ggml.c 697 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "sgemm.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_METAL
  29. #include <unistd.h>
  30. #endif
  31. #ifndef GGML_USE_LLAMAFILE
  32. #ifdef __ARM_FEATURE_MATMUL_INT8
  33. #define GGML_USE_LLAMAFILE 0
  34. #else
  35. #define GGML_USE_LLAMAFILE 1
  36. #endif
  37. #endif
  38. #if defined(_MSC_VER)
  39. // disable "possible loss of data" to avoid hundreds of casts
  40. // we should just be careful :)
  41. #pragma warning(disable: 4244 4267)
  42. // disable POSIX deprecation warnings
  43. // these functions are never going away, anyway
  44. #pragma warning(disable: 4996)
  45. #endif
  46. #if defined(_WIN32)
  47. #define WIN32_LEAN_AND_MEAN
  48. #ifndef NOMINMAX
  49. #define NOMINMAX
  50. #endif
  51. #include <windows.h>
  52. typedef volatile LONG atomic_int;
  53. typedef atomic_int atomic_bool;
  54. static void atomic_store(atomic_int * ptr, LONG val) {
  55. InterlockedExchange(ptr, val);
  56. }
  57. static LONG atomic_load(atomic_int * ptr) {
  58. return InterlockedCompareExchange(ptr, 0, 0);
  59. }
  60. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  61. return InterlockedExchangeAdd(ptr, inc);
  62. }
  63. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  64. return atomic_fetch_add(ptr, -(dec));
  65. }
  66. typedef HANDLE pthread_t;
  67. typedef DWORD thread_ret_t;
  68. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  69. (void) unused;
  70. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  71. if (handle == NULL)
  72. {
  73. return EAGAIN;
  74. }
  75. *out = handle;
  76. return 0;
  77. }
  78. static int pthread_join(pthread_t thread, void * unused) {
  79. (void) unused;
  80. int ret = (int) WaitForSingleObject(thread, INFINITE);
  81. CloseHandle(thread);
  82. return ret;
  83. }
  84. static int sched_yield (void) {
  85. Sleep (0);
  86. return 0;
  87. }
  88. #else
  89. #include <pthread.h>
  90. #include <stdatomic.h>
  91. typedef void * thread_ret_t;
  92. #include <sys/types.h>
  93. #include <sys/stat.h>
  94. #include <unistd.h>
  95. #endif
  96. #ifdef GGML_USE_CPU_HBM
  97. #include <hbwmalloc.h>
  98. #endif
  99. #if defined(__APPLE__)
  100. #include <TargetConditionals.h>
  101. #endif
  102. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  103. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  104. #include <sys/wait.h>
  105. void ggml_print_backtrace(void) {
  106. /*
  107. #include <execinfo.h>
  108. #include <dlfcn.h>
  109. void * trace[100];
  110. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  111. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  112. */
  113. // backtrack_symbols does not show line numbers, use gdb instead
  114. char attach[32];
  115. snprintf(attach, sizeof(attach), "attach %d", getpid());
  116. int pid = fork();
  117. if (pid == 0) {
  118. execlp("gdb", "gdb", "--batch",
  119. "-ex", "set style enabled on",
  120. "-ex", attach,
  121. "-ex", "bt -frame-info source-and-location",
  122. "-ex", "detach",
  123. "-ex", "quit",
  124. (char *) NULL);
  125. } else {
  126. waitpid(pid, NULL, 0);
  127. }
  128. }
  129. #else
  130. void ggml_print_backtrace(void) {
  131. // platform not supported
  132. }
  133. #endif
  134. /*#define GGML_PERF*/
  135. #define GGML_DEBUG 0
  136. #define GGML_GELU_FP16
  137. #define GGML_GELU_QUICK_FP16
  138. #define GGML_SILU_FP16
  139. // #define GGML_CROSS_ENTROPY_EXP_FP16
  140. // #define GGML_FLASH_ATTN_EXP_FP16
  141. #define GGML_SOFT_MAX_UNROLL 4
  142. #define GGML_VEC_DOT_UNROLL 2
  143. #define GGML_VEC_MAD_UNROLL 32
  144. //
  145. // logging
  146. //
  147. #if (GGML_DEBUG >= 1)
  148. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  149. #else
  150. #define GGML_PRINT_DEBUG(...)
  151. #endif
  152. #if (GGML_DEBUG >= 5)
  153. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  154. #else
  155. #define GGML_PRINT_DEBUG_5(...)
  156. #endif
  157. #if (GGML_DEBUG >= 10)
  158. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  159. #else
  160. #define GGML_PRINT_DEBUG_10(...)
  161. #endif
  162. #define GGML_PRINT(...) printf(__VA_ARGS__)
  163. //
  164. // end of logging block
  165. //
  166. #ifdef GGML_USE_ACCELERATE
  167. // uncomment to use vDSP for soft max computation
  168. // note: not sure if it is actually faster
  169. //#define GGML_SOFT_MAX_ACCELERATE
  170. #endif
  171. #if defined(_MSC_VER) || defined(__MINGW32__)
  172. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  173. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  174. #else
  175. inline static void * ggml_aligned_malloc(size_t size) {
  176. if (size == 0) {
  177. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  178. return NULL;
  179. }
  180. void * aligned_memory = NULL;
  181. #ifdef GGML_USE_CPU_HBM
  182. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  183. #elif GGML_USE_METAL
  184. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  185. #else
  186. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  187. #endif
  188. if (result != 0) {
  189. // Handle allocation failure
  190. const char *error_desc = "unknown allocation error";
  191. switch (result) {
  192. case EINVAL:
  193. error_desc = "invalid alignment value";
  194. break;
  195. case ENOMEM:
  196. error_desc = "insufficient memory";
  197. break;
  198. }
  199. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  200. GGML_ASSERT(false);
  201. return NULL;
  202. }
  203. return aligned_memory;
  204. }
  205. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  206. #ifdef GGML_USE_CPU_HBM
  207. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  208. #else
  209. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  210. #endif
  211. #endif
  212. inline static void * ggml_malloc(size_t size) {
  213. if (size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  215. return NULL;
  216. }
  217. void * result = malloc(size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. // calloc
  225. inline static void * ggml_calloc(size_t num, size_t size) {
  226. if (num == 0 || size == 0) {
  227. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  228. return NULL;
  229. }
  230. void * result = calloc(num, size);
  231. if (result == NULL) {
  232. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  233. GGML_ASSERT(false);
  234. }
  235. return result;
  236. }
  237. #define GGML_MALLOC(size) ggml_malloc(size)
  238. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  239. #define GGML_FREE(ptr) free(ptr)
  240. #define UNUSED GGML_UNUSED
  241. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  242. #if defined(GGML_USE_ACCELERATE)
  243. #include <Accelerate/Accelerate.h>
  244. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  245. #include "ggml-opencl.h"
  246. #endif
  247. #elif defined(GGML_USE_OPENBLAS)
  248. #if defined(GGML_BLAS_USE_MKL)
  249. #include <mkl.h>
  250. #else
  251. #include <cblas.h>
  252. #endif
  253. #elif defined(GGML_USE_CLBLAST)
  254. #include "ggml-opencl.h"
  255. #endif
  256. // floating point type used to accumulate sums
  257. typedef double ggml_float;
  258. #undef MIN
  259. #undef MAX
  260. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  261. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  262. //
  263. // global data
  264. //
  265. // precomputed gelu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  267. // precomputed quick gelu table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  274. float ggml_table_f32_f16[1 << 16];
  275. const char * ggml_status_to_string(enum ggml_status status) {
  276. switch (status) {
  277. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  278. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  279. case GGML_STATUS_SUCCESS: return "GGML status: success";
  280. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  281. }
  282. return "GGML status: unknown";
  283. }
  284. // note: do not use these inside ggml.c
  285. // these are meant to be used via the ggml.h API
  286. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  287. return GGML_FP16_TO_FP32(x);
  288. }
  289. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  290. return GGML_FP32_TO_FP16(x);
  291. }
  292. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  293. for (int64_t i = 0; i < n; i++) {
  294. y[i] = GGML_FP16_TO_FP32(x[i]);
  295. }
  296. }
  297. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  298. int64_t i = 0;
  299. #if defined(__F16C__)
  300. for (; i + 7 < n; i += 8) {
  301. __m256 x_vec = _mm256_loadu_ps(x + i);
  302. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  304. }
  305. for(; i + 3 < n; i += 4) {
  306. __m128 x_vec = _mm_loadu_ps(x + i);
  307. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  308. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  309. }
  310. #endif
  311. for (; i < n; i++) {
  312. y[i] = GGML_FP32_TO_FP16(x[i]);
  313. }
  314. }
  315. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  316. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  317. }
  318. //
  319. // timing
  320. //
  321. #if defined(_MSC_VER) || defined(__MINGW32__)
  322. static int64_t timer_freq, timer_start;
  323. void ggml_time_init(void) {
  324. LARGE_INTEGER t;
  325. QueryPerformanceFrequency(&t);
  326. timer_freq = t.QuadPart;
  327. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  328. // and the uptime is high enough.
  329. // We subtract the program start time to reduce the likelihood of that happening.
  330. QueryPerformanceCounter(&t);
  331. timer_start = t.QuadPart;
  332. }
  333. int64_t ggml_time_ms(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  337. }
  338. int64_t ggml_time_us(void) {
  339. LARGE_INTEGER t;
  340. QueryPerformanceCounter(&t);
  341. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  342. }
  343. #else
  344. void ggml_time_init(void) {}
  345. int64_t ggml_time_ms(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  349. }
  350. int64_t ggml_time_us(void) {
  351. struct timespec ts;
  352. clock_gettime(CLOCK_MONOTONIC, &ts);
  353. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  354. }
  355. #endif
  356. int64_t ggml_cycles(void) {
  357. return clock();
  358. }
  359. int64_t ggml_cycles_per_ms(void) {
  360. return CLOCKS_PER_SEC/1000;
  361. }
  362. #ifdef GGML_PERF
  363. #define ggml_perf_time_ms() ggml_time_ms()
  364. #define ggml_perf_time_us() ggml_time_us()
  365. #define ggml_perf_cycles() ggml_cycles()
  366. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  367. #else
  368. #define ggml_perf_time_ms() 0
  369. #define ggml_perf_time_us() 0
  370. #define ggml_perf_cycles() 0
  371. #define ggml_perf_cycles_per_ms() 0
  372. #endif
  373. //
  374. // cross-platform UTF-8 file paths
  375. //
  376. #ifdef _WIN32
  377. static wchar_t * ggml_mbstowcs(const char * mbs) {
  378. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  379. if (!wlen) {
  380. errno = EINVAL;
  381. return NULL;
  382. }
  383. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  384. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  385. if (!wlen) {
  386. GGML_FREE(wbuf);
  387. errno = EINVAL;
  388. return NULL;
  389. }
  390. return wbuf;
  391. }
  392. #endif
  393. FILE * ggml_fopen(const char * fname, const char * mode) {
  394. #ifdef _WIN32
  395. FILE * file = NULL;
  396. // convert fname (UTF-8)
  397. wchar_t * wfname = ggml_mbstowcs(fname);
  398. if (wfname) {
  399. // convert mode (ANSI)
  400. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  401. wchar_t * wmode_p = wmode;
  402. do {
  403. *wmode_p++ = (wchar_t)*mode;
  404. } while (*mode++);
  405. // open file
  406. file = _wfopen(wfname, wmode);
  407. GGML_FREE(wfname);
  408. GGML_FREE(wmode);
  409. }
  410. return file;
  411. #else
  412. return fopen(fname, mode);
  413. #endif
  414. }
  415. //
  416. // cache line
  417. //
  418. #if defined(__cpp_lib_hardware_interference_size)
  419. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  420. #else
  421. #if defined(__POWER9_VECTOR__)
  422. #define CACHE_LINE_SIZE 128
  423. #else
  424. #define CACHE_LINE_SIZE 64
  425. #endif
  426. #endif
  427. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  428. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  429. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  430. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  431. [GGML_TYPE_I8] = {
  432. .type_name = "i8",
  433. .blck_size = 1,
  434. .type_size = sizeof(int8_t),
  435. .is_quantized = false,
  436. },
  437. [GGML_TYPE_I16] = {
  438. .type_name = "i16",
  439. .blck_size = 1,
  440. .type_size = sizeof(int16_t),
  441. .is_quantized = false,
  442. },
  443. [GGML_TYPE_I32] = {
  444. .type_name = "i32",
  445. .blck_size = 1,
  446. .type_size = sizeof(int32_t),
  447. .is_quantized = false,
  448. },
  449. [GGML_TYPE_I64] = {
  450. .type_name = "i64",
  451. .blck_size = 1,
  452. .type_size = sizeof(int64_t),
  453. .is_quantized = false,
  454. },
  455. [GGML_TYPE_F64] = {
  456. .type_name = "f64",
  457. .blck_size = 1,
  458. .type_size = sizeof(double),
  459. .is_quantized = false,
  460. .nrows = 1,
  461. },
  462. [GGML_TYPE_F32] = {
  463. .type_name = "f32",
  464. .blck_size = 1,
  465. .type_size = sizeof(float),
  466. .is_quantized = false,
  467. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  468. .vec_dot_type = GGML_TYPE_F32,
  469. .nrows = 1,
  470. },
  471. [GGML_TYPE_F16] = {
  472. .type_name = "f16",
  473. .blck_size = 1,
  474. .type_size = sizeof(ggml_fp16_t),
  475. .is_quantized = false,
  476. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  477. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  478. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  479. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  480. .vec_dot_type = GGML_TYPE_F16,
  481. .nrows = 1,
  482. },
  483. [GGML_TYPE_Q4_0] = {
  484. .type_name = "q4_0",
  485. .blck_size = QK4_0,
  486. .type_size = sizeof(block_q4_0),
  487. .is_quantized = true,
  488. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  489. .from_float = quantize_row_q4_0,
  490. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  491. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  492. .vec_dot_type = GGML_TYPE_Q8_0,
  493. #if defined (__ARM_FEATURE_MATMUL_INT8)
  494. .nrows = 2,
  495. #else
  496. .nrows = 1,
  497. #endif
  498. },
  499. [GGML_TYPE_Q4_1] = {
  500. .type_name = "q4_1",
  501. .blck_size = QK4_1,
  502. .type_size = sizeof(block_q4_1),
  503. .is_quantized = true,
  504. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  505. .from_float = quantize_row_q4_1,
  506. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  507. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  508. .vec_dot_type = GGML_TYPE_Q8_1,
  509. #if defined (__ARM_FEATURE_MATMUL_INT8)
  510. .nrows = 2,
  511. #else
  512. .nrows = 1,
  513. #endif
  514. },
  515. [4] = { // GGML_TYPE_Q4_2
  516. .type_name = "DEPRECATED",
  517. .blck_size = 0,
  518. .type_size = 0,
  519. .is_quantized = false,
  520. .to_float = NULL,
  521. .from_float = NULL,
  522. .from_float_reference = NULL,
  523. .vec_dot = NULL,
  524. .vec_dot_type = GGML_TYPE_COUNT,
  525. .nrows = 1,
  526. },
  527. [5] = { // GGML_TYPE_Q4_3
  528. .type_name = "DEPRECATED",
  529. .blck_size = 0,
  530. .type_size = 0,
  531. .is_quantized = false,
  532. .to_float = NULL,
  533. .from_float = NULL,
  534. .from_float_reference = NULL,
  535. .vec_dot = NULL,
  536. .vec_dot_type = GGML_TYPE_COUNT,
  537. .nrows = 1,
  538. },
  539. [GGML_TYPE_Q5_0] = {
  540. .type_name = "q5_0",
  541. .blck_size = QK5_0,
  542. .type_size = sizeof(block_q5_0),
  543. .is_quantized = true,
  544. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  545. .from_float = quantize_row_q5_0,
  546. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  547. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  548. .vec_dot_type = GGML_TYPE_Q8_0,
  549. .nrows = 1,
  550. },
  551. [GGML_TYPE_Q5_1] = {
  552. .type_name = "q5_1",
  553. .blck_size = QK5_1,
  554. .type_size = sizeof(block_q5_1),
  555. .is_quantized = true,
  556. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  557. .from_float = quantize_row_q5_1,
  558. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  559. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  560. .vec_dot_type = GGML_TYPE_Q8_1,
  561. .nrows = 1,
  562. },
  563. [GGML_TYPE_Q8_0] = {
  564. .type_name = "q8_0",
  565. .blck_size = QK8_0,
  566. .type_size = sizeof(block_q8_0),
  567. .is_quantized = true,
  568. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  569. .from_float = quantize_row_q8_0,
  570. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  571. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  572. .vec_dot_type = GGML_TYPE_Q8_0,
  573. #if defined (__ARM_FEATURE_MATMUL_INT8)
  574. .nrows = 2,
  575. #else
  576. .nrows = 1,
  577. #endif
  578. },
  579. [GGML_TYPE_Q8_1] = {
  580. .type_name = "q8_1",
  581. .blck_size = QK8_1,
  582. .type_size = sizeof(block_q8_1),
  583. .is_quantized = true,
  584. .from_float = quantize_row_q8_1,
  585. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  586. .vec_dot_type = GGML_TYPE_Q8_1,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_Q2_K] = {
  590. .type_name = "q2_K",
  591. .blck_size = QK_K,
  592. .type_size = sizeof(block_q2_K),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  595. .from_float = quantize_row_q2_K,
  596. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  597. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  598. .vec_dot_type = GGML_TYPE_Q8_K,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_Q3_K] = {
  602. .type_name = "q3_K",
  603. .blck_size = QK_K,
  604. .type_size = sizeof(block_q3_K),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  607. .from_float = quantize_row_q3_K,
  608. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  609. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  610. .vec_dot_type = GGML_TYPE_Q8_K,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_Q4_K] = {
  614. .type_name = "q4_K",
  615. .blck_size = QK_K,
  616. .type_size = sizeof(block_q4_K),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  619. .from_float = quantize_row_q4_K,
  620. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  621. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  622. .vec_dot_type = GGML_TYPE_Q8_K,
  623. .nrows = 1,
  624. },
  625. [GGML_TYPE_Q5_K] = {
  626. .type_name = "q5_K",
  627. .blck_size = QK_K,
  628. .type_size = sizeof(block_q5_K),
  629. .is_quantized = true,
  630. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  631. .from_float = quantize_row_q5_K,
  632. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  633. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  634. .vec_dot_type = GGML_TYPE_Q8_K,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_Q6_K] = {
  638. .type_name = "q6_K",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_q6_K),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  643. .from_float = quantize_row_q6_K,
  644. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  645. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_IQ2_XXS] = {
  650. .type_name = "iq2_xxs",
  651. .blck_size = QK_K,
  652. .type_size = sizeof(block_iq2_xxs),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  655. .from_float = NULL,
  656. .from_float_reference = NULL,
  657. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  658. .vec_dot_type = GGML_TYPE_Q8_K,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_IQ2_XS] = {
  662. .type_name = "iq2_xs",
  663. .blck_size = QK_K,
  664. .type_size = sizeof(block_iq2_xs),
  665. .is_quantized = true,
  666. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  667. .from_float = NULL,
  668. .from_float_reference = NULL,
  669. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  670. .vec_dot_type = GGML_TYPE_Q8_K,
  671. .nrows = 1,
  672. },
  673. [GGML_TYPE_IQ3_XXS] = {
  674. .type_name = "iq3_xxs",
  675. .blck_size = QK_K,
  676. .type_size = sizeof(block_iq3_xxs),
  677. .is_quantized = true,
  678. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  679. .from_float = quantize_row_iq3_xxs,
  680. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  681. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  682. .vec_dot_type = GGML_TYPE_Q8_K,
  683. .nrows = 1,
  684. },
  685. [GGML_TYPE_IQ3_S] = {
  686. .type_name = "iq3_s",
  687. .blck_size = QK_K,
  688. .type_size = sizeof(block_iq3_s),
  689. .is_quantized = true,
  690. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  691. .from_float = quantize_row_iq3_s,
  692. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  693. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  694. .vec_dot_type = GGML_TYPE_Q8_K,
  695. .nrows = 1,
  696. },
  697. [GGML_TYPE_IQ2_S] = {
  698. .type_name = "iq2_s",
  699. .blck_size = QK_K,
  700. .type_size = sizeof(block_iq2_s),
  701. .is_quantized = true,
  702. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  703. .from_float = quantize_row_iq2_s,
  704. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  705. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  706. .vec_dot_type = GGML_TYPE_Q8_K,
  707. .nrows = 1,
  708. },
  709. [GGML_TYPE_IQ1_S] = {
  710. .type_name = "iq1_s",
  711. .blck_size = QK_K,
  712. .type_size = sizeof(block_iq1_s),
  713. .is_quantized = true,
  714. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  715. .from_float = NULL,
  716. .from_float_reference = NULL,
  717. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  718. .vec_dot_type = GGML_TYPE_Q8_K,
  719. .nrows = 1,
  720. },
  721. [GGML_TYPE_IQ1_M] = {
  722. .type_name = "iq1_m",
  723. .blck_size = QK_K,
  724. .type_size = sizeof(block_iq1_m),
  725. .is_quantized = true,
  726. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  727. .from_float = NULL,
  728. .from_float_reference = NULL,
  729. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  730. .vec_dot_type = GGML_TYPE_Q8_K,
  731. .nrows = 1,
  732. },
  733. [GGML_TYPE_IQ4_NL] = {
  734. .type_name = "iq4_nl",
  735. .blck_size = QK4_NL,
  736. .type_size = sizeof(block_iq4_nl),
  737. .is_quantized = true,
  738. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  739. .from_float = quantize_row_iq4_nl,
  740. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  741. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  742. .vec_dot_type = GGML_TYPE_Q8_0,
  743. .nrows = 1,
  744. },
  745. [GGML_TYPE_IQ4_XS] = {
  746. .type_name = "iq4_xs",
  747. #if QK_K == 64
  748. .blck_size = QK4_NL,
  749. #else
  750. .blck_size = QK_K,
  751. #endif
  752. .type_size = sizeof(block_iq4_xs),
  753. .is_quantized = true,
  754. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  755. .from_float = quantize_row_iq4_xs,
  756. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  757. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  758. #if QK_K == 64
  759. .vec_dot_type = GGML_TYPE_Q8_0,
  760. #else
  761. .vec_dot_type = GGML_TYPE_Q8_K,
  762. #endif
  763. .nrows = 1,
  764. },
  765. [GGML_TYPE_Q8_K] = {
  766. .type_name = "q8_K",
  767. .blck_size = QK_K,
  768. .type_size = sizeof(block_q8_K),
  769. .is_quantized = true,
  770. .from_float = quantize_row_q8_K,
  771. }
  772. };
  773. // For internal test use
  774. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  775. GGML_ASSERT(type < GGML_TYPE_COUNT);
  776. return type_traits[type];
  777. }
  778. //
  779. // simd mappings
  780. //
  781. #if defined(__ARM_NEON)
  782. #if !defined(__aarch64__)
  783. // 64-bit compatibility
  784. inline static float vaddvq_f32(float32x4_t v) {
  785. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  786. }
  787. #endif
  788. #endif
  789. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  790. // we then implement the fundamental computation operations below using only these macros
  791. // adding support for new architectures requires to define the corresponding SIMD macros
  792. //
  793. // GGML_F32_STEP / GGML_F16_STEP
  794. // number of elements to process in a single step
  795. //
  796. // GGML_F32_EPR / GGML_F16_EPR
  797. // number of elements to fit in a single register
  798. //
  799. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  800. #define GGML_SIMD
  801. // F32 NEON
  802. #define GGML_F32_STEP 16
  803. #define GGML_F32_EPR 4
  804. #define GGML_F32x4 float32x4_t
  805. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  806. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  807. #define GGML_F32x4_LOAD vld1q_f32
  808. #define GGML_F32x4_STORE vst1q_f32
  809. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  810. #define GGML_F32x4_ADD vaddq_f32
  811. #define GGML_F32x4_MUL vmulq_f32
  812. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  813. #define GGML_F32x4_REDUCE(res, x) \
  814. { \
  815. int offset = GGML_F32_ARR >> 1; \
  816. for (int i = 0; i < offset; ++i) { \
  817. x[i] = vaddq_f32(x[i], x[offset+i]); \
  818. } \
  819. offset >>= 1; \
  820. for (int i = 0; i < offset; ++i) { \
  821. x[i] = vaddq_f32(x[i], x[offset+i]); \
  822. } \
  823. offset >>= 1; \
  824. for (int i = 0; i < offset; ++i) { \
  825. x[i] = vaddq_f32(x[i], x[offset+i]); \
  826. } \
  827. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  828. }
  829. #define GGML_F32_VEC GGML_F32x4
  830. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  831. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  832. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  833. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  834. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  835. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  836. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  837. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  838. // F16 NEON
  839. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  840. #define GGML_F16_STEP 32
  841. #define GGML_F16_EPR 8
  842. #define GGML_F16x8 float16x8_t
  843. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  844. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  845. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  846. #define GGML_F16x8_STORE vst1q_f16
  847. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  848. #define GGML_F16x8_ADD vaddq_f16
  849. #define GGML_F16x8_MUL vmulq_f16
  850. #define GGML_F16x8_REDUCE(res, x) \
  851. do { \
  852. int offset = GGML_F16_ARR >> 1; \
  853. for (int i = 0; i < offset; ++i) { \
  854. x[i] = vaddq_f16(x[i], x[offset+i]); \
  855. } \
  856. offset >>= 1; \
  857. for (int i = 0; i < offset; ++i) { \
  858. x[i] = vaddq_f16(x[i], x[offset+i]); \
  859. } \
  860. offset >>= 1; \
  861. for (int i = 0; i < offset; ++i) { \
  862. x[i] = vaddq_f16(x[i], x[offset+i]); \
  863. } \
  864. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  865. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  866. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  867. } while (0)
  868. #define GGML_F16_VEC GGML_F16x8
  869. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  870. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  871. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  872. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  873. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  874. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  875. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  876. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  877. #else
  878. // if FP16 vector arithmetic is not supported, we use FP32 instead
  879. // and take advantage of the vcvt_ functions to convert to/from FP16
  880. #define GGML_F16_STEP 16
  881. #define GGML_F16_EPR 4
  882. #define GGML_F32Cx4 float32x4_t
  883. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  884. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  885. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  886. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  887. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  888. #define GGML_F32Cx4_ADD vaddq_f32
  889. #define GGML_F32Cx4_MUL vmulq_f32
  890. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  891. #define GGML_F16_VEC GGML_F32Cx4
  892. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  893. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  894. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  895. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  896. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  897. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  898. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  899. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  900. #endif
  901. #elif defined(__AVX512F__)
  902. #define GGML_SIMD
  903. // F32 AVX512
  904. #define GGML_F32_STEP 64
  905. #define GGML_F32_EPR 16
  906. #define GGML_F32x16 __m512
  907. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  908. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  909. #define GGML_F32x16_LOAD _mm512_loadu_ps
  910. #define GGML_F32x16_STORE _mm512_storeu_ps
  911. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  912. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  913. #define GGML_F32x16_ADD _mm512_add_ps
  914. #define GGML_F32x16_MUL _mm512_mul_ps
  915. #define GGML_F32x16_REDUCE(res, x) \
  916. do { \
  917. int offset = GGML_F32_ARR >> 1; \
  918. for (int i = 0; i < offset; ++i) { \
  919. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  920. } \
  921. offset >>= 1; \
  922. for (int i = 0; i < offset; ++i) { \
  923. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  924. } \
  925. offset >>= 1; \
  926. for (int i = 0; i < offset; ++i) { \
  927. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  928. } \
  929. res = _mm512_reduce_add_ps(x[0]); \
  930. } while (0)
  931. // TODO: is this optimal ?
  932. #define GGML_F32_VEC GGML_F32x16
  933. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  934. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  935. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  936. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  937. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  938. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  939. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  940. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  941. // F16 AVX512
  942. // F16 AVX
  943. #define GGML_F16_STEP 64
  944. #define GGML_F16_EPR 16
  945. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  946. #define GGML_F32Cx16 __m512
  947. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  948. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  949. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  950. // so F16C guard isn't required
  951. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  952. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  953. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  954. #define GGML_F32Cx16_ADD _mm512_add_ps
  955. #define GGML_F32Cx16_MUL _mm512_mul_ps
  956. #define GGML_F32Cx16_REDUCE(res, x) \
  957. do { \
  958. int offset = GGML_F32_ARR >> 1; \
  959. for (int i = 0; i < offset; ++i) { \
  960. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  961. } \
  962. offset >>= 1; \
  963. for (int i = 0; i < offset; ++i) { \
  964. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  965. } \
  966. offset >>= 1; \
  967. for (int i = 0; i < offset; ++i) { \
  968. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  969. } \
  970. res = _mm512_reduce_add_ps(x[0]); \
  971. } while (0)
  972. #define GGML_F16_VEC GGML_F32Cx16
  973. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  974. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  975. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  976. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  977. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  978. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  979. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  980. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  981. #elif defined(__AVX__)
  982. #define GGML_SIMD
  983. // F32 AVX
  984. #define GGML_F32_STEP 32
  985. #define GGML_F32_EPR 8
  986. #define GGML_F32x8 __m256
  987. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  988. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  989. #define GGML_F32x8_LOAD _mm256_loadu_ps
  990. #define GGML_F32x8_STORE _mm256_storeu_ps
  991. #if defined(__FMA__)
  992. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  993. #else
  994. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  995. #endif
  996. #define GGML_F32x8_ADD _mm256_add_ps
  997. #define GGML_F32x8_MUL _mm256_mul_ps
  998. #define GGML_F32x8_REDUCE(res, x) \
  999. do { \
  1000. int offset = GGML_F32_ARR >> 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. offset >>= 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. offset >>= 1; \
  1009. for (int i = 0; i < offset; ++i) { \
  1010. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1011. } \
  1012. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1013. _mm256_extractf128_ps(x[0], 1)); \
  1014. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1015. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1016. } while (0)
  1017. // TODO: is this optimal ?
  1018. #define GGML_F32_VEC GGML_F32x8
  1019. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1020. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1021. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1022. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1023. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1024. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1025. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1026. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1027. // F16 AVX
  1028. #define GGML_F16_STEP 32
  1029. #define GGML_F16_EPR 8
  1030. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1031. #define GGML_F32Cx8 __m256
  1032. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1033. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1034. #if defined(__F16C__)
  1035. // the _mm256_cvt intrinsics require F16C
  1036. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1037. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1038. #else
  1039. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1040. float tmp[8];
  1041. for (int i = 0; i < 8; i++) {
  1042. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1043. }
  1044. return _mm256_loadu_ps(tmp);
  1045. }
  1046. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1047. float arr[8];
  1048. _mm256_storeu_ps(arr, y);
  1049. for (int i = 0; i < 8; i++)
  1050. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1051. }
  1052. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1053. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1054. #endif
  1055. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1056. #define GGML_F32Cx8_ADD _mm256_add_ps
  1057. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1058. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1059. #define GGML_F16_VEC GGML_F32Cx8
  1060. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1061. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1062. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1063. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1064. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1065. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1066. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1067. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1068. #elif defined(__POWER9_VECTOR__)
  1069. #define GGML_SIMD
  1070. // F32 POWER9
  1071. #define GGML_F32_STEP 32
  1072. #define GGML_F32_EPR 4
  1073. #define GGML_F32x4 vector float
  1074. #define GGML_F32x4_ZERO 0.0f
  1075. #define GGML_F32x4_SET1 vec_splats
  1076. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1077. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1078. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1079. #define GGML_F32x4_ADD vec_add
  1080. #define GGML_F32x4_MUL vec_mul
  1081. #define GGML_F32x4_REDUCE(res, x) \
  1082. { \
  1083. int offset = GGML_F32_ARR >> 1; \
  1084. for (int i = 0; i < offset; ++i) { \
  1085. x[i] = vec_add(x[i], x[offset+i]); \
  1086. } \
  1087. offset >>= 1; \
  1088. for (int i = 0; i < offset; ++i) { \
  1089. x[i] = vec_add(x[i], x[offset+i]); \
  1090. } \
  1091. offset >>= 1; \
  1092. for (int i = 0; i < offset; ++i) { \
  1093. x[i] = vec_add(x[i], x[offset+i]); \
  1094. } \
  1095. res = vec_extract(x[0], 0) + \
  1096. vec_extract(x[0], 1) + \
  1097. vec_extract(x[0], 2) + \
  1098. vec_extract(x[0], 3); \
  1099. }
  1100. #define GGML_F32_VEC GGML_F32x4
  1101. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1102. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1103. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1104. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1105. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1106. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1107. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1108. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1109. // F16 POWER9
  1110. #define GGML_F16_STEP GGML_F32_STEP
  1111. #define GGML_F16_EPR GGML_F32_EPR
  1112. #define GGML_F16_VEC GGML_F32x4
  1113. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1114. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1115. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1116. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1117. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1118. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1119. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1120. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1121. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1122. #define GGML_F16_VEC_STORE(p, r, i) \
  1123. if (i & 0x1) \
  1124. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1125. r[i - GGML_ENDIAN_BYTE(0)]), \
  1126. 0, p - GGML_F16_EPR)
  1127. #elif defined(__wasm_simd128__)
  1128. #define GGML_SIMD
  1129. // F32 WASM
  1130. #define GGML_F32_STEP 16
  1131. #define GGML_F32_EPR 4
  1132. #define GGML_F32x4 v128_t
  1133. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1134. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1135. #define GGML_F32x4_LOAD wasm_v128_load
  1136. #define GGML_F32x4_STORE wasm_v128_store
  1137. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1138. #define GGML_F32x4_ADD wasm_f32x4_add
  1139. #define GGML_F32x4_MUL wasm_f32x4_mul
  1140. #define GGML_F32x4_REDUCE(res, x) \
  1141. { \
  1142. int offset = GGML_F32_ARR >> 1; \
  1143. for (int i = 0; i < offset; ++i) { \
  1144. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1145. } \
  1146. offset >>= 1; \
  1147. for (int i = 0; i < offset; ++i) { \
  1148. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1149. } \
  1150. offset >>= 1; \
  1151. for (int i = 0; i < offset; ++i) { \
  1152. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1153. } \
  1154. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1155. wasm_f32x4_extract_lane(x[0], 1) + \
  1156. wasm_f32x4_extract_lane(x[0], 2) + \
  1157. wasm_f32x4_extract_lane(x[0], 3); \
  1158. }
  1159. #define GGML_F32_VEC GGML_F32x4
  1160. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1161. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1162. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1163. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1164. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1165. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1166. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1167. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1168. // F16 WASM
  1169. #define GGML_F16_STEP 16
  1170. #define GGML_F16_EPR 4
  1171. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1172. float tmp[4];
  1173. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1174. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1175. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1176. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1177. return wasm_v128_load(tmp);
  1178. }
  1179. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1180. float tmp[4];
  1181. wasm_v128_store(tmp, x);
  1182. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1183. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1184. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1185. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1186. }
  1187. #define GGML_F16x4 v128_t
  1188. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1189. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1190. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1191. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1192. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1193. #define GGML_F16x4_ADD wasm_f32x4_add
  1194. #define GGML_F16x4_MUL wasm_f32x4_mul
  1195. #define GGML_F16x4_REDUCE(res, x) \
  1196. { \
  1197. int offset = GGML_F16_ARR >> 1; \
  1198. for (int i = 0; i < offset; ++i) { \
  1199. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1200. } \
  1201. offset >>= 1; \
  1202. for (int i = 0; i < offset; ++i) { \
  1203. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1204. } \
  1205. offset >>= 1; \
  1206. for (int i = 0; i < offset; ++i) { \
  1207. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1208. } \
  1209. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1210. wasm_f32x4_extract_lane(x[0], 1) + \
  1211. wasm_f32x4_extract_lane(x[0], 2) + \
  1212. wasm_f32x4_extract_lane(x[0], 3); \
  1213. }
  1214. #define GGML_F16_VEC GGML_F16x4
  1215. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1216. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1217. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1218. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1219. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1220. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1221. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1222. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1223. #elif defined(__SSE3__)
  1224. #define GGML_SIMD
  1225. // F32 SSE
  1226. #define GGML_F32_STEP 32
  1227. #define GGML_F32_EPR 4
  1228. #define GGML_F32x4 __m128
  1229. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1230. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1231. #define GGML_F32x4_LOAD _mm_loadu_ps
  1232. #define GGML_F32x4_STORE _mm_storeu_ps
  1233. #if defined(__FMA__)
  1234. // TODO: Does this work?
