sgemm.cpp 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027
  1. // Copyright 2024 Mozilla Foundation
  2. //
  3. // Permission is hereby granted, free of charge, to any person obtaining
  4. // a copy of this software and associated documentation files (the
  5. // "Software"), to deal in the Software without restriction, including
  6. // without limitation the rights to use, copy, modify, merge, publish,
  7. // distribute, sublicense, and/or sell copies of the Software, and to
  8. // permit persons to whom the Software is furnished to do so, subject to
  9. // the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be
  12. // included in all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  15. // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  16. // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  17. // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  18. // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  19. // ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  20. // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21. // SOFTWARE.
  22. //
  23. // _ _ ___ _ _ ___
  24. // | |_(_)_ _ _ _| _ ) | /_\ / __|
  25. // | _| | ' \ || | _ \ |__ / _ \\__ \.
  26. // \__|_|_||_\_, |___/____/_/ \_\___/
  27. // |__/
  28. //
  29. // BASIC LINEAR ALGEBRA SUBPROGRAMS
  30. //
  31. //
  32. // This file implements multithreaded CPU matrix multiplication for the
  33. // common contiguous use case C = Aᵀ * B. These kernels are designed to
  34. // have excellent performance[1] for matrices that fit in the CPU cache
  35. // without imposing any overhead such as cache filling or malloc calls.
  36. //
  37. // This implementation does not guarantee any upper bound with rounding
  38. // errors, which grow along with k. Our goal's to maximally exploit the
  39. // hardware for performance, and then use whatever resources remain for
  40. // improving numerical accuracy.
  41. //
  42. // [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
  43. // Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
  44. #if defined(__GNUC__)
  45. #pragma GCC diagnostic ignored "-Wpedantic"
  46. #pragma GCC diagnostic ignored "-Wignored-attributes"
  47. #endif
  48. #include "sgemm.h"
  49. #include "ggml-impl.h"
  50. #include "ggml-quants.h"
  51. #ifdef _MSC_VER
  52. #define NOINLINE __declspec(noinline)
  53. #else
  54. #define NOINLINE __attribute__((__noinline__))
  55. #endif
  56. #if defined(__ARM_NEON) || defined(__AVX512F__)
  57. #define VECTOR_REGISTERS 32
  58. #else
  59. #define VECTOR_REGISTERS 16
  60. #endif
  61. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  62. namespace {
  63. inline float unhalf(ggml_fp16_t d) {
  64. return GGML_FP16_TO_FP32(d);
  65. }
  66. ////////////////////////////////////////////////////////////////////////////////////////////////////
  67. // VECTORIZED ARITHMETIC OPERATIONS
  68. #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  69. inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(x, y); }
  70. inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(x, y); }
  71. inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(x, y); }
  72. #endif // __SSE__
  73. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  74. inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(x, y); }
  75. inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(x, y); }
  76. inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(x, y); }
  77. #endif // __AVX__
  78. #if defined(__AVX512F__)
  79. inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); }
  80. inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); }
  81. inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); }
  82. #endif // __AVX512F__
  83. #if defined(__ARM_NEON)
  84. inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); }
  85. inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); }
  86. inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); }
  87. #endif // __ARM_NEON
  88. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  89. inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); }
  90. inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); }
  91. inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); }
  92. #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  93. ////////////////////////////////////////////////////////////////////////////////////////////////////
  94. // VECTORIZED FUSED MULTIPLY ADD
  95. /**
  96. * Computes a * b + c.
