  880. ni6 = _mm_packs_epi32( ni6, ni7 );
  881. // Convert int16 to int8
  882. ni0 = _mm_packs_epi16( ni0, ni2 );
  883. ni4 = _mm_packs_epi16( ni4, ni6 );
  884. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  885. const __m128i off = _mm_set1_epi8( 8 );
  886. ni0 = _mm_add_epi8( ni0, off );
  887. ni4 = _mm_add_epi8( ni4, off );
  888. const __m128i maxNibble = _mm_set1_epi8( 15 );
  889. ni0 = _mm_min_epi8( ni0, maxNibble );
  890. ni4 = _mm_min_epi8( ni4, maxNibble );
  891. // Compress the vector into 4 bit/value, and store
  892. __m128i res = packNibbles( ni0, ni4 );
  893. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  894. }
  895. #elif defined(__wasm_simd128__)
  896. for (int i = 0; i < nb; i++) {
  897. float max = 0.0f;
  898. float min = 0.0f;
  899. v128_t srcv [8];
  900. v128_t maxv[8];
  901. v128_t minv[8];
  902. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  903. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  904. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  905. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  906. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  907. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  908. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  909. max = MAX(
  910. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  911. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  912. min = MIN(
  913. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  914. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  915. const float magnitude = max >= fabsf(min) ? max : min;
  916. const float d = magnitude / -8;
  917. const float id = d ? 1.0/d : 0.0;
  918. y[i].d = d;
  919. for (int l = 0; l < 8; l++) {
  920. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  921. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  922. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  923. const v128_t vc = wasm_i32x4_min(vi, wasm_i32x4_splat(15));
  924. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  925. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  926. }
  927. }
  928. #else
  929. // scalar
  930. quantize_row_q4_0_reference(x, y, k);
  931. #endif
  932. }
  933. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  934. assert(k % QK4_1 == 0);
  935. const int nb = k / QK4_1;
  936. block_q4_1 * restrict y = vy;
  937. uint8_t pp[QK4_1/2];
  938. for (int i = 0; i < nb; i++) {
  939. float min = FLT_MAX;
  940. float max = -FLT_MAX;
  941. for (int l = 0; l < QK4_1; l++) {
  942. const float v = x[i*QK4_1 + l];
  943. if (v < min) min = v;
  944. if (v > max) max = v;
  945. }
  946. const float d = (max - min) / ((1 << 4) - 1);
  947. const float id = d ? 1.0f/d : 0.0f;
  948. y[i].d = d;
  949. y[i].m = min;
  950. for (int l = 0; l < QK4_1; l += 2) {
  951. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  952. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  953. const uint8_t vi0 = roundf(v0);
  954. const uint8_t vi1 = roundf(v1);
  955. assert(vi0 < 16);
  956. assert(vi1 < 16);
  957. pp[l/2] = vi0 | (vi1 << 4);
  958. }
  959. memcpy(y[i].qs, pp, sizeof(pp));
  960. }
  961. }
  962. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  963. assert(k % QK4_1 == 0);
  964. const int nb = k / QK4_1;
  965. block_q4_1 * restrict y = vy;
  966. #if defined(__AVX2__)
  967. for (int i = 0; i < nb; i++) {
  968. // Load elements into 4 AVX vectors
  969. __m256 v0 = _mm256_loadu_ps( x );
  970. __m256 v1 = _mm256_loadu_ps( x + 8 );
  971. __m256 v2 = _mm256_loadu_ps( x + 16 );
  972. __m256 v3 = _mm256_loadu_ps( x + 24 );
  973. x += 32;
  974. // Compute max for the block
  975. __m256 vmax;
  976. vmax = _mm256_max_ps( v0, v1 );
  977. vmax = _mm256_max_ps( vmax, v2 );
  978. vmax = _mm256_max_ps( vmax, v3 );
  979. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  980. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  981. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  982. const float maxScalar = _mm_cvtss_f32( max4 );
  983. // Compute min for the block
  984. __m256 vmin;
  985. vmin = _mm256_min_ps( v0, v1 );
  986. vmin = _mm256_min_ps( vmin, v2 );
  987. vmin = _mm256_min_ps( vmin, v3 );
  988. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  989. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  990. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  991. const float minScalar = _mm_cvtss_f32( min4 );
  992. // Quantize these floats
  993. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].m = minScalar;
  996. y[i].d = d;
  997. // x = (x-min)*id
  998. const __m256 mul = _mm256_set1_ps( id );
  999. const __m256 off = _mm256_set1_ps( minScalar );
  1000. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  1001. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  1002. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  1003. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  1004. // Round to nearest integer
  1005. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1006. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1007. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1008. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1009. // Convert floats to integers
  1010. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1011. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1012. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1013. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1014. // Convert int32 to int16
  1015. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1016. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1017. // Convert int16 to int8
  1018. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1019. // We got our precious signed bytes, but the order is now wrong
  1020. // These AVX2 pack instructions process 16-byte pieces independently
  1021. // The following instruction is fixing the order
  1022. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1023. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1024. // Compress the vector into 4 bit/value, and store
  1025. __m128i res = packNibbles( i0 );
  1026. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  1027. }
  1028. #elif __ARM_NEON
  1029. for (int i = 0; i < nb; i++) {
  1030. float32x4_t srcv[8];
  1031. float32x4_t minv[8];
  1032. float32x4_t maxv[8];
  1033. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1034. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1035. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1036. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1037. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1038. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1039. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1040. const float min = vminvq_f32(minv[0]);
  1041. const float max = vmaxvq_f32(maxv[0]);
  1042. const float d = (max - min) / ((1 << 4) - 1);
  1043. const float id = d ? 1.0f/d : 0.0f;
  1044. y[i].d = d;
  1045. y[i].m = min;
  1046. const float32x4_t minv0 = vdupq_n_f32(min);
  1047. for (int l = 0; l < 8; l++) {
  1048. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1049. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1050. const int32x4_t vi = vcvtq_s32_f32(vf);
  1051. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1052. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1053. }
  1054. }
  1055. #else
  1056. // scalar
  1057. quantize_row_q4_1_reference(x, vy, k);
  1058. #endif
  1059. }
  1060. // reference implementation for deterministic creation of model files
  1061. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1062. assert(k % QK4_2 == 0);
  1063. const int nb = k / QK4_2;
  1064. for (int i = 0; i < nb; i++) {
  1065. float amax = 0.0f; // absolute max
  1066. float max = 0.0f;
  1067. for (int l = 0; l < QK4_2; l++) {
  1068. const float v = x[i*QK4_2 + l];
  1069. if (amax < fabsf(v)) {
  1070. amax = fabsf(v);
  1071. max = v;
  1072. }
  1073. }
  1074. const float d = max / -8;
  1075. const float id = d ? 1.0f/d : 0.0f;
  1076. y[i].d = GGML_FP32_TO_FP16(d);
  1077. for (int l = 0; l < QK4_2; l += 2) {
  1078. const float v0 = x[i*QK4_2 + l + 0]*id;
  1079. const float v1 = x[i*QK4_2 + l + 1]*id;
  1080. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1081. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1082. assert(vi0 < 16);
  1083. assert(vi1 < 16);
  1084. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1085. }
  1086. }
  1087. }
  1088. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1089. assert(k % QK4_2 == 0);
  1090. block_q4_2 * restrict y = vy;
  1091. quantize_row_q4_2_reference(x, y, k);
  1092. }
  1093. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1094. assert(k % QK5_0 == 0);
  1095. const int nb = k / QK5_0;
  1096. for (int i = 0; i < nb; i++) {
  1097. float amax = 0.0f; // absolute max
  1098. float max = 0.0f;
  1099. for (int l = 0; l < QK5_0; l++) {
  1100. const float v = x[i*QK5_0 + l];
  1101. if (amax < fabsf(v)) {
  1102. amax = fabsf(v);
  1103. max = v;
  1104. }
  1105. }
  1106. const float d = max / -16;
  1107. const float id = d ? 1.0f/d : 0.0f;
  1108. y[i].d = GGML_FP32_TO_FP16(d);
  1109. uint32_t qh = 0;
  1110. for (int l = 0; l < QK5_0; l += 2) {
  1111. const float v0 = x[i*QK5_0 + l + 0]*id;
  1112. const float v1 = x[i*QK5_0 + l + 1]*id;
  1113. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1114. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1115. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1116. // get the 5-th bit and store it in qh at the right position
  1117. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1118. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1119. }
  1120. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1121. }
  1122. }
  1123. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1124. assert(k % QK5_0 == 0);
  1125. block_q5_0 * restrict y = vy;
  1126. quantize_row_q5_0_reference(x, y, k);
  1127. }
  1128. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1129. assert(k % QK5_1 == 0);
  1130. const int nb = k / QK5_1;
  1131. for (int i = 0; i < nb; i++) {
  1132. float min = FLT_MAX;
  1133. float max = -FLT_MAX;
  1134. for (int l = 0; l < QK5_1; l++) {
  1135. const float v = x[i*QK5_1 + l];
  1136. if (v < min) min = v;
  1137. if (v > max) max = v;
  1138. }
  1139. const float d = (max - min) / ((1 << 5) - 1);
  1140. const float id = d ? 1.0f/d : 0.0f;
  1141. y[i].d = GGML_FP32_TO_FP16(d);
  1142. y[i].m = GGML_FP32_TO_FP16(min);
  1143. uint32_t qh = 0;
  1144. for (int l = 0; l < QK5_1; l += 2) {
  1145. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1146. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1147. const uint32_t vi0 = (int) (v0 + 0.5f);
  1148. const uint32_t vi1 = (int) (v1 + 0.5f);
  1149. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1150. // get the 5-th bit and store it in qh at the right position
  1151. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1152. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1153. }
  1154. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1155. }
  1156. }
  1157. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1158. assert(k % QK5_1 == 0);
  1159. block_q5_1 * restrict y = vy;
  1160. quantize_row_q5_1_reference(x, y, k);
  1161. }
  1162. // reference implementation for deterministic creation of model files
  1163. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1164. assert(k % QK8_0 == 0);
  1165. const int nb = k / QK8_0;
  1166. for (int i = 0; i < nb; i++) {
  1167. float amax = 0.0f; // absolute max
  1168. for (int l = 0; l < QK8_0; l++) {
  1169. const float v = x[i*QK8_0 + l];
  1170. amax = MAX(amax, fabsf(v));
  1171. }
  1172. const float d = amax / ((1 << 7) - 1);
  1173. const float id = d ? 1.0f/d : 0.0f;
  1174. y[i].d = d;
  1175. for (int l = 0; l < QK8_0; ++l) {
  1176. const float v0 = x[i*QK8_0 + l]*id;
  1177. y[i].qs[l] = roundf(v0);
  1178. }
  1179. }
  1180. }
  1181. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1182. assert(k % QK8_0 == 0);
  1183. block_q8_0 * restrict y = vy;
  1184. quantize_row_q8_0_reference(x, y, k);
  1185. }
  1186. // reference implementation for deterministic creation of model files
  1187. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1188. assert(k % QK8_1 == 0);
  1189. const int nb = k / QK8_1;
  1190. for (int i = 0; i < nb; i++) {
  1191. float amax = 0.0f; // absolute max
  1192. for (int l = 0; l < QK8_1; l++) {
  1193. const float v = x[i*QK8_1 + l];
  1194. amax = MAX(amax, fabsf(v));
  1195. }
  1196. const float d = amax / ((1 << 7) - 1);
  1197. const float id = d ? 1.0f/d : 0.0f;
  1198. y[i].d = d;
  1199. int sum0 = 0;
  1200. int sum1 = 0;
  1201. for (int l = 0; l < QK8_1/2; ++l) {
  1202. const float v0 = x[i*QK8_1 + l]*id;
  1203. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1204. y[i].qs[ l] = roundf(v0);
  1205. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1206. sum0 += y[i].qs[ l];
  1207. sum1 += y[i].qs[QK8_1/2 + l];
  1208. }
  1209. y[i].s0 = d * sum0;
  1210. y[i].s1 = d * sum1;
  1211. }
  1212. }
  1213. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1214. assert(k % QK8_1 == 0);
  1215. const int nb = k / QK8_1;
  1216. block_q8_1 * restrict y = vy;
  1217. #if defined(__ARM_NEON)
  1218. for (int i = 0; i < nb; i++) {
  1219. float32x4_t srcv [8];
  1220. float32x4_t asrcv[8];
  1221. float32x4_t amaxv[8];
  1222. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1223. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1224. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1225. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1226. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1227. const float amax = vmaxvq_f32(amaxv[0]);
  1228. const float d = amax / ((1 << 7) - 1);
  1229. const float id = d ? 1.0f/d : 0.0f;
  1230. y[i].d = d;
  1231. int32x4_t accv0 = vdupq_n_s32(0);
  1232. int32x4_t accv1 = vdupq_n_s32(0);
  1233. // low half
  1234. for (int l = 0; l < 4; l++) {
  1235. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1236. const int32x4_t vi = vcvtnq_s32_f32(v);
  1237. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1238. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1239. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1240. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1241. accv0 = vaddq_s32(accv0, vi);
  1242. }
  1243. // high half
  1244. for (int l = 4; l < 8; l++) {
  1245. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1246. const int32x4_t vi = vcvtnq_s32_f32(v);
  1247. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1248. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1249. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1250. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1251. accv1 = vaddq_s32(accv1, vi);
  1252. }
  1253. const int32_t sum0 = vaddvq_s32(accv0);
  1254. const int32_t sum1 = vaddvq_s32(accv1);
  1255. y[i].s0 = d * sum0;
  1256. y[i].s1 = d * sum1;
  1257. }
  1258. #elif defined(__AVX2__) || defined(__AVX__)
  1259. for (int i = 0; i < nb; i++) {
  1260. // Load elements into 4 AVX vectors
  1261. __m256 v0 = _mm256_loadu_ps( x );
  1262. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1263. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1264. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1265. x += 32;
  1266. // Compute max(abs(e)) for the block
  1267. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1268. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1269. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1270. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1271. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1272. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1273. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1274. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1275. const float maxScalar = _mm_cvtss_f32( max4 );
  1276. // Quantize these floats
  1277. const float d = maxScalar / 127.f;
  1278. y[i].d = d;
  1279. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1280. const __m256 mul = _mm256_set1_ps( id );
  1281. // Apply the multiplier
  1282. v0 = _mm256_mul_ps( v0, mul );
  1283. v1 = _mm256_mul_ps( v1, mul );
  1284. v2 = _mm256_mul_ps( v2, mul );
  1285. v3 = _mm256_mul_ps( v3, mul );
  1286. // Round to nearest integer
  1287. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1288. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1289. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1290. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1291. // Convert floats to integers
  1292. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1293. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1294. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1295. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1296. #if defined(__AVX2__)
  1297. // Compute the sum of the quants and set y[i].s
  1298. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1299. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1300. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1301. // Convert int32 to int16
  1302. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1303. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1304. // Convert int16 to int8
  1305. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1306. // We got our precious signed bytes, but the order is now wrong
  1307. // These AVX2 pack instructions process 16-byte pieces independently
  1308. // The following instruction is fixing the order
  1309. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1310. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1311. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1312. #else
  1313. // Since we don't have in AVX some necessary functions,
  1314. // we split the registers in half and call AVX2 analogs from SSE
  1315. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1316. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1317. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1318. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1319. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1320. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1321. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1322. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1323. // Compute the sum of the quants and set y[i].s
  1324. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1325. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1326. y[i].s0 = d * hsum_i32_4(s0);
  1327. y[i].s1 = d * hsum_i32_4(s1);
  1328. // Convert int32 to int16
  1329. ni0 = _mm_packs_epi32( ni0, ni1 );
  1330. ni2 = _mm_packs_epi32( ni2, ni3 );
  1331. ni4 = _mm_packs_epi32( ni4, ni5 );
  1332. ni6 = _mm_packs_epi32( ni6, ni7 );
  1333. // Convert int16 to int8
  1334. ni0 = _mm_packs_epi16( ni0, ni2 );
  1335. ni4 = _mm_packs_epi16( ni4, ni6 );
  1336. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1337. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1338. #endif
  1339. }
  1340. #else
  1341. // scalar
  1342. quantize_row_q8_1_reference(x, y, k);
  1343. #endif
  1344. }
  1345. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1346. assert(k % QK4_0 == 0);
  1347. const int nb = k / QK4_0;
  1348. const block_q4_0 * restrict x = vx;
  1349. #if defined(__AVX2__)
  1350. for (int i = 0; i < nb; i++) {
  1351. // scale factor
  1352. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1353. const uint8_t * restrict pp = x[i].qs;
  1354. for (int l = 0; l < QK4_0; l += 32) {
  1355. // Load 32x4-bit integers into 32x8-bit integers
  1356. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1357. // Subtract 8 from the integers
  1358. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1359. // Convert to 16-bit int
  1360. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1361. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1362. // Convert to 32-bit int -> float 32
  1363. const __m256 vf[4] = {
  1364. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1365. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1366. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1367. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1368. };
  1369. // Scale and store
  1370. for (int j = 0; j < 4; j++) {
  1371. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1372. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1373. }
  1374. }
  1375. }
  1376. #elif defined(__ARM_NEON)
  1377. for (int i = 0; i < nb; i++) {
  1378. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1379. const uint8_t * restrict pp = x[i].qs;
  1380. for (int l = 0; l < QK4_0; l += 16) {
  1381. // Load 16x4-bit integers into 8x8-bit integers
  1382. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1383. // Expand 4-bit qs to 8-bit bytes
  1384. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1385. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1386. // Convert to signed 8-bit integers
  1387. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1388. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1389. // Subtract 8 from each byte
  1390. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1391. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1392. // Interleave and combine
  1393. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1394. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1395. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1396. // convert to 2x int16x8_t
  1397. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1398. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1399. // convert to 4x float32x4_t
  1400. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1401. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1402. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1403. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1404. // Multiply by d
  1405. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1406. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1407. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1408. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1409. // Store
  1410. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1411. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1412. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1413. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1414. }
  1415. }
  1416. #else
  1417. // scalar
  1418. for (int i = 0; i < nb; i++) {
  1419. const float d = x[i].d;
  1420. const uint8_t * restrict pp = x[i].qs;
  1421. for (int l = 0; l < QK4_0; l += 2) {
  1422. const uint8_t vi = pp[l/2];
  1423. const int8_t vi0 = vi & 0x0F;
  1424. const int8_t vi1 = vi >> 4;
  1425. const float v0 = (vi0 - 8)*d;
  1426. const float v1 = (vi1 - 8)*d;
  1427. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1428. y[i*QK4_0 + l + 0] = v0;
  1429. y[i*QK4_0 + l + 1] = v1;
  1430. assert(!isnan(y[i*QK4_0 + l + 0]));
  1431. assert(!isnan(y[i*QK4_0 + l + 1]));
  1432. }
  1433. }
  1434. #endif
  1435. }
  1436. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1437. assert(k % QK4_1 == 0);
  1438. const int nb = k / QK4_1;
  1439. const block_q4_1 * restrict x = vx;
  1440. #if defined(__AVX2__)
  1441. for (int i = 0; i < nb; i++) {
  1442. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1443. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1444. const uint8_t * restrict pp = x[i].qs;
  1445. for (int l = 0; l < QK4_1; l += 32) {
  1446. // Load 32x4-bit integers into 32x8-bit integers
  1447. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1448. // Convert to 16-bit int
  1449. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1450. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1451. // Convert to 32-bit int -> float 32
  1452. const __m256 vf[4] = {
  1453. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1454. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1455. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1456. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1457. };
  1458. // Scale, add m and store
  1459. for (int j = 0; j < 4; j++) {
  1460. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1461. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1462. }
  1463. }
  1464. }
  1465. #elif defined(__ARM_NEON)
  1466. for (int i = 0; i < nb; i++) {
  1467. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1468. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1469. const uint8_t * restrict pp = x[i].qs;
  1470. for (int l = 0; l < QK4_1; l += 16) {
  1471. // Load 16x4-bit integers into 8x8-bit integers
  1472. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1473. // Expand 4-bit qs to 8-bit bytes
  1474. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1475. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1476. // Interleave and combine
  1477. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1478. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1479. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1480. // convert to 2x uint16x8_t
  1481. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1482. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1483. // convert to 4x float32x4_t
  1484. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1485. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1486. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1487. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1488. // multiply by d and add m
  1489. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1490. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1491. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1492. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1493. // Store
  1494. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1495. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1496. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1497. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1498. }
  1499. }
  1500. #else
  1501. for (int i = 0; i < nb; i++) {
  1502. const float d = x[i].d;
  1503. const float m = x[i].m;
  1504. const uint8_t * restrict pp = x[i].qs;
  1505. for (int l = 0; l < QK4_1; l += 2) {
  1506. const uint8_t vi = pp[l/2];
  1507. const int8_t vi0 = vi & 0x0F;
  1508. const int8_t vi1 = vi >> 4;
  1509. const float v0 = vi0*d + m;
  1510. const float v1 = vi1*d + m;
  1511. y[i*QK4_1 + l + 0] = v0;
  1512. y[i*QK4_1 + l + 1] = v1;
  1513. assert(!isnan(y[i*QK4_1 + l + 0]));
  1514. assert(!isnan(y[i*QK4_1 + l + 1]));
  1515. }
  1516. }
  1517. #endif
  1518. }
  1519. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1520. assert(k % QK4_2 == 0);
  1521. const int nb = k / QK4_2;
  1522. const block_q4_2 * restrict x = vx;
  1523. for (int i = 0; i < nb; i++) {
  1524. const float d = GGML_FP16_TO_FP32(x[i].d);
  1525. const uint8_t * restrict pp = x[i].qs;
  1526. for (int l = 0; l < QK4_2; l += 2) {
  1527. const uint8_t vi = pp[l/2];
  1528. const int8_t vi0 = vi & 0x0F;
  1529. const int8_t vi1 = vi >> 4;
  1530. const float v0 = (vi0 - 8)*d;
  1531. const float v1 = (vi1 - 8)*d;
  1532. y[i*QK4_2 + l + 0] = v0;
  1533. y[i*QK4_2 + l + 1] = v1;
  1534. assert(!isnan(y[i*QK4_2 + l + 0]));
  1535. assert(!isnan(y[i*QK4_2 + l + 1]));
  1536. }
  1537. }
  1538. }
  1539. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1540. assert(k % QK5_0 == 0);
  1541. const int nb = k / QK5_0;
  1542. const block_q5_0 * restrict x = vx;
  1543. for (int i = 0; i < nb; i++) {
  1544. const float d = GGML_FP16_TO_FP32(x[i].d);
  1545. const uint8_t * restrict pp = x[i].qs;
  1546. uint32_t qh;
  1547. memcpy(&qh, x[i].qh, sizeof(qh));
  1548. for (int l = 0; l < QK5_0; l += 2) {
  1549. const uint8_t vi = pp[l/2];
  1550. // extract the 5-th bit from qh
  1551. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1552. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1553. const int8_t vi0 = (vi & 0x0F) | vh0;
  1554. const int8_t vi1 = (vi >> 4) | vh1;
  1555. const float v0 = (vi0 - 16)*d;
  1556. const float v1 = (vi1 - 16)*d;
  1557. y[i*QK5_0 + l + 0] = v0;
  1558. y[i*QK5_0 + l + 1] = v1;
  1559. assert(!isnan(y[i*QK5_0 + l + 0]));
  1560. assert(!isnan(y[i*QK5_0 + l + 1]));
  1561. }
  1562. }
  1563. }
  1564. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1565. assert(k % QK5_1 == 0);
  1566. const int nb = k / QK5_1;
  1567. const block_q5_1 * restrict x = vx;
  1568. for (int i = 0; i < nb; i++) {
  1569. const float d = GGML_FP16_TO_FP32(x[i].d);
  1570. const float m = GGML_FP16_TO_FP32(x[i].m);
  1571. const uint8_t * restrict pp = x[i].qs;
  1572. uint32_t qh;
  1573. memcpy(&qh, x[i].qh, sizeof(qh));
  1574. for (int l = 0; l < QK5_1; l += 2) {
  1575. const uint8_t vi = pp[l/2];
  1576. // extract the 5-th bit from qh
  1577. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1578. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1579. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1580. const uint8_t vi1 = (vi >> 4) | vh1;
  1581. const float v0 = vi0*d + m;
  1582. const float v1 = vi1*d + m;
  1583. y[i*QK5_1 + l + 0] = v0;
  1584. y[i*QK5_1 + l + 1] = v1;
  1585. assert(!isnan(y[i*QK5_1 + l + 0]));
  1586. assert(!isnan(y[i*QK5_1 + l + 1]));
  1587. }
  1588. }
  1589. }
  1590. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1591. assert(k % QK8_0 == 0);
  1592. const int nb = k / QK8_0;
  1593. const block_q8_0 * restrict x = vx;
  1594. for (int i = 0; i < nb; i++) {
  1595. const float d = x[i].d;
  1596. const int8_t * restrict pp = x[i].qs;
  1597. for (int l = 0; l < QK8_0; ++l) {
  1598. y[i*QK8_0 + l] = pp[l]*d;
  1599. }
  1600. }
  1601. }
  1602. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1603. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1604. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1605. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1606. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1607. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1608. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1609. [GGML_TYPE_Q4_0] = {
  1610. .dequantize_row_q = dequantize_row_q4_0,
  1611. .quantize_row_q = quantize_row_q4_0,
  1612. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1613. .quantize_row_q_dot = quantize_row_q8_0,
  1614. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1615. .vec_dot_type = GGML_TYPE_Q8_0,
  1616. },
  1617. [GGML_TYPE_Q4_1] = {
  1618. .dequantize_row_q = dequantize_row_q4_1,
  1619. .quantize_row_q = quantize_row_q4_1,
  1620. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1621. .quantize_row_q_dot = quantize_row_q8_1,
  1622. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1623. .vec_dot_type = GGML_TYPE_Q8_1,
  1624. },
  1625. [GGML_TYPE_Q4_2] = {
  1626. .dequantize_row_q = dequantize_row_q4_2,
  1627. .quantize_row_q = quantize_row_q4_2,
  1628. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1629. .quantize_row_q_dot = quantize_row_q8_0,
  1630. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1631. .vec_dot_type = GGML_TYPE_Q8_0,
  1632. },
  1633. [GGML_TYPE_Q5_0] = {
  1634. .dequantize_row_q = dequantize_row_q5_0,
  1635. .quantize_row_q = quantize_row_q5_0,
  1636. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1637. .quantize_row_q_dot = quantize_row_q8_0,
  1638. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1639. .vec_dot_type = GGML_TYPE_Q8_0,
  1640. },
  1641. [GGML_TYPE_Q5_1] = {
  1642. .dequantize_row_q = dequantize_row_q5_1,
  1643. .quantize_row_q = quantize_row_q5_1,
  1644. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1645. .quantize_row_q_dot = quantize_row_q8_1,
  1646. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1647. .vec_dot_type = GGML_TYPE_Q8_1,
  1648. },
  1649. [GGML_TYPE_Q8_0] = {
  1650. .dequantize_row_q = dequantize_row_q8_0,
  1651. .quantize_row_q = quantize_row_q8_0,
  1652. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1653. .quantize_row_q_dot = quantize_row_q8_0,
  1654. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1655. .vec_dot_type = GGML_TYPE_Q8_0,
  1656. },
  1657. [GGML_TYPE_Q8_1] = {
  1658. .dequantize_row_q = NULL, // TODO
  1659. .quantize_row_q = quantize_row_q8_1,
  1660. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1661. .quantize_row_q_dot = quantize_row_q8_1,
  1662. .vec_dot_q = NULL, // TODO
  1663. .vec_dot_type = GGML_TYPE_Q8_1,
  1664. },
  1665. };
  1666. // For internal test use
  1667. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1668. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1669. return quantize_fns[i];
  1670. }
  1671. //
  1672. // simd mappings
  1673. //
  1674. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1675. // we then implement the fundamental computation operations below using only these macros
  1676. // adding support for new architectures requires to define the corresponding SIMD macros
  1677. //
  1678. // GGML_F32_STEP / GGML_F16_STEP
  1679. // number of elements to process in a single step
  1680. //
  1681. // GGML_F32_EPR / GGML_F16_EPR
  1682. // number of elements to fit in a single register
  1683. //
  1684. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1685. #define GGML_SIMD
  1686. // F32 NEON
  1687. #define GGML_F32_STEP 16
  1688. #define GGML_F32_EPR 4
  1689. #define GGML_F32x4 float32x4_t
  1690. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1691. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1692. #define GGML_F32x4_LOAD vld1q_f32
  1693. #define GGML_F32x4_STORE vst1q_f32
  1694. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1695. #define GGML_F32x4_ADD vaddq_f32
  1696. #define GGML_F32x4_MUL vmulq_f32
  1697. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1698. #define GGML_F32x4_REDUCE(res, x) \
  1699. { \
  1700. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1701. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1702. } \
  1703. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1704. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1705. } \
  1706. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1707. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1708. } \
  1709. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1710. }
  1711. #define GGML_F32_VEC GGML_F32x4
  1712. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1713. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1714. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1715. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1716. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1717. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1718. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1719. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1720. // F16 NEON
  1721. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1722. #define GGML_F16_STEP 32
  1723. #define GGML_F16_EPR 8
  1724. #define GGML_F16x8 float16x8_t
  1725. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1726. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1727. #define GGML_F16x8_LOAD vld1q_f16
  1728. #define GGML_F16x8_STORE vst1q_f16
  1729. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1730. #define GGML_F16x8_ADD vaddq_f16
  1731. #define GGML_F16x8_MUL vmulq_f16
  1732. #define GGML_F16x8_REDUCE(res, x) \
  1733. { \
  1734. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1735. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1736. } \
  1737. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1738. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1739. } \
  1740. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1741. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1742. } \
  1743. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1744. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1745. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1746. }
  1747. #define GGML_F16_VEC GGML_F16x8
  1748. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1749. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1750. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1751. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1752. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1753. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1754. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1755. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1756. #else
  1757. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1758. // and take advantage of the vcvt_ functions to convert to/from FP16
  1759. #define GGML_F16_STEP 16
  1760. #define GGML_F16_EPR 4
  1761. #define GGML_F32Cx4 float32x4_t
  1762. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1763. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1764. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1765. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1766. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1767. #define GGML_F32Cx4_ADD vaddq_f32
  1768. #define GGML_F32Cx4_MUL vmulq_f32
  1769. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1770. #define GGML_F16_VEC GGML_F32Cx4
  1771. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1772. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1773. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1774. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1775. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1776. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1777. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1778. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1779. #endif
  1780. #elif defined(__AVX__)
  1781. #define GGML_SIMD
  1782. // F32 AVX
  1783. #define GGML_F32_STEP 32
  1784. #define GGML_F32_EPR 8
  1785. #define GGML_F32x8 __m256
  1786. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1787. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1788. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1789. #define GGML_F32x8_STORE _mm256_storeu_ps
  1790. #if defined(__FMA__)
  1791. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1792. #else
  1793. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1794. #endif
  1795. #define GGML_F32x8_ADD _mm256_add_ps
  1796. #define GGML_F32x8_MUL _mm256_mul_ps
  1797. #define GGML_F32x8_REDUCE(res, x) \
  1798. { \
  1799. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1800. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1801. } \
  1802. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1803. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1804. } \
  1805. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1806. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1807. } \
  1808. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1809. _mm256_extractf128_ps(x[0], 1)); \
  1810. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1811. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1812. }
  1813. // TODO: is this optimal ?
  1814. #define GGML_F32_VEC GGML_F32x8
  1815. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1816. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1817. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1818. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1819. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1820. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1821. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1822. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1823. // F16 AVX
  1824. #define GGML_F16_STEP 32
  1825. #define GGML_F16_EPR 8
  1826. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1827. #define GGML_F32Cx8 __m256
  1828. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1829. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1830. #if defined(__F16C__)
  1831. // the _mm256_cvt intrinsics require F16C
  1832. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1833. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1834. #else
  1835. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1836. float tmp[8];
  1837. for (int i = 0; i < 8; i++)
  1838. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1839. return _mm256_loadu_ps(tmp);
  1840. }
  1841. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1842. float arr[8];
  1843. _mm256_storeu_ps(arr, y);
  1844. for (int i = 0; i < 8; i++)
  1845. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1846. }
  1847. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1848. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1849. #endif
  1850. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1851. #define GGML_F32Cx8_ADD _mm256_add_ps
  1852. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1853. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1854. #define GGML_F16_VEC GGML_F32Cx8
  1855. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1856. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1857. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1858. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1859. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1860. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1861. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1862. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1863. #elif defined(__POWER9_VECTOR__)
  1864. #define GGML_SIMD
  1865. // F32 POWER9
  1866. #define GGML_F32_STEP 32
  1867. #define GGML_F32_EPR 4
  1868. #define GGML_F32x4 vector float
  1869. #define GGML_F32x4_ZERO 0.0f
  1870. #define GGML_F32x4_SET1 vec_splats
  1871. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1872. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1873. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1874. #define GGML_F32x4_ADD vec_add
  1875. #define GGML_F32x4_MUL vec_mul
  1876. #define GGML_F32x4_REDUCE(res, x) \
  1877. { \
  1878. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1879. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1880. } \
  1881. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1882. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1883. } \
  1884. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1885. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1886. } \
  1887. res = vec_extract(x[0], 0) + \
  1888. vec_extract(x[0], 1) + \
  1889. vec_extract(x[0], 2) + \
  1890. vec_extract(x[0], 3); \
  1891. }
  1892. #define GGML_F32_VEC GGML_F32x4
  1893. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1894. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1895. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1896. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1897. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1898. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1899. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1900. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1901. // F16 POWER9
  1902. #define GGML_F16_STEP GGML_F32_STEP
  1903. #define GGML_F16_EPR GGML_F32_EPR
  1904. #define GGML_F16_VEC GGML_F32x4
  1905. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1906. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1907. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1908. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1909. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1910. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1911. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1912. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1913. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1914. #define GGML_F16_VEC_STORE(p, r, i) \
  1915. if (i & 0x1) \
  1916. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1917. r[i - GGML_ENDIAN_BYTE(0)]), \
  1918. 0, p - GGML_F16_EPR)
  1919. #elif defined(__wasm_simd128__)
  1920. #define GGML_SIMD
  1921. // F32 WASM
  1922. #define GGML_F32_STEP 16
  1923. #define GGML_F32_EPR 4
  1924. #define GGML_F32x4 v128_t
  1925. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1926. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1927. #define GGML_F32x4_LOAD wasm_v128_load
  1928. #define GGML_F32x4_STORE wasm_v128_store
  1929. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1930. #define GGML_F32x4_ADD wasm_f32x4_add
  1931. #define GGML_F32x4_MUL wasm_f32x4_mul
  1932. #define GGML_F32x4_REDUCE(res, x) \
  1933. { \
  1934. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1935. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1936. } \
  1937. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1938. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1939. } \
  1940. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1941. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1942. } \
  1943. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1944. wasm_f32x4_extract_lane(x[0], 1) + \
  1945. wasm_f32x4_extract_lane(x[0], 2) + \
  1946. wasm_f32x4_extract_lane(x[0], 3); \
  1947. }
  1948. #define GGML_F32_VEC GGML_F32x4
  1949. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1950. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1951. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1952. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1953. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1954. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1955. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1956. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1957. // F16 WASM
  1958. #define GGML_F16_STEP 16
  1959. #define GGML_F16_EPR 4
  1960. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1961. float tmp[4];
  1962. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1963. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1964. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1965. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1966. return wasm_v128_load(tmp);
  1967. }
  1968. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1969. float tmp[4];
  1970. wasm_v128_store(tmp, x);
  1971. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1972. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1973. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1974. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1975. }
  1976. #define GGML_F16x4 v128_t
  1977. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1978. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1979. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1980. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1981. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1982. #define GGML_F16x4_ADD wasm_f32x4_add
  1983. #define GGML_F16x4_MUL wasm_f32x4_mul
  1984. #define GGML_F16x4_REDUCE(res, x) \
  1985. { \
  1986. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1987. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1988. } \
  1989. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1990. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1991. } \
  1992. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1993. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1994. } \
  1995. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1996. wasm_f32x4_extract_lane(x[0], 1) + \
  1997. wasm_f32x4_extract_lane(x[0], 2) + \
  1998. wasm_f32x4_extract_lane(x[0], 3); \
  1999. }
  2000. #define GGML_F16_VEC GGML_F16x4
  2001. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  2002. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  2003. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  2004. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  2005. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  2006. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  2007. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  2008. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  2009. #elif defined(__SSE3__)
  2010. #define GGML_SIMD
  2011. // F32 SSE
  2012. #define GGML_F32_STEP 32
  2013. #define GGML_F32_EPR 4
  2014. #define GGML_F32x4 __m128
  2015. #define GGML_F32x4_ZERO _mm_setzero_ps()
  2016. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2017. #define GGML_F32x4_LOAD _mm_loadu_ps
  2018. #define GGML_F32x4_STORE _mm_storeu_ps
  2019. #if defined(__FMA__)
  2020. // TODO: Does this work?
  2021. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2022. #else
  2023. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2024. #endif
  2025. #define GGML_F32x4_ADD _mm_add_ps
  2026. #define GGML_F32x4_MUL _mm_mul_ps
  2027. #define GGML_F32x4_REDUCE(res, x) \
  2028. { \
  2029. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2030. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2031. } \
  2032. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2033. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2034. } \
  2035. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2036. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2037. } \
  2038. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2039. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2040. }
  2041. // TODO: is this optimal ?