  1235. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1236. #else
  1237. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1238. #endif
  1239. #define GGML_F32x4_ADD _mm_add_ps
  1240. #define GGML_F32x4_MUL _mm_mul_ps
  1241. #define GGML_F32x4_REDUCE(res, x) \
  1242. { \
  1243. int offset = GGML_F32_ARR >> 1; \
  1244. for (int i = 0; i < offset; ++i) { \
  1245. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1246. } \
  1247. offset >>= 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1250. } \
  1251. offset >>= 1; \
  1252. for (int i = 0; i < offset; ++i) { \
  1253. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1254. } \
  1255. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1256. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1257. }
  1258. // TODO: is this optimal ?
  1259. #define GGML_F32_VEC GGML_F32x4
  1260. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1261. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1262. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1263. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1264. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1265. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1266. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1267. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1268. // F16 SSE
  1269. #define GGML_F16_STEP 32
  1270. #define GGML_F16_EPR 4
  1271. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1272. float tmp[4];
  1273. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1274. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1275. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1276. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1277. return _mm_loadu_ps(tmp);
  1278. }
  1279. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1280. float arr[4];
  1281. _mm_storeu_ps(arr, y);
  1282. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1283. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1284. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1285. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1286. }
  1287. #define GGML_F32Cx4 __m128
  1288. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1289. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1290. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1291. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1292. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1293. #define GGML_F32Cx4_ADD _mm_add_ps
  1294. #define GGML_F32Cx4_MUL _mm_mul_ps
  1295. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1296. #define GGML_F16_VEC GGML_F32Cx4
  1297. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1298. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1299. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1300. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1301. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1302. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1303. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1304. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1305. #endif
  1306. // GGML_F32_ARR / GGML_F16_ARR
  1307. // number of registers to use per step
  1308. #ifdef GGML_SIMD
  1309. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1310. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1311. #endif
  1312. //
  1313. // fundamental operations
  1314. //
  1315. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1316. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1317. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1318. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1319. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1320. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1321. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1322. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1323. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1324. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1325. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1326. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1327. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1328. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1329. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1330. assert(nrc == 1);
  1331. UNUSED(nrc);
  1332. UNUSED(bx);
  1333. UNUSED(by);
  1334. UNUSED(bs);
  1335. #ifdef GGML_SIMD
  1336. float sumf = 0.0f;
  1337. const int np = (n & ~(GGML_F32_STEP - 1));
  1338. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1339. GGML_F32_VEC ax[GGML_F32_ARR];
  1340. GGML_F32_VEC ay[GGML_F32_ARR];
  1341. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1342. for (int j = 0; j < GGML_F32_ARR; j++) {
  1343. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1344. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1345. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1346. }
  1347. }
  1348. // reduce sum0..sum3 to sum0
  1349. GGML_F32_VEC_REDUCE(sumf, sum);
  1350. // leftovers
  1351. for (int i = np; i < n; ++i) {
  1352. sumf += x[i]*y[i];
  1353. }
  1354. #else
  1355. // scalar
  1356. ggml_float sumf = 0.0;
  1357. for (int i = 0; i < n; ++i) {
  1358. sumf += (ggml_float)(x[i]*y[i]);
  1359. }
  1360. #endif
  1361. *s = sumf;
  1362. }
  1363. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1364. assert(nrc == 1);
  1365. UNUSED(nrc);
  1366. UNUSED(bx);
  1367. UNUSED(by);
  1368. UNUSED(bs);
  1369. ggml_float sumf = 0.0;
  1370. #if defined(GGML_SIMD)
  1371. const int np = (n & ~(GGML_F16_STEP - 1));
  1372. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1373. GGML_F16_VEC ax[GGML_F16_ARR];
  1374. GGML_F16_VEC ay[GGML_F16_ARR];
  1375. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1376. for (int j = 0; j < GGML_F16_ARR; j++) {
  1377. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1378. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1379. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1380. }
  1381. }
  1382. // reduce sum0..sum3 to sum0
  1383. GGML_F16_VEC_REDUCE(sumf, sum);
  1384. // leftovers
  1385. for (int i = np; i < n; ++i) {
  1386. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1387. }
  1388. #else
  1389. for (int i = 0; i < n; ++i) {
  1390. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1391. }
  1392. #endif
  1393. *s = sumf;
  1394. }
  1395. // compute GGML_VEC_DOT_UNROLL dot products at once
  1396. // xs - x row stride in bytes
  1397. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1398. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1399. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1400. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1401. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1402. }
  1403. #if defined(GGML_SIMD)
  1404. const int np = (n & ~(GGML_F16_STEP - 1));
  1405. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1406. GGML_F16_VEC ax[GGML_F16_ARR];
  1407. GGML_F16_VEC ay[GGML_F16_ARR];
  1408. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1409. for (int j = 0; j < GGML_F16_ARR; j++) {
  1410. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1411. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1412. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1413. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1414. }
  1415. }
  1416. }
  1417. // reduce sum0..sum3 to sum0
  1418. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1419. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1420. }
  1421. // leftovers
  1422. for (int i = np; i < n; ++i) {
  1423. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1424. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1425. }
  1426. }
  1427. #else
  1428. for (int i = 0; i < n; ++i) {
  1429. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1430. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1431. }
  1432. }
  1433. #endif
  1434. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1435. s[i] = sumf[i];
  1436. }
  1437. }
  1438. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1439. #if defined(GGML_SIMD)
  1440. const int np = (n & ~(GGML_F32_STEP - 1));
  1441. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1442. GGML_F32_VEC ax[GGML_F32_ARR];
  1443. GGML_F32_VEC ay[GGML_F32_ARR];
  1444. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1445. for (int j = 0; j < GGML_F32_ARR; j++) {
  1446. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1447. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1448. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1449. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1450. }
  1451. }
  1452. // leftovers
  1453. for (int i = np; i < n; ++i) {
  1454. y[i] += x[i]*v;
  1455. }
  1456. #else
  1457. // scalar
  1458. for (int i = 0; i < n; ++i) {
  1459. y[i] += x[i]*v;
  1460. }
  1461. #endif
  1462. }
  1463. // xs and vs are byte strides of x and v
  1464. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1465. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1466. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1467. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1468. x[i] = (const float *) ((const char *) xv + i*xs);
  1469. v[i] = (const float *) ((const char *) vv + i*vs);
  1470. }
  1471. #if defined(GGML_SIMD)
  1472. const int np = (n & ~(GGML_F32_STEP - 1));
  1473. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1474. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1475. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1476. }
  1477. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1478. GGML_F32_VEC ay[GGML_F32_ARR];
  1479. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1480. for (int j = 0; j < GGML_F32_ARR; j++) {
  1481. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1482. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1483. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1484. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1485. }
  1486. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1487. }
  1488. }
  1489. // leftovers
  1490. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1491. for (int i = np; i < n; ++i) {
  1492. y[i] += x[k][i]*v[k][0];
  1493. }
  1494. }
  1495. #else
  1496. // scalar
  1497. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1498. for (int i = 0; i < n; ++i) {
  1499. y[i] += x[k][i]*v[k][0];
  1500. }
  1501. }
  1502. #endif
  1503. }
  1504. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1505. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1506. #if defined(GGML_USE_ACCELERATE)
  1507. vDSP_vsmul(y, 1, &v, y, 1, n);
  1508. #elif defined(GGML_SIMD)
  1509. const int np = (n & ~(GGML_F32_STEP - 1));
  1510. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1511. GGML_F32_VEC ay[GGML_F32_ARR];
  1512. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1513. for (int j = 0; j < GGML_F32_ARR; j++) {
  1514. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1515. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1516. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1517. }
  1518. }
  1519. // leftovers
  1520. for (int i = np; i < n; ++i) {
  1521. y[i] *= v;
  1522. }
  1523. #else
  1524. // scalar
  1525. for (int i = 0; i < n; ++i) {
  1526. y[i] *= v;
  1527. }
  1528. #endif
  1529. }
  1530. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1531. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1532. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1533. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1534. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1535. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1536. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1537. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1538. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1539. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1540. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1541. // TODO: optimize performance
  1542. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1543. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1544. static const float GELU_COEF_A = 0.044715f;
  1545. static const float GELU_QUICK_COEF = -1.702f;
  1546. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1547. inline static float ggml_gelu_f32(float x) {
  1548. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1549. }
  1550. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1551. const uint16_t * i16 = (const uint16_t *) x;
  1552. for (int i = 0; i < n; ++i) {
  1553. y[i] = ggml_table_gelu_f16[i16[i]];
  1554. }
  1555. }
  1556. #ifdef GGML_GELU_FP16
  1557. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1558. uint16_t t;
  1559. for (int i = 0; i < n; ++i) {
  1560. if (x[i] <= -10.0f) {
  1561. y[i] = 0.0f;
  1562. } else if (x[i] >= 10.0f) {
  1563. y[i] = x[i];
  1564. } else {
  1565. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1566. memcpy(&t, &fp16, sizeof(uint16_t));
  1567. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1568. }
  1569. }
  1570. }
  1571. #else
  1572. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1573. for (int i = 0; i < n; ++i) {
  1574. y[i] = ggml_gelu_f32(x[i]);
  1575. }
  1576. }
  1577. #endif
  1578. inline static float ggml_gelu_quick_f32(float x) {
  1579. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1580. }
  1581. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1582. // const uint16_t * i16 = (const uint16_t *) x;
  1583. // for (int i = 0; i < n; ++i) {
  1584. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1585. // }
  1586. //}
  1587. #ifdef GGML_GELU_QUICK_FP16
  1588. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1589. uint16_t t;
  1590. for (int i = 0; i < n; ++i) {
  1591. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1592. memcpy(&t, &fp16, sizeof(uint16_t));
  1593. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1594. }
  1595. }
  1596. #else
  1597. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1598. for (int i = 0; i < n; ++i) {
  1599. y[i] = ggml_gelu_quick_f32(x[i]);
  1600. }
  1601. }
  1602. #endif
  1603. // Sigmoid Linear Unit (SiLU) function
  1604. inline static float ggml_silu_f32(float x) {
  1605. return x/(1.0f + expf(-x));
  1606. }
  1607. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1608. // const uint16_t * i16 = (const uint16_t *) x;
  1609. // for (int i = 0; i < n; ++i) {
  1610. // y[i] = ggml_table_silu_f16[i16[i]];
  1611. // }
  1612. //}
  1613. #ifdef GGML_SILU_FP16
  1614. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1615. uint16_t t;
  1616. for (int i = 0; i < n; ++i) {
  1617. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1618. memcpy(&t, &fp16, sizeof(uint16_t));
  1619. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1620. }
  1621. }
  1622. #else
  1623. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1624. for (int i = 0; i < n; ++i) {
  1625. y[i] = ggml_silu_f32(x[i]);
  1626. }
  1627. }
  1628. #endif
  1629. inline static float ggml_silu_backward_f32(float x, float dy) {
  1630. const float s = 1.0f/(1.0f + expf(-x));
  1631. return dy*s*(1.0f + x*(1.0f - s));
  1632. }
  1633. #ifdef GGML_SILU_FP16
  1634. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1635. for (int i = 0; i < n; ++i) {
  1636. // we did not use x[i] to compute forward silu but its f16 equivalent
  1637. // take derivative at f16 of x[i]:
  1638. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1639. float usedx = GGML_FP16_TO_FP32(fp16);
  1640. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1641. }
  1642. }
  1643. #else
  1644. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1645. for (int i = 0; i < n; ++i) {
  1646. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1647. }
  1648. }
  1649. #endif
  1650. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1651. #ifndef GGML_USE_ACCELERATE
  1652. ggml_float sum = 0.0;
  1653. for (int i = 0; i < n; ++i) {
  1654. sum += (ggml_float)x[i];
  1655. }
  1656. *s = sum;
  1657. #else
  1658. vDSP_sve(x, 1, s, n);
  1659. #endif
  1660. }
  1661. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1662. ggml_float sum = 0.0;
  1663. for (int i = 0; i < n; ++i) {
  1664. sum += (ggml_float)x[i];
  1665. }
  1666. *s = sum;
  1667. }
  1668. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1669. float sum = 0.0f;
  1670. for (int i = 0; i < n; ++i) {
  1671. sum += GGML_FP16_TO_FP32(x[i]);
  1672. }
  1673. *s = sum;
  1674. }
  1675. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1676. #ifndef GGML_USE_ACCELERATE
  1677. float max = -INFINITY;
  1678. for (int i = 0; i < n; ++i) {
  1679. max = MAX(max, x[i]);
  1680. }
  1681. *s = max;
  1682. #else
  1683. vDSP_maxv(x, 1, s, n);
  1684. #endif
  1685. }
  1686. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1687. ggml_vec_norm_f32(n, s, x);
  1688. *s = 1.f/(*s);
  1689. }
  1690. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1691. float max = -INFINITY;
  1692. int idx = 0;
  1693. for (int i = 0; i < n; ++i) {
  1694. max = MAX(max, x[i]);
  1695. if (max == x[i]) { idx = i; }
  1696. }
  1697. *s = idx;
  1698. }
  1699. //
  1700. // data types
  1701. //
  1702. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1703. "NONE",
  1704. "DUP",
  1705. "ADD",
  1706. "ADD1",
  1707. "ACC",
  1708. "SUB",
  1709. "MUL",
  1710. "DIV",
  1711. "SQR",
  1712. "SQRT",
  1713. "LOG",
  1714. "SUM",
  1715. "SUM_ROWS",
  1716. "MEAN",
  1717. "ARGMAX",
  1718. "REPEAT",
  1719. "REPEAT_BACK",
  1720. "CONCAT",
  1721. "SILU_BACK",
  1722. "NORM",
  1723. "RMS_NORM",
  1724. "RMS_NORM_BACK",
  1725. "GROUP_NORM",
  1726. "MUL_MAT",
  1727. "MUL_MAT_ID",
  1728. "OUT_PROD",
  1729. "SCALE",
  1730. "SET",
  1731. "CPY",
  1732. "CONT",
  1733. "RESHAPE",
  1734. "VIEW",
  1735. "PERMUTE",
  1736. "TRANSPOSE",
  1737. "GET_ROWS",
  1738. "GET_ROWS_BACK",
  1739. "DIAG",
  1740. "DIAG_MASK_INF",
  1741. "DIAG_MASK_ZERO",
  1742. "SOFT_MAX",
  1743. "SOFT_MAX_BACK",
  1744. "ROPE",
  1745. "ROPE_BACK",
  1746. "ALIBI",
  1747. "CLAMP",
  1748. "CONV_TRANSPOSE_1D",
  1749. "IM2COL",
  1750. "CONV_TRANSPOSE_2D",
  1751. "POOL_1D",
  1752. "POOL_2D",
  1753. "UPSCALE",
  1754. "PAD",
  1755. "ARANGE",
  1756. "TIMESTEP_EMBEDDING",
  1757. "ARGSORT",
  1758. "LEAKY_RELU",
  1759. "FLASH_ATTN",
  1760. "FLASH_FF",
  1761. "FLASH_ATTN_BACK",
  1762. "SSM_CONV",
  1763. "SSM_SCAN",
  1764. "WIN_PART",
  1765. "WIN_UNPART",
  1766. "GET_REL_POS",
  1767. "ADD_REL_POS",
  1768. "UNARY",
  1769. "MAP_UNARY",
  1770. "MAP_BINARY",
  1771. "MAP_CUSTOM1_F32",
  1772. "MAP_CUSTOM2_F32",
  1773. "MAP_CUSTOM3_F32",
  1774. "MAP_CUSTOM1",
  1775. "MAP_CUSTOM2",
  1776. "MAP_CUSTOM3",
  1777. "CROSS_ENTROPY_LOSS",
  1778. "CROSS_ENTROPY_LOSS_BACK",
  1779. };
  1780. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1781. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1782. "none",
  1783. "x",
  1784. "x+y",
  1785. "x+y",
  1786. "view(x,nb,offset)+=y->x",
  1787. "x-y",
  1788. "x*y",
  1789. "x/y",
  1790. "x^2",
  1791. "√x",
  1792. "log(x)",
  1793. "Σx",
  1794. "Σx_k",
  1795. "Σx/n",
  1796. "argmax(x)",
  1797. "repeat(x)",
  1798. "repeat_back(x)",
  1799. "concat(x, y)",
  1800. "silu_back(x)",
  1801. "norm(x)",
  1802. "rms_norm(x)",
  1803. "rms_norm_back(x)",
  1804. "group_norm(x)",
  1805. "X*Y",
  1806. "X[i]*Y",
  1807. "X*Y",
  1808. "x*v",
  1809. "y-\\>view(x)",
  1810. "x-\\>y",
  1811. "cont(x)",
  1812. "reshape(x)",
  1813. "view(x)",
  1814. "permute(x)",
  1815. "transpose(x)",
  1816. "get_rows(x)",
  1817. "get_rows_back(x)",
  1818. "diag(x)",
  1819. "diag_mask_inf(x)",
  1820. "diag_mask_zero(x)",
  1821. "soft_max(x)",
  1822. "soft_max_back(x)",
  1823. "rope(x)",
  1824. "rope_back(x)",
  1825. "alibi(x)",
  1826. "clamp(x)",
  1827. "conv_transpose_1d(x)",
  1828. "im2col(x)",
  1829. "conv_transpose_2d(x)",
  1830. "pool_1d(x)",
  1831. "pool_2d(x)",
  1832. "upscale(x)",
  1833. "pad(x)",
  1834. "arange(start, stop, step)",
  1835. "timestep_embedding(timesteps, dim, max_period)",
  1836. "argsort(x)",
  1837. "leaky_relu(x)",
  1838. "flash_attn(x)",
  1839. "flash_ff(x)",
  1840. "flash_attn_back(x)",
  1841. "ssm_conv(x)",
  1842. "ssm_scan(x)",
  1843. "win_part(x)",
  1844. "win_unpart(x)",
  1845. "get_rel_pos(x)",
  1846. "add_rel_pos(x)",
  1847. "unary(x)",
  1848. "f(x)",
  1849. "f(x,y)",
  1850. "custom_f32(x)",
  1851. "custom_f32(x,y)",
  1852. "custom_f32(x,y,z)",
  1853. "custom(x)",
  1854. "custom(x,y)",
  1855. "custom(x,y,z)",
  1856. "cross_entropy_loss(x,y)",
  1857. "cross_entropy_loss_back(x,y)",
  1858. };
  1859. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1860. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1861. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1862. "ABS",
  1863. "SGN",
  1864. "NEG",
  1865. "STEP",
  1866. "TANH",
  1867. "ELU",
  1868. "RELU",
  1869. "GELU",
  1870. "GELU_QUICK",
  1871. "SILU",
  1872. "HARDSWISH",
  1873. "HARDSIGMOID",
  1874. };
  1875. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1876. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1877. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1878. // WARN:
  1879. // Mis-configuration can lead to problem that's hard to reason about:
  1880. // * At best it crash or talks nosense.
  1881. // * At worst it talks slightly difference but hard to perceive.
  1882. //
  1883. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1884. // Take care about compile options (e.g., GGML_USE_xxx).
  1885. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1886. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1887. static void ggml_setup_op_has_task_pass(void) {
  1888. { // INIT
  1889. bool * p = GGML_OP_HAS_INIT;
  1890. p[GGML_OP_ACC ] = true;
  1891. p[GGML_OP_MUL_MAT ] = true;
  1892. p[GGML_OP_MUL_MAT_ID ] = true;
  1893. p[GGML_OP_OUT_PROD ] = true;
  1894. p[GGML_OP_SET ] = true;
  1895. p[GGML_OP_GET_ROWS_BACK ] = true;
  1896. p[GGML_OP_DIAG_MASK_INF ] = true;
  1897. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1898. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1899. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1900. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1901. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1902. p[GGML_OP_ADD_REL_POS ] = true;
  1903. }
  1904. { // FINALIZE
  1905. bool * p = GGML_OP_HAS_FINALIZE;
  1906. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1907. }
  1908. }
  1909. //
  1910. // ggml context
  1911. //
  1912. struct ggml_context {
  1913. size_t mem_size;
  1914. void * mem_buffer;
  1915. bool mem_buffer_owned;
  1916. bool no_alloc;
  1917. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1918. int n_objects;
  1919. struct ggml_object * objects_begin;
  1920. struct ggml_object * objects_end;
  1921. struct ggml_scratch scratch;
  1922. struct ggml_scratch scratch_save;
  1923. };
  1924. struct ggml_context_container {
  1925. bool used;
  1926. struct ggml_context context;
  1927. };
  1928. //
  1929. // NUMA support
  1930. //
  1931. #define GGML_NUMA_MAX_NODES 8
  1932. #define GGML_NUMA_MAX_CPUS 512
  1933. struct ggml_numa_node {
  1934. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1935. uint32_t n_cpus;
  1936. };
  1937. struct ggml_numa_nodes {
  1938. enum ggml_numa_strategy numa_strategy;
  1939. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1940. uint32_t n_nodes;
  1941. uint32_t total_cpus; // hardware threads on system
  1942. uint32_t current_node; // node on which main process is execting
  1943. #if defined(__gnu_linux__)
  1944. cpu_set_t cpuset; // cpuset from numactl
  1945. #else
  1946. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1947. #endif
  1948. };
  1949. //
  1950. // ggml state
  1951. //
  1952. struct ggml_state {
  1953. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1954. struct ggml_numa_nodes numa;
  1955. };
  1956. // global state
  1957. static struct ggml_state g_state;
  1958. static atomic_int g_state_barrier = 0;
  1959. // barrier via spin lock
  1960. inline static void ggml_critical_section_start(void) {
  1961. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1962. while (processing > 0) {
  1963. // wait for other threads to finish
  1964. atomic_fetch_sub(&g_state_barrier, 1);
  1965. sched_yield(); // TODO: reconsider this
  1966. processing = atomic_fetch_add(&g_state_barrier, 1);
  1967. }
  1968. }
  1969. // TODO: make this somehow automatically executed
  1970. // some sort of "sentry" mechanism
  1971. inline static void ggml_critical_section_end(void) {
  1972. atomic_fetch_sub(&g_state_barrier, 1);
  1973. }
  1974. #if defined(__gnu_linux__)
  1975. static cpu_set_t ggml_get_numa_affinity(void) {
  1976. cpu_set_t cpuset;
  1977. pthread_t thread;
  1978. thread = pthread_self();
  1979. CPU_ZERO(&cpuset);
  1980. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1981. return cpuset;
  1982. }
  1983. #else
  1984. static uint32_t ggml_get_numa_affinity(void) {
  1985. return 0; // no NUMA support
  1986. }
  1987. #endif
  1988. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1989. if (g_state.numa.n_nodes > 0) {
  1990. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1991. return;
  1992. }
  1993. #if defined(__gnu_linux__)
  1994. struct stat st;
  1995. char path[256];
  1996. int rv;
  1997. // set numa scheme
  1998. g_state.numa.numa_strategy = numa_flag;
  1999. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2000. g_state.numa.cpuset = ggml_get_numa_affinity();
  2001. // enumerate nodes
  2002. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2003. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2004. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2005. if (stat(path, &st) != 0) { break; }
  2006. ++g_state.numa.n_nodes;
  2007. }
  2008. // enumerate CPUs
  2009. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2010. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2011. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2012. if (stat(path, &st) != 0) { break; }
  2013. ++g_state.numa.total_cpus;
  2014. }
  2015. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2016. // figure out which node we're on
  2017. uint current_cpu;
  2018. int getcpu_ret = 0;
  2019. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2020. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2021. #else
  2022. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2023. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2024. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2025. # endif
  2026. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2027. #endif
  2028. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2029. g_state.numa.n_nodes = 0;
  2030. return;
  2031. }
  2032. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2033. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2034. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2035. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2036. node->n_cpus = 0;
  2037. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2038. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2039. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2040. if (stat(path, &st) == 0) {
  2041. node->cpus[node->n_cpus++] = c;
  2042. GGML_PRINT_DEBUG(" %u", c);
  2043. }
  2044. }
  2045. GGML_PRINT_DEBUG("\n");
  2046. }
  2047. if (ggml_is_numa()) {
  2048. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2049. if (fptr != NULL) {
  2050. char buf[42];
  2051. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2052. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2053. }
  2054. fclose(fptr);
  2055. }
  2056. }
  2057. #else
  2058. GGML_UNUSED(numa_flag);
  2059. // TODO
  2060. #endif
  2061. }
  2062. bool ggml_is_numa(void) {
  2063. return g_state.numa.n_nodes > 1;
  2064. }
  2065. ////////////////////////////////////////////////////////////////////////////////
  2066. void ggml_print_object(const struct ggml_object * obj) {
  2067. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2068. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2069. }
  2070. void ggml_print_objects(const struct ggml_context * ctx) {
  2071. struct ggml_object * obj = ctx->objects_begin;
  2072. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2073. while (obj != NULL) {
  2074. ggml_print_object(obj);
  2075. obj = obj->next;
  2076. }
  2077. GGML_PRINT("%s: --- end ---\n", __func__);
  2078. }
  2079. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2080. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2081. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2082. }
  2083. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2084. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2085. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2086. }
  2087. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2088. size_t nbytes;
  2089. size_t blck_size = ggml_blck_size(tensor->type);
  2090. if (blck_size == 1) {
  2091. nbytes = ggml_type_size(tensor->type);
  2092. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2093. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2094. }
  2095. }
  2096. else {
  2097. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2098. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2099. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2100. }
  2101. }
  2102. return nbytes;
  2103. }
  2104. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2105. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2106. }
  2107. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2108. return type_traits[type].blck_size;
  2109. }
  2110. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2111. return type_traits[type].type_size;
  2112. }
  2113. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2114. assert(ne % ggml_blck_size(type) == 0);
  2115. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2116. }
  2117. double ggml_type_sizef(enum ggml_type type) {
  2118. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2119. }
  2120. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2121. return type_traits[type].type_name;
  2122. }
  2123. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2124. return type_traits[type].is_quantized;
  2125. }
  2126. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2127. return GGML_OP_NAME[op];
  2128. }
  2129. const char * ggml_op_symbol(enum ggml_op op) {
  2130. return GGML_OP_SYMBOL[op];
  2131. }
  2132. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2133. return GGML_UNARY_OP_NAME[op];
  2134. }
  2135. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2136. if (t->op == GGML_OP_UNARY) {
  2137. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2138. return ggml_unary_op_name(uop);
  2139. }
  2140. else {
  2141. return ggml_op_name(t->op);
  2142. }
  2143. }
  2144. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2145. return ggml_type_size(tensor->type);
  2146. }
  2147. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2148. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2149. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2150. }
  2151. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2152. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2153. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2154. }
  2155. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2156. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2157. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2158. }
  2159. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2160. return tensor->ne[3] == 1;
  2161. }
  2162. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2163. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2164. if (tensor->ne[i] > 1) {
  2165. return i + 1;
  2166. }
  2167. }
  2168. return 1;
  2169. }
  2170. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2171. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2172. return (t0->ne[0] == t1->ne[0]) &&
  2173. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2174. (t1->ne[3]%t0->ne[3] == 0);
  2175. }
  2176. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2177. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2178. return (t0->ne[1] == t1->ne[1]) &&
  2179. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2180. (t1->ne[3]%t0->ne[3] == 0);
  2181. }
  2182. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2183. enum ggml_type wtype = GGML_TYPE_COUNT;
  2184. switch (ftype) {
  2185. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2186. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2187. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2188. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2189. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2190. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2191. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2192. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2193. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2194. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2195. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2196. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2197. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2198. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2199. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2200. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2201. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2202. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2203. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2204. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2205. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2206. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2207. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2208. }
  2209. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2210. return wtype;
  2211. }
  2212. size_t ggml_tensor_overhead(void) {
  2213. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2214. }
  2215. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2216. return tensor->nb[0] > tensor->nb[1];
  2217. }
  2218. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2219. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2220. return
  2221. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2222. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2223. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2224. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2225. }
  2226. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2227. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2228. return
  2229. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2230. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2231. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2232. }
  2233. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2234. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2235. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2236. }
  2237. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2238. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2239. return
  2240. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2241. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2242. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2243. }
  2244. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2245. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2246. if (tensor->ne[i] == 0) {
  2247. // empty if any dimension has no elements
  2248. return true;
  2249. }
  2250. }
  2251. return false;
  2252. }
  2253. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2254. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2255. return
  2256. (t0->ne[0] == t1->ne[0] ) &&
  2257. (t0->ne[1] == t1->ne[1] ) &&
  2258. (t0->ne[2] == t1->ne[2] ) &&
  2259. (t0->ne[3] == t1->ne[3] );
  2260. }
  2261. // check if t1 can be represented as a repeatition of t0
  2262. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2263. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2264. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2265. (t1->ne[0]%t0->ne[0] == 0) &&
  2266. (t1->ne[1]%t0->ne[1] == 0) &&
  2267. (t1->ne[2]%t0->ne[2] == 0) &&
  2268. (t1->ne[3]%t0->ne[3] == 0);
  2269. }
  2270. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2271. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2272. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2273. }
  2274. static inline int ggml_up32(int n) {
  2275. return (n + 31) & ~31;
  2276. }
  2277. //static inline int ggml_up64(int n) {
  2278. // return (n + 63) & ~63;
  2279. //}
  2280. static inline int ggml_up(int n, int m) {
  2281. // assert m is a power of 2
  2282. GGML_ASSERT((m & (m - 1)) == 0);
  2283. return (n + m - 1) & ~(m - 1);
  2284. }
  2285. // assert that pointer is aligned to GGML_MEM_ALIGN
  2286. #define ggml_assert_aligned(ptr) \
  2287. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2288. ////////////////////////////////////////////////////////////////////////////////
  2289. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2290. // make this function thread safe
  2291. ggml_critical_section_start();
  2292. static bool is_first_call = true;
  2293. if (is_first_call) {
  2294. // initialize time system (required on Windows)
  2295. ggml_time_init();
  2296. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2297. {
  2298. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2299. ggml_fp16_t ii;
  2300. for (int i = 0; i < (1 << 16); ++i) {
  2301. uint16_t ui = i;
  2302. memcpy(&ii, &ui, sizeof(ii));
  2303. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2304. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2305. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2306. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2307. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2308. }
  2309. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2310. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2311. }
  2312. // initialize g_state
  2313. {
  2314. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2315. g_state = (struct ggml_state) {
  2316. /*.contexts =*/ { { 0 } },
  2317. /*.numa =*/ {
  2318. .n_nodes = 0,
  2319. .total_cpus = 0,
  2320. },
  2321. };
  2322. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2323. g_state.contexts[i].used = false;
  2324. }
  2325. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2326. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2327. }
  2328. #if defined(GGML_USE_CLBLAST)
  2329. ggml_cl_init();
  2330. #endif
  2331. ggml_setup_op_has_task_pass();
  2332. is_first_call = false;
  2333. }
  2334. // find non-used context in g_state
  2335. struct ggml_context * ctx = NULL;
  2336. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2337. if (!g_state.contexts[i].used) {