  97. */
  98. template <typename T, typename U>
  99. inline U madd(T a, T b, U c) {
  100. return add(mul(a, b), c);
  101. }
  102. #if defined(__FMA__)
  103. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  104. template <>
  105. inline __m256 madd(__m256 a, __m256 b, __m256 c) {
  106. return _mm256_fmadd_ps(a, b, c);
  107. }
  108. #endif
  109. #if defined(__AVX512F__)
  110. template <>
  111. inline __m512 madd(__m512 a, __m512 b, __m512 c) {
  112. return _mm512_fmadd_ps(a, b, c);
  113. }
  114. #endif
  115. #endif
  116. #if defined(__ARM_FEATURE_FMA)
  117. template <>
  118. inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) {
  119. return vfmaq_f32(c, b, a);
  120. }
  121. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
  122. template <>
  123. inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) {
  124. return vfmaq_f16(c, b, a);
  125. }
  126. #endif
  127. #endif
  128. ////////////////////////////////////////////////////////////////////////////////////////////////////
  129. // VECTORIZED HORIZONTAL SUM
  130. #if defined(__ARM_NEON)
  131. inline float hsum(float32x4_t x) {
  132. return vaddvq_f32(x);
  133. }
  134. #endif // __ARM_NEON
  135. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
  136. inline float hsum(float16x8_t x) {
  137. return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)),
  138. vcvt_f32_f16(vget_high_f16(x))));
  139. }
  140. #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  141. #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  142. inline float hsum(__m128 x) {
  143. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  144. x = _mm_add_ps(x, _mm_movehl_ps(x, x));
  145. x = _mm_add_ss(x, _mm_movehdup_ps(x));
  146. #else
  147. __m128 t;
  148. t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1));
  149. x = _mm_add_ps(x, t);
  150. t = _mm_movehl_ps(t, x);
  151. x = _mm_add_ss(x, t);
  152. #endif
  153. return _mm_cvtss_f32(x);
  154. }
  155. #endif
  156. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  157. inline float hsum(__m256 x) {
  158. return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1),
  159. _mm256_castps256_ps128(x)));
  160. }
  161. #endif // __AVX__
  162. #if defined(__AVX512F__)
  163. inline float hsum(__m512 x) {
  164. return _mm512_reduce_add_ps(x);
  165. }
  166. #endif // __AVX512F__
  167. ////////////////////////////////////////////////////////////////////////////////////////////////////
  168. // VECTORIZED MEMORY LOADING
  169. template <typename T, typename U> T load(const U *);
  170. #if defined(__ARM_NEON)
  171. template <> inline float32x4_t load(const float *p) {
  172. return vld1q_f32(p);
  173. }
  174. #if !defined(_MSC_VER)
  175. template <> inline float16x8_t load(const ggml_fp16_t *p) {
  176. return vld1q_f16((const float16_t *)p);
  177. }
  178. template <> inline float32x4_t load(const ggml_fp16_t *p) {
  179. return vcvt_f32_f16(vld1_f16((const float16_t *)p));
  180. }
  181. #endif // _MSC_VER
  182. #endif // __ARM_NEON
  183. #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  184. template <> inline __m128 load(const float *p) {
  185. return _mm_loadu_ps(p);
  186. }
  187. #endif // __SSE__
  188. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  189. template <> inline __m256 load(const float *p) {
  190. return _mm256_loadu_ps(p);
  191. }
  192. #endif // __AVX__
  193. #if defined(__F16C__)
  194. template <> inline __m256 load(const ggml_fp16_t *p) {
  195. return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