  2042. #define GGML_F32_VEC GGML_F32x4
  2043. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2044. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2045. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2046. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2047. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2048. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2049. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2050. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2051. // F16 SSE
  2052. #define GGML_F16_STEP 32
  2053. #define GGML_F16_EPR 4
  2054. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2055. float tmp[4];
  2056. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2057. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2058. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2059. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2060. return _mm_loadu_ps(tmp);
  2061. }
  2062. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2063. float arr[4];
  2064. _mm_storeu_ps(arr, y);
  2065. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2066. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2067. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2068. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2069. }
  2070. #define GGML_F32Cx4 __m128
  2071. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2072. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2073. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2074. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2075. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2076. #define GGML_F32Cx4_ADD _mm_add_ps
  2077. #define GGML_F32Cx4_MUL _mm_mul_ps
  2078. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2079. #define GGML_F16_VEC GGML_F32Cx4
  2080. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2081. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2082. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2083. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2084. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2085. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2086. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2087. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2088. #endif
  2089. // GGML_F32_ARR / GGML_F16_ARR
  2090. // number of registers to use per step
  2091. #ifdef GGML_SIMD
  2092. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2093. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2094. #endif
  2095. //
  2096. // fundamental operations
  2097. //
  2098. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2099. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2100. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2101. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2102. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2103. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2104. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2105. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2106. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2107. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2108. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2109. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2110. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2111. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2112. #ifdef GGML_SIMD
  2113. float sumf = 0.0f;
  2114. const int np = (n & ~(GGML_F32_STEP - 1));
  2115. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2116. GGML_F32_VEC ax[GGML_F32_ARR];
  2117. GGML_F32_VEC ay[GGML_F32_ARR];
  2118. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2119. for (int j = 0; j < GGML_F32_ARR; j++) {
  2120. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2121. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2122. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2123. }
  2124. }
  2125. // reduce sum0..sum3 to sum0
  2126. GGML_F32_VEC_REDUCE(sumf, sum);
  2127. // leftovers
  2128. for (int i = np; i < n; ++i) {
  2129. sumf += x[i]*y[i];
  2130. }
  2131. #else
  2132. // scalar
  2133. ggml_float sumf = 0.0;
  2134. for (int i = 0; i < n; ++i) {
  2135. sumf += (ggml_float)(x[i]*y[i]);
  2136. }
  2137. #endif
  2138. *s = sumf;
  2139. }
  2140. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2141. ggml_float sumf = 0.0;
  2142. #if defined(GGML_SIMD)
  2143. const int np = (n & ~(GGML_F16_STEP - 1));
  2144. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2145. GGML_F16_VEC ax[GGML_F16_ARR];
  2146. GGML_F16_VEC ay[GGML_F16_ARR];
  2147. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2148. for (int j = 0; j < GGML_F16_ARR; j++) {
  2149. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2150. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2151. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2152. }
  2153. }
  2154. // reduce sum0..sum3 to sum0
  2155. GGML_F16_VEC_REDUCE(sumf, sum);
  2156. // leftovers
  2157. for (int i = np; i < n; ++i) {
  2158. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2159. }
  2160. #else
  2161. for (int i = 0; i < n; ++i) {
  2162. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2163. }
  2164. #endif
  2165. *s = sumf;
  2166. }
  2167. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2168. const int nb = n / QK8_0;
  2169. assert(n % QK8_0 == 0);
  2170. assert(nb % 2 == 0);
  2171. const block_q4_0 * restrict x = vx;
  2172. const block_q8_0 * restrict y = vy;
  2173. #if defined(__ARM_NEON)
  2174. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2175. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2176. for (int i = 0; i < nb; i += 2) {
  2177. const block_q4_0 * restrict x0 = &x[i + 0];
  2178. const block_q4_0 * restrict x1 = &x[i + 1];
  2179. const block_q8_0 * restrict y0 = &y[i + 0];
  2180. const block_q8_0 * restrict y1 = &y[i + 1];
  2181. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2182. const int8x16_t s8b = vdupq_n_s8(0x8);
  2183. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2184. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2185. // 4-bit -> 8-bit
  2186. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2187. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2188. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2189. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2190. // sub 8
  2191. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2192. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2193. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2194. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2195. // interleave
  2196. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2197. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2198. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2199. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2200. // load y
  2201. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2202. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2203. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2204. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2205. #if defined(__ARM_FEATURE_DOTPROD)
  2206. // dot product into int32x4_t
  2207. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2208. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2209. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2210. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2211. #else
  2212. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2213. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2214. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2215. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2216. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2217. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2218. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2219. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2220. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2221. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2222. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2223. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2224. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2225. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2226. #endif
  2227. }
  2228. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2229. #elif defined(__AVX2__)
  2230. // Initialize accumulator with zeros
  2231. __m256 acc = _mm256_setzero_ps();
  2232. // Main loop
  2233. for (int i = 0; i < nb; ++i) {
  2234. /* Compute combined scale for the block */
  2235. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2236. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2237. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2238. const __m256i off = _mm256_set1_epi8( 8 );
  2239. bx = _mm256_sub_epi8( bx, off );
  2240. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2241. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2242. /* Multiply q with scale and accumulate */
  2243. acc = _mm256_fmadd_ps( d, q, acc );
  2244. }
  2245. *s = hsum_float_8(acc);
  2246. #elif defined(__AVX__)
  2247. // Initialize accumulator with zeros
  2248. __m256 acc = _mm256_setzero_ps();
  2249. // Main loop
  2250. for (int i = 0; i < nb; ++i) {
  2251. // Compute combined scale for the block
  2252. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2253. __m128i i32[2];
  2254. for (int j = 0; j < 2; ++j) {
  2255. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2256. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2257. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2258. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2259. const __m128i off = _mm_set1_epi8( 8 );
  2260. bx = _mm_sub_epi8( bx, off );
  2261. // Get absolute values of x vectors
  2262. const __m128i ax = _mm_sign_epi8(bx, bx);
  2263. // Sign the values of the y vectors
  2264. const __m128i sy = _mm_sign_epi8(by, bx);
  2265. // Perform multiplication and create 16-bit values
  2266. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2267. const __m128i ones = _mm_set1_epi16(1);
  2268. i32[j] = _mm_madd_epi16(ones, dot);
  2269. }
  2270. // Convert int32_t to float
  2271. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2272. // Apply the scale, and accumulate
  2273. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2274. }
  2275. *s = hsum_float_8(acc);
  2276. #else
  2277. // scalar
  2278. float sumf = 0.0;
  2279. for (int i = 0; i < nb; i++) {
  2280. const float d0 = x[i].d;
  2281. const float d1 = y[i].d;
  2282. const uint8_t * restrict p0 = x[i].qs;
  2283. const int8_t * restrict p1 = y[i].qs;
  2284. int sumi = 0;
  2285. for (int j = 0; j < QK8_0/2; j++) {
  2286. const uint8_t v0 = p0[j];
  2287. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2288. const int i1 = (int8_t) (v0 >> 4) - 8;
  2289. const int i2 = p1[2*j + 0];
  2290. const int i3 = p1[2*j + 1];
  2291. sumi += i0*i2 + i1*i3;
  2292. }
  2293. sumf += d0*d1*sumi;
  2294. }
  2295. *s = sumf;
  2296. #endif
  2297. }
  2298. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2299. const int nb = n / QK8_1;
  2300. assert(n % QK8_1 == 0);
  2301. assert(nb % 2 == 0);
  2302. const block_q4_1 * restrict x = vx;
  2303. const block_q8_1 * restrict y = vy;
  2304. // TODO: add AVX / WASM SIMD / etc
  2305. #if defined(__ARM_NEON)
  2306. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2307. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2308. float summs = 0;
  2309. for (int i = 0; i < nb; i += 2) {
  2310. const block_q4_1 * restrict x0 = &x[i + 0];
  2311. const block_q4_1 * restrict x1 = &x[i + 1];
  2312. const block_q8_1 * restrict y0 = &y[i + 0];
  2313. const block_q8_1 * restrict y1 = &y[i + 1];
  2314. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2315. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2316. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2317. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2318. // 4-bit -> 8-bit
  2319. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2320. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2321. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2322. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2323. // interleave
  2324. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2325. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2326. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2327. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2328. // load y
  2329. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2330. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2331. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2332. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2333. #if defined(__ARM_FEATURE_DOTPROD)
  2334. // dot product into int32x4_t
  2335. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2336. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2337. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2338. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2339. #else
  2340. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2341. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2342. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2343. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2344. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2345. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2346. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2347. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2348. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2349. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2350. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2351. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2352. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2353. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2354. #endif
  2355. }
  2356. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2357. #elif defined(__AVX2__)
  2358. // Initialize accumulator with zeros
  2359. __m256 acc = _mm256_setzero_ps();
  2360. float summs = 0;
  2361. // Main loop
  2362. for (int i = 0; i < nb; ++i) {
  2363. const float * d0 = &x[i].d;
  2364. const float * d1 = &y[i].d;
  2365. summs += x[i].m * (y[i].s0 + y[i].s1);
  2366. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2367. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2368. // Compute combined scales
  2369. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2370. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2371. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2372. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2373. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2374. // Accumulate d0*d1*x*y
  2375. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2376. }
  2377. *s = hsum_float_8(acc) + summs;
  2378. #else
  2379. // scalar
  2380. float sumf = 0.0;
  2381. for (int i = 0; i < nb; i++) {
  2382. const float d0 = x[i].d;
  2383. const float m0 = x[i].m;
  2384. const float d1 = y[i].d;
  2385. const uint8_t * restrict p0 = x[i].qs;
  2386. const int8_t * restrict p1 = y[i].qs;
  2387. // TODO: this is very slow ..
  2388. for (int j = 0; j < QK8_1/2; j++) {
  2389. const uint8_t v0 = p0[j];
  2390. const float f0 = d0*(v0 & 0x0F) + m0;
  2391. const float f1 = d0*(v0 >> 4) + m0;
  2392. const float f2 = d1*p1[2*j + 0];
  2393. const float f3 = d1*p1[2*j + 1];
  2394. sumf += f0*f2 + f1*f3;
  2395. }
  2396. }
  2397. *s = sumf;
  2398. #endif
  2399. }
  2400. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2401. const int nb = n / QK8_0;
  2402. assert(n % QK8_0 == 0);
  2403. assert(nb % 2 == 0);
  2404. assert(QK8_0 == 2*QK4_2);
  2405. const block_q4_2 * restrict x = vx;
  2406. const block_q8_0 * restrict y = vy;
  2407. #if defined(__ARM_NEON)
  2408. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2409. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2410. for (int i = 0; i < nb; i += 2) {
  2411. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2412. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2413. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2414. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2415. const block_q8_0 * restrict y0 = &y[i + 0];
  2416. const block_q8_0 * restrict y1 = &y[i + 1];
  2417. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2418. const int8x16_t s8b = vdupq_n_s8(0x8);
  2419. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2420. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2421. // 4-bit -> 8-bit
  2422. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2423. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2424. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2425. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2426. // sub 8
  2427. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2428. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2429. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2430. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2431. // interleave
  2432. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2433. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2434. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2435. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2436. // load y
  2437. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2438. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2439. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2440. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2441. #if defined(__ARM_FEATURE_DOTPROD)
  2442. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2443. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2444. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2445. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2446. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2447. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2448. #else
  2449. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2450. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2451. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2452. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2453. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2454. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2455. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2456. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2457. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2458. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2459. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2460. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2461. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2462. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2463. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2464. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2465. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2466. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2467. #endif
  2468. }
  2469. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2470. #elif defined(__AVX2__)
  2471. // Initialize accumulator with zeros
  2472. __m256 acc = _mm256_setzero_ps();
  2473. // Main loop
  2474. for (int i = 0; i < nb; i++) {
  2475. /* Compute combined scale for the block */
  2476. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2477. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2478. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2479. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2480. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2481. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2482. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2483. const __m256i off = _mm256_set1_epi8(8);
  2484. bx = _mm256_sub_epi8(bx, off);
  2485. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2486. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2487. /* Multiply q with scale and accumulate */
  2488. acc = _mm256_fmadd_ps(d, q, acc);
  2489. }
  2490. *s = hsum_float_8(acc);
  2491. #else
  2492. // scalar
  2493. float sumf = 0.0;
  2494. for (int i = 0; i < nb; i++) {
  2495. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2496. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2497. const int8_t * restrict y0 = y[i].qs;
  2498. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2499. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2500. int sumi_0 = 0;
  2501. int sumi_1 = 0;
  2502. for (int j = 0; j < QK8_0/4; j++) {
  2503. const uint8_t v0 = x0[j];
  2504. const uint8_t v1 = x1[j];
  2505. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2506. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2507. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2508. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2509. const int i2_0 = y0[2*j + 0];
  2510. const int i3_0 = y0[2*j + 1];
  2511. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2512. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2513. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2514. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2515. }
  2516. sumf += (d0 * y[i].d) * sumi_0;
  2517. sumf += (d1 * y[i].d) * sumi_1;
  2518. }
  2519. *s = sumf;
  2520. #endif
  2521. }
  2522. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2523. const int nb = n / QK8_0;
  2524. assert(n % QK8_0 == 0);
  2525. assert(nb % 2 == 0);
  2526. assert(QK8_0 == QK5_0);
  2527. const block_q5_0 * restrict x = vx;
  2528. const block_q8_0 * restrict y = vy;
  2529. #if defined(__ARM_NEON)
  2530. float32x4_t sumv = vdupq_n_f32(0.0f);
  2531. uint64_t tmp[4];
  2532. for (int i = 0; i < nb; ++i) {
  2533. const block_q5_0 * restrict x0 = &x[i];
  2534. const block_q8_0 * restrict y0 = &y[i];
  2535. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2536. const int8x16_t s16b = vdupq_n_s8(0x10);
  2537. // extract the 5th bit
  2538. uint32_t qh;
  2539. memcpy(&qh, x0->qh, sizeof(qh));
  2540. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2541. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2542. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2543. tmp[3] = table_b2b_u[(qh >> 24) ];
  2544. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2545. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2546. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2547. // 4-bit -> 8-bit
  2548. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2549. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2550. // interleave
  2551. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2552. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2553. // add high bit and sub 16
  2554. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2555. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2556. // load y
  2557. const int8x16_t v1l = vld1q_s8(y0->qs);
  2558. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2559. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2560. #if defined(__ARM_FEATURE_DOTPROD)
  2561. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2562. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2563. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2564. #else
  2565. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2566. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2567. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2568. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2569. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2570. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2571. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2572. #endif
  2573. }
  2574. *s = vaddvq_f32(sumv);
  2575. #elif defined(__wasm_simd128__)
  2576. v128_t sumv = wasm_f32x4_splat(0.0f);
  2577. uint64_t tmp[4];
  2578. for (int i = 0; i < nb; ++i) {
  2579. const block_q5_0 * restrict x0 = &x[i];
  2580. const block_q8_0 * restrict y0 = &y[i];
  2581. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2582. const v128_t s16b = wasm_i8x16_splat(0x10);
  2583. // extract the 5th bit
  2584. uint32_t qh;
  2585. memcpy(&qh, x0->qh, sizeof(qh));
  2586. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2587. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2588. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2589. tmp[3] = table_b2b_u[(qh >> 24) ];
  2590. const v128_t qhl = wasm_v128_load(tmp + 0);
  2591. const v128_t qhh = wasm_v128_load(tmp + 2);
  2592. const v128_t v0 = wasm_v128_load(x0->qs);
  2593. // 4-bit -> 8-bit
  2594. const v128_t v0l = wasm_v128_and (v0, m4b);
  2595. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2596. // interleave
  2597. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2598. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2599. // add high bit and sub 16
  2600. const v128_t v0lf = wasm_i8x16_sub(wasm_v128_or(v0lz, qhl), s16b);
  2601. const v128_t v0hf = wasm_i8x16_sub(wasm_v128_or(v0hz, qhh), s16b);
  2602. // load y
  2603. const v128_t v1l = wasm_v128_load(y0->qs);
  2604. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2605. // int8x16 -> int16x8
  2606. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2607. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2608. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2609. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2610. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2611. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2612. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2613. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2614. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2615. // dot product
  2616. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2617. wasm_i32x4_add(
  2618. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2619. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2620. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2621. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2622. }
  2623. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2624. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2625. #elif defined(__AVX2__)
  2626. // Initialize accumulator with zeros
  2627. __m256 acc = _mm256_setzero_ps();
  2628. // Main loop
  2629. for (int i = 0; i < nb; i++) {
  2630. /* Compute combined scale for the block */
  2631. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2632. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2633. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2634. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2635. bx = _mm256_or_si256(bx, bxhi);
  2636. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2637. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2638. /* Multiply q with scale and accumulate */
  2639. acc = _mm256_fmadd_ps(d, q, acc);
  2640. }
  2641. *s = hsum_float_8(acc);
  2642. #else
  2643. // scalar
  2644. float sumf = 0.0;
  2645. for (int i = 0; i < nb; i++) {
  2646. const uint8_t * restrict x0 = x[i].qs;
  2647. const int8_t * restrict y0 = y[i].qs;
  2648. uint32_t qh;
  2649. memcpy(&qh, x[i].qh, sizeof(qh));
  2650. const float d = GGML_FP16_TO_FP32(x[i].d);
  2651. int sxy = 0;
  2652. for (int j = 0; j < QK8_0/2; j++) {
  2653. const uint8_t v0 = x0[j];
  2654. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2655. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2656. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2657. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2658. const int y0_0 = y0[2*j + 0];
  2659. const int y1_0 = y0[2*j + 1];
  2660. sxy += x0_0*y0_0 + x1_0*y1_0;
  2661. }
  2662. sumf += (d*sxy)*y[i].d;
  2663. }
  2664. *s = sumf;
  2665. #endif
  2666. }
  2667. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2668. const int nb = n / QK8_1;
  2669. assert(n % QK8_1 == 0);
  2670. assert(nb % 2 == 0);
  2671. assert(QK8_1 == QK5_1);
  2672. const block_q5_1 * restrict x = vx;
  2673. const block_q8_1 * restrict y = vy;
  2674. #if defined(__ARM_NEON)
  2675. float32x4_t sumv = vdupq_n_f32(0.0f);
  2676. float summs = 0.0f;
  2677. uint64_t tmp[4];
  2678. for (int i = 0; i < nb; ++i) {
  2679. const block_q5_1 * restrict x0 = &x[i];
  2680. const block_q8_1 * restrict y0 = &y[i];
  2681. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2682. // extract the 5th bit
  2683. uint32_t qh;
  2684. memcpy(&qh, x0->qh, sizeof(qh));
  2685. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2686. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2687. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2688. tmp[3] = table_b2b_u[(qh >> 24) ];
  2689. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2690. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2691. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2692. // 4-bit -> 8-bit
  2693. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2694. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2695. // interleave
  2696. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2697. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2698. // add
  2699. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2700. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2701. // load y
  2702. const int8x16_t v1l = vld1q_s8(y0->qs);
  2703. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2704. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2705. #if defined(__ARM_FEATURE_DOTPROD)
  2706. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2707. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2708. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2709. #else
  2710. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2711. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2712. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2713. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2714. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2715. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2716. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2717. #endif
  2718. }
  2719. *s = vaddvq_f32(sumv) + summs;
  2720. #elif defined(__wasm_simd128__)
  2721. v128_t sumv = wasm_f32x4_splat(0.0f);
  2722. float summs = 0.0f;
  2723. uint64_t tmp[4];
  2724. for (int i = 0; i < nb; ++i) {
  2725. const block_q5_1 * restrict x0 = &x[i];
  2726. const block_q8_1 * restrict y0 = &y[i];
  2727. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2728. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2729. // extract the 5th bit
  2730. uint32_t qh;
  2731. memcpy(&qh, x0->qh, sizeof(qh));
  2732. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2733. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2734. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2735. tmp[3] = table_b2b_u[(qh >> 24) ];
  2736. const v128_t qhl = wasm_v128_load(tmp + 0);
  2737. const v128_t qhh = wasm_v128_load(tmp + 2);
  2738. const v128_t v0 = wasm_v128_load(x0->qs);
  2739. // 4-bit -> 8-bit
  2740. const v128_t v0l = wasm_v128_and (v0, m4b);
  2741. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2742. static bool x = true;
  2743. // interleave
  2744. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2745. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2746. // add high bit
  2747. const v128_t v0lf = wasm_v128_or(v0lz, qhl);
  2748. const v128_t v0hf = wasm_v128_or(v0hz, qhh);
  2749. // load y
  2750. const v128_t v1l = wasm_v128_load(y0->qs);
  2751. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2752. // int8x16 -> int16x8
  2753. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2754. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2755. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2756. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2757. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2758. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2759. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2760. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2761. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2762. // dot product
  2763. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2764. wasm_i32x4_add(
  2765. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2766. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2767. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2768. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2769. }
  2770. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2771. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2772. #elif defined(__AVX2__)
  2773. // Initialize accumulator with zeros
  2774. __m256 acc = _mm256_setzero_ps();
  2775. float summs = 0.0f;
  2776. // Main loop
  2777. for (int i = 0; i < nb; i++) {
  2778. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2779. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2780. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2781. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2782. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2783. bx = _mm256_or_si256(bx, bxhi);
  2784. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2785. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2786. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2787. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2788. }
  2789. *s = hsum_float_8(acc) + summs;
  2790. #else
  2791. float sumf = 0.0;
  2792. for (int i = 0; i < nb; i++) {
  2793. const uint8_t * restrict x0 = x[i].qs;
  2794. const int8_t * restrict y0 = y[i].qs;
  2795. uint32_t qh;
  2796. memcpy(&qh, x[i].qh, sizeof(qh));
  2797. const float d = GGML_FP16_TO_FP32(x[i].d);
  2798. const float m = GGML_FP16_TO_FP32(x[i].m);
  2799. int sxy = 0;
  2800. for (int j = 0; j < QK8_1/2; j++) {
  2801. const uint8_t v0 = x0[j];
  2802. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2803. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2804. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2805. const int x1_0 = (v0 >> 4) | x1_0h;
  2806. const int y0_0 = y0[2*j + 0];
  2807. const int y1_0 = y0[2*j + 1];
  2808. sxy += x0_0*y0_0 + x1_0*y1_0;
  2809. }
  2810. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2811. }
  2812. *s = sumf;
  2813. #endif
  2814. }
  2815. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2816. const int nb = n / QK8_0;
  2817. assert(n % QK8_0 == 0);
  2818. assert(nb % 2 == 0);
  2819. assert(QK8_0 == QK8_0);
  2820. const block_q8_0 * restrict x = vx;
  2821. const block_q8_0 * restrict y = vy;
  2822. #if defined(__ARM_NEON)
  2823. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2824. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2825. for (int i = 0; i < nb; i += 2) {
  2826. const block_q8_0 * restrict x0 = &x[i + 0];
  2827. const block_q8_0 * restrict x1 = &x[i + 1];
  2828. const block_q8_0 * restrict y0 = &y[i + 0];
  2829. const block_q8_0 * restrict y1 = &y[i + 1];
  2830. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2831. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2832. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2833. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2834. // load y
  2835. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2836. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2837. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2838. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2839. #if defined(__ARM_FEATURE_DOTPROD)
  2840. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2841. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2842. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2843. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2844. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2845. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2846. #else
  2847. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2848. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2849. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2850. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2851. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2852. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2853. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2854. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2855. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2856. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2857. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2858. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2859. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2860. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2861. #endif
  2862. }
  2863. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2864. #elif defined(__AVX2__)
  2865. // Initialize accumulator with zeros
  2866. __m256 acc = _mm256_setzero_ps();
  2867. // Main loop
  2868. for (int i = 0; i < nb; ++i) {
  2869. // Compute combined scale for the block
  2870. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2871. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2872. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2873. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2874. // Multiply q with scale and accumulate
  2875. acc = _mm256_fmadd_ps( d, q, acc );
  2876. }
  2877. *s = hsum_float_8(acc);
  2878. #else
  2879. // scalar
  2880. float sumf = 0.0;
  2881. for (int i = 0; i < nb; i++) {
  2882. const int8_t * restrict x0 = x[i].qs;
  2883. const int8_t * restrict y0 = y[i].qs;
  2884. int sumi = 0;
  2885. for (int j = 0; j < QK8_0; j++) {
  2886. const int v0 = x0[j];
  2887. const int v1 = y0[j];
  2888. sumi += v0*v1;
  2889. }
  2890. sumf += (x[i].d*y[i].d)*sumi;
  2891. }
  2892. *s = sumf;
  2893. #endif
  2894. }
  2895. // compute GGML_VEC_DOT_UNROLL dot products at once
  2896. // xs - x row stride in bytes
  2897. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2898. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2899. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2900. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2901. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2902. }
  2903. #if defined(GGML_SIMD)
  2904. const int np = (n & ~(GGML_F16_STEP - 1));
  2905. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2906. GGML_F16_VEC ax[GGML_F16_ARR];
  2907. GGML_F16_VEC ay[GGML_F16_ARR];
  2908. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2909. for (int j = 0; j < GGML_F16_ARR; j++) {
  2910. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2911. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2912. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2913. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2914. }
  2915. }
  2916. }
  2917. // reduce sum0..sum3 to sum0
  2918. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2919. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2920. }
  2921. // leftovers
  2922. for (int i = np; i < n; ++i) {
  2923. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2924. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2925. }
  2926. }
  2927. #else
  2928. for (int i = 0; i < n; ++i) {
  2929. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2930. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2931. }
  2932. }
  2933. #endif
  2934. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2935. s[i] = sumf[i];
  2936. }
  2937. }
  2938. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2939. #if defined(GGML_SIMD)
  2940. const int np = (n & ~(GGML_F32_STEP - 1));
  2941. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2942. GGML_F32_VEC ax[GGML_F32_ARR];
  2943. GGML_F32_VEC ay[GGML_F32_ARR];
  2944. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2945. for (int j = 0; j < GGML_F32_ARR; j++) {
  2946. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2947. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2948. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2949. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2950. }
  2951. }
  2952. // leftovers
  2953. for (int i = np; i < n; ++i) {
  2954. y[i] += x[i]*v;
  2955. }
  2956. #else
  2957. // scalar
  2958. for (int i = 0; i < n; ++i) {
  2959. y[i] += x[i]*v;
  2960. }
  2961. #endif
  2962. }
  2963. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2964. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2965. #if defined(GGML_SIMD)
  2966. const int np = (n & ~(GGML_F32_STEP - 1));
  2967. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2968. GGML_F32_VEC ay[GGML_F32_ARR];
  2969. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2970. for (int j = 0; j < GGML_F32_ARR; j++) {
  2971. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2972. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2973. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2974. }
  2975. }
  2976. // leftovers
  2977. for (int i = np; i < n; ++i) {
  2978. y[i] *= v;
  2979. }
  2980. #else
  2981. // scalar
  2982. for (int i = 0; i < n; ++i) {
  2983. y[i] *= v;
  2984. }
  2985. #endif
  2986. }
  2987. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2988. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2989. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2990. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2991. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2992. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2993. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2994. static const float GELU_COEF_A = 0.044715f;
  2995. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2996. inline static float ggml_gelu_f32(float x) {
  2997. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2998. }
  2999. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3000. const uint16_t * i16 = (const uint16_t *) x;
  3001. for (int i = 0; i < n; ++i) {
  3002. y[i] = table_gelu_f16[i16[i]];
  3003. }
  3004. }
  3005. #ifdef GGML_GELU_FP16
  3006. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3007. uint16_t t;
  3008. for (int i = 0; i < n; ++i) {
  3009. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3010. memcpy(&t, &fp16, sizeof(uint16_t));
  3011. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3012. }
  3013. }
  3014. #else
  3015. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3016. for (int i = 0; i < n; ++i) {
  3017. y[i] = ggml_gelu_f32(x[i]);
  3018. }
  3019. }
  3020. #endif
  3021. // Sigmoid Linear Unit (SiLU) function
  3022. inline static float ggml_silu_f32(float x) {
  3023. return x/(1.0f + expf(-x));
  3024. }
  3025. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3026. const uint16_t * i16 = (const uint16_t *) x;
  3027. for (int i = 0; i < n; ++i) {
  3028. y[i] = table_silu_f16[i16[i]];
  3029. }
  3030. }
  3031. #ifdef GGML_SILU_FP16
  3032. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3033. uint16_t t;
  3034. for (int i = 0; i < n; ++i) {
  3035. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3036. memcpy(&t, &fp16, sizeof(uint16_t));
  3037. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3038. }
  3039. }
  3040. #else
  3041. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3042. for (int i = 0; i < n; ++i) {
  3043. y[i] = ggml_silu_f32(x[i]);
  3044. }
  3045. }
  3046. #endif
  3047. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3048. #ifndef GGML_USE_ACCELERATE
  3049. ggml_float sum = 0.0;
  3050. for (int i = 0; i < n; ++i) {
  3051. sum += (ggml_float)x[i];
  3052. }
  3053. *s = sum;
  3054. #else
  3055. vDSP_sve(x, 1, s, n);
  3056. #endif
  3057. }
  3058. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3059. ggml_float sum = 0.0;
  3060. for (int i = 0; i < n; ++i) {
  3061. sum += (ggml_float)x[i];
  3062. }
  3063. *s = sum;
  3064. }
  3065. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3066. #ifndef GGML_USE_ACCELERATE
  3067. float max = -INFINITY;
  3068. for (int i = 0; i < n; ++i) {
  3069. max = MAX(max, x[i]);
  3070. }
  3071. *s = max;
  3072. #else
  3073. vDSP_maxv(x, 1, s, n);
  3074. #endif
  3075. }
  3076. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3077. ggml_vec_norm_f32(n, s, x);
  3078. *s = 1.f/(*s);
  3079. }
  3080. //
  3081. // logging
  3082. //
  3083. #if (GGML_DEBUG >= 1)
  3084. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3085. #else
  3086. #define GGML_PRINT_DEBUG(...)
  3087. #endif
  3088. #if (GGML_DEBUG >= 5)
  3089. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3090. #else
  3091. #define GGML_PRINT_DEBUG_5(...)
  3092. #endif
  3093. #if (GGML_DEBUG >= 10)
  3094. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3095. #else
  3096. #define GGML_PRINT_DEBUG_10(...)
  3097. #endif
  3098. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3099. //
  3100. // data types
  3101. //
  3102. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3103. [GGML_TYPE_F32] = 1,
  3104. [GGML_TYPE_F16] = 1,
  3105. [GGML_TYPE_Q4_0] = QK4_0,
  3106. [GGML_TYPE_Q4_1] = QK4_1,
  3107. [GGML_TYPE_Q4_2] = QK4_2,
  3108. [GGML_TYPE_Q5_0] = QK5_0,
  3109. [GGML_TYPE_Q5_1] = QK5_1,
  3110. [GGML_TYPE_Q8_0] = QK8_0,
  3111. [GGML_TYPE_Q8_1] = QK8_1,
  3112. [GGML_TYPE_I8] = 1,
  3113. [GGML_TYPE_I16] = 1,
  3114. [GGML_TYPE_I32] = 1,
  3115. };
  3116. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3117. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3118. [GGML_TYPE_F32] = sizeof(float),
  3119. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3120. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3121. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3122. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3123. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3124. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3125. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3126. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3127. [GGML_TYPE_I8] = sizeof(int8_t),
  3128. [GGML_TYPE_I16] = sizeof(int16_t),
  3129. [GGML_TYPE_I32] = sizeof(int32_t),
  3130. };
  3131. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3132. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3133. [GGML_TYPE_F32] = "f32",
  3134. [GGML_TYPE_F16] = "f16",
  3135. [GGML_TYPE_Q4_0] = "q4_0",
  3136. [GGML_TYPE_Q4_1] = "q4_1",
  3137. [GGML_TYPE_Q4_2] = "q4_2",
  3138. [GGML_TYPE_Q5_0] = "q5_0",
  3139. [GGML_TYPE_Q5_1] = "q5_1",
  3140. [GGML_TYPE_Q8_0] = "q8_0",
  3141. [GGML_TYPE_Q8_1] = "q8_1",
  3142. [GGML_TYPE_I8] = "i8",
  3143. [GGML_TYPE_I16] = "i16",
  3144. [GGML_TYPE_I32] = "i32",
  3145. };
  3146. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3147. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3148. [GGML_TYPE_F32] = false,
  3149. [GGML_TYPE_F16] = false,
  3150. [GGML_TYPE_Q4_0] = true,
  3151. [GGML_TYPE_Q4_1] = true,
  3152. [GGML_TYPE_Q4_2] = true,
  3153. [GGML_TYPE_Q5_0] = true,
  3154. [GGML_TYPE_Q5_1] = true,
  3155. [GGML_TYPE_Q8_0] = true,
  3156. [GGML_TYPE_Q8_1] = true,
  3157. [GGML_TYPE_I8] = false,
  3158. [GGML_TYPE_I16] = false,
  3159. [GGML_TYPE_I32] = false,
  3160. };
  3161. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3162. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3163. "NONE",
  3164. "DUP",
  3165. "ADD",
  3166. "SUB",
  3167. "MUL",
  3168. "DIV",
  3169. "SQR",
  3170. "SQRT",
  3171. "SUM",
  3172. "MEAN",
  3173. "REPEAT",
  3174. "ABS",
  3175. "SGN",
  3176. "NEG",
  3177. "STEP",
  3178. "RELU",
  3179. "GELU",
  3180. "SILU",
  3181. "NORM",
  3182. "RMS_NORM",
  3183. "MUL_MAT",
  3184. "SCALE",
  3185. "CPY",
  3186. "CONT",
  3187. "RESHAPE",
  3188. "VIEW",
  3189. "PERMUTE",
  3190. "TRANSPOSE",
  3191. "GET_ROWS",
  3192. "DIAG_MASK_INF",
  3193. "SOFT_MAX",
  3194. "ROPE",
  3195. "ALIBI",
  3196. "CONV_1D_1S",
  3197. "CONV_1D_2S",
  3198. "FLASH_ATTN",
  3199. "FLASH_FF",
  3200. "MAP_UNARY",
  3201. "MAP_BINARY",
  3202. };
  3203. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3204. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3205. "none",
  3206. "x",
  3207. "x+y",
  3208. "x-y",
  3209. "x*y",
  3210. "x/y",
  3211. "x^2",
  3212. "√x",
  3213. "Σx",
  3214. "Σx/n",
  3215. "repeat(x)",
  3216. "abs(x)",
  3217. "sgn(x)",
  3218. "-x",
  3219. "step(x)",
  3220. "relu(x)",
  3221. "gelu(x)",
  3222. "silu(x)",
  3223. "norm(x)",
  3224. "rms_norm(x)",
  3225. "X*Y",
  3226. "x*v",
  3227. "x-\\>y",
  3228. "cont(x)",
  3229. "reshape(x)",
  3230. "view(x)",
  3231. "permute(x)",
  3232. "transpose(x)",
  3233. "get_rows(x)",
  3234. "diag_mask_inf(x)",
  3235. "soft_max(x)",
  3236. "rope(x)",
  3237. "alibi(x)",
  3238. "conv_1d_1s(x)",
  3239. "conv_1d_2s(x)",
  3240. "flash_attn(x)",
  3241. "flash_ff(x)",
  3242. "f(x)",
  3243. "f(x,y)",
  3244. };
  3245. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3246. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3247. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3248. //
  3249. // ggml context
  3250. //
  3251. struct ggml_context {
  3252. size_t mem_size;