  2338. g_state.contexts[i].used = true;
  2339. ctx = &g_state.contexts[i].context;
  2340. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2341. break;
  2342. }
  2343. }
  2344. if (ctx == NULL) {
  2345. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2346. ggml_critical_section_end();
  2347. return NULL;
  2348. }
  2349. // allow to call ggml_init with 0 size
  2350. if (params.mem_size == 0) {
  2351. params.mem_size = GGML_MEM_ALIGN;
  2352. }
  2353. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2354. *ctx = (struct ggml_context) {
  2355. /*.mem_size =*/ mem_size,
  2356. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2357. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2358. /*.no_alloc =*/ params.no_alloc,
  2359. /*.no_alloc_save =*/ params.no_alloc,
  2360. /*.n_objects =*/ 0,
  2361. /*.objects_begin =*/ NULL,
  2362. /*.objects_end =*/ NULL,
  2363. /*.scratch =*/ { 0, 0, NULL, },
  2364. /*.scratch_save =*/ { 0, 0, NULL, },
  2365. };
  2366. GGML_ASSERT(ctx->mem_buffer != NULL);
  2367. ggml_assert_aligned(ctx->mem_buffer);
  2368. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2369. ggml_critical_section_end();
  2370. return ctx;
  2371. }
  2372. void ggml_free(struct ggml_context * ctx) {
  2373. if (ctx == NULL) {
  2374. return;
  2375. }
  2376. // make this function thread safe
  2377. ggml_critical_section_start();
  2378. bool found = false;
  2379. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2380. if (&g_state.contexts[i].context == ctx) {
  2381. g_state.contexts[i].used = false;
  2382. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2383. __func__, i, ggml_used_mem(ctx));
  2384. if (ctx->mem_buffer_owned) {
  2385. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2386. }
  2387. found = true;
  2388. break;
  2389. }
  2390. }
  2391. if (!found) {
  2392. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2393. }
  2394. ggml_critical_section_end();
  2395. }
  2396. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2397. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2398. }
  2399. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2400. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2401. ctx->scratch = scratch;
  2402. return result;
  2403. }
  2404. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2405. return ctx->no_alloc;
  2406. }
  2407. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2408. ctx->no_alloc = no_alloc;
  2409. }
  2410. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2411. return ctx->mem_buffer;
  2412. }
  2413. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2414. return ctx->mem_size;
  2415. }
  2416. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2417. size_t max_size = 0;
  2418. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2419. size_t bytes = ggml_nbytes(tensor);
  2420. max_size = MAX(max_size, bytes);
  2421. }
  2422. return max_size;
  2423. }
  2424. // IMPORTANT:
  2425. // when creating "opt" tensors, always save and load the scratch buffer
  2426. // this is an error prone process, but it is necessary to support inplace
  2427. // operators when using scratch buffers
  2428. // TODO: implement a better way
  2429. static void ggml_scratch_save(struct ggml_context * ctx) {
  2430. // this is needed to allow opt tensors to store their data
  2431. // TODO: again, need to find a better way
  2432. ctx->no_alloc_save = ctx->no_alloc;
  2433. ctx->no_alloc = false;
  2434. ctx->scratch_save = ctx->scratch;
  2435. ctx->scratch.data = NULL;
  2436. }
  2437. static void ggml_scratch_load(struct ggml_context * ctx) {
  2438. ctx->no_alloc = ctx->no_alloc_save;
  2439. ctx->scratch = ctx->scratch_save;
  2440. }
  2441. ////////////////////////////////////////////////////////////////////////////////
  2442. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2443. // always insert objects at the end of the context's memory pool
  2444. struct ggml_object * obj_cur = ctx->objects_end;
  2445. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2446. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2447. const size_t cur_end = cur_offs + cur_size;
  2448. // align to GGML_MEM_ALIGN
  2449. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2450. char * const mem_buffer = ctx->mem_buffer;
  2451. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2452. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2453. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2454. __func__, cur_end + size_needed, ctx->mem_size);
  2455. assert(false);
  2456. return NULL;
  2457. }
  2458. *obj_new = (struct ggml_object) {
  2459. .offs = cur_end + GGML_OBJECT_SIZE,
  2460. .size = size_needed,
  2461. .next = NULL,
  2462. .type = type,
  2463. };
  2464. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2465. if (obj_cur != NULL) {
  2466. obj_cur->next = obj_new;
  2467. } else {
  2468. // this is the first object in this context
  2469. ctx->objects_begin = obj_new;
  2470. }
  2471. ctx->objects_end = obj_new;
  2472. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2473. return obj_new;
  2474. }
  2475. static struct ggml_tensor * ggml_new_tensor_impl(
  2476. struct ggml_context * ctx,
  2477. enum ggml_type type,
  2478. int n_dims,
  2479. const int64_t * ne,
  2480. struct ggml_tensor * view_src,
  2481. size_t view_offs) {
  2482. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2483. // find the base tensor and absolute offset
  2484. if (view_src != NULL && view_src->view_src != NULL) {
  2485. view_offs += view_src->view_offs;
  2486. view_src = view_src->view_src;
  2487. }
  2488. size_t data_size = ggml_row_size(type, ne[0]);
  2489. for (int i = 1; i < n_dims; i++) {
  2490. data_size *= ne[i];
  2491. }
  2492. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2493. void * data = view_src != NULL ? view_src->data : NULL;
  2494. if (data != NULL) {
  2495. data = (char *) data + view_offs;
  2496. }
  2497. size_t obj_alloc_size = 0;
  2498. if (view_src == NULL && !ctx->no_alloc) {
  2499. if (ctx->scratch.data != NULL) {
  2500. // allocate tensor data in the scratch buffer
  2501. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2502. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2503. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2504. assert(false);
  2505. return NULL;
  2506. }
  2507. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2508. ctx->scratch.offs += data_size;
  2509. } else {
  2510. // allocate tensor data in the context's memory pool
  2511. obj_alloc_size = data_size;
  2512. }
  2513. }
  2514. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2515. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2516. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2517. *result = (struct ggml_tensor) {
  2518. /*.type =*/ type,
  2519. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2520. /*.buffer =*/ NULL,
  2521. /*.ne =*/ { 1, 1, 1, 1 },
  2522. /*.nb =*/ { 0, 0, 0, 0 },
  2523. /*.op =*/ GGML_OP_NONE,
  2524. /*.op_params =*/ { 0 },
  2525. /*.flags =*/ 0,
  2526. /*.grad =*/ NULL,
  2527. /*.src =*/ { NULL },
  2528. /*.perf_runs =*/ 0,
  2529. /*.perf_cycles =*/ 0,
  2530. /*.perf_time_us =*/ 0,
  2531. /*.view_src =*/ view_src,
  2532. /*.view_offs =*/ view_offs,
  2533. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2534. /*.name =*/ { 0 },
  2535. /*.extra =*/ NULL,
  2536. /*.padding =*/ { 0 },
  2537. };
  2538. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2539. //ggml_assert_aligned(result->data);
  2540. for (int i = 0; i < n_dims; i++) {
  2541. result->ne[i] = ne[i];
  2542. }
  2543. result->nb[0] = ggml_type_size(type);
  2544. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2545. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2546. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2547. }
  2548. ctx->n_objects++;
  2549. return result;
  2550. }
  2551. struct ggml_tensor * ggml_new_tensor(
  2552. struct ggml_context * ctx,
  2553. enum ggml_type type,
  2554. int n_dims,
  2555. const int64_t * ne) {
  2556. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2557. }
  2558. struct ggml_tensor * ggml_new_tensor_1d(
  2559. struct ggml_context * ctx,
  2560. enum ggml_type type,
  2561. int64_t ne0) {
  2562. return ggml_new_tensor(ctx, type, 1, &ne0);
  2563. }
  2564. struct ggml_tensor * ggml_new_tensor_2d(
  2565. struct ggml_context * ctx,
  2566. enum ggml_type type,
  2567. int64_t ne0,
  2568. int64_t ne1) {
  2569. const int64_t ne[2] = { ne0, ne1 };
  2570. return ggml_new_tensor(ctx, type, 2, ne);
  2571. }
  2572. struct ggml_tensor * ggml_new_tensor_3d(
  2573. struct ggml_context * ctx,
  2574. enum ggml_type type,
  2575. int64_t ne0,
  2576. int64_t ne1,
  2577. int64_t ne2) {
  2578. const int64_t ne[3] = { ne0, ne1, ne2 };
  2579. return ggml_new_tensor(ctx, type, 3, ne);
  2580. }
  2581. struct ggml_tensor * ggml_new_tensor_4d(
  2582. struct ggml_context * ctx,
  2583. enum ggml_type type,
  2584. int64_t ne0,
  2585. int64_t ne1,
  2586. int64_t ne2,
  2587. int64_t ne3) {
  2588. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2589. return ggml_new_tensor(ctx, type, 4, ne);
  2590. }
  2591. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2592. ggml_scratch_save(ctx);
  2593. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2594. ggml_scratch_load(ctx);
  2595. ggml_set_i32(result, value);
  2596. return result;
  2597. }
  2598. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2599. ggml_scratch_save(ctx);
  2600. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2601. ggml_scratch_load(ctx);
  2602. ggml_set_f32(result, value);
  2603. return result;
  2604. }
  2605. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2606. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2607. }
  2608. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2609. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2610. assert(params_size <= GGML_MAX_OP_PARAMS);
  2611. memcpy(tensor->op_params, params, params_size);
  2612. }
  2613. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2614. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2615. return ((const int32_t *)(tensor->op_params))[i];
  2616. }
  2617. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2618. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2619. return ((const float *)(tensor->op_params))[i];
  2620. }
  2621. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2622. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2623. ((int32_t *)(tensor->op_params))[i] = value;
  2624. }
  2625. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2626. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2627. ((float *)(tensor->op_params))[i] = value;
  2628. }
  2629. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2630. memset(tensor->data, 0, ggml_nbytes(tensor));
  2631. return tensor;
  2632. }
  2633. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2634. const int n = ggml_nrows(tensor);
  2635. const int nc = tensor->ne[0];
  2636. const size_t n1 = tensor->nb[1];
  2637. char * const data = tensor->data;
  2638. switch (tensor->type) {
  2639. case GGML_TYPE_I8:
  2640. {
  2641. assert(tensor->nb[0] == sizeof(int8_t));
  2642. for (int i = 0; i < n; i++) {
  2643. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2644. }
  2645. } break;
  2646. case GGML_TYPE_I16:
  2647. {
  2648. assert(tensor->nb[0] == sizeof(int16_t));
  2649. for (int i = 0; i < n; i++) {
  2650. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2651. }
  2652. } break;
  2653. case GGML_TYPE_I32:
  2654. {
  2655. assert(tensor->nb[0] == sizeof(int32_t));
  2656. for (int i = 0; i < n; i++) {
  2657. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2658. }
  2659. } break;
  2660. case GGML_TYPE_F16:
  2661. {
  2662. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2663. for (int i = 0; i < n; i++) {
  2664. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2665. }
  2666. } break;
  2667. case GGML_TYPE_F32:
  2668. {
  2669. assert(tensor->nb[0] == sizeof(float));
  2670. for (int i = 0; i < n; i++) {
  2671. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2672. }
  2673. } break;
  2674. default:
  2675. {
  2676. GGML_ASSERT(false);
  2677. } break;
  2678. }
  2679. return tensor;
  2680. }
  2681. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2682. const int n = ggml_nrows(tensor);
  2683. const int nc = tensor->ne[0];
  2684. const size_t n1 = tensor->nb[1];
  2685. char * const data = tensor->data;
  2686. switch (tensor->type) {
  2687. case GGML_TYPE_I8:
  2688. {
  2689. assert(tensor->nb[0] == sizeof(int8_t));
  2690. for (int i = 0; i < n; i++) {
  2691. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2692. }
  2693. } break;
  2694. case GGML_TYPE_I16:
  2695. {
  2696. assert(tensor->nb[0] == sizeof(int16_t));
  2697. for (int i = 0; i < n; i++) {
  2698. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2699. }
  2700. } break;
  2701. case GGML_TYPE_I32:
  2702. {
  2703. assert(tensor->nb[0] == sizeof(int32_t));
  2704. for (int i = 0; i < n; i++) {
  2705. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2706. }
  2707. } break;
  2708. case GGML_TYPE_F16:
  2709. {
  2710. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2711. for (int i = 0; i < n; i++) {
  2712. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2713. }
  2714. } break;
  2715. case GGML_TYPE_F32:
  2716. {
  2717. assert(tensor->nb[0] == sizeof(float));
  2718. for (int i = 0; i < n; i++) {
  2719. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2720. }
  2721. } break;
  2722. default:
  2723. {
  2724. GGML_ASSERT(false);
  2725. } break;
  2726. }
  2727. return tensor;
  2728. }
  2729. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2730. const int64_t ne2 = tensor->ne[2];
  2731. const int64_t ne1 = tensor->ne[1];
  2732. const int64_t ne0 = tensor->ne[0];
  2733. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2734. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2735. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2736. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2737. if (i0) {
  2738. * i0 = i0_;
  2739. }
  2740. if (i1) {
  2741. * i1 = i1_;
  2742. }
  2743. if (i2) {
  2744. * i2 = i2_;
  2745. }
  2746. if (i3) {
  2747. * i3 = i3_;
  2748. }
  2749. }
  2750. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2751. if (!ggml_is_contiguous(tensor)) {
  2752. int64_t id[4] = { 0, 0, 0, 0 };
  2753. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2754. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2755. }
  2756. switch (tensor->type) {
  2757. case GGML_TYPE_I8:
  2758. {
  2759. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2760. return ((int8_t *)(tensor->data))[i];
  2761. }
  2762. case GGML_TYPE_I16:
  2763. {
  2764. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2765. return ((int16_t *)(tensor->data))[i];
  2766. }
  2767. case GGML_TYPE_I32:
  2768. {
  2769. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2770. return ((int32_t *)(tensor->data))[i];
  2771. }
  2772. case GGML_TYPE_F16:
  2773. {
  2774. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2775. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2776. }
  2777. case GGML_TYPE_F32:
  2778. {
  2779. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2780. return ((float *)(tensor->data))[i];
  2781. }
  2782. default:
  2783. {
  2784. GGML_ASSERT(false);
  2785. }
  2786. }
  2787. return 0.0f;
  2788. }
  2789. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2790. if (!ggml_is_contiguous(tensor)) {
  2791. int64_t id[4] = { 0, 0, 0, 0 };
  2792. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2793. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2794. return;
  2795. }
  2796. switch (tensor->type) {
  2797. case GGML_TYPE_I8:
  2798. {
  2799. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2800. ((int8_t *)(tensor->data))[i] = value;
  2801. } break;
  2802. case GGML_TYPE_I16:
  2803. {
  2804. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2805. ((int16_t *)(tensor->data))[i] = value;
  2806. } break;
  2807. case GGML_TYPE_I32:
  2808. {
  2809. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2810. ((int32_t *)(tensor->data))[i] = value;
  2811. } break;
  2812. case GGML_TYPE_F16:
  2813. {
  2814. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2815. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2816. } break;
  2817. case GGML_TYPE_F32:
  2818. {
  2819. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2820. ((float *)(tensor->data))[i] = value;
  2821. } break;
  2822. default:
  2823. {
  2824. GGML_ASSERT(false);
  2825. } break;
  2826. }
  2827. }
  2828. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2829. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2830. switch (tensor->type) {
  2831. case GGML_TYPE_I8:
  2832. return ((int8_t *) data)[0];
  2833. case GGML_TYPE_I16:
  2834. return ((int16_t *) data)[0];
  2835. case GGML_TYPE_I32:
  2836. return ((int32_t *) data)[0];
  2837. case GGML_TYPE_F16:
  2838. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2839. case GGML_TYPE_F32:
  2840. return ((float *) data)[0];
  2841. default:
  2842. GGML_ASSERT(false);
  2843. }
  2844. return 0.0f;
  2845. }
  2846. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2847. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2848. switch (tensor->type) {
  2849. case GGML_TYPE_I8:
  2850. {
  2851. ((int8_t *)(data))[0] = value;
  2852. } break;
  2853. case GGML_TYPE_I16:
  2854. {
  2855. ((int16_t *)(data))[0] = value;
  2856. } break;
  2857. case GGML_TYPE_I32:
  2858. {
  2859. ((int32_t *)(data))[0] = value;
  2860. } break;
  2861. case GGML_TYPE_F16:
  2862. {
  2863. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2864. } break;
  2865. case GGML_TYPE_F32:
  2866. {
  2867. ((float *)(data))[0] = value;
  2868. } break;
  2869. default:
  2870. {
  2871. GGML_ASSERT(false);
  2872. } break;
  2873. }
  2874. }
  2875. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2876. if (!ggml_is_contiguous(tensor)) {
  2877. int64_t id[4] = { 0, 0, 0, 0 };
  2878. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2879. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2880. }
  2881. switch (tensor->type) {
  2882. case GGML_TYPE_I8:
  2883. {
  2884. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2885. return ((int8_t *)(tensor->data))[i];
  2886. }
  2887. case GGML_TYPE_I16:
  2888. {
  2889. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2890. return ((int16_t *)(tensor->data))[i];
  2891. }
  2892. case GGML_TYPE_I32:
  2893. {
  2894. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2895. return ((int32_t *)(tensor->data))[i];
  2896. }
  2897. case GGML_TYPE_F16:
  2898. {
  2899. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2900. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2901. }
  2902. case GGML_TYPE_F32:
  2903. {
  2904. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2905. return ((float *)(tensor->data))[i];
  2906. }
  2907. default:
  2908. {
  2909. GGML_ASSERT(false);
  2910. }
  2911. }
  2912. return 0.0f;
  2913. }
  2914. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2915. if (!ggml_is_contiguous(tensor)) {
  2916. int64_t id[4] = { 0, 0, 0, 0 };
  2917. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2918. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2919. return;
  2920. }
  2921. switch (tensor->type) {
  2922. case GGML_TYPE_I8:
  2923. {
  2924. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2925. ((int8_t *)(tensor->data))[i] = value;
  2926. } break;
  2927. case GGML_TYPE_I16:
  2928. {
  2929. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2930. ((int16_t *)(tensor->data))[i] = value;
  2931. } break;
  2932. case GGML_TYPE_I32:
  2933. {
  2934. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2935. ((int32_t *)(tensor->data))[i] = value;
  2936. } break;
  2937. case GGML_TYPE_F16:
  2938. {
  2939. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2940. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2941. } break;
  2942. case GGML_TYPE_F32:
  2943. {
  2944. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2945. ((float *)(tensor->data))[i] = value;
  2946. } break;
  2947. default:
  2948. {
  2949. GGML_ASSERT(false);
  2950. } break;
  2951. }
  2952. }
  2953. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2954. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2955. switch (tensor->type) {
  2956. case GGML_TYPE_I8:
  2957. return ((int8_t *) data)[0];
  2958. case GGML_TYPE_I16:
  2959. return ((int16_t *) data)[0];
  2960. case GGML_TYPE_I32:
  2961. return ((int32_t *) data)[0];
  2962. case GGML_TYPE_F16:
  2963. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2964. case GGML_TYPE_F32:
  2965. return ((float *) data)[0];
  2966. default:
  2967. GGML_ASSERT(false);
  2968. }
  2969. return 0.0f;
  2970. }
  2971. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2972. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2973. switch (tensor->type) {
  2974. case GGML_TYPE_I8:
  2975. {
  2976. ((int8_t *)(data))[0] = value;
  2977. } break;
  2978. case GGML_TYPE_I16:
  2979. {
  2980. ((int16_t *)(data))[0] = value;
  2981. } break;
  2982. case GGML_TYPE_I32:
  2983. {
  2984. ((int32_t *)(data))[0] = value;
  2985. } break;
  2986. case GGML_TYPE_F16:
  2987. {
  2988. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2989. } break;
  2990. case GGML_TYPE_F32:
  2991. {
  2992. ((float *)(data))[0] = value;
  2993. } break;
  2994. default:
  2995. {
  2996. GGML_ASSERT(false);
  2997. } break;
  2998. }
  2999. }
  3000. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3001. return tensor->data;
  3002. }
  3003. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3004. assert(tensor->type == GGML_TYPE_F32);
  3005. return (float *)(tensor->data);
  3006. }
  3007. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3008. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3009. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3010. }
  3011. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3012. return tensor->name;
  3013. }
  3014. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3015. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3016. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3017. return tensor;
  3018. }
  3019. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3020. va_list args;
  3021. va_start(args, fmt);
  3022. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3023. va_end(args);
  3024. return tensor;
  3025. }
  3026. struct ggml_tensor * ggml_view_tensor(
  3027. struct ggml_context * ctx,
  3028. struct ggml_tensor * src) {
  3029. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3030. ggml_format_name(result, "%s (view)", src->name);
  3031. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3032. result->nb[i] = src->nb[i];
  3033. }
  3034. return result;
  3035. }
  3036. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3037. struct ggml_object * obj = ctx->objects_begin;
  3038. char * const mem_buffer = ctx->mem_buffer;
  3039. while (obj != NULL) {
  3040. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3041. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3042. }
  3043. obj = obj->next;
  3044. }
  3045. return NULL;
  3046. }
  3047. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3048. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3049. obj = obj->next;
  3050. char * const mem_buffer = ctx->mem_buffer;
  3051. while (obj != NULL) {
  3052. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3053. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3054. }
  3055. obj = obj->next;
  3056. }
  3057. return NULL;
  3058. }
  3059. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3060. struct ggml_object * obj = ctx->objects_begin;
  3061. char * const mem_buffer = ctx->mem_buffer;
  3062. while (obj != NULL) {
  3063. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3064. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3065. if (strcmp(cur->name, name) == 0) {
  3066. return cur;
  3067. }
  3068. }
  3069. obj = obj->next;
  3070. }
  3071. return NULL;
  3072. }
  3073. ////////////////////////////////////////////////////////////////////////////////
  3074. // ggml_dup
  3075. static struct ggml_tensor * ggml_dup_impl(
  3076. struct ggml_context * ctx,
  3077. struct ggml_tensor * a,
  3078. bool inplace) {
  3079. bool is_node = false;
  3080. if (!inplace && (a->grad)) {
  3081. is_node = true;
  3082. }
  3083. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3084. result->op = GGML_OP_DUP;
  3085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3086. result->src[0] = a;
  3087. return result;
  3088. }
  3089. struct ggml_tensor * ggml_dup(
  3090. struct ggml_context * ctx,
  3091. struct ggml_tensor * a) {
  3092. return ggml_dup_impl(ctx, a, false);
  3093. }
  3094. struct ggml_tensor * ggml_dup_inplace(
  3095. struct ggml_context * ctx,
  3096. struct ggml_tensor * a) {
  3097. return ggml_dup_impl(ctx, a, true);
  3098. }
  3099. // ggml_add
  3100. static struct ggml_tensor * ggml_add_impl(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a,
  3103. struct ggml_tensor * b,
  3104. bool inplace) {
  3105. GGML_ASSERT(ggml_can_repeat(b, a));
  3106. bool is_node = false;
  3107. if (!inplace && (a->grad || b->grad)) {
  3108. // TODO: support backward pass for broadcasting
  3109. GGML_ASSERT(ggml_are_same_shape(a, b));
  3110. is_node = true;
  3111. }
  3112. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3113. result->op = GGML_OP_ADD;
  3114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3115. result->src[0] = a;
  3116. result->src[1] = b;
  3117. return result;
  3118. }
  3119. struct ggml_tensor * ggml_add(
  3120. struct ggml_context * ctx,
  3121. struct ggml_tensor * a,
  3122. struct ggml_tensor * b) {
  3123. return ggml_add_impl(ctx, a, b, false);
  3124. }
  3125. struct ggml_tensor * ggml_add_inplace(
  3126. struct ggml_context * ctx,
  3127. struct ggml_tensor * a,
  3128. struct ggml_tensor * b) {
  3129. return ggml_add_impl(ctx, a, b, true);
  3130. }
  3131. // ggml_add_cast
  3132. static struct ggml_tensor * ggml_add_cast_impl(
  3133. struct ggml_context * ctx,
  3134. struct ggml_tensor * a,
  3135. struct ggml_tensor * b,
  3136. enum ggml_type type) {
  3137. // TODO: support less-strict constraint
  3138. // GGML_ASSERT(ggml_can_repeat(b, a));
  3139. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3140. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3141. bool is_node = false;
  3142. if (a->grad || b->grad) {
  3143. // TODO: support backward pass for broadcasting
  3144. GGML_ASSERT(ggml_are_same_shape(a, b));
  3145. is_node = true;
  3146. }
  3147. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3148. result->op = GGML_OP_ADD;
  3149. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3150. result->src[0] = a;
  3151. result->src[1] = b;
  3152. return result;
  3153. }
  3154. struct ggml_tensor * ggml_add_cast(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a,
  3157. struct ggml_tensor * b,
  3158. enum ggml_type type) {
  3159. return ggml_add_cast_impl(ctx, a, b, type);
  3160. }
  3161. // ggml_add1
  3162. static struct ggml_tensor * ggml_add1_impl(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a,
  3165. struct ggml_tensor * b,
  3166. bool inplace) {
  3167. GGML_ASSERT(ggml_is_scalar(b));
  3168. GGML_ASSERT(ggml_is_padded_1d(a));
  3169. bool is_node = false;
  3170. if (a->grad || b->grad) {
  3171. is_node = true;
  3172. }
  3173. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3174. result->op = GGML_OP_ADD1;
  3175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3176. result->src[0] = a;
  3177. result->src[1] = b;
  3178. return result;
  3179. }
  3180. struct ggml_tensor * ggml_add1(
  3181. struct ggml_context * ctx,
  3182. struct ggml_tensor * a,
  3183. struct ggml_tensor * b) {
  3184. return ggml_add1_impl(ctx, a, b, false);
  3185. }
  3186. struct ggml_tensor * ggml_add1_inplace(
  3187. struct ggml_context * ctx,
  3188. struct ggml_tensor * a,
  3189. struct ggml_tensor * b) {
  3190. return ggml_add1_impl(ctx, a, b, true);
  3191. }
  3192. // ggml_acc
  3193. static struct ggml_tensor * ggml_acc_impl(
  3194. struct ggml_context * ctx,
  3195. struct ggml_tensor * a,
  3196. struct ggml_tensor * b,
  3197. size_t nb1,
  3198. size_t nb2,
  3199. size_t nb3,
  3200. size_t offset,
  3201. bool inplace) {
  3202. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3203. GGML_ASSERT(ggml_is_contiguous(a));
  3204. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3205. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3206. bool is_node = false;
  3207. if (!inplace && (a->grad || b->grad)) {
  3208. is_node = true;
  3209. }
  3210. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3211. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3212. ggml_set_op_params(result, params, sizeof(params));
  3213. result->op = GGML_OP_ACC;
  3214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3215. result->src[0] = a;
  3216. result->src[1] = b;
  3217. return result;
  3218. }
  3219. struct ggml_tensor * ggml_acc(
  3220. struct ggml_context * ctx,
  3221. struct ggml_tensor * a,
  3222. struct ggml_tensor * b,
  3223. size_t nb1,
  3224. size_t nb2,
  3225. size_t nb3,
  3226. size_t offset) {
  3227. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3228. }
  3229. struct ggml_tensor * ggml_acc_inplace(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a,
  3232. struct ggml_tensor * b,
  3233. size_t nb1,
  3234. size_t nb2,
  3235. size_t nb3,
  3236. size_t offset) {
  3237. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3238. }
  3239. // ggml_sub
  3240. static struct ggml_tensor * ggml_sub_impl(
  3241. struct ggml_context * ctx,
  3242. struct ggml_tensor * a,
  3243. struct ggml_tensor * b,
  3244. bool inplace) {
  3245. GGML_ASSERT(ggml_are_same_shape(a, b));
  3246. bool is_node = false;
  3247. if (!inplace && (a->grad || b->grad)) {
  3248. is_node = true;
  3249. }
  3250. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3251. result->op = GGML_OP_SUB;
  3252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3253. result->src[0] = a;
  3254. result->src[1] = b;
  3255. return result;
  3256. }
  3257. struct ggml_tensor * ggml_sub(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a,
  3260. struct ggml_tensor * b) {
  3261. return ggml_sub_impl(ctx, a, b, false);
  3262. }
  3263. struct ggml_tensor * ggml_sub_inplace(
  3264. struct ggml_context * ctx,
  3265. struct ggml_tensor * a,
  3266. struct ggml_tensor * b) {
  3267. return ggml_sub_impl(ctx, a, b, true);
  3268. }
  3269. // ggml_mul
  3270. static struct ggml_tensor * ggml_mul_impl(
  3271. struct ggml_context * ctx,
  3272. struct ggml_tensor * a,
  3273. struct ggml_tensor * b,
  3274. bool inplace) {
  3275. GGML_ASSERT(ggml_can_repeat(b, a));
  3276. bool is_node = false;
  3277. if (!inplace && (a->grad || b->grad)) {
  3278. // TODO: support backward pass for broadcasting
  3279. GGML_ASSERT(ggml_are_same_shape(a, b));
  3280. is_node = true;
  3281. }
  3282. if (inplace) {
  3283. GGML_ASSERT(!is_node);
  3284. }
  3285. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3286. result->op = GGML_OP_MUL;
  3287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3288. result->src[0] = a;
  3289. result->src[1] = b;
  3290. return result;
  3291. }
  3292. struct ggml_tensor * ggml_mul(
  3293. struct ggml_context * ctx,
  3294. struct ggml_tensor * a,
  3295. struct ggml_tensor * b) {
  3296. return ggml_mul_impl(ctx, a, b, false);
  3297. }
  3298. struct ggml_tensor * ggml_mul_inplace(
  3299. struct ggml_context * ctx,
  3300. struct ggml_tensor * a,
  3301. struct ggml_tensor * b) {
  3302. return ggml_mul_impl(ctx, a, b, true);
  3303. }
  3304. // ggml_div
  3305. static struct ggml_tensor * ggml_div_impl(
  3306. struct ggml_context * ctx,
  3307. struct ggml_tensor * a,
  3308. struct ggml_tensor * b,
  3309. bool inplace) {
  3310. GGML_ASSERT(ggml_can_repeat(b, a));
  3311. bool is_node = false;
  3312. if (!inplace && (a->grad || b->grad)) {
  3313. is_node = true;
  3314. }
  3315. if (inplace) {
  3316. GGML_ASSERT(!is_node);
  3317. }
  3318. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3319. result->op = GGML_OP_DIV;
  3320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3321. result->src[0] = a;
  3322. result->src[1] = b;
  3323. return result;
  3324. }
  3325. struct ggml_tensor * ggml_div(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a,
  3328. struct ggml_tensor * b) {
  3329. return ggml_div_impl(ctx, a, b, false);
  3330. }
  3331. struct ggml_tensor * ggml_div_inplace(
  3332. struct ggml_context * ctx,
  3333. struct ggml_tensor * a,
  3334. struct ggml_tensor * b) {
  3335. return ggml_div_impl(ctx, a, b, true);
  3336. }
  3337. // ggml_sqr
  3338. static struct ggml_tensor * ggml_sqr_impl(
  3339. struct ggml_context * ctx,
  3340. struct ggml_tensor * a,
  3341. bool inplace) {
  3342. bool is_node = false;
  3343. if (!inplace && (a->grad)) {
  3344. is_node = true;
  3345. }
  3346. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3347. result->op = GGML_OP_SQR;
  3348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3349. result->src[0] = a;
  3350. return result;
  3351. }
  3352. struct ggml_tensor * ggml_sqr(
  3353. struct ggml_context * ctx,
  3354. struct ggml_tensor * a) {
  3355. return ggml_sqr_impl(ctx, a, false);
  3356. }
  3357. struct ggml_tensor * ggml_sqr_inplace(
  3358. struct ggml_context * ctx,
  3359. struct ggml_tensor * a) {
  3360. return ggml_sqr_impl(ctx, a, true);
  3361. }
  3362. // ggml_sqrt
  3363. static struct ggml_tensor * ggml_sqrt_impl(
  3364. struct ggml_context * ctx,
  3365. struct ggml_tensor * a,
  3366. bool inplace) {
  3367. bool is_node = false;
  3368. if (!inplace && (a->grad)) {
  3369. is_node = true;
  3370. }
  3371. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3372. result->op = GGML_OP_SQRT;
  3373. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3374. result->src[0] = a;
  3375. return result;
  3376. }
  3377. struct ggml_tensor * ggml_sqrt(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a) {
  3380. return ggml_sqrt_impl(ctx, a, false);
  3381. }
  3382. struct ggml_tensor * ggml_sqrt_inplace(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a) {
  3385. return ggml_sqrt_impl(ctx, a, true);
  3386. }
  3387. // ggml_log
  3388. static struct ggml_tensor * ggml_log_impl(
  3389. struct ggml_context * ctx,
  3390. struct ggml_tensor * a,
  3391. bool inplace) {
  3392. bool is_node = false;
  3393. if (!inplace && (a->grad)) {
  3394. is_node = true;
  3395. }
  3396. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3397. result->op = GGML_OP_LOG;
  3398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3399. result->src[0] = a;
  3400. return result;
  3401. }
  3402. struct ggml_tensor * ggml_log(
  3403. struct ggml_context * ctx,
  3404. struct ggml_tensor * a) {
  3405. return ggml_log_impl(ctx, a, false);
  3406. }
  3407. struct ggml_tensor * ggml_log_inplace(
  3408. struct ggml_context * ctx,
  3409. struct ggml_tensor * a) {
  3410. return ggml_log_impl(ctx, a, true);
  3411. }
  3412. // ggml_sum
  3413. struct ggml_tensor * ggml_sum(
  3414. struct ggml_context * ctx,
  3415. struct ggml_tensor * a) {
  3416. bool is_node = false;
  3417. if (a->grad) {
  3418. is_node = true;
  3419. }
  3420. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3421. result->op = GGML_OP_SUM;
  3422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3423. result->src[0] = a;
  3424. return result;
  3425. }
  3426. // ggml_sum_rows
  3427. struct ggml_tensor * ggml_sum_rows(
  3428. struct ggml_context * ctx,
  3429. struct ggml_tensor * a) {
  3430. bool is_node = false;
  3431. if (a->grad) {
  3432. is_node = true;
  3433. }
  3434. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3435. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3436. ne[i] = a->ne[i];
  3437. }
  3438. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3439. result->op = GGML_OP_SUM_ROWS;
  3440. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3441. result->src[0] = a;
  3442. return result;
  3443. }
  3444. // ggml_mean
  3445. struct ggml_tensor * ggml_mean(
  3446. struct ggml_context * ctx,
  3447. struct ggml_tensor * a) {
  3448. bool is_node = false;
  3449. if (a->grad) {
  3450. GGML_ASSERT(false); // TODO: implement
  3451. is_node = true;
  3452. }
  3453. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3454. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3455. result->op = GGML_OP_MEAN;
  3456. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3457. result->src[0] = a;
  3458. return result;
  3459. }
  3460. // ggml_argmax
  3461. struct ggml_tensor * ggml_argmax(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a) {
  3464. GGML_ASSERT(ggml_is_matrix(a));
  3465. bool is_node = false;
  3466. if (a->grad) {
  3467. GGML_ASSERT(false);
  3468. is_node = true;
  3469. }
  3470. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3471. result->op = GGML_OP_ARGMAX;
  3472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3473. result->src[0] = a;
  3474. return result;
  3475. }
  3476. // ggml_repeat
  3477. struct ggml_tensor * ggml_repeat(
  3478. struct ggml_context * ctx,
  3479. struct ggml_tensor * a,
  3480. struct ggml_tensor * b) {
  3481. GGML_ASSERT(ggml_can_repeat(a, b));
  3482. bool is_node = false;
  3483. if (a->grad) {
  3484. is_node = true;
  3485. }
  3486. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3487. result->op = GGML_OP_REPEAT;
  3488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3489. result->src[0] = a;
  3490. return result;
  3491. }
  3492. // ggml_repeat_back
  3493. struct ggml_tensor * ggml_repeat_back(
  3494. struct ggml_context * ctx,
  3495. struct ggml_tensor * a,
  3496. struct ggml_tensor * b) {
  3497. GGML_ASSERT(ggml_can_repeat(b, a));
  3498. bool is_node = false;
  3499. if (a->grad) {
  3500. is_node = true;
  3501. }
  3502. if (ggml_are_same_shape(a, b) && !is_node) {
  3503. return a;
  3504. }
  3505. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3506. result->op = GGML_OP_REPEAT_BACK;
  3507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3508. result->src[0] = a;
  3509. return result;
  3510. }
  3511. // ggml_concat
  3512. struct ggml_tensor * ggml_concat(
  3513. struct ggml_context* ctx,
  3514. struct ggml_tensor* a,
  3515. struct ggml_tensor* b) {
  3516. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3517. bool is_node = false;
  3518. if (a->grad || b->grad) {