  196. }
  197. #endif // __F16C__
  198. #if defined(__AVX512F__)
  199. template <> inline __m512 load(const float *p) {
  200. return _mm512_loadu_ps(p);
  201. }
  202. template <> inline __m512 load(const ggml_fp16_t *p) {
  203. return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
  204. }
  205. #endif // __AVX512F__
  206. ////////////////////////////////////////////////////////////////////////////////////////////////////
  207. // FLOATING POINT MATRIX MULTIPLICATION
  208. template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
  209. class tinyBLAS {
  210. public:
  211. tinyBLAS(int64_t k,
  212. const TA *A, int64_t lda,
  213. const TB *B, int64_t ldb,
  214. TC *C, int64_t ldc,
  215. int ith, int nth)
  216. : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
  217. }
  218. void matmul(int64_t m, int64_t n) {
  219. mnpack(0, m, 0, n);
  220. }
  221. private:
  222. NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  223. int64_t mc, nc, mp, np;
  224. switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) {
  225. #if VECTOR_REGISTERS == 32
  226. case 0x55:
  227. mc = 5;
  228. nc = 5;
  229. gemm<5, 5>(m0, m, n0, n);
  230. break;
  231. case 0x45:
  232. mc = 4;
  233. nc = 5;
  234. gemm<4, 5>(m0, m, n0, n);
  235. break;
  236. case 0x54:
  237. mc = 5;
  238. nc = 4;
  239. gemm<5, 4>(m0, m, n0, n);
  240. break;
  241. case 0x44:
  242. mc = 4;
  243. nc = 4;
  244. gemm<4, 4>(m0, m, n0, n);
  245. break;
  246. case 0x53:
  247. mc = 5;
  248. nc = 3;
  249. gemm<5, 3>(m0, m, n0, n);
  250. break;
  251. case 0x35:
  252. mc = 3;
  253. nc = 5;
  254. gemm<3, 5>(m0, m, n0, n);
  255. break;
  256. case 0x43:
  257. mc = 4;
  258. nc = 3;
  259. gemm<4, 3>(m0, m, n0, n);
  260. break;
  261. #else
  262. case 0x55:
  263. case 0x54:
  264. case 0x53:
  265. case 0x45:
  266. case 0x44:
  267. case 0x43:
  268. mc = 4;
  269. nc = 3;
  270. gemm<4, 3>(m0, m, n0, n);
  271. break;
  272. case 0x35:
  273. #endif
  274. case 0x34:
  275. mc = 3;
  276. nc = 4;
  277. gemm<3, 4>(m0, m, n0, n);
  278. break;
  279. case 0x52:
  280. mc = 5;
  281. nc = 2;
  282. gemm<5, 2>(m0, m, n0, n);
  283. break;
  284. case 0x33:
  285. mc = 3;
  286. nc = 3;
  287. gemm<3, 3>(m0, m, n0, n);
  288. break;
  289. case 0x25:
  290. mc = 2;
  291. nc = 5;
  292. gemm<2, 5>(m0, m, n0, n);
  293. break;
  294. case 0x42:
  295. mc = 4;
  296. nc = 2;
  297. gemm<4, 2>(m0, m, n0, n);
  298. break;
  299. case 0x24:
  300. mc = 2;
  301. nc = 4;
  302. gemm<2, 4>(m0, m, n0, n);
  303. break;
  304. case 0x32:
  305. mc = 3;
  306. nc = 2;
  307. gemm<3, 2>(m0, m, n0, n);
  308. break;
  309. case 0x23:
  310. mc = 2;
  311. nc = 3;
  312. gemm<2, 3>(m0, m, n0, n);
  313. break;
  314. case 0x51:
  315. mc = 5;
  316. nc = 1;
  317. gemm<5, 1>(m0, m, n0, n);
  318. break;
  319. case 0x41:
  320. mc = 4;
  321. nc = 1;
  322. gemm<4, 1>(m0, m, n0, n);
  323. break;
  324. case 0x22:
  325. mc = 2;
  326. nc = 2;
  327. gemm<2, 2>(m0, m, n0, n);
  328. break;
  329. case 0x15:
  330. mc = 1;
  331. nc = 5;
  332. gemm<1, 5>(m0, m, n0, n);
  333. break;
  334. case 0x14:
  335. mc = 1;
  336. nc = 4;
  337. gemm<1, 4>(m0, m, n0, n);
  338. break;
  339. case 0x31:
  340. mc = 3;
  341. nc = 1;
  342. gemm<3, 1>(m0, m, n0, n);
  343. break;
  344. case 0x13:
  345. mc = 1;
  346. nc = 3;
  347. gemm<1, 3>(m0, m, n0, n);
  348. break;
  349. case 0x21:
  350. mc = 2;
  351. nc = 1;
  352. gemm<2, 1>(m0, m, n0, n);
  353. break;
  354. case 0x12:
  355. mc = 1;