  3253. void * mem_buffer;
  3254. bool mem_buffer_owned;
  3255. bool no_alloc;
  3256. int n_objects;
  3257. struct ggml_object * objects_begin;
  3258. struct ggml_object * objects_end;
  3259. struct ggml_scratch scratch;
  3260. struct ggml_scratch scratch_save;
  3261. };
  3262. struct ggml_context_container {
  3263. bool used;
  3264. struct ggml_context context;
  3265. };
  3266. //
  3267. // compute types
  3268. //
  3269. enum ggml_task_type {
  3270. GGML_TASK_INIT = 0,
  3271. GGML_TASK_COMPUTE,
  3272. GGML_TASK_FINALIZE,
  3273. };
  3274. struct ggml_compute_params {
  3275. enum ggml_task_type type;
  3276. int ith, nth;
  3277. // work buffer for all threads
  3278. size_t wsize;
  3279. void * wdata;
  3280. };
  3281. //
  3282. // ggml state
  3283. //
  3284. struct ggml_state {
  3285. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3286. };
  3287. // global state
  3288. static struct ggml_state g_state;
  3289. static atomic_int g_state_barrier = 0;
  3290. // barrier via spin lock
  3291. inline static void ggml_critical_section_start(void) {
  3292. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3293. while (processing > 0) {
  3294. // wait for other threads to finish
  3295. atomic_fetch_sub(&g_state_barrier, 1);
  3296. sched_yield(); // TODO: reconsider this
  3297. processing = atomic_fetch_add(&g_state_barrier, 1);
  3298. }
  3299. }
  3300. // TODO: make this somehow automatically executed
  3301. // some sort of "sentry" mechanism
  3302. inline static void ggml_critical_section_end(void) {
  3303. atomic_fetch_sub(&g_state_barrier, 1);
  3304. }
  3305. ////////////////////////////////////////////////////////////////////////////////
  3306. void ggml_print_object(const struct ggml_object * obj) {
  3307. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3308. obj->offs, obj->size, (const void *) obj->next);
  3309. }
  3310. void ggml_print_objects(const struct ggml_context * ctx) {
  3311. struct ggml_object * obj = ctx->objects_begin;
  3312. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3313. while (obj != NULL) {
  3314. ggml_print_object(obj);
  3315. obj = obj->next;
  3316. }
  3317. GGML_PRINT("%s: --- end ---\n", __func__);
  3318. }
  3319. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3320. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3321. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3322. }
  3323. int ggml_nrows(const struct ggml_tensor * tensor) {
  3324. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3325. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3326. }
  3327. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3328. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3329. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3330. }
  3331. int ggml_blck_size(enum ggml_type type) {
  3332. return GGML_BLCK_SIZE[type];
  3333. }
  3334. size_t ggml_type_size(enum ggml_type type) {
  3335. return GGML_TYPE_SIZE[type];
  3336. }
  3337. float ggml_type_sizef(enum ggml_type type) {
  3338. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3339. }
  3340. const char * ggml_type_name(enum ggml_type type) {
  3341. return GGML_TYPE_NAME[type];
  3342. }
  3343. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3344. return GGML_TYPE_SIZE[tensor->type];
  3345. }
  3346. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3348. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3349. }
  3350. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3351. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3352. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3353. }
  3354. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3355. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3356. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3357. }
  3358. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3359. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3360. return
  3361. (t0->ne[0] == t1->ne[0]) &&
  3362. (t0->ne[2] == t1->ne[2]) &&
  3363. (t0->ne[3] == t1->ne[3]);
  3364. }
  3365. bool ggml_is_quantized(enum ggml_type type) {
  3366. return GGML_IS_QUANTIZED[type];
  3367. }
  3368. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3369. enum ggml_type wtype = GGML_TYPE_COUNT;
  3370. switch (ftype) {
  3371. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3372. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3373. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3374. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3375. case GGML_FTYPE_MOSTLY_Q4_2: wtype = GGML_TYPE_Q4_2; break;
  3376. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3377. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3378. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3379. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3380. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3381. }
  3382. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3383. return wtype;
  3384. }
  3385. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3386. return tensor->nb[0] > tensor->nb[1];
  3387. }
  3388. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3389. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3390. return
  3391. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3392. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3393. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3394. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3395. }
  3396. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3397. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3398. return
  3399. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3400. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3401. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3402. }
  3403. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3404. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3405. return
  3406. (t0->ne[0] == t1->ne[0] ) &&
  3407. (t0->ne[1] == t1->ne[1] ) &&
  3408. (t0->ne[2] == t1->ne[2] ) &&
  3409. (t0->ne[3] == t1->ne[3] );
  3410. }
  3411. // check if t1 can be represented as a repeatition of t0
  3412. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3413. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3414. return
  3415. (t1->ne[0]%t0->ne[0] == 0) &&
  3416. (t1->ne[1]%t0->ne[1] == 0) &&
  3417. (t1->ne[2]%t0->ne[2] == 0) &&
  3418. (t1->ne[3]%t0->ne[3] == 0);
  3419. }
  3420. static inline int ggml_up32(int n) {
  3421. return (n + 31) & ~31;
  3422. }
  3423. static inline int ggml_up64(int n) {
  3424. return (n + 63) & ~63;
  3425. }
  3426. static inline int ggml_up(int n, int m) {
  3427. // assert m is a power of 2
  3428. GGML_ASSERT((m & (m - 1)) == 0);
  3429. return (n + m - 1) & ~(m - 1);
  3430. }
  3431. // assert that pointer is aligned to GGML_MEM_ALIGN
  3432. #define ggml_assert_aligned(ptr) \
  3433. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3434. ////////////////////////////////////////////////////////////////////////////////
  3435. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3436. // make this function thread safe
  3437. ggml_critical_section_start();
  3438. static bool is_first_call = true;
  3439. if (is_first_call) {
  3440. // initialize time system (required on Windows)
  3441. ggml_time_init();
  3442. // initialize GELU, SILU and EXP F32 tables
  3443. {
  3444. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3445. ggml_fp16_t ii;
  3446. for (int i = 0; i < (1 << 16); ++i) {
  3447. uint16_t ui = i;
  3448. memcpy(&ii, &ui, sizeof(ii));
  3449. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3450. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3451. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3452. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3453. }
  3454. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3455. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3456. }
  3457. // initialize g_state
  3458. {
  3459. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3460. g_state = (struct ggml_state) {
  3461. /*.contexts =*/ { { 0 } },
  3462. };
  3463. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3464. g_state.contexts[i].used = false;
  3465. }
  3466. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3467. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3468. }
  3469. #if defined(GGML_USE_CUBLAS)
  3470. ggml_init_cublas();
  3471. #elif defined(GGML_USE_CLBLAST)
  3472. ggml_cl_init();
  3473. #endif
  3474. is_first_call = false;
  3475. }
  3476. // find non-used context in g_state
  3477. struct ggml_context * ctx = NULL;
  3478. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3479. if (!g_state.contexts[i].used) {
  3480. g_state.contexts[i].used = true;
  3481. ctx = &g_state.contexts[i].context;
  3482. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3483. break;
  3484. }
  3485. }
  3486. if (ctx == NULL) {
  3487. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3488. ggml_critical_section_end();
  3489. return NULL;
  3490. }
  3491. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3492. *ctx = (struct ggml_context) {
  3493. /*.mem_size =*/ mem_size,
  3494. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3495. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3496. /*.no_alloc =*/ params.no_alloc,
  3497. /*.n_objects =*/ 0,
  3498. /*.objects_begin =*/ NULL,
  3499. /*.objects_end =*/ NULL,
  3500. /*.scratch =*/ { 0, 0, NULL, },
  3501. /*.scratch_save =*/ { 0, 0, NULL, },
  3502. };
  3503. GGML_ASSERT(ctx->mem_buffer != NULL);
  3504. ggml_assert_aligned(ctx->mem_buffer);
  3505. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3506. ggml_critical_section_end();
  3507. return ctx;
  3508. }
  3509. void ggml_free(struct ggml_context * ctx) {
  3510. // make this function thread safe
  3511. ggml_critical_section_start();
  3512. bool found = false;
  3513. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3514. if (&g_state.contexts[i].context == ctx) {
  3515. g_state.contexts[i].used = false;
  3516. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3517. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3518. if (ctx->mem_buffer_owned) {
  3519. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3520. }
  3521. found = true;
  3522. break;
  3523. }
  3524. }
  3525. if (!found) {
  3526. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3527. }
  3528. ggml_critical_section_end();
  3529. }
  3530. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3531. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3532. }
  3533. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3534. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3535. ctx->scratch = scratch;
  3536. return result;
  3537. }
  3538. ////////////////////////////////////////////////////////////////////////////////
  3539. struct ggml_tensor * ggml_new_tensor_impl(
  3540. struct ggml_context * ctx,
  3541. enum ggml_type type,
  3542. int n_dims,
  3543. const int64_t* ne,
  3544. void* data) {
  3545. // always insert objects at the end of the context's memory pool
  3546. struct ggml_object * obj_cur = ctx->objects_end;
  3547. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3548. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3549. const size_t cur_end = cur_offs + cur_size;
  3550. size_t size_needed = 0;
  3551. if (data == NULL && !ctx->no_alloc) {
  3552. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3553. for (int i = 1; i < n_dims; i++) {
  3554. size_needed *= ne[i];
  3555. }
  3556. // align to GGML_MEM_ALIGN
  3557. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3558. }
  3559. char * const mem_buffer = ctx->mem_buffer;
  3560. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3561. if (ctx->scratch.data == NULL || data != NULL) {
  3562. size_needed += sizeof(struct ggml_tensor);
  3563. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3564. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3565. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3566. assert(false);
  3567. return NULL;
  3568. }
  3569. *obj_new = (struct ggml_object) {
  3570. .offs = cur_end + GGML_OBJECT_SIZE,
  3571. .size = size_needed,
  3572. .next = NULL,
  3573. };
  3574. } else {
  3575. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3576. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3577. assert(false);
  3578. return NULL;
  3579. }
  3580. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3581. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3582. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3583. assert(false);
  3584. return NULL;
  3585. }
  3586. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3587. *obj_new = (struct ggml_object) {
  3588. .offs = cur_end + GGML_OBJECT_SIZE,
  3589. .size = sizeof(struct ggml_tensor),
  3590. .next = NULL,
  3591. };
  3592. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3593. ctx->scratch.offs += size_needed;
  3594. }
  3595. if (obj_cur != NULL) {
  3596. obj_cur->next = obj_new;
  3597. } else {
  3598. // this is the first object in this context
  3599. ctx->objects_begin = obj_new;
  3600. }
  3601. ctx->objects_end = obj_new;
  3602. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3603. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3604. ggml_assert_aligned(result);
  3605. *result = (struct ggml_tensor) {
  3606. /*.type =*/ type,
  3607. /*.n_dims =*/ n_dims,
  3608. /*.ne =*/ { 1, 1, 1, 1 },
  3609. /*.nb =*/ { 0, 0, 0, 0 },
  3610. /*.op =*/ GGML_OP_NONE,
  3611. /*.is_param =*/ false,
  3612. /*.grad =*/ NULL,
  3613. /*.src0 =*/ NULL,
  3614. /*.src1 =*/ NULL,
  3615. /*.opt =*/ { NULL },
  3616. /*.n_tasks =*/ 0,
  3617. /*.perf_runs =*/ 0,
  3618. /*.perf_cycles =*/ 0,
  3619. /*.perf_time_us =*/ 0,
  3620. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3621. /*.name =*/ { 0 },
  3622. /*.pad =*/ { 0 },
  3623. };
  3624. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3625. //ggml_assert_aligned(result->data);
  3626. for (int i = 0; i < n_dims; i++) {
  3627. result->ne[i] = ne[i];
  3628. }
  3629. result->nb[0] = GGML_TYPE_SIZE[type];
  3630. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3631. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3632. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3633. }
  3634. ctx->n_objects++;
  3635. return result;
  3636. }
  3637. struct ggml_tensor * ggml_new_tensor(
  3638. struct ggml_context * ctx,
  3639. enum ggml_type type,
  3640. int n_dims,
  3641. const int64_t * ne) {
  3642. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3643. }
  3644. struct ggml_tensor * ggml_new_tensor_1d(
  3645. struct ggml_context * ctx,
  3646. enum ggml_type type,
  3647. int64_t ne0) {
  3648. return ggml_new_tensor(ctx, type, 1, &ne0);
  3649. }
  3650. struct ggml_tensor * ggml_new_tensor_2d(
  3651. struct ggml_context * ctx,
  3652. enum ggml_type type,
  3653. int64_t ne0,
  3654. int64_t ne1) {
  3655. const int64_t ne[2] = { ne0, ne1 };
  3656. return ggml_new_tensor(ctx, type, 2, ne);
  3657. }
  3658. struct ggml_tensor * ggml_new_tensor_3d(
  3659. struct ggml_context * ctx,
  3660. enum ggml_type type,
  3661. int64_t ne0,
  3662. int64_t ne1,
  3663. int64_t ne2) {
  3664. const int64_t ne[3] = { ne0, ne1, ne2 };
  3665. return ggml_new_tensor(ctx, type, 3, ne);
  3666. }
  3667. struct ggml_tensor * ggml_new_tensor_4d(
  3668. struct ggml_context * ctx,
  3669. enum ggml_type type,
  3670. int64_t ne0,
  3671. int64_t ne1,
  3672. int64_t ne2,
  3673. int64_t ne3) {
  3674. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3675. return ggml_new_tensor(ctx, type, 4, ne);
  3676. }
  3677. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3678. ctx->scratch_save = ctx->scratch;
  3679. ctx->scratch.data = NULL;
  3680. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3681. ctx->scratch = ctx->scratch_save;
  3682. ggml_set_i32(result, value);
  3683. return result;
  3684. }
  3685. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3686. ctx->scratch_save = ctx->scratch;
  3687. ctx->scratch.data = NULL;
  3688. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3689. ctx->scratch = ctx->scratch_save;
  3690. ggml_set_f32(result, value);
  3691. return result;
  3692. }
  3693. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3694. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3695. }
  3696. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3697. memset(tensor->data, 0, ggml_nbytes(tensor));
  3698. return tensor;
  3699. }
  3700. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3701. const int n = ggml_nrows(tensor);
  3702. const int nc = tensor->ne[0];
  3703. const size_t n1 = tensor->nb[1];
  3704. char * const data = tensor->data;
  3705. switch (tensor->type) {
  3706. case GGML_TYPE_I8:
  3707. {
  3708. assert(tensor->nb[0] == sizeof(int8_t));
  3709. for (int i = 0; i < n; i++) {
  3710. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3711. }
  3712. } break;
  3713. case GGML_TYPE_I16:
  3714. {
  3715. assert(tensor->nb[0] == sizeof(int16_t));
  3716. for (int i = 0; i < n; i++) {
  3717. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3718. }
  3719. } break;
  3720. case GGML_TYPE_I32:
  3721. {
  3722. assert(tensor->nb[0] == sizeof(int32_t));
  3723. for (int i = 0; i < n; i++) {
  3724. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3725. }
  3726. } break;
  3727. case GGML_TYPE_F16:
  3728. {
  3729. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3730. for (int i = 0; i < n; i++) {
  3731. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3732. }
  3733. } break;
  3734. case GGML_TYPE_F32:
  3735. {
  3736. assert(tensor->nb[0] == sizeof(float));
  3737. for (int i = 0; i < n; i++) {
  3738. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3739. }
  3740. } break;
  3741. default:
  3742. {
  3743. GGML_ASSERT(false);
  3744. } break;
  3745. }
  3746. return tensor;
  3747. }
  3748. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3749. const int n = ggml_nrows(tensor);
  3750. const int nc = tensor->ne[0];
  3751. const size_t n1 = tensor->nb[1];
  3752. char * const data = tensor->data;
  3753. switch (tensor->type) {
  3754. case GGML_TYPE_I8:
  3755. {
  3756. assert(tensor->nb[0] == sizeof(int8_t));
  3757. for (int i = 0; i < n; i++) {
  3758. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3759. }
  3760. } break;
  3761. case GGML_TYPE_I16:
  3762. {
  3763. assert(tensor->nb[0] == sizeof(int16_t));
  3764. for (int i = 0; i < n; i++) {
  3765. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3766. }
  3767. } break;
  3768. case GGML_TYPE_I32:
  3769. {
  3770. assert(tensor->nb[0] == sizeof(int32_t));
  3771. for (int i = 0; i < n; i++) {
  3772. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3773. }
  3774. } break;
  3775. case GGML_TYPE_F16:
  3776. {
  3777. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3778. for (int i = 0; i < n; i++) {
  3779. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3780. }
  3781. } break;
  3782. case GGML_TYPE_F32:
  3783. {
  3784. assert(tensor->nb[0] == sizeof(float));
  3785. for (int i = 0; i < n; i++) {
  3786. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3787. }
  3788. } break;
  3789. default:
  3790. {
  3791. GGML_ASSERT(false);
  3792. } break;
  3793. }
  3794. return tensor;
  3795. }
  3796. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3797. switch (tensor->type) {
  3798. case GGML_TYPE_I8:
  3799. {
  3800. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3801. return ((int8_t *)(tensor->data))[i];
  3802. } break;
  3803. case GGML_TYPE_I16:
  3804. {
  3805. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3806. return ((int16_t *)(tensor->data))[i];
  3807. } break;
  3808. case GGML_TYPE_I32:
  3809. {
  3810. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3811. return ((int32_t *)(tensor->data))[i];
  3812. } break;
  3813. case GGML_TYPE_F16:
  3814. {
  3815. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3816. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3817. } break;
  3818. case GGML_TYPE_F32:
  3819. {
  3820. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3821. return ((float *)(tensor->data))[i];
  3822. } break;
  3823. default:
  3824. {
  3825. GGML_ASSERT(false);
  3826. } break;
  3827. }
  3828. return 0.0f;
  3829. }
  3830. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3831. switch (tensor->type) {
  3832. case GGML_TYPE_I8:
  3833. {
  3834. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3835. ((int8_t *)(tensor->data))[i] = value;
  3836. } break;
  3837. case GGML_TYPE_I16:
  3838. {
  3839. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3840. ((int16_t *)(tensor->data))[i] = value;
  3841. } break;
  3842. case GGML_TYPE_I32:
  3843. {
  3844. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3845. ((int32_t *)(tensor->data))[i] = value;
  3846. } break;
  3847. case GGML_TYPE_F16:
  3848. {
  3849. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3850. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3851. } break;
  3852. case GGML_TYPE_F32:
  3853. {
  3854. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3855. ((float *)(tensor->data))[i] = value;
  3856. } break;
  3857. default:
  3858. {
  3859. GGML_ASSERT(false);
  3860. } break;
  3861. }
  3862. }
  3863. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3864. switch (tensor->type) {
  3865. case GGML_TYPE_I8:
  3866. {
  3867. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3868. return ((int8_t *)(tensor->data))[i];
  3869. } break;
  3870. case GGML_TYPE_I16:
  3871. {
  3872. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3873. return ((int16_t *)(tensor->data))[i];
  3874. } break;
  3875. case GGML_TYPE_I32:
  3876. {
  3877. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3878. return ((int32_t *)(tensor->data))[i];
  3879. } break;
  3880. case GGML_TYPE_F16:
  3881. {
  3882. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3883. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3884. } break;
  3885. case GGML_TYPE_F32:
  3886. {
  3887. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3888. return ((float *)(tensor->data))[i];
  3889. } break;
  3890. default:
  3891. {
  3892. GGML_ASSERT(false);
  3893. } break;
  3894. }
  3895. return 0.0f;
  3896. }
  3897. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3898. switch (tensor->type) {
  3899. case GGML_TYPE_I8:
  3900. {
  3901. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3902. ((int8_t *)(tensor->data))[i] = value;
  3903. } break;
  3904. case GGML_TYPE_I16:
  3905. {
  3906. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3907. ((int16_t *)(tensor->data))[i] = value;
  3908. } break;
  3909. case GGML_TYPE_I32:
  3910. {
  3911. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3912. ((int32_t *)(tensor->data))[i] = value;
  3913. } break;
  3914. case GGML_TYPE_F16:
  3915. {
  3916. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3917. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3918. } break;
  3919. case GGML_TYPE_F32:
  3920. {
  3921. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3922. ((float *)(tensor->data))[i] = value;
  3923. } break;
  3924. default:
  3925. {
  3926. GGML_ASSERT(false);
  3927. } break;
  3928. }
  3929. }
  3930. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3931. return tensor->data;
  3932. }
  3933. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3934. assert(tensor->type == GGML_TYPE_F32);
  3935. return (float *)(tensor->data);
  3936. }
  3937. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3938. return tensor->name;
  3939. }
  3940. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3941. strncpy(tensor->name, name, sizeof(tensor->name));
  3942. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3943. }
  3944. struct ggml_tensor * ggml_view_tensor(
  3945. struct ggml_context * ctx,
  3946. const struct ggml_tensor * src) {
  3947. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3948. result->nb[0] = src->nb[0];
  3949. result->nb[1] = src->nb[1];
  3950. result->nb[2] = src->nb[2];
  3951. result->nb[3] = src->nb[3];
  3952. return result;
  3953. }
  3954. ////////////////////////////////////////////////////////////////////////////////
  3955. // ggml_dup
  3956. struct ggml_tensor * ggml_dup_impl(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. bool inplace) {
  3960. bool is_node = false;
  3961. if (!inplace && (a->grad)) {
  3962. is_node = true;
  3963. }
  3964. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3965. result->op = GGML_OP_DUP;
  3966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3967. result->src0 = a;
  3968. result->src1 = NULL;
  3969. return result;
  3970. }
  3971. struct ggml_tensor * ggml_dup(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a) {
  3974. return ggml_dup_impl(ctx, a, false);
  3975. }
  3976. struct ggml_tensor * ggml_dup_inplace(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a) {
  3979. return ggml_dup_impl(ctx, a, true);
  3980. }
  3981. // ggml_add
  3982. struct ggml_tensor * ggml_add_impl(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. struct ggml_tensor * b,
  3986. bool inplace) {
  3987. GGML_ASSERT(ggml_are_same_shape(a, b));
  3988. bool is_node = false;
  3989. if (!inplace && (a->grad || b->grad)) {
  3990. is_node = true;
  3991. }
  3992. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3993. result->op = GGML_OP_ADD;
  3994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3995. result->src0 = a;
  3996. result->src1 = b;
  3997. return result;
  3998. }
  3999. struct ggml_tensor * ggml_add(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. struct ggml_tensor * b) {
  4003. return ggml_add_impl(ctx, a, b, false);
  4004. }
  4005. struct ggml_tensor * ggml_add_inplace(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a,
  4008. struct ggml_tensor * b) {
  4009. return ggml_add_impl(ctx, a, b, true);
  4010. }
  4011. // ggml_sub
  4012. struct ggml_tensor * ggml_sub_impl(
  4013. struct ggml_context * ctx,
  4014. struct ggml_tensor * a,
  4015. struct ggml_tensor * b,
  4016. bool inplace) {
  4017. GGML_ASSERT(ggml_are_same_shape(a, b));
  4018. bool is_node = false;
  4019. if (!inplace && (a->grad || b->grad)) {
  4020. is_node = true;
  4021. }
  4022. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4023. result->op = GGML_OP_SUB;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src0 = a;
  4026. result->src1 = b;
  4027. return result;
  4028. }
  4029. struct ggml_tensor * ggml_sub(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a,
  4032. struct ggml_tensor * b) {
  4033. return ggml_sub_impl(ctx, a, b, false);
  4034. }
  4035. struct ggml_tensor * ggml_sub_inplace(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a,
  4038. struct ggml_tensor * b) {
  4039. return ggml_sub_impl(ctx, a, b, true);
  4040. }
  4041. // ggml_mul
  4042. struct ggml_tensor * ggml_mul_impl(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. struct ggml_tensor * b,
  4046. bool inplace) {
  4047. GGML_ASSERT(ggml_are_same_shape(a, b));
  4048. bool is_node = false;
  4049. if (!inplace && (a->grad || b->grad)) {
  4050. is_node = true;
  4051. }
  4052. if (inplace) {
  4053. GGML_ASSERT(is_node == false);
  4054. }
  4055. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4056. result->op = GGML_OP_MUL;
  4057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4058. result->src0 = a;
  4059. result->src1 = b;
  4060. return result;
  4061. }
  4062. struct ggml_tensor * ggml_mul(
  4063. struct ggml_context * ctx,
  4064. struct ggml_tensor * a,
  4065. struct ggml_tensor * b) {
  4066. return ggml_mul_impl(ctx, a, b, false);
  4067. }
  4068. struct ggml_tensor * ggml_mul_inplace(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a,
  4071. struct ggml_tensor * b) {
  4072. return ggml_mul_impl(ctx, a, b, true);
  4073. }
  4074. // ggml_div
  4075. struct ggml_tensor * ggml_div_impl(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. struct ggml_tensor * b,
  4079. bool inplace) {
  4080. GGML_ASSERT(ggml_are_same_shape(a, b));
  4081. bool is_node = false;
  4082. if (!inplace && (a->grad || b->grad)) {
  4083. is_node = true;
  4084. }
  4085. if (inplace) {
  4086. GGML_ASSERT(is_node == false);
  4087. }
  4088. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4089. result->op = GGML_OP_DIV;
  4090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4091. result->src0 = a;
  4092. result->src1 = b;
  4093. return result;
  4094. }
  4095. struct ggml_tensor * ggml_div(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a,
  4098. struct ggml_tensor * b) {
  4099. return ggml_div_impl(ctx, a, b, false);
  4100. }
  4101. struct ggml_tensor * ggml_div_inplace(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. struct ggml_tensor * b) {
  4105. return ggml_div_impl(ctx, a, b, true);
  4106. }
  4107. // ggml_sqr
  4108. struct ggml_tensor * ggml_sqr_impl(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. bool inplace) {
  4112. bool is_node = false;
  4113. if (!inplace && (a->grad)) {
  4114. is_node = true;
  4115. }
  4116. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4117. result->op = GGML_OP_SQR;
  4118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4119. result->src0 = a;
  4120. result->src1 = NULL;
  4121. return result;
  4122. }
  4123. struct ggml_tensor * ggml_sqr(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a) {
  4126. return ggml_sqr_impl(ctx, a, false);
  4127. }
  4128. struct ggml_tensor * ggml_sqr_inplace(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a) {
  4131. return ggml_sqr_impl(ctx, a, true);
  4132. }
  4133. // ggml_sqrt
  4134. struct ggml_tensor * ggml_sqrt_impl(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a,
  4137. bool inplace) {
  4138. bool is_node = false;
  4139. if (!inplace && (a->grad)) {
  4140. is_node = true;
  4141. }
  4142. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4143. result->op = GGML_OP_SQRT;
  4144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4145. result->src0 = a;
  4146. result->src1 = NULL;
  4147. return result;
  4148. }
  4149. struct ggml_tensor * ggml_sqrt(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a) {
  4152. return ggml_sqrt_impl(ctx, a, false);
  4153. }
  4154. struct ggml_tensor * ggml_sqrt_inplace(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a) {
  4157. return ggml_sqrt_impl(ctx, a, true);
  4158. }
  4159. // ggml_sum
  4160. struct ggml_tensor * ggml_sum(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a) {
  4163. bool is_node = false;
  4164. if (a->grad) {
  4165. is_node = true;
  4166. }
  4167. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4168. result->op = GGML_OP_SUM;
  4169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4170. result->src0 = a;
  4171. result->src1 = NULL;
  4172. return result;
  4173. }
  4174. // ggml_mean
  4175. struct ggml_tensor * ggml_mean(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a) {
  4178. bool is_node = false;
  4179. if (a->grad) {
  4180. GGML_ASSERT(false); // TODO: implement
  4181. is_node = true;
  4182. }
  4183. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4184. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4185. result->op = GGML_OP_MEAN;
  4186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4187. result->src0 = a;
  4188. result->src1 = NULL;
  4189. return result;
  4190. }
  4191. // ggml_repeat
  4192. struct ggml_tensor * ggml_repeat(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. struct ggml_tensor * b) {
  4196. GGML_ASSERT(ggml_can_repeat(a, b));
  4197. bool is_node = false;
  4198. if (a->grad) {
  4199. is_node = true;
  4200. }
  4201. if (ggml_are_same_shape(a, b) && !is_node) {
  4202. return a;
  4203. }
  4204. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4205. result->op = GGML_OP_REPEAT;
  4206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4207. result->src0 = a;
  4208. result->src1 = b;
  4209. return result;
  4210. }
  4211. // ggml_abs
  4212. struct ggml_tensor * ggml_abs_impl(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. bool inplace) {
  4216. bool is_node = false;
  4217. if (!inplace && (a->grad)) {
  4218. is_node = true;
  4219. }
  4220. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4221. result->op = GGML_OP_ABS;
  4222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4223. result->src0 = a;
  4224. result->src1 = NULL;
  4225. return result;
  4226. }
  4227. struct ggml_tensor * ggml_abs(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a) {
  4230. return ggml_abs_impl(ctx, a, false);
  4231. }
  4232. struct ggml_tensor * ggml_abs_inplace(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a) {
  4235. return ggml_abs_impl(ctx, a, true);
  4236. }
  4237. // ggml_sgn
  4238. struct ggml_tensor * ggml_sgn_impl(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a,
  4241. bool inplace) {
  4242. bool is_node = false;
  4243. if (!inplace && (a->grad)) {
  4244. is_node = true;
  4245. }
  4246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4247. result->op = GGML_OP_SGN;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src0 = a;
  4250. result->src1 = NULL;
  4251. return result;
  4252. }
  4253. struct ggml_tensor * ggml_sgn(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a) {
  4256. return ggml_sgn_impl(ctx, a, false);
  4257. }
  4258. struct ggml_tensor * ggml_sgn_inplace(
  4259. struct ggml_context * ctx,
  4260. struct ggml_tensor * a) {
  4261. return ggml_sgn_impl(ctx, a, true);
  4262. }
  4263. // ggml_neg
  4264. struct ggml_tensor * ggml_neg_impl(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a,
  4267. bool inplace) {
  4268. bool is_node = false;
  4269. if (!inplace && (a->grad)) {
  4270. is_node = true;
  4271. }
  4272. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4273. result->op = GGML_OP_NEG;
  4274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4275. result->src0 = a;
  4276. result->src1 = NULL;
  4277. return result;
  4278. }
  4279. struct ggml_tensor * ggml_neg(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a) {
  4282. return ggml_neg_impl(ctx, a, false);
  4283. }
  4284. struct ggml_tensor * ggml_neg_inplace(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a) {
  4287. return ggml_neg_impl(ctx, a, true);
  4288. }
  4289. // ggml_step
  4290. struct ggml_tensor * ggml_step_impl(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. bool inplace) {
  4294. bool is_node = false;
  4295. if (!inplace && (a->grad)) {
  4296. is_node = true;
  4297. }
  4298. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4299. result->op = GGML_OP_STEP;
  4300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4301. result->src0 = a;
  4302. result->src1 = NULL;
  4303. return result;
  4304. }
  4305. struct ggml_tensor * ggml_step(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a) {
  4308. return ggml_step_impl(ctx, a, false);
  4309. }
  4310. struct ggml_tensor * ggml_step_inplace(
  4311. struct ggml_context * ctx,
  4312. struct ggml_tensor * a) {
  4313. return ggml_step_impl(ctx, a, true);
  4314. }
  4315. // ggml_relu
  4316. struct ggml_tensor * ggml_relu_impl(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. bool inplace) {
  4320. bool is_node = false;
  4321. if (!inplace && (a->grad)) {
  4322. is_node = true;
  4323. }
  4324. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4325. result->op = GGML_OP_RELU;
  4326. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4327. result->src0 = a;
  4328. result->src1 = NULL;
  4329. return result;
  4330. }
  4331. struct ggml_tensor * ggml_relu(
  4332. struct ggml_context * ctx,
  4333. struct ggml_tensor * a) {
  4334. return ggml_relu_impl(ctx, a, false);
  4335. }
  4336. struct ggml_tensor * ggml_relu_inplace(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a) {
  4339. return ggml_relu_impl(ctx, a, true);
  4340. }
  4341. // ggml_gelu
  4342. struct ggml_tensor * ggml_gelu_impl(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a,
  4345. bool inplace) {
  4346. bool is_node = false;
  4347. if (!inplace && (a->grad)) {
  4348. is_node = true;
  4349. }
  4350. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4351. result->op = GGML_OP_GELU;
  4352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4353. result->src0 = a;
  4354. result->src1 = NULL;
  4355. return result;
  4356. }
  4357. struct ggml_tensor * ggml_gelu(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a) {
  4360. return ggml_gelu_impl(ctx, a, false);
  4361. }
  4362. struct ggml_tensor * ggml_gelu_inplace(
  4363. struct ggml_context * ctx,
  4364. struct ggml_tensor * a) {
  4365. return ggml_gelu_impl(ctx, a, true);
  4366. }
  4367. // ggml_silu
  4368. struct ggml_tensor * ggml_silu_impl(
  4369. struct ggml_context * ctx,
  4370. struct ggml_tensor * a,
  4371. bool inplace) {
  4372. bool is_node = false;
  4373. if (!inplace && (a->grad)) {
  4374. is_node = true;
  4375. }
  4376. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4377. result->op = GGML_OP_SILU;
  4378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4379. result->src0 = a;
  4380. result->src1 = NULL;
  4381. return result;
  4382. }
  4383. struct ggml_tensor * ggml_silu(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a) {
  4386. return ggml_silu_impl(ctx, a, false);
  4387. }
  4388. struct ggml_tensor * ggml_silu_inplace(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a) {
  4391. return ggml_silu_impl(ctx, a, true);
  4392. }
  4393. // ggml_norm
  4394. struct ggml_tensor * ggml_norm_impl(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a,
  4397. bool inplace) {
  4398. bool is_node = false;
  4399. if (!inplace && (a->grad)) {
  4400. GGML_ASSERT(false); // TODO: implement backward
  4401. is_node = true;
  4402. }
  4403. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4404. result->op = GGML_OP_NORM;
  4405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4406. result->src0 = a;
  4407. result->src1 = NULL; // TODO: maybe store epsilon here?
  4408. return result;
  4409. }
  4410. struct ggml_tensor * ggml_norm(
  4411. struct ggml_context * ctx,
  4412. struct ggml_tensor * a) {
  4413. return ggml_norm_impl(ctx, a, false);
  4414. }
  4415. struct ggml_tensor * ggml_norm_inplace(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a) {
  4418. return ggml_norm_impl(ctx, a, true);
  4419. }
  4420. struct ggml_tensor * ggml_rms_norm_impl(
  4421. struct ggml_context * ctx,
  4422. struct ggml_tensor * a,
  4423. bool inplace) {
  4424. bool is_node = false;
  4425. if (!inplace && (a->grad)) {
  4426. GGML_ASSERT(false); // TODO: implement backward
  4427. is_node = true;
  4428. }
  4429. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4430. result->op = GGML_OP_RMS_NORM;
  4431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4432. result->src0 = a;
  4433. result->src1 = NULL; // TODO: maybe store epsilon here?
  4434. return result;
  4435. }
  4436. struct ggml_tensor * ggml_rms_norm(
  4437. struct ggml_context * ctx,
  4438. struct ggml_tensor * a) {
  4439. return ggml_rms_norm_impl(ctx, a, false);
  4440. }
  4441. struct ggml_tensor * ggml_rms_norm_inplace(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a) {
  4444. return ggml_rms_norm_impl(ctx, a, true);
  4445. }
  4446. // ggml_mul_mat
  4447. struct ggml_tensor * ggml_mul_mat(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a,
  4450. struct ggml_tensor * b) {
  4451. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4452. GGML_ASSERT(!ggml_is_transposed(a));
  4453. bool is_node = false;
  4454. if (a->grad || b->grad) {
  4455. is_node = true;
  4456. }
  4457. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4458. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4459. result->op = GGML_OP_MUL_MAT;
  4460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4461. result->src0 = a;
  4462. result->src1 = b;
  4463. return result;
  4464. }
  4465. // ggml_scale
  4466. struct ggml_tensor * ggml_scale_impl(
  4467. struct ggml_context * ctx,
  4468. struct ggml_tensor * a,
  4469. struct ggml_tensor * b,
  4470. bool inplace) {
  4471. GGML_ASSERT(ggml_is_scalar(b));
  4472. GGML_ASSERT(ggml_is_padded_1d(a));
  4473. bool is_node = false;
  4474. if (!inplace && (a->grad || b->grad)) {
  4475. GGML_ASSERT(false); // TODO: implement backward
  4476. is_node = true;
  4477. }
  4478. // TODO: when implement backward, fix this:
  4479. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4480. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4481. result->op = GGML_OP_SCALE;
  4482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4483. result->src0 = a;
  4484. result->src1 = b;
  4485. return result;
  4486. }
  4487. struct ggml_tensor * ggml_scale(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * a,
  4490. struct ggml_tensor * b) {
  4491. return ggml_scale_impl(ctx, a, b, false);
  4492. }
  4493. struct ggml_tensor * ggml_scale_inplace(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b) {
  4497. return ggml_scale_impl(ctx, a, b, true);
  4498. }
  4499. // ggml_cpy
  4500. struct ggml_tensor * ggml_cpy_impl(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a,
  4503. struct ggml_tensor * b,
  4504. bool inplace) {
  4505. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4506. bool is_node = false;
  4507. if (!inplace && (a->grad || b->grad)) {
  4508. GGML_ASSERT(false); // TODO: implement backward
  4509. is_node = true;
  4510. }
  4511. // make a view of the destination
  4512. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4513. result->op = GGML_OP_CPY;
  4514. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4515. result->src0 = a;
  4516. result->src1 = b;
  4517. return result;
  4518. }
  4519. struct ggml_tensor * ggml_cpy(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. struct ggml_tensor * b) {
  4523. return ggml_cpy_impl(ctx, a, b, false);
  4524. }
  4525. struct ggml_tensor * ggml_cpy_inplace(
  4526. struct ggml_context * ctx,
  4527. struct ggml_tensor * a,
  4528. struct ggml_tensor * b) {
  4529. return ggml_cpy_impl(ctx, a, b, true);
  4530. }
  4531. // ggml_cont
  4532. struct ggml_tensor * ggml_cont_impl(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. bool inplace) {
  4536. bool is_node = false;
  4537. if (!inplace && a->grad) {
  4538. GGML_ASSERT(false); // TODO: implement backward
  4539. is_node = true;
  4540. }
  4541. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4542. result->op = GGML_OP_CONT;
  4543. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4544. result->src0 = a;
  4545. result->src1 = NULL;
  4546. return result;
  4547. }
  4548. struct ggml_tensor * ggml_cont(
  4549. struct ggml_context * ctx,
  4550. struct ggml_tensor * a) {
  4551. return ggml_cont_impl(ctx, a, false);
  4552. }
  4553. struct ggml_tensor * ggml_cont_inplace(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a) {
  4556. return ggml_cont_impl(ctx, a, true);
  4557. }
  4558. // ggml_reshape
  4559. struct ggml_tensor * ggml_reshape(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a,
  4562. struct ggml_tensor * b) {
  4563. GGML_ASSERT(ggml_is_contiguous(a));
  4564. GGML_ASSERT(ggml_is_contiguous(b));
  4565. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4566. bool is_node = false;
  4567. if (a->grad || b->grad) {
  4568. GGML_ASSERT(false); // TODO: implement backward
  4569. is_node = true;
  4570. }
  4571. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4572. result->op = GGML_OP_RESHAPE;
  4573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4574. result->src0 = a;
  4575. result->src1 = NULL;
  4576. return result;
  4577. }
  4578. struct ggml_tensor * ggml_reshape_2d(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. int64_t ne0,
  4582. int64_t ne1) {
  4583. GGML_ASSERT(ggml_is_contiguous(a));
  4584. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4585. bool is_node = false;
  4586. if (a->grad) {
  4587. GGML_ASSERT(false); // TODO: implement backward
  4588. is_node = true;
  4589. }
  4590. const int64_t ne[2] = { ne0, ne1 };
  4591. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4592. result->op = GGML_OP_RESHAPE;
  4593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4594. result->src0 = a;
  4595. result->src1 = NULL;
  4596. return result;
  4597. }
  4598. struct ggml_tensor * ggml_reshape_3d(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a,
  4601. int64_t ne0,
  4602. int64_t ne1,
  4603. int64_t ne2) {
  4604. GGML_ASSERT(ggml_is_contiguous(a));
  4605. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4606. bool is_node = false;
  4607. if (a->grad) {
  4608. GGML_ASSERT(false); // TODO: implement backward
  4609. is_node = true;
  4610. }
  4611. const int64_t ne[3] = { ne0, ne1, ne2 };
  4612. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4613. result->op = GGML_OP_RESHAPE;
  4614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4615. result->src0 = a;
  4616. result->src1 = NULL;
  4617. return result;
  4618. }
  4619. // ggml_view_1d
  4620. struct ggml_tensor * ggml_view_1d(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. int64_t ne0,
  4624. size_t offset) {
  4625. if (a->grad) {
  4626. GGML_ASSERT(false); // gradient propagation is not supported
  4627. }
  4628. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4629. result->op = GGML_OP_VIEW;
  4630. result->grad = NULL;
  4631. result->src0 = a;
  4632. result->src1 = NULL; // TODO: maybe store the offset here?
  4633. return result;
  4634. }
  4635. // ggml_view_2d
  4636. struct ggml_tensor * ggml_view_2d(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a,
  4639. int64_t ne0,
  4640. int64_t ne1,
  4641. size_t nb1,
  4642. size_t offset) {
  4643. if (a->grad) {
  4644. GGML_ASSERT(false); // gradient propagation is not supported
  4645. }
  4646. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4647. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4648. result->nb[1] = nb1;
  4649. result->nb[2] = result->nb[1]*ne1;
  4650. result->nb[3] = result->nb[2];
  4651. result->op = GGML_OP_VIEW;
  4652. result->grad = NULL;
  4653. result->src0 = a;
  4654. result->src1 = NULL; // TODO: maybe store the offset here?
  4655. return result;
  4656. }
  4657. // ggml_view_3d
  4658. struct ggml_tensor * ggml_view_3d(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. int64_t ne0,
  4662. int64_t ne1,
  4663. int64_t ne2,
  4664. size_t nb1,
  4665. size_t nb2,
  4666. size_t offset) {
  4667. if (a->grad) {
  4668. GGML_ASSERT(false); // gradient propagation is not supported
  4669. }
  4670. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4671. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4672. result->nb[1] = nb1;
  4673. result->nb[2] = nb2;
  4674. result->nb[3] = result->nb[2]*ne2;
  4675. result->op = GGML_OP_VIEW;
  4676. result->grad = NULL;
  4677. result->src0 = a;
  4678. result->src1 = NULL; // TODO: maybe store the offset here?
  4679. return result;
  4680. }
  4681. // ggml_permute
  4682. struct ggml_tensor * ggml_permute(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a,
  4685. int axis0,
  4686. int axis1,
  4687. int axis2,
  4688. int axis3) {
  4689. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4690. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4691. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4692. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4693. GGML_ASSERT(axis0 != axis1);
  4694. GGML_ASSERT(axis0 != axis2);
  4695. GGML_ASSERT(axis0 != axis3);
  4696. GGML_ASSERT(axis1 != axis2);
  4697. GGML_ASSERT(axis1 != axis3);
  4698. GGML_ASSERT(axis2 != axis3);
  4699. bool is_node = false;
  4700. if (a->grad) {
  4701. GGML_ASSERT(false); // TODO: implement backward
  4702. is_node = true;
  4703. }
  4704. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4705. int ne[GGML_MAX_DIMS];
  4706. int nb[GGML_MAX_DIMS];
  4707. ne[axis0] = a->ne[0];
  4708. ne[axis1] = a->ne[1];
  4709. ne[axis2] = a->ne[2];
  4710. ne[axis3] = a->ne[3];
  4711. nb[axis0] = a->nb[0];
  4712. nb[axis1] = a->nb[1];
  4713. nb[axis2] = a->nb[2];
  4714. nb[axis3] = a->nb[3];
  4715. result->ne[0] = ne[0];
  4716. result->ne[1] = ne[1];
  4717. result->ne[2] = ne[2];
  4718. result->ne[3] = ne[3];
  4719. result->nb[0] = nb[0];
  4720. result->nb[1] = nb[1];
  4721. result->nb[2] = nb[2];
  4722. result->nb[3] = nb[3];
  4723. result->op = GGML_OP_PERMUTE;
  4724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4725. result->src0 = a;
  4726. result->src1 = NULL; // TODO: maybe store the permutation here?