  3519. is_node = true;
  3520. }
  3521. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3522. result->op = GGML_OP_CONCAT;
  3523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3524. result->src[0] = a;
  3525. result->src[1] = b;
  3526. return result;
  3527. }
  3528. // ggml_abs
  3529. struct ggml_tensor * ggml_abs(
  3530. struct ggml_context * ctx,
  3531. struct ggml_tensor * a) {
  3532. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3533. }
  3534. struct ggml_tensor * ggml_abs_inplace(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a) {
  3537. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3538. }
  3539. // ggml_sgn
  3540. struct ggml_tensor * ggml_sgn(
  3541. struct ggml_context * ctx,
  3542. struct ggml_tensor * a) {
  3543. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3544. }
  3545. struct ggml_tensor * ggml_sgn_inplace(
  3546. struct ggml_context * ctx,
  3547. struct ggml_tensor * a) {
  3548. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3549. }
  3550. // ggml_neg
  3551. struct ggml_tensor * ggml_neg(
  3552. struct ggml_context * ctx,
  3553. struct ggml_tensor * a) {
  3554. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3555. }
  3556. struct ggml_tensor * ggml_neg_inplace(
  3557. struct ggml_context * ctx,
  3558. struct ggml_tensor * a) {
  3559. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3560. }
  3561. // ggml_step
  3562. struct ggml_tensor * ggml_step(
  3563. struct ggml_context * ctx,
  3564. struct ggml_tensor * a) {
  3565. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3566. }
  3567. struct ggml_tensor * ggml_step_inplace(
  3568. struct ggml_context * ctx,
  3569. struct ggml_tensor * a) {
  3570. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3571. }
  3572. // ggml_tanh
  3573. struct ggml_tensor * ggml_tanh(
  3574. struct ggml_context * ctx,
  3575. struct ggml_tensor * a) {
  3576. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3577. }
  3578. struct ggml_tensor * ggml_tanh_inplace(
  3579. struct ggml_context * ctx,
  3580. struct ggml_tensor * a) {
  3581. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3582. }
  3583. // ggml_elu
  3584. struct ggml_tensor * ggml_elu(
  3585. struct ggml_context * ctx,
  3586. struct ggml_tensor * a) {
  3587. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3588. }
  3589. struct ggml_tensor * ggml_elu_inplace(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a) {
  3592. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3593. }
  3594. // ggml_relu
  3595. struct ggml_tensor * ggml_relu(
  3596. struct ggml_context * ctx,
  3597. struct ggml_tensor * a) {
  3598. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3599. }
  3600. struct ggml_tensor * ggml_relu_inplace(
  3601. struct ggml_context * ctx,
  3602. struct ggml_tensor * a) {
  3603. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3604. }
  3605. // ggml_leaky_relu
  3606. struct ggml_tensor * ggml_leaky_relu(
  3607. struct ggml_context * ctx,
  3608. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3609. bool is_node = false;
  3610. if (!inplace && (a->grad)) {
  3611. is_node = true;
  3612. }
  3613. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3614. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3615. result->op = GGML_OP_LEAKY_RELU;
  3616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3617. result->src[0] = a;
  3618. return result;
  3619. }
  3620. // ggml_gelu
  3621. struct ggml_tensor * ggml_gelu(
  3622. struct ggml_context * ctx,
  3623. struct ggml_tensor * a) {
  3624. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3625. }
  3626. struct ggml_tensor * ggml_gelu_inplace(
  3627. struct ggml_context * ctx,
  3628. struct ggml_tensor * a) {
  3629. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3630. }
  3631. // ggml_gelu_quick
  3632. struct ggml_tensor * ggml_gelu_quick(
  3633. struct ggml_context * ctx,
  3634. struct ggml_tensor * a) {
  3635. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3636. }
  3637. struct ggml_tensor * ggml_gelu_quick_inplace(
  3638. struct ggml_context * ctx,
  3639. struct ggml_tensor * a) {
  3640. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3641. }
  3642. // ggml_silu
  3643. struct ggml_tensor * ggml_silu(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a) {
  3646. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3647. }
  3648. struct ggml_tensor * ggml_silu_inplace(
  3649. struct ggml_context * ctx,
  3650. struct ggml_tensor * a) {
  3651. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3652. }
  3653. // ggml_silu_back
  3654. struct ggml_tensor * ggml_silu_back(
  3655. struct ggml_context * ctx,
  3656. struct ggml_tensor * a,
  3657. struct ggml_tensor * b) {
  3658. bool is_node = false;
  3659. if (a->grad || b->grad) {
  3660. // TODO: implement backward
  3661. is_node = true;
  3662. }
  3663. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3664. result->op = GGML_OP_SILU_BACK;
  3665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3666. result->src[0] = a;
  3667. result->src[1] = b;
  3668. return result;
  3669. }
  3670. // ggml hardswish
  3671. struct ggml_tensor * ggml_hardswish(
  3672. struct ggml_context * ctx,
  3673. struct ggml_tensor * a) {
  3674. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3675. }
  3676. // ggml hardsigmoid
  3677. struct ggml_tensor * ggml_hardsigmoid(
  3678. struct ggml_context * ctx,
  3679. struct ggml_tensor * a) {
  3680. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3681. }
  3682. // ggml_norm
  3683. static struct ggml_tensor * ggml_norm_impl(
  3684. struct ggml_context * ctx,
  3685. struct ggml_tensor * a,
  3686. float eps,
  3687. bool inplace) {
  3688. bool is_node = false;
  3689. if (!inplace && (a->grad)) {
  3690. GGML_ASSERT(false); // TODO: implement backward
  3691. is_node = true;
  3692. }
  3693. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3694. ggml_set_op_params(result, &eps, sizeof(eps));
  3695. result->op = GGML_OP_NORM;
  3696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3697. result->src[0] = a;
  3698. return result;
  3699. }
  3700. struct ggml_tensor * ggml_norm(
  3701. struct ggml_context * ctx,
  3702. struct ggml_tensor * a,
  3703. float eps) {
  3704. return ggml_norm_impl(ctx, a, eps, false);
  3705. }
  3706. struct ggml_tensor * ggml_norm_inplace(
  3707. struct ggml_context * ctx,
  3708. struct ggml_tensor * a,
  3709. float eps) {
  3710. return ggml_norm_impl(ctx, a, eps, true);
  3711. }
  3712. // ggml_rms_norm
  3713. static struct ggml_tensor * ggml_rms_norm_impl(
  3714. struct ggml_context * ctx,
  3715. struct ggml_tensor * a,
  3716. float eps,
  3717. bool inplace) {
  3718. bool is_node = false;
  3719. if (!inplace && (a->grad)) {
  3720. is_node = true;
  3721. }
  3722. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3723. ggml_set_op_params(result, &eps, sizeof(eps));
  3724. result->op = GGML_OP_RMS_NORM;
  3725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3726. result->src[0] = a;
  3727. return result;
  3728. }
  3729. struct ggml_tensor * ggml_rms_norm(
  3730. struct ggml_context * ctx,
  3731. struct ggml_tensor * a,
  3732. float eps) {
  3733. return ggml_rms_norm_impl(ctx, a, eps, false);
  3734. }
  3735. struct ggml_tensor * ggml_rms_norm_inplace(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a,
  3738. float eps) {
  3739. return ggml_rms_norm_impl(ctx, a, eps, true);
  3740. }
  3741. // ggml_rms_norm_back
  3742. struct ggml_tensor * ggml_rms_norm_back(
  3743. struct ggml_context * ctx,
  3744. struct ggml_tensor * a,
  3745. struct ggml_tensor * b,
  3746. float eps) {
  3747. bool is_node = false;
  3748. if (a->grad) {
  3749. // TODO: implement backward
  3750. is_node = true;
  3751. }
  3752. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3753. ggml_set_op_params(result, &eps, sizeof(eps));
  3754. result->op = GGML_OP_RMS_NORM_BACK;
  3755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3756. result->src[0] = a;
  3757. result->src[1] = b;
  3758. return result;
  3759. }
  3760. // ggml_group_norm
  3761. static struct ggml_tensor * ggml_group_norm_impl(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a,
  3764. int n_groups,
  3765. bool inplace) {
  3766. bool is_node = false;
  3767. if (!inplace && (a->grad)) {
  3768. GGML_ASSERT(false); // TODO: implement backward
  3769. is_node = true;
  3770. }
  3771. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3772. result->op_params[0] = n_groups;
  3773. result->op = GGML_OP_GROUP_NORM;
  3774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3775. result->src[0] = a;
  3776. return result;
  3777. }
  3778. struct ggml_tensor * ggml_group_norm(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a,
  3781. int n_groups) {
  3782. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3783. }
  3784. struct ggml_tensor * ggml_group_norm_inplace(
  3785. struct ggml_context * ctx,
  3786. struct ggml_tensor * a,
  3787. int n_groups) {
  3788. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3789. }
  3790. // ggml_mul_mat
  3791. struct ggml_tensor * ggml_mul_mat(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a,
  3794. struct ggml_tensor * b) {
  3795. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3796. GGML_ASSERT(!ggml_is_transposed(a));
  3797. bool is_node = false;
  3798. if (a->grad || b->grad) {
  3799. is_node = true;
  3800. }
  3801. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3802. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3803. result->op = GGML_OP_MUL_MAT;
  3804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3805. result->src[0] = a;
  3806. result->src[1] = b;
  3807. return result;
  3808. }
  3809. void ggml_mul_mat_set_prec(
  3810. struct ggml_tensor * a,
  3811. enum ggml_prec prec) {
  3812. const int32_t prec_i32 = (int32_t) prec;
  3813. ggml_set_op_params_i32(a, 0, prec_i32);
  3814. }
  3815. // ggml_mul_mat_id
  3816. // NOTE: id will be removed in the future and instead all the experts listed in ids will be computed
  3817. // this will allow computing all the used experts in a single matrix multiplication
  3818. struct ggml_tensor * ggml_mul_mat_id(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * as,
  3821. struct ggml_tensor * ids,
  3822. int id,
  3823. struct ggml_tensor * b) {
  3824. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3825. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  3826. GGML_ASSERT(ids->ne[1] == b->ne[1]); // must have an expert per b row
  3827. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3828. GGML_ASSERT(id >= 0 && id < ids->ne[0]); // valid id
  3829. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  3830. bool is_node = false;
  3831. if (as->grad || b->grad) {
  3832. is_node = true;
  3833. }
  3834. const int64_t ne[4] = { as->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3835. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3836. ggml_set_op_params_i32(result, 0, id);
  3837. result->op = GGML_OP_MUL_MAT_ID;
  3838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3839. result->src[0] = as;
  3840. result->src[1] = b;
  3841. result->src[2] = ids;
  3842. return result;
  3843. }
  3844. // ggml_out_prod
  3845. struct ggml_tensor * ggml_out_prod(
  3846. struct ggml_context * ctx,
  3847. struct ggml_tensor * a,
  3848. struct ggml_tensor * b) {
  3849. GGML_ASSERT(ggml_can_out_prod(a, b));
  3850. GGML_ASSERT(!ggml_is_transposed(a));
  3851. bool is_node = false;
  3852. if (a->grad || b->grad) {
  3853. is_node = true;
  3854. }
  3855. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3856. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3857. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3858. result->op = GGML_OP_OUT_PROD;
  3859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3860. result->src[0] = a;
  3861. result->src[1] = b;
  3862. return result;
  3863. }
  3864. // ggml_scale
  3865. static struct ggml_tensor * ggml_scale_impl(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a,
  3868. float s,
  3869. bool inplace) {
  3870. GGML_ASSERT(ggml_is_padded_1d(a));
  3871. bool is_node = false;
  3872. if (a->grad) {
  3873. is_node = true;
  3874. }
  3875. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3876. ggml_set_op_params(result, &s, sizeof(s));
  3877. result->op = GGML_OP_SCALE;
  3878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3879. result->src[0] = a;
  3880. return result;
  3881. }
  3882. struct ggml_tensor * ggml_scale(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. float s) {
  3886. return ggml_scale_impl(ctx, a, s, false);
  3887. }
  3888. struct ggml_tensor * ggml_scale_inplace(
  3889. struct ggml_context * ctx,
  3890. struct ggml_tensor * a,
  3891. float s) {
  3892. return ggml_scale_impl(ctx, a, s, true);
  3893. }
  3894. // ggml_set
  3895. static struct ggml_tensor * ggml_set_impl(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a,
  3898. struct ggml_tensor * b,
  3899. size_t nb1,
  3900. size_t nb2,
  3901. size_t nb3,
  3902. size_t offset,
  3903. bool inplace) {
  3904. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3905. bool is_node = false;
  3906. if (a->grad || b->grad) {
  3907. is_node = true;
  3908. }
  3909. // make a view of the destination
  3910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3911. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3912. ggml_set_op_params(result, params, sizeof(params));
  3913. result->op = GGML_OP_SET;
  3914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3915. result->src[0] = a;
  3916. result->src[1] = b;
  3917. return result;
  3918. }
  3919. struct ggml_tensor * ggml_set(
  3920. struct ggml_context * ctx,
  3921. struct ggml_tensor * a,
  3922. struct ggml_tensor * b,
  3923. size_t nb1,
  3924. size_t nb2,
  3925. size_t nb3,
  3926. size_t offset) {
  3927. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3928. }
  3929. struct ggml_tensor * ggml_set_inplace(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. struct ggml_tensor * b,
  3933. size_t nb1,
  3934. size_t nb2,
  3935. size_t nb3,
  3936. size_t offset) {
  3937. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3938. }
  3939. struct ggml_tensor * ggml_set_1d(
  3940. struct ggml_context * ctx,
  3941. struct ggml_tensor * a,
  3942. struct ggml_tensor * b,
  3943. size_t offset) {
  3944. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3945. }
  3946. struct ggml_tensor * ggml_set_1d_inplace(
  3947. struct ggml_context * ctx,
  3948. struct ggml_tensor * a,
  3949. struct ggml_tensor * b,
  3950. size_t offset) {
  3951. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3952. }
  3953. struct ggml_tensor * ggml_set_2d(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a,
  3956. struct ggml_tensor * b,
  3957. size_t nb1,
  3958. size_t offset) {
  3959. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3960. }
  3961. struct ggml_tensor * ggml_set_2d_inplace(
  3962. struct ggml_context * ctx,
  3963. struct ggml_tensor * a,
  3964. struct ggml_tensor * b,
  3965. size_t nb1,
  3966. size_t offset) {
  3967. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3968. }
  3969. // ggml_cpy
  3970. static struct ggml_tensor * ggml_cpy_impl(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a,
  3973. struct ggml_tensor * b) {
  3974. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3975. bool is_node = false;
  3976. if (a->grad || b->grad) {
  3977. // inplace is false and either one have a grad
  3978. is_node = true;
  3979. }
  3980. // make a view of the destination
  3981. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3982. if (strlen(b->name) > 0) {
  3983. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3984. } else {
  3985. ggml_format_name(result, "%s (copy)", a->name);
  3986. }
  3987. result->op = GGML_OP_CPY;
  3988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3989. result->src[0] = a;
  3990. result->src[1] = b;
  3991. return result;
  3992. }
  3993. struct ggml_tensor * ggml_cpy(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a,
  3996. struct ggml_tensor * b) {
  3997. return ggml_cpy_impl(ctx, a, b);
  3998. }
  3999. struct ggml_tensor * ggml_cast(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. enum ggml_type type) {
  4003. bool is_node = false;
  4004. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4005. ggml_format_name(result, "%s (copy)", a->name);
  4006. result->op = GGML_OP_CPY;
  4007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4008. result->src[0] = a;
  4009. result->src[1] = result;
  4010. return result;
  4011. }
  4012. // ggml_cont
  4013. static struct ggml_tensor * ggml_cont_impl(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a) {
  4016. bool is_node = false;
  4017. if (a->grad) {
  4018. is_node = true;
  4019. }
  4020. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4021. ggml_format_name(result, "%s (cont)", a->name);
  4022. result->op = GGML_OP_CONT;
  4023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4024. result->src[0] = a;
  4025. return result;
  4026. }
  4027. struct ggml_tensor * ggml_cont(
  4028. struct ggml_context * ctx,
  4029. struct ggml_tensor * a) {
  4030. return ggml_cont_impl(ctx, a);
  4031. }
  4032. // make contiguous, with new shape
  4033. GGML_API struct ggml_tensor * ggml_cont_1d(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a,
  4036. int64_t ne0) {
  4037. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4038. }
  4039. GGML_API struct ggml_tensor * ggml_cont_2d(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. int64_t ne0,
  4043. int64_t ne1) {
  4044. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4045. }
  4046. GGML_API struct ggml_tensor * ggml_cont_3d(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a,
  4049. int64_t ne0,
  4050. int64_t ne1,
  4051. int64_t ne2) {
  4052. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4053. }
  4054. struct ggml_tensor * ggml_cont_4d(
  4055. struct ggml_context * ctx,
  4056. struct ggml_tensor * a,
  4057. int64_t ne0,
  4058. int64_t ne1,
  4059. int64_t ne2,
  4060. int64_t ne3) {
  4061. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4062. bool is_node = false;
  4063. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4064. ggml_format_name(result, "%s (cont)", a->name);
  4065. result->op = GGML_OP_CONT;
  4066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4067. result->src[0] = a;
  4068. return result;
  4069. }
  4070. // ggml_reshape
  4071. struct ggml_tensor * ggml_reshape(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a,
  4074. struct ggml_tensor * b) {
  4075. GGML_ASSERT(ggml_is_contiguous(a));
  4076. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4077. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4078. bool is_node = false;
  4079. if (a->grad) {
  4080. is_node = true;
  4081. }
  4082. if (b->grad) {
  4083. // gradient propagation is not supported
  4084. //GGML_ASSERT(false);
  4085. }
  4086. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4087. ggml_format_name(result, "%s (reshaped)", a->name);
  4088. result->op = GGML_OP_RESHAPE;
  4089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4090. result->src[0] = a;
  4091. return result;
  4092. }
  4093. struct ggml_tensor * ggml_reshape_1d(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. int64_t ne0) {
  4097. GGML_ASSERT(ggml_is_contiguous(a));
  4098. GGML_ASSERT(ggml_nelements(a) == ne0);
  4099. bool is_node = false;
  4100. if (a->grad) {
  4101. is_node = true;
  4102. }
  4103. const int64_t ne[1] = { ne0 };
  4104. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4105. ggml_format_name(result, "%s (reshaped)", a->name);
  4106. result->op = GGML_OP_RESHAPE;
  4107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4108. result->src[0] = a;
  4109. return result;
  4110. }
  4111. struct ggml_tensor * ggml_reshape_2d(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a,
  4114. int64_t ne0,
  4115. int64_t ne1) {
  4116. GGML_ASSERT(ggml_is_contiguous(a));
  4117. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4118. bool is_node = false;
  4119. if (a->grad) {
  4120. is_node = true;
  4121. }
  4122. const int64_t ne[2] = { ne0, ne1 };
  4123. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4124. ggml_format_name(result, "%s (reshaped)", a->name);
  4125. result->op = GGML_OP_RESHAPE;
  4126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4127. result->src[0] = a;
  4128. return result;
  4129. }
  4130. struct ggml_tensor * ggml_reshape_3d(
  4131. struct ggml_context * ctx,
  4132. struct ggml_tensor * a,
  4133. int64_t ne0,
  4134. int64_t ne1,
  4135. int64_t ne2) {
  4136. GGML_ASSERT(ggml_is_contiguous(a));
  4137. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4138. bool is_node = false;
  4139. if (a->grad) {
  4140. is_node = true;
  4141. }
  4142. const int64_t ne[3] = { ne0, ne1, ne2 };
  4143. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4144. ggml_format_name(result, "%s (reshaped)", a->name);
  4145. result->op = GGML_OP_RESHAPE;
  4146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4147. result->src[0] = a;
  4148. return result;
  4149. }
  4150. struct ggml_tensor * ggml_reshape_4d(
  4151. struct ggml_context * ctx,
  4152. struct ggml_tensor * a,
  4153. int64_t ne0,
  4154. int64_t ne1,
  4155. int64_t ne2,
  4156. int64_t ne3) {
  4157. GGML_ASSERT(ggml_is_contiguous(a));
  4158. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4159. bool is_node = false;
  4160. if (a->grad) {
  4161. is_node = true;
  4162. }
  4163. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4164. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4165. ggml_format_name(result, "%s (reshaped)", a->name);
  4166. result->op = GGML_OP_RESHAPE;
  4167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4168. result->src[0] = a;
  4169. return result;
  4170. }
  4171. static struct ggml_tensor * ggml_view_impl(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. int n_dims,
  4175. const int64_t * ne,
  4176. size_t offset) {
  4177. bool is_node = false;
  4178. if (a->grad) {
  4179. is_node = true;
  4180. }
  4181. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4182. ggml_format_name(result, "%s (view)", a->name);
  4183. ggml_set_op_params(result, &offset, sizeof(offset));
  4184. result->op = GGML_OP_VIEW;
  4185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4186. result->src[0] = a;
  4187. return result;
  4188. }
  4189. // ggml_view_1d
  4190. struct ggml_tensor * ggml_view_1d(
  4191. struct ggml_context * ctx,
  4192. struct ggml_tensor * a,
  4193. int64_t ne0,
  4194. size_t offset) {
  4195. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4196. return result;
  4197. }
  4198. // ggml_view_2d
  4199. struct ggml_tensor * ggml_view_2d(
  4200. struct ggml_context * ctx,
  4201. struct ggml_tensor * a,
  4202. int64_t ne0,
  4203. int64_t ne1,
  4204. size_t nb1,
  4205. size_t offset) {
  4206. const int64_t ne[2] = { ne0, ne1 };
  4207. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4208. result->nb[1] = nb1;
  4209. result->nb[2] = result->nb[1]*ne1;
  4210. result->nb[3] = result->nb[2];
  4211. return result;
  4212. }
  4213. // ggml_view_3d
  4214. struct ggml_tensor * ggml_view_3d(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. int64_t ne0,
  4218. int64_t ne1,
  4219. int64_t ne2,
  4220. size_t nb1,
  4221. size_t nb2,
  4222. size_t offset) {
  4223. const int64_t ne[3] = { ne0, ne1, ne2 };
  4224. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4225. result->nb[1] = nb1;
  4226. result->nb[2] = nb2;
  4227. result->nb[3] = result->nb[2]*ne2;
  4228. return result;
  4229. }
  4230. // ggml_view_4d
  4231. struct ggml_tensor * ggml_view_4d(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a,
  4234. int64_t ne0,
  4235. int64_t ne1,
  4236. int64_t ne2,
  4237. int64_t ne3,
  4238. size_t nb1,
  4239. size_t nb2,
  4240. size_t nb3,
  4241. size_t offset) {
  4242. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4243. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4244. result->nb[1] = nb1;
  4245. result->nb[2] = nb2;
  4246. result->nb[3] = nb3;
  4247. return result;
  4248. }
  4249. // ggml_permute
  4250. struct ggml_tensor * ggml_permute(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. int axis0,
  4254. int axis1,
  4255. int axis2,
  4256. int axis3) {
  4257. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4258. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4259. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4260. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4261. GGML_ASSERT(axis0 != axis1);
  4262. GGML_ASSERT(axis0 != axis2);
  4263. GGML_ASSERT(axis0 != axis3);
  4264. GGML_ASSERT(axis1 != axis2);
  4265. GGML_ASSERT(axis1 != axis3);
  4266. GGML_ASSERT(axis2 != axis3);
  4267. bool is_node = false;
  4268. if (a->grad) {
  4269. is_node = true;
  4270. }
  4271. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4272. ggml_format_name(result, "%s (permuted)", a->name);
  4273. int ne[GGML_MAX_DIMS];
  4274. int nb[GGML_MAX_DIMS];
  4275. ne[axis0] = a->ne[0];
  4276. ne[axis1] = a->ne[1];
  4277. ne[axis2] = a->ne[2];
  4278. ne[axis3] = a->ne[3];
  4279. nb[axis0] = a->nb[0];
  4280. nb[axis1] = a->nb[1];
  4281. nb[axis2] = a->nb[2];
  4282. nb[axis3] = a->nb[3];
  4283. result->ne[0] = ne[0];
  4284. result->ne[1] = ne[1];
  4285. result->ne[2] = ne[2];
  4286. result->ne[3] = ne[3];
  4287. result->nb[0] = nb[0];
  4288. result->nb[1] = nb[1];
  4289. result->nb[2] = nb[2];
  4290. result->nb[3] = nb[3];
  4291. result->op = GGML_OP_PERMUTE;
  4292. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4293. result->src[0] = a;
  4294. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4295. ggml_set_op_params(result, params, sizeof(params));
  4296. return result;
  4297. }
  4298. // ggml_transpose
  4299. struct ggml_tensor * ggml_transpose(
  4300. struct ggml_context * ctx,
  4301. struct ggml_tensor * a) {
  4302. bool is_node = false;
  4303. if (a->grad) {
  4304. is_node = true;
  4305. }
  4306. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4307. ggml_format_name(result, "%s (transposed)", a->name);
  4308. result->ne[0] = a->ne[1];
  4309. result->ne[1] = a->ne[0];
  4310. result->nb[0] = a->nb[1];
  4311. result->nb[1] = a->nb[0];
  4312. result->op = GGML_OP_TRANSPOSE;
  4313. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4314. result->src[0] = a;
  4315. return result;
  4316. }
  4317. // ggml_get_rows
  4318. struct ggml_tensor * ggml_get_rows(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a,
  4321. struct ggml_tensor * b) {
  4322. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4323. GGML_ASSERT(b->ne[3] == 1);
  4324. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4325. bool is_node = false;
  4326. if (a->grad || b->grad) {
  4327. is_node = true;
  4328. }
  4329. // TODO: implement non F32 return
  4330. enum ggml_type type = GGML_TYPE_F32;
  4331. if (a->type == GGML_TYPE_I32) {
  4332. type = a->type;
  4333. }
  4334. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4335. result->op = GGML_OP_GET_ROWS;
  4336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4337. result->src[0] = a;
  4338. result->src[1] = b;
  4339. return result;
  4340. }
  4341. // ggml_get_rows_back
  4342. struct ggml_tensor * ggml_get_rows_back(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a,
  4345. struct ggml_tensor * b,
  4346. struct ggml_tensor * c) {
  4347. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4348. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4349. bool is_node = false;
  4350. if (a->grad || b->grad) {
  4351. is_node = true;
  4352. }
  4353. // TODO: implement non F32 return
  4354. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4355. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4356. result->op = GGML_OP_GET_ROWS_BACK;
  4357. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4358. result->src[0] = a;
  4359. result->src[1] = b;
  4360. return result;
  4361. }
  4362. // ggml_diag
  4363. struct ggml_tensor * ggml_diag(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a) {
  4366. GGML_ASSERT(a->ne[1] == 1);
  4367. bool is_node = false;
  4368. if (a->grad) {
  4369. is_node = true;
  4370. }
  4371. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4372. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4373. result->op = GGML_OP_DIAG;
  4374. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4375. result->src[0] = a;
  4376. return result;
  4377. }
  4378. // ggml_diag_mask_inf
  4379. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a,
  4382. int n_past,
  4383. bool inplace) {
  4384. bool is_node = false;
  4385. if (a->grad) {
  4386. is_node = true;
  4387. }
  4388. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4389. int32_t params[] = { n_past };
  4390. ggml_set_op_params(result, params, sizeof(params));
  4391. result->op = GGML_OP_DIAG_MASK_INF;
  4392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4393. result->src[0] = a;
  4394. return result;
  4395. }
  4396. struct ggml_tensor * ggml_diag_mask_inf(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a,
  4399. int n_past) {
  4400. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4401. }
  4402. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a,
  4405. int n_past) {
  4406. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4407. }
  4408. // ggml_diag_mask_zero
  4409. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4410. struct ggml_context * ctx,
  4411. struct ggml_tensor * a,
  4412. int n_past,
  4413. bool inplace) {
  4414. bool is_node = false;
  4415. if (a->grad) {
  4416. is_node = true;
  4417. }
  4418. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4419. int32_t params[] = { n_past };
  4420. ggml_set_op_params(result, params, sizeof(params));
  4421. result->op = GGML_OP_DIAG_MASK_ZERO;
  4422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4423. result->src[0] = a;
  4424. return result;
  4425. }
  4426. struct ggml_tensor * ggml_diag_mask_zero(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a,
  4429. int n_past) {
  4430. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4431. }
  4432. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. int n_past) {
  4436. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4437. }
  4438. // ggml_soft_max
  4439. static struct ggml_tensor * ggml_soft_max_impl(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. struct ggml_tensor * mask,
  4443. struct ggml_tensor * pos,
  4444. float scale,
  4445. float max_bias,
  4446. bool inplace) {
  4447. GGML_ASSERT(ggml_is_contiguous(a));
  4448. if (mask) {
  4449. GGML_ASSERT(ggml_is_contiguous(mask));
  4450. GGML_ASSERT(ggml_is_matrix(mask));
  4451. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4452. }
  4453. if (pos) {
  4454. GGML_ASSERT(ggml_is_vector(pos));
  4455. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4456. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4457. }
  4458. if (max_bias > 0.0f) {
  4459. GGML_ASSERT(pos);
  4460. }
  4461. bool is_node = false;
  4462. if (a->grad) {
  4463. is_node = true;
  4464. }
  4465. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4466. float params[] = { scale, max_bias };
  4467. ggml_set_op_params(result, params, sizeof(params));
  4468. result->op = GGML_OP_SOFT_MAX;
  4469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4470. result->src[0] = a;
  4471. result->src[1] = mask;
  4472. result->src[2] = pos;
  4473. return result;
  4474. }
  4475. struct ggml_tensor * ggml_soft_max(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a) {
  4478. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4479. }
  4480. struct ggml_tensor * ggml_soft_max_inplace(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a) {
  4483. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4484. }
  4485. struct ggml_tensor * ggml_soft_max_ext(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. struct ggml_tensor * mask,
  4489. struct ggml_tensor * pos,
  4490. float scale,
  4491. float max_bias) {
  4492. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4493. }
  4494. // ggml_soft_max_back
  4495. static struct ggml_tensor * ggml_soft_max_back_impl(
  4496. struct ggml_context * ctx,
  4497. struct ggml_tensor * a,
  4498. struct ggml_tensor * b,
  4499. bool inplace) {
  4500. bool is_node = false;
  4501. if (a->grad || b->grad) {
  4502. is_node = true; // TODO : implement backward pass
  4503. }
  4504. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4505. result->op = GGML_OP_SOFT_MAX_BACK;
  4506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4507. result->src[0] = a;
  4508. result->src[1] = b;
  4509. return result;
  4510. }
  4511. struct ggml_tensor * ggml_soft_max_back(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. struct ggml_tensor * b) {
  4515. return ggml_soft_max_back_impl(ctx, a, b, false);
  4516. }
  4517. struct ggml_tensor * ggml_soft_max_back_inplace(
  4518. struct ggml_context * ctx,
  4519. struct ggml_tensor * a,
  4520. struct ggml_tensor * b) {
  4521. return ggml_soft_max_back_impl(ctx, a, b, true);
  4522. }
  4523. // ggml_rope
  4524. static struct ggml_tensor * ggml_rope_impl(
  4525. struct ggml_context * ctx,
  4526. struct ggml_tensor * a,
  4527. struct ggml_tensor * b,
  4528. int n_dims,
  4529. int mode,
  4530. int n_ctx,
  4531. int n_orig_ctx,
  4532. float freq_base,
  4533. float freq_scale,
  4534. float ext_factor,
  4535. float attn_factor,
  4536. float beta_fast,
  4537. float beta_slow,
  4538. float xpos_base,
  4539. bool xpos_down,
  4540. bool inplace) {
  4541. GGML_ASSERT(ggml_is_vector(b));
  4542. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4543. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4544. bool is_node = false;
  4545. if (a->grad) {
  4546. is_node = true;
  4547. }
  4548. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4549. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4550. memcpy(params + 5, &freq_base, sizeof(float));
  4551. memcpy(params + 6, &freq_scale, sizeof(float));
  4552. memcpy(params + 7, &ext_factor, sizeof(float));
  4553. memcpy(params + 8, &attn_factor, sizeof(float));
  4554. memcpy(params + 9, &beta_fast, sizeof(float));
  4555. memcpy(params + 10, &beta_slow, sizeof(float));
  4556. memcpy(params + 11, &xpos_base, sizeof(float));
  4557. memcpy(params + 12, &xpos_down, sizeof(bool));
  4558. ggml_set_op_params(result, params, sizeof(params));
  4559. result->op = GGML_OP_ROPE;
  4560. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4561. result->src[0] = a;
  4562. result->src[1] = b;
  4563. return result;
  4564. }
  4565. struct ggml_tensor * ggml_rope(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a,
  4568. struct ggml_tensor * b,
  4569. int n_dims,
  4570. int mode,
  4571. int n_ctx) {
  4572. return ggml_rope_impl(
  4573. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4574. );
  4575. }
  4576. struct ggml_tensor * ggml_rope_inplace(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a,
  4579. struct ggml_tensor * b,
  4580. int n_dims,
  4581. int mode,
  4582. int n_ctx) {
  4583. return ggml_rope_impl(
  4584. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4585. );
  4586. }
  4587. struct ggml_tensor * ggml_rope_custom(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a,
  4590. struct ggml_tensor * b,
  4591. int n_dims,
  4592. int mode,
  4593. int n_ctx,
  4594. int n_orig_ctx,
  4595. float freq_base,
  4596. float freq_scale,
  4597. float ext_factor,
  4598. float attn_factor,
  4599. float beta_fast,
  4600. float beta_slow) {
  4601. return ggml_rope_impl(
  4602. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4603. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4604. );
  4605. }
  4606. struct ggml_tensor * ggml_rope_custom_inplace(
  4607. struct ggml_context * ctx,
  4608. struct ggml_tensor * a,
  4609. struct ggml_tensor * b,
  4610. int n_dims,
  4611. int mode,
  4612. int n_ctx,
  4613. int n_orig_ctx,
  4614. float freq_base,
  4615. float freq_scale,
  4616. float ext_factor,
  4617. float attn_factor,
  4618. float beta_fast,
  4619. float beta_slow) {
  4620. return ggml_rope_impl(
  4621. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4622. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4623. );
  4624. }
  4625. struct ggml_tensor * ggml_rope_xpos_inplace(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a,
  4628. struct ggml_tensor * b,
  4629. int n_dims,
  4630. float base,
  4631. bool down) {
  4632. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4633. }
  4634. // ggml_rope_back
  4635. struct ggml_tensor * ggml_rope_back(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a,
  4638. struct ggml_tensor * b,
  4639. int n_dims,
  4640. int mode,
  4641. int n_ctx,
  4642. int n_orig_ctx,
  4643. float freq_base,
  4644. float freq_scale,
  4645. float ext_factor,
  4646. float attn_factor,
  4647. float beta_fast,
  4648. float beta_slow,
  4649. float xpos_base,
  4650. bool xpos_down) {
  4651. GGML_ASSERT(ggml_is_vector(b));
  4652. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4653. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4654. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4655. bool is_node = false;
  4656. if (a->grad) {
  4657. is_node = false; // TODO: implement backward
  4658. }
  4659. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4660. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4661. memcpy(params + 5, &freq_base, sizeof(float));
  4662. memcpy(params + 6, &freq_scale, sizeof(float));
  4663. memcpy(params + 7, &ext_factor, sizeof(float));
  4664. memcpy(params + 8, &attn_factor, sizeof(float));
  4665. memcpy(params + 9, &beta_fast, sizeof(float));
  4666. memcpy(params + 10, &beta_slow, sizeof(float));
  4667. memcpy(params + 11, &xpos_base, sizeof(float));
  4668. memcpy(params + 12, &xpos_down, sizeof(bool));
  4669. ggml_set_op_params(result, params, sizeof(params));
  4670. result->op = GGML_OP_ROPE_BACK;
  4671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4672. result->src[0] = a;
  4673. result->src[1] = b;
  4674. return result;
  4675. }
  4676. // ggml_alibi
  4677. struct ggml_tensor * ggml_alibi(
  4678. struct ggml_context * ctx,
  4679. struct ggml_tensor * a,
  4680. int n_past,
  4681. int n_head,
  4682. float bias_max) {
  4683. GGML_ASSERT(n_past >= 0);
  4684. bool is_node = false;
  4685. if (a->grad) {
  4686. GGML_ASSERT(false); // TODO: implement backward
  4687. is_node = true;
  4688. }
  4689. // TODO: when implement backward, fix this:
  4690. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4691. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4692. int32_t op_params[3] = { n_past, n_head };
  4693. memcpy(op_params + 2, &bias_max, sizeof(float));
  4694. ggml_set_op_params(result, op_params, sizeof(op_params));
  4695. result->op = GGML_OP_ALIBI;
  4696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4697. result->src[0] = a;
  4698. return result;
  4699. }
  4700. // ggml_clamp
  4701. struct ggml_tensor * ggml_clamp(
  4702. struct ggml_context * ctx,
  4703. struct ggml_tensor * a,
  4704. float min,
  4705. float max) {
  4706. bool is_node = false;
  4707. if (a->grad) {
  4708. GGML_ASSERT(false); // TODO: implement backward
  4709. is_node = true;
  4710. }
  4711. // TODO: when implement backward, fix this:
  4712. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4713. float params[] = { min, max };
  4714. ggml_set_op_params(result, params, sizeof(params));
  4715. result->op = GGML_OP_CLAMP;
  4716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4717. result->src[0] = a;
  4718. return result;
  4719. }
  4720. // ggml_conv_1d
  4721. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4722. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4723. }
  4724. GGML_API struct ggml_tensor * ggml_conv_1d(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a,
  4727. struct ggml_tensor * b,
  4728. int s0,
  4729. int p0,
  4730. int d0) {
  4731. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4732. struct ggml_tensor * result =
  4733. ggml_mul_mat(ctx,
  4734. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4735. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4736. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4737. return result;
  4738. }
  4739. // ggml_conv_1d_ph
  4740. struct ggml_tensor* ggml_conv_1d_ph(
  4741. struct ggml_context * ctx,
  4742. struct ggml_tensor * a,
  4743. struct ggml_tensor * b,
  4744. int s,
  4745. int d) {
  4746. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4747. }
  4748. // ggml_conv_transpose_1d
  4749. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4750. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4751. }
  4752. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a,
  4755. struct ggml_tensor * b,
  4756. int s0,
  4757. int p0,
  4758. int d0) {
  4759. GGML_ASSERT(ggml_is_matrix(b));
  4760. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4761. GGML_ASSERT(a->ne[3] == 1);
  4762. GGML_ASSERT(p0 == 0);
  4763. GGML_ASSERT(d0 == 1);
  4764. bool is_node = false;
  4765. if (a->grad || b->grad) {
  4766. GGML_ASSERT(false); // TODO: implement backward
  4767. is_node = true;
  4768. }
  4769. const int64_t ne[4] = {
  4770. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4771. a->ne[1], b->ne[2], 1,
  4772. };
  4773. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4774. int32_t params[] = { s0, p0, d0 };
  4775. ggml_set_op_params(result, params, sizeof(params));
  4776. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4778. result->src[0] = a;
  4779. result->src[1] = b;
  4780. return result;
  4781. }
  4782. // ggml_conv_depthwise
  4783. struct ggml_tensor * ggml_conv_depthwise_2d(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. struct ggml_tensor * b,
  4787. int s0,
  4788. int s1,
  4789. int p0,
  4790. int p1,
  4791. int d0,
  4792. int d1) {
  4793. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4794. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4795. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4796. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4797. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4798. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4799. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4800. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4801. return result;
  4802. }
  4803. // ggml_conv_2d
  4804. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4805. // a: [OC,IC, KH, KW]
  4806. // b: [N, IC, IH, IW]
  4807. // result: [N, OH, OW, IC*KH*KW]
  4808. struct ggml_tensor * ggml_im2col(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. struct ggml_tensor * b,
  4812. int s0,
  4813. int s1,
  4814. int p0,
  4815. int p1,
  4816. int d0,
  4817. int d1,
  4818. bool is_2D,
  4819. enum ggml_type dst_type) {
  4820. if(is_2D) {
  4821. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4822. } else {
  4823. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4824. }
  4825. bool is_node = false;
  4826. if (a->grad || b->grad) {
  4827. GGML_ASSERT(false); // TODO: implement backward
  4828. is_node = true;
  4829. }
  4830. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4831. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4832. const int64_t ne[4] = {
  4833. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4834. OW,
  4835. is_2D ? OH : b->ne[2],
  4836. is_2D ? b->ne[3] : 1,
  4837. };
  4838. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4839. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4840. ggml_set_op_params(result, params, sizeof(params));
  4841. result->op = GGML_OP_IM2COL;
  4842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4843. result->src[0] = a;
  4844. result->src[1] = b;
  4845. return result;
  4846. }
  4847. // a: [OC,IC, KH, KW]
  4848. // b: [N, IC, IH, IW]
  4849. // result: [N, OC, OH, OW]
  4850. struct ggml_tensor * ggml_conv_2d(
  4851. struct ggml_context * ctx,
  4852. struct ggml_tensor * a,
  4853. struct ggml_tensor * b,
  4854. int s0,
  4855. int s1,
  4856. int p0,
  4857. int p1,
  4858. int d0,
  4859. int d1) {
  4860. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4861. struct ggml_tensor * result =
  4862. ggml_mul_mat(ctx,
  4863. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4864. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4865. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4866. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4867. return result;
  4868. }
  4869. // ggml_conv_2d_sk_p0
  4870. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. struct ggml_tensor * b) {
  4874. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4875. }
  4876. // ggml_conv_2d_s1_ph
  4877. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. struct ggml_tensor * b) {
  4881. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4882. }
  4883. // ggml_conv_transpose_2d_p0
  4884. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4885. return (ins - 1) * s - 2 * p + ks;
  4886. }
  4887. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4888. struct ggml_context * ctx,
  4889. struct ggml_tensor * a,
  4890. struct ggml_tensor * b,
  4891. int stride) {
  4892. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4893. bool is_node = false;
  4894. if (a->grad || b->grad) {
  4895. GGML_ASSERT(false); // TODO: implement backward
  4896. is_node = true;
  4897. }
  4898. const int64_t ne[4] = {
  4899. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4900. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4901. a->ne[2], b->ne[3],
  4902. };
  4903. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4904. ggml_set_op_params_i32(result, 0, stride);
  4905. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4907. result->src[0] = a;
  4908. result->src[1] = b;
  4909. return result;
  4910. }
  4911. // ggml_pool_*
  4912. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4913. return (ins + 2 * p - ks) / s + 1;
  4914. }
  4915. // ggml_pool_1d
  4916. struct ggml_tensor * ggml_pool_1d(
  4917. struct ggml_context * ctx,
  4918. struct ggml_tensor * a,
  4919. enum ggml_op_pool op,
  4920. int k0,
  4921. int s0,
  4922. int p0) {
  4923. bool is_node = false;
  4924. if (a->grad) {
  4925. GGML_ASSERT(false); // TODO: implement backward
  4926. is_node = true;
  4927. }
  4928. const int64_t ne[4] = {
  4929. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4930. a->ne[1],
  4931. a->ne[2],
  4932. a->ne[3],
  4933. };
  4934. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4935. int32_t params[] = { op, k0, s0, p0 };
  4936. ggml_set_op_params(result, params, sizeof(params));
  4937. result->op = GGML_OP_POOL_1D;
  4938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4939. result->src[0] = a;
  4940. return result;
  4941. }
  4942. // ggml_pool_2d
  4943. struct ggml_tensor * ggml_pool_2d(
  4944. struct ggml_context * ctx,
  4945. struct ggml_tensor * a,
  4946. enum ggml_op_pool op,
  4947. int k0,
  4948. int k1,
  4949. int s0,
  4950. int s1,
  4951. float p0,
  4952. float p1) {
  4953. bool is_node = false;
  4954. if (a->grad) {
  4955. GGML_ASSERT(false); // TODO: implement backward
  4956. is_node = true;
  4957. }
  4958. struct ggml_tensor * result;
  4959. const int64_t ne[3] = {
  4960. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4961. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4962. a->ne[2],
  4963. };
  4964. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4965. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4966. ggml_set_op_params(result, params, sizeof(params));
  4967. result->op = GGML_OP_POOL_2D;
  4968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4969. result->src[0] = a;
  4970. return result;
  4971. }
  4972. // ggml_upscale
  4973. static struct ggml_tensor * ggml_upscale_impl(
  4974. struct ggml_context * ctx,
  4975. struct ggml_tensor * a,
  4976. int scale_factor) {
  4977. bool is_node = false;
  4978. if (a->grad) {
  4979. GGML_ASSERT(false); // TODO: implement backward
  4980. is_node = true;
  4981. }
  4982. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4983. a->ne[0] * scale_factor,
  4984. a->ne[1] * scale_factor,
  4985. a->ne[2], a->ne[3]);
  4986. result->op = GGML_OP_UPSCALE;
  4987. result->op_params[0] = scale_factor;
  4988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4989. result->src[0] = a;
  4990. return result;
  4991. }
  4992. struct ggml_tensor * ggml_pad(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a,
  4995. int p0, int p1, int p2, int p3) {
  4996. bool is_node = false;
  4997. if (a->grad) {
  4998. GGML_ASSERT(false); // TODO: implement backward
  4999. is_node = true;
  5000. }
  5001. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5002. a->ne[0] + p0,
  5003. a->ne[1] + p1,
  5004. a->ne[2] + p2,
  5005. a->ne[3] + p3);
  5006. result->op = GGML_OP_PAD;
  5007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5008. result->src[0] = a;
  5009. return result;
  5010. }
  5011. struct ggml_tensor * ggml_upscale(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. int scale_factor) {
  5015. return ggml_upscale_impl(ctx, a, scale_factor);
  5016. }
  5017. struct ggml_tensor * ggml_arange(
  5018. struct ggml_context * ctx,
  5019. float start,
  5020. float stop,
  5021. float step) {
  5022. GGML_ASSERT(stop > start);
  5023. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5024. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5025. result->op = GGML_OP_ARANGE;
  5026. ggml_set_op_params_f32(result, 0, start);
  5027. ggml_set_op_params_f32(result, 1, stop);
  5028. ggml_set_op_params_f32(result, 2, step);
  5029. return result;
  5030. }
  5031. struct ggml_tensor * ggml_timestep_embedding(
  5032. struct ggml_context * ctx,
  5033. struct ggml_tensor * timesteps,
  5034. int dim,
  5035. int max_period) {
  5036. bool is_node = false;
  5037. if (timesteps->grad) {
  5038. GGML_ASSERT(false); // TODO: implement backward
  5039. is_node = true;
  5040. }
  5041. int actual_dim = dim;
  5042. if (dim % 2 != 0) {
  5043. actual_dim = dim + 1;
  5044. }
  5045. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5046. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5047. ggml_set_op_params_i32(result, 0, dim);
  5048. ggml_set_op_params_i32(result, 1, max_period);
  5049. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5050. result->src[0] = timesteps;
  5051. return result;
  5052. }
  5053. // ggml_argsort
  5054. struct ggml_tensor * ggml_argsort(
  5055. struct ggml_context * ctx,
  5056. struct ggml_tensor * a,
  5057. enum ggml_sort_order order) {
  5058. bool is_node = false;
  5059. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5060. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5061. result->op = GGML_OP_ARGSORT;
  5062. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5063. result->src[0] = a;
  5064. return result;
  5065. }
  5066. // ggml_top_k
  5067. struct ggml_tensor * ggml_top_k(
  5068. struct ggml_context * ctx,
  5069. struct ggml_tensor * a,
  5070. int k) {
  5071. GGML_ASSERT(a->ne[0] >= k);
  5072. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5073. result = ggml_view_4d(ctx, result,
  5074. k, result->ne[1], result->ne[2], result->ne[3],
  5075. result->nb[1], result->nb[2], result->nb[3],
  5076. 0);
  5077. return result;
  5078. }
  5079. // ggml_flash_attn
  5080. struct ggml_tensor * ggml_flash_attn(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * q,
  5083. struct ggml_tensor * k,
  5084. struct ggml_tensor * v,
  5085. bool masked) {
  5086. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5087. // TODO: check if vT can be multiplied by (k*qT)
  5088. bool is_node = false;
  5089. if (q->grad || k->grad || v->grad) {
  5090. is_node = true;
  5091. }
  5092. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5093. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5094. int32_t t = masked ? 1 : 0;
  5095. ggml_set_op_params(result, &t, sizeof(t));
  5096. result->op = GGML_OP_FLASH_ATTN;
  5097. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5098. result->src[0] = q;
  5099. result->src[1] = k;
  5100. result->src[2] = v;
  5101. return result;
  5102. }
  5103. // ggml_flash_ff
  5104. struct ggml_tensor * ggml_flash_ff(
  5105. struct ggml_context * ctx,
  5106. struct ggml_tensor * a,
  5107. struct ggml_tensor * b0,
  5108. struct ggml_tensor * b1,
  5109. struct ggml_tensor * c0,
  5110. struct ggml_tensor * c1) {
  5111. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5112. // TODO: more checks
  5113. bool is_node = false;
  5114. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5115. is_node = true;
  5116. }
  5117. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5118. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5119. result->op = GGML_OP_FLASH_FF;
  5120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5121. result->src[0] = a;
  5122. result->src[1] = b0;
  5123. result->src[2] = b1;
  5124. result->src[3] = c0;
  5125. result->src[4] = c1;
  5126. return result;
  5127. }
  5128. // ggml_flash_attn_back
  5129. struct ggml_tensor * ggml_flash_attn_back(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * q,
  5132. struct ggml_tensor * k,
  5133. struct ggml_tensor * v,
  5134. struct ggml_tensor * d,
  5135. bool masked) {
  5136. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5137. // TODO: check if vT can be multiplied by (k*qT)
  5138. // d shape [D,N,ne2,ne3]
  5139. // q shape [D,N,ne2,ne3]
  5140. // k shape [D,M,kvne2,ne3]
  5141. // v shape [M,D,kvne2,ne3]
  5142. const int64_t D = q->ne[0];
  5143. const int64_t N = q->ne[1];
  5144. const int64_t M = k->ne[1];
  5145. const int64_t ne2 = q->ne[2];
  5146. const int64_t ne3 = q->ne[3];
  5147. const int64_t kvne2 = k->ne[2];
  5148. GGML_ASSERT(k->ne[0] == D);
  5149. GGML_ASSERT(v->ne[0] == M);
  5150. GGML_ASSERT(v->ne[1] == D);
  5151. GGML_ASSERT(d->ne[0] == D);
  5152. GGML_ASSERT(d->ne[1] == N);
  5153. GGML_ASSERT(k->ne[2] == kvne2);
  5154. GGML_ASSERT(k->ne[3] == ne3);
  5155. GGML_ASSERT(v->ne[2] == kvne2);
  5156. GGML_ASSERT(v->ne[3] == ne3);
  5157. GGML_ASSERT(d->ne[2] == ne2);
  5158. GGML_ASSERT(d->ne[3] == ne3);
  5159. GGML_ASSERT(ne2 % kvne2 == 0);
  5160. bool is_node = false;
  5161. if (q->grad || k->grad || v->grad) {
  5162. // when using this operation (in backwards pass) these grads are set.
  5163. // we don't want to create (big) grad of our result, so is_node is false.
  5164. is_node = false;
  5165. }
  5166. // store gradients of q, k and v as continuous tensors concatenated in result.
  5167. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5168. const int64_t elem_q = ggml_nelements(q);
  5169. const int64_t elem_k = ggml_nelements(k);
  5170. const int64_t elem_v = ggml_nelements(v);
  5171. enum ggml_type result_type = GGML_TYPE_F32;
  5172. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5173. const size_t tsize = ggml_type_size(result_type);
  5174. const size_t offs_q = 0;
  5175. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5176. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5177. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5178. const size_t nelements = (end + tsize - 1)/tsize;
  5179. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5180. int32_t masked_i = masked ? 1 : 0;
  5181. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5182. result->op = GGML_OP_FLASH_ATTN_BACK;
  5183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5184. result->src[0] = q;
  5185. result->src[1] = k;
  5186. result->src[2] = v;
  5187. result->src[3] = d;
  5188. return result;
  5189. }
  5190. // ggml_ssm_conv
  5191. struct ggml_tensor * ggml_ssm_conv(
  5192. struct ggml_context * ctx,
  5193. struct ggml_tensor * s,
  5194. struct ggml_tensor * x,
  5195. struct ggml_tensor * c,
  5196. struct ggml_tensor * sq) {
  5197. GGML_ASSERT(ggml_is_3d(s));
  5198. GGML_ASSERT(ggml_is_matrix(x));
  5199. GGML_ASSERT(ggml_is_matrix(c));
  5200. GGML_ASSERT(ggml_is_matrix(sq));
  5201. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5202. const int64_t d_conv = c->ne[0];
  5203. const int64_t d_inner = c->ne[1];
  5204. const int64_t n_tokens = x->ne[1];
  5205. const int64_t n_kv = s->ne[2];
  5206. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5207. GGML_ASSERT( s->ne[1] == d_inner);
  5208. GGML_ASSERT( x->ne[0] == d_inner);
  5209. GGML_ASSERT(sq->ne[0] == n_kv);
  5210. GGML_ASSERT(sq->ne[1] == n_tokens);
  5211. bool is_node = false;
  5212. if (s->grad || x->grad || c->grad || sq->grad) {
  5213. GGML_ASSERT(false); // TODO: implement
  5214. is_node = true;
  5215. }
  5216. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5217. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5218. result->op = GGML_OP_SSM_CONV;
  5219. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5220. result->src[0] = s;
  5221. result->src[1] = x;
  5222. result->src[2] = c;
  5223. result->src[3] = sq;
  5224. return result;
  5225. }
  5226. // ggml_ssm_scan
  5227. struct ggml_tensor * ggml_ssm_scan(
  5228. struct ggml_context * ctx,
  5229. struct ggml_tensor * s,
  5230. struct ggml_tensor * x,
  5231. struct ggml_tensor * dt,
  5232. struct ggml_tensor * A,
  5233. struct ggml_tensor * B,
  5234. struct ggml_tensor * C,
  5235. struct ggml_tensor * sq) {
  5236. GGML_ASSERT(ggml_is_contiguous(s));
  5237. GGML_ASSERT(ggml_is_contiguous(x));
  5238. GGML_ASSERT(ggml_is_contiguous(dt));
  5239. GGML_ASSERT(ggml_is_contiguous(A));
  5240. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5241. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5242. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5243. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5244. {
  5245. const int64_t d_state = s->ne[0];
  5246. const int64_t d_inner = s->ne[1];
  5247. const int64_t n_tokens = x->ne[1];
  5248. GGML_ASSERT(x->ne[0] == d_inner);
  5249. GGML_ASSERT(A->ne[0] == d_state);
  5250. GGML_ASSERT(A->ne[1] == d_inner);
  5251. GGML_ASSERT(B->ne[0] == d_state);
  5252. GGML_ASSERT(B->ne[1] == n_tokens);
  5253. GGML_ASSERT(C->ne[0] == d_state);
  5254. GGML_ASSERT(C->ne[1] == n_tokens);
  5255. }
  5256. bool is_node = false;
  5257. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5258. GGML_ASSERT(false); // TODO: implement
  5259. is_node = true;
  5260. }
  5261. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5262. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5263. result->op = GGML_OP_SSM_SCAN;
  5264. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5265. result->src[0] = s;
  5266. result->src[1] = x;
  5267. result->src[2] = dt;
  5268. result->src[3] = A;
  5269. result->src[4] = B;
  5270. result->src[5] = C;
  5271. result->src[6] = sq;
  5272. return result;
  5273. }
  5274. // ggml_win_part
  5275. struct ggml_tensor * ggml_win_part(
  5276. struct ggml_context * ctx,
  5277. struct ggml_tensor * a,
  5278. int w) {
  5279. GGML_ASSERT(a->ne[3] == 1);
  5280. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5281. bool is_node = false;
  5282. if (a->grad) {
  5283. GGML_ASSERT(false); // TODO: implement backward
  5284. is_node = true;
  5285. }
  5286. // padding
  5287. const int px = (w - a->ne[1]%w)%w;
  5288. const int py = (w - a->ne[2]%w)%w;
  5289. const int npx = (px + a->ne[1])/w;
  5290. const int npy = (py + a->ne[2])/w;
  5291. const int np = npx*npy;
  5292. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5293. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5294. int32_t params[] = { npx, npy, w };
  5295. ggml_set_op_params(result, params, sizeof(params));
  5296. result->op = GGML_OP_WIN_PART;
  5297. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5298. result->src[0] = a;
  5299. return result;
  5300. }
  5301. // ggml_win_unpart
  5302. struct ggml_tensor * ggml_win_unpart(
  5303. struct ggml_context * ctx,
  5304. struct ggml_tensor * a,
  5305. int w0,
  5306. int h0,
  5307. int w) {
  5308. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5309. bool is_node = false;
  5310. if (a->grad) {
  5311. GGML_ASSERT(false); // TODO: implement backward
  5312. is_node = true;
  5313. }
  5314. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5315. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5316. int32_t params[] = { w };
  5317. ggml_set_op_params(result, params, sizeof(params));
  5318. result->op = GGML_OP_WIN_UNPART;
  5319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5320. result->src[0] = a;
  5321. return result;
  5322. }
  5323. // ggml_get_rel_pos
  5324. struct ggml_tensor * ggml_get_rel_pos(
  5325. struct ggml_context * ctx,
  5326. struct ggml_tensor * a,
  5327. int qh,
  5328. int kh) {
  5329. GGML_ASSERT(qh == kh);
  5330. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5331. bool is_node = false;
  5332. if (a->grad) {
  5333. GGML_ASSERT(false); // TODO: implement backward
  5334. is_node = true;
  5335. }
  5336. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5337. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5338. result->op = GGML_OP_GET_REL_POS;
  5339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5340. result->src[0] = a;
  5341. return result;
  5342. }
  5343. // ggml_add_rel_pos
  5344. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5345. struct ggml_context * ctx,
  5346. struct ggml_tensor * a,
  5347. struct ggml_tensor * pw,
  5348. struct ggml_tensor * ph,
  5349. bool inplace) {
  5350. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5351. GGML_ASSERT(ggml_is_contiguous(a));
  5352. GGML_ASSERT(ggml_is_contiguous(pw));
  5353. GGML_ASSERT(ggml_is_contiguous(ph));
  5354. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5355. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5356. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5357. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5358. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5359. bool is_node = false;
  5360. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5361. is_node = true;
  5362. }
  5363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5364. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5365. result->op = GGML_OP_ADD_REL_POS;
  5366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5367. result->src[0] = a;
  5368. result->src[1] = pw;
  5369. result->src[2] = ph;
  5370. return result;
  5371. }
  5372. struct ggml_tensor * ggml_add_rel_pos(
  5373. struct ggml_context * ctx,
  5374. struct ggml_tensor * a,
  5375. struct ggml_tensor * pw,
  5376. struct ggml_tensor * ph) {
  5377. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5378. }
  5379. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5380. struct ggml_context * ctx,
  5381. struct ggml_tensor * a,
  5382. struct ggml_tensor * pw,
  5383. struct ggml_tensor * ph) {
  5384. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5385. }
  5386. // gmml_unary
  5387. static struct ggml_tensor * ggml_unary_impl(
  5388. struct ggml_context * ctx,
  5389. struct ggml_tensor * a,
  5390. enum ggml_unary_op op,
  5391. bool inplace) {
  5392. bool is_node = false;
  5393. if (!inplace && (a->grad)) {
  5394. is_node = true;
  5395. }
  5396. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5397. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5398. result->op = GGML_OP_UNARY;
  5399. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5400. result->src[0] = a;
  5401. return result;
  5402. }
  5403. struct ggml_tensor * ggml_unary(
  5404. struct ggml_context * ctx,
  5405. struct ggml_tensor * a,
  5406. enum ggml_unary_op op) {
  5407. return ggml_unary_impl(ctx, a, op, false);
  5408. }
  5409. struct ggml_tensor * ggml_unary_inplace(
  5410. struct ggml_context * ctx,
  5411. struct ggml_tensor * a,
  5412. enum ggml_unary_op op) {
  5413. return ggml_unary_impl(ctx, a, op, true);
  5414. }
  5415. // ggml_map_unary
  5416. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5417. struct ggml_context * ctx,
  5418. struct ggml_tensor * a,
  5419. const ggml_unary_op_f32_t fun,
  5420. bool inplace) {
  5421. bool is_node = false;
  5422. if (!inplace && a->grad) {
  5423. is_node = true;
  5424. }
  5425. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5426. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5427. result->op = GGML_OP_MAP_UNARY;
  5428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5429. result->src[0] = a;
  5430. return result;
  5431. }
  5432. struct ggml_tensor * ggml_map_unary_f32(
  5433. struct ggml_context * ctx,
  5434. struct ggml_tensor * a,
  5435. const ggml_unary_op_f32_t fun) {
  5436. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5437. }
  5438. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5439. struct ggml_context * ctx,
  5440. struct ggml_tensor * a,
  5441. const ggml_unary_op_f32_t fun) {
  5442. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5443. }
  5444. // ggml_map_binary
  5445. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5446. struct ggml_context * ctx,
  5447. struct ggml_tensor * a,
  5448. struct ggml_tensor * b,
  5449. const ggml_binary_op_f32_t fun,
  5450. bool inplace) {
  5451. GGML_ASSERT(ggml_are_same_shape(a, b));
  5452. bool is_node = false;
  5453. if (!inplace && (a->grad || b->grad)) {
  5454. is_node = true;
  5455. }
  5456. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5457. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5458. result->op = GGML_OP_MAP_BINARY;
  5459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5460. result->src[0] = a;
  5461. result->src[1] = b;
  5462. return result;
  5463. }
  5464. struct ggml_tensor * ggml_map_binary_f32(
  5465. struct ggml_context * ctx,
  5466. struct ggml_tensor * a,
  5467. struct ggml_tensor * b,
  5468. const ggml_binary_op_f32_t fun) {
  5469. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5470. }
  5471. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5472. struct ggml_context * ctx,
  5473. struct ggml_tensor * a,
  5474. struct ggml_tensor * b,
  5475. const ggml_binary_op_f32_t fun) {
  5476. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5477. }
  5478. // ggml_map_custom1_f32
  5479. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5480. struct ggml_context * ctx,
  5481. struct ggml_tensor * a,
  5482. const ggml_custom1_op_f32_t fun,
  5483. bool inplace) {
  5484. bool is_node = false;
  5485. if (!inplace && a->grad) {
  5486. is_node = true;
  5487. }
  5488. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5489. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5490. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5492. result->src[0] = a;
  5493. return result;
  5494. }
  5495. struct ggml_tensor * ggml_map_custom1_f32(
  5496. struct ggml_context * ctx,
  5497. struct ggml_tensor * a,
  5498. const ggml_custom1_op_f32_t fun) {
  5499. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5500. }
  5501. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5502. struct ggml_context * ctx,
  5503. struct ggml_tensor * a,
  5504. const ggml_custom1_op_f32_t fun) {
  5505. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5506. }
  5507. // ggml_map_custom2_f32
  5508. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5509. struct ggml_context * ctx,
  5510. struct ggml_tensor * a,
  5511. struct ggml_tensor * b,
  5512. const ggml_custom2_op_f32_t fun,
  5513. bool inplace) {
  5514. bool is_node = false;
  5515. if (!inplace && (a->grad || b->grad)) {
  5516. is_node = true;
  5517. }
  5518. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5519. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5520. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5522. result->src[0] = a;
  5523. result->src[1] = b;
  5524. return result;
  5525. }
  5526. struct ggml_tensor * ggml_map_custom2_f32(
  5527. struct ggml_context * ctx,
  5528. struct ggml_tensor * a,
  5529. struct ggml_tensor * b,
  5530. const ggml_custom2_op_f32_t fun) {
  5531. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5532. }
  5533. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5534. struct ggml_context * ctx,
  5535. struct ggml_tensor * a,
  5536. struct ggml_tensor * b,
  5537. const ggml_custom2_op_f32_t fun) {
  5538. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5539. }
  5540. // ggml_map_custom3_f32
  5541. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5542. struct ggml_context * ctx,
  5543. struct ggml_tensor * a,
  5544. struct ggml_tensor * b,
  5545. struct ggml_tensor * c,
  5546. const ggml_custom3_op_f32_t fun,
  5547. bool inplace) {
  5548. bool is_node = false;
  5549. if (!inplace && (a->grad || b->grad || c->grad)) {
  5550. is_node = true;
  5551. }
  5552. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5553. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5554. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5555. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5556. result->src[0] = a;
  5557. result->src[1] = b;
  5558. result->src[2] = c;
  5559. return result;
  5560. }
  5561. struct ggml_tensor * ggml_map_custom3_f32(
  5562. struct ggml_context * ctx,
  5563. struct ggml_tensor * a,
  5564. struct ggml_tensor * b,
  5565. struct ggml_tensor * c,
  5566. const ggml_custom3_op_f32_t fun) {
  5567. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5568. }
  5569. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5570. struct ggml_context * ctx,
  5571. struct ggml_tensor * a,
  5572. struct ggml_tensor * b,
  5573. struct ggml_tensor * c,
  5574. const ggml_custom3_op_f32_t fun) {
  5575. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5576. }
  5577. // ggml_map_custom1
  5578. struct ggml_map_custom1_op_params {
  5579. ggml_custom1_op_t fun;
  5580. int n_tasks;
  5581. void * userdata;
  5582. };
  5583. static struct ggml_tensor * ggml_map_custom1_impl(
  5584. struct ggml_context * ctx,
  5585. struct ggml_tensor * a,
  5586. const ggml_custom1_op_t fun,
  5587. int n_tasks,
  5588. void * userdata,
  5589. bool inplace) {
  5590. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5591. bool is_node = false;
  5592. if (!inplace && a->grad) {
  5593. is_node = true;
  5594. }
  5595. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5596. struct ggml_map_custom1_op_params params = {
  5597. /*.fun =*/ fun,
  5598. /*.n_tasks =*/ n_tasks,
  5599. /*.userdata =*/ userdata
  5600. };
  5601. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5602. result->op = GGML_OP_MAP_CUSTOM1;
  5603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5604. result->src[0] = a;
  5605. return result;
  5606. }
  5607. struct ggml_tensor * ggml_map_custom1(
  5608. struct ggml_context * ctx,
  5609. struct ggml_tensor * a,
  5610. const ggml_custom1_op_t fun,
  5611. int n_tasks,
  5612. void * userdata) {
  5613. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5614. }
  5615. struct ggml_tensor * ggml_map_custom1_inplace(
  5616. struct ggml_context * ctx,
  5617. struct ggml_tensor * a,
  5618. const ggml_custom1_op_t fun,
  5619. int n_tasks,
  5620. void * userdata) {
  5621. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5622. }
  5623. // ggml_map_custom2
  5624. struct ggml_map_custom2_op_params {
  5625. ggml_custom2_op_t fun;
  5626. int n_tasks;
  5627. void * userdata;
  5628. };
  5629. static struct ggml_tensor * ggml_map_custom2_impl(
  5630. struct ggml_context * ctx,
  5631. struct ggml_tensor * a,
  5632. struct ggml_tensor * b,
  5633. const ggml_custom2_op_t fun,
  5634. int n_tasks,
  5635. void * userdata,
  5636. bool inplace) {
  5637. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5638. bool is_node = false;
  5639. if (!inplace && (a->grad || b->grad)) {
  5640. is_node = true;
  5641. }
  5642. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5643. struct ggml_map_custom2_op_params params = {
  5644. /*.fun =*/ fun,
  5645. /*.n_tasks =*/ n_tasks,
  5646. /*.userdata =*/ userdata
  5647. };
  5648. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5649. result->op = GGML_OP_MAP_CUSTOM2;
  5650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5651. result->src[0] = a;
  5652. result->src[1] = b;
  5653. return result;
  5654. }
  5655. struct ggml_tensor * ggml_map_custom2(
  5656. struct ggml_context * ctx,
  5657. struct ggml_tensor * a,
  5658. struct ggml_tensor * b,
  5659. const ggml_custom2_op_t fun,
  5660. int n_tasks,
  5661. void * userdata) {
  5662. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5663. }
  5664. struct ggml_tensor * ggml_map_custom2_inplace(
  5665. struct ggml_context * ctx,
  5666. struct ggml_tensor * a,
  5667. struct ggml_tensor * b,
  5668. const ggml_custom2_op_t fun,
  5669. int n_tasks,
  5670. void * userdata) {
  5671. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5672. }
  5673. // ggml_map_custom3
  5674. struct ggml_map_custom3_op_params {
  5675. ggml_custom3_op_t fun;
  5676. int n_tasks;
  5677. void * userdata;
  5678. };
  5679. static struct ggml_tensor * ggml_map_custom3_impl(
  5680. struct ggml_context * ctx,
  5681. struct ggml_tensor * a,
  5682. struct ggml_tensor * b,
  5683. struct ggml_tensor * c,
  5684. const ggml_custom3_op_t fun,
  5685. int n_tasks,
  5686. void * userdata,
  5687. bool inplace) {
  5688. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5689. bool is_node = false;
  5690. if (!inplace && (a->grad || b->grad || c->grad)) {
  5691. is_node = true;
  5692. }
  5693. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5694. struct ggml_map_custom3_op_params params = {
  5695. /*.fun =*/ fun,
  5696. /*.n_tasks =*/ n_tasks,
  5697. /*.userdata =*/ userdata
  5698. };
  5699. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5700. result->op = GGML_OP_MAP_CUSTOM3;
  5701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5702. result->src[0] = a;
  5703. result->src[1] = b;
  5704. result->src[2] = c;
  5705. return result;
  5706. }
  5707. struct ggml_tensor * ggml_map_custom3(
  5708. struct ggml_context * ctx,
  5709. struct ggml_tensor * a,
  5710. struct ggml_tensor * b,
  5711. struct ggml_tensor * c,
  5712. const ggml_custom3_op_t fun,
  5713. int n_tasks,
  5714. void * userdata) {
  5715. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5716. }
  5717. struct ggml_tensor * ggml_map_custom3_inplace(
  5718. struct ggml_context * ctx,
  5719. struct ggml_tensor * a,
  5720. struct ggml_tensor * b,
  5721. struct ggml_tensor * c,
  5722. const ggml_custom3_op_t fun,
  5723. int n_tasks,
  5724. void * userdata) {
  5725. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5726. }
  5727. // ggml_cross_entropy_loss
  5728. struct ggml_tensor * ggml_cross_entropy_loss(
  5729. struct ggml_context * ctx,
  5730. struct ggml_tensor * a,
  5731. struct ggml_tensor * b) {
  5732. GGML_ASSERT(ggml_are_same_shape(a, b));
  5733. bool is_node = false;
  5734. if (a->grad || b->grad) {
  5735. is_node = true;
  5736. }
  5737. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5738. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5740. result->src[0] = a;
  5741. result->src[1] = b;
  5742. return result;
  5743. }
  5744. // ggml_cross_entropy_loss_back
  5745. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5746. struct ggml_context * ctx,
  5747. struct ggml_tensor * a,
  5748. struct ggml_tensor * b,
  5749. struct ggml_tensor * c) {
  5750. GGML_ASSERT(ggml_are_same_shape(a, b));
  5751. GGML_ASSERT(ggml_is_scalar(c));
  5752. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5753. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5754. result->grad = NULL;
  5755. result->src[0] = a;
  5756. result->src[1] = b;
  5757. result->src[2] = c;
  5758. return result;
  5759. }
  5760. ////////////////////////////////////////////////////////////////////////////////
  5761. void ggml_set_param(
  5762. struct ggml_context * ctx,
  5763. struct ggml_tensor * tensor) {
  5764. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5765. GGML_ASSERT(tensor->grad == NULL);
  5766. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5767. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5768. }
  5769. // ggml_compute_forward_dup
  5770. static void ggml_compute_forward_dup_same_cont(
  5771. const struct ggml_compute_params * params,
  5772. struct ggml_tensor * dst) {
  5773. const struct ggml_tensor * src0 = dst->src[0];
  5774. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5775. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5776. GGML_ASSERT(src0->type == dst->type);
  5777. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5778. return;
  5779. }
  5780. const size_t nb00 = src0->nb[0];
  5781. const size_t nb0 = dst->nb[0];
  5782. const int ith = params->ith; // thread index
  5783. const int nth = params->nth; // number of threads
  5784. // parallelize by elements
  5785. const int ne = ggml_nelements(dst);
  5786. const int dr = (ne + nth - 1) / nth;
  5787. const int ie0 = dr * ith;
  5788. const int ie1 = MIN(ie0 + dr, ne);
  5789. if (ie0 < ie1) {
  5790. memcpy(
  5791. ((char *) dst->data + ie0*nb0),
  5792. ((char *) src0->data + ie0*nb00),
  5793. (ie1 - ie0) * ggml_type_size(src0->type));
  5794. }
  5795. }
  5796. static void ggml_compute_forward_dup_f16(
  5797. const struct ggml_compute_params * params,
  5798. struct ggml_tensor * dst) {
  5799. const struct ggml_tensor * src0 = dst->src[0];