  356. nc = 2;
  357. gemm<1, 2>(m0, m, n0, n);
  358. break;
  359. case 0x11:
  360. mc = 1;
  361. nc = 1;
  362. gemm<1, 1>(m0, m, n0, n);
  363. break;
  364. default:
  365. return;
  366. }
  367. mp = m0 + (m - m0) / mc * mc;
  368. np = n0 + (n - n0) / nc * nc;
  369. mnpack(mp, m, n0, np);
  370. mnpack(m0, m, np, n);
  371. }
  372. template <int RM, int RN>
  373. NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  374. int64_t ytiles = (m - m0) / RM;
  375. int64_t xtiles = (n - n0) / RN;
  376. int64_t tiles = xtiles * ytiles;
  377. int64_t duty = (tiles + nth - 1) / nth;
  378. int64_t start = duty * ith;
  379. int64_t end = start + duty;
  380. if (end > tiles)
  381. end = tiles;
  382. for (int64_t job = start; job < end; ++job) {
  383. int64_t ii = m0 + job / xtiles * RM;
  384. int64_t jj = n0 + job % xtiles * RN;
  385. D Cv[RN][RM] = {};
  386. for (int64_t l = 0; l < k; l += KN)
  387. for (int64_t j = 0; j < RN; ++j)
  388. for (int64_t i = 0; i < RM; ++i)
  389. Cv[j][i] = madd(load<V>(A + lda * (ii + i) + l),
  390. load<V>(B + ldb * (jj + j) + l),
  391. Cv[j][i]);
  392. for (int64_t j = 0; j < RN; ++j)
  393. for (int64_t i = 0; i < RM; ++i)
  394. C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
  395. }
  396. }
  397. const TA *const A;
  398. const TB *const B;
  399. TC *const C;
  400. const int64_t k;
  401. const int64_t lda;
  402. const int64_t ldb;
  403. const int64_t ldc;
  404. const int ith;
  405. const int nth;
  406. };
  407. //////////////////////////////////////////////////////////////////////////////////////////
  408. // QUANT ZERO MATRIX MULTIPLICATION
  409. #if defined(__ARM_FEATURE_DOTPROD)
  410. template <typename TA>
  411. class tinyBLAS_Q0_ARM {
  412. public:
  413. tinyBLAS_Q0_ARM(int64_t k,
  414. const TA *A, int64_t lda,
  415. const block_q8_0 *B, int64_t ldb,
  416. float *C, int64_t ldc,
  417. int ith, int nth)
  418. : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
  419. }
  420. void matmul(int64_t m, int64_t n) {
  421. mnpack(0, m, 0, n);
  422. }
  423. private:
  424. NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  425. int64_t mc, nc, mp, np;
  426. switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3ll)) {
  427. case 0x33:
  428. mc = 3;
  429. nc = 3;
  430. gemm<3, 3>(m0, m, n0, n);
  431. break;
  432. case 0x32:
  433. mc = 3;
  434. nc = 2;
  435. gemm<3, 2>(m0, m, n0, n);
  436. break;
  437. case 0x23:
  438. mc = 2;
  439. nc = 3;
  440. gemm<2, 3>(m0, m, n0, n);
  441. break;
  442. case 0x22:
  443. mc = 2;
  444. nc = 2;
  445. gemm<2, 2>(m0, m, n0, n);
  446. break;
  447. case 0x31:
  448. mc = 3;
  449. nc = 1;
  450. gemm<3, 1>(m0, m, n0, n);
  451. break;
  452. case 0x13:
  453. mc = 1;
  454. nc = 3;
  455. gemm<1, 3>(m0, m, n0, n);
  456. break;
  457. case 0x21:
  458. mc = 2;
  459. nc = 1;
  460. gemm<2, 1>(m0, m, n0, n);
  461. break;
  462. case 0x12:
  463. mc = 1;
  464. nc = 2;
  465. gemm<1, 2>(m0, m, n0, n);
  466. break;
  467. case 0x11:
  468. mc = 1;
  469. nc = 1;
  470. gemm<1, 1>(m0, m, n0, n);
  471. break;
  472. default:
  473. return;
  474. }
  475. mp = m0 + (m - m0) / mc * mc;
  476. np = n0 + (n - n0) / nc * nc;
  477. mnpack(mp, m, n0, np);
  478. mnpack(m0, m, np, n);
  479. }
  480. template <int RM, int RN>
  481. NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  482. int64_t ytiles = (m - m0) / RM;
  483. int64_t xtiles = (n - n0) / RN;
  484. int64_t tiles = xtiles * ytiles;
  485. int64_t duty = (tiles + nth - 1) / nth;