  4727. return result;
  4728. }
  4729. // ggml_transpose
  4730. struct ggml_tensor * ggml_transpose(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a) {
  4733. bool is_node = false;
  4734. if (a->grad) {
  4735. GGML_ASSERT(false); // TODO: implement backward
  4736. is_node = true;
  4737. }
  4738. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4739. result->ne[0] = a->ne[1];
  4740. result->ne[1] = a->ne[0];
  4741. result->nb[0] = a->nb[1];
  4742. result->nb[1] = a->nb[0];
  4743. result->op = GGML_OP_TRANSPOSE;
  4744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4745. result->src0 = a;
  4746. result->src1 = NULL;
  4747. return result;
  4748. }
  4749. // ggml_get_rows
  4750. struct ggml_tensor * ggml_get_rows(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. struct ggml_tensor * b) {
  4754. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4755. bool is_node = false;
  4756. if (a->grad || b->grad) {
  4757. GGML_ASSERT(false); // TODO: implement backward
  4758. is_node = true;
  4759. }
  4760. // TODO: implement non F32 return
  4761. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4762. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4763. result->op = GGML_OP_GET_ROWS;
  4764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4765. result->src0 = a;
  4766. result->src1 = b;
  4767. return result;
  4768. }
  4769. // ggml_diag_mask_inf
  4770. struct ggml_tensor * ggml_diag_mask_inf(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. int n_past) {
  4774. bool is_node = false;
  4775. if (a->grad) {
  4776. GGML_ASSERT(false); // TODO: implement backward
  4777. is_node = true;
  4778. }
  4779. // TODO: when implement backward, fix this:
  4780. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4781. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4782. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4783. ggml_set_name(b, "n_past");
  4784. result->op = GGML_OP_DIAG_MASK_INF;
  4785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4786. result->src0 = a;
  4787. result->src1 = b;
  4788. return result;
  4789. }
  4790. // ggml_soft_max
  4791. struct ggml_tensor * ggml_soft_max(
  4792. struct ggml_context * ctx,
  4793. struct ggml_tensor * a) {
  4794. bool is_node = false;
  4795. if (a->grad) {
  4796. GGML_ASSERT(false); // TODO: implement backward
  4797. is_node = true;
  4798. }
  4799. // TODO: when implement backward, fix this:
  4800. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4801. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4802. result->op = GGML_OP_SOFT_MAX;
  4803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4804. result->src0 = a;
  4805. result->src1 = NULL;
  4806. return result;
  4807. }
  4808. // ggml_rope
  4809. struct ggml_tensor * ggml_rope(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. int n_past,
  4813. int n_dims,
  4814. int mode) {
  4815. GGML_ASSERT(n_past >= 0);
  4816. bool is_node = false;
  4817. if (a->grad) {
  4818. GGML_ASSERT(false); // TODO: implement backward
  4819. is_node = true;
  4820. }
  4821. // TODO: when implement backward, fix this:
  4822. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4823. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4824. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4825. ((int32_t *) b->data)[0] = n_past;
  4826. ((int32_t *) b->data)[1] = n_dims;
  4827. ((int32_t *) b->data)[2] = mode;
  4828. ggml_set_name(b, "n_past, n_dims, mode");
  4829. result->op = GGML_OP_ROPE;
  4830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4831. result->src0 = a;
  4832. result->src1 = b;
  4833. return result;
  4834. }
  4835. // ggml_alibi
  4836. struct ggml_tensor * ggml_alibi(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. int n_past,
  4840. int n_head) {
  4841. GGML_ASSERT(n_past >= 0);
  4842. bool is_node = false;
  4843. if (a->grad) {
  4844. GGML_ASSERT(false); // TODO: implement backward
  4845. is_node = true;
  4846. }
  4847. // TODO: when implement backward, fix this:
  4848. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4849. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4850. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4851. ((int32_t *) b->data)[0] = n_past;
  4852. ((int32_t *) b->data)[1] = n_head;
  4853. result->op = GGML_OP_ALIBI;
  4854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4855. result->src0 = a;
  4856. result->src1 = b;
  4857. return result;
  4858. }
  4859. // ggml_conv_1d_1s
  4860. struct ggml_tensor * ggml_conv_1d_1s(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * a,
  4863. struct ggml_tensor * b) {
  4864. GGML_ASSERT(ggml_is_matrix(b));
  4865. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4866. GGML_ASSERT(a->ne[3] == 1);
  4867. bool is_node = false;
  4868. if (a->grad || b->grad) {
  4869. GGML_ASSERT(false); // TODO: implement backward
  4870. is_node = true;
  4871. }
  4872. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4873. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4874. result->op = GGML_OP_CONV_1D_1S;
  4875. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4876. result->src0 = a;
  4877. result->src1 = b;
  4878. return result;
  4879. }
  4880. // ggml_conv_1d_2s
  4881. struct ggml_tensor * ggml_conv_1d_2s(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a,
  4884. struct ggml_tensor * b) {
  4885. GGML_ASSERT(ggml_is_matrix(b));
  4886. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4887. GGML_ASSERT(a->ne[3] == 1);
  4888. bool is_node = false;
  4889. if (a->grad || b->grad) {
  4890. GGML_ASSERT(false); // TODO: implement backward
  4891. is_node = true;
  4892. }
  4893. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4894. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4895. result->op = GGML_OP_CONV_1D_2S;
  4896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4897. result->src0 = a;
  4898. result->src1 = b;
  4899. return result;
  4900. }
  4901. // ggml_flash_attn
  4902. struct ggml_tensor * ggml_flash_attn(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * q,
  4905. struct ggml_tensor * k,
  4906. struct ggml_tensor * v,
  4907. bool masked) {
  4908. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4909. // TODO: check if vT can be multiplied by (k*qT)
  4910. bool is_node = false;
  4911. if (q->grad || k->grad || v->grad) {
  4912. GGML_ASSERT(false); // TODO: implement backward
  4913. is_node = true;
  4914. }
  4915. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4916. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4917. result->op = GGML_OP_FLASH_ATTN;
  4918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4919. result->src0 = q;
  4920. result->src1 = k;
  4921. result->opt[0] = v;
  4922. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4923. return result;
  4924. }
  4925. // ggml_flash_ff
  4926. struct ggml_tensor * ggml_flash_ff(
  4927. struct ggml_context * ctx,
  4928. struct ggml_tensor * a,
  4929. struct ggml_tensor * b0,
  4930. struct ggml_tensor * b1,
  4931. struct ggml_tensor * c0,
  4932. struct ggml_tensor * c1) {
  4933. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4934. // TODO: more checks
  4935. bool is_node = false;
  4936. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4937. GGML_ASSERT(false); // TODO: implement backward
  4938. is_node = true;
  4939. }
  4940. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4941. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4942. result->op = GGML_OP_FLASH_FF;
  4943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4944. result->src0 = a;
  4945. result->src1 = b0;
  4946. result->opt[0] = b1;
  4947. result->opt[1] = c0;
  4948. result->opt[2] = c1;
  4949. return result;
  4950. }
  4951. // ggml_map_unary
  4952. struct ggml_tensor * ggml_map_unary_impl_f32(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. const ggml_unary_op_f32_t fun,
  4956. bool inplace) {
  4957. bool is_node = false;
  4958. if (!inplace && a->grad) {
  4959. is_node = true;
  4960. }
  4961. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4962. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4963. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4964. result->op = GGML_OP_MAP_UNARY;
  4965. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4966. result->src0 = a;
  4967. result->opt[0] = addr_tensor;
  4968. return result;
  4969. }
  4970. struct ggml_tensor * ggml_map_unary_f32(
  4971. struct ggml_context * ctx,
  4972. struct ggml_tensor * a,
  4973. const ggml_unary_op_f32_t fun) {
  4974. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4975. }
  4976. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. const ggml_unary_op_f32_t fun) {
  4980. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4981. }
  4982. // ggml_map_binary
  4983. struct ggml_tensor * ggml_map_binary_impl_f32(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a,
  4986. struct ggml_tensor * b,
  4987. const ggml_binary_op_f32_t fun,
  4988. bool inplace) {
  4989. GGML_ASSERT(ggml_are_same_shape(a, b));
  4990. bool is_node = false;
  4991. if (!inplace && (a->grad || b->grad)) {
  4992. is_node = true;
  4993. }
  4994. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4995. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4996. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4997. result->op = GGML_OP_MAP_BINARY;
  4998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4999. result->src0 = a;
  5000. result->src1 = b;
  5001. result->opt[0] = addr_tensor;
  5002. return result;
  5003. }
  5004. struct ggml_tensor * ggml_map_binary_f32(
  5005. struct ggml_context * ctx,
  5006. struct ggml_tensor * a,
  5007. struct ggml_tensor * b,
  5008. const ggml_binary_op_f32_t fun) {
  5009. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5010. }
  5011. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. struct ggml_tensor * b,
  5015. const ggml_binary_op_f32_t fun) {
  5016. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5017. }
  5018. ////////////////////////////////////////////////////////////////////////////////
  5019. void ggml_set_param(
  5020. struct ggml_context * ctx,
  5021. struct ggml_tensor * tensor) {
  5022. tensor->is_param = true;
  5023. GGML_ASSERT(tensor->grad == NULL);
  5024. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5025. }
  5026. // ggml_compute_forward_dup
  5027. static void ggml_compute_forward_dup_f16(
  5028. const struct ggml_compute_params * params,
  5029. const struct ggml_tensor * src0,
  5030. struct ggml_tensor * dst) {
  5031. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5032. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5033. return;
  5034. }
  5035. const int64_t ne00 = src0->ne[0];
  5036. const int64_t ne01 = src0->ne[1];
  5037. const int64_t ne02 = src0->ne[2];
  5038. const int64_t ne03 = src0->ne[3];
  5039. const int64_t ne0 = dst->ne[0];
  5040. const int64_t ne1 = dst->ne[1];
  5041. const int64_t ne2 = dst->ne[2];
  5042. const int64_t ne3 = dst->ne[3];
  5043. const size_t nb00 = src0->nb[0];
  5044. const size_t nb01 = src0->nb[1];
  5045. const size_t nb02 = src0->nb[2];
  5046. const size_t nb03 = src0->nb[3];
  5047. const size_t nb0 = dst->nb[0];
  5048. const size_t nb1 = dst->nb[1];
  5049. const size_t nb2 = dst->nb[2];
  5050. const size_t nb3 = dst->nb[3];
  5051. const int ith = params->ith; // thread index
  5052. const int nth = params->nth; // number of threads
  5053. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5054. // parallelize by elements
  5055. const int ne = ggml_nelements(dst);
  5056. const int dr = (ne + nth - 1) / nth;
  5057. const int ie0 = dr * ith;
  5058. const int ie1 = MIN(ie0 + dr, ne);
  5059. memcpy(
  5060. ((char *) dst->data + ie0*nb0),
  5061. ((char *) src0->data + ie0*nb00),
  5062. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5063. return;
  5064. }
  5065. // parallelize by rows
  5066. const int nr = ne01;
  5067. // number of rows per thread
  5068. const int dr = (nr + nth - 1) / nth;
  5069. // row range for this thread
  5070. const int ir0 = dr * ith;
  5071. const int ir1 = MIN(ir0 + dr, nr);
  5072. if (src0->type == dst->type &&
  5073. ne00 == ne0 &&
  5074. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5075. // copy by rows
  5076. const size_t rs = ne00*nb00;
  5077. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5078. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5079. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5080. memcpy(
  5081. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5082. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5083. rs);
  5084. }
  5085. }
  5086. }
  5087. return;
  5088. }
  5089. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5090. if (ggml_is_contiguous(dst)) {
  5091. if (nb00 == sizeof(ggml_fp16_t)) {
  5092. if (dst->type == GGML_TYPE_F16) {
  5093. size_t id = 0;
  5094. const size_t rs = ne00 * nb00;
  5095. char * dst_ptr = (char *) dst->data;
  5096. for (int i03 = 0; i03 < ne03; i03++) {
  5097. for (int i02 = 0; i02 < ne02; i02++) {
  5098. id += rs * ir0;
  5099. for (int i01 = ir0; i01 < ir1; i01++) {
  5100. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5101. memcpy(dst_ptr + id, src0_ptr, rs);
  5102. id += rs;
  5103. }
  5104. id += rs * (ne01 - ir1);
  5105. }
  5106. }
  5107. } else if (dst->type == GGML_TYPE_F32) {
  5108. size_t id = 0;
  5109. float * dst_ptr = (float *) dst->data;
  5110. for (int i03 = 0; i03 < ne03; i03++) {
  5111. for (int i02 = 0; i02 < ne02; i02++) {
  5112. id += ne00 * ir0;
  5113. for (int i01 = ir0; i01 < ir1; i01++) {
  5114. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5115. for (int i00 = 0; i00 < ne00; i00++) {
  5116. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5117. id++;
  5118. }
  5119. }
  5120. id += ne00 * (ne01 - ir1);
  5121. }
  5122. }
  5123. } else if (ggml_is_quantized(dst->type)) {
  5124. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5125. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5126. size_t id = 0;
  5127. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5128. char * dst_ptr = (char *) dst->data;
  5129. for (int i03 = 0; i03 < ne03; i03++) {
  5130. for (int i02 = 0; i02 < ne02; i02++) {
  5131. id += rs * ir0;
  5132. for (int i01 = ir0; i01 < ir1; i01++) {
  5133. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5134. for (int i00 = 0; i00 < ne00; i00++) {
  5135. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5136. }
  5137. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5138. id += rs;
  5139. }
  5140. id += rs * (ne01 - ir1);
  5141. }
  5142. }
  5143. } else {
  5144. GGML_ASSERT(false); // TODO: implement
  5145. }
  5146. } else {
  5147. //printf("%s: this is not optimal - fix me\n", __func__);
  5148. if (dst->type == GGML_TYPE_F32) {
  5149. size_t id = 0;
  5150. float * dst_ptr = (float *) dst->data;
  5151. for (int i03 = 0; i03 < ne03; i03++) {
  5152. for (int i02 = 0; i02 < ne02; i02++) {
  5153. id += ne00 * ir0;
  5154. for (int i01 = ir0; i01 < ir1; i01++) {
  5155. for (int i00 = 0; i00 < ne00; i00++) {
  5156. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5157. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5158. id++;
  5159. }
  5160. }
  5161. id += ne00 * (ne01 - ir1);
  5162. }
  5163. }
  5164. } else if (dst->type == GGML_TYPE_F16) {
  5165. size_t id = 0;
  5166. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5167. for (int i03 = 0; i03 < ne03; i03++) {
  5168. for (int i02 = 0; i02 < ne02; i02++) {
  5169. id += ne00 * ir0;
  5170. for (int i01 = ir0; i01 < ir1; i01++) {
  5171. for (int i00 = 0; i00 < ne00; i00++) {
  5172. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5173. dst_ptr[id] = *src0_ptr;
  5174. id++;
  5175. }
  5176. }
  5177. id += ne00 * (ne01 - ir1);
  5178. }
  5179. }
  5180. } else {
  5181. GGML_ASSERT(false); // TODO: implement
  5182. }
  5183. }
  5184. return;
  5185. }
  5186. // dst counters
  5187. int64_t i10 = 0;
  5188. int64_t i11 = 0;
  5189. int64_t i12 = 0;
  5190. int64_t i13 = 0;
  5191. if (dst->type == GGML_TYPE_F16) {
  5192. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5193. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5194. i10 += ne00 * ir0;
  5195. while (i10 >= ne0) {
  5196. i10 -= ne0;
  5197. if (++i11 == ne1) {
  5198. i11 = 0;
  5199. if (++i12 == ne2) {
  5200. i12 = 0;
  5201. if (++i13 == ne3) {
  5202. i13 = 0;
  5203. }
  5204. }
  5205. }
  5206. }
  5207. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5208. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5209. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5210. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5211. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5212. if (++i10 == ne00) {
  5213. i10 = 0;
  5214. if (++i11 == ne01) {
  5215. i11 = 0;
  5216. if (++i12 == ne02) {
  5217. i12 = 0;
  5218. if (++i13 == ne03) {
  5219. i13 = 0;
  5220. }
  5221. }
  5222. }
  5223. }
  5224. }
  5225. }
  5226. i10 += ne00 * (ne01 - ir1);
  5227. while (i10 >= ne0) {
  5228. i10 -= ne0;
  5229. if (++i11 == ne1) {
  5230. i11 = 0;
  5231. if (++i12 == ne2) {
  5232. i12 = 0;
  5233. if (++i13 == ne3) {
  5234. i13 = 0;
  5235. }
  5236. }
  5237. }
  5238. }
  5239. }
  5240. }
  5241. } else if (dst->type == GGML_TYPE_F32) {
  5242. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5243. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5244. i10 += ne00 * ir0;
  5245. while (i10 >= ne0) {
  5246. i10 -= ne0;
  5247. if (++i11 == ne1) {
  5248. i11 = 0;
  5249. if (++i12 == ne2) {
  5250. i12 = 0;
  5251. if (++i13 == ne3) {
  5252. i13 = 0;
  5253. }
  5254. }
  5255. }
  5256. }
  5257. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5258. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5259. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5260. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5261. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5262. if (++i10 == ne0) {
  5263. i10 = 0;
  5264. if (++i11 == ne1) {
  5265. i11 = 0;
  5266. if (++i12 == ne2) {
  5267. i12 = 0;
  5268. if (++i13 == ne3) {
  5269. i13 = 0;
  5270. }
  5271. }
  5272. }
  5273. }
  5274. }
  5275. }
  5276. i10 += ne00 * (ne01 - ir1);
  5277. while (i10 >= ne0) {
  5278. i10 -= ne0;
  5279. if (++i11 == ne1) {
  5280. i11 = 0;
  5281. if (++i12 == ne2) {
  5282. i12 = 0;
  5283. if (++i13 == ne3) {
  5284. i13 = 0;
  5285. }
  5286. }
  5287. }
  5288. }
  5289. }
  5290. }
  5291. } else {
  5292. GGML_ASSERT(false); // TODO: implement
  5293. }
  5294. }
  5295. static void ggml_compute_forward_dup_f32(
  5296. const struct ggml_compute_params * params,
  5297. const struct ggml_tensor * src0,
  5298. struct ggml_tensor * dst) {
  5299. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5300. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5301. return;
  5302. }
  5303. const int64_t ne00 = src0->ne[0];
  5304. const int64_t ne01 = src0->ne[1];
  5305. const int64_t ne02 = src0->ne[2];
  5306. const int64_t ne03 = src0->ne[3];
  5307. const int64_t ne0 = dst->ne[0];
  5308. const int64_t ne1 = dst->ne[1];
  5309. const int64_t ne2 = dst->ne[2];
  5310. const int64_t ne3 = dst->ne[3];
  5311. const size_t nb00 = src0->nb[0];
  5312. const size_t nb01 = src0->nb[1];
  5313. const size_t nb02 = src0->nb[2];
  5314. const size_t nb03 = src0->nb[3];
  5315. const size_t nb0 = dst->nb[0];
  5316. const size_t nb1 = dst->nb[1];
  5317. const size_t nb2 = dst->nb[2];
  5318. const size_t nb3 = dst->nb[3];
  5319. const int ith = params->ith; // thread index
  5320. const int nth = params->nth; // number of threads
  5321. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5322. // parallelize by elements
  5323. const int ne = ggml_nelements(dst);
  5324. const int dr = (ne + nth - 1) / nth;
  5325. const int ie0 = dr * ith;
  5326. const int ie1 = MIN(ie0 + dr, ne);
  5327. memcpy(
  5328. ((char *) dst->data + ie0*nb0),
  5329. ((char *) src0->data + ie0*nb00),
  5330. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5331. return;
  5332. }
  5333. // parallelize by rows
  5334. const int nr = ne01;
  5335. // number of rows per thread
  5336. const int dr = (nr + nth - 1) / nth;
  5337. // row range for this thread
  5338. const int ir0 = dr * ith;
  5339. const int ir1 = MIN(ir0 + dr, nr);
  5340. if (src0->type == dst->type &&
  5341. ne00 == ne0 &&
  5342. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5343. // copy by rows
  5344. const size_t rs = ne00*nb00;
  5345. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5346. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5347. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5348. memcpy(
  5349. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5350. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5351. rs);
  5352. }
  5353. }
  5354. }
  5355. return;
  5356. }
  5357. if (ggml_is_contiguous(dst)) {
  5358. // TODO: simplify
  5359. if (nb00 == sizeof(float)) {
  5360. if (dst->type == GGML_TYPE_F32) {
  5361. size_t id = 0;
  5362. const size_t rs = ne00 * nb00;
  5363. char * dst_ptr = (char *) dst->data;
  5364. for (int i03 = 0; i03 < ne03; i03++) {
  5365. for (int i02 = 0; i02 < ne02; i02++) {
  5366. id += rs * ir0;
  5367. for (int i01 = ir0; i01 < ir1; i01++) {
  5368. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5369. memcpy(dst_ptr + id, src0_ptr, rs);
  5370. id += rs;
  5371. }
  5372. id += rs * (ne01 - ir1);
  5373. }
  5374. }
  5375. } else if (dst->type == GGML_TYPE_F16) {
  5376. size_t id = 0;
  5377. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5378. for (int i03 = 0; i03 < ne03; i03++) {
  5379. for (int i02 = 0; i02 < ne02; i02++) {
  5380. id += ne00 * ir0;
  5381. for (int i01 = ir0; i01 < ir1; i01++) {
  5382. for (int i00 = 0; i00 < ne00; i00++) {
  5383. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5384. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5385. id++;
  5386. }
  5387. }
  5388. id += ne00 * (ne01 - ir1);
  5389. }
  5390. }
  5391. } else if (ggml_is_quantized(dst->type)) {
  5392. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5393. size_t id = 0;
  5394. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5395. char * dst_ptr = (char *) dst->data;
  5396. for (int i03 = 0; i03 < ne03; i03++) {
  5397. for (int i02 = 0; i02 < ne02; i02++) {
  5398. id += rs * ir0;
  5399. for (int i01 = ir0; i01 < ir1; i01++) {
  5400. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5401. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5402. id += rs;
  5403. }
  5404. id += rs * (ne01 - ir1);
  5405. }
  5406. }
  5407. } else {
  5408. GGML_ASSERT(false); // TODO: implement
  5409. }
  5410. } else {
  5411. //printf("%s: this is not optimal - fix me\n", __func__);
  5412. if (dst->type == GGML_TYPE_F32) {
  5413. size_t id = 0;
  5414. float * dst_ptr = (float *) dst->data;
  5415. for (int i03 = 0; i03 < ne03; i03++) {
  5416. for (int i02 = 0; i02 < ne02; i02++) {
  5417. id += ne00 * ir0;
  5418. for (int i01 = ir0; i01 < ir1; i01++) {
  5419. for (int i00 = 0; i00 < ne00; i00++) {
  5420. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5421. dst_ptr[id] = *src0_ptr;
  5422. id++;
  5423. }
  5424. }
  5425. id += ne00 * (ne01 - ir1);
  5426. }
  5427. }
  5428. } else if (dst->type == GGML_TYPE_F16) {
  5429. size_t id = 0;
  5430. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5431. for (int i03 = 0; i03 < ne03; i03++) {
  5432. for (int i02 = 0; i02 < ne02; i02++) {
  5433. id += ne00 * ir0;
  5434. for (int i01 = ir0; i01 < ir1; i01++) {
  5435. for (int i00 = 0; i00 < ne00; i00++) {
  5436. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5437. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5438. id++;
  5439. }
  5440. }
  5441. id += ne00 * (ne01 - ir1);
  5442. }
  5443. }
  5444. } else {
  5445. GGML_ASSERT(false); // TODO: implement
  5446. }
  5447. }
  5448. return;
  5449. }
  5450. // dst counters
  5451. int64_t i10 = 0;
  5452. int64_t i11 = 0;
  5453. int64_t i12 = 0;
  5454. int64_t i13 = 0;
  5455. if (dst->type == GGML_TYPE_F32) {
  5456. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5457. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5458. i10 += ne00 * ir0;
  5459. while (i10 >= ne0) {
  5460. i10 -= ne0;
  5461. if (++i11 == ne1) {
  5462. i11 = 0;
  5463. if (++i12 == ne2) {
  5464. i12 = 0;
  5465. if (++i13 == ne3) {
  5466. i13 = 0;
  5467. }
  5468. }
  5469. }
  5470. }
  5471. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5472. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5473. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5474. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5475. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5476. if (++i10 == ne0) {
  5477. i10 = 0;
  5478. if (++i11 == ne1) {
  5479. i11 = 0;
  5480. if (++i12 == ne2) {
  5481. i12 = 0;
  5482. if (++i13 == ne3) {
  5483. i13 = 0;
  5484. }
  5485. }
  5486. }
  5487. }
  5488. }
  5489. }
  5490. i10 += ne00 * (ne01 - ir1);
  5491. while (i10 >= ne0) {
  5492. i10 -= ne0;
  5493. if (++i11 == ne1) {
  5494. i11 = 0;
  5495. if (++i12 == ne2) {
  5496. i12 = 0;
  5497. if (++i13 == ne3) {
  5498. i13 = 0;
  5499. }
  5500. }
  5501. }
  5502. }
  5503. }
  5504. }
  5505. } else if (dst->type == GGML_TYPE_F16) {
  5506. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5507. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5508. i10 += ne00 * ir0;
  5509. while (i10 >= ne0) {
  5510. i10 -= ne0;
  5511. if (++i11 == ne1) {
  5512. i11 = 0;
  5513. if (++i12 == ne2) {
  5514. i12 = 0;
  5515. if (++i13 == ne3) {
  5516. i13 = 0;
  5517. }
  5518. }
  5519. }
  5520. }
  5521. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5522. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5523. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5524. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5525. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5526. if (++i10 == ne0) {
  5527. i10 = 0;
  5528. if (++i11 == ne1) {
  5529. i11 = 0;
  5530. if (++i12 == ne2) {
  5531. i12 = 0;
  5532. if (++i13 == ne3) {
  5533. i13 = 0;
  5534. }
  5535. }
  5536. }
  5537. }
  5538. }
  5539. }
  5540. i10 += ne00 * (ne01 - ir1);
  5541. while (i10 >= ne0) {
  5542. i10 -= ne0;
  5543. if (++i11 == ne1) {
  5544. i11 = 0;
  5545. if (++i12 == ne2) {
  5546. i12 = 0;
  5547. if (++i13 == ne3) {
  5548. i13 = 0;
  5549. }
  5550. }
  5551. }
  5552. }
  5553. }
  5554. }
  5555. } else {
  5556. GGML_ASSERT(false); // TODO: implement
  5557. }
  5558. }
  5559. static void ggml_compute_forward_dup(
  5560. const struct ggml_compute_params * params,
  5561. const struct ggml_tensor * src0,
  5562. struct ggml_tensor * dst) {
  5563. switch (src0->type) {
  5564. case GGML_TYPE_F16:
  5565. {
  5566. ggml_compute_forward_dup_f16(params, src0, dst);
  5567. } break;
  5568. case GGML_TYPE_F32:
  5569. {
  5570. ggml_compute_forward_dup_f32(params, src0, dst);
  5571. } break;
  5572. default:
  5573. {
  5574. GGML_ASSERT(false);
  5575. } break;
  5576. }
  5577. }
  5578. // ggml_compute_forward_add
  5579. static void ggml_compute_forward_add_f32(
  5580. const struct ggml_compute_params * params,
  5581. const struct ggml_tensor * src0,
  5582. const struct ggml_tensor * src1,
  5583. struct ggml_tensor * dst) {
  5584. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5585. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5586. return;
  5587. }
  5588. const int ith = params->ith;
  5589. const int nth = params->nth;
  5590. const int n = ggml_nrows(src0);
  5591. const int nc = src0->ne[0];
  5592. const size_t nb00 = src0->nb[0];
  5593. const size_t nb01 = src0->nb[1];
  5594. const size_t nb10 = src1->nb[0];
  5595. const size_t nb11 = src1->nb[1];
  5596. const size_t nb0 = dst->nb[0];
  5597. const size_t nb1 = dst->nb[1];
  5598. GGML_ASSERT( nb0 == sizeof(float));
  5599. GGML_ASSERT(nb00 == sizeof(float));
  5600. if (nb10 == sizeof(float)) {
  5601. for (int j = ith; j < n; j += nth) {
  5602. #ifdef GGML_USE_ACCELERATE
  5603. vDSP_vadd(
  5604. (float *) ((char *) src0->data + j*nb01), 1,
  5605. (float *) ((char *) src1->data + j*nb11), 1,
  5606. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5607. #else
  5608. ggml_vec_add_f32(nc,
  5609. (float *) ((char *) dst->data + j*nb1),
  5610. (float *) ((char *) src0->data + j*nb01),
  5611. (float *) ((char *) src1->data + j*nb11));
  5612. #endif
  5613. }
  5614. } else {
  5615. // src1 is not contiguous
  5616. for (int j = ith; j < n; j += nth) {
  5617. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5618. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5619. for (int i = 0; i < nc; i++) {
  5620. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5621. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5622. }
  5623. }
  5624. }
  5625. }
  5626. static void ggml_compute_forward_add_f16_f32(
  5627. const struct ggml_compute_params * params,
  5628. const struct ggml_tensor * src0,
  5629. const struct ggml_tensor * src1,
  5630. struct ggml_tensor * dst) {
  5631. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5632. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5633. return;
  5634. }
  5635. const int ith = params->ith;
  5636. const int nth = params->nth;
  5637. const int n = ggml_nrows(src0);
  5638. const int nc = src0->ne[0];
  5639. const size_t nb00 = src0->nb[0];
  5640. const size_t nb01 = src0->nb[1];
  5641. const size_t nb10 = src1->nb[0];
  5642. const size_t nb11 = src1->nb[1];
  5643. const size_t nb0 = dst->nb[0];
  5644. const size_t nb1 = dst->nb[1];
  5645. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5646. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5647. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5648. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5649. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5650. if (nb10 == sizeof(float)) {
  5651. for (int j = ith; j < n; j += nth) {
  5652. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5653. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5654. for (int i = 0; i < nc; i++) {
  5655. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5656. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5657. }
  5658. }
  5659. }
  5660. else {
  5661. // src1 is not contiguous
  5662. GGML_ASSERT(false);
  5663. }
  5664. }
  5665. static void ggml_compute_forward_add_f16_f16(
  5666. const struct ggml_compute_params * params,
  5667. const struct ggml_tensor * src0,
  5668. const struct ggml_tensor * src1,
  5669. struct ggml_tensor * dst) {
  5670. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5671. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5672. return;
  5673. }
  5674. const int ith = params->ith;
  5675. const int nth = params->nth;
  5676. const int n = ggml_nrows(src0);
  5677. const int nc = src0->ne[0];
  5678. const size_t nb00 = src0->nb[0];
  5679. const size_t nb01 = src0->nb[1];
  5680. const size_t nb10 = src1->nb[0];
  5681. const size_t nb11 = src1->nb[1];
  5682. const size_t nb0 = dst->nb[0];
  5683. const size_t nb1 = dst->nb[1];
  5684. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5685. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5686. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5687. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5688. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5689. if (nb10 == sizeof(ggml_fp16_t)) {
  5690. for (int j = ith; j < n; j += nth) {
  5691. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5692. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5693. for (int i = 0; i < nc; i++) {
  5694. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5695. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5696. }
  5697. }
  5698. }
  5699. else {
  5700. // src1 is not contiguous
  5701. GGML_ASSERT(false);
  5702. }
  5703. }
  5704. static void ggml_compute_forward_add_q_f32(
  5705. const struct ggml_compute_params * params,
  5706. const struct ggml_tensor * src0,
  5707. const struct ggml_tensor * src1,
  5708. struct ggml_tensor * dst) {
  5709. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5710. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5711. return;
  5712. }
  5713. const int64_t ne00 = src0->ne[0];
  5714. const int64_t ne01 = src0->ne[1];
  5715. const int64_t ne02 = src0->ne[2];
  5716. const int64_t ne03 = src0->ne[3];
  5717. //const int64_t ne10 = src1->ne[0];
  5718. //const int64_t ne11 = src1->ne[1];
  5719. const int64_t ne12 = src1->ne[2];
  5720. const int64_t ne13 = src1->ne[3];
  5721. //const int64_t ne0 = dst->ne[0];
  5722. //const int64_t ne1 = dst->ne[1];
  5723. const int64_t ne2 = dst->ne[2];
  5724. const int64_t ne3 = dst->ne[3];
  5725. const int nb00 = src0->nb[0];
  5726. const int nb01 = src0->nb[1];
  5727. const int nb02 = src0->nb[2];
  5728. const int nb03 = src0->nb[3];
  5729. const int nb10 = src1->nb[0];
  5730. const int nb11 = src1->nb[1];
  5731. const int nb12 = src1->nb[2];
  5732. const int nb13 = src1->nb[3];
  5733. const int nb0 = dst->nb[0];
  5734. const int nb1 = dst->nb[1];
  5735. const int nb2 = dst->nb[2];
  5736. const int nb3 = dst->nb[3];
  5737. const int ith = params->ith;
  5738. const int nth = params->nth;
  5739. GGML_ASSERT(ne02 == ne12);
  5740. GGML_ASSERT(ne03 == ne13);
  5741. GGML_ASSERT(ne2 == ne12);
  5742. GGML_ASSERT(ne3 == ne13);
  5743. const enum ggml_type type = src0->type;
  5744. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5745. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5746. // we don't support permuted src0 or src1
  5747. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5748. GGML_ASSERT(nb10 == sizeof(float));
  5749. // dst cannot be transposed or permuted
  5750. GGML_ASSERT(nb0 <= nb1);
  5751. GGML_ASSERT(nb1 <= nb2);
  5752. GGML_ASSERT(nb2 <= nb3);
  5753. GGML_ASSERT(ggml_is_quantized(src0->type));
  5754. GGML_ASSERT(dst->type == src0->type);
  5755. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5756. // total rows in src0
  5757. const int nr = ne01*ne02*ne03;
  5758. // rows per thread
  5759. const int dr = (nr + nth - 1)/nth;
  5760. // row range for this thread
  5761. const int ir0 = dr*ith;
  5762. const int ir1 = MIN(ir0 + dr, nr);
  5763. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5764. for (int ir = ir0; ir < ir1; ++ir) {
  5765. // src0 indices
  5766. const int i03 = ir/(ne02*ne01);
  5767. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5768. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5769. // src1 and dst are same shape as src0 => same indices
  5770. const int i13 = i03;
  5771. const int i12 = i02;
  5772. const int i11 = i01;
  5773. const int i3 = i03;
  5774. const int i2 = i02;
  5775. const int i1 = i01;
  5776. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5777. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5778. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5779. assert(ne00 % 32 == 0);
  5780. // unquantize row from src0 to temp buffer
  5781. dequantize_row_q(src0_row, wdata, ne00);
  5782. // add src1
  5783. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5784. // quantize row to dst
  5785. quantize_row_q(wdata, dst_row, ne00);
  5786. }
  5787. }
  5788. static void ggml_compute_forward_add(
  5789. const struct ggml_compute_params * params,
  5790. const struct ggml_tensor * src0,
  5791. const struct ggml_tensor * src1,
  5792. struct ggml_tensor * dst) {
  5793. switch (src0->type) {
  5794. case GGML_TYPE_F32:
  5795. {
  5796. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5797. } break;
  5798. case GGML_TYPE_F16:
  5799. {
  5800. if (src1->type == GGML_TYPE_F16) {
  5801. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5802. }
  5803. else if (src1->type == GGML_TYPE_F32) {
  5804. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5805. }
  5806. else {
  5807. GGML_ASSERT(false);
  5808. }
  5809. } break;
  5810. case GGML_TYPE_Q4_0:
  5811. case GGML_TYPE_Q4_1:
  5812. case GGML_TYPE_Q4_2:
  5813. case GGML_TYPE_Q5_0:
  5814. case GGML_TYPE_Q5_1:
  5815. case GGML_TYPE_Q8_0:
  5816. {
  5817. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5818. } break;
  5819. default:
  5820. {
  5821. GGML_ASSERT(false);
  5822. } break;
  5823. }
  5824. }
  5825. // ggml_compute_forward_sub
  5826. static void ggml_compute_forward_sub_f32(
  5827. const struct ggml_compute_params * params,
  5828. const struct ggml_tensor * src0,
  5829. const struct ggml_tensor * src1,
  5830. struct ggml_tensor * dst) {
  5831. assert(params->ith == 0);
  5832. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5833. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5834. return;
  5835. }
  5836. const int n = ggml_nrows(src0);
  5837. const int nc = src0->ne[0];
  5838. assert( dst->nb[0] == sizeof(float));
  5839. assert(src0->nb[0] == sizeof(float));
  5840. assert(src1->nb[0] == sizeof(float));
  5841. for (int i = 0; i < n; i++) {
  5842. ggml_vec_sub_f32(nc,
  5843. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5844. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5845. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5846. }
  5847. }
  5848. static void ggml_compute_forward_sub(
  5849. const struct ggml_compute_params * params,
  5850. const struct ggml_tensor * src0,
  5851. const struct ggml_tensor * src1,
  5852. struct ggml_tensor * dst) {
  5853. switch (src0->type) {
  5854. case GGML_TYPE_F32:
  5855. {
  5856. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5857. } break;
  5858. default:
  5859. {
  5860. GGML_ASSERT(false);
  5861. } break;
  5862. }
  5863. }
  5864. // ggml_compute_forward_mul
  5865. static void ggml_compute_forward_mul_f32(
  5866. const struct ggml_compute_params * params,
  5867. const struct ggml_tensor * src0,
  5868. const struct ggml_tensor * src1,
  5869. struct ggml_tensor * dst) {
  5870. assert(params->ith == 0);
  5871. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5872. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5873. return;
  5874. }
  5875. const int n = ggml_nrows(src0);
  5876. const int nc = src0->ne[0];
  5877. assert( dst->nb[0] == sizeof(float));
  5878. assert(src0->nb[0] == sizeof(float));
  5879. assert(src1->nb[0] == sizeof(float));
  5880. for (int i = 0; i < n; i++) {
  5881. ggml_vec_mul_f32(nc,
  5882. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5883. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5884. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5885. }
  5886. }
  5887. static void ggml_compute_forward_mul(
  5888. const struct ggml_compute_params * params,
  5889. const struct ggml_tensor * src0,
  5890. const struct ggml_tensor * src1,
  5891. struct ggml_tensor * dst) {
  5892. switch (src0->type) {
  5893. case GGML_TYPE_F32:
  5894. {
  5895. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5896. } break;
  5897. default:
  5898. {
  5899. GGML_ASSERT(false);
  5900. } break;
  5901. }
  5902. }
  5903. // ggml_compute_forward_div
  5904. static void ggml_compute_forward_div_f32(
  5905. const struct ggml_compute_params * params,
  5906. const struct ggml_tensor * src0,
  5907. const struct ggml_tensor * src1,
  5908. struct ggml_tensor * dst) {
  5909. assert(params->ith == 0);
  5910. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5911. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5912. return;
  5913. }
  5914. const int n = ggml_nrows(src0);
  5915. const int nc = src0->ne[0];
  5916. assert( dst->nb[0] == sizeof(float));
  5917. assert(src0->nb[0] == sizeof(float));
  5918. assert(src1->nb[0] == sizeof(float));
  5919. for (int i = 0; i < n; i++) {
  5920. ggml_vec_div_f32(nc,
  5921. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5922. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5923. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5924. }
  5925. }
  5926. static void ggml_compute_forward_div(
  5927. const struct ggml_compute_params * params,
  5928. const struct ggml_tensor * src0,
  5929. const struct ggml_tensor * src1,
  5930. struct ggml_tensor * dst) {
  5931. switch (src0->type) {
  5932. case GGML_TYPE_F32:
  5933. {
  5934. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5935. } break;
  5936. default:
  5937. {
  5938. GGML_ASSERT(false);
  5939. } break;
  5940. }
  5941. }
  5942. // ggml_compute_forward_sqr
  5943. static void ggml_compute_forward_sqr_f32(
  5944. const struct ggml_compute_params * params,
  5945. const struct ggml_tensor * src0,
  5946. struct ggml_tensor * dst) {
  5947. assert(params->ith == 0);
  5948. assert(ggml_are_same_shape(src0, dst));
  5949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5950. return;
  5951. }
  5952. const int n = ggml_nrows(src0);
  5953. const int nc = src0->ne[0];
  5954. assert( dst->nb[0] == sizeof(float));
  5955. assert(src0->nb[0] == sizeof(float));
  5956. for (int i = 0; i < n; i++) {
  5957. ggml_vec_sqr_f32(nc,
  5958. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5959. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5960. }
  5961. }
  5962. static void ggml_compute_forward_sqr(
  5963. const struct ggml_compute_params * params,
  5964. const struct ggml_tensor * src0,
  5965. struct ggml_tensor * dst) {
  5966. switch (src0->type) {
  5967. case GGML_TYPE_F32:
  5968. {
  5969. ggml_compute_forward_sqr_f32(params, src0, dst);
  5970. } break;
  5971. default:
  5972. {
  5973. GGML_ASSERT(false);
  5974. } break;
  5975. }
  5976. }
  5977. // ggml_compute_forward_sqrt
  5978. static void ggml_compute_forward_sqrt_f32(
  5979. const struct ggml_compute_params * params,
  5980. const struct ggml_tensor * src0,
  5981. struct ggml_tensor * dst) {
  5982. assert(params->ith == 0);
  5983. assert(ggml_are_same_shape(src0, dst));
  5984. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5985. return;
  5986. }
  5987. const int n = ggml_nrows(src0);
  5988. const int nc = src0->ne[0];
  5989. assert( dst->nb[0] == sizeof(float));
  5990. assert(src0->nb[0] == sizeof(float));
  5991. for (int i = 0; i < n; i++) {
  5992. ggml_vec_sqrt_f32(nc,
  5993. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5994. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5995. }
  5996. }
  5997. static void ggml_compute_forward_sqrt(
  5998. const struct ggml_compute_params * params,
  5999. const struct ggml_tensor * src0,
  6000. struct ggml_tensor * dst) {
  6001. switch (src0->type) {
  6002. case GGML_TYPE_F32:
  6003. {
  6004. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6005. } break;
  6006. default:
  6007. {
  6008. GGML_ASSERT(false);
  6009. } break;
  6010. }
  6011. }
  6012. // ggml_compute_forward_sum
  6013. static void ggml_compute_forward_sum_f32(
  6014. const struct ggml_compute_params * params,
  6015. const struct ggml_tensor * src0,
  6016. struct ggml_tensor * dst) {
  6017. assert(params->ith == 0);
  6018. assert(ggml_is_scalar(dst));
  6019. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6020. return;
  6021. }
  6022. assert(ggml_is_scalar(dst));
  6023. assert(src0->nb[0] == sizeof(float));
  6024. const int64_t ne00 = src0->ne[0];
  6025. const int64_t ne01 = src0->ne[1];
  6026. const int64_t ne02 = src0->ne[2];
  6027. const int64_t ne03 = src0->ne[3];
  6028. const size_t nb01 = src0->nb[1];
  6029. const size_t nb02 = src0->nb[2];
  6030. const size_t nb03 = src0->nb[3];
  6031. ggml_float sum = 0;
  6032. ggml_float row_sum = 0;
  6033. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6034. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6035. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6036. ggml_vec_sum_ggf(ne00,
  6037. &row_sum,
  6038. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6039. sum += row_sum;
  6040. }
  6041. }
  6042. }
  6043. ((float *) dst->data)[0] = sum;
  6044. }
  6045. static void ggml_compute_forward_sum(
  6046. const struct ggml_compute_params * params,
  6047. const struct ggml_tensor * src0,
  6048. struct ggml_tensor * dst) {
  6049. switch (src0->type) {
  6050. case GGML_TYPE_F32:
  6051. {
  6052. ggml_compute_forward_sum_f32(params, src0, dst);
  6053. } break;
  6054. default:
  6055. {
  6056. GGML_ASSERT(false);
  6057. } break;
  6058. }
  6059. }
  6060. // ggml_compute_forward_mean
  6061. static void ggml_compute_forward_mean_f32(
  6062. const struct ggml_compute_params * params,
  6063. const struct ggml_tensor * src0,
  6064. struct ggml_tensor * dst) {
  6065. assert(params->ith == 0);
  6066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6067. return;
  6068. }
  6069. assert(src0->nb[0] == sizeof(float));
  6070. const int64_t ne00 = src0->ne[0];
  6071. const int64_t ne01 = src0->ne[1];
  6072. const int64_t ne02 = src0->ne[2];
  6073. const int64_t ne03 = src0->ne[3];
  6074. const size_t nb01 = src0->nb[1];
  6075. const size_t nb02 = src0->nb[2];
  6076. const size_t nb03 = src0->nb[3];
  6077. const int64_t ne0 = dst->ne[0];
  6078. const int64_t ne1 = dst->ne[1];
  6079. const int64_t ne2 = dst->ne[2];
  6080. const int64_t ne3 = dst->ne[3];
  6081. assert(ne0 == 1);
  6082. assert(ne1 == ne01);
  6083. assert(ne2 == ne02);
  6084. assert(ne3 == ne03);
  6085. UNUSED(ne0);
  6086. UNUSED(ne1);
  6087. UNUSED(ne2);
  6088. UNUSED(ne3);
  6089. const size_t nb1 = dst->nb[1];
  6090. const size_t nb2 = dst->nb[2];
  6091. const size_t nb3 = dst->nb[3];
  6092. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6093. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6094. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6095. ggml_vec_sum_f32(ne00,
  6096. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6097. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6098. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6099. }
  6100. }
  6101. }
  6102. }
  6103. static void ggml_compute_forward_mean(
  6104. const struct ggml_compute_params * params,
  6105. const struct ggml_tensor * src0,
  6106. struct ggml_tensor * dst) {
  6107. switch (src0->type) {
  6108. case GGML_TYPE_F32:
  6109. {
  6110. ggml_compute_forward_mean_f32(params, src0, dst);
  6111. } break;
  6112. default:
  6113. {
  6114. GGML_ASSERT(false);
  6115. } break;
  6116. }
  6117. }
  6118. // ggml_compute_forward_repeat
  6119. static void ggml_compute_forward_repeat_f32(
  6120. const struct ggml_compute_params * params,
  6121. const struct ggml_tensor * src0,
  6122. struct ggml_tensor * dst) {
  6123. assert(params->ith == 0);
  6124. assert(ggml_can_repeat(src0, dst));
  6125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6126. return;
  6127. }
  6128. // TODO: implement support for rank > 2 tensors
  6129. assert(src0->ne[2] == 1);
  6130. assert(src0->ne[3] == 1);
  6131. assert( dst->ne[2] == 1);
  6132. assert( dst->ne[3] == 1);
  6133. const int nc = dst->ne[0];
  6134. const int nr = dst->ne[1];
  6135. const int nc0 = src0->ne[0];
  6136. const int nr0 = src0->ne[1];
  6137. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6138. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6139. // TODO: support for transposed / permuted tensors
  6140. assert( dst->nb[0] == sizeof(float));
  6141. assert(src0->nb[0] == sizeof(float));
  6142. // TODO: maybe this is not optimal?