  5800. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5801. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5802. return;
  5803. }
  5804. GGML_TENSOR_UNARY_OP_LOCALS
  5805. const int ith = params->ith; // thread index
  5806. const int nth = params->nth; // number of threads
  5807. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5808. ggml_compute_forward_dup_same_cont(params, dst);
  5809. return;
  5810. }
  5811. // parallelize by rows
  5812. const int nr = ne01;
  5813. // number of rows per thread
  5814. const int dr = (nr + nth - 1) / nth;
  5815. // row range for this thread
  5816. const int ir0 = dr * ith;
  5817. const int ir1 = MIN(ir0 + dr, nr);
  5818. if (src0->type == dst->type &&
  5819. ne00 == ne0 &&
  5820. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5821. // copy by rows
  5822. const size_t rs = ne00*nb00;
  5823. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5824. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5825. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5826. memcpy(
  5827. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5828. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5829. rs);
  5830. }
  5831. }
  5832. }
  5833. return;
  5834. }
  5835. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5836. if (ggml_is_contiguous(dst)) {
  5837. if (nb00 == sizeof(ggml_fp16_t)) {
  5838. if (dst->type == GGML_TYPE_F16) {
  5839. size_t id = 0;
  5840. const size_t rs = ne00 * nb00;
  5841. char * dst_ptr = (char *) dst->data;
  5842. for (int i03 = 0; i03 < ne03; i03++) {
  5843. for (int i02 = 0; i02 < ne02; i02++) {
  5844. id += rs * ir0;
  5845. for (int i01 = ir0; i01 < ir1; i01++) {
  5846. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5847. memcpy(dst_ptr + id, src0_ptr, rs);
  5848. id += rs;
  5849. }
  5850. id += rs * (ne01 - ir1);
  5851. }
  5852. }
  5853. } else if (dst->type == GGML_TYPE_F32) {
  5854. size_t id = 0;
  5855. float * dst_ptr = (float *) dst->data;
  5856. for (int i03 = 0; i03 < ne03; i03++) {
  5857. for (int i02 = 0; i02 < ne02; i02++) {
  5858. id += ne00 * ir0;
  5859. for (int i01 = ir0; i01 < ir1; i01++) {
  5860. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5861. for (int i00 = 0; i00 < ne00; i00++) {
  5862. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5863. id++;
  5864. }
  5865. }
  5866. id += ne00 * (ne01 - ir1);
  5867. }
  5868. }
  5869. } else if (type_traits[dst->type].from_float) {
  5870. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5871. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5872. size_t id = 0;
  5873. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5874. char * dst_ptr = (char *) dst->data;
  5875. for (int i03 = 0; i03 < ne03; i03++) {
  5876. for (int i02 = 0; i02 < ne02; i02++) {
  5877. id += rs * ir0;
  5878. for (int i01 = ir0; i01 < ir1; i01++) {
  5879. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5880. for (int i00 = 0; i00 < ne00; i00++) {
  5881. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5882. }
  5883. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5884. id += rs;
  5885. }
  5886. id += rs * (ne01 - ir1);
  5887. }
  5888. }
  5889. } else {
  5890. GGML_ASSERT(false); // TODO: implement
  5891. }
  5892. } else {
  5893. //printf("%s: this is not optimal - fix me\n", __func__);
  5894. if (dst->type == GGML_TYPE_F32) {
  5895. size_t id = 0;
  5896. float * dst_ptr = (float *) dst->data;
  5897. for (int i03 = 0; i03 < ne03; i03++) {
  5898. for (int i02 = 0; i02 < ne02; i02++) {
  5899. id += ne00 * ir0;
  5900. for (int i01 = ir0; i01 < ir1; i01++) {
  5901. for (int i00 = 0; i00 < ne00; i00++) {
  5902. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5903. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5904. id++;
  5905. }
  5906. }
  5907. id += ne00 * (ne01 - ir1);
  5908. }
  5909. }
  5910. } else if (dst->type == GGML_TYPE_F16) {
  5911. size_t id = 0;
  5912. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5913. for (int i03 = 0; i03 < ne03; i03++) {
  5914. for (int i02 = 0; i02 < ne02; i02++) {
  5915. id += ne00 * ir0;
  5916. for (int i01 = ir0; i01 < ir1; i01++) {
  5917. for (int i00 = 0; i00 < ne00; i00++) {
  5918. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5919. dst_ptr[id] = *src0_ptr;
  5920. id++;
  5921. }
  5922. }
  5923. id += ne00 * (ne01 - ir1);
  5924. }
  5925. }
  5926. } else {
  5927. GGML_ASSERT(false); // TODO: implement
  5928. }
  5929. }
  5930. return;
  5931. }
  5932. // dst counters
  5933. int64_t i10 = 0;
  5934. int64_t i11 = 0;
  5935. int64_t i12 = 0;
  5936. int64_t i13 = 0;
  5937. if (dst->type == GGML_TYPE_F16) {
  5938. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5939. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5940. i10 += ne00 * ir0;
  5941. while (i10 >= ne0) {
  5942. i10 -= ne0;
  5943. if (++i11 == ne1) {
  5944. i11 = 0;
  5945. if (++i12 == ne2) {
  5946. i12 = 0;
  5947. if (++i13 == ne3) {
  5948. i13 = 0;
  5949. }
  5950. }
  5951. }
  5952. }
  5953. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5954. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5955. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5956. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5957. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5958. if (++i10 == ne00) {
  5959. i10 = 0;
  5960. if (++i11 == ne01) {
  5961. i11 = 0;
  5962. if (++i12 == ne02) {
  5963. i12 = 0;
  5964. if (++i13 == ne03) {
  5965. i13 = 0;
  5966. }
  5967. }
  5968. }
  5969. }
  5970. }
  5971. }
  5972. i10 += ne00 * (ne01 - ir1);
  5973. while (i10 >= ne0) {
  5974. i10 -= ne0;
  5975. if (++i11 == ne1) {
  5976. i11 = 0;
  5977. if (++i12 == ne2) {
  5978. i12 = 0;
  5979. if (++i13 == ne3) {
  5980. i13 = 0;
  5981. }
  5982. }
  5983. }
  5984. }
  5985. }
  5986. }
  5987. } else if (dst->type == GGML_TYPE_F32) {
  5988. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5989. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5990. i10 += ne00 * ir0;
  5991. while (i10 >= ne0) {
  5992. i10 -= ne0;
  5993. if (++i11 == ne1) {
  5994. i11 = 0;
  5995. if (++i12 == ne2) {
  5996. i12 = 0;
  5997. if (++i13 == ne3) {
  5998. i13 = 0;
  5999. }
  6000. }
  6001. }
  6002. }
  6003. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6004. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6005. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6006. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6007. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6008. if (++i10 == ne0) {
  6009. i10 = 0;
  6010. if (++i11 == ne1) {
  6011. i11 = 0;
  6012. if (++i12 == ne2) {
  6013. i12 = 0;
  6014. if (++i13 == ne3) {
  6015. i13 = 0;
  6016. }
  6017. }
  6018. }
  6019. }
  6020. }
  6021. }
  6022. i10 += ne00 * (ne01 - ir1);
  6023. while (i10 >= ne0) {
  6024. i10 -= ne0;
  6025. if (++i11 == ne1) {
  6026. i11 = 0;
  6027. if (++i12 == ne2) {
  6028. i12 = 0;
  6029. if (++i13 == ne3) {
  6030. i13 = 0;
  6031. }
  6032. }
  6033. }
  6034. }
  6035. }
  6036. }
  6037. } else {
  6038. GGML_ASSERT(false); // TODO: implement
  6039. }
  6040. }
  6041. static void ggml_compute_forward_dup_f32(
  6042. const struct ggml_compute_params * params,
  6043. struct ggml_tensor * dst) {
  6044. const struct ggml_tensor * src0 = dst->src[0];
  6045. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6046. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6047. return;
  6048. }
  6049. GGML_TENSOR_UNARY_OP_LOCALS
  6050. const int ith = params->ith; // thread index
  6051. const int nth = params->nth; // number of threads
  6052. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6053. ggml_compute_forward_dup_same_cont(params, dst);
  6054. return;
  6055. }
  6056. // parallelize by rows
  6057. const int nr = ne01;
  6058. // number of rows per thread
  6059. const int dr = (nr + nth - 1) / nth;
  6060. // row range for this thread
  6061. const int ir0 = dr * ith;
  6062. const int ir1 = MIN(ir0 + dr, nr);
  6063. if (src0->type == dst->type &&
  6064. ne00 == ne0 &&
  6065. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6066. // copy by rows
  6067. const size_t rs = ne00*nb00;
  6068. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6069. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6070. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6071. memcpy(
  6072. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6073. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6074. rs);
  6075. }
  6076. }
  6077. }
  6078. return;
  6079. }
  6080. if (ggml_is_contiguous(dst)) {
  6081. // TODO: simplify
  6082. if (nb00 == sizeof(float)) {
  6083. if (dst->type == GGML_TYPE_F32) {
  6084. size_t id = 0;
  6085. const size_t rs = ne00 * nb00;
  6086. char * dst_ptr = (char *) dst->data;
  6087. for (int i03 = 0; i03 < ne03; i03++) {
  6088. for (int i02 = 0; i02 < ne02; i02++) {
  6089. id += rs * ir0;
  6090. for (int i01 = ir0; i01 < ir1; i01++) {
  6091. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6092. memcpy(dst_ptr + id, src0_ptr, rs);
  6093. id += rs;
  6094. }
  6095. id += rs * (ne01 - ir1);
  6096. }
  6097. }
  6098. } else if (type_traits[dst->type].from_float) {
  6099. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6100. size_t id = 0;
  6101. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6102. char * dst_ptr = (char *) dst->data;
  6103. for (int i03 = 0; i03 < ne03; i03++) {
  6104. for (int i02 = 0; i02 < ne02; i02++) {
  6105. id += rs * ir0;
  6106. for (int i01 = ir0; i01 < ir1; i01++) {
  6107. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6108. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6109. id += rs;
  6110. }
  6111. id += rs * (ne01 - ir1);
  6112. }
  6113. }
  6114. } else {
  6115. GGML_ASSERT(false); // TODO: implement
  6116. }
  6117. } else {
  6118. //printf("%s: this is not optimal - fix me\n", __func__);
  6119. if (dst->type == GGML_TYPE_F32) {
  6120. size_t id = 0;
  6121. float * dst_ptr = (float *) dst->data;
  6122. for (int i03 = 0; i03 < ne03; i03++) {
  6123. for (int i02 = 0; i02 < ne02; i02++) {
  6124. id += ne00 * ir0;
  6125. for (int i01 = ir0; i01 < ir1; i01++) {
  6126. for (int i00 = 0; i00 < ne00; i00++) {
  6127. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6128. dst_ptr[id] = *src0_ptr;
  6129. id++;
  6130. }
  6131. }
  6132. id += ne00 * (ne01 - ir1);
  6133. }
  6134. }
  6135. } else if (dst->type == GGML_TYPE_F16) {
  6136. size_t id = 0;
  6137. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6138. for (int i03 = 0; i03 < ne03; i03++) {
  6139. for (int i02 = 0; i02 < ne02; i02++) {
  6140. id += ne00 * ir0;
  6141. for (int i01 = ir0; i01 < ir1; i01++) {
  6142. for (int i00 = 0; i00 < ne00; i00++) {
  6143. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6144. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6145. id++;
  6146. }
  6147. }
  6148. id += ne00 * (ne01 - ir1);
  6149. }
  6150. }
  6151. } else {
  6152. GGML_ASSERT(false); // TODO: implement
  6153. }
  6154. }
  6155. return;
  6156. }
  6157. // dst counters
  6158. int64_t i10 = 0;
  6159. int64_t i11 = 0;
  6160. int64_t i12 = 0;
  6161. int64_t i13 = 0;
  6162. if (dst->type == GGML_TYPE_F32) {
  6163. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6164. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6165. i10 += ne00 * ir0;
  6166. while (i10 >= ne0) {
  6167. i10 -= ne0;
  6168. if (++i11 == ne1) {
  6169. i11 = 0;
  6170. if (++i12 == ne2) {
  6171. i12 = 0;
  6172. if (++i13 == ne3) {
  6173. i13 = 0;
  6174. }
  6175. }
  6176. }
  6177. }
  6178. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6179. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6180. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6181. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6182. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6183. if (++i10 == ne0) {
  6184. i10 = 0;
  6185. if (++i11 == ne1) {
  6186. i11 = 0;
  6187. if (++i12 == ne2) {
  6188. i12 = 0;
  6189. if (++i13 == ne3) {
  6190. i13 = 0;
  6191. }
  6192. }
  6193. }
  6194. }
  6195. }
  6196. }
  6197. i10 += ne00 * (ne01 - ir1);
  6198. while (i10 >= ne0) {
  6199. i10 -= ne0;
  6200. if (++i11 == ne1) {
  6201. i11 = 0;
  6202. if (++i12 == ne2) {
  6203. i12 = 0;
  6204. if (++i13 == ne3) {
  6205. i13 = 0;
  6206. }
  6207. }
  6208. }
  6209. }
  6210. }
  6211. }
  6212. } else if (dst->type == GGML_TYPE_F16) {
  6213. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6214. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6215. i10 += ne00 * ir0;
  6216. while (i10 >= ne0) {
  6217. i10 -= ne0;
  6218. if (++i11 == ne1) {
  6219. i11 = 0;
  6220. if (++i12 == ne2) {
  6221. i12 = 0;
  6222. if (++i13 == ne3) {
  6223. i13 = 0;
  6224. }
  6225. }
  6226. }
  6227. }
  6228. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6229. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6230. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6231. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6232. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6233. if (++i10 == ne0) {
  6234. i10 = 0;
  6235. if (++i11 == ne1) {
  6236. i11 = 0;
  6237. if (++i12 == ne2) {
  6238. i12 = 0;
  6239. if (++i13 == ne3) {
  6240. i13 = 0;
  6241. }
  6242. }
  6243. }
  6244. }
  6245. }
  6246. }
  6247. i10 += ne00 * (ne01 - ir1);
  6248. while (i10 >= ne0) {
  6249. i10 -= ne0;
  6250. if (++i11 == ne1) {
  6251. i11 = 0;
  6252. if (++i12 == ne2) {
  6253. i12 = 0;
  6254. if (++i13 == ne3) {
  6255. i13 = 0;
  6256. }
  6257. }
  6258. }
  6259. }
  6260. }
  6261. }
  6262. } else {
  6263. GGML_ASSERT(false); // TODO: implement
  6264. }
  6265. }
  6266. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6267. static void ggml_compute_forward_dup_bytes(
  6268. const struct ggml_compute_params * params,
  6269. struct ggml_tensor * dst) {
  6270. const struct ggml_tensor * src0 = dst->src[0];
  6271. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6272. GGML_ASSERT(src0->type == dst->type);
  6273. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6274. return;
  6275. }
  6276. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6277. ggml_compute_forward_dup_same_cont(params, dst);
  6278. return;
  6279. }
  6280. GGML_TENSOR_UNARY_OP_LOCALS;
  6281. const size_t type_size = ggml_type_size(src0->type);
  6282. const int ith = params->ith; // thread index
  6283. const int nth = params->nth; // number of threads
  6284. // parallelize by rows
  6285. const int nr = ne01;
  6286. // number of rows per thread
  6287. const int dr = (nr + nth - 1) / nth;
  6288. // row range for this thread
  6289. const int ir0 = dr * ith;
  6290. const int ir1 = MIN(ir0 + dr, nr);
  6291. if (src0->type == dst->type &&
  6292. ne00 == ne0 &&
  6293. nb00 == type_size && nb0 == type_size) {
  6294. // copy by rows
  6295. const size_t rs = ne00 * type_size;
  6296. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6297. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6298. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6299. memcpy(
  6300. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6301. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6302. rs);
  6303. }
  6304. }
  6305. }
  6306. return;
  6307. }
  6308. if (ggml_is_contiguous(dst)) {
  6309. size_t id = 0;
  6310. char * dst_ptr = (char *) dst->data;
  6311. const size_t rs = ne00 * type_size;
  6312. if (nb00 == type_size) {
  6313. // src0 is contigous on first dimension, copy by rows
  6314. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6315. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6316. id += rs * ir0;
  6317. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6318. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6319. memcpy(dst_ptr + id, src0_ptr, rs);
  6320. id += rs;
  6321. }
  6322. id += rs * (ne01 - ir1);
  6323. }
  6324. }
  6325. } else {
  6326. //printf("%s: this is not optimal - fix me\n", __func__);
  6327. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6328. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6329. id += rs * ir0;
  6330. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6331. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6332. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6333. memcpy(dst_ptr + id, src0_ptr, type_size);
  6334. id += type_size;
  6335. }
  6336. }
  6337. id += rs * (ne01 - ir1);
  6338. }
  6339. }
  6340. }
  6341. return;
  6342. }
  6343. // dst counters
  6344. int64_t i10 = 0;
  6345. int64_t i11 = 0;
  6346. int64_t i12 = 0;
  6347. int64_t i13 = 0;
  6348. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6349. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6350. i10 += ne00 * ir0;
  6351. while (i10 >= ne0) {
  6352. i10 -= ne0;
  6353. if (++i11 == ne1) {
  6354. i11 = 0;
  6355. if (++i12 == ne2) {
  6356. i12 = 0;
  6357. if (++i13 == ne3) {
  6358. i13 = 0;
  6359. }
  6360. }
  6361. }
  6362. }
  6363. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6364. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6365. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6366. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6367. memcpy(dst_ptr, src0_ptr, type_size);
  6368. if (++i10 == ne0) {
  6369. i10 = 0;
  6370. if (++i11 == ne1) {
  6371. i11 = 0;
  6372. if (++i12 == ne2) {
  6373. i12 = 0;
  6374. if (++i13 == ne3) {
  6375. i13 = 0;
  6376. }
  6377. }
  6378. }
  6379. }
  6380. }
  6381. }
  6382. i10 += ne00 * (ne01 - ir1);
  6383. while (i10 >= ne0) {
  6384. i10 -= ne0;
  6385. if (++i11 == ne1) {
  6386. i11 = 0;
  6387. if (++i12 == ne2) {
  6388. i12 = 0;
  6389. if (++i13 == ne3) {
  6390. i13 = 0;
  6391. }
  6392. }
  6393. }
  6394. }
  6395. }
  6396. }
  6397. }
  6398. static void ggml_compute_forward_dup(
  6399. const struct ggml_compute_params * params,
  6400. struct ggml_tensor * dst) {
  6401. const struct ggml_tensor * src0 = dst->src[0];
  6402. if (src0->type == dst->type) {
  6403. ggml_compute_forward_dup_bytes(params, dst);
  6404. return;
  6405. }
  6406. switch (src0->type) {
  6407. case GGML_TYPE_F16:
  6408. {
  6409. ggml_compute_forward_dup_f16(params, dst);
  6410. } break;
  6411. case GGML_TYPE_F32:
  6412. {
  6413. ggml_compute_forward_dup_f32(params, dst);
  6414. } break;
  6415. default:
  6416. {
  6417. GGML_ASSERT(false);
  6418. } break;
  6419. }
  6420. }
  6421. // ggml_compute_forward_add
  6422. static void ggml_compute_forward_add_f32(
  6423. const struct ggml_compute_params * params,
  6424. struct ggml_tensor * dst) {
  6425. const struct ggml_tensor * src0 = dst->src[0];
  6426. const struct ggml_tensor * src1 = dst->src[1];
  6427. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6428. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6429. return;
  6430. }
  6431. const int ith = params->ith;
  6432. const int nth = params->nth;
  6433. #ifdef GGML_USE_CLBLAST
  6434. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6435. // TODO: OpenCL kernel support full broadcast
  6436. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6437. if (ith == 0) {
  6438. ggml_cl_add(src0, src1, dst);
  6439. }
  6440. return;
  6441. }
  6442. #endif
  6443. const int nr = ggml_nrows(src0);
  6444. GGML_TENSOR_BINARY_OP_LOCALS
  6445. GGML_ASSERT( nb0 == sizeof(float));
  6446. GGML_ASSERT(nb00 == sizeof(float));
  6447. // rows per thread
  6448. const int dr = (nr + nth - 1)/nth;
  6449. // row range for this thread
  6450. const int ir0 = dr*ith;
  6451. const int ir1 = MIN(ir0 + dr, nr);
  6452. if (nb10 == sizeof(float)) {
  6453. for (int ir = ir0; ir < ir1; ++ir) {
  6454. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6455. const int64_t i03 = ir/(ne02*ne01);
  6456. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6457. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6458. const int64_t i13 = i03 % ne13;
  6459. const int64_t i12 = i02 % ne12;
  6460. const int64_t i11 = i01 % ne11;
  6461. const int64_t nr0 = ne00 / ne10;
  6462. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6463. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6464. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6465. for (int64_t r = 0; r < nr0; ++r) {
  6466. #ifdef GGML_USE_ACCELERATE
  6467. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6468. #else
  6469. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6470. #endif
  6471. }
  6472. }
  6473. } else {
  6474. // src1 is not contiguous
  6475. for (int ir = ir0; ir < ir1; ++ir) {
  6476. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6477. const int64_t i03 = ir/(ne02*ne01);
  6478. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6479. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6480. const int64_t i13 = i03 % ne13;
  6481. const int64_t i12 = i02 % ne12;
  6482. const int64_t i11 = i01 % ne11;
  6483. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6484. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6485. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6486. const int64_t i10 = i0 % ne10;
  6487. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6488. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6489. }
  6490. }
  6491. }
  6492. }
  6493. static void ggml_compute_forward_add_f16_f32(
  6494. const struct ggml_compute_params * params,
  6495. struct ggml_tensor * dst) {
  6496. const struct ggml_tensor * src0 = dst->src[0];
  6497. const struct ggml_tensor * src1 = dst->src[1];
  6498. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6499. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6500. return;
  6501. }
  6502. const int ith = params->ith;
  6503. const int nth = params->nth;
  6504. const int nr = ggml_nrows(src0);
  6505. GGML_TENSOR_BINARY_OP_LOCALS
  6506. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6507. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6508. if (dst->type == GGML_TYPE_F32) {
  6509. GGML_ASSERT( nb0 == sizeof(float));
  6510. }
  6511. else {
  6512. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6513. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6514. }
  6515. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6516. // rows per thread
  6517. const int dr = (nr + nth - 1)/nth;
  6518. // row range for this thread
  6519. const int ir0 = dr*ith;
  6520. const int ir1 = MIN(ir0 + dr, nr);
  6521. if (nb10 == sizeof(float)) {
  6522. if (dst->type == GGML_TYPE_F16) {
  6523. for (int ir = ir0; ir < ir1; ++ir) {
  6524. // src0, src1 and dst are same shape => same indices
  6525. const int i3 = ir/(ne2*ne1);
  6526. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6527. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6528. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6529. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6530. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6531. for (int i = 0; i < ne0; i++) {
  6532. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6533. }
  6534. }
  6535. } else {
  6536. for (int ir = ir0; ir < ir1; ++ir) {
  6537. // src0, src1 and dst are same shape => same indices
  6538. const int i3 = ir/(ne2*ne1);
  6539. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6540. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6541. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6542. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6543. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6544. for (int i = 0; i < ne0; i++) {
  6545. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6546. }
  6547. }
  6548. }
  6549. }
  6550. else {
  6551. // src1 is not contiguous
  6552. GGML_ASSERT(false);
  6553. }
  6554. }
  6555. static void ggml_compute_forward_add_f16_f16(
  6556. const struct ggml_compute_params * params,
  6557. struct ggml_tensor * dst) {
  6558. const struct ggml_tensor * src0 = dst->src[0];
  6559. const struct ggml_tensor * src1 = dst->src[1];
  6560. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6561. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6562. return;
  6563. }
  6564. const int ith = params->ith;
  6565. const int nth = params->nth;
  6566. const int nr = ggml_nrows(src0);
  6567. GGML_TENSOR_BINARY_OP_LOCALS
  6568. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6569. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6570. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6571. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6572. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6573. // rows per thread
  6574. const int dr = (nr + nth - 1)/nth;
  6575. // row range for this thread
  6576. const int ir0 = dr*ith;
  6577. const int ir1 = MIN(ir0 + dr, nr);
  6578. if (nb10 == sizeof(ggml_fp16_t)) {
  6579. for (int ir = ir0; ir < ir1; ++ir) {
  6580. // src0, src1 and dst are same shape => same indices
  6581. const int i3 = ir/(ne2*ne1);
  6582. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6583. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6584. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6585. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6586. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6587. for (int i = 0; i < ne0; i++) {
  6588. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6589. }
  6590. }
  6591. }
  6592. else {
  6593. // src1 is not contiguous
  6594. GGML_ASSERT(false);
  6595. }
  6596. }
  6597. static void ggml_compute_forward_add_q_f32(
  6598. const struct ggml_compute_params * params,
  6599. struct ggml_tensor * dst) {
  6600. const struct ggml_tensor * src0 = dst->src[0];
  6601. const struct ggml_tensor * src1 = dst->src[1];
  6602. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6603. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6604. return;
  6605. }
  6606. const int nr = ggml_nrows(src0);
  6607. GGML_TENSOR_BINARY_OP_LOCALS
  6608. const int ith = params->ith;
  6609. const int nth = params->nth;
  6610. const enum ggml_type type = src0->type;
  6611. const enum ggml_type dtype = dst->type;
  6612. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6613. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6614. // we don't support permuted src0 or src1
  6615. GGML_ASSERT(nb00 == ggml_type_size(type));
  6616. GGML_ASSERT(nb10 == sizeof(float));
  6617. // dst cannot be transposed or permuted
  6618. GGML_ASSERT(nb0 <= nb1);
  6619. GGML_ASSERT(nb1 <= nb2);
  6620. GGML_ASSERT(nb2 <= nb3);
  6621. GGML_ASSERT(ggml_is_quantized(src0->type));
  6622. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6623. // rows per thread
  6624. const int dr = (nr + nth - 1)/nth;
  6625. // row range for this thread
  6626. const int ir0 = dr*ith;
  6627. const int ir1 = MIN(ir0 + dr, nr);
  6628. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6629. for (int ir = ir0; ir < ir1; ++ir) {
  6630. // src0 indices
  6631. const int i03 = ir/(ne02*ne01);
  6632. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6633. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6634. // src1 and dst are same shape as src0 => same indices
  6635. const int i13 = i03;
  6636. const int i12 = i02;
  6637. const int i11 = i01;
  6638. const int i3 = i03;
  6639. const int i2 = i02;
  6640. const int i1 = i01;
  6641. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6642. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6643. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6644. assert(ne00 % 32 == 0);
  6645. // unquantize row from src0 to temp buffer
  6646. dequantize_row_q(src0_row, wdata, ne00);
  6647. // add src1
  6648. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6649. // quantize row to dst
  6650. if (quantize_row_q != NULL) {
  6651. quantize_row_q(wdata, dst_row, ne00);
  6652. } else {
  6653. memcpy(dst_row, wdata, ne0*nb0);
  6654. }
  6655. }
  6656. }
  6657. static void ggml_compute_forward_add(
  6658. const struct ggml_compute_params * params,
  6659. struct ggml_tensor * dst) {
  6660. const struct ggml_tensor * src0 = dst->src[0];
  6661. const struct ggml_tensor * src1 = dst->src[1];
  6662. switch (src0->type) {
  6663. case GGML_TYPE_F32:
  6664. {
  6665. if (src1->type == GGML_TYPE_F32) {
  6666. ggml_compute_forward_add_f32(params, dst);
  6667. }
  6668. else {
  6669. GGML_ASSERT(false);
  6670. }
  6671. } break;
  6672. case GGML_TYPE_F16:
  6673. {
  6674. if (src1->type == GGML_TYPE_F16) {
  6675. ggml_compute_forward_add_f16_f16(params, dst);
  6676. }
  6677. else if (src1->type == GGML_TYPE_F32) {
  6678. ggml_compute_forward_add_f16_f32(params, dst);
  6679. }
  6680. else {
  6681. GGML_ASSERT(false);
  6682. }
  6683. } break;
  6684. case GGML_TYPE_Q4_0:
  6685. case GGML_TYPE_Q4_1:
  6686. case GGML_TYPE_Q5_0:
  6687. case GGML_TYPE_Q5_1:
  6688. case GGML_TYPE_Q8_0:
  6689. case GGML_TYPE_Q2_K:
  6690. case GGML_TYPE_Q3_K:
  6691. case GGML_TYPE_Q4_K:
  6692. case GGML_TYPE_Q5_K:
  6693. case GGML_TYPE_Q6_K:
  6694. case GGML_TYPE_IQ2_XXS:
  6695. case GGML_TYPE_IQ2_XS:
  6696. case GGML_TYPE_IQ3_XXS:
  6697. case GGML_TYPE_IQ1_S:
  6698. case GGML_TYPE_IQ1_M:
  6699. case GGML_TYPE_IQ4_NL:
  6700. case GGML_TYPE_IQ4_XS:
  6701. case GGML_TYPE_IQ3_S:
  6702. case GGML_TYPE_IQ2_S:
  6703. {
  6704. ggml_compute_forward_add_q_f32(params, dst);
  6705. } break;
  6706. default:
  6707. {
  6708. GGML_ASSERT(false);
  6709. } break;
  6710. }
  6711. }
  6712. // ggml_compute_forward_add1
  6713. static void ggml_compute_forward_add1_f32(
  6714. const struct ggml_compute_params * params,
  6715. struct ggml_tensor * dst) {
  6716. const struct ggml_tensor * src0 = dst->src[0];
  6717. const struct ggml_tensor * src1 = dst->src[1];
  6718. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6719. GGML_ASSERT(ggml_is_scalar(src1));
  6720. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6721. return;
  6722. }
  6723. const int ith = params->ith;
  6724. const int nth = params->nth;
  6725. const int nr = ggml_nrows(src0);
  6726. GGML_TENSOR_UNARY_OP_LOCALS
  6727. GGML_ASSERT( nb0 == sizeof(float));
  6728. GGML_ASSERT(nb00 == sizeof(float));
  6729. // rows per thread
  6730. const int dr = (nr + nth - 1)/nth;
  6731. // row range for this thread
  6732. const int ir0 = dr*ith;
  6733. const int ir1 = MIN(ir0 + dr, nr);
  6734. for (int ir = ir0; ir < ir1; ++ir) {
  6735. // src0 and dst are same shape => same indices
  6736. const int i3 = ir/(ne2*ne1);
  6737. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6738. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6739. #ifdef GGML_USE_ACCELERATE
  6740. UNUSED(ggml_vec_add1_f32);
  6741. vDSP_vadd(
  6742. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6743. (float *) ((char *) src1->data), 0,
  6744. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6745. ne0);
  6746. #else
  6747. ggml_vec_add1_f32(ne0,
  6748. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6749. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6750. *(float *) src1->data);
  6751. #endif
  6752. }
  6753. }
  6754. static void ggml_compute_forward_add1_f16_f32(
  6755. const struct ggml_compute_params * params,
  6756. struct ggml_tensor * dst) {
  6757. const struct ggml_tensor * src0 = dst->src[0];
  6758. const struct ggml_tensor * src1 = dst->src[1];
  6759. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6760. GGML_ASSERT(ggml_is_scalar(src1));
  6761. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6762. return;
  6763. }
  6764. // scalar to add
  6765. const float v = *(float *) src1->data;
  6766. const int ith = params->ith;
  6767. const int nth = params->nth;
  6768. const int nr = ggml_nrows(src0);
  6769. GGML_TENSOR_UNARY_OP_LOCALS
  6770. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6771. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6772. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6773. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6774. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6775. // rows per thread
  6776. const int dr = (nr + nth - 1)/nth;
  6777. // row range for this thread
  6778. const int ir0 = dr*ith;
  6779. const int ir1 = MIN(ir0 + dr, nr);
  6780. for (int ir = ir0; ir < ir1; ++ir) {
  6781. // src0 and dst are same shape => same indices
  6782. const int i3 = ir/(ne2*ne1);
  6783. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6784. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6785. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6786. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6787. for (int i = 0; i < ne0; i++) {
  6788. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6789. }
  6790. }
  6791. }
  6792. static void ggml_compute_forward_add1_f16_f16(
  6793. const struct ggml_compute_params * params,
  6794. struct ggml_tensor * dst) {
  6795. const struct ggml_tensor * src0 = dst->src[0];
  6796. const struct ggml_tensor * src1 = dst->src[1];
  6797. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6798. GGML_ASSERT(ggml_is_scalar(src1));
  6799. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6800. return;
  6801. }
  6802. // scalar to add
  6803. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6804. const int ith = params->ith;
  6805. const int nth = params->nth;
  6806. const int nr = ggml_nrows(src0);
  6807. GGML_TENSOR_UNARY_OP_LOCALS
  6808. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6809. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6810. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6811. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6812. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6813. // rows per thread
  6814. const int dr = (nr + nth - 1)/nth;
  6815. // row range for this thread
  6816. const int ir0 = dr*ith;
  6817. const int ir1 = MIN(ir0 + dr, nr);
  6818. for (int ir = ir0; ir < ir1; ++ir) {
  6819. // src0 and dst are same shape => same indices
  6820. const int i3 = ir/(ne2*ne1);
  6821. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6822. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6823. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6824. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6825. for (int i = 0; i < ne0; i++) {
  6826. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6827. }
  6828. }
  6829. }
  6830. static void ggml_compute_forward_add1_q_f32(
  6831. const struct ggml_compute_params * params,
  6832. struct ggml_tensor * dst) {
  6833. const struct ggml_tensor * src0 = dst->src[0];
  6834. const struct ggml_tensor * src1 = dst->src[1];
  6835. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6836. GGML_ASSERT(ggml_is_scalar(src1));
  6837. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6838. return;
  6839. }
  6840. // scalar to add
  6841. const float v = *(float *) src1->data;
  6842. const int ith = params->ith;
  6843. const int nth = params->nth;
  6844. const int nr = ggml_nrows(src0);
  6845. GGML_TENSOR_UNARY_OP_LOCALS
  6846. const enum ggml_type type = src0->type;
  6847. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6848. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6849. // we don't support permuted src0
  6850. GGML_ASSERT(nb00 == ggml_type_size(type));
  6851. // dst cannot be transposed or permuted
  6852. GGML_ASSERT(nb0 <= nb1);
  6853. GGML_ASSERT(nb1 <= nb2);
  6854. GGML_ASSERT(nb2 <= nb3);
  6855. GGML_ASSERT(ggml_is_quantized(src0->type));
  6856. GGML_ASSERT(dst->type == src0->type);
  6857. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6858. // rows per thread
  6859. const int dr = (nr + nth - 1)/nth;
  6860. // row range for this thread
  6861. const int ir0 = dr*ith;
  6862. const int ir1 = MIN(ir0 + dr, nr);
  6863. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6864. for (int ir = ir0; ir < ir1; ++ir) {
  6865. // src0 and dst are same shape => same indices
  6866. const int i3 = ir/(ne2*ne1);
  6867. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6868. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6869. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6870. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6871. assert(ne0 % 32 == 0);
  6872. // unquantize row from src0 to temp buffer
  6873. dequantize_row_q(src0_row, wdata, ne0);
  6874. // add src1
  6875. ggml_vec_acc1_f32(ne0, wdata, v);
  6876. // quantize row to dst
  6877. quantize_row_q(wdata, dst_row, ne0);
  6878. }
  6879. }
  6880. static void ggml_compute_forward_add1(
  6881. const struct ggml_compute_params * params,
  6882. struct ggml_tensor * dst) {
  6883. const struct ggml_tensor * src0 = dst->src[0];
  6884. const struct ggml_tensor * src1 = dst->src[1];
  6885. switch (src0->type) {
  6886. case GGML_TYPE_F32:
  6887. {
  6888. ggml_compute_forward_add1_f32(params, dst);
  6889. } break;
  6890. case GGML_TYPE_F16:
  6891. {
  6892. if (src1->type == GGML_TYPE_F16) {
  6893. ggml_compute_forward_add1_f16_f16(params, dst);
  6894. }
  6895. else if (src1->type == GGML_TYPE_F32) {
  6896. ggml_compute_forward_add1_f16_f32(params, dst);
  6897. }
  6898. else {
  6899. GGML_ASSERT(false);
  6900. }
  6901. } break;
  6902. case GGML_TYPE_Q4_0:
  6903. case GGML_TYPE_Q4_1:
  6904. case GGML_TYPE_Q5_0:
  6905. case GGML_TYPE_Q5_1:
  6906. case GGML_TYPE_Q8_0:
  6907. case GGML_TYPE_Q8_1:
  6908. case GGML_TYPE_Q2_K:
  6909. case GGML_TYPE_Q3_K:
  6910. case GGML_TYPE_Q4_K:
  6911. case GGML_TYPE_Q5_K:
  6912. case GGML_TYPE_Q6_K:
  6913. case GGML_TYPE_IQ2_XXS:
  6914. case GGML_TYPE_IQ2_XS:
  6915. case GGML_TYPE_IQ3_XXS:
  6916. case GGML_TYPE_IQ1_S:
  6917. case GGML_TYPE_IQ1_M:
  6918. case GGML_TYPE_IQ4_NL:
  6919. case GGML_TYPE_IQ4_XS:
  6920. case GGML_TYPE_IQ3_S:
  6921. case GGML_TYPE_IQ2_S:
  6922. {
  6923. ggml_compute_forward_add1_q_f32(params, dst);
  6924. } break;
  6925. default:
  6926. {
  6927. GGML_ASSERT(false);
  6928. } break;
  6929. }
  6930. }
  6931. // ggml_compute_forward_acc
  6932. static void ggml_compute_forward_acc_f32(
  6933. const struct ggml_compute_params * params,
  6934. struct ggml_tensor * dst) {
  6935. const struct ggml_tensor * src0 = dst->src[0];
  6936. const struct ggml_tensor * src1 = dst->src[1];
  6937. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6938. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6939. // view src0 and dst with these strides and data offset inbytes during acc
  6940. // nb0 is implicitly element_size because src0 and dst are contiguous
  6941. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6942. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6943. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6944. size_t offset = ((int32_t *) dst->op_params)[3];
  6945. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6946. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6947. if (params->ith != 0) {
  6948. return;
  6949. }
  6950. // memcpy needs to be synchronized across threads to avoid race conditions.