  486. int64_t start = duty * ith;
  487. int64_t end = start + duty;
  488. if (end > tiles)
  489. end = tiles;
  490. for (int64_t job = start; job < end; ++job) {
  491. int64_t ii = m0 + job / xtiles * RM;
  492. int64_t jj = n0 + job % xtiles * RN;
  493. float32x4_t Cv[RN][RM] = {};
  494. for (int64_t l = 0; l < k; ++l)
  495. for (int64_t j = 0; j < RN; ++j)
  496. for (int64_t i = 0; i < RM; ++i)
  497. Cv[j][i] = vmlaq_n_f32(Cv[j][i],
  498. vcvtq_f32_s32(vdotq_s32(
  499. vdotq_s32(vdupq_n_s32(0),
  500. load_lo(A + lda * (ii + i) + l),
  501. load_lo(B + ldb * (jj + j) + l)),
  502. load_hi(A + lda * (ii + i) + l),
  503. load_hi(B + ldb * (jj + j) + l))),
  504. unhalf(A[lda * (ii + i) + l].d) *
  505. unhalf(B[ldb * (jj + j) + l].d));
  506. for (int64_t j = 0; j < RN; ++j)
  507. for (int64_t i = 0; i < RM; ++i)
  508. C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
  509. }
  510. }
  511. inline int8x16_t load_lo(const block_q8_0 *b) {
  512. return vld1q_s8(b->qs);
  513. }
  514. inline int8x16_t load_hi(const block_q8_0 *b) {
  515. return vld1q_s8(b->qs + 16);
  516. }
  517. inline int8x16_t load_lo(const block_q4_0 *b) {
  518. return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs),
  519. vdupq_n_u8(0x0f))),
  520. vdupq_n_s8(0x8));
  521. }
  522. inline int8x16_t load_hi(const block_q4_0 *b) {
  523. return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)),
  524. vdupq_n_s8(0x8));
  525. }
  526. const TA *const A;
  527. const block_q8_0 *const B;
  528. float *const C;
  529. const int64_t k;
  530. const int64_t lda;
  531. const int64_t ldb;
  532. const int64_t ldc;
  533. const int ith;
  534. const int nth;
  535. };
  536. #endif // __ARM_FEATURE_DOTPROD
  537. #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
  538. template <typename TA, typename TB, typename TC>
  539. class tinyBLAS_Q0_AVX {
  540. public:
  541. tinyBLAS_Q0_AVX(int64_t k,
  542. const TA *A, int64_t lda,
  543. const TB *B, int64_t ldb,
  544. TC *C, int64_t ldc,
  545. int ith, int nth)
  546. : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
  547. }
  548. void matmul(int64_t m, int64_t n) {
  549. mnpack(0, m, 0, n);
  550. }
  551. private:
  552. void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  553. int64_t mc, nc, mp, np;
  554. switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 4)) {
  555. #if VECTOR_REGISTERS == 32
  556. case 0x44:
  557. mc = 4;
  558. nc = 4;
  559. gemm<4, 4>(m0, m, n0, n);
  560. break;
  561. case 0x43:
  562. mc = 4;
  563. nc = 3;
  564. gemm<4, 3>(m0, m, n0, n);
  565. break;
  566. case 0x34:
  567. mc = 3;
  568. nc = 4;
  569. gemm<3, 4>(m0, m, n0, n);
  570. break;
  571. case 0x33:
  572. mc = 3;
  573. nc = 3;
  574. gemm<3, 3>(m0, m, n0, n);
  575. break;
  576. case 0x42:
  577. mc = 4;
  578. nc = 2;
  579. gemm<4, 2>(m0, m, n0, n);
  580. break;
  581. case 0x24:
  582. mc = 2;
  583. nc = 4;
  584. gemm<2, 4>(m0, m, n0, n);
  585. break;
  586. #else
  587. case 0x44:
  588. case 0x43:
  589. case 0x42:
  590. mc = 4;
  591. nc = 2;
  592. gemm<4, 2>(m0, m, n0, n);
  593. break;
  594. case 0x34:
  595. case 0x24:
  596. mc = 2;
  597. nc = 4;
  598. gemm<2, 4>(m0, m, n0, n);
  599. break;
  600. case 0x33:
  601. #endif
  602. case 0x32:
  603. mc = 3;
  604. nc = 2;
  605. gemm<3, 2>(m0, m, n0, n);
  606. break;
  607. case 0x23:
  608. mc = 2;
  609. nc = 3;
  610. gemm<2, 3>(m0, m, n0, n);
  611. break;
  612. case 0x41:
  613. mc = 4;
  614. nc = 1;
  615. gemm<4, 1>(m0, m, n0, n);
  616. break;
  617. case 0x22:
  618. mc = 2;
  619. nc = 2;
  620. gemm<2, 2>(m0, m, n0, n);
  621. break;
  622. case 0x14:
  623. mc = 1;
  624. nc = 4;
  625. gemm<1, 4>(m0, m, n0, n);
  626. break;
  627. case 0x31:
  628. mc = 3;
  629. nc = 1;
  630. gemm<3, 1>(m0, m, n0, n);
  631. break;
  632. case 0x13:
  633. mc = 1;
  634. nc = 3;
  635. gemm<1, 3>(m0, m, n0, n);
  636. break;
  637. case 0x21:
  638. mc = 2;
  639. nc = 1;
  640. gemm<2, 1>(m0, m, n0, n);
  641. break;
  642. case 0x12:
  643. mc = 1;
  644. nc = 2;
  645. gemm<1, 2>(m0, m, n0, n);
  646. break;
  647. case 0x11:
  648. mc = 1;
  649. nc = 1;
  650. gemm<1, 1>(m0, m, n0, n);
  651. break;
  652. default:
  653. return;
  654. }
  655. mp = m0 + (m - m0) / mc * mc;
  656. np = n0 + (n - n0) / nc * nc;
  657. mnpack(mp, m, n0, np);
  658. mnpack(m0, m, np, n);
  659. }
  660. template <int RM, int RN>
  661. NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  662. int64_t ytiles = (m - m0) / RM;
  663. int64_t xtiles = (n - n0) / RN;
  664. int64_t tiles = xtiles * ytiles;
  665. int64_t duty = (tiles + nth - 1) / nth;
  666. int64_t start = duty * ith;
  667. int64_t end = start + duty;
  668. if (end > tiles)
  669. end = tiles;
  670. for (int64_t job = start; job < end; ++job) {
  671. int64_t ii = m0 + job / xtiles * RM;
  672. int64_t jj = n0 + job % xtiles * RN;
  673. __m256 Cv[RN][RM] = {};
  674. for (int64_t l = 0; l < k; ++l)
  675. for (int64_t j = 0; j < RN; ++j)
  676. for (int64_t i = 0; i < RM; ++i) {
  677. #if defined(__AVX2__)
  678. __m256 udTmp = updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
  679. load(A + lda * (ii + i) + l)),
  680. _mm256_sign_epi8(load(B + ldb * (jj + j) + l),
  681. load(A + lda * (ii + i) + l)));
  682. #else
  683. __m128i ali0 = load0(A + lda * (ii + i) + l);
  684. __m128i ali1 = load1(A + lda * (ii + i) + l);
  685. __m128i blj0 = load0(B + ldb * (jj + j) + l);
  686. __m128i blj1 = load1(B + ldb * (jj + j) + l);
  687. __m128i sepAA0 = _mm_sign_epi8(ali0, ali0);
  688. __m128i sepAA1 = _mm_sign_epi8(ali1, ali1);
  689. __m128i sepBA0 = _mm_sign_epi8(blj0, ali0);
  690. __m128i sepBA1 = _mm_sign_epi8(blj1, ali1);
  691. // updot
  692. const __m128i oneFill = _mm_set1_epi16(1);
  693. __m128i mad0 = _mm_maddubs_epi16(sepAA0, sepBA0);
  694. __m128i mad1 = _mm_maddubs_epi16(sepAA1, sepBA1);
  695. __m256 udTmp = _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_madd_epi16(oneFill, mad1), _mm_madd_epi16(oneFill, mad0)));
  696. #endif
  697. Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) *
  698. unhalf(B[ldb * (jj + j) + l].d)),
  699. udTmp,
  700. Cv[j][i]);
  701. }
  702. for (int64_t j = 0; j < RN; ++j)
  703. for (int64_t i = 0; i < RM; ++i)
  704. C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
  705. }
  706. }
  707. inline __m256i load(const block_q8_0 *b) {
  708. return _mm256_loadu_si256((const __m256i *)b->qs);
  709. }
  710. inline __m128i load0(const block_q8_0 *b) {
  711. return _mm_loadu_si128((const __m128i *)b->qs);
  712. }
  713. inline __m128i load1(const block_q8_0 *b) {
  714. return _mm_loadu_si128(((const __m128i *)b->qs) + 1);
  715. }
  716. inline __m256i load(const block_q4_0 *b) {
  717. return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8));
  718. }
  719. inline __m128i load0(const block_q4_0 *b) {
  720. const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
  721. return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), x), _mm_set1_epi8(8));
  722. }
  723. inline __m128i load1(const block_q4_0 *b) {