  6143. for (int i = 0; i < nrr; i++) {
  6144. for (int j = 0; j < ncr; j++) {
  6145. for (int k = 0; k < nr0; k++) {
  6146. ggml_vec_cpy_f32(nc0,
  6147. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6148. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6149. }
  6150. }
  6151. }
  6152. }
  6153. static void ggml_compute_forward_repeat(
  6154. const struct ggml_compute_params * params,
  6155. const struct ggml_tensor * src0,
  6156. struct ggml_tensor * dst) {
  6157. switch (src0->type) {
  6158. case GGML_TYPE_F32:
  6159. {
  6160. ggml_compute_forward_repeat_f32(params, src0, dst);
  6161. } break;
  6162. default:
  6163. {
  6164. GGML_ASSERT(false);
  6165. } break;
  6166. }
  6167. }
  6168. // ggml_compute_forward_abs
  6169. static void ggml_compute_forward_abs_f32(
  6170. const struct ggml_compute_params * params,
  6171. const struct ggml_tensor * src0,
  6172. struct ggml_tensor * dst) {
  6173. assert(params->ith == 0);
  6174. assert(ggml_are_same_shape(src0, dst));
  6175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6176. return;
  6177. }
  6178. const int n = ggml_nrows(src0);
  6179. const int nc = src0->ne[0];
  6180. assert(dst->nb[0] == sizeof(float));
  6181. assert(src0->nb[0] == sizeof(float));
  6182. for (int i = 0; i < n; i++) {
  6183. ggml_vec_abs_f32(nc,
  6184. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6185. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6186. }
  6187. }
  6188. static void ggml_compute_forward_abs(
  6189. const struct ggml_compute_params * params,
  6190. const struct ggml_tensor * src0,
  6191. struct ggml_tensor * dst) {
  6192. switch (src0->type) {
  6193. case GGML_TYPE_F32:
  6194. {
  6195. ggml_compute_forward_abs_f32(params, src0, dst);
  6196. } break;
  6197. default:
  6198. {
  6199. GGML_ASSERT(false);
  6200. } break;
  6201. }
  6202. }
  6203. // ggml_compute_forward_sgn
  6204. static void ggml_compute_forward_sgn_f32(
  6205. const struct ggml_compute_params * params,
  6206. const struct ggml_tensor * src0,
  6207. struct ggml_tensor * dst) {
  6208. assert(params->ith == 0);
  6209. assert(ggml_are_same_shape(src0, dst));
  6210. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6211. return;
  6212. }
  6213. const int n = ggml_nrows(src0);
  6214. const int nc = src0->ne[0];
  6215. assert(dst->nb[0] == sizeof(float));
  6216. assert(src0->nb[0] == sizeof(float));
  6217. for (int i = 0; i < n; i++) {
  6218. ggml_vec_sgn_f32(nc,
  6219. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6220. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6221. }
  6222. }
  6223. static void ggml_compute_forward_sgn(
  6224. const struct ggml_compute_params * params,
  6225. const struct ggml_tensor * src0,
  6226. struct ggml_tensor * dst) {
  6227. switch (src0->type) {
  6228. case GGML_TYPE_F32:
  6229. {
  6230. ggml_compute_forward_sgn_f32(params, src0, dst);
  6231. } break;
  6232. default:
  6233. {
  6234. GGML_ASSERT(false);
  6235. } break;
  6236. }
  6237. }
  6238. // ggml_compute_forward_neg
  6239. static void ggml_compute_forward_neg_f32(
  6240. const struct ggml_compute_params * params,
  6241. const struct ggml_tensor * src0,
  6242. struct ggml_tensor * dst) {
  6243. assert(params->ith == 0);
  6244. assert(ggml_are_same_shape(src0, dst));
  6245. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6246. return;
  6247. }
  6248. const int n = ggml_nrows(src0);
  6249. const int nc = src0->ne[0];
  6250. assert(dst->nb[0] == sizeof(float));
  6251. assert(src0->nb[0] == sizeof(float));
  6252. for (int i = 0; i < n; i++) {
  6253. ggml_vec_neg_f32(nc,
  6254. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6255. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6256. }
  6257. }
  6258. static void ggml_compute_forward_neg(
  6259. const struct ggml_compute_params * params,
  6260. const struct ggml_tensor * src0,
  6261. struct ggml_tensor * dst) {
  6262. switch (src0->type) {
  6263. case GGML_TYPE_F32:
  6264. {
  6265. ggml_compute_forward_neg_f32(params, src0, dst);
  6266. } break;
  6267. default:
  6268. {
  6269. GGML_ASSERT(false);
  6270. } break;
  6271. }
  6272. }
  6273. // ggml_compute_forward_step
  6274. static void ggml_compute_forward_step_f32(
  6275. const struct ggml_compute_params * params,
  6276. const struct ggml_tensor * src0,
  6277. struct ggml_tensor * dst) {
  6278. assert(params->ith == 0);
  6279. assert(ggml_are_same_shape(src0, dst));
  6280. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6281. return;
  6282. }
  6283. const int n = ggml_nrows(src0);
  6284. const int nc = src0->ne[0];
  6285. assert(dst->nb[0] == sizeof(float));
  6286. assert(src0->nb[0] == sizeof(float));
  6287. for (int i = 0; i < n; i++) {
  6288. ggml_vec_step_f32(nc,
  6289. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6290. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6291. }
  6292. }
  6293. static void ggml_compute_forward_step(
  6294. const struct ggml_compute_params * params,
  6295. const struct ggml_tensor * src0,
  6296. struct ggml_tensor * dst) {
  6297. switch (src0->type) {
  6298. case GGML_TYPE_F32:
  6299. {
  6300. ggml_compute_forward_step_f32(params, src0, dst);
  6301. } break;
  6302. default:
  6303. {
  6304. GGML_ASSERT(false);
  6305. } break;
  6306. }
  6307. }
  6308. // ggml_compute_forward_relu
  6309. static void ggml_compute_forward_relu_f32(
  6310. const struct ggml_compute_params * params,
  6311. const struct ggml_tensor * src0,
  6312. struct ggml_tensor * dst) {
  6313. assert(params->ith == 0);
  6314. assert(ggml_are_same_shape(src0, dst));
  6315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6316. return;
  6317. }
  6318. const int n = ggml_nrows(src0);
  6319. const int nc = src0->ne[0];
  6320. assert(dst->nb[0] == sizeof(float));
  6321. assert(src0->nb[0] == sizeof(float));
  6322. for (int i = 0; i < n; i++) {
  6323. ggml_vec_relu_f32(nc,
  6324. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6325. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6326. }
  6327. }
  6328. static void ggml_compute_forward_relu(
  6329. const struct ggml_compute_params * params,
  6330. const struct ggml_tensor * src0,
  6331. struct ggml_tensor * dst) {
  6332. switch (src0->type) {
  6333. case GGML_TYPE_F32:
  6334. {
  6335. ggml_compute_forward_relu_f32(params, src0, dst);
  6336. } break;
  6337. default:
  6338. {
  6339. GGML_ASSERT(false);
  6340. } break;
  6341. }
  6342. }
  6343. // ggml_compute_forward_gelu
  6344. static void ggml_compute_forward_gelu_f32(
  6345. const struct ggml_compute_params * params,
  6346. const struct ggml_tensor * src0,
  6347. struct ggml_tensor * dst) {
  6348. GGML_ASSERT(ggml_is_contiguous(src0));
  6349. GGML_ASSERT(ggml_is_contiguous(dst));
  6350. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6351. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6352. return;
  6353. }
  6354. const int ith = params->ith;
  6355. const int nth = params->nth;
  6356. const int nc = src0->ne[0];
  6357. const int nr = ggml_nrows(src0);
  6358. // rows per thread
  6359. const int dr = (nr + nth - 1)/nth;
  6360. // row range for this thread
  6361. const int ir0 = dr*ith;
  6362. const int ir1 = MIN(ir0 + dr, nr);
  6363. for (int i1 = ir0; i1 < ir1; i1++) {
  6364. ggml_vec_gelu_f32(nc,
  6365. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6366. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6367. #ifndef NDEBUG
  6368. for (int k = 0; k < nc; k++) {
  6369. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6370. UNUSED(x);
  6371. assert(!isnan(x));
  6372. assert(!isinf(x));
  6373. }
  6374. #endif
  6375. }
  6376. }
  6377. static void ggml_compute_forward_gelu(
  6378. const struct ggml_compute_params * params,
  6379. const struct ggml_tensor * src0,
  6380. struct ggml_tensor * dst) {
  6381. switch (src0->type) {
  6382. case GGML_TYPE_F32:
  6383. {
  6384. ggml_compute_forward_gelu_f32(params, src0, dst);
  6385. } break;
  6386. default:
  6387. {
  6388. GGML_ASSERT(false);
  6389. } break;
  6390. }
  6391. //printf("XXXXXXXX gelu\n");
  6392. }
  6393. // ggml_compute_forward_silu
  6394. static void ggml_compute_forward_silu_f32(
  6395. const struct ggml_compute_params * params,
  6396. const struct ggml_tensor * src0,
  6397. struct ggml_tensor * dst) {
  6398. GGML_ASSERT(ggml_is_contiguous(src0));
  6399. GGML_ASSERT(ggml_is_contiguous(dst));
  6400. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6401. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6402. return;
  6403. }
  6404. const int ith = params->ith;
  6405. const int nth = params->nth;
  6406. const int nc = src0->ne[0];
  6407. const int nr = ggml_nrows(src0);
  6408. // rows per thread
  6409. const int dr = (nr + nth - 1)/nth;
  6410. // row range for this thread
  6411. const int ir0 = dr*ith;
  6412. const int ir1 = MIN(ir0 + dr, nr);
  6413. for (int i1 = ir0; i1 < ir1; i1++) {
  6414. ggml_vec_silu_f32(nc,
  6415. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6416. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6417. #ifndef NDEBUG
  6418. for (int k = 0; k < nc; k++) {
  6419. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6420. UNUSED(x);
  6421. assert(!isnan(x));
  6422. assert(!isinf(x));
  6423. }
  6424. #endif
  6425. }
  6426. }
  6427. static void ggml_compute_forward_silu(
  6428. const struct ggml_compute_params * params,
  6429. const struct ggml_tensor * src0,
  6430. struct ggml_tensor * dst) {
  6431. switch (src0->type) {
  6432. case GGML_TYPE_F32:
  6433. {
  6434. ggml_compute_forward_silu_f32(params, src0, dst);
  6435. } break;
  6436. default:
  6437. {
  6438. GGML_ASSERT(false);
  6439. } break;
  6440. }
  6441. }
  6442. // ggml_compute_forward_norm
  6443. static void ggml_compute_forward_norm_f32(
  6444. const struct ggml_compute_params * params,
  6445. const struct ggml_tensor * src0,
  6446. struct ggml_tensor * dst) {
  6447. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6448. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6449. return;
  6450. }
  6451. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6452. const int ith = params->ith;
  6453. const int nth = params->nth;
  6454. const int64_t ne00 = src0->ne[0];
  6455. const int64_t ne01 = src0->ne[1];
  6456. const int64_t ne02 = src0->ne[2];
  6457. const int64_t ne03 = src0->ne[3];
  6458. const size_t nb01 = src0->nb[1];
  6459. const size_t nb02 = src0->nb[2];
  6460. const size_t nb03 = src0->nb[3];
  6461. const size_t nb1 = dst->nb[1];
  6462. const size_t nb2 = dst->nb[2];
  6463. const size_t nb3 = dst->nb[3];
  6464. const float eps = 1e-5f; // TODO: make this a parameter
  6465. // TODO: optimize
  6466. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6467. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6468. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6469. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6470. ggml_float sum = 0.0;
  6471. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6472. sum += (ggml_float)x[i00];
  6473. }
  6474. float mean = sum/ne00;
  6475. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6476. ggml_float sum2 = 0.0;
  6477. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6478. float v = x[i00] - mean;
  6479. y[i00] = v;
  6480. sum2 += (ggml_float)(v*v);
  6481. }
  6482. float variance = sum2/ne00;
  6483. const float scale = 1.0f/sqrtf(variance + eps);
  6484. ggml_vec_scale_f32(ne00, y, scale);
  6485. }
  6486. }
  6487. }
  6488. }
  6489. static void ggml_compute_forward_norm(
  6490. const struct ggml_compute_params * params,
  6491. const struct ggml_tensor * src0,
  6492. struct ggml_tensor * dst) {
  6493. switch (src0->type) {
  6494. case GGML_TYPE_F32:
  6495. {
  6496. ggml_compute_forward_norm_f32(params, src0, dst);
  6497. } break;
  6498. default:
  6499. {
  6500. GGML_ASSERT(false);
  6501. } break;
  6502. }
  6503. }
  6504. static void ggml_compute_forward_rms_norm_f32(
  6505. const struct ggml_compute_params * params,
  6506. const struct ggml_tensor * src0,
  6507. struct ggml_tensor * dst) {
  6508. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6509. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6510. return;
  6511. }
  6512. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6513. const int ith = params->ith;
  6514. const int nth = params->nth;
  6515. const int64_t ne00 = src0->ne[0];
  6516. const int64_t ne01 = src0->ne[1];
  6517. const int64_t ne02 = src0->ne[2];
  6518. const int64_t ne03 = src0->ne[3];
  6519. const size_t nb01 = src0->nb[1];
  6520. const size_t nb02 = src0->nb[2];
  6521. const size_t nb03 = src0->nb[3];
  6522. const size_t nb1 = dst->nb[1];
  6523. const size_t nb2 = dst->nb[2];
  6524. const size_t nb3 = dst->nb[3];
  6525. const float eps = 1e-6f; // TODO: make this a parameter
  6526. // TODO: optimize
  6527. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6528. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6529. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6530. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6531. ggml_float sum = 0.0;
  6532. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6533. sum += (ggml_float)(x[i00] * x[i00]);
  6534. }
  6535. float mean = sum/ne00;
  6536. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6537. memcpy(y, x, ne00 * sizeof(float));
  6538. // for (int i00 = 0; i00 < ne00; i00++) {
  6539. // y[i00] = x[i00];
  6540. // }
  6541. const float scale = 1.0f/sqrtf(mean + eps);
  6542. ggml_vec_scale_f32(ne00, y, scale);
  6543. }
  6544. }
  6545. }
  6546. }
  6547. static void ggml_compute_forward_rms_norm(
  6548. const struct ggml_compute_params * params,
  6549. const struct ggml_tensor * src0,
  6550. struct ggml_tensor * dst) {
  6551. switch (src0->type) {
  6552. case GGML_TYPE_F32:
  6553. {
  6554. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6555. } break;
  6556. default:
  6557. {
  6558. GGML_ASSERT(false);
  6559. } break;
  6560. }
  6561. }
  6562. // ggml_compute_forward_mul_mat
  6563. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6564. // helper function to determine if it is better to use BLAS or not
  6565. // for large matrices, BLAS is faster
  6566. static bool ggml_compute_forward_mul_mat_use_blas(
  6567. const struct ggml_tensor * src0,
  6568. const struct ggml_tensor * src1,
  6569. struct ggml_tensor * dst) {
  6570. //const int64_t ne00 = src0->ne[0];
  6571. //const int64_t ne01 = src0->ne[1];
  6572. const int64_t ne10 = src1->ne[0];
  6573. const int64_t ne0 = dst->ne[0];
  6574. const int64_t ne1 = dst->ne[1];
  6575. // TODO: find the optimal values for these
  6576. if (ggml_is_contiguous(src0) &&
  6577. ggml_is_contiguous(src1) &&
  6578. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  6579. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6580. return true;
  6581. }
  6582. return false;
  6583. }
  6584. #endif
  6585. static void ggml_compute_forward_mul_mat_f32(
  6586. const struct ggml_compute_params * params,
  6587. const struct ggml_tensor * src0,
  6588. const struct ggml_tensor * src1,
  6589. struct ggml_tensor * dst) {
  6590. int64_t t0 = ggml_perf_time_us();
  6591. UNUSED(t0);
  6592. const int64_t ne00 = src0->ne[0];
  6593. const int64_t ne01 = src0->ne[1];
  6594. const int64_t ne02 = src0->ne[2];
  6595. const int64_t ne03 = src0->ne[3];
  6596. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6597. const int64_t ne10 = src1->ne[0];
  6598. #endif
  6599. const int64_t ne11 = src1->ne[1];
  6600. #ifndef NDEBUG
  6601. const int64_t ne12 = src1->ne[2];
  6602. const int64_t ne13 = src1->ne[3];
  6603. const int64_t ne0 = dst->ne[0];
  6604. const int64_t ne1 = dst->ne[1];
  6605. const int64_t ne2 = dst->ne[2];
  6606. const int64_t ne3 = dst->ne[3];
  6607. const int nb00 = src0->nb[0];
  6608. #endif
  6609. const int nb01 = src0->nb[1];
  6610. const int nb02 = src0->nb[2];
  6611. const int nb03 = src0->nb[3];
  6612. #ifndef NDEBUG
  6613. const int nb10 = src1->nb[0];
  6614. #endif
  6615. const int nb11 = src1->nb[1];
  6616. const int nb12 = src1->nb[2];
  6617. const int nb13 = src1->nb[3];
  6618. const int nb0 = dst->nb[0];
  6619. const int nb1 = dst->nb[1];
  6620. const int nb2 = dst->nb[2];
  6621. const int nb3 = dst->nb[3];
  6622. const int ith = params->ith;
  6623. const int nth = params->nth;
  6624. assert(ne02 == ne12);
  6625. assert(ne03 == ne13);
  6626. assert(ne2 == ne12);
  6627. assert(ne3 == ne13);
  6628. // we don't support permuted src0 or src1
  6629. assert(nb00 == sizeof(float));
  6630. assert(nb10 == sizeof(float));
  6631. // dst cannot be transposed or permuted
  6632. assert(nb0 == sizeof(float));
  6633. assert(nb0 <= nb1);
  6634. assert(nb1 <= nb2);
  6635. assert(nb2 <= nb3);
  6636. assert(ne0 == ne01);
  6637. assert(ne1 == ne11);
  6638. assert(ne2 == ne02);
  6639. assert(ne3 == ne03);
  6640. // nb01 >= nb00 - src0 is not transposed
  6641. // compute by src0 rows
  6642. #if defined(GGML_USE_CUBLAS)
  6643. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6644. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6645. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6646. }
  6647. return;
  6648. }
  6649. #endif
  6650. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6651. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6652. if (params->ith != 0) {
  6653. return;
  6654. }
  6655. if (params->type == GGML_TASK_INIT) {
  6656. return;
  6657. }
  6658. if (params->type == GGML_TASK_FINALIZE) {
  6659. return;
  6660. }
  6661. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6662. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6663. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6664. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6665. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6666. #if defined(GGML_USE_CLBLAST)
  6667. // zT = y * xT
  6668. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6669. ne11, ne01, ne10,
  6670. 1.0f, y, ne10,
  6671. x, ne10,
  6672. 0.0f, d, ne01,
  6673. GGML_TYPE_F32);
  6674. #else
  6675. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6676. ne11, ne01, ne10,
  6677. 1.0f, y, ne10,
  6678. x, ne00,
  6679. 0.0f, d, ne01);
  6680. #endif
  6681. }
  6682. }
  6683. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6684. return;
  6685. }
  6686. #endif
  6687. if (params->type == GGML_TASK_INIT) {
  6688. return;
  6689. }
  6690. if (params->type == GGML_TASK_FINALIZE) {
  6691. return;
  6692. }
  6693. // parallelize by src0 rows using ggml_vec_dot_f32
  6694. // total rows in src0
  6695. const int nr = ne01*ne02*ne03;
  6696. // rows per thread
  6697. const int dr = (nr + nth - 1)/nth;
  6698. // row range for this thread
  6699. const int ir0 = dr*ith;
  6700. const int ir1 = MIN(ir0 + dr, nr);
  6701. for (int ir = ir0; ir < ir1; ++ir) {
  6702. // src0 indices
  6703. const int i03 = ir/(ne02*ne01);
  6704. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6705. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6706. for (int64_t ic = 0; ic < ne11; ++ic) {
  6707. // src1 indices
  6708. const int i13 = i03;
  6709. const int i12 = i02;
  6710. const int i11 = ic;
  6711. // dst indices
  6712. const int i0 = i01;
  6713. const int i1 = i11;
  6714. const int i2 = i02;
  6715. const int i3 = i03;
  6716. ggml_vec_dot_f32(ne00,
  6717. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6718. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6719. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6720. }
  6721. }
  6722. //int64_t t1 = ggml_perf_time_us();
  6723. //static int64_t acc = 0;
  6724. //acc += t1 - t0;
  6725. //if (t1 - t0 > 10) {
  6726. // printf("\n");
  6727. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6728. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6729. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6730. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6731. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6732. //}
  6733. }
  6734. static void ggml_compute_forward_mul_mat_f16_f32(
  6735. const struct ggml_compute_params * params,
  6736. const struct ggml_tensor * src0,
  6737. const struct ggml_tensor * src1,
  6738. struct ggml_tensor * dst) {
  6739. int64_t t0 = ggml_perf_time_us();
  6740. UNUSED(t0);
  6741. const int64_t ne00 = src0->ne[0];
  6742. const int64_t ne01 = src0->ne[1];
  6743. const int64_t ne02 = src0->ne[2];
  6744. const int64_t ne03 = src0->ne[3];
  6745. const int64_t ne10 = src1->ne[0];
  6746. const int64_t ne11 = src1->ne[1];
  6747. const int64_t ne12 = src1->ne[2];
  6748. const int64_t ne13 = src1->ne[3];
  6749. const int64_t ne0 = dst->ne[0];
  6750. const int64_t ne1 = dst->ne[1];
  6751. const int64_t ne2 = dst->ne[2];
  6752. const int64_t ne3 = dst->ne[3];
  6753. //const int64_t ne = ne0*ne1*ne2*ne3;
  6754. const int nb00 = src0->nb[0];
  6755. const int nb01 = src0->nb[1];
  6756. const int nb02 = src0->nb[2];
  6757. const int nb03 = src0->nb[3];
  6758. const int nb10 = src1->nb[0];
  6759. const int nb11 = src1->nb[1];
  6760. const int nb12 = src1->nb[2];
  6761. const int nb13 = src1->nb[3];
  6762. const int nb0 = dst->nb[0];
  6763. const int nb1 = dst->nb[1];
  6764. const int nb2 = dst->nb[2];
  6765. const int nb3 = dst->nb[3];
  6766. const int ith = params->ith;
  6767. const int nth = params->nth;
  6768. GGML_ASSERT(ne02 == ne12);
  6769. GGML_ASSERT(ne03 == ne13);
  6770. GGML_ASSERT(ne2 == ne12);
  6771. GGML_ASSERT(ne3 == ne13);
  6772. // TODO: we don't support permuted src0
  6773. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6774. // dst cannot be transposed or permuted
  6775. GGML_ASSERT(nb0 == sizeof(float));
  6776. GGML_ASSERT(nb0 <= nb1);
  6777. GGML_ASSERT(nb1 <= nb2);
  6778. GGML_ASSERT(nb2 <= nb3);
  6779. GGML_ASSERT(ne0 == ne01);
  6780. GGML_ASSERT(ne1 == ne11);
  6781. GGML_ASSERT(ne2 == ne02);
  6782. GGML_ASSERT(ne3 == ne03);
  6783. // nb01 >= nb00 - src0 is not transposed
  6784. // compute by src0 rows
  6785. #if defined(GGML_USE_CUBLAS)
  6786. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6787. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6788. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6789. }
  6790. return;
  6791. }
  6792. #endif
  6793. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6794. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6795. GGML_ASSERT(nb10 == sizeof(float));
  6796. if (params->ith != 0) {
  6797. return;
  6798. }
  6799. if (params->type == GGML_TASK_INIT) {
  6800. return;
  6801. }
  6802. if (params->type == GGML_TASK_FINALIZE) {
  6803. return;
  6804. }
  6805. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6806. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6807. float * const wdata = params->wdata;
  6808. {
  6809. size_t id = 0;
  6810. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6811. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6812. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6813. }
  6814. }
  6815. assert(id*sizeof(float) <= params->wsize);
  6816. }
  6817. #if defined(GGML_USE_CLBLAST)
  6818. const float * x = wdata;
  6819. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6820. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6821. // zT = y * xT
  6822. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6823. ne11, ne01, ne10,
  6824. 1.0f, y, ne10,
  6825. x, ne10,
  6826. 0.0f, d, ne01,
  6827. GGML_TYPE_F32);
  6828. #else
  6829. const float * x = wdata;
  6830. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6831. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6832. // zT = y * xT
  6833. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6834. ne11, ne01, ne10,
  6835. 1.0f, y, ne10,
  6836. x, ne00,
  6837. 0.0f, d, ne01);
  6838. #endif
  6839. }
  6840. }
  6841. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6842. return;
  6843. }
  6844. #endif
  6845. if (params->type == GGML_TASK_INIT) {
  6846. ggml_fp16_t * const wdata = params->wdata;
  6847. size_t id = 0;
  6848. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6849. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6850. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6851. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6852. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6853. }
  6854. }
  6855. }
  6856. }
  6857. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6858. return;
  6859. }
  6860. if (params->type == GGML_TASK_FINALIZE) {
  6861. return;
  6862. }
  6863. // fp16 -> half the size, so divide by 2
  6864. // TODO: do not support transposed src1
  6865. assert(nb10/2 == sizeof(ggml_fp16_t));
  6866. // parallelize by src0 rows using ggml_vec_dot_f16
  6867. // total rows in src0
  6868. const int nr = ne01*ne02*ne03;
  6869. // rows per thread
  6870. const int dr = (nr + nth - 1)/nth;
  6871. // row range for this thread
  6872. const int ir0 = dr*ith;
  6873. const int ir1 = MIN(ir0 + dr, nr);
  6874. ggml_fp16_t * wdata = params->wdata;
  6875. for (int ir = ir0; ir < ir1; ++ir) {
  6876. // src0 indices
  6877. const int i03 = ir/(ne02*ne01);
  6878. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6879. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6880. const int i13 = i03;
  6881. const int i12 = i02;
  6882. const int i0 = i01;
  6883. const int i2 = i02;
  6884. const int i3 = i03;
  6885. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6886. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6887. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6888. for (int64_t ic = 0; ic < ne11; ++ic) {
  6889. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6890. }
  6891. }
  6892. //int64_t t1 = ggml_time_us();
  6893. //static int64_t acc = 0;
  6894. //acc += t1 - t0;
  6895. //if (t1 - t0 > 10) {
  6896. // printf("\n");
  6897. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6898. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6899. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6900. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6901. //}
  6902. }
  6903. static void ggml_compute_forward_mul_mat_q_f32(
  6904. const struct ggml_compute_params * params,
  6905. const struct ggml_tensor * src0,
  6906. const struct ggml_tensor * src1,
  6907. struct ggml_tensor * dst) {
  6908. int64_t t0 = ggml_perf_time_us();
  6909. UNUSED(t0);
  6910. const int64_t ne00 = src0->ne[0];
  6911. const int64_t ne01 = src0->ne[1];
  6912. const int64_t ne02 = src0->ne[2];
  6913. const int64_t ne03 = src0->ne[3];
  6914. const int64_t ne10 = src1->ne[0];
  6915. const int64_t ne11 = src1->ne[1];
  6916. const int64_t ne12 = src1->ne[2];
  6917. const int64_t ne13 = src1->ne[3];
  6918. const int64_t ne0 = dst->ne[0];
  6919. const int64_t ne1 = dst->ne[1];
  6920. const int64_t ne2 = dst->ne[2];
  6921. const int64_t ne3 = dst->ne[3];
  6922. const int nb00 = src0->nb[0];
  6923. const int nb01 = src0->nb[1];
  6924. const int nb02 = src0->nb[2];
  6925. const int nb03 = src0->nb[3];
  6926. const int nb10 = src1->nb[0];
  6927. const int nb11 = src1->nb[1];
  6928. const int nb12 = src1->nb[2];
  6929. const int nb13 = src1->nb[3];
  6930. const int nb0 = dst->nb[0];
  6931. const int nb1 = dst->nb[1];
  6932. const int nb2 = dst->nb[2];
  6933. const int nb3 = dst->nb[3];
  6934. const int ith = params->ith;
  6935. const int nth = params->nth;
  6936. GGML_ASSERT(ne02 == ne12);
  6937. GGML_ASSERT(ne03 == ne13);
  6938. GGML_ASSERT(ne2 == ne12);
  6939. GGML_ASSERT(ne3 == ne13);
  6940. const enum ggml_type type = src0->type;
  6941. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6942. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6943. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6944. // we don't support permuted src0 or src1
  6945. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6946. GGML_ASSERT(nb10 == sizeof(float));
  6947. // dst cannot be transposed or permuted
  6948. GGML_ASSERT(nb0 == sizeof(float));
  6949. GGML_ASSERT(nb0 <= nb1);
  6950. GGML_ASSERT(nb1 <= nb2);
  6951. GGML_ASSERT(nb2 <= nb3);
  6952. GGML_ASSERT(ne0 == ne01);
  6953. GGML_ASSERT(ne1 == ne11);
  6954. GGML_ASSERT(ne2 == ne02);
  6955. GGML_ASSERT(ne3 == ne03);
  6956. // nb01 >= nb00 - src0 is not transposed
  6957. // compute by src0 rows
  6958. #if defined(GGML_USE_CUBLAS)
  6959. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6960. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6961. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6962. }
  6963. return;
  6964. }
  6965. #endif
  6966. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6967. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6968. if (params->ith != 0) {
  6969. return;
  6970. }
  6971. if (params->type == GGML_TASK_INIT) {
  6972. return;
  6973. }
  6974. if (params->type == GGML_TASK_FINALIZE) {
  6975. return;
  6976. }
  6977. float * const wdata = params->wdata;
  6978. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6979. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6980. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6981. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6982. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6983. #if defined(GGML_USE_CLBLAST)
  6984. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  6985. #else
  6986. {
  6987. size_t id = 0;
  6988. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6989. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6990. id += ne00;
  6991. }
  6992. assert(id*sizeof(float) <= params->wsize);
  6993. }
  6994. const float * x = wdata;
  6995. #endif
  6996. #if defined(GGML_USE_CLBLAST)
  6997. // zT = y * xT
  6998. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6999. ne11, ne01, ne10,
  7000. 1.0f, y, ne10,
  7001. x, ne10,
  7002. 0.0f, d, ne01,
  7003. type);
  7004. #else
  7005. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7006. ne11, ne01, ne10,
  7007. 1.0f, y, ne10,
  7008. x, ne00,
  7009. 0.0f, d, ne01);
  7010. #endif
  7011. }
  7012. }
  7013. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7014. return;
  7015. }
  7016. #endif
  7017. if (params->type == GGML_TASK_INIT) {
  7018. char * wdata = params->wdata;
  7019. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7020. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7021. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7022. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7023. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7024. wdata += row_size;
  7025. }
  7026. }
  7027. }
  7028. return;
  7029. }
  7030. if (params->type == GGML_TASK_FINALIZE) {
  7031. return;
  7032. }
  7033. // parallelize by src0 rows using ggml_vec_dot_q
  7034. // total rows in src0
  7035. const int nr = ne01*ne02*ne03;
  7036. // rows per thread
  7037. const int dr = (nr + nth - 1)/nth;
  7038. // row range for this thread
  7039. const int ir0 = dr*ith;
  7040. const int ir1 = MIN(ir0 + dr, nr);
  7041. void * wdata = params->wdata;
  7042. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7043. for (int ir = ir0; ir < ir1; ++ir) {
  7044. // src0 indices
  7045. const int i03 = ir/(ne02*ne01);
  7046. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7047. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7048. const int i13 = i03;
  7049. const int i12 = i02;
  7050. const int i0 = i01;
  7051. const int i2 = i02;
  7052. const int i3 = i03;
  7053. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7054. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7055. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7056. assert(ne00 % 32 == 0);
  7057. for (int64_t ic = 0; ic < ne11; ++ic) {
  7058. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7059. }
  7060. }
  7061. //int64_t t1 = ggml_time_us();
  7062. //static int64_t acc = 0;
  7063. //acc += t1 - t0;
  7064. //if (t1 - t0 > 10) {
  7065. // printf("\n");
  7066. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7067. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7068. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7069. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7070. //}
  7071. }
  7072. static void ggml_compute_forward_mul_mat(
  7073. const struct ggml_compute_params * params,
  7074. const struct ggml_tensor * src0,
  7075. const struct ggml_tensor * src1,
  7076. struct ggml_tensor * dst) {
  7077. switch (src0->type) {
  7078. case GGML_TYPE_Q4_0:
  7079. case GGML_TYPE_Q4_1:
  7080. case GGML_TYPE_Q4_2:
  7081. case GGML_TYPE_Q5_0:
  7082. case GGML_TYPE_Q5_1:
  7083. case GGML_TYPE_Q8_0:
  7084. case GGML_TYPE_Q8_1:
  7085. {
  7086. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7087. } break;
  7088. case GGML_TYPE_F16:
  7089. {
  7090. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7091. } break;
  7092. case GGML_TYPE_F32:
  7093. {
  7094. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7095. } break;
  7096. default:
  7097. {
  7098. GGML_ASSERT(false);
  7099. } break;
  7100. }
  7101. }
  7102. // ggml_compute_forward_scale
  7103. static void ggml_compute_forward_scale_f32(
  7104. const struct ggml_compute_params * params,
  7105. const struct ggml_tensor * src0,
  7106. const struct ggml_tensor * src1,
  7107. struct ggml_tensor * dst) {
  7108. GGML_ASSERT(ggml_is_contiguous(src0));
  7109. GGML_ASSERT(ggml_is_contiguous(dst));
  7110. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7111. GGML_ASSERT(ggml_is_scalar(src1));
  7112. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7113. return;
  7114. }
  7115. // scale factor
  7116. const float v = *(float *) src1->data;
  7117. const int ith = params->ith;
  7118. const int nth = params->nth;
  7119. const int nc = src0->ne[0];
  7120. const int nr = ggml_nrows(src0);
  7121. // rows per thread
  7122. const int dr = (nr + nth - 1)/nth;
  7123. // row range for this thread
  7124. const int ir0 = dr*ith;
  7125. const int ir1 = MIN(ir0 + dr, nr);
  7126. for (int i1 = ir0; i1 < ir1; i1++) {
  7127. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7128. }
  7129. }
  7130. static void ggml_compute_forward_scale(
  7131. const struct ggml_compute_params * params,
  7132. const struct ggml_tensor * src0,
  7133. const struct ggml_tensor * src1,
  7134. struct ggml_tensor * dst) {
  7135. switch (src0->type) {
  7136. case GGML_TYPE_F32:
  7137. {
  7138. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7139. } break;
  7140. default:
  7141. {
  7142. GGML_ASSERT(false);
  7143. } break;
  7144. }
  7145. }
  7146. // ggml_compute_forward_cpy
  7147. static void ggml_compute_forward_cpy(
  7148. const struct ggml_compute_params * params,
  7149. const struct ggml_tensor * src0,
  7150. struct ggml_tensor * dst) {
  7151. ggml_compute_forward_dup(params, src0, dst);
  7152. }
  7153. // ggml_compute_forward_cont
  7154. static void ggml_compute_forward_cont(
  7155. const struct ggml_compute_params * params,
  7156. const struct ggml_tensor * src0,
  7157. struct ggml_tensor * dst) {
  7158. ggml_compute_forward_dup(params, src0, dst);
  7159. }
  7160. // ggml_compute_forward_reshape
  7161. static void ggml_compute_forward_reshape(
  7162. const struct ggml_compute_params * params,
  7163. const struct ggml_tensor * src0,
  7164. struct ggml_tensor * dst) {
  7165. // NOP
  7166. UNUSED(params);
  7167. UNUSED(src0);
  7168. UNUSED(dst);
  7169. }
  7170. // ggml_compute_forward_view
  7171. static void ggml_compute_forward_view(
  7172. const struct ggml_compute_params * params,
  7173. const struct ggml_tensor * src0) {
  7174. // NOP
  7175. UNUSED(params);
  7176. UNUSED(src0);
  7177. }
  7178. // ggml_compute_forward_permute
  7179. static void ggml_compute_forward_permute(
  7180. const struct ggml_compute_params * params,
  7181. const struct ggml_tensor * src0) {
  7182. // NOP
  7183. UNUSED(params);
  7184. UNUSED(src0);
  7185. }
  7186. // ggml_compute_forward_transpose
  7187. static void ggml_compute_forward_transpose(
  7188. const struct ggml_compute_params * params,
  7189. const struct ggml_tensor * src0) {
  7190. // NOP
  7191. UNUSED(params);
  7192. UNUSED(src0);
  7193. }
  7194. // ggml_compute_forward_get_rows
  7195. static void ggml_compute_forward_get_rows_q(
  7196. const struct ggml_compute_params * params,
  7197. const struct ggml_tensor * src0,
  7198. const struct ggml_tensor * src1,
  7199. struct ggml_tensor * dst) {
  7200. assert(params->ith == 0);
  7201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7202. return;
  7203. }
  7204. const int nc = src0->ne[0];
  7205. const int nr = ggml_nelements(src1);
  7206. const enum ggml_type type = src0->type;
  7207. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7208. assert( dst->ne[0] == nc);
  7209. assert( dst->ne[1] == nr);
  7210. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7211. for (int i = 0; i < nr; ++i) {
  7212. const int r = ((int32_t *) src1->data)[i];
  7213. dequantize_row_q(
  7214. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7215. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7216. }
  7217. }
  7218. static void ggml_compute_forward_get_rows_f16(
  7219. const struct ggml_compute_params * params,
  7220. const struct ggml_tensor * src0,
  7221. const struct ggml_tensor * src1,
  7222. struct ggml_tensor * dst) {
  7223. assert(params->ith == 0);
  7224. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7225. return;
  7226. }
  7227. const int nc = src0->ne[0];
  7228. const int nr = ggml_nelements(src1);
  7229. assert( dst->ne[0] == nc);
  7230. assert( dst->ne[1] == nr);
  7231. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7232. for (int i = 0; i < nr; ++i) {
  7233. const int r = ((int32_t *) src1->data)[i];
  7234. for (int j = 0; j < nc; ++j) {
  7235. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7236. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7237. }
  7238. }
  7239. }
  7240. static void ggml_compute_forward_get_rows_f32(
  7241. const struct ggml_compute_params * params,
  7242. const struct ggml_tensor * src0,
  7243. const struct ggml_tensor * src1,
  7244. struct ggml_tensor * dst) {
  7245. assert(params->ith == 0);
  7246. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7247. return;
  7248. }
  7249. const int nc = src0->ne[0];
  7250. const int nr = ggml_nelements(src1);
  7251. assert( dst->ne[0] == nc);
  7252. assert( dst->ne[1] == nr);
  7253. assert(src0->nb[0] == sizeof(float));
  7254. for (int i = 0; i < nr; ++i) {
  7255. const int r = ((int32_t *) src1->data)[i];
  7256. ggml_vec_cpy_f32(nc,
  7257. (float *) ((char *) dst->data + i*dst->nb[1]),
  7258. (float *) ((char *) src0->data + r*src0->nb[1]));
  7259. }
  7260. }
  7261. static void ggml_compute_forward_get_rows(
  7262. const struct ggml_compute_params * params,
  7263. const struct ggml_tensor * src0,
  7264. const struct ggml_tensor * src1,
  7265. struct ggml_tensor * dst) {
  7266. switch (src0->type) {
  7267. case GGML_TYPE_Q4_0:
  7268. case GGML_TYPE_Q4_1:
  7269. case GGML_TYPE_Q4_2:
  7270. case GGML_TYPE_Q5_0:
  7271. case GGML_TYPE_Q5_1:
  7272. case GGML_TYPE_Q8_0:
  7273. case GGML_TYPE_Q8_1:
  7274. {
  7275. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7276. } break;
  7277. case GGML_TYPE_F16:
  7278. {
  7279. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7280. } break;
  7281. case GGML_TYPE_F32:
  7282. {
  7283. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7284. } break;
  7285. default:
  7286. {
  7287. GGML_ASSERT(false);
  7288. } break;
  7289. }
  7290. //static bool first = true;
  7291. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7292. //if (first) {
  7293. // first = false;
  7294. //} else {
  7295. // for (int k = 0; k < dst->ne[1]; ++k) {
  7296. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7297. // for (int i = 0; i < 16; ++i) {
  7298. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7299. // }
  7300. // printf("\n");
  7301. // }
  7302. // printf("\n");
  7303. // }
  7304. // printf("\n");
  7305. // exit(0);
  7306. //}
  7307. }
  7308. // ggml_compute_forward_diag_mask_inf
  7309. static void ggml_compute_forward_diag_mask_inf_f32(
  7310. const struct ggml_compute_params * params,
  7311. const struct ggml_tensor * src0,
  7312. const struct ggml_tensor * src1,
  7313. struct ggml_tensor * dst) {
  7314. assert(params->ith == 0);
  7315. assert(src1->type == GGML_TYPE_I32);
  7316. assert(ggml_nelements(src1) == 1);
  7317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7318. return;
  7319. }
  7320. const int n_past = ((int32_t *) src1->data)[0];
  7321. // TODO: handle transposed/permuted matrices
  7322. const int n = ggml_nrows(src0);
  7323. const int nc = src0->ne[0];
  7324. const int nr = src0->ne[1];
  7325. const int nz = n/nr;
  7326. assert( dst->nb[0] == sizeof(float));
  7327. assert(src0->nb[0] == sizeof(float));
  7328. for (int k = 0; k < nz; k++) {
  7329. for (int j = 0; j < nr; j++) {
  7330. for (int i = n_past; i < nc; i++) {
  7331. if (i > n_past + j) {
  7332. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7333. }
  7334. }
  7335. }
  7336. }
  7337. }
  7338. static void ggml_compute_forward_diag_mask_inf(
  7339. const struct ggml_compute_params * params,
  7340. const struct ggml_tensor * src0,
  7341. const struct ggml_tensor * src1,
  7342. struct ggml_tensor * dst) {
  7343. switch (src0->type) {
  7344. case GGML_TYPE_F32:
  7345. {
  7346. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7347. } break;
  7348. default:
  7349. {
  7350. GGML_ASSERT(false);
  7351. } break;
  7352. }
  7353. }
  7354. // ggml_compute_forward_soft_max
  7355. static void ggml_compute_forward_soft_max_f32(
  7356. const struct ggml_compute_params * params,
  7357. const struct ggml_tensor * src0,
  7358. struct ggml_tensor * dst) {
  7359. GGML_ASSERT(ggml_is_contiguous(src0));
  7360. GGML_ASSERT(ggml_is_contiguous(dst));
  7361. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7362. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7363. return;
  7364. }
  7365. // TODO: handle transposed/permuted matrices
  7366. const int ith = params->ith;
  7367. const int nth = params->nth;
  7368. const int nc = src0->ne[0];
  7369. const int nr = ggml_nrows(src0);
  7370. // rows per thread
  7371. const int dr = (nr + nth - 1)/nth;
  7372. // row range for this thread
  7373. const int ir0 = dr*ith;
  7374. const int ir1 = MIN(ir0 + dr, nr);
  7375. for (int i1 = ir0; i1 < ir1; i1++) {
  7376. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7377. #ifndef NDEBUG
  7378. for (int i = 0; i < nc; ++i) {
  7379. //printf("p[%d] = %f\n", i, p[i]);
  7380. assert(!isnan(p[i]));
  7381. }
  7382. #endif
  7383. float max = -INFINITY;
  7384. ggml_vec_max_f32(nc, &max, p);
  7385. ggml_float sum = 0.0;
  7386. uint16_t scvt;
  7387. for (int i = 0; i < nc; i++) {
  7388. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7389. if (p[i] == -INFINITY) {
  7390. p[i] = 0.0f;
  7391. } else {
  7392. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7393. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7394. memcpy(&scvt, &s, sizeof(scvt));
  7395. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7396. sum += (ggml_float)val;
  7397. p[i] = val;
  7398. }
  7399. }
  7400. assert(sum > 0.0);
  7401. sum = 1.0/sum;
  7402. ggml_vec_scale_f32(nc, p, sum);
  7403. #ifndef NDEBUG
  7404. for (int i = 0; i < nc; ++i) {
  7405. assert(!isnan(p[i]));
  7406. assert(!isinf(p[i]));
  7407. }
  7408. #endif
  7409. }
  7410. }
  7411. static void ggml_compute_forward_soft_max(
  7412. const struct ggml_compute_params * params,
  7413. const struct ggml_tensor * src0,
  7414. struct ggml_tensor * dst) {
  7415. switch (src0->type) {
  7416. case GGML_TYPE_F32:
  7417. {
  7418. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7419. } break;
  7420. default:
  7421. {
  7422. GGML_ASSERT(false);
  7423. } break;
  7424. }
  7425. }
  7426. // ggml_compute_forward_alibi
  7427. static void ggml_compute_forward_alibi_f32(
  7428. const struct ggml_compute_params * params,
  7429. const struct ggml_tensor * src0,
  7430. const struct ggml_tensor * src1,
  7431. struct ggml_tensor * dst) {
  7432. assert(params->ith == 0);
  7433. assert(src1->type == GGML_TYPE_I32);
  7434. assert(ggml_nelements(src1) == 2);
  7435. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7436. return;
  7437. }
  7438. const int n_past = ((int32_t *) src1->data)[0];
  7439. const int n_head = ((int32_t *) src1->data)[1];
  7440. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7441. const int ne1 = src0->ne[1]; // seq_len_without_past
  7442. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7443. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7444. const int n = ggml_nrows(src0);
  7445. const int ne2_ne3 = n/ne1; // ne2*ne3
  7446. const int nb0 = src0->nb[0];
  7447. const int nb1 = src0->nb[1];
  7448. const int nb2 = src0->nb[2];
  7449. //const int nb3 = src0->nb[3];
  7450. assert(nb0 == sizeof(float));
  7451. assert(ne1 + n_past == ne0); (void) n_past;
  7452. // add alibi to src0 (KQ_scaled)
  7453. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7454. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7455. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7456. for (int i = 0; i < ne0; i++) {
  7457. for (int j = 0; j < ne1; j++) {
  7458. for (int k = 0; k < ne2_ne3; k++) {
  7459. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7460. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7461. // TODO: k*nb2 or k*nb3
  7462. float m_k;
  7463. if (k < n_heads_log2_floor) {
  7464. m_k = powf(m0, k + 1);
  7465. } else {
  7466. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7467. }
  7468. pdst[0] = (j+1) * m_k + src[0];
  7469. }
  7470. }
  7471. }
  7472. }
  7473. static void ggml_compute_forward_alibi_f16(
  7474. const struct ggml_compute_params * params,
  7475. const struct ggml_tensor * src0,
  7476. const struct ggml_tensor * src1,
  7477. struct ggml_tensor * dst) {
  7478. assert(params->ith == 0);
  7479. assert(src1->type == GGML_TYPE_I32);
  7480. assert(ggml_nelements(src1) == 2);
  7481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7482. return;
  7483. }
  7484. const int n_past = ((int32_t *) src1->data)[0];
  7485. const int n_head = ((int32_t *) src1->data)[1];
  7486. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7487. const int ne1 = src0->ne[1]; // seq_len_without_past
  7488. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7489. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7490. const int n = ggml_nrows(src0);
  7491. const int ne2_ne3 = n/ne1; // ne2*ne3
  7492. const int nb0 = src0->nb[0];
  7493. const int nb1 = src0->nb[1];
  7494. const int nb2 = src0->nb[2];
  7495. //const int nb3 = src0->nb[3];
  7496. assert(nb0 == sizeof(ggml_fp16_t));
  7497. assert(ne1 + n_past == ne0); (void) n_past;
  7498. // add alibi to src0 (KQ_scaled)
  7499. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7500. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7501. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7502. for (int i = 0; i < ne0; i++) {
  7503. for (int j = 0; j < ne1; j++) {
  7504. for (int k = 0; k < ne2_ne3; k++) {
  7505. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7506. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7507. // TODO: k*nb2 or k*nb3
  7508. float m_k;
  7509. if (k < n_heads_log2_floor) {
  7510. m_k = powf(m0, k + 1);
  7511. } else {
  7512. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7513. }
  7514. // we return F32
  7515. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7516. }
  7517. }
  7518. }
  7519. }
  7520. static void ggml_compute_forward_alibi(
  7521. const struct ggml_compute_params * params,
  7522. const struct ggml_tensor * src0,
  7523. const struct ggml_tensor * src1,
  7524. struct ggml_tensor * dst) {
  7525. switch (src0->type) {
  7526. case GGML_TYPE_F16:
  7527. {
  7528. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7529. } break;
  7530. case GGML_TYPE_F32:
  7531. {
  7532. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7533. } break;
  7534. case GGML_TYPE_Q4_0:
  7535. case GGML_TYPE_Q4_1:
  7536. case GGML_TYPE_Q4_2:
  7537. case GGML_TYPE_Q5_0:
  7538. case GGML_TYPE_Q5_1:
  7539. case GGML_TYPE_Q8_0:
  7540. case GGML_TYPE_Q8_1:
  7541. case GGML_TYPE_I8:
  7542. case GGML_TYPE_I16:
  7543. case GGML_TYPE_I32:
  7544. case GGML_TYPE_COUNT:
  7545. {
  7546. GGML_ASSERT(false);
  7547. } break;
  7548. }
  7549. }
  7550. // ggml_compute_forward_rope
  7551. static void ggml_compute_forward_rope_f32(
  7552. const struct ggml_compute_params * params,
  7553. const struct ggml_tensor * src0,
  7554. const struct ggml_tensor * src1,
  7555. struct ggml_tensor * dst) {
  7556. assert(src1->type == GGML_TYPE_I32);
  7557. assert(ggml_nelements(src1) == 3);
  7558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7559. return;
  7560. }
  7561. const int n_past = ((int32_t *) src1->data)[0];
  7562. const int n_dims = ((int32_t *) src1->data)[1];
  7563. const int mode = ((int32_t *) src1->data)[2];
  7564. //const int64_t ne0 = src0->ne[0];
  7565. const int64_t ne1 = src0->ne[1];
  7566. const int64_t ne2 = src0->ne[2];
  7567. const int64_t ne3 = src0->ne[3];
  7568. const int nb0 = src0->nb[0];
  7569. const int nb1 = src0->nb[1];
  7570. const int nb2 = src0->nb[2];
  7571. const int nb3 = src0->nb[3];
  7572. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7573. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7574. assert(nb0 == sizeof(float));
  7575. const int ith = params->ith;
  7576. const int nth = params->nth;
  7577. const int nr = ggml_nrows(src0);
  7578. // rows per thread
  7579. const int dr = (nr + nth - 1)/nth;
  7580. // row range for this thread
  7581. const int ir0 = dr*ith;
  7582. const int ir1 = MIN(ir0 + dr, nr);
  7583. // row index used to determine which thread to use
  7584. int ir = 0;
  7585. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7586. const bool is_neox = mode & 2;
  7587. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7588. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7589. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7590. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7591. if (ir++ < ir0) continue;
  7592. if (ir > ir1) break;
  7593. float theta = (float)p;
  7594. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7595. const float cos_theta = cosf(theta);
  7596. const float sin_theta = sinf(theta);
  7597. theta *= theta_scale;
  7598. if (!is_neox) {
  7599. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7600. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7601. const float x0 = src[0];
  7602. const float x1 = src[1];
  7603. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7604. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7605. } else {
  7606. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7607. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7608. const float x0 = src[0];
  7609. const float x1 = src[n_dims/2];
  7610. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7611. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7612. }
  7613. }
  7614. }
  7615. }
  7616. }
  7617. }
  7618. static void ggml_compute_forward_rope_f16(
  7619. const struct ggml_compute_params * params,
  7620. const struct ggml_tensor * src0,
  7621. const struct ggml_tensor * src1,
  7622. struct ggml_tensor * dst) {
  7623. assert(src1->type == GGML_TYPE_I32);
  7624. assert(ggml_nelements(src1) == 3);
  7625. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7626. return;
  7627. }
  7628. const int n_past = ((int32_t *) src1->data)[0];
  7629. const int n_dims = ((int32_t *) src1->data)[1];
  7630. const int mode = ((int32_t *) src1->data)[2];
  7631. //const int64_t ne0 = src0->ne[0];
  7632. const int64_t ne1 = src0->ne[1];
  7633. const int64_t ne2 = src0->ne[2];
  7634. const int64_t ne3 = src0->ne[3];
  7635. const int nb0 = src0->nb[0];
  7636. const int nb1 = src0->nb[1];
  7637. const int nb2 = src0->nb[2];
  7638. const int nb3 = src0->nb[3];
  7639. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7640. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7641. assert(nb0 == sizeof(ggml_fp16_t));
  7642. const int ith = params->ith;
  7643. const int nth = params->nth;
  7644. const int nr = ggml_nrows(src0);
  7645. // rows per thread
  7646. const int dr = (nr + nth - 1)/nth;
  7647. // row range for this thread
  7648. const int ir0 = dr*ith;
  7649. const int ir1 = MIN(ir0 + dr, nr);
  7650. // row index used to determine which thread to use
  7651. int ir = 0;
  7652. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7653. const bool is_neox = mode & 2;
  7654. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7655. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7656. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7657. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7658. if (ir++ < ir0) continue;
  7659. if (ir > ir1) break;
  7660. float theta = (float)p;
  7661. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7662. const float cos_theta = cosf(theta);
  7663. const float sin_theta = sinf(theta);
  7664. theta *= theta_scale;
  7665. if (!is_neox) {
  7666. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7667. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7668. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7669. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7670. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7671. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7672. } else {
  7673. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7674. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7675. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7676. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7677. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7678. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7679. }
  7680. }
  7681. }
  7682. }
  7683. }
  7684. }
  7685. static void ggml_compute_forward_rope(
  7686. const struct ggml_compute_params * params,
  7687. const struct ggml_tensor * src0,
  7688. const struct ggml_tensor * src1,
  7689. struct ggml_tensor * dst) {
  7690. switch (src0->type) {
  7691. case GGML_TYPE_F16:
  7692. {
  7693. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7694. } break;
  7695. case GGML_TYPE_F32:
  7696. {
  7697. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7698. } break;
  7699. default:
  7700. {
  7701. GGML_ASSERT(false);
  7702. } break;
  7703. }
  7704. }
  7705. // ggml_compute_forward_conv_1d_1s
  7706. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7707. const struct ggml_compute_params * params,
  7708. const struct ggml_tensor * src0,
  7709. const struct ggml_tensor * src1,
  7710. struct ggml_tensor * dst) {
  7711. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7712. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7713. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7714. int64_t t0 = ggml_perf_time_us();
  7715. UNUSED(t0);
  7716. const int64_t ne00 = src0->ne[0];
  7717. const int64_t ne01 = src0->ne[1];
  7718. const int64_t ne02 = src0->ne[2];
  7719. //const int64_t ne03 = src0->ne[3];
  7720. const int64_t ne10 = src1->ne[0];
  7721. const int64_t ne11 = src1->ne[1];
  7722. //const int64_t ne12 = src1->ne[2];
  7723. //const int64_t ne13 = src1->ne[3];
  7724. //const int64_t ne0 = dst->ne[0];
  7725. //const int64_t ne1 = dst->ne[1];
  7726. //const int64_t ne2 = dst->ne[2];
  7727. //const int64_t ne3 = dst->ne[3];
  7728. //const int64_t ne = ne0*ne1*ne2*ne3;
  7729. const int nb00 = src0->nb[0];
  7730. const int nb01 = src0->nb[1];
  7731. const int nb02 = src0->nb[2];
  7732. //const int nb03 = src0->nb[3];
  7733. const int nb10 = src1->nb[0];
  7734. const int nb11 = src1->nb[1];
  7735. //const int nb12 = src1->nb[2];
  7736. //const int nb13 = src1->nb[3];
  7737. //const int nb0 = dst->nb[0];
  7738. const int nb1 = dst->nb[1];
  7739. //const int nb2 = dst->nb[2];
  7740. //const int nb3 = dst->nb[3];
  7741. const int ith = params->ith;
  7742. const int nth = params->nth;
  7743. const int nk = ne00;
  7744. const int nh = nk/2;
  7745. const int ew0 = ggml_up32(ne01);
  7746. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7747. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7748. GGML_ASSERT(nb10 == sizeof(float));
  7749. if (params->type == GGML_TASK_INIT) {
  7750. // TODO: fix this memset (wsize is overestimated)
  7751. memset(params->wdata, 0, params->wsize);
  7752. // prepare kernel data (src0)
  7753. {
  7754. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7755. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7756. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7757. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7758. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7759. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7760. dst_data[i00*ew0 + i01] = src[i00];
  7761. }
  7762. }
  7763. }
  7764. }
  7765. // prepare source data (src1)
  7766. {
  7767. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7768. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7769. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7770. ggml_fp16_t * dst_data = wdata;
  7771. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7772. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7773. }
  7774. }
  7775. }
  7776. return;
  7777. }
  7778. if (params->type == GGML_TASK_FINALIZE) {
  7779. return;
  7780. }
  7781. // total rows in dst
  7782. const int nr = ne02;
  7783. // rows per thread
  7784. const int dr = (nr + nth - 1)/nth;
  7785. // row range for this thread
  7786. const int ir0 = dr*ith;
  7787. const int ir1 = MIN(ir0 + dr, nr);
  7788. for (int i1 = ir0; i1 < ir1; i1++) {
  7789. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7790. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7791. dst_data[i0] = 0;
  7792. for (int k = -nh; k <= nh; k++) {
  7793. float v = 0.0f;
  7794. ggml_vec_dot_f16(ew0, &v,
  7795. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7796. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7797. dst_data[i0] += v;
  7798. }
  7799. }
  7800. }
  7801. }
  7802. static void ggml_compute_forward_conv_1d_1s_f32(
  7803. const struct ggml_compute_params * params,
  7804. const struct ggml_tensor * src0,
  7805. const struct ggml_tensor * src1,
  7806. struct ggml_tensor * dst) {
  7807. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7808. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7809. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7810. int64_t t0 = ggml_perf_time_us();
  7811. UNUSED(t0);
  7812. const int64_t ne00 = src0->ne[0];
  7813. const int64_t ne01 = src0->ne[1];
  7814. const int64_t ne02 = src0->ne[2];
  7815. //const int64_t ne03 = src0->ne[3];
  7816. const int64_t ne10 = src1->ne[0];
  7817. const int64_t ne11 = src1->ne[1];
  7818. //const int64_t ne12 = src1->ne[2];
  7819. //const int64_t ne13 = src1->ne[3];
  7820. //const int64_t ne0 = dst->ne[0];
  7821. //const int64_t ne1 = dst->ne[1];
  7822. //const int64_t ne2 = dst->ne[2];
  7823. //const int64_t ne3 = dst->ne[3];
  7824. //const int64_t ne = ne0*ne1*ne2*ne3;
  7825. const int nb00 = src0->nb[0];
  7826. const int nb01 = src0->nb[1];
  7827. const int nb02 = src0->nb[2];
  7828. //const int nb03 = src0->nb[3];
  7829. const int nb10 = src1->nb[0];
  7830. const int nb11 = src1->nb[1];
  7831. //const int nb12 = src1->nb[2];
  7832. //const int nb13 = src1->nb[3];
  7833. //const int nb0 = dst->nb[0];
  7834. const int nb1 = dst->nb[1];
  7835. //const int nb2 = dst->nb[2];
  7836. //const int nb3 = dst->nb[3];
  7837. const int ith = params->ith;
  7838. const int nth = params->nth;
  7839. const int nk = ne00;
  7840. const int nh = nk/2;
  7841. const int ew0 = ggml_up32(ne01);
  7842. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7843. GGML_ASSERT(nb00 == sizeof(float));
  7844. GGML_ASSERT(nb10 == sizeof(float));
  7845. if (params->type == GGML_TASK_INIT) {
  7846. // TODO: fix this memset (wsize is overestimated)
  7847. memset(params->wdata, 0, params->wsize);
  7848. // prepare kernel data (src0)
  7849. {
  7850. float * const wdata = (float *) params->wdata + 0;
  7851. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7852. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7853. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7854. float * dst_data = wdata + i02*ew0*ne00;
  7855. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7856. dst_data[i00*ew0 + i01] = src[i00];
  7857. }
  7858. }
  7859. }
  7860. }
  7861. // prepare source data (src1)
  7862. {
  7863. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7864. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7865. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7866. float * dst_data = wdata;
  7867. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7868. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7869. }
  7870. }
  7871. }
  7872. return;
  7873. }
  7874. if (params->type == GGML_TASK_FINALIZE) {
  7875. return;
  7876. }
  7877. // total rows in dst
  7878. const int nr = ne02;
  7879. // rows per thread
  7880. const int dr = (nr + nth - 1)/nth;
  7881. // row range for this thread
  7882. const int ir0 = dr*ith;
  7883. const int ir1 = MIN(ir0 + dr, nr);
  7884. for (int i1 = ir0; i1 < ir1; i1++) {
  7885. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7886. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7887. dst_data[i0] = 0;
  7888. for (int k = -nh; k <= nh; k++) {
  7889. float v = 0.0f;
  7890. ggml_vec_dot_f32(ew0, &v,
  7891. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7892. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7893. dst_data[i0] += v;
  7894. }
  7895. }
  7896. }
  7897. }
  7898. static void ggml_compute_forward_conv_1d_1s(
  7899. const struct ggml_compute_params * params,
  7900. const struct ggml_tensor * src0,
  7901. const struct ggml_tensor * src1,
  7902. struct ggml_tensor * dst) {
  7903. switch (src0->type) {
  7904. case GGML_TYPE_F16:
  7905. {
  7906. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7907. } break;
  7908. case GGML_TYPE_F32:
  7909. {
  7910. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7911. } break;
  7912. default:
  7913. {
  7914. GGML_ASSERT(false);
  7915. } break;
  7916. }
  7917. }
  7918. // ggml_compute_forward_conv_1d_2s
  7919. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7920. const struct ggml_compute_params * params,
  7921. const struct ggml_tensor * src0,
  7922. const struct ggml_tensor * src1,
  7923. struct ggml_tensor * dst) {
  7924. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7925. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7926. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7927. int64_t t0 = ggml_perf_time_us();
  7928. UNUSED(t0);
  7929. const int64_t ne00 = src0->ne[0];
  7930. const int64_t ne01 = src0->ne[1];
  7931. const int64_t ne02 = src0->ne[2];
  7932. //const int64_t ne03 = src0->ne[3];
  7933. const int64_t ne10 = src1->ne[0];
  7934. const int64_t ne11 = src1->ne[1];
  7935. //const int64_t ne12 = src1->ne[2];
  7936. //const int64_t ne13 = src1->ne[3];
  7937. //const int64_t ne0 = dst->ne[0];
  7938. //const int64_t ne1 = dst->ne[1];
  7939. //const int64_t ne2 = dst->ne[2];
  7940. //const int64_t ne3 = dst->ne[3];
  7941. //const int64_t ne = ne0*ne1*ne2*ne3;
  7942. const int nb00 = src0->nb[0];
  7943. const int nb01 = src0->nb[1];
  7944. const int nb02 = src0->nb[2];
  7945. //const int nb03 = src0->nb[3];
  7946. const int nb10 = src1->nb[0];
  7947. const int nb11 = src1->nb[1];
  7948. //const int nb12 = src1->nb[2];
  7949. //const int nb13 = src1->nb[3];
  7950. //const int nb0 = dst->nb[0];
  7951. const int nb1 = dst->nb[1];
  7952. //const int nb2 = dst->nb[2];
  7953. //const int nb3 = dst->nb[3];
  7954. const int ith = params->ith;
  7955. const int nth = params->nth;
  7956. const int nk = ne00;
  7957. const int nh = nk/2;
  7958. const int ew0 = ggml_up32(ne01);
  7959. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7960. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7961. GGML_ASSERT(nb10 == sizeof(float));
  7962. if (params->type == GGML_TASK_INIT) {
  7963. // TODO: fix this memset (wsize is overestimated)
  7964. memset(params->wdata, 0, params->wsize);
  7965. // prepare kernel data (src0)
  7966. {
  7967. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7968. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7969. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7970. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7971. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7972. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7973. dst_data[i00*ew0 + i01] = src[i00];
  7974. }
  7975. }
  7976. }
  7977. }
  7978. // prepare source data (src1)
  7979. {
  7980. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7981. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7982. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7983. ggml_fp16_t * dst_data = wdata;
  7984. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7985. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7986. }
  7987. }
  7988. }
  7989. return;
  7990. }
  7991. if (params->type == GGML_TASK_FINALIZE) {
  7992. return;
  7993. }
  7994. // total rows in dst
  7995. const int nr = ne02;
  7996. // rows per thread
  7997. const int dr = (nr + nth - 1)/nth;
  7998. // row range for this thread
  7999. const int ir0 = dr*ith;
  8000. const int ir1 = MIN(ir0 + dr, nr);
  8001. for (int i1 = ir0; i1 < ir1; i1++) {
  8002. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8003. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8004. dst_data[i0/2] = 0;
  8005. for (int k = -nh; k <= nh; k++) {
  8006. float v = 0.0f;
  8007. ggml_vec_dot_f16(ew0, &v,
  8008. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8009. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8010. dst_data[i0/2] += v;
  8011. }
  8012. }
  8013. }
  8014. }
  8015. static void ggml_compute_forward_conv_1d_2s_f32(
  8016. const struct ggml_compute_params * params,
  8017. const struct ggml_tensor * src0,
  8018. const struct ggml_tensor * src1,
  8019. struct ggml_tensor * dst) {
  8020. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8021. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8022. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8023. int64_t t0 = ggml_perf_time_us();
  8024. UNUSED(t0);
  8025. const int64_t ne00 = src0->ne[0];
  8026. const int64_t ne01 = src0->ne[1];
  8027. const int64_t ne02 = src0->ne[2];
  8028. //const int64_t ne03 = src0->ne[3];
  8029. const int64_t ne10 = src1->ne[0];
  8030. const int64_t ne11 = src1->ne[1];
  8031. //const int64_t ne12 = src1->ne[2];
  8032. //const int64_t ne13 = src1->ne[3];
  8033. //const int64_t ne0 = dst->ne[0];
  8034. //const int64_t ne1 = dst->ne[1];
  8035. //const int64_t ne2 = dst->ne[2];
  8036. //const int64_t ne3 = dst->ne[3];
  8037. //const int64_t ne = ne0*ne1*ne2*ne3;
  8038. const int nb00 = src0->nb[0];
  8039. const int nb01 = src0->nb[1];
  8040. const int nb02 = src0->nb[2];
  8041. //const int nb03 = src0->nb[3];
  8042. const int nb10 = src1->nb[0];
  8043. const int nb11 = src1->nb[1];
  8044. //const int nb12 = src1->nb[2];
  8045. //const int nb13 = src1->nb[3];
  8046. //const int nb0 = dst->nb[0];
  8047. const int nb1 = dst->nb[1];
  8048. //const int nb2 = dst->nb[2];
  8049. //const int nb3 = dst->nb[3];
  8050. const int ith = params->ith;
  8051. const int nth = params->nth;
  8052. const int nk = ne00;
  8053. const int nh = nk/2;
  8054. const int ew0 = ggml_up32(ne01);
  8055. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8056. GGML_ASSERT(nb00 == sizeof(float));
  8057. GGML_ASSERT(nb10 == sizeof(float));
  8058. if (params->type == GGML_TASK_INIT) {
  8059. // TODO: fix this memset (wsize is overestimated)
  8060. memset(params->wdata, 0, params->wsize);
  8061. // prepare kernel data (src0)
  8062. {
  8063. float * const wdata = (float *) params->wdata + 0;
  8064. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8065. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8066. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8067. float * dst_data = wdata + i02*ew0*ne00;
  8068. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8069. dst_data[i00*ew0 + i01] = src[i00];
  8070. }
  8071. }
  8072. }
  8073. }
  8074. // prepare source data (src1)
  8075. {
  8076. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8077. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8078. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8079. float * dst_data = wdata;
  8080. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8081. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8082. }
  8083. }
  8084. }
  8085. return;
  8086. }
  8087. if (params->type == GGML_TASK_FINALIZE) {
  8088. return;
  8089. }
  8090. // total rows in dst
  8091. const int nr = ne02;
  8092. // rows per thread
  8093. const int dr = (nr + nth - 1)/nth;
  8094. // row range for this thread
  8095. const int ir0 = dr*ith;
  8096. const int ir1 = MIN(ir0 + dr, nr);
  8097. for (int i1 = ir0; i1 < ir1; i1++) {
  8098. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8099. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8100. dst_data[i0/2] = 0;
  8101. for (int k = -nh; k <= nh; k++) {
  8102. float v = 0.0f;
  8103. ggml_vec_dot_f32(ew0, &v,
  8104. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8105. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8106. dst_data[i0/2] += v;
  8107. }
  8108. }
  8109. }
  8110. }
  8111. static void ggml_compute_forward_conv_1d_2s(
  8112. const struct ggml_compute_params * params,
  8113. const struct ggml_tensor * src0,
  8114. const struct ggml_tensor * src1,
  8115. struct ggml_tensor * dst) {
  8116. switch (src0->type) {
  8117. case GGML_TYPE_F16:
  8118. {
  8119. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8120. } break;
  8121. case GGML_TYPE_F32:
  8122. {
  8123. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8124. } break;
  8125. default:
  8126. {
  8127. GGML_ASSERT(false);
  8128. } break;
  8129. }
  8130. }
  8131. // ggml_compute_forward_flash_attn
  8132. static void ggml_compute_forward_flash_attn_f32(
  8133. const struct ggml_compute_params * params,
  8134. const struct ggml_tensor * q,
  8135. const struct ggml_tensor * k,
  8136. const struct ggml_tensor * v,
  8137. const bool masked,
  8138. struct ggml_tensor * dst) {
  8139. int64_t t0 = ggml_perf_time_us();
  8140. UNUSED(t0);
  8141. const int64_t neq0 = q->ne[0];
  8142. const int64_t neq1 = q->ne[1];
  8143. const int64_t neq2 = q->ne[2];
  8144. const int64_t neq3 = q->ne[3];
  8145. const int64_t nek0 = k->ne[0];
  8146. const int64_t nek1 = k->ne[1];
  8147. //const int64_t nek2 = k->ne[2];
  8148. //const int64_t nek3 = k->ne[3];
  8149. //const int64_t nev0 = v->ne[0];
  8150. const int64_t nev1 = v->ne[1];
  8151. //const int64_t nev2 = v->ne[2];
  8152. //const int64_t nev3 = v->ne[3];
  8153. const int64_t ne0 = dst->ne[0];
  8154. const int64_t ne1 = dst->ne[1];
  8155. //const int64_t ne2 = dst->ne[2];
  8156. //const int64_t ne3 = dst->ne[3];
  8157. const int nbk0 = k->nb[0];
  8158. const int nbk1 = k->nb[1];
  8159. const int nbk2 = k->nb[2];
  8160. const int nbk3 = k->nb[3];
  8161. const int nbq0 = q->nb[0];
  8162. const int nbq1 = q->nb[1];
  8163. const int nbq2 = q->nb[2];
  8164. const int nbq3 = q->nb[3];
  8165. const int nbv0 = v->nb[0];
  8166. const int nbv1 = v->nb[1];
  8167. const int nbv2 = v->nb[2];
  8168. const int nbv3 = v->nb[3];
  8169. const int nb0 = dst->nb[0];
  8170. const int nb1 = dst->nb[1];
  8171. const int nb2 = dst->nb[2];
  8172. const int nb3 = dst->nb[3];
  8173. const int ith = params->ith;
  8174. const int nth = params->nth;
  8175. const int64_t D = neq0;
  8176. const int64_t N = neq1;
  8177. const int64_t P = nek1 - N;
  8178. const int64_t M = P + N;
  8179. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8180. GGML_ASSERT(ne0 == D);
  8181. GGML_ASSERT(ne1 == N);
  8182. GGML_ASSERT(P >= 0);
  8183. GGML_ASSERT(nbq0 == sizeof(float));
  8184. GGML_ASSERT(nbk0 == sizeof(float));
  8185. GGML_ASSERT(nbv0 == sizeof(float));
  8186. GGML_ASSERT(neq0 == D);
  8187. GGML_ASSERT(nek0 == D);
  8188. GGML_ASSERT(nev1 == D);
  8189. GGML_ASSERT(neq1 == N);
  8190. GGML_ASSERT(nek1 == N + P);
  8191. GGML_ASSERT(nev1 == D);
  8192. // dst cannot be transposed or permuted
  8193. GGML_ASSERT(nb0 == sizeof(float));
  8194. GGML_ASSERT(nb0 <= nb1);
  8195. GGML_ASSERT(nb1 <= nb2);
  8196. GGML_ASSERT(nb2 <= nb3);
  8197. if (params->type == GGML_TASK_INIT) {
  8198. return;
  8199. }
  8200. if (params->type == GGML_TASK_FINALIZE) {
  8201. return;
  8202. }
  8203. // parallelize by q rows using ggml_vec_dot_f32
  8204. // total rows in q
  8205. const int nr = neq1*neq2*neq3;
  8206. // rows per thread
  8207. const int dr = (nr + nth - 1)/nth;
  8208. // row range for this thread
  8209. const int ir0 = dr*ith;
  8210. const int ir1 = MIN(ir0 + dr, nr);
  8211. const float scale = 1.0f/sqrtf(D);
  8212. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8213. for (int ir = ir0; ir < ir1; ++ir) {
  8214. // q indices
  8215. const int iq3 = ir/(neq2*neq1);
  8216. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8217. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8218. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8219. for (int i = M; i < Mup; ++i) {
  8220. S[i] = -INFINITY;
  8221. }
  8222. for (int64_t ic = 0; ic < nek1; ++ic) {
  8223. // k indices
  8224. const int ik3 = iq3;
  8225. const int ik2 = iq2;
  8226. const int ik1 = ic;
  8227. // S indices
  8228. const int i1 = ik1;
  8229. ggml_vec_dot_f32(neq0,
  8230. S + i1,
  8231. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8232. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8233. }
  8234. // scale
  8235. ggml_vec_scale_f32(nek1, S, scale);
  8236. if (masked) {
  8237. for (int64_t i = P; i < M; i++) {
  8238. if (i > P + iq1) {
  8239. S[i] = -INFINITY;
  8240. }
  8241. }
  8242. }
  8243. // softmax
  8244. {
  8245. float max = -INFINITY;
  8246. ggml_vec_max_f32(M, &max, S);
  8247. ggml_float sum = 0.0;
  8248. {
  8249. #ifdef GGML_SOFT_MAX_ACCELERATE
  8250. max = -max;
  8251. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8252. vvexpf(S, S, &Mup);
  8253. ggml_vec_sum_f32(Mup, &sum, S);
  8254. #else
  8255. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8256. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8257. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8258. float * SS = S + i;
  8259. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8260. if (SS[j] == -INFINITY) {
  8261. SS[j] = 0.0f;
  8262. } else {
  8263. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8264. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8265. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8266. sump[j] += (ggml_float)val;
  8267. SS[j] = val;
  8268. }
  8269. }
  8270. }
  8271. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8272. sum += sump[i];
  8273. }
  8274. #endif
  8275. }
  8276. assert(sum > 0.0);
  8277. sum = 1.0/sum;
  8278. ggml_vec_scale_f32(M, S, sum);
  8279. #ifndef NDEBUG
  8280. for (int i = 0; i < M; ++i) {
  8281. assert(!isnan(S[i]));
  8282. assert(!isinf(S[i]));
  8283. }
  8284. #endif
  8285. }
  8286. for (int64_t ic = 0; ic < nev1; ++ic) {
  8287. // dst indices
  8288. const int i1 = iq1;
  8289. const int i2 = iq2;
  8290. const int i3 = iq3;
  8291. ggml_vec_dot_f32(nek1,
  8292. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8293. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8294. S);
  8295. }
  8296. }
  8297. }
  8298. static void ggml_compute_forward_flash_attn_f16(
  8299. const struct ggml_compute_params * params,
  8300. const struct ggml_tensor * q,
  8301. const struct ggml_tensor * k,
  8302. const struct ggml_tensor * v,
  8303. const bool masked,
  8304. struct ggml_tensor * dst) {
  8305. int64_t t0 = ggml_perf_time_us();
  8306. UNUSED(t0);
  8307. const int64_t neq0 = q->ne[0];
  8308. const int64_t neq1 = q->ne[1];
  8309. const int64_t neq2 = q->ne[2];
  8310. const int64_t neq3 = q->ne[3];
  8311. const int64_t nek0 = k->ne[0];
  8312. const int64_t nek1 = k->ne[1];
  8313. //const int64_t nek2 = k->ne[2];
  8314. //const int64_t nek3 = k->ne[3];
  8315. //const int64_t nev0 = v->ne[0];
  8316. const int64_t nev1 = v->ne[1];
  8317. //const int64_t nev2 = v->ne[2];
  8318. //const int64_t nev3 = v->ne[3];
  8319. const int64_t ne0 = dst->ne[0];
  8320. const int64_t ne1 = dst->ne[1];
  8321. //const int64_t ne2 = dst->ne[2];
  8322. //const int64_t ne3 = dst->ne[3];
  8323. const int nbk0 = k->nb[0];
  8324. const int nbk1 = k->nb[1];
  8325. const int nbk2 = k->nb[2];
  8326. const int nbk3 = k->nb[3];
  8327. const int nbq0 = q->nb[0];
  8328. const int nbq1 = q->nb[1];
  8329. const int nbq2 = q->nb[2];
  8330. const int nbq3 = q->nb[3];
  8331. const int nbv0 = v->nb[0];
  8332. const int nbv1 = v->nb[1];
  8333. const int nbv2 = v->nb[2];
  8334. const int nbv3 = v->nb[3];
  8335. const int nb0 = dst->nb[0];
  8336. const int nb1 = dst->nb[1];
  8337. const int nb2 = dst->nb[2];
  8338. const int nb3 = dst->nb[3];
  8339. const int ith = params->ith;
  8340. const int nth = params->nth;
  8341. const int64_t D = neq0;
  8342. const int64_t N = neq1;
  8343. const int64_t P = nek1 - N;
  8344. const int64_t M = P + N;
  8345. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8346. GGML_ASSERT(ne0 == D);
  8347. GGML_ASSERT(ne1 == N);
  8348. GGML_ASSERT(P >= 0);
  8349. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8350. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8351. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8352. GGML_ASSERT(neq0 == D);
  8353. GGML_ASSERT(nek0 == D);
  8354. GGML_ASSERT(nev1 == D);
  8355. GGML_ASSERT(neq1 == N);