  6951. // => do it in INIT phase
  6952. memcpy(
  6953. ((char *) dst->data),
  6954. ((char *) src0->data),
  6955. ggml_nbytes(dst));
  6956. }
  6957. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6958. return;
  6959. }
  6960. const int ith = params->ith;
  6961. const int nth = params->nth;
  6962. const int nr = ggml_nrows(src1);
  6963. const int nc = src1->ne[0];
  6964. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6965. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6966. // src0 and dst as viewed during acc
  6967. const size_t nb0 = ggml_element_size(src0);
  6968. const size_t nb00 = nb0;
  6969. const size_t nb01 = nb1;
  6970. const size_t nb02 = nb2;
  6971. const size_t nb03 = nb3;
  6972. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6973. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6974. GGML_ASSERT(nb10 == sizeof(float));
  6975. // rows per thread
  6976. const int dr = (nr + nth - 1)/nth;
  6977. // row range for this thread
  6978. const int ir0 = dr*ith;
  6979. const int ir1 = MIN(ir0 + dr, nr);
  6980. for (int ir = ir0; ir < ir1; ++ir) {
  6981. // src0 and dst are viewed with shape of src1 and offset
  6982. // => same indices
  6983. const int i3 = ir/(ne12*ne11);
  6984. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6985. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6986. #ifdef GGML_USE_ACCELERATE
  6987. vDSP_vadd(
  6988. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6989. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6990. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6991. #else
  6992. ggml_vec_add_f32(nc,
  6993. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6994. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6995. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6996. #endif
  6997. }
  6998. }
  6999. static void ggml_compute_forward_acc(
  7000. const struct ggml_compute_params * params,
  7001. struct ggml_tensor * dst) {
  7002. const struct ggml_tensor * src0 = dst->src[0];
  7003. switch (src0->type) {
  7004. case GGML_TYPE_F32:
  7005. {
  7006. ggml_compute_forward_acc_f32(params, dst);
  7007. } break;
  7008. case GGML_TYPE_F16:
  7009. case GGML_TYPE_Q4_0:
  7010. case GGML_TYPE_Q4_1:
  7011. case GGML_TYPE_Q5_0:
  7012. case GGML_TYPE_Q5_1:
  7013. case GGML_TYPE_Q8_0:
  7014. case GGML_TYPE_Q8_1:
  7015. case GGML_TYPE_Q2_K:
  7016. case GGML_TYPE_Q3_K:
  7017. case GGML_TYPE_Q4_K:
  7018. case GGML_TYPE_Q5_K:
  7019. case GGML_TYPE_Q6_K:
  7020. case GGML_TYPE_IQ2_XXS:
  7021. case GGML_TYPE_IQ2_XS:
  7022. case GGML_TYPE_IQ3_XXS:
  7023. case GGML_TYPE_IQ1_S:
  7024. case GGML_TYPE_IQ1_M:
  7025. case GGML_TYPE_IQ4_NL:
  7026. case GGML_TYPE_IQ4_XS:
  7027. case GGML_TYPE_IQ3_S:
  7028. case GGML_TYPE_IQ2_S:
  7029. default:
  7030. {
  7031. GGML_ASSERT(false);
  7032. } break;
  7033. }
  7034. }
  7035. // ggml_compute_forward_sub
  7036. static void ggml_compute_forward_sub_f32(
  7037. const struct ggml_compute_params * params,
  7038. struct ggml_tensor * dst) {
  7039. const struct ggml_tensor * src0 = dst->src[0];
  7040. const struct ggml_tensor * src1 = dst->src[1];
  7041. assert(params->ith == 0);
  7042. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7043. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7044. return;
  7045. }
  7046. const int nr = ggml_nrows(src0);
  7047. GGML_TENSOR_BINARY_OP_LOCALS
  7048. GGML_ASSERT( nb0 == sizeof(float));
  7049. GGML_ASSERT(nb00 == sizeof(float));
  7050. if (nb10 == sizeof(float)) {
  7051. for (int ir = 0; ir < nr; ++ir) {
  7052. // src0, src1 and dst are same shape => same indices
  7053. const int i3 = ir/(ne2*ne1);
  7054. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7055. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7056. #ifdef GGML_USE_ACCELERATE
  7057. vDSP_vsub(
  7058. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7059. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7060. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7061. ne0);
  7062. #else
  7063. ggml_vec_sub_f32(ne0,
  7064. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7065. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7066. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7067. #endif
  7068. // }
  7069. // }
  7070. }
  7071. } else {
  7072. // src1 is not contiguous
  7073. for (int ir = 0; ir < nr; ++ir) {
  7074. // src0, src1 and dst are same shape => same indices
  7075. const int i3 = ir/(ne2*ne1);
  7076. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7077. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7078. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7079. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7080. for (int i0 = 0; i0 < ne0; i0++) {
  7081. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7082. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7083. }
  7084. }
  7085. }
  7086. }
  7087. static void ggml_compute_forward_sub(
  7088. const struct ggml_compute_params * params,
  7089. struct ggml_tensor * dst) {
  7090. const struct ggml_tensor * src0 = dst->src[0];
  7091. switch (src0->type) {
  7092. case GGML_TYPE_F32:
  7093. {
  7094. ggml_compute_forward_sub_f32(params, dst);
  7095. } break;
  7096. default:
  7097. {
  7098. GGML_ASSERT(false);
  7099. } break;
  7100. }
  7101. }
  7102. // ggml_compute_forward_mul
  7103. static void ggml_compute_forward_mul_f32(
  7104. const struct ggml_compute_params * params,
  7105. struct ggml_tensor * dst) {
  7106. const struct ggml_tensor * src0 = dst->src[0];
  7107. const struct ggml_tensor * src1 = dst->src[1];
  7108. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7109. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7110. return;
  7111. }
  7112. const int ith = params->ith;
  7113. const int nth = params->nth;
  7114. #if defined(GGML_USE_CLBLAST)
  7115. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7116. // TODO: OpenCL kernel support full broadcast
  7117. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7118. if (ith == 0) {
  7119. ggml_cl_mul(src0, src1, dst);
  7120. }
  7121. return;
  7122. }
  7123. #endif
  7124. const int64_t nr = ggml_nrows(src0);
  7125. GGML_TENSOR_BINARY_OP_LOCALS
  7126. GGML_ASSERT( nb0 == sizeof(float));
  7127. GGML_ASSERT(nb00 == sizeof(float));
  7128. if (nb10 == sizeof(float)) {
  7129. for (int64_t ir = ith; ir < nr; ir += nth) {
  7130. // src0 and dst are same shape => same indices
  7131. const int64_t i03 = ir/(ne02*ne01);
  7132. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7133. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7134. const int64_t i13 = i03 % ne13;
  7135. const int64_t i12 = i02 % ne12;
  7136. const int64_t i11 = i01 % ne11;
  7137. const int64_t nr0 = ne00 / ne10;
  7138. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7139. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7140. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7141. for (int64_t r = 0 ; r < nr0; ++r) {
  7142. #ifdef GGML_USE_ACCELERATE
  7143. UNUSED(ggml_vec_mul_f32);
  7144. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7145. #else
  7146. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7147. #endif
  7148. }
  7149. }
  7150. } else {
  7151. // src1 is not contiguous
  7152. for (int64_t ir = ith; ir < nr; ir += nth) {
  7153. // src0 and dst are same shape => same indices
  7154. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7155. const int64_t i03 = ir/(ne02*ne01);
  7156. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7157. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7158. const int64_t i13 = i03 % ne13;
  7159. const int64_t i12 = i02 % ne12;
  7160. const int64_t i11 = i01 % ne11;
  7161. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7162. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7163. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7164. const int64_t i10 = i0 % ne10;
  7165. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7166. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7167. }
  7168. }
  7169. }
  7170. }
  7171. static void ggml_compute_forward_mul(
  7172. const struct ggml_compute_params * params,
  7173. struct ggml_tensor * dst) {
  7174. const struct ggml_tensor * src0 = dst->src[0];
  7175. const struct ggml_tensor * src1 = dst->src[1];
  7176. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7177. switch (src0->type) {
  7178. case GGML_TYPE_F32:
  7179. {
  7180. ggml_compute_forward_mul_f32(params, dst);
  7181. } break;
  7182. default:
  7183. {
  7184. GGML_ASSERT(false);
  7185. } break;
  7186. }
  7187. }
  7188. // ggml_compute_forward_div
  7189. static void ggml_compute_forward_div_f32(
  7190. const struct ggml_compute_params * params,
  7191. struct ggml_tensor * dst) {
  7192. const struct ggml_tensor * src0 = dst->src[0];
  7193. const struct ggml_tensor * src1 = dst->src[1];
  7194. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7195. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7196. return;
  7197. }
  7198. const int ith = params->ith;
  7199. const int nth = params->nth;
  7200. const int64_t nr = ggml_nrows(src0);
  7201. GGML_TENSOR_BINARY_OP_LOCALS
  7202. GGML_ASSERT( nb0 == sizeof(float));
  7203. GGML_ASSERT(nb00 == sizeof(float));
  7204. if (nb10 == sizeof(float)) {
  7205. for (int64_t ir = ith; ir < nr; ir += nth) {
  7206. // src0 and dst are same shape => same indices
  7207. const int64_t i03 = ir/(ne02*ne01);
  7208. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7209. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7210. const int64_t i13 = i03 % ne13;
  7211. const int64_t i12 = i02 % ne12;
  7212. const int64_t i11 = i01 % ne11;
  7213. const int64_t nr0 = ne00 / ne10;
  7214. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7215. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7216. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7217. for (int64_t r = 0; r < nr0; ++r) {
  7218. #ifdef GGML_USE_ACCELERATE
  7219. UNUSED(ggml_vec_div_f32);
  7220. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7221. #else
  7222. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7223. #endif
  7224. }
  7225. }
  7226. } else {
  7227. // src1 is not contiguous
  7228. for (int64_t ir = ith; ir < nr; ir += nth) {
  7229. // src0 and dst are same shape => same indices
  7230. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7231. const int64_t i03 = ir/(ne02*ne01);
  7232. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7233. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7234. const int64_t i13 = i03 % ne13;
  7235. const int64_t i12 = i02 % ne12;
  7236. const int64_t i11 = i01 % ne11;
  7237. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7238. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7239. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7240. const int64_t i10 = i0 % ne10;
  7241. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7242. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7243. }
  7244. }
  7245. }
  7246. }
  7247. static void ggml_compute_forward_div(
  7248. const struct ggml_compute_params * params,
  7249. struct ggml_tensor * dst) {
  7250. const struct ggml_tensor * src0 = dst->src[0];
  7251. switch (src0->type) {
  7252. case GGML_TYPE_F32:
  7253. {
  7254. ggml_compute_forward_div_f32(params, dst);
  7255. } break;
  7256. default:
  7257. {
  7258. GGML_ASSERT(false);
  7259. } break;
  7260. }
  7261. }
  7262. // ggml_compute_forward_sqr
  7263. static void ggml_compute_forward_sqr_f32(
  7264. const struct ggml_compute_params * params,
  7265. struct ggml_tensor * dst) {
  7266. const struct ggml_tensor * src0 = dst->src[0];
  7267. assert(params->ith == 0);
  7268. assert(ggml_are_same_shape(src0, dst));
  7269. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7270. return;
  7271. }
  7272. const int n = ggml_nrows(src0);
  7273. const int nc = src0->ne[0];
  7274. assert( dst->nb[0] == sizeof(float));
  7275. assert(src0->nb[0] == sizeof(float));
  7276. for (int i = 0; i < n; i++) {
  7277. ggml_vec_sqr_f32(nc,
  7278. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7279. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7280. }
  7281. }
  7282. static void ggml_compute_forward_sqr(
  7283. const struct ggml_compute_params * params,
  7284. struct ggml_tensor * dst) {
  7285. const struct ggml_tensor * src0 = dst->src[0];
  7286. switch (src0->type) {
  7287. case GGML_TYPE_F32:
  7288. {
  7289. ggml_compute_forward_sqr_f32(params, dst);
  7290. } break;
  7291. default:
  7292. {
  7293. GGML_ASSERT(false);
  7294. } break;
  7295. }
  7296. }
  7297. // ggml_compute_forward_sqrt
  7298. static void ggml_compute_forward_sqrt_f32(
  7299. const struct ggml_compute_params * params,
  7300. struct ggml_tensor * dst) {
  7301. const struct ggml_tensor * src0 = dst->src[0];
  7302. assert(params->ith == 0);
  7303. assert(ggml_are_same_shape(src0, dst));
  7304. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7305. return;
  7306. }
  7307. const int n = ggml_nrows(src0);
  7308. const int nc = src0->ne[0];
  7309. assert( dst->nb[0] == sizeof(float));
  7310. assert(src0->nb[0] == sizeof(float));
  7311. for (int i = 0; i < n; i++) {
  7312. ggml_vec_sqrt_f32(nc,
  7313. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7314. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7315. }
  7316. }
  7317. static void ggml_compute_forward_sqrt(
  7318. const struct ggml_compute_params * params,
  7319. struct ggml_tensor * dst) {
  7320. const struct ggml_tensor * src0 = dst->src[0];
  7321. switch (src0->type) {
  7322. case GGML_TYPE_F32:
  7323. {
  7324. ggml_compute_forward_sqrt_f32(params, dst);
  7325. } break;
  7326. default:
  7327. {
  7328. GGML_ASSERT(false);
  7329. } break;
  7330. }
  7331. }
  7332. // ggml_compute_forward_log
  7333. static void ggml_compute_forward_log_f32(
  7334. const struct ggml_compute_params * params,
  7335. struct ggml_tensor * dst) {
  7336. const struct ggml_tensor * src0 = dst->src[0];
  7337. GGML_ASSERT(params->ith == 0);
  7338. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7339. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7340. return;
  7341. }
  7342. const int n = ggml_nrows(src0);
  7343. const int nc = src0->ne[0];
  7344. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7345. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7346. for (int i = 0; i < n; i++) {
  7347. ggml_vec_log_f32(nc,
  7348. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7349. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7350. }
  7351. }
  7352. static void ggml_compute_forward_log(
  7353. const struct ggml_compute_params * params,
  7354. struct ggml_tensor * dst) {
  7355. const struct ggml_tensor * src0 = dst->src[0];
  7356. switch (src0->type) {
  7357. case GGML_TYPE_F32:
  7358. {
  7359. ggml_compute_forward_log_f32(params, dst);
  7360. } break;
  7361. default:
  7362. {
  7363. GGML_ASSERT(false);
  7364. } break;
  7365. }
  7366. }
  7367. // ggml_compute_forward_sum
  7368. static void ggml_compute_forward_sum_f32(
  7369. const struct ggml_compute_params * params,
  7370. struct ggml_tensor * dst) {
  7371. const struct ggml_tensor * src0 = dst->src[0];
  7372. assert(params->ith == 0);
  7373. assert(ggml_is_scalar(dst));
  7374. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7375. return;
  7376. }
  7377. assert(ggml_is_scalar(dst));
  7378. assert(src0->nb[0] == sizeof(float));
  7379. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7380. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7381. ggml_float sum = 0;
  7382. ggml_float row_sum = 0;
  7383. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7384. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7385. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7386. ggml_vec_sum_f32_ggf(ne00,
  7387. &row_sum,
  7388. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7389. sum += row_sum;
  7390. }
  7391. }
  7392. }
  7393. ((float *) dst->data)[0] = sum;
  7394. }
  7395. static void ggml_compute_forward_sum_f16(
  7396. const struct ggml_compute_params * params,
  7397. struct ggml_tensor * dst) {
  7398. const struct ggml_tensor * src0 = dst->src[0];
  7399. assert(params->ith == 0);
  7400. assert(ggml_is_scalar(dst));
  7401. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7402. return;
  7403. }
  7404. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7405. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7406. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7407. float sum = 0;
  7408. float row_sum = 0;
  7409. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7410. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7411. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7412. ggml_vec_sum_f16_ggf(ne00,
  7413. &row_sum,
  7414. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7415. sum += row_sum;
  7416. }
  7417. }
  7418. }
  7419. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7420. }
  7421. static void ggml_compute_forward_sum(
  7422. const struct ggml_compute_params * params,
  7423. struct ggml_tensor * dst) {
  7424. const struct ggml_tensor * src0 = dst->src[0];
  7425. switch (src0->type) {
  7426. case GGML_TYPE_F32:
  7427. {
  7428. ggml_compute_forward_sum_f32(params, dst);
  7429. } break;
  7430. case GGML_TYPE_F16:
  7431. {
  7432. ggml_compute_forward_sum_f16(params, dst);
  7433. } break;
  7434. default:
  7435. {
  7436. GGML_ASSERT(false);
  7437. } break;
  7438. }
  7439. }
  7440. // ggml_compute_forward_sum_rows
  7441. static void ggml_compute_forward_sum_rows_f32(
  7442. const struct ggml_compute_params * params,
  7443. struct ggml_tensor * dst) {
  7444. const struct ggml_tensor * src0 = dst->src[0];
  7445. GGML_ASSERT(params->ith == 0);
  7446. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7447. return;
  7448. }
  7449. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7450. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7451. GGML_TENSOR_UNARY_OP_LOCALS
  7452. GGML_ASSERT(ne0 == 1);
  7453. GGML_ASSERT(ne1 == ne01);
  7454. GGML_ASSERT(ne2 == ne02);
  7455. GGML_ASSERT(ne3 == ne03);
  7456. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7457. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7458. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7459. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7460. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7461. float row_sum = 0;
  7462. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7463. dst_row[0] = row_sum;
  7464. }
  7465. }
  7466. }
  7467. }
  7468. static void ggml_compute_forward_sum_rows(
  7469. const struct ggml_compute_params * params,
  7470. struct ggml_tensor * dst) {
  7471. const struct ggml_tensor * src0 = dst->src[0];
  7472. switch (src0->type) {
  7473. case GGML_TYPE_F32:
  7474. {
  7475. ggml_compute_forward_sum_rows_f32(params, dst);
  7476. } break;
  7477. default:
  7478. {
  7479. GGML_ASSERT(false);
  7480. } break;
  7481. }
  7482. }
  7483. // ggml_compute_forward_mean
  7484. static void ggml_compute_forward_mean_f32(
  7485. const struct ggml_compute_params * params,
  7486. struct ggml_tensor * dst) {
  7487. const struct ggml_tensor * src0 = dst->src[0];
  7488. assert(params->ith == 0);
  7489. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7490. return;
  7491. }
  7492. assert(src0->nb[0] == sizeof(float));
  7493. GGML_TENSOR_UNARY_OP_LOCALS
  7494. assert(ne0 == 1);
  7495. assert(ne1 == ne01);
  7496. assert(ne2 == ne02);
  7497. assert(ne3 == ne03);
  7498. UNUSED(ne0);
  7499. UNUSED(ne1);
  7500. UNUSED(ne2);
  7501. UNUSED(ne3);
  7502. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7503. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7504. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7505. ggml_vec_sum_f32(ne00,
  7506. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7507. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7508. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7509. }
  7510. }
  7511. }
  7512. }
  7513. static void ggml_compute_forward_mean(
  7514. const struct ggml_compute_params * params,
  7515. struct ggml_tensor * dst) {
  7516. const struct ggml_tensor * src0 = dst->src[0];
  7517. switch (src0->type) {
  7518. case GGML_TYPE_F32:
  7519. {
  7520. ggml_compute_forward_mean_f32(params, dst);
  7521. } break;
  7522. default:
  7523. {
  7524. GGML_ASSERT(false);
  7525. } break;
  7526. }
  7527. }
  7528. // ggml_compute_forward_argmax
  7529. static void ggml_compute_forward_argmax_f32(
  7530. const struct ggml_compute_params * params,
  7531. struct ggml_tensor * dst) {
  7532. const struct ggml_tensor * src0 = dst->src[0];
  7533. assert(params->ith == 0);
  7534. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7535. return;
  7536. }
  7537. assert(src0->nb[0] == sizeof(float));
  7538. assert(dst->nb[0] == sizeof(float));
  7539. const int64_t ne00 = src0->ne[0];
  7540. const int64_t ne01 = src0->ne[1];
  7541. const size_t nb01 = src0->nb[1];
  7542. const size_t nb0 = dst->nb[0];
  7543. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7544. float * src = (float *) ((char *) src0->data + i1*nb01);
  7545. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7546. int v = 0;
  7547. ggml_vec_argmax_f32(ne00, &v, src);
  7548. dst_[0] = v;
  7549. }
  7550. }
  7551. static void ggml_compute_forward_argmax(
  7552. const struct ggml_compute_params * params,
  7553. struct ggml_tensor * dst) {
  7554. const struct ggml_tensor * src0 = dst->src[0];
  7555. switch (src0->type) {
  7556. case GGML_TYPE_F32:
  7557. {
  7558. ggml_compute_forward_argmax_f32(params, dst);
  7559. } break;
  7560. default:
  7561. {
  7562. GGML_ASSERT(false);
  7563. } break;
  7564. }
  7565. }
  7566. // ggml_compute_forward_repeat
  7567. static void ggml_compute_forward_repeat_f32(
  7568. const struct ggml_compute_params * params,
  7569. struct ggml_tensor * dst) {
  7570. const struct ggml_tensor * src0 = dst->src[0];
  7571. GGML_ASSERT(params->ith == 0);
  7572. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7573. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7574. return;
  7575. }
  7576. GGML_TENSOR_UNARY_OP_LOCALS
  7577. // guaranteed to be an integer due to the check in ggml_can_repeat
  7578. const int nr0 = (int)(ne0/ne00);
  7579. const int nr1 = (int)(ne1/ne01);
  7580. const int nr2 = (int)(ne2/ne02);
  7581. const int nr3 = (int)(ne3/ne03);
  7582. // TODO: support for transposed / permuted tensors
  7583. GGML_ASSERT(nb0 == sizeof(float));
  7584. GGML_ASSERT(nb00 == sizeof(float));
  7585. // TODO: maybe this is not optimal?
  7586. for (int i3 = 0; i3 < nr3; i3++) {
  7587. for (int k3 = 0; k3 < ne03; k3++) {
  7588. for (int i2 = 0; i2 < nr2; i2++) {
  7589. for (int k2 = 0; k2 < ne02; k2++) {
  7590. for (int i1 = 0; i1 < nr1; i1++) {
  7591. for (int k1 = 0; k1 < ne01; k1++) {
  7592. for (int i0 = 0; i0 < nr0; i0++) {
  7593. ggml_vec_cpy_f32(ne00,
  7594. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7595. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7596. }
  7597. }
  7598. }
  7599. }
  7600. }
  7601. }
  7602. }
  7603. }
  7604. static void ggml_compute_forward_repeat_f16(
  7605. const struct ggml_compute_params * params,
  7606. struct ggml_tensor * dst) {
  7607. const struct ggml_tensor * src0 = dst->src[0];
  7608. GGML_ASSERT(params->ith == 0);
  7609. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7610. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7611. return;
  7612. }
  7613. GGML_TENSOR_UNARY_OP_LOCALS
  7614. // guaranteed to be an integer due to the check in ggml_can_repeat
  7615. const int nr0 = (int)(ne0/ne00);
  7616. const int nr1 = (int)(ne1/ne01);
  7617. const int nr2 = (int)(ne2/ne02);
  7618. const int nr3 = (int)(ne3/ne03);
  7619. // TODO: support for transposed / permuted tensors
  7620. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7621. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7622. // TODO: maybe this is not optimal?
  7623. for (int i3 = 0; i3 < nr3; i3++) {
  7624. for (int k3 = 0; k3 < ne03; k3++) {
  7625. for (int i2 = 0; i2 < nr2; i2++) {
  7626. for (int k2 = 0; k2 < ne02; k2++) {
  7627. for (int i1 = 0; i1 < nr1; i1++) {
  7628. for (int k1 = 0; k1 < ne01; k1++) {
  7629. for (int i0 = 0; i0 < nr0; i0++) {
  7630. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7631. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7632. // ggml_vec_cpy_f16(ne00, y, x)
  7633. for (int i = 0; i < ne00; ++i) {
  7634. y[i] = x[i];
  7635. }
  7636. }
  7637. }
  7638. }
  7639. }
  7640. }
  7641. }
  7642. }
  7643. }
  7644. static void ggml_compute_forward_repeat(
  7645. const struct ggml_compute_params * params,
  7646. struct ggml_tensor * dst) {
  7647. const struct ggml_tensor * src0 = dst->src[0];
  7648. switch (src0->type) {
  7649. case GGML_TYPE_F16:
  7650. case GGML_TYPE_I16:
  7651. {
  7652. ggml_compute_forward_repeat_f16(params, dst);
  7653. } break;
  7654. case GGML_TYPE_F32:
  7655. case GGML_TYPE_I32:
  7656. {
  7657. ggml_compute_forward_repeat_f32(params, dst);
  7658. } break;
  7659. default:
  7660. {
  7661. GGML_ASSERT(false);
  7662. } break;
  7663. }
  7664. }
  7665. // ggml_compute_forward_repeat_back
  7666. static void ggml_compute_forward_repeat_back_f32(
  7667. const struct ggml_compute_params * params,
  7668. struct ggml_tensor * dst) {
  7669. const struct ggml_tensor * src0 = dst->src[0];
  7670. GGML_ASSERT(params->ith == 0);
  7671. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7672. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7673. return;
  7674. }
  7675. GGML_TENSOR_UNARY_OP_LOCALS
  7676. // guaranteed to be an integer due to the check in ggml_can_repeat
  7677. const int nr0 = (int)(ne00/ne0);
  7678. const int nr1 = (int)(ne01/ne1);
  7679. const int nr2 = (int)(ne02/ne2);
  7680. const int nr3 = (int)(ne03/ne3);
  7681. // TODO: support for transposed / permuted tensors
  7682. GGML_ASSERT(nb0 == sizeof(float));
  7683. GGML_ASSERT(nb00 == sizeof(float));
  7684. if (ggml_is_contiguous(dst)) {
  7685. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7686. } else {
  7687. for (int k3 = 0; k3 < ne3; k3++) {
  7688. for (int k2 = 0; k2 < ne2; k2++) {
  7689. for (int k1 = 0; k1 < ne1; k1++) {
  7690. ggml_vec_set_f32(ne0,
  7691. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7692. 0);
  7693. }
  7694. }
  7695. }
  7696. }
  7697. // TODO: maybe this is not optimal?