  724. const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
  725. return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)), _mm_set1_epi8(8));
  726. }
  727. inline __m256 updot(__m256i u, __m256i s) {
  728. __m256i res;
  729. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  730. res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
  731. #else
  732. res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
  733. #endif
  734. return _mm256_cvtepi32_ps(res);
  735. }
  736. static inline __m256i denibble(const uint8_t *p) {
  737. __m128i x = _mm_loadu_si128((const __m128i *)p);
  738. return _mm256_and_si256(_mm256_set1_epi8(15),
  739. _mm256_insertf128_si256(_mm256_castsi128_si256(x),
  740. _mm_srli_epi16(x, 4), 1));
  741. }
  742. const TA *const A;
  743. const TB *const B;
  744. TC *const C;
  745. const int64_t k;
  746. const int64_t lda;
  747. const int64_t ldb;
  748. const int64_t ldc;
  749. const int ith;
  750. const int nth;
  751. };
  752. #endif // __AVX__
  753. } // namespace
  754. /**
  755. * Performs optimized matrix multiplication on CPU.
  756. *
  757. * This subroutine may compute C = Aᵀ * B with column major ordering.
  758. * Despite its name, this isn't a generalized implementation. Work is
  759. * only performed when a handwritten kernel is written and available.
  760. * Otherwise the caller should fall back to a general matmul routine.
  761. *
  762. * For example, for single-threaded single-precision GEMM you can say
  763. *
  764. * llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
  765. * 0, 1,
  766. * GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
  767. *
  768. * @param m is rows in `A` and `C`
  769. * @param n is cols in `B` and `C`
  770. * @param k is cols in `A` and rows in `B`
  771. * @param A is first input matrix (always transposed)
  772. * @param lda is row stride of `A`
  773. * @param B is second input matrix (never transposed)
  774. * @param ldb is row stride of `B`
  775. * @param C is input/output array of output matrices
  776. * @param ldc is row stride of `C`
  777. * @param ith is thread id (must be less than `nth`)
  778. * @param nth is number of threads (must be greater than zero)
  779. * @param Atype is GGML data type of `A`
  780. * @param Btype is GGML data type of `B`
  781. * @param Ctype is GGML data type of `C`
  782. * @return true if this function was able to service the matmul request
  783. */
  784. bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
  785. int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) {
  786. assert(m >= 0);
  787. assert(n >= 0);
  788. assert(k >= 0);
  789. assert(lda >= k);
  790. assert(ldb >= k);
  791. assert(ldc >= m);
  792. assert(nth > 0);
  793. assert(ith < nth);
  794. if (Ctype != GGML_TYPE_F32)
  795. return false;
  796. switch (Atype) {
  797. case GGML_TYPE_F32: {
  798. if (Btype != GGML_TYPE_F32)
  799. return false;
  800. #if defined(__AVX512F__)
  801. if (k % 16)
  802. return false;
  803. tinyBLAS<16, __m512, __m512, float, float, float> tb{
  804. k, (const float *)A, lda,
  805. (const float *)B, ldb,
  806. (float *)C, ldc,
  807. ith, nth};
  808. tb.matmul(m, n);
  809. return true;
  810. #elif defined(__AVX__) || defined(__AVX2__)
  811. if (k % 8)
  812. return false;
  813. tinyBLAS<8, __m256, __m256, float, float, float> tb{
  814. k, (const float *)A, lda,
  815. (const float *)B, ldb,
  816. (float *)C, ldc,
  817. ith, nth};
  818. tb.matmul(m, n);
  819. return true;
  820. #elif defined(__ARM_NEON)
  821. if (n < 4)