  8356. GGML_ASSERT(nek1 == N + P);
  8357. GGML_ASSERT(nev1 == D);
  8358. // dst cannot be transposed or permuted
  8359. GGML_ASSERT(nb0 == sizeof(float));
  8360. GGML_ASSERT(nb0 <= nb1);
  8361. GGML_ASSERT(nb1 <= nb2);
  8362. GGML_ASSERT(nb2 <= nb3);
  8363. if (params->type == GGML_TASK_INIT) {
  8364. return;
  8365. }
  8366. if (params->type == GGML_TASK_FINALIZE) {
  8367. return;
  8368. }
  8369. // parallelize by q rows using ggml_vec_dot_f32
  8370. // total rows in q
  8371. const int nr = neq1*neq2*neq3;
  8372. // rows per thread
  8373. const int dr = (nr + nth - 1)/nth;
  8374. // row range for this thread
  8375. const int ir0 = dr*ith;
  8376. const int ir1 = MIN(ir0 + dr, nr);
  8377. const float scale = 1.0f/sqrtf(D);
  8378. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8379. for (int ir = ir0; ir < ir1; ++ir) {
  8380. // q indices
  8381. const int iq3 = ir/(neq2*neq1);
  8382. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8383. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8384. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8385. for (int i = M; i < Mup; ++i) {
  8386. S[i] = -INFINITY;
  8387. }
  8388. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8389. for (int64_t ic = 0; ic < nek1; ++ic) {
  8390. // k indices
  8391. const int ik3 = iq3;
  8392. const int ik2 = iq2;
  8393. const int ik1 = ic;
  8394. // S indices
  8395. const int i1 = ik1;
  8396. ggml_vec_dot_f16(neq0,
  8397. S + i1,
  8398. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8399. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8400. }
  8401. } else {
  8402. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8403. // k indices
  8404. const int ik3 = iq3;
  8405. const int ik2 = iq2;
  8406. const int ik1 = ic;
  8407. // S indices
  8408. const int i1 = ik1;
  8409. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8410. S + i1,
  8411. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8412. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8413. }
  8414. }
  8415. // scale
  8416. ggml_vec_scale_f32(nek1, S, scale);
  8417. if (masked) {
  8418. for (int64_t i = P; i < M; i++) {
  8419. if (i > P + iq1) {
  8420. S[i] = -INFINITY;
  8421. }
  8422. }
  8423. }
  8424. // softmax
  8425. {
  8426. float max = -INFINITY;
  8427. ggml_vec_max_f32(M, &max, S);
  8428. ggml_float sum = 0.0;
  8429. {
  8430. #ifdef GGML_SOFT_MAX_ACCELERATE
  8431. max = -max;
  8432. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8433. vvexpf(S, S, &Mup);
  8434. ggml_vec_sum_f32(Mup, &sum, S);
  8435. #else
  8436. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8437. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8438. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8439. float * SS = S + i;
  8440. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8441. if (SS[j] == -INFINITY) {
  8442. SS[j] = 0.0f;
  8443. } else {
  8444. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8445. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8446. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8447. sump[j] += (ggml_float)val;
  8448. SS[j] = val;
  8449. }
  8450. }
  8451. }
  8452. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8453. sum += sump[i];
  8454. }
  8455. #endif
  8456. }
  8457. assert(sum > 0.0);
  8458. sum = 1.0/sum;
  8459. ggml_vec_scale_f32(M, S, sum);
  8460. #ifndef NDEBUG
  8461. for (int i = 0; i < M; ++i) {
  8462. assert(!isnan(S[i]));
  8463. assert(!isinf(S[i]));
  8464. }
  8465. #endif
  8466. }
  8467. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8468. for (int64_t i = 0; i < M; i++) {
  8469. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8470. }
  8471. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8472. for (int64_t ic = 0; ic < nev1; ++ic) {
  8473. // dst indices
  8474. const int i1 = iq1;
  8475. const int i2 = iq2;
  8476. const int i3 = iq3;
  8477. ggml_vec_dot_f16(nek1,
  8478. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8479. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8480. S16);
  8481. }
  8482. } else {
  8483. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8484. // dst indices
  8485. const int i1 = iq1;
  8486. const int i2 = iq2;
  8487. const int i3 = iq3;
  8488. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8489. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8490. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8491. S16);
  8492. }
  8493. }
  8494. }
  8495. }
  8496. static void ggml_compute_forward_flash_attn(
  8497. const struct ggml_compute_params * params,
  8498. const struct ggml_tensor * q,
  8499. const struct ggml_tensor * k,
  8500. const struct ggml_tensor * v,
  8501. const bool masked,
  8502. struct ggml_tensor * dst) {
  8503. switch (q->type) {
  8504. case GGML_TYPE_F16:
  8505. {
  8506. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8507. } break;
  8508. case GGML_TYPE_F32:
  8509. {
  8510. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8511. } break;
  8512. default:
  8513. {
  8514. GGML_ASSERT(false);
  8515. } break;
  8516. }
  8517. }
  8518. // ggml_compute_forward_flash_ff
  8519. static void ggml_compute_forward_flash_ff_f16(
  8520. const struct ggml_compute_params * params,
  8521. const struct ggml_tensor * a, // F16
  8522. const struct ggml_tensor * b0, // F16 fc_w
  8523. const struct ggml_tensor * b1, // F32 fc_b
  8524. const struct ggml_tensor * c0, // F16 proj_w
  8525. const struct ggml_tensor * c1, // F32 proj_b
  8526. struct ggml_tensor * dst) {
  8527. int64_t t0 = ggml_perf_time_us();
  8528. UNUSED(t0);
  8529. const int64_t nea0 = a->ne[0];
  8530. const int64_t nea1 = a->ne[1];
  8531. const int64_t nea2 = a->ne[2];
  8532. const int64_t nea3 = a->ne[3];
  8533. const int64_t neb00 = b0->ne[0];
  8534. const int64_t neb01 = b0->ne[1];
  8535. //const int64_t neb02 = b0->ne[2];
  8536. //const int64_t neb03 = b0->ne[3];
  8537. const int64_t neb10 = b1->ne[0];
  8538. const int64_t neb11 = b1->ne[1];
  8539. //const int64_t neb12 = b1->ne[2];
  8540. //const int64_t neb13 = b1->ne[3];
  8541. const int64_t nec00 = c0->ne[0];
  8542. const int64_t nec01 = c0->ne[1];
  8543. //const int64_t nec02 = c0->ne[2];
  8544. //const int64_t nec03 = c0->ne[3];
  8545. const int64_t nec10 = c1->ne[0];
  8546. const int64_t nec11 = c1->ne[1];
  8547. //const int64_t nec12 = c1->ne[2];
  8548. //const int64_t nec13 = c1->ne[3];
  8549. const int64_t ne0 = dst->ne[0];
  8550. const int64_t ne1 = dst->ne[1];
  8551. const int64_t ne2 = dst->ne[2];
  8552. //const int64_t ne3 = dst->ne[3];
  8553. const int nba0 = a->nb[0];
  8554. const int nba1 = a->nb[1];
  8555. const int nba2 = a->nb[2];
  8556. const int nba3 = a->nb[3];
  8557. const int nbb00 = b0->nb[0];
  8558. const int nbb01 = b0->nb[1];
  8559. const int nbb02 = b0->nb[2];
  8560. const int nbb03 = b0->nb[3];
  8561. const int nbb10 = b1->nb[0];
  8562. //const int nbb11 = b1->nb[1];
  8563. //const int nbb12 = b1->nb[2];
  8564. //const int nbb13 = b1->nb[3];
  8565. const int nbc00 = c0->nb[0];
  8566. const int nbc01 = c0->nb[1];
  8567. const int nbc02 = c0->nb[2];
  8568. const int nbc03 = c0->nb[3];
  8569. const int nbc10 = c1->nb[0];
  8570. //const int nbc11 = c1->nb[1];
  8571. //const int nbc12 = c1->nb[2];
  8572. //const int nbc13 = c1->nb[3];
  8573. const int nb0 = dst->nb[0];
  8574. const int nb1 = dst->nb[1];
  8575. const int nb2 = dst->nb[2];
  8576. const int nb3 = dst->nb[3];
  8577. const int ith = params->ith;
  8578. const int nth = params->nth;
  8579. const int64_t D = nea0;
  8580. //const int64_t N = nea1;
  8581. const int64_t M = neb01;
  8582. GGML_ASSERT(ne0 == nea0);
  8583. GGML_ASSERT(ne1 == nea1);
  8584. GGML_ASSERT(ne2 == nea2);
  8585. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8586. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8587. GGML_ASSERT(nbb10 == sizeof(float));
  8588. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8589. GGML_ASSERT(nbc10 == sizeof(float));
  8590. GGML_ASSERT(neb00 == D);
  8591. GGML_ASSERT(neb01 == M);
  8592. GGML_ASSERT(neb10 == M);
  8593. GGML_ASSERT(neb11 == 1);
  8594. GGML_ASSERT(nec00 == M);
  8595. GGML_ASSERT(nec01 == D);
  8596. GGML_ASSERT(nec10 == D);
  8597. GGML_ASSERT(nec11 == 1);
  8598. // dst cannot be transposed or permuted
  8599. GGML_ASSERT(nb0 == sizeof(float));
  8600. GGML_ASSERT(nb0 <= nb1);
  8601. GGML_ASSERT(nb1 <= nb2);
  8602. GGML_ASSERT(nb2 <= nb3);
  8603. if (params->type == GGML_TASK_INIT) {
  8604. return;
  8605. }
  8606. if (params->type == GGML_TASK_FINALIZE) {
  8607. return;
  8608. }
  8609. // parallelize by a rows using ggml_vec_dot_f32
  8610. // total rows in a
  8611. const int nr = nea1*nea2*nea3;
  8612. // rows per thread
  8613. const int dr = (nr + nth - 1)/nth;
  8614. // row range for this thread
  8615. const int ir0 = dr*ith;
  8616. const int ir1 = MIN(ir0 + dr, nr);
  8617. for (int ir = ir0; ir < ir1; ++ir) {
  8618. // a indices
  8619. const int ia3 = ir/(nea2*nea1);
  8620. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8621. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8622. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8623. for (int64_t ic = 0; ic < neb01; ++ic) {
  8624. // b0 indices
  8625. const int ib03 = ia3;
  8626. const int ib02 = ia2;
  8627. const int ib01 = ic;
  8628. // S indices
  8629. const int i1 = ib01;
  8630. ggml_vec_dot_f16(nea0,
  8631. S + i1,
  8632. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8633. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8634. }
  8635. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8636. //ggml_vec_gelu_f32(neb01, S, S);
  8637. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8638. for (int64_t i = 0; i < M; i++) {
  8639. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8640. }
  8641. ggml_vec_gelu_f16(neb01, S16, S16);
  8642. {
  8643. // dst indices
  8644. const int i1 = ia1;
  8645. const int i2 = ia2;
  8646. const int i3 = ia3;
  8647. for (int64_t ic = 0; ic < nec01; ++ic) {
  8648. ggml_vec_dot_f16(neb01,
  8649. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8650. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8651. S16);
  8652. }
  8653. ggml_vec_add_f32(nec01,
  8654. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8655. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8656. (float *) c1->data);
  8657. }
  8658. }
  8659. }
  8660. static void ggml_compute_forward_flash_ff(
  8661. const struct ggml_compute_params * params,
  8662. const struct ggml_tensor * a,
  8663. const struct ggml_tensor * b0,
  8664. const struct ggml_tensor * b1,
  8665. const struct ggml_tensor * c0,
  8666. const struct ggml_tensor * c1,
  8667. struct ggml_tensor * dst) {
  8668. switch (b0->type) {
  8669. case GGML_TYPE_F16:
  8670. {
  8671. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8672. } break;
  8673. case GGML_TYPE_F32:
  8674. {
  8675. GGML_ASSERT(false); // TODO
  8676. } break;
  8677. default:
  8678. {
  8679. GGML_ASSERT(false);
  8680. } break;
  8681. }
  8682. }
  8683. // ggml_compute_forward_map_unary
  8684. static void ggml_compute_forward_map_unary_f32(
  8685. const struct ggml_compute_params * params,
  8686. const struct ggml_tensor * src0,
  8687. struct ggml_tensor * dst,
  8688. const ggml_unary_op_f32_t fun) {
  8689. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8690. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8691. return;
  8692. }
  8693. const int n = ggml_nrows(src0);
  8694. const int nc = src0->ne[0];
  8695. assert( dst->nb[0] == sizeof(float));
  8696. assert(src0->nb[0] == sizeof(float));
  8697. for (int i = 0; i < n; i++) {
  8698. fun(nc,
  8699. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8700. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8701. }
  8702. }
  8703. static void ggml_compute_forward_map_unary(
  8704. const struct ggml_compute_params * params,
  8705. const struct ggml_tensor * src0,
  8706. struct ggml_tensor * dst,
  8707. const ggml_unary_op_f32_t fun) {
  8708. switch (src0->type) {
  8709. case GGML_TYPE_F32:
  8710. {
  8711. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8712. } break;
  8713. default:
  8714. {
  8715. GGML_ASSERT(false);
  8716. } break;
  8717. }
  8718. }
  8719. // ggml_compute_forward_map_binary
  8720. static void ggml_compute_forward_map_binary_f32(
  8721. const struct ggml_compute_params * params,
  8722. const struct ggml_tensor * src0,
  8723. const struct ggml_tensor * src1,
  8724. struct ggml_tensor * dst,
  8725. const ggml_binary_op_f32_t fun) {
  8726. assert(params->ith == 0);
  8727. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8728. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8729. return;
  8730. }
  8731. const int n = ggml_nrows(src0);
  8732. const int nc = src0->ne[0];
  8733. assert( dst->nb[0] == sizeof(float));
  8734. assert(src0->nb[0] == sizeof(float));
  8735. assert(src1->nb[0] == sizeof(float));
  8736. for (int i = 0; i < n; i++) {
  8737. fun(nc,
  8738. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8739. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8740. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8741. }
  8742. }
  8743. static void ggml_compute_forward_map_binary(
  8744. const struct ggml_compute_params * params,
  8745. const struct ggml_tensor * src0,
  8746. const struct ggml_tensor * src1,
  8747. struct ggml_tensor * dst,
  8748. const ggml_binary_op_f32_t fun) {
  8749. switch (src0->type) {
  8750. case GGML_TYPE_F32:
  8751. {
  8752. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8753. } break;
  8754. default:
  8755. {
  8756. GGML_ASSERT(false);
  8757. } break;
  8758. }
  8759. }
  8760. /////////////////////////////////
  8761. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8762. GGML_ASSERT(params);
  8763. switch (tensor->op) {
  8764. case GGML_OP_DUP:
  8765. {
  8766. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8767. } break;
  8768. case GGML_OP_ADD:
  8769. {
  8770. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8771. } break;
  8772. case GGML_OP_SUB:
  8773. {
  8774. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8775. } break;
  8776. case GGML_OP_MUL:
  8777. {
  8778. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8779. } break;
  8780. case GGML_OP_DIV:
  8781. {
  8782. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8783. } break;
  8784. case GGML_OP_SQR:
  8785. {
  8786. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8787. } break;
  8788. case GGML_OP_SQRT:
  8789. {
  8790. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8791. } break;
  8792. case GGML_OP_SUM:
  8793. {
  8794. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8795. } break;
  8796. case GGML_OP_MEAN:
  8797. {
  8798. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8799. } break;
  8800. case GGML_OP_REPEAT:
  8801. {
  8802. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8803. } break;
  8804. case GGML_OP_ABS:
  8805. {
  8806. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8807. } break;
  8808. case GGML_OP_SGN:
  8809. {
  8810. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8811. } break;
  8812. case GGML_OP_NEG:
  8813. {
  8814. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8815. } break;
  8816. case GGML_OP_STEP:
  8817. {
  8818. ggml_compute_forward_step(params, tensor->src0, tensor);
  8819. } break;
  8820. case GGML_OP_RELU:
  8821. {
  8822. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8823. } break;
  8824. case GGML_OP_GELU:
  8825. {
  8826. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8827. } break;
  8828. case GGML_OP_SILU:
  8829. {
  8830. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8831. } break;
  8832. case GGML_OP_NORM:
  8833. {
  8834. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8835. } break;
  8836. case GGML_OP_RMS_NORM:
  8837. {
  8838. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8839. } break;
  8840. case GGML_OP_MUL_MAT:
  8841. {
  8842. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8843. } break;
  8844. case GGML_OP_SCALE:
  8845. {
  8846. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8847. } break;
  8848. case GGML_OP_CPY:
  8849. {
  8850. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8851. } break;
  8852. case GGML_OP_CONT:
  8853. {
  8854. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8855. } break;
  8856. case GGML_OP_RESHAPE:
  8857. {
  8858. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8859. } break;
  8860. case GGML_OP_VIEW:
  8861. {
  8862. ggml_compute_forward_view(params, tensor->src0);
  8863. } break;
  8864. case GGML_OP_PERMUTE:
  8865. {
  8866. ggml_compute_forward_permute(params, tensor->src0);
  8867. } break;
  8868. case GGML_OP_TRANSPOSE:
  8869. {
  8870. ggml_compute_forward_transpose(params, tensor->src0);
  8871. } break;
  8872. case GGML_OP_GET_ROWS:
  8873. {
  8874. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8875. } break;
  8876. case GGML_OP_DIAG_MASK_INF:
  8877. {
  8878. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8879. } break;
  8880. case GGML_OP_SOFT_MAX:
  8881. {
  8882. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8883. } break;
  8884. case GGML_OP_ROPE:
  8885. {
  8886. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8887. } break;
  8888. case GGML_OP_ALIBI:
  8889. {
  8890. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  8891. } break;
  8892. case GGML_OP_CONV_1D_1S:
  8893. {
  8894. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8895. } break;
  8896. case GGML_OP_CONV_1D_2S:
  8897. {
  8898. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8899. } break;
  8900. case GGML_OP_FLASH_ATTN:
  8901. {
  8902. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8903. GGML_ASSERT(t == 0 || t == 1);
  8904. bool masked = t != 0;
  8905. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8906. } break;
  8907. case GGML_OP_FLASH_FF:
  8908. {
  8909. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8910. } break;
  8911. case GGML_OP_MAP_UNARY:
  8912. {
  8913. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8914. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8915. }
  8916. break;
  8917. case GGML_OP_MAP_BINARY:
  8918. {
  8919. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8920. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8921. }
  8922. break;
  8923. case GGML_OP_NONE:
  8924. {
  8925. // nop
  8926. } break;
  8927. case GGML_OP_COUNT:
  8928. {
  8929. GGML_ASSERT(false);
  8930. } break;
  8931. }
  8932. }
  8933. ////////////////////////////////////////////////////////////////////////////////
  8934. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8935. struct ggml_tensor * src0 = tensor->src0;
  8936. struct ggml_tensor * src1 = tensor->src1;
  8937. switch (tensor->op) {
  8938. case GGML_OP_DUP:
  8939. {
  8940. if (src0->grad) {
  8941. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8942. }
  8943. } break;
  8944. case GGML_OP_ADD:
  8945. {
  8946. if (src0->grad) {
  8947. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8948. }
  8949. if (src1->grad) {
  8950. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8951. }
  8952. } break;
  8953. case GGML_OP_SUB:
  8954. {
  8955. if (src0->grad) {
  8956. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8957. }
  8958. if (src1->grad) {
  8959. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8960. }
  8961. } break;
  8962. case GGML_OP_MUL:
  8963. {
  8964. if (src0->grad) {
  8965. src0->grad =
  8966. ggml_add_impl(ctx,
  8967. src0->grad,
  8968. ggml_mul(ctx, src1, tensor->grad),
  8969. inplace);
  8970. }
  8971. if (src1->grad) {
  8972. src1->grad =
  8973. ggml_add_impl(ctx,
  8974. src1->grad,
  8975. ggml_mul(ctx, src0, tensor->grad),
  8976. inplace);
  8977. }
  8978. } break;
  8979. case GGML_OP_DIV:
  8980. {
  8981. if (src0->grad) {
  8982. src0->grad =
  8983. ggml_add_impl(ctx,
  8984. src0->grad,
  8985. ggml_div(ctx, tensor->grad, src1),
  8986. inplace);
  8987. }
  8988. if (src1->grad) {
  8989. src1->grad =
  8990. ggml_sub_impl(ctx,
  8991. src1->grad,
  8992. ggml_mul(ctx,
  8993. tensor->grad,
  8994. ggml_div(ctx, tensor, src1)),
  8995. inplace);
  8996. }
  8997. } break;
  8998. case GGML_OP_SQR:
  8999. {
  9000. if (src0->grad) {
  9001. src0->grad =
  9002. ggml_add_impl(ctx,
  9003. src0->grad,
  9004. ggml_mul(ctx,
  9005. ggml_mul(ctx, src0, tensor->grad),
  9006. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  9007. inplace);
  9008. }
  9009. } break;
  9010. case GGML_OP_SQRT:
  9011. {
  9012. if (src0->grad) {
  9013. src0->grad =
  9014. ggml_add_impl(ctx,
  9015. src0->grad,
  9016. ggml_div(ctx,
  9017. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  9018. tensor),
  9019. inplace);
  9020. }
  9021. } break;
  9022. case GGML_OP_SUM:
  9023. {
  9024. if (src0->grad) {
  9025. src0->grad =
  9026. ggml_add_impl(ctx,
  9027. src0->grad,
  9028. ggml_repeat(ctx, tensor->grad, src0->grad),
  9029. inplace);
  9030. }
  9031. } break;
  9032. case GGML_OP_MEAN:
  9033. {
  9034. GGML_ASSERT(false); // TODO: implement
  9035. } break;
  9036. case GGML_OP_REPEAT:
  9037. {
  9038. if (src0->grad) {
  9039. src0->grad =
  9040. ggml_add_impl(ctx,
  9041. src0->grad,
  9042. ggml_sum(ctx, tensor->grad),
  9043. inplace);
  9044. }
  9045. } break;
  9046. case GGML_OP_ABS:
  9047. {
  9048. if (src0->grad) {
  9049. src0->grad =
  9050. ggml_add_impl(ctx,
  9051. src0->grad,
  9052. ggml_mul(ctx,
  9053. ggml_sgn(ctx, src0),
  9054. tensor->grad),
  9055. inplace);
  9056. }
  9057. } break;
  9058. case GGML_OP_SGN:
  9059. {
  9060. if (src0->grad) {
  9061. // noop
  9062. }
  9063. } break;
  9064. case GGML_OP_NEG:
  9065. {
  9066. if (src0->grad) {
  9067. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9068. }
  9069. } break;
  9070. case GGML_OP_STEP:
  9071. {
  9072. if (src0->grad) {
  9073. // noop
  9074. }
  9075. } break;
  9076. case GGML_OP_RELU:
  9077. {
  9078. if (src0->grad) {
  9079. src0->grad = ggml_sub_impl(ctx,
  9080. src0->grad,
  9081. ggml_mul(ctx,
  9082. ggml_step(ctx, src0),
  9083. tensor->grad),
  9084. inplace);
  9085. }
  9086. } break;
  9087. case GGML_OP_GELU:
  9088. {
  9089. GGML_ASSERT(false); // TODO: not implemented
  9090. } break;
  9091. case GGML_OP_ALIBI:
  9092. {
  9093. GGML_ASSERT(false); // TODO: not implemented
  9094. } break;
  9095. case GGML_OP_SILU:
  9096. {
  9097. GGML_ASSERT(false); // TODO: not implemented
  9098. } break;
  9099. case GGML_OP_NORM:
  9100. {
  9101. GGML_ASSERT(false); // TODO: not implemented
  9102. } break;
  9103. case GGML_OP_RMS_NORM:
  9104. {
  9105. GGML_ASSERT(false); // TODO: not implemented
  9106. } break;
  9107. case GGML_OP_MUL_MAT:
  9108. {
  9109. if (src0->grad) {
  9110. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9111. GGML_ASSERT(false);
  9112. }
  9113. if (src1->grad) {
  9114. src1->grad =
  9115. ggml_add_impl(ctx,
  9116. src1->grad,
  9117. ggml_mul_mat(ctx,
  9118. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9119. tensor->grad),
  9120. inplace);
  9121. }
  9122. } break;
  9123. case GGML_OP_SCALE:
  9124. {
  9125. GGML_ASSERT(false); // TODO: not implemented
  9126. } break;
  9127. case GGML_OP_CPY:
  9128. {
  9129. GGML_ASSERT(false); // TODO: not implemented
  9130. } break;
  9131. case GGML_OP_CONT:
  9132. {
  9133. GGML_ASSERT(false); // TODO: not implemented
  9134. } break;
  9135. case GGML_OP_RESHAPE:
  9136. {
  9137. GGML_ASSERT(false); // TODO: not implemented
  9138. } break;
  9139. case GGML_OP_VIEW:
  9140. {
  9141. GGML_ASSERT(false); // not supported
  9142. } break;
  9143. case GGML_OP_PERMUTE:
  9144. {
  9145. GGML_ASSERT(false); // TODO: not implemented
  9146. } break;
  9147. case GGML_OP_TRANSPOSE:
  9148. {
  9149. GGML_ASSERT(false); // TODO: not implemented
  9150. } break;
  9151. case GGML_OP_GET_ROWS:
  9152. {
  9153. GGML_ASSERT(false); // TODO: not implemented
  9154. } break;
  9155. case GGML_OP_DIAG_MASK_INF:
  9156. {
  9157. GGML_ASSERT(false); // TODO: not implemented
  9158. } break;
  9159. case GGML_OP_SOFT_MAX:
  9160. {
  9161. GGML_ASSERT(false); // TODO: not implemented
  9162. } break;
  9163. case GGML_OP_ROPE:
  9164. {
  9165. GGML_ASSERT(false); // TODO: not implemented
  9166. } break;
  9167. case GGML_OP_CONV_1D_1S:
  9168. {
  9169. GGML_ASSERT(false); // TODO: not implemented
  9170. } break;
  9171. case GGML_OP_CONV_1D_2S:
  9172. {
  9173. GGML_ASSERT(false); // TODO: not implemented
  9174. } break;
  9175. case GGML_OP_FLASH_ATTN:
  9176. {
  9177. GGML_ASSERT(false); // not supported
  9178. } break;
  9179. case GGML_OP_FLASH_FF:
  9180. {
  9181. GGML_ASSERT(false); // not supported
  9182. } break;
  9183. case GGML_OP_MAP_UNARY:
  9184. case GGML_OP_MAP_BINARY:
  9185. {
  9186. GGML_ASSERT(false); // not supported
  9187. } break;
  9188. case GGML_OP_NONE:
  9189. {
  9190. // nop
  9191. } break;
  9192. case GGML_OP_COUNT:
  9193. {
  9194. GGML_ASSERT(false);
  9195. } break;
  9196. }
  9197. }
  9198. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9199. if (node->grad == NULL) {
  9200. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9201. // it can also happen during forward pass, if the user performs computations with constants
  9202. if (node->op != GGML_OP_NONE) {
  9203. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9204. }
  9205. }
  9206. // check if already visited
  9207. for (int i = 0; i < cgraph->n_nodes; i++) {
  9208. if (cgraph->nodes[i] == node) {
  9209. return;
  9210. }
  9211. }
  9212. for (int i = 0; i < cgraph->n_leafs; i++) {
  9213. if (cgraph->leafs[i] == node) {
  9214. return;
  9215. }
  9216. }
  9217. if (node->src0) {
  9218. ggml_visit_parents(cgraph, node->src0);
  9219. }
  9220. if (node->src1) {
  9221. ggml_visit_parents(cgraph, node->src1);
  9222. }
  9223. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9224. if (node->opt[i]) {
  9225. ggml_visit_parents(cgraph, node->opt[i]);
  9226. }
  9227. }
  9228. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9229. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9230. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9231. cgraph->leafs[cgraph->n_leafs] = node;
  9232. cgraph->n_leafs++;
  9233. } else {
  9234. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9235. cgraph->nodes[cgraph->n_nodes] = node;
  9236. cgraph->grads[cgraph->n_nodes] = node->grad;
  9237. cgraph->n_nodes++;
  9238. }
  9239. }
  9240. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9241. if (!expand) {
  9242. cgraph->n_nodes = 0;
  9243. cgraph->n_leafs = 0;
  9244. }
  9245. const int n0 = cgraph->n_nodes;
  9246. UNUSED(n0);
  9247. ggml_visit_parents(cgraph, tensor);
  9248. const int n_new = cgraph->n_nodes - n0;
  9249. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9250. if (n_new > 0) {
  9251. // the last added node should always be starting point
  9252. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9253. }
  9254. }
  9255. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9256. ggml_build_forward_impl(cgraph, tensor, true);
  9257. }
  9258. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9259. struct ggml_cgraph result = {
  9260. /*.n_nodes =*/ 0,
  9261. /*.n_leafs =*/ 0,
  9262. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9263. /*.work_size =*/ 0,
  9264. /*.work =*/ NULL,
  9265. /*.nodes =*/ { NULL },
  9266. /*.grads =*/ { NULL },
  9267. /*.leafs =*/ { NULL },
  9268. /*.perf_runs =*/ 0,
  9269. /*.perf_cycles =*/ 0,
  9270. /*.perf_time_us =*/ 0,
  9271. };
  9272. ggml_build_forward_impl(&result, tensor, false);
  9273. return result;
  9274. }
  9275. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9276. struct ggml_cgraph result = *gf;
  9277. GGML_ASSERT(gf->n_nodes > 0);
  9278. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9279. if (keep) {
  9280. for (int i = 0; i < gf->n_nodes; i++) {
  9281. struct ggml_tensor * node = gf->nodes[i];
  9282. if (node->grad) {
  9283. node->grad = ggml_dup_tensor(ctx, node);
  9284. gf->grads[i] = node->grad;
  9285. }
  9286. }
  9287. }
  9288. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9289. struct ggml_tensor * node = gf->nodes[i];
  9290. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9291. if (node->grad) {
  9292. ggml_compute_backward(ctx, node, keep);
  9293. }
  9294. }
  9295. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9296. struct ggml_tensor * node = gf->nodes[i];
  9297. if (node->is_param) {
  9298. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9299. ggml_build_forward_impl(&result, node->grad, true);
  9300. }
  9301. }
  9302. return result;
  9303. }
  9304. //
  9305. // thread data
  9306. //
  9307. // synchronization is done via busy loops
  9308. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9309. //
  9310. #ifdef __APPLE__
  9311. //#include <os/lock.h>
  9312. //
  9313. //typedef os_unfair_lock ggml_lock_t;
  9314. //
  9315. //#define ggml_lock_init(x) UNUSED(x)
  9316. //#define ggml_lock_destroy(x) UNUSED(x)
  9317. //#define ggml_lock_lock os_unfair_lock_lock
  9318. //#define ggml_lock_unlock os_unfair_lock_unlock
  9319. //
  9320. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9321. typedef int ggml_lock_t;
  9322. #define ggml_lock_init(x) UNUSED(x)
  9323. #define ggml_lock_destroy(x) UNUSED(x)
  9324. #define ggml_lock_lock(x) UNUSED(x)
  9325. #define ggml_lock_unlock(x) UNUSED(x)
  9326. #define GGML_LOCK_INITIALIZER 0
  9327. typedef pthread_t ggml_thread_t;
  9328. #define ggml_thread_create pthread_create
  9329. #define ggml_thread_join pthread_join
  9330. #else
  9331. //typedef pthread_spinlock_t ggml_lock_t;
  9332. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9333. //#define ggml_lock_destroy pthread_spin_destroy
  9334. //#define ggml_lock_lock pthread_spin_lock
  9335. //#define ggml_lock_unlock pthread_spin_unlock
  9336. typedef int ggml_lock_t;
  9337. #define ggml_lock_init(x) UNUSED(x)
  9338. #define ggml_lock_destroy(x) UNUSED(x)
  9339. #define ggml_lock_lock(x) UNUSED(x)
  9340. #define ggml_lock_unlock(x) UNUSED(x)
  9341. #define GGML_LOCK_INITIALIZER 0
  9342. typedef pthread_t ggml_thread_t;
  9343. #define ggml_thread_create pthread_create
  9344. #define ggml_thread_join pthread_join
  9345. #endif
  9346. struct ggml_compute_state_shared {
  9347. ggml_lock_t spin;
  9348. int n_threads;
  9349. // synchronization primitives
  9350. atomic_int n_ready;
  9351. atomic_bool has_work;
  9352. atomic_bool stop; // stop all threads
  9353. };
  9354. struct ggml_compute_state {
  9355. ggml_thread_t thrd;
  9356. struct ggml_compute_params params;
  9357. struct ggml_tensor * node;
  9358. struct ggml_compute_state_shared * shared;
  9359. };
  9360. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9361. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9362. const int n_threads = state->shared->n_threads;
  9363. while (true) {
  9364. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9365. atomic_store(&state->shared->has_work, false);
  9366. } else {
  9367. while (atomic_load(&state->shared->has_work)) {
  9368. if (atomic_load(&state->shared->stop)) {
  9369. return 0;
  9370. }
  9371. ggml_lock_lock (&state->shared->spin);
  9372. ggml_lock_unlock(&state->shared->spin);
  9373. }
  9374. }
  9375. atomic_fetch_sub(&state->shared->n_ready, 1);
  9376. // wait for work
  9377. while (!atomic_load(&state->shared->has_work)) {
  9378. if (atomic_load(&state->shared->stop)) {
  9379. return 0;
  9380. }
  9381. ggml_lock_lock (&state->shared->spin);
  9382. ggml_lock_unlock(&state->shared->spin);
  9383. }
  9384. // check if we should stop
  9385. if (atomic_load(&state->shared->stop)) {
  9386. break;
  9387. }
  9388. if (state->node) {
  9389. if (state->params.ith < state->params.nth) {
  9390. ggml_compute_forward(&state->params, state->node);
  9391. }
  9392. state->node = NULL;
  9393. } else {
  9394. break;
  9395. }
  9396. }
  9397. return 0;
  9398. }
  9399. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9400. const int n_threads = cgraph->n_threads;
  9401. struct ggml_compute_state_shared state_shared = {
  9402. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9403. /*.n_threads =*/ n_threads,
  9404. /*.n_ready =*/ 0,
  9405. /*.has_work =*/ false,
  9406. /*.stop =*/ false,
  9407. };
  9408. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9409. // create thread pool
  9410. if (n_threads > 1) {
  9411. ggml_lock_init(&state_shared.spin);
  9412. atomic_store(&state_shared.has_work, true);
  9413. for (int j = 0; j < n_threads - 1; j++) {
  9414. workers[j] = (struct ggml_compute_state) {
  9415. .thrd = 0,
  9416. .params = {
  9417. .type = GGML_TASK_COMPUTE,
  9418. .ith = j + 1,
  9419. .nth = n_threads,
  9420. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9421. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9422. },
  9423. .node = NULL,
  9424. .shared = &state_shared,
  9425. };
  9426. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9427. GGML_ASSERT(rc == 0);
  9428. UNUSED(rc);
  9429. }
  9430. }
  9431. // initialize tasks + work buffer
  9432. {
  9433. size_t work_size = 0;
  9434. // thread scheduling for the different operations
  9435. for (int i = 0; i < cgraph->n_nodes; i++) {
  9436. struct ggml_tensor * node = cgraph->nodes[i];
  9437. switch (node->op) {
  9438. case GGML_OP_CPY:
  9439. case GGML_OP_DUP:
  9440. {
  9441. node->n_tasks = n_threads;
  9442. size_t cur = 0;
  9443. if (ggml_is_quantized(node->type)) {
  9444. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9445. }
  9446. work_size = MAX(work_size, cur);
  9447. } break;
  9448. case GGML_OP_ADD:
  9449. {
  9450. node->n_tasks = n_threads;
  9451. size_t cur = 0;
  9452. if (ggml_is_quantized(node->src0->type)) {
  9453. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9454. }
  9455. work_size = MAX(work_size, cur);
  9456. } break;
  9457. case GGML_OP_SUB:
  9458. case GGML_OP_MUL:
  9459. case GGML_OP_DIV:
  9460. case GGML_OP_SQR:
  9461. case GGML_OP_SQRT:
  9462. case GGML_OP_SUM:
  9463. case GGML_OP_MEAN:
  9464. case GGML_OP_REPEAT:
  9465. case GGML_OP_ABS:
  9466. case GGML_OP_SGN:
  9467. case GGML_OP_NEG:
  9468. case GGML_OP_STEP:
  9469. case GGML_OP_RELU:
  9470. {
  9471. node->n_tasks = 1;
  9472. } break;
  9473. case GGML_OP_GELU:
  9474. {
  9475. node->n_tasks = n_threads;
  9476. } break;
  9477. case GGML_OP_SILU:
  9478. {
  9479. node->n_tasks = n_threads;
  9480. } break;
  9481. case GGML_OP_NORM:
  9482. case GGML_OP_RMS_NORM:
  9483. {
  9484. node->n_tasks = n_threads;
  9485. } break;
  9486. case GGML_OP_MUL_MAT:
  9487. {
  9488. node->n_tasks = n_threads;
  9489. // TODO: use different scheduling for different matrix sizes
  9490. //const int nr0 = ggml_nrows(node->src0);
  9491. //const int nr1 = ggml_nrows(node->src1);
  9492. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9493. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9494. size_t cur = 0;
  9495. #if defined(GGML_USE_CUBLAS)
  9496. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  9497. node->n_tasks = 1; // TODO: this actually is doing nothing
  9498. // the threads are still spinning
  9499. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  9500. }
  9501. else
  9502. #endif
  9503. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9504. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9505. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9506. node->n_tasks = 1; // TODO: this actually is doing nothing
  9507. // the threads are still spinning
  9508. // here we need memory just for single 2D matrix from src0
  9509. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9510. } else {
  9511. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9512. }
  9513. #else
  9514. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9515. #endif
  9516. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9517. cur = 0;
  9518. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9519. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9520. node->n_tasks = 1;
  9521. }
  9522. #endif
  9523. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9524. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9525. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9526. node->n_tasks = 1;
  9527. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9528. } else
  9529. #endif
  9530. {
  9531. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9532. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9533. }
  9534. } else {
  9535. GGML_ASSERT(false);
  9536. }
  9537. work_size = MAX(work_size, cur);
  9538. } break;
  9539. case GGML_OP_SCALE:
  9540. {
  9541. node->n_tasks = n_threads;
  9542. } break;
  9543. case GGML_OP_CONT:
  9544. case GGML_OP_RESHAPE:
  9545. case GGML_OP_VIEW:
  9546. case GGML_OP_PERMUTE:
  9547. case GGML_OP_TRANSPOSE:
  9548. case GGML_OP_GET_ROWS:
  9549. case GGML_OP_DIAG_MASK_INF:
  9550. {
  9551. node->n_tasks = 1;
  9552. } break;
  9553. case GGML_OP_SOFT_MAX:
  9554. {
  9555. node->n_tasks = n_threads;
  9556. } break;
  9557. case GGML_OP_ROPE:
  9558. {
  9559. node->n_tasks = n_threads;
  9560. } break;
  9561. case GGML_OP_ALIBI:
  9562. {
  9563. node->n_tasks = 1; //TODO
  9564. } break;
  9565. case GGML_OP_CONV_1D_1S:
  9566. case GGML_OP_CONV_1D_2S:
  9567. {
  9568. node->n_tasks = n_threads;
  9569. GGML_ASSERT(node->src0->ne[3] == 1);
  9570. GGML_ASSERT(node->src1->ne[2] == 1);
  9571. GGML_ASSERT(node->src1->ne[3] == 1);
  9572. size_t cur = 0;
  9573. const int nk = node->src0->ne[0];
  9574. if (node->src0->type == GGML_TYPE_F16 &&
  9575. node->src1->type == GGML_TYPE_F32) {
  9576. cur = sizeof(ggml_fp16_t)*(
  9577. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9578. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9579. );
  9580. } else if (node->src0->type == GGML_TYPE_F32 &&
  9581. node->src1->type == GGML_TYPE_F32) {
  9582. cur = sizeof(float)*(
  9583. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9584. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9585. );
  9586. } else {
  9587. GGML_ASSERT(false);
  9588. }
  9589. work_size = MAX(work_size, cur);
  9590. } break;
  9591. case GGML_OP_FLASH_ATTN:
  9592. {
  9593. node->n_tasks = n_threads;
  9594. size_t cur = 0;
  9595. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9596. if (node->src1->type == GGML_TYPE_F32) {
  9597. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9598. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9599. }
  9600. if (node->src1->type == GGML_TYPE_F16) {
  9601. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9602. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9603. }
  9604. work_size = MAX(work_size, cur);
  9605. } break;
  9606. case GGML_OP_FLASH_FF:
  9607. {
  9608. node->n_tasks = n_threads;
  9609. size_t cur = 0;
  9610. if (node->src1->type == GGML_TYPE_F32) {
  9611. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9612. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9613. }
  9614. if (node->src1->type == GGML_TYPE_F16) {
  9615. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9616. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9617. }
  9618. work_size = MAX(work_size, cur);
  9619. } break;
  9620. case GGML_OP_MAP_UNARY:
  9621. case GGML_OP_MAP_BINARY:
  9622. {
  9623. node->n_tasks = 1;
  9624. } break;
  9625. case GGML_OP_NONE:
  9626. {
  9627. node->n_tasks = 1;
  9628. } break;
  9629. case GGML_OP_COUNT:
  9630. {
  9631. GGML_ASSERT(false);
  9632. } break;
  9633. }
  9634. }
  9635. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9636. GGML_ASSERT(false); // TODO: better handling
  9637. }
  9638. if (work_size > 0 && cgraph->work == NULL) {
  9639. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9640. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9641. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9642. }
  9643. }
  9644. const int64_t perf_start_cycles = ggml_perf_cycles();
  9645. const int64_t perf_start_time_us = ggml_perf_time_us();
  9646. for (int i = 0; i < cgraph->n_nodes; i++) {
  9647. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9648. struct ggml_tensor * node = cgraph->nodes[i];
  9649. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9650. //if (node->grad == NULL && node->perf_runs > 0) {
  9651. // continue;
  9652. //}
  9653. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9654. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9655. // INIT
  9656. struct ggml_compute_params params = {
  9657. /*.type =*/ GGML_TASK_INIT,
  9658. /*.ith =*/ 0,
  9659. /*.nth =*/ node->n_tasks,
  9660. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9661. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9662. };
  9663. ggml_compute_forward(&params, node);
  9664. // COMPUTE
  9665. if (node->n_tasks > 1) {
  9666. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9667. atomic_store(&state_shared.has_work, false);
  9668. }
  9669. while (atomic_load(&state_shared.has_work)) {
  9670. ggml_lock_lock (&state_shared.spin);
  9671. ggml_lock_unlock(&state_shared.spin);
  9672. }
  9673. // launch thread pool
  9674. for (int j = 0; j < n_threads - 1; j++) {
  9675. workers[j].params = (struct ggml_compute_params) {
  9676. .type = GGML_TASK_COMPUTE,
  9677. .ith = j + 1,
  9678. .nth = node->n_tasks,
  9679. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9680. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9681. };
  9682. workers[j].node = node;
  9683. }
  9684. atomic_fetch_sub(&state_shared.n_ready, 1);
  9685. while (atomic_load(&state_shared.n_ready) > 0) {
  9686. ggml_lock_lock (&state_shared.spin);
  9687. ggml_lock_unlock(&state_shared.spin);
  9688. }
  9689. atomic_store(&state_shared.has_work, true);
  9690. }
  9691. params.type = GGML_TASK_COMPUTE;
  9692. ggml_compute_forward(&params, node);
  9693. // wait for thread pool
  9694. if (node->n_tasks > 1) {
  9695. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9696. atomic_store(&state_shared.has_work, false);
  9697. }
  9698. while (atomic_load(&state_shared.has_work)) {
  9699. ggml_lock_lock (&state_shared.spin);
  9700. ggml_lock_unlock(&state_shared.spin);
  9701. }
  9702. atomic_fetch_sub(&state_shared.n_ready, 1);
  9703. while (atomic_load(&state_shared.n_ready) != 0) {
  9704. ggml_lock_lock (&state_shared.spin);
  9705. ggml_lock_unlock(&state_shared.spin);
  9706. }
  9707. }
  9708. // FINALIZE
  9709. if (node->n_tasks > 1) {
  9710. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9711. atomic_store(&state_shared.has_work, false);
  9712. }
  9713. while (atomic_load(&state_shared.has_work)) {
  9714. ggml_lock_lock (&state_shared.spin);
  9715. ggml_lock_unlock(&state_shared.spin);
  9716. }
  9717. // launch thread pool
  9718. for (int j = 0; j < n_threads - 1; j++) {
  9719. workers[j].params = (struct ggml_compute_params) {
  9720. .type = GGML_TASK_FINALIZE,
  9721. .ith = j + 1,
  9722. .nth = node->n_tasks,
  9723. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9724. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9725. };
  9726. workers[j].node = node;
  9727. }
  9728. atomic_fetch_sub(&state_shared.n_ready, 1);
  9729. while (atomic_load(&state_shared.n_ready) > 0) {
  9730. ggml_lock_lock (&state_shared.spin);
  9731. ggml_lock_unlock(&state_shared.spin);
  9732. }
  9733. atomic_store(&state_shared.has_work, true);
  9734. }
  9735. params.type = GGML_TASK_FINALIZE;
  9736. ggml_compute_forward(&params, node);
  9737. // wait for thread pool
  9738. if (node->n_tasks > 1) {
  9739. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9740. atomic_store(&state_shared.has_work, false);
  9741. }
  9742. while (atomic_load(&state_shared.has_work)) {
  9743. ggml_lock_lock (&state_shared.spin);
  9744. ggml_lock_unlock(&state_shared.spin);
  9745. }
  9746. atomic_fetch_sub(&state_shared.n_ready, 1);
  9747. while (atomic_load(&state_shared.n_ready) != 0) {
  9748. ggml_lock_lock (&state_shared.spin);
  9749. ggml_lock_unlock(&state_shared.spin);
  9750. }
  9751. }
  9752. // performance stats (node)
  9753. {
  9754. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9755. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9756. node->perf_runs++;
  9757. node->perf_cycles += perf_cycles_cur;
  9758. node->perf_time_us += perf_time_us_cur;
  9759. }
  9760. }
  9761. // join thread pool
  9762. if (n_threads > 1) {
  9763. atomic_store(&state_shared.stop, true);
  9764. atomic_store(&state_shared.has_work, true);
  9765. for (int j = 0; j < n_threads - 1; j++) {
  9766. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9767. GGML_ASSERT(rc == 0);
  9768. UNUSED(rc);
  9769. }
  9770. ggml_lock_destroy(&state_shared.spin);
  9771. }
  9772. // performance stats (graph)
  9773. {
  9774. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9775. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9776. cgraph->perf_runs++;
  9777. cgraph->perf_cycles += perf_cycles_cur;
  9778. cgraph->perf_time_us += perf_time_us_cur;
  9779. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9780. __func__, cgraph->perf_runs,
  9781. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9782. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9783. (double) perf_time_us_cur / 1000.0,
  9784. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9785. }
  9786. }
  9787. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9788. for (int i = 0; i < cgraph->n_nodes; i++) {
  9789. struct ggml_tensor * grad = cgraph->grads[i];
  9790. if (grad) {
  9791. ggml_set_zero(grad);
  9792. }
  9793. }
  9794. }
  9795. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9796. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9797. GGML_PRINT("=== GRAPH ===\n");
  9798. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9799. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9800. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9801. for (int i = 0; i < cgraph->n_nodes; i++) {
  9802. struct ggml_tensor * node = cgraph->nodes[i];
  9803. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9804. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9805. i,
  9806. node->ne[0], node->ne[1], node->ne[2],
  9807. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9808. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9809. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9810. (double) node->perf_time_us / 1000.0,
  9811. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9812. }
  9813. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9814. for (int i = 0; i < cgraph->n_leafs; i++) {
  9815. struct ggml_tensor * node = cgraph->leafs[i];
  9816. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9817. i,
  9818. node->ne[0], node->ne[1],
  9819. GGML_OP_LABEL[node->op]);
  9820. }
  9821. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9822. if (perf_total_per_op_us[i] == 0) {
  9823. continue;
  9824. }
  9825. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9826. }
  9827. GGML_PRINT("========================================\n");
  9828. }
  9829. // check if node is part of the graph
  9830. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9831. if (cgraph == NULL) {
  9832. return true;
  9833. }
  9834. for (int i = 0; i < cgraph->n_nodes; i++) {
  9835. if (cgraph->nodes[i] == node) {
  9836. return true;
  9837. }
  9838. }
  9839. return false;
  9840. }
  9841. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9842. for (int i = 0; i < cgraph->n_nodes; i++) {
  9843. struct ggml_tensor * parent = cgraph->nodes[i];
  9844. if (parent->grad == node) {
  9845. return parent;
  9846. }
  9847. }
  9848. return NULL;
  9849. }
  9850. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9851. char color[16];
  9852. FILE * fp = fopen(filename, "w");
  9853. GGML_ASSERT(fp);
  9854. fprintf(fp, "digraph G {\n");
  9855. fprintf(fp, " newrank = true;\n");
  9856. fprintf(fp, " rankdir = LR;\n");
  9857. for (int i = 0; i < gb->n_nodes; i++) {
  9858. struct ggml_tensor * node = gb->nodes[i];
  9859. if (ggml_graph_get_parent(gb, node) != NULL) {
  9860. continue;
  9861. }
  9862. if (node->is_param) {
  9863. snprintf(color, sizeof(color), "yellow");
  9864. } else if (node->grad) {
  9865. if (ggml_graph_find(gf, node)) {
  9866. snprintf(color, sizeof(color), "green");
  9867. } else {
  9868. snprintf(color, sizeof(color), "lightblue");
  9869. }
  9870. } else {
  9871. snprintf(color, sizeof(color), "white");
  9872. }
  9873. fprintf(fp, " \"%p\" [ "
  9874. "style = filled; fillcolor = %s; shape = record; "
  9875. "label=\"",
  9876. (void *) node, color);
  9877. if (strlen(node->name) > 0) {
  9878. fprintf(fp, "%s |", node->name);
  9879. }
  9880. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9881. i, node->ne[0], node->ne[1],
  9882. GGML_OP_SYMBOL[node->op]);
  9883. if (node->grad) {
  9884. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9885. } else {
  9886. fprintf(fp, "\"; ]\n");
  9887. }
  9888. }
  9889. for (int i = 0; i < gb->n_leafs; i++) {
  9890. struct ggml_tensor * node = gb->leafs[i];
  9891. snprintf(color, sizeof(color), "pink");
  9892. fprintf(fp, " \"%p\" [ "
  9893. "style = filled; fillcolor = %s; shape = record; "
  9894. "label=\"<x>",
  9895. (void *) node, color);
  9896. if (strlen(node->name) > 0) {
  9897. fprintf(fp, "%s | ", node->name);
  9898. }
  9899. if (ggml_nelements(node) == 1) {
  9900. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  9901. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  9902. }
  9903. else {
  9904. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  9905. }
  9906. }
  9907. else {
  9908. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  9909. }
  9910. fprintf(fp, "\"; ]\n");
  9911. }
  9912. for (int i = 0; i < gb->n_nodes; i++) {
  9913. struct ggml_tensor * node = gb->nodes[i];
  9914. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9915. if (node->src0) {
  9916. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9917. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9918. parent0 ? (void *) parent0 : (void *) node->src0,
  9919. parent0 ? "g" : "x",
  9920. parent ? (void *) parent : (void *) node,
  9921. parent ? "g" : "x",
  9922. parent ? "empty" : "vee",
  9923. parent ? "dashed" : "solid");
  9924. }
  9925. if (node->src1) {
  9926. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9927. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9928. parent1 ? (void *) parent1 : (void *) node->src1,
  9929. parent1 ? "g" : "x",
  9930. parent ? (void *) parent : (void *) node,
  9931. parent ? "g" : "x",
  9932. parent ? "empty" : "vee",
  9933. parent ? "dashed" : "solid");
  9934. }
  9935. }
  9936. for (int i = 0; i < gb->n_leafs; i++) {
  9937. struct ggml_tensor * node = gb->leafs[i];
  9938. if (node->src0) {
  9939. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9940. (void *) node->src0, "x",
  9941. (void *) node, "x");
  9942. }
  9943. if (node->src1) {
  9944. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9945. (void *) node->src1, "x",
  9946. (void *) node, "x");
  9947. }
  9948. }
  9949. fprintf(fp, "}\n");
  9950. fclose(fp);
  9951. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9952. }
  9953. ////////////////////////////////////////////////////////////////////////////////
  9954. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9955. int i = 0;
  9956. for (int p = 0; p < np; ++p) {
  9957. const int64_t ne = ggml_nelements(ps[p]) ;
  9958. // TODO: add function to set tensor from array
  9959. for (int64_t j = 0; j < ne; ++j) {
  9960. ggml_set_f32_1d(ps[p], j, x[i++]);
  9961. }
  9962. }
  9963. }
  9964. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9965. int i = 0;
  9966. for (int p = 0; p < np; ++p) {
  9967. const int64_t ne = ggml_nelements(ps[p]) ;
  9968. // TODO: add function to get all elements at once
  9969. for (int64_t j = 0; j < ne; ++j) {
  9970. x[i++] = ggml_get_f32_1d(ps[p], j);
  9971. }
  9972. }
  9973. }
  9974. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9975. int i = 0;
  9976. for (int p = 0; p < np; ++p) {
  9977. const int64_t ne = ggml_nelements(ps[p]) ;
  9978. // TODO: add function to get all elements at once
  9979. for (int64_t j = 0; j < ne; ++j) {
  9980. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9981. }
  9982. }
  9983. }
  9984. //
  9985. // ADAM
  9986. //
  9987. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9988. //
  9989. static enum ggml_opt_result ggml_opt_adam(
  9990. struct ggml_context * ctx,
  9991. struct ggml_opt_params params,
  9992. struct ggml_tensor * f,
  9993. struct ggml_cgraph * gf,
  9994. struct ggml_cgraph * gb) {
  9995. GGML_ASSERT(ggml_is_scalar(f));
  9996. gf->n_threads = params.n_threads;
  9997. gb->n_threads = params.n_threads;
  9998. // these will store the parameters we want to optimize
  9999. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10000. int np = 0;
  10001. int nx = 0;
  10002. for (int i = 0; i < gf->n_nodes; ++i) {
  10003. if (gf->nodes[i]->is_param) {
  10004. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10005. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10006. ps[np++] = gf->nodes[i];
  10007. nx += ggml_nelements(gf->nodes[i]);
  10008. }
  10009. }
  10010. // constants
  10011. const float alpha = params.adam.alpha;
  10012. const float beta1 = params.adam.beta1;
  10013. const float beta2 = params.adam.beta2;
  10014. const float eps = params.adam.eps;
  10015. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  10016. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  10017. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  10018. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  10019. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  10020. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  10021. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  10022. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10023. // initialize
  10024. ggml_vec_set_f32(nx, m, 0.0f);
  10025. ggml_vec_set_f32(nx, v, 0.0f);
  10026. // update view
  10027. ggml_opt_get_params(np, ps, x);
  10028. // compute the function value
  10029. ggml_graph_reset (gf);
  10030. ggml_set_f32 (f->grad, 1.0f);
  10031. ggml_graph_compute(ctx, gb);
  10032. float fx_prev = ggml_get_f32_1d(f, 0);
  10033. if (pf) {
  10034. pf[0] = fx_prev;
  10035. }
  10036. int n_no_improvement = 0;
  10037. float fx_best = fx_prev;
  10038. // run the optimizer
  10039. for (int t = 0; t < params.adam.n_iter; ++t) {
  10040. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  10041. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10042. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  10043. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  10044. for (int i = 0; i < np; ++i) {
  10045. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  10046. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  10047. }
  10048. const int64_t t_start_wall = ggml_time_us();
  10049. const int64_t t_start_cpu = ggml_cycles();
  10050. UNUSED(t_start_wall);
  10051. UNUSED(t_start_cpu);
  10052. {
  10053. // update the gradient
  10054. ggml_opt_get_grad(np, ps, g1);
  10055. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  10056. ggml_vec_scale_f32(nx, m, beta1);
  10057. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  10058. // g2 = g1^2
  10059. ggml_vec_sqr_f32 (nx, g2, g1);
  10060. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  10061. ggml_vec_scale_f32(nx, v, beta2);
  10062. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  10063. // m^hat = m_t / (1 - beta1^t)
  10064. // v^hat = v_t / (1 - beta2^t)
  10065. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  10066. ggml_vec_cpy_f32 (nx, mh, m);
  10067. ggml_vec_cpy_f32 (nx, vh, v);
  10068. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  10069. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  10070. ggml_vec_sqrt_f32 (nx, vh, vh);
  10071. ggml_vec_acc1_f32 (nx, vh, eps);
  10072. ggml_vec_div_f32 (nx, mh, mh, vh);
  10073. ggml_vec_sub_f32 (nx, x, x, mh);
  10074. // update the parameters
  10075. ggml_opt_set_params(np, ps, x);
  10076. }
  10077. ggml_graph_reset (gf);
  10078. ggml_set_f32 (f->grad, 1.0f);
  10079. ggml_graph_compute(ctx, gb);
  10080. const float fx = ggml_get_f32_1d(f, 0);
  10081. // check convergence
  10082. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10083. GGML_PRINT_DEBUG("converged\n");
  10084. return GGML_OPT_OK;
  10085. }
  10086. // delta-based convergence test
  10087. if (pf != NULL) {
  10088. // need at least params.past iterations to start checking for convergence
  10089. if (params.past <= t) {
  10090. const float rate = (pf[t%params.past] - fx)/fx;
  10091. if (fabsf(rate) < params.delta) {
  10092. return GGML_OPT_OK;
  10093. }
  10094. }
  10095. pf[t%params.past] = fx;
  10096. }
  10097. // check for improvement
  10098. if (params.max_no_improvement > 0) {
  10099. if (fx_best > fx) {
  10100. fx_best = fx;
  10101. n_no_improvement = 0;
  10102. } else {
  10103. ++n_no_improvement;
  10104. if (n_no_improvement >= params.max_no_improvement) {
  10105. return GGML_OPT_OK;
  10106. }
  10107. }
  10108. }
  10109. fx_prev = fx;
  10110. {
  10111. const int64_t t_end_cpu = ggml_cycles();
  10112. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10113. UNUSED(t_end_cpu);
  10114. const int64_t t_end_wall = ggml_time_us();
  10115. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10116. UNUSED(t_end_wall);
  10117. }
  10118. }
  10119. return GGML_OPT_DID_NOT_CONVERGE;
  10120. }
  10121. //
  10122. // L-BFGS
  10123. //
  10124. // the L-BFGS implementation below is based on the following implementation:
  10125. //
  10126. // https://github.com/chokkan/liblbfgs
  10127. //
  10128. struct ggml_lbfgs_iteration_data {
  10129. float alpha;
  10130. float ys;
  10131. float * s;
  10132. float * y;
  10133. };
  10134. static enum ggml_opt_result linesearch_backtracking(
  10135. struct ggml_context * ctx,
  10136. const struct ggml_opt_params * params,
  10137. int nx,
  10138. float * x,
  10139. float * fx,
  10140. float * g,
  10141. float * d,
  10142. float * step,
  10143. const float * xp,
  10144. struct ggml_tensor * f,
  10145. struct ggml_cgraph * gf,
  10146. struct ggml_cgraph * gb,
  10147. const int np,
  10148. struct ggml_tensor * ps[]) {
  10149. int count = 0;
  10150. float width = 0.0f;
  10151. float dg = 0.0f;
  10152. float finit = 0.0f;
  10153. float dginit = 0.0f;
  10154. float dgtest = 0.0f;
  10155. const float dec = 0.5f;
  10156. const float inc = 2.1f;
  10157. if (*step <= 0.f) {
  10158. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10159. }
  10160. // compute the initial gradient in the search direction
  10161. ggml_vec_dot_f32(nx, &dginit, g, d);
  10162. // make sure that d points to a descent direction
  10163. if (0 < dginit) {
  10164. return GGML_LINESEARCH_FAIL;
  10165. }
  10166. // initialize local variables
  10167. finit = *fx;
  10168. dgtest = params->lbfgs.ftol*dginit;
  10169. while (true) {
  10170. ggml_vec_cpy_f32(nx, x, xp);
  10171. ggml_vec_mad_f32(nx, x, d, *step);
  10172. // evaluate the function and gradient values
  10173. {
  10174. ggml_opt_set_params(np, ps, x);
  10175. ggml_graph_reset (gf);
  10176. ggml_set_f32 (f->grad, 1.0f);
  10177. ggml_graph_compute(ctx, gb);
  10178. ggml_opt_get_grad(np, ps, g);
  10179. *fx = ggml_get_f32_1d(f, 0);
  10180. }
  10181. ++count;
  10182. if (*fx > finit + (*step)*dgtest) {
  10183. width = dec;
  10184. } else {
  10185. // Armijo condition is satisfied
  10186. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10187. return count;
  10188. }
  10189. ggml_vec_dot_f32(nx, &dg, g, d);
  10190. // check the Wolfe condition
  10191. if (dg < params->lbfgs.wolfe * dginit) {
  10192. width = inc;
  10193. } else {
  10194. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10195. // regular Wolfe conditions
  10196. return count;
  10197. }
  10198. if(dg > -params->lbfgs.wolfe*dginit) {
  10199. width = dec;
  10200. } else {
  10201. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10202. return count;
  10203. }
  10204. return count;
  10205. }
  10206. }
  10207. if (*step < params->lbfgs.min_step) {
  10208. return GGML_LINESEARCH_MINIMUM_STEP;
  10209. }
  10210. if (*step > params->lbfgs.max_step) {
  10211. return GGML_LINESEARCH_MAXIMUM_STEP;
  10212. }
  10213. if (params->lbfgs.max_linesearch <= count) {
  10214. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10215. }
  10216. (*step) *= width;
  10217. }
  10218. return GGML_LINESEARCH_FAIL;
  10219. }
  10220. static enum ggml_opt_result ggml_opt_lbfgs(
  10221. struct ggml_context * ctx,
  10222. struct ggml_opt_params params,
  10223. struct ggml_tensor * f,
  10224. struct ggml_cgraph * gf,
  10225. struct ggml_cgraph * gb) {
  10226. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10227. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10228. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10229. return GGML_OPT_INVALID_WOLFE;
  10230. }
  10231. }
  10232. gf->n_threads = params.n_threads;
  10233. gb->n_threads = params.n_threads;
  10234. const int m = params.lbfgs.m;
  10235. // these will store the parameters we want to optimize
  10236. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10237. int np = 0;
  10238. int nx = 0;
  10239. for (int i = 0; i < gf->n_nodes; ++i) {
  10240. if (gf->nodes[i]->is_param) {
  10241. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10242. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10243. ps[np++] = gf->nodes[i];
  10244. nx += ggml_nelements(gf->nodes[i]);
  10245. }
  10246. }
  10247. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10248. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10249. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10250. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10251. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10252. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10253. float fx = 0.0f; // cost function value
  10254. float xnorm = 0.0f; // ||x||
  10255. float gnorm = 0.0f; // ||g||
  10256. float step = 0.0f;
  10257. // initialize x from the graph nodes
  10258. ggml_opt_get_params(np, ps, x);
  10259. // the L-BFGS memory
  10260. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10261. for (int i = 0; i < m; ++i) {
  10262. lm[i].alpha = 0.0f;
  10263. lm[i].ys = 0.0f;
  10264. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10265. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10266. }
  10267. // evaluate the function value and its gradient
  10268. {
  10269. ggml_opt_set_params(np, ps, x);
  10270. ggml_graph_reset (gf);
  10271. ggml_set_f32 (f->grad, 1.0f);
  10272. ggml_graph_compute(ctx, gb);
  10273. ggml_opt_get_grad(np, ps, g);
  10274. fx = ggml_get_f32_1d(f, 0);
  10275. }
  10276. if (pf) {
  10277. pf[0] = fx;
  10278. }
  10279. float fx_best = fx;
  10280. // search direction = -gradient
  10281. ggml_vec_neg_f32(nx, d, g);
  10282. // ||x||, ||g||
  10283. ggml_vec_norm_f32(nx, &xnorm, x);
  10284. ggml_vec_norm_f32(nx, &gnorm, g);
  10285. if (xnorm < 1.0f) {
  10286. xnorm = 1.0f;
  10287. }
  10288. // already optimized
  10289. if (gnorm/xnorm <= params.lbfgs.eps) {
  10290. return GGML_OPT_OK;
  10291. }
  10292. // initial step
  10293. ggml_vec_norm_inv_f32(nx, &step, d);
  10294. int j = 0;
  10295. int k = 1;
  10296. int ls = 0;
  10297. int end = 0;
  10298. int bound = 0;
  10299. int n_no_improvement = 0;
  10300. float ys = 0.0f;
  10301. float yy = 0.0f;
  10302. float beta = 0.0f;
  10303. while (true) {
  10304. // store the current position and gradient vectors
  10305. ggml_vec_cpy_f32(nx, xp, x);
  10306. ggml_vec_cpy_f32(nx, gp, g);
  10307. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10308. if (ls < 0) {
  10309. // linesearch failed - go back to the previous point and return
  10310. ggml_vec_cpy_f32(nx, x, xp);
  10311. ggml_vec_cpy_f32(nx, g, gp);
  10312. return ls;
  10313. }
  10314. ggml_vec_norm_f32(nx, &xnorm, x);
  10315. ggml_vec_norm_f32(nx, &gnorm, g);
  10316. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10317. if (xnorm < 1.0f) {
  10318. xnorm = 1.0f;
  10319. }
  10320. if (gnorm/xnorm <= params.lbfgs.eps) {
  10321. // converged
  10322. return GGML_OPT_OK;
  10323. }
  10324. // delta-based convergence test
  10325. if (pf != NULL) {
  10326. // need at least params.past iterations to start checking for convergence
  10327. if (params.past <= k) {
  10328. const float rate = (pf[k%params.past] - fx)/fx;
  10329. if (fabsf(rate) < params.delta) {
  10330. return GGML_OPT_OK;
  10331. }
  10332. }
  10333. pf[k%params.past] = fx;
  10334. }
  10335. // check for improvement
  10336. if (params.max_no_improvement > 0) {
  10337. if (fx < fx_best) {
  10338. fx_best = fx;
  10339. n_no_improvement = 0;
  10340. } else {
  10341. n_no_improvement++;
  10342. if (n_no_improvement >= params.max_no_improvement) {
  10343. return GGML_OPT_OK;
  10344. }
  10345. }
  10346. }
  10347. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10348. // reached the maximum number of iterations
  10349. return GGML_OPT_DID_NOT_CONVERGE;
  10350. }
  10351. // update vectors s and y:
  10352. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10353. // y_{k+1} = g_{k+1} - g_{k}.
  10354. //
  10355. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10356. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10357. // compute scalars ys and yy:
  10358. // ys = y^t \cdot s -> 1 / \rho.
  10359. // yy = y^t \cdot y.
  10360. //
  10361. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10362. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10363. lm[end].ys = ys;
  10364. // find new search direction
  10365. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10366. bound = (m <= k) ? m : k;
  10367. k++;
  10368. end = (end + 1)%m;
  10369. // initialize search direction with -g
  10370. ggml_vec_neg_f32(nx, d, g);
  10371. j = end;
  10372. for (int i = 0; i < bound; ++i) {
  10373. j = (j + m - 1) % m;
  10374. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10375. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10376. lm[j].alpha /= lm[j].ys;
  10377. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10378. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10379. }
  10380. ggml_vec_scale_f32(nx, d, ys/yy);
  10381. for (int i = 0; i < bound; ++i) {
  10382. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10383. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10384. beta /= lm[j].ys;
  10385. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10386. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10387. j = (j + 1)%m;
  10388. }
  10389. step = 1.0;
  10390. }
  10391. return GGML_OPT_DID_NOT_CONVERGE;
  10392. }
  10393. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10394. struct ggml_opt_params result;
  10395. switch (type) {
  10396. case GGML_OPT_ADAM:
  10397. {
  10398. result = (struct ggml_opt_params) {
  10399. .type = GGML_OPT_ADAM,
  10400. .n_threads = 1,
  10401. .past = 0,
  10402. .delta = 1e-5f,
  10403. .max_no_improvement = 100,
  10404. .print_forward_graph = true,
  10405. .print_backward_graph = true,
  10406. .adam = {
  10407. .n_iter = 10000,
  10408. .alpha = 0.001f,
  10409. .beta1 = 0.9f,
  10410. .beta2 = 0.999f,
  10411. .eps = 1e-8f,
  10412. .eps_f = 1e-5f,
  10413. .eps_g = 1e-3f,
  10414. },
  10415. };
  10416. } break;
  10417. case GGML_OPT_LBFGS:
  10418. {
  10419. result = (struct ggml_opt_params) {
  10420. .type = GGML_OPT_LBFGS,
  10421. .n_threads = 1,
  10422. .past = 0,
  10423. .delta = 1e-5f,
  10424. .max_no_improvement = 0,
  10425. .print_forward_graph = true,
  10426. .print_backward_graph = true,
  10427. .lbfgs = {
  10428. .m = 6,
  10429. .n_iter = 100,
  10430. .max_linesearch = 20,
  10431. .eps = 1e-5f,
  10432. .ftol = 1e-4f,
  10433. .wolfe = 0.9f,
  10434. .min_step = 1e-20f,
  10435. .max_step = 1e+20f,
  10436. .linesearch = GGML_LINESEARCH_DEFAULT,
  10437. },
  10438. };
  10439. } break;
  10440. }
  10441. return result;
  10442. }
  10443. enum ggml_opt_result ggml_opt(
  10444. struct ggml_context * ctx,
  10445. struct ggml_opt_params params,
  10446. struct ggml_tensor * f) {
  10447. bool free_ctx = false;
  10448. if (ctx == NULL) {
  10449. struct ggml_init_params params_ctx = {
  10450. .mem_size = 16*1024*1024,
  10451. .mem_buffer = NULL,
  10452. .no_alloc = false,
  10453. };
  10454. ctx = ggml_init(params_ctx);
  10455. if (ctx == NULL) {
  10456. return GGML_OPT_NO_CONTEXT;
  10457. }
  10458. free_ctx = true;
  10459. }
  10460. enum ggml_opt_result result = GGML_OPT_OK;
  10461. // build forward + backward compute graphs
  10462. struct ggml_cgraph gf = ggml_build_forward (f);
  10463. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10464. switch (params.type) {
  10465. case GGML_OPT_ADAM:
  10466. {
  10467. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10468. } break;
  10469. case GGML_OPT_LBFGS:
  10470. {
  10471. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10472. } break;
  10473. }
  10474. if (params.print_forward_graph) {
  10475. ggml_graph_print (&gf);
  10476. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10477. }
  10478. if (params.print_backward_graph) {
  10479. ggml_graph_print (&gb);
  10480. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10481. }
  10482. if (free_ctx) {
  10483. ggml_free(ctx);
  10484. }
  10485. return result;
  10486. }
  10487. ////////////////////////////////////////////////////////////////////////////////
  10488. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10489. assert(k % QK4_0 == 0);
  10490. const int nb = k / QK4_0;
  10491. for (int j = 0; j < n; j += k) {
  10492. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10493. quantize_row_q4_0_reference(src + j, y, k);
  10494. for (int i = 0; i < nb; i++) {
  10495. for (int l = 0; l < QK4_0; l += 2) {
  10496. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10497. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10498. hist[vi0]++;
  10499. hist[vi1]++;
  10500. }
  10501. }
  10502. }
  10503. return (n/QK4_0*sizeof(block_q4_0));
  10504. }
  10505. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10506. assert(k % QK4_1 == 0);
  10507. const int nb = k / QK4_1;
  10508. for (int j = 0; j < n; j += k) {
  10509. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10510. quantize_row_q4_1_reference(src + j, y, k);
  10511. for (int i = 0; i < nb; i++) {
  10512. for (int l = 0; l < QK4_1; l += 2) {
  10513. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10514. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10515. hist[vi0]++;
  10516. hist[vi1]++;
  10517. }
  10518. }
  10519. }
  10520. return (n/QK4_1*sizeof(block_q4_1));
  10521. }
  10522. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10523. assert(k % QK4_2 == 0);
  10524. const int nb = k / QK4_2;
  10525. for (int j = 0; j < n; j += k) {
  10526. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10527. quantize_row_q4_2_reference(src + j, y, k);
  10528. for (int i = 0; i < nb; i++) {
  10529. for (int l = 0; l < QK4_2; l += 2) {
  10530. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10531. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10532. hist[vi0]++;
  10533. hist[vi1]++;
  10534. }
  10535. }
  10536. }
  10537. return (n/QK4_2*sizeof(block_q4_2));
  10538. }
  10539. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10540. assert(k % QK5_0 == 0);
  10541. const int nb = k / QK5_0;
  10542. for (int j = 0; j < n; j += k) {
  10543. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10544. quantize_row_q5_0_reference(src + j, y, k);
  10545. for (int i = 0; i < nb; i++) {
  10546. uint32_t qh;
  10547. memcpy(&qh, &y[i].qh, sizeof(qh));
  10548. for (int l = 0; l < QK5_0; l += 2) {
  10549. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10550. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10551. // cast to 16 bins
  10552. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10553. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10554. hist[vi0]++;
  10555. hist[vi1]++;
  10556. }
  10557. }
  10558. }
  10559. return (n/QK5_0*sizeof(block_q5_0));
  10560. }
  10561. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10562. assert(k % QK5_1 == 0);
  10563. const int nb = k / QK5_1;
  10564. for (int j = 0; j < n; j += k) {
  10565. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10566. quantize_row_q5_1_reference(src + j, y, k);
  10567. for (int i = 0; i < nb; i++) {
  10568. uint32_t qh;
  10569. memcpy(&qh, &y[i].qh, sizeof(qh));
  10570. for (int l = 0; l < QK5_1; l += 2) {
  10571. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10572. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10573. // cast to 16 bins
  10574. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10575. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10576. hist[vi0]++;
  10577. hist[vi1]++;
  10578. }
  10579. }
  10580. }
  10581. return (n/QK5_1*sizeof(block_q5_1));
  10582. }
  10583. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10584. assert(k % QK8_0 == 0);
  10585. const int nb = k / QK8_0;
  10586. for (int j = 0; j < n; j += k) {
  10587. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10588. quantize_row_q8_0_reference(src + j, y, k);
  10589. for (int i = 0; i < nb; i++) {
  10590. for (int l = 0; l < QK8_0; ++l) {
  10591. const int8_t vi = y[i].qs[l];
  10592. hist[vi/16 + 8]++;
  10593. }
  10594. }
  10595. }
  10596. return (n/QK8_0*sizeof(block_q8_0));
  10597. }
  10598. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10599. size_t result = 0;
  10600. switch (type) {
  10601. case GGML_TYPE_Q4_0:
  10602. {
  10603. GGML_ASSERT(start % QK4_0 == 0);
  10604. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10605. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10606. } break;
  10607. case GGML_TYPE_Q4_1:
  10608. {
  10609. GGML_ASSERT(start % QK4_1 == 0);
  10610. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10611. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10612. } break;
  10613. case GGML_TYPE_Q4_2:
  10614. {
  10615. GGML_ASSERT(start % QK4_2 == 0);
  10616. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10617. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10618. } break;
  10619. case GGML_TYPE_Q5_0:
  10620. {
  10621. GGML_ASSERT(start % QK5_0 == 0);
  10622. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10623. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10624. } break;
  10625. case GGML_TYPE_Q5_1:
  10626. {
  10627. GGML_ASSERT(start % QK5_1 == 0);
  10628. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10629. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10630. } break;
  10631. case GGML_TYPE_Q8_0:
  10632. {
  10633. GGML_ASSERT(start % QK8_0 == 0);
  10634. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10635. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10636. } break;
  10637. default:
  10638. assert(false);
  10639. }
  10640. return result;
  10641. }
  10642. ////////////////////////////////////////////////////////////////////////////////
  10643. int ggml_cpu_has_avx(void) {
  10644. #if defined(__AVX__)
  10645. return 1;
  10646. #else
  10647. return 0;
  10648. #endif
  10649. }
  10650. int ggml_cpu_has_avx2(void) {
  10651. #if defined(__AVX2__)
  10652. return 1;
  10653. #else
  10654. return 0;
  10655. #endif
  10656. }
  10657. int ggml_cpu_has_avx512(void) {
  10658. #if defined(__AVX512F__)
  10659. return 1;
  10660. #else
  10661. return 0;
  10662. #endif
  10663. }
  10664. int ggml_cpu_has_avx512_vbmi(void) {
  10665. #if defined(__AVX512VBMI__)
  10666. return 1;
  10667. #else
  10668. return 0;
  10669. #endif
  10670. }
  10671. int ggml_cpu_has_avx512_vnni(void) {
  10672. #if defined(__AVX512VNNI__)
  10673. return 1;
  10674. #else
  10675. return 0;
  10676. #endif
  10677. }
  10678. int ggml_cpu_has_fma(void) {
  10679. #if defined(__FMA__)
  10680. return 1;
  10681. #else
  10682. return 0;
  10683. #endif
  10684. }
  10685. int ggml_cpu_has_neon(void) {
  10686. #if defined(__ARM_NEON)
  10687. return 1;
  10688. #else
  10689. return 0;
  10690. #endif
  10691. }
  10692. int ggml_cpu_has_arm_fma(void) {
  10693. #if defined(__ARM_FEATURE_FMA)
  10694. return 1;
  10695. #else
  10696. return 0;
  10697. #endif
  10698. }
  10699. int ggml_cpu_has_f16c(void) {
  10700. #if defined(__F16C__)
  10701. return 1;
  10702. #else
  10703. return 0;
  10704. #endif
  10705. }
  10706. int ggml_cpu_has_fp16_va(void) {
  10707. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10708. return 1;
  10709. #else
  10710. return 0;
  10711. #endif
  10712. }
  10713. int ggml_cpu_has_wasm_simd(void) {
  10714. #if defined(__wasm_simd128__)
  10715. return 1;
  10716. #else
  10717. return 0;
  10718. #endif
  10719. }
  10720. int ggml_cpu_has_blas(void) {
  10721. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10722. return 1;
  10723. #else
  10724. return 0;
  10725. #endif
  10726. }
  10727. int ggml_cpu_has_cublas(void) {
  10728. #if defined(GGML_USE_CUBLAS)
  10729. return 1;
  10730. #else
  10731. return 0;
  10732. #endif
  10733. }
  10734. int ggml_cpu_has_clblast(void) {
  10735. #if defined(GGML_USE_CLBLAST)
  10736. return 1;
  10737. #else
  10738. return 0;
  10739. #endif
  10740. }
  10741. int ggml_cpu_has_gpublas(void) {
  10742. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10743. }
  10744. int ggml_cpu_has_sse3(void) {
  10745. #if defined(__SSE3__)
  10746. return 1;
  10747. #else
  10748. return 0;
  10749. #endif
  10750. }
  10751. int ggml_cpu_has_vsx(void) {
  10752. #if defined(__POWER9_VECTOR__)
  10753. return 1;
  10754. #else
  10755. return 0;
  10756. #endif
  10757. }
  10758. ////////////////////////////////////////////////////////////////////////////////