  822. return false;
  823. if (k % 4)
  824. return false;
  825. tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{
  826. k, (const float *)A, lda,
  827. (const float *)B, ldb,
  828. (float *)C, ldc,
  829. ith, nth};
  830. tb.matmul(m, n);
  831. return true;
  832. #else
  833. return false;
  834. #endif
  835. }
  836. case GGML_TYPE_F16: {
  837. #if defined(__AVX512F__)
  838. if (k % 16)
  839. return false;
  840. if (Btype != GGML_TYPE_F32)
  841. return false;
  842. tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{
  843. k, (const ggml_fp16_t *)A, lda,
  844. (const float *)B, ldb,
  845. (float *)C, ldc,
  846. ith, nth};
  847. tb.matmul(m, n);
  848. return true;
  849. #elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
  850. if (k % 8)
  851. return false;
  852. if (Btype != GGML_TYPE_F32)
  853. return false;
  854. tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{
  855. k, (const ggml_fp16_t *)A, lda,
  856. (const float *)B, ldb,
  857. (float *)C, ldc,
  858. ith, nth};
  859. tb.matmul(m, n);
  860. return true;
  861. #elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
  862. if (n < 8)
  863. return false;
  864. if (k % 8)
  865. return false;
  866. if (Btype != GGML_TYPE_F16)
  867. return false;
  868. tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{
  869. k, (const ggml_fp16_t *)A, lda,
  870. (const ggml_fp16_t *)B, ldb,
  871. (float *)C, ldc,
  872. ith, nth};
  873. tb.matmul(m, n);
  874. return true;
  875. #elif defined(__ARM_NEON) && !defined(_MSC_VER)
  876. if (k % 4)
  877. return false;
  878. if (Btype != GGML_TYPE_F32)
  879. return false;
  880. tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{
  881. k, (const ggml_fp16_t *)A, lda,
  882. (const float *)B, ldb,
  883. (float *)C, ldc,
  884. ith, nth};
  885. tb.matmul(m, n);
  886. return true;
  887. #else
  888. return false;
  889. #endif
  890. }
  891. case GGML_TYPE_Q8_0: {
  892. if (Btype != GGML_TYPE_Q8_0)
  893. return false;
  894. #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
  895. tinyBLAS_Q0_AVX<block_q8_0, block_q8_0, float> tb{
  896. k, (const block_q8_0 *)A, lda,
  897. (const block_q8_0 *)B, ldb,
  898. (float *)C, ldc,
  899. ith, nth};
  900. tb.matmul(m, n);
  901. return true;
  902. #elif defined(__ARM_FEATURE_DOTPROD)
  903. tinyBLAS_Q0_ARM<block_q8_0> tb{
  904. k, (const block_q8_0 *)A, lda,
  905. (const block_q8_0 *)B, ldb,
  906. (float *)C, ldc,
  907. ith, nth};
  908. tb.matmul(m, n);
  909. return true;
  910. #else
  911. return false;
  912. #endif
  913. }
  914. case GGML_TYPE_Q4_0: {
  915. if (Btype != GGML_TYPE_Q8_0)
  916. return false;
  917. #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
  918. tinyBLAS_Q0_AVX<block_q4_0, block_q8_0, float> tb{
  919. k, (const block_q4_0 *)A, lda,
  920. (const block_q8_0 *)B, ldb,
  921. (float *)C, ldc,
  922. ith, nth};
  923. tb.matmul(m, n);
  924. return true;
  925. #elif defined(__ARM_FEATURE_DOTPROD)
  926. tinyBLAS_Q0_ARM<block_q4_0> tb{
  927. k, (const block_q4_0 *)A, lda,
  928. (const block_q8_0 *)B, ldb,
  929. (float *)C, ldc,
  930. ith, nth};
  931. tb.matmul(m, n);
  932. return true;
  933. #else
  934. return false;
  935. #endif
  936. }
  937. default:
  938. return false;
  939. }
  940. (void)m;
  941. (void)n;
  942. (void)k;
  943. (void)A;
  944. (void)lda;
  945. (void)B;
  946. (void)ldb;
  947. (void)C;
  948. (void)ldc;
  949. (void)ith;
  950. (void)nth;
  951. (void)Atype;
  952. (void)Btype;
  953. (void)Ctype;
  954. }