  7698. for (int i3 = 0; i3 < nr3; i3++) {
  7699. for (int k3 = 0; k3 < ne3; k3++) {
  7700. for (int i2 = 0; i2 < nr2; i2++) {
  7701. for (int k2 = 0; k2 < ne2; k2++) {
  7702. for (int i1 = 0; i1 < nr1; i1++) {
  7703. for (int k1 = 0; k1 < ne1; k1++) {
  7704. for (int i0 = 0; i0 < nr0; i0++) {
  7705. ggml_vec_acc_f32(ne0,
  7706. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7707. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7708. }
  7709. }
  7710. }
  7711. }
  7712. }
  7713. }
  7714. }
  7715. }
  7716. static void ggml_compute_forward_repeat_back(
  7717. const struct ggml_compute_params * params,
  7718. struct ggml_tensor * dst) {
  7719. const struct ggml_tensor * src0 = dst->src[0];
  7720. switch (src0->type) {
  7721. case GGML_TYPE_F32:
  7722. {
  7723. ggml_compute_forward_repeat_back_f32(params, dst);
  7724. } break;
  7725. default:
  7726. {
  7727. GGML_ASSERT(false);
  7728. } break;
  7729. }
  7730. }
  7731. // ggml_compute_forward_concat
  7732. static void ggml_compute_forward_concat_f32(
  7733. const struct ggml_compute_params * params,
  7734. struct ggml_tensor * dst) {
  7735. const struct ggml_tensor * src0 = dst->src[0];
  7736. const struct ggml_tensor * src1 = dst->src[1];
  7737. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7738. return;
  7739. }
  7740. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7741. const int ith = params->ith;
  7742. const int nth = params->nth;
  7743. GGML_TENSOR_BINARY_OP_LOCALS
  7744. // TODO: support for transposed / permuted tensors
  7745. GGML_ASSERT(nb0 == sizeof(float));
  7746. GGML_ASSERT(nb00 == sizeof(float));
  7747. GGML_ASSERT(nb10 == sizeof(float));
  7748. for (int i3 = 0; i3 < ne3; i3++) {
  7749. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7750. if (i2 < ne02) { // src0
  7751. for (int i1 = 0; i1 < ne1; i1++) {
  7752. for (int i0 = 0; i0 < ne0; i0++) {
  7753. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7754. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7755. *y = *x;
  7756. }
  7757. }
  7758. } // src1
  7759. else {
  7760. for (int i1 = 0; i1 < ne1; i1++) {
  7761. for (int i0 = 0; i0 < ne0; i0++) {
  7762. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7763. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7764. *y = *x;
  7765. }
  7766. }
  7767. }
  7768. }
  7769. }
  7770. }
  7771. static void ggml_compute_forward_concat(
  7772. const struct ggml_compute_params* params,
  7773. struct ggml_tensor* dst) {
  7774. const struct ggml_tensor * src0 = dst->src[0];
  7775. switch (src0->type) {
  7776. case GGML_TYPE_F32:
  7777. case GGML_TYPE_I32:
  7778. {
  7779. ggml_compute_forward_concat_f32(params, dst);
  7780. } break;
  7781. default:
  7782. {
  7783. GGML_ASSERT(false);
  7784. } break;
  7785. }
  7786. }
  7787. // ggml_compute_forward_abs
  7788. static void ggml_compute_forward_abs_f32(
  7789. const struct ggml_compute_params * params,
  7790. struct ggml_tensor * dst) {
  7791. const struct ggml_tensor * src0 = dst->src[0];
  7792. assert(params->ith == 0);
  7793. assert(ggml_are_same_shape(src0, dst));
  7794. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7795. return;
  7796. }
  7797. const int n = ggml_nrows(src0);
  7798. const int nc = src0->ne[0];
  7799. assert(dst->nb[0] == sizeof(float));
  7800. assert(src0->nb[0] == sizeof(float));
  7801. for (int i = 0; i < n; i++) {
  7802. ggml_vec_abs_f32(nc,
  7803. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7804. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7805. }
  7806. }
  7807. static void ggml_compute_forward_abs(
  7808. const struct ggml_compute_params * params,
  7809. struct ggml_tensor * dst) {
  7810. const struct ggml_tensor * src0 = dst->src[0];
  7811. switch (src0->type) {
  7812. case GGML_TYPE_F32:
  7813. {
  7814. ggml_compute_forward_abs_f32(params, dst);
  7815. } break;
  7816. default:
  7817. {
  7818. GGML_ASSERT(false);
  7819. } break;
  7820. }
  7821. }
  7822. // ggml_compute_forward_sgn
  7823. static void ggml_compute_forward_sgn_f32(
  7824. const struct ggml_compute_params * params,
  7825. struct ggml_tensor * dst) {
  7826. const struct ggml_tensor * src0 = dst->src[0];
  7827. assert(params->ith == 0);
  7828. assert(ggml_are_same_shape(src0, dst));
  7829. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7830. return;
  7831. }
  7832. const int n = ggml_nrows(src0);
  7833. const int nc = src0->ne[0];
  7834. assert(dst->nb[0] == sizeof(float));
  7835. assert(src0->nb[0] == sizeof(float));
  7836. for (int i = 0; i < n; i++) {
  7837. ggml_vec_sgn_f32(nc,
  7838. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7839. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7840. }
  7841. }
  7842. static void ggml_compute_forward_sgn(
  7843. const struct ggml_compute_params * params,
  7844. struct ggml_tensor * dst) {
  7845. const struct ggml_tensor * src0 = dst->src[0];
  7846. switch (src0->type) {
  7847. case GGML_TYPE_F32:
  7848. {
  7849. ggml_compute_forward_sgn_f32(params, dst);
  7850. } break;
  7851. default:
  7852. {
  7853. GGML_ASSERT(false);
  7854. } break;
  7855. }
  7856. }
  7857. // ggml_compute_forward_neg
  7858. static void ggml_compute_forward_neg_f32(
  7859. const struct ggml_compute_params * params,
  7860. struct ggml_tensor * dst) {
  7861. const struct ggml_tensor * src0 = dst->src[0];
  7862. assert(params->ith == 0);
  7863. assert(ggml_are_same_shape(src0, dst));
  7864. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7865. return;
  7866. }
  7867. const int n = ggml_nrows(src0);
  7868. const int nc = src0->ne[0];
  7869. assert(dst->nb[0] == sizeof(float));
  7870. assert(src0->nb[0] == sizeof(float));
  7871. for (int i = 0; i < n; i++) {
  7872. ggml_vec_neg_f32(nc,
  7873. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7874. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7875. }
  7876. }
  7877. static void ggml_compute_forward_neg(
  7878. const struct ggml_compute_params * params,
  7879. struct ggml_tensor * dst) {
  7880. const struct ggml_tensor * src0 = dst->src[0];
  7881. switch (src0->type) {
  7882. case GGML_TYPE_F32:
  7883. {
  7884. ggml_compute_forward_neg_f32(params, dst);
  7885. } break;
  7886. default:
  7887. {
  7888. GGML_ASSERT(false);
  7889. } break;
  7890. }
  7891. }
  7892. // ggml_compute_forward_step
  7893. static void ggml_compute_forward_step_f32(
  7894. const struct ggml_compute_params * params,
  7895. struct ggml_tensor * dst) {
  7896. const struct ggml_tensor * src0 = dst->src[0];
  7897. assert(params->ith == 0);
  7898. assert(ggml_are_same_shape(src0, dst));
  7899. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7900. return;
  7901. }
  7902. const int n = ggml_nrows(src0);
  7903. const int nc = src0->ne[0];
  7904. assert(dst->nb[0] == sizeof(float));
  7905. assert(src0->nb[0] == sizeof(float));
  7906. for (int i = 0; i < n; i++) {
  7907. ggml_vec_step_f32(nc,
  7908. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7909. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7910. }
  7911. }
  7912. static void ggml_compute_forward_step(
  7913. const struct ggml_compute_params * params,
  7914. struct ggml_tensor * dst) {
  7915. const struct ggml_tensor * src0 = dst->src[0];
  7916. switch (src0->type) {
  7917. case GGML_TYPE_F32:
  7918. {
  7919. ggml_compute_forward_step_f32(params, dst);
  7920. } break;
  7921. default:
  7922. {
  7923. GGML_ASSERT(false);
  7924. } break;
  7925. }
  7926. }
  7927. // ggml_compute_forward_tanh
  7928. static void ggml_compute_forward_tanh_f32(
  7929. const struct ggml_compute_params * params,
  7930. struct ggml_tensor * dst) {
  7931. const struct ggml_tensor * src0 = dst->src[0];
  7932. assert(params->ith == 0);
  7933. assert(ggml_are_same_shape(src0, dst));
  7934. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7935. return;
  7936. }
  7937. const int n = ggml_nrows(src0);
  7938. const int nc = src0->ne[0];
  7939. assert(dst->nb[0] == sizeof(float));
  7940. assert(src0->nb[0] == sizeof(float));
  7941. for (int i = 0; i < n; i++) {
  7942. ggml_vec_tanh_f32(nc,
  7943. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7944. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7945. }
  7946. }
  7947. static void ggml_compute_forward_tanh(
  7948. const struct ggml_compute_params * params,
  7949. struct ggml_tensor * dst) {
  7950. const struct ggml_tensor * src0 = dst->src[0];
  7951. switch (src0->type) {
  7952. case GGML_TYPE_F32:
  7953. {
  7954. ggml_compute_forward_tanh_f32(params, dst);
  7955. } break;
  7956. default:
  7957. {
  7958. GGML_ASSERT(false);
  7959. } break;
  7960. }
  7961. }
  7962. // ggml_compute_forward_elu
  7963. static void ggml_compute_forward_elu_f32(
  7964. const struct ggml_compute_params * params,
  7965. struct ggml_tensor * dst) {
  7966. const struct ggml_tensor * src0 = dst->src[0];
  7967. assert(params->ith == 0);
  7968. assert(ggml_are_same_shape(src0, dst));
  7969. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7970. return;
  7971. }
  7972. const int n = ggml_nrows(src0);
  7973. const int nc = src0->ne[0];
  7974. assert(dst->nb[0] == sizeof(float));
  7975. assert(src0->nb[0] == sizeof(float));
  7976. for (int i = 0; i < n; i++) {
  7977. ggml_vec_elu_f32(nc,
  7978. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7979. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7980. }
  7981. }
  7982. static void ggml_compute_forward_elu(
  7983. const struct ggml_compute_params * params,
  7984. struct ggml_tensor * dst) {
  7985. const struct ggml_tensor * src0 = dst->src[0];
  7986. switch (src0->type) {
  7987. case GGML_TYPE_F32:
  7988. {
  7989. ggml_compute_forward_elu_f32(params, dst);
  7990. } break;
  7991. default:
  7992. {
  7993. GGML_ASSERT(false);
  7994. } break;
  7995. }
  7996. }
  7997. // ggml_compute_forward_relu
  7998. static void ggml_compute_forward_relu_f32(
  7999. const struct ggml_compute_params * params,
  8000. struct ggml_tensor * dst) {
  8001. const struct ggml_tensor * src0 = dst->src[0];
  8002. assert(params->ith == 0);
  8003. assert(ggml_are_same_shape(src0, dst));
  8004. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8005. return;
  8006. }
  8007. const int n = ggml_nrows(src0);
  8008. const int nc = src0->ne[0];
  8009. assert(dst->nb[0] == sizeof(float));
  8010. assert(src0->nb[0] == sizeof(float));
  8011. for (int i = 0; i < n; i++) {
  8012. ggml_vec_relu_f32(nc,
  8013. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8014. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8015. }
  8016. }
  8017. static void ggml_compute_forward_relu(
  8018. const struct ggml_compute_params * params,
  8019. struct ggml_tensor * dst) {
  8020. const struct ggml_tensor * src0 = dst->src[0];
  8021. switch (src0->type) {
  8022. case GGML_TYPE_F32:
  8023. {
  8024. ggml_compute_forward_relu_f32(params, dst);
  8025. } break;
  8026. default:
  8027. {
  8028. GGML_ASSERT(false);
  8029. } break;
  8030. }
  8031. }
  8032. // ggml_compute_forward_gelu
  8033. static void ggml_compute_forward_gelu_f32(
  8034. const struct ggml_compute_params * params,
  8035. struct ggml_tensor * dst) {
  8036. const struct ggml_tensor * src0 = dst->src[0];
  8037. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8038. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8039. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8040. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8041. return;
  8042. }
  8043. const int ith = params->ith;
  8044. const int nth = params->nth;
  8045. const int nc = src0->ne[0];
  8046. const int nr = ggml_nrows(src0);
  8047. // rows per thread
  8048. const int dr = (nr + nth - 1)/nth;
  8049. // row range for this thread
  8050. const int ir0 = dr*ith;
  8051. const int ir1 = MIN(ir0 + dr, nr);
  8052. for (int i1 = ir0; i1 < ir1; i1++) {
  8053. ggml_vec_gelu_f32(nc,
  8054. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8055. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8056. #ifndef NDEBUG
  8057. for (int k = 0; k < nc; k++) {
  8058. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8059. UNUSED(x);
  8060. assert(!isnan(x));
  8061. assert(!isinf(x));
  8062. }
  8063. #endif
  8064. }
  8065. }
  8066. static void ggml_compute_forward_gelu(
  8067. const struct ggml_compute_params * params,
  8068. struct ggml_tensor * dst) {
  8069. const struct ggml_tensor * src0 = dst->src[0];
  8070. switch (src0->type) {
  8071. case GGML_TYPE_F32:
  8072. {
  8073. ggml_compute_forward_gelu_f32(params, dst);
  8074. } break;
  8075. default:
  8076. {
  8077. GGML_ASSERT(false);
  8078. } break;
  8079. }
  8080. }
  8081. // ggml_compute_forward_gelu_quick
  8082. static void ggml_compute_forward_gelu_quick_f32(
  8083. const struct ggml_compute_params * params,
  8084. struct ggml_tensor * dst) {
  8085. const struct ggml_tensor * src0 = dst->src[0];
  8086. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8087. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8088. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8089. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8090. return;
  8091. }
  8092. const int ith = params->ith;
  8093. const int nth = params->nth;
  8094. const int nc = src0->ne[0];
  8095. const int nr = ggml_nrows(src0);
  8096. // rows per thread
  8097. const int dr = (nr + nth - 1)/nth;
  8098. // row range for this thread
  8099. const int ir0 = dr*ith;
  8100. const int ir1 = MIN(ir0 + dr, nr);
  8101. for (int i1 = ir0; i1 < ir1; i1++) {
  8102. ggml_vec_gelu_quick_f32(nc,
  8103. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8104. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8105. #ifndef NDEBUG
  8106. for (int k = 0; k < nc; k++) {
  8107. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8108. UNUSED(x);
  8109. assert(!isnan(x));
  8110. assert(!isinf(x));
  8111. }
  8112. #endif
  8113. }
  8114. }
  8115. static void ggml_compute_forward_gelu_quick(
  8116. const struct ggml_compute_params * params,
  8117. struct ggml_tensor * dst) {
  8118. const struct ggml_tensor * src0 = dst->src[0];
  8119. switch (src0->type) {
  8120. case GGML_TYPE_F32:
  8121. {
  8122. ggml_compute_forward_gelu_quick_f32(params, dst);
  8123. } break;
  8124. default:
  8125. {
  8126. GGML_ASSERT(false);
  8127. } break;
  8128. }
  8129. }
  8130. // ggml_compute_forward_silu
  8131. static void ggml_compute_forward_silu_f32(
  8132. const struct ggml_compute_params * params,
  8133. struct ggml_tensor * dst) {
  8134. const struct ggml_tensor * src0 = dst->src[0];
  8135. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8136. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8137. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8138. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8139. return;
  8140. }
  8141. const int ith = params->ith;
  8142. const int nth = params->nth;
  8143. const int nc = src0->ne[0];
  8144. const int nr = ggml_nrows(src0);
  8145. // rows per thread
  8146. const int dr = (nr + nth - 1)/nth;
  8147. // row range for this thread
  8148. const int ir0 = dr*ith;
  8149. const int ir1 = MIN(ir0 + dr, nr);
  8150. for (int i1 = ir0; i1 < ir1; i1++) {
  8151. ggml_vec_silu_f32(nc,
  8152. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8153. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8154. #ifndef NDEBUG
  8155. for (int k = 0; k < nc; k++) {
  8156. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8157. UNUSED(x);
  8158. assert(!isnan(x));
  8159. assert(!isinf(x));
  8160. }
  8161. #endif
  8162. }
  8163. }
  8164. static void ggml_compute_forward_silu(
  8165. const struct ggml_compute_params * params,
  8166. struct ggml_tensor * dst) {
  8167. const struct ggml_tensor * src0 = dst->src[0];
  8168. switch (src0->type) {
  8169. case GGML_TYPE_F32:
  8170. {
  8171. ggml_compute_forward_silu_f32(params, dst);
  8172. } break;
  8173. default:
  8174. {
  8175. GGML_ASSERT(false);
  8176. } break;
  8177. }
  8178. }
  8179. // ggml_compute_forward_leaky_relu
  8180. static void ggml_compute_forward_leaky_relu_f32(
  8181. const struct ggml_compute_params * params,
  8182. struct ggml_tensor * dst) {
  8183. const struct ggml_tensor * src0 = dst->src[0];
  8184. assert(params->ith == 0);
  8185. assert(ggml_are_same_shape(src0, dst));
  8186. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8187. return;
  8188. }
  8189. const int n = ggml_nrows(src0);
  8190. const int nc = src0->ne[0];
  8191. float negative_slope;
  8192. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8193. assert(dst->nb[0] == sizeof(float));
  8194. assert(src0->nb[0] == sizeof(float));
  8195. for (int i = 0; i < n; i++) {
  8196. ggml_vec_leaky_relu_f32(nc,
  8197. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8198. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8199. }
  8200. }
  8201. static void ggml_compute_forward_leaky_relu(
  8202. const struct ggml_compute_params * params,
  8203. struct ggml_tensor * dst) {
  8204. const struct ggml_tensor * src0 = dst->src[0];
  8205. switch (src0->type) {
  8206. case GGML_TYPE_F32:
  8207. {
  8208. ggml_compute_forward_leaky_relu_f32(params, dst);
  8209. } break;
  8210. default:
  8211. {
  8212. GGML_ASSERT(false);
  8213. } break;
  8214. }
  8215. }
  8216. // ggml_compute_forward_silu_back
  8217. static void ggml_compute_forward_silu_back_f32(
  8218. const struct ggml_compute_params * params,
  8219. struct ggml_tensor * dst) {
  8220. const struct ggml_tensor * src0 = dst->src[0];
  8221. const struct ggml_tensor * grad = dst->src[1];
  8222. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8223. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8224. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8225. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8226. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8227. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8228. return;
  8229. }
  8230. const int ith = params->ith;
  8231. const int nth = params->nth;
  8232. const int nc = src0->ne[0];
  8233. const int nr = ggml_nrows(src0);
  8234. // rows per thread
  8235. const int dr = (nr + nth - 1)/nth;
  8236. // row range for this thread
  8237. const int ir0 = dr*ith;
  8238. const int ir1 = MIN(ir0 + dr, nr);
  8239. for (int i1 = ir0; i1 < ir1; i1++) {
  8240. ggml_vec_silu_backward_f32(nc,
  8241. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8242. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8243. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8244. #ifndef NDEBUG
  8245. for (int k = 0; k < nc; k++) {
  8246. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8247. UNUSED(x);
  8248. assert(!isnan(x));
  8249. assert(!isinf(x));
  8250. }
  8251. #endif
  8252. }
  8253. }
  8254. static void ggml_compute_forward_silu_back(
  8255. const struct ggml_compute_params * params,
  8256. struct ggml_tensor * dst) {
  8257. const struct ggml_tensor * src0 = dst->src[0];
  8258. switch (src0->type) {
  8259. case GGML_TYPE_F32:
  8260. {
  8261. ggml_compute_forward_silu_back_f32(params, dst);
  8262. } break;
  8263. default:
  8264. {
  8265. GGML_ASSERT(false);
  8266. } break;
  8267. }
  8268. }
  8269. static void ggml_compute_forward_hardswish_f32(
  8270. const struct ggml_compute_params * params,
  8271. struct ggml_tensor * dst) {
  8272. const struct ggml_tensor * src0 = dst->src[0];
  8273. assert(params->ith == 0);
  8274. assert(ggml_are_same_shape(src0, dst));
  8275. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8276. return;
  8277. }
  8278. const int n = ggml_nrows(src0);
  8279. const int nc = src0->ne[0];
  8280. assert(dst->nb[0] == sizeof(float));
  8281. assert(src0->nb[0] == sizeof(float));
  8282. for (int i = 0; i < n; i++) {
  8283. ggml_vec_hardswish_f32(nc,
  8284. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8285. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8286. }
  8287. }
  8288. static void ggml_compute_forward_hardswish(
  8289. const struct ggml_compute_params * params,
  8290. struct ggml_tensor * dst) {
  8291. const struct ggml_tensor * src0 = dst->src[0];
  8292. switch (src0->type) {
  8293. case GGML_TYPE_F32:
  8294. {
  8295. ggml_compute_forward_hardswish_f32(params, dst);
  8296. } break;
  8297. default:
  8298. {
  8299. GGML_ASSERT(false);
  8300. } break;
  8301. }
  8302. }
  8303. static void ggml_compute_forward_hardsigmoid_f32(
  8304. const struct ggml_compute_params * params,
  8305. struct ggml_tensor * dst) {
  8306. const struct ggml_tensor * src0 = dst->src[0];
  8307. assert(params->ith == 0);
  8308. assert(ggml_are_same_shape(src0, dst));
  8309. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8310. return;
  8311. }
  8312. const int n = ggml_nrows(src0);
  8313. const int nc = src0->ne[0];
  8314. assert(dst->nb[0] == sizeof(float));
  8315. assert(src0->nb[0] == sizeof(float));
  8316. for (int i = 0; i < n; i++) {
  8317. ggml_vec_hardsigmoid_f32(nc,
  8318. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8319. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8320. }
  8321. }
  8322. static void ggml_compute_forward_hardsigmoid(
  8323. const struct ggml_compute_params * params,
  8324. struct ggml_tensor * dst) {
  8325. const struct ggml_tensor * src0 = dst->src[0];
  8326. switch (src0->type) {
  8327. case GGML_TYPE_F32:
  8328. {
  8329. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8330. } break;
  8331. default:
  8332. {
  8333. GGML_ASSERT(false);
  8334. } break;
  8335. }
  8336. }
  8337. // ggml_compute_forward_norm
  8338. static void ggml_compute_forward_norm_f32(
  8339. const struct ggml_compute_params * params,
  8340. struct ggml_tensor * dst) {
  8341. const struct ggml_tensor * src0 = dst->src[0];
  8342. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8343. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8344. return;
  8345. }
  8346. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8347. const int ith = params->ith;
  8348. const int nth = params->nth;
  8349. GGML_TENSOR_UNARY_OP_LOCALS
  8350. float eps;
  8351. memcpy(&eps, dst->op_params, sizeof(float));
  8352. GGML_ASSERT(eps > 0.0f);
  8353. // TODO: optimize
  8354. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8355. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8356. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8357. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8358. ggml_float sum = 0.0;
  8359. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8360. sum += (ggml_float)x[i00];
  8361. }
  8362. float mean = sum/ne00;
  8363. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8364. ggml_float sum2 = 0.0;
  8365. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8366. float v = x[i00] - mean;
  8367. y[i00] = v;
  8368. sum2 += (ggml_float)(v*v);
  8369. }
  8370. float variance = sum2/ne00;
  8371. const float scale = 1.0f/sqrtf(variance + eps);
  8372. ggml_vec_scale_f32(ne00, y, scale);
  8373. }
  8374. }
  8375. }
  8376. }
  8377. static void ggml_compute_forward_norm(
  8378. const struct ggml_compute_params * params,
  8379. struct ggml_tensor * dst) {
  8380. const struct ggml_tensor * src0 = dst->src[0];
  8381. switch (src0->type) {
  8382. case GGML_TYPE_F32:
  8383. {
  8384. ggml_compute_forward_norm_f32(params, dst);
  8385. } break;
  8386. default:
  8387. {
  8388. GGML_ASSERT(false);
  8389. } break;
  8390. }
  8391. }
  8392. // ggml_compute_forward_group_rms_norm
  8393. static void ggml_compute_forward_rms_norm_f32(
  8394. const struct ggml_compute_params * params,
  8395. struct ggml_tensor * dst) {
  8396. const struct ggml_tensor * src0 = dst->src[0];
  8397. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8398. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8399. return;
  8400. }
  8401. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8402. const int ith = params->ith;
  8403. const int nth = params->nth;
  8404. GGML_TENSOR_UNARY_OP_LOCALS
  8405. float eps;
  8406. memcpy(&eps, dst->op_params, sizeof(float));
  8407. GGML_ASSERT(eps > 0.0f);
  8408. // TODO: optimize
  8409. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8410. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8411. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8412. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8413. ggml_float sum = 0.0;
  8414. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8415. sum += (ggml_float)(x[i00] * x[i00]);
  8416. }
  8417. const float mean = sum/ne00;
  8418. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8419. memcpy(y, x, ne00 * sizeof(float));
  8420. // for (int i00 = 0; i00 < ne00; i00++) {
  8421. // y[i00] = x[i00];
  8422. // }
  8423. const float scale = 1.0f/sqrtf(mean + eps);
  8424. ggml_vec_scale_f32(ne00, y, scale);
  8425. }
  8426. }
  8427. }
  8428. }
  8429. static void ggml_compute_forward_rms_norm(
  8430. const struct ggml_compute_params * params,
  8431. struct ggml_tensor * dst) {
  8432. const struct ggml_tensor * src0 = dst->src[0];
  8433. switch (src0->type) {
  8434. case GGML_TYPE_F32:
  8435. {
  8436. ggml_compute_forward_rms_norm_f32(params, dst);
  8437. } break;
  8438. default:
  8439. {
  8440. GGML_ASSERT(false);
  8441. } break;
  8442. }
  8443. }
  8444. static void ggml_compute_forward_rms_norm_back_f32(
  8445. const struct ggml_compute_params * params,
  8446. struct ggml_tensor * dst) {
  8447. const struct ggml_tensor * src0 = dst->src[0];
  8448. const struct ggml_tensor * src1 = dst->src[1];
  8449. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8450. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8451. return;
  8452. }
  8453. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8454. const int ith = params->ith;
  8455. const int nth = params->nth;
  8456. GGML_TENSOR_BINARY_OP_LOCALS
  8457. float eps;
  8458. memcpy(&eps, dst->op_params, sizeof(float));
  8459. // TODO: optimize
  8460. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8461. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8462. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8463. // src1 is same shape as src0 => same indices
  8464. const int64_t i11 = i01;
  8465. const int64_t i12 = i02;
  8466. const int64_t i13 = i03;
  8467. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8468. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8469. ggml_float sum_xx = 0.0;
  8470. ggml_float sum_xdz = 0.0;
  8471. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8472. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8473. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8474. }
  8475. //const float mean = (float)(sum_xx)/ne00;
  8476. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8477. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8478. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8479. // we could cache rms from forward pass to improve performance.
  8480. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8481. //const float rms = sqrtf(mean_eps);
  8482. const float rrms = 1.0f / sqrtf(mean_eps);
  8483. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8484. {
  8485. // z = rms_norm(x)
  8486. //
  8487. // rms_norm(src0) =
  8488. // scale(
  8489. // src0,
  8490. // div(
  8491. // 1,
  8492. // sqrt(
  8493. // add(
  8494. // scale(
  8495. // sum(
  8496. // sqr(
  8497. // src0)),
  8498. // (1.0/N)),
  8499. // eps))));
  8500. // postorder:
  8501. // ## op args grad
  8502. // 00 param src0 grad[#00]
  8503. // 01 const 1
  8504. // 02 sqr (#00) grad[#02]
  8505. // 03 sum (#02) grad[#03]
  8506. // 04 const 1/N
  8507. // 05 scale (#03, #04) grad[#05]
  8508. // 06 const eps
  8509. // 07 add (#05, #06) grad[#07]
  8510. // 08 sqrt (#07) grad[#08]
  8511. // 09 div (#01,#08) grad[#09]
  8512. // 10 scale (#00,#09) grad[#10]
  8513. //
  8514. // backward pass, given grad[#10]
  8515. // #10: scale
  8516. // grad[#00] += scale(grad[#10],#09)
  8517. // grad[#09] += sum(mul(grad[#10],#00))
  8518. // #09: div
  8519. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8520. // #08: sqrt
  8521. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8522. // #07: add
  8523. // grad[#05] += grad[#07]
  8524. // #05: scale
  8525. // grad[#03] += scale(grad[#05],#04)
  8526. // #03: sum
  8527. // grad[#02] += repeat(grad[#03], #02)
  8528. // #02:
  8529. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8530. //
  8531. // substitute and simplify:
  8532. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8533. // grad[#02] = repeat(grad[#03], #02)
  8534. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8535. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8536. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8537. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8538. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8539. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8540. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8541. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8542. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8543. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8544. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8545. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8546. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8547. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8548. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8549. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8550. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8551. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8552. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8553. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8554. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8555. // a = b*c + d*e
  8556. // a = b*c*f/f + d*e*f/f
  8557. // a = (b*c*f + d*e*f)*(1/f)
  8558. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8559. // a = (b + d*e/c)*c
  8560. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8561. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8562. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8563. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8564. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8565. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8566. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8567. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8568. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8569. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8570. }
  8571. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8572. // post-order:
  8573. // dx := x
  8574. // dx := scale(dx,-mean_xdz/mean_eps)
  8575. // dx := add(dx, dz)
  8576. // dx := scale(dx, rrms)
  8577. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8578. ggml_vec_cpy_f32 (ne00, dx, x);
  8579. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8580. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8581. ggml_vec_acc_f32 (ne00, dx, dz);
  8582. ggml_vec_scale_f32(ne00, dx, rrms);
  8583. }
  8584. }
  8585. }
  8586. }
  8587. static void ggml_compute_forward_rms_norm_back(
  8588. const struct ggml_compute_params * params,
  8589. struct ggml_tensor * dst) {
  8590. const struct ggml_tensor * src0 = dst->src[0];
  8591. switch (src0->type) {
  8592. case GGML_TYPE_F32:
  8593. {
  8594. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8595. } break;
  8596. default:
  8597. {
  8598. GGML_ASSERT(false);
  8599. } break;
  8600. }
  8601. }
  8602. // ggml_compute_forward_group_norm
  8603. static void ggml_compute_forward_group_norm_f32(
  8604. const struct ggml_compute_params * params,
  8605. struct ggml_tensor * dst) {
  8606. const struct ggml_tensor * src0 = dst->src[0];
  8607. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8608. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8609. return;
  8610. }
  8611. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8612. const int ith = params->ith;
  8613. const int nth = params->nth;
  8614. GGML_TENSOR_UNARY_OP_LOCALS
  8615. const float eps = 1e-6f; // TODO: make this a parameter
  8616. // TODO: optimize
  8617. int n_channels = src0->ne[2];
  8618. int n_groups = dst->op_params[0];
  8619. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8620. for (int i = ith; i < n_groups; i += nth) {
  8621. int start = i * n_channels_per_group;
  8622. int end = start + n_channels_per_group;
  8623. if (end > n_channels) {
  8624. end = n_channels;
  8625. }
  8626. int step = end - start;
  8627. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8628. ggml_float sum = 0.0;
  8629. for (int64_t i02 = start; i02 < end; i02++) {
  8630. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8631. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8632. ggml_float sumr = 0.0;
  8633. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8634. sumr += (ggml_float)x[i00];
  8635. }
  8636. sum += sumr;
  8637. }
  8638. }
  8639. const float mean = sum / (ne00 * ne01 * step);
  8640. ggml_float sum2 = 0.0;
  8641. for (int64_t i02 = start; i02 < end; i02++) {
  8642. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8643. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8644. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8645. ggml_float sumr = 0.0;
  8646. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8647. float v = x[i00] - mean;
  8648. y[i00] = v;
  8649. sumr += (ggml_float)(v * v);
  8650. }
  8651. sum2 += sumr;
  8652. }
  8653. }
  8654. const float variance = sum2 / (ne00 * ne01 * step);
  8655. const float scale = 1.0f / sqrtf(variance + eps);
  8656. for (int64_t i02 = start; i02 < end; i02++) {
  8657. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8658. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8659. ggml_vec_scale_f32(ne00, y, scale);
  8660. }
  8661. }
  8662. }
  8663. }
  8664. }
  8665. static void ggml_compute_forward_group_norm(
  8666. const struct ggml_compute_params * params,
  8667. struct ggml_tensor * dst) {
  8668. const struct ggml_tensor * src0 = dst->src[0];
  8669. switch (src0->type) {
  8670. case GGML_TYPE_F32:
  8671. {
  8672. ggml_compute_forward_group_norm_f32(params, dst);
  8673. } break;
  8674. default:
  8675. {
  8676. GGML_ASSERT(false);
  8677. } break;
  8678. }
  8679. }
  8680. // ggml_compute_forward_mul_mat
  8681. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8682. // helper function to determine if it is better to use BLAS or not
  8683. // for large matrices, BLAS is faster
  8684. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8685. const struct ggml_tensor * src0 = dst->src[0];
  8686. const struct ggml_tensor * src1 = dst->src[1];
  8687. //const int64_t ne00 = src0->ne[0];
  8688. //const int64_t ne01 = src0->ne[1];
  8689. const int64_t ne10 = src1->ne[0];
  8690. const int64_t ne0 = dst->ne[0];
  8691. const int64_t ne1 = dst->ne[1];
  8692. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8693. // all the experts for each batch element and the processing would become incredibly slow
  8694. // TODO: find the optimal values for these
  8695. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8696. ggml_is_contiguous(src0) &&
  8697. ggml_is_contiguous(src1) &&
  8698. //src0->type == GGML_TYPE_F32 &&
  8699. src1->type == GGML_TYPE_F32 &&
  8700. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8701. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8702. return true;
  8703. }
  8704. return false;
  8705. }
  8706. #endif
  8707. static void ggml_compute_forward_mul_mat(
  8708. const struct ggml_compute_params * params,
  8709. struct ggml_tensor * dst) {
  8710. const struct ggml_tensor * src0 = dst->src[0];
  8711. const struct ggml_tensor * src1 = dst->src[1];
  8712. int64_t t0 = ggml_perf_time_us();
  8713. UNUSED(t0);
  8714. GGML_TENSOR_BINARY_OP_LOCALS
  8715. const int ith = params->ith;
  8716. const int nth = params->nth;
  8717. const enum ggml_type type = src0->type;
  8718. const bool src1_cont = ggml_is_contiguous(src1);
  8719. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8720. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8721. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8722. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8723. GGML_ASSERT(ne0 == ne01);
  8724. GGML_ASSERT(ne1 == ne11);
  8725. GGML_ASSERT(ne2 == ne12);
  8726. GGML_ASSERT(ne3 == ne13);
  8727. // we don't support permuted src0 or src1
  8728. GGML_ASSERT(nb00 == ggml_type_size(type));
  8729. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8730. // dst cannot be transposed or permuted
  8731. GGML_ASSERT(nb0 == sizeof(float));
  8732. GGML_ASSERT(nb0 <= nb1);
  8733. GGML_ASSERT(nb1 <= nb2);
  8734. GGML_ASSERT(nb2 <= nb3);
  8735. // broadcast factors
  8736. const int64_t r2 = ne12/ne02;
  8737. const int64_t r3 = ne13/ne03;
  8738. // nb01 >= nb00 - src0 is not transposed
  8739. // compute by src0 rows
  8740. #if defined(GGML_USE_CLBLAST)
  8741. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8742. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8743. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8744. }
  8745. return;
  8746. }
  8747. #endif
  8748. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8749. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8750. const int64_t ne_plane = ne01*ne00;
  8751. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8752. UNUSED(desired_wsize);
  8753. if (params->type == GGML_TASK_TYPE_INIT) {
  8754. if (type != GGML_TYPE_F32) {
  8755. assert(params->wsize >= desired_wsize);
  8756. // parallelize by src0 rows
  8757. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8758. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8759. // broadcast src0 into src1 across 2nd,3rd dimension
  8760. const int64_t i03 = i13/r3;
  8761. const int64_t i02 = i12/r2;
  8762. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8763. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8764. ggml_to_float_t const to_float = type_traits[type].to_float;
  8765. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8766. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8767. }
  8768. }
  8769. }
  8770. }
  8771. return;
  8772. }
  8773. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8774. return;
  8775. }
  8776. // perform sgemm, parallelization controlled by blas lib
  8777. if (ith != 0) {
  8778. return;
  8779. }
  8780. //const int64_t tgemm0 = ggml_perf_time_us();
  8781. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8782. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8783. const int64_t i03 = i13/r3;
  8784. const int64_t i02 = i12/r2;
  8785. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8786. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8787. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8788. if (type != GGML_TYPE_F32) {
  8789. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8790. }
  8791. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8792. ne1, ne01, ne10,
  8793. 1.0f, y, ne10,
  8794. x, ne00,
  8795. 0.0f, d, ne01);
  8796. }
  8797. }
  8798. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8799. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8800. return;
  8801. }
  8802. #endif
  8803. #if GGML_USE_LLAMAFILE
  8804. if (nb10 == ggml_type_size(src1->type)) {
  8805. for (int64_t i13 = 0; i13 < ne13; i13++)
  8806. for (int64_t i12 = 0; i12 < ne12; i12++)
  8807. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8808. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8809. nb01/ggml_type_size(src0->type),
  8810. (const char *)src1->data + i12*nb12 + i13*nb13,
  8811. nb11/ggml_type_size(src1->type),
  8812. (char *)dst->data + i12*nb2 + i13*nb3,
  8813. nb1/ggml_type_size(dst->type),
  8814. ith, nth,
  8815. params->type,
  8816. src0->type,
  8817. src1->type,
  8818. dst->type))
  8819. goto UseGgmlGemm1;
  8820. return;
  8821. }
  8822. UseGgmlGemm1:;
  8823. #endif
  8824. if (params->type == GGML_TASK_TYPE_INIT) {
  8825. if (ith != 0) {
  8826. return;
  8827. }
  8828. if (src1->type != vec_dot_type) {
  8829. char * wdata = params->wdata;
  8830. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8831. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8832. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8833. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8834. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8835. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8836. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8837. wdata += row_size;
  8838. }
  8839. }
  8840. }
  8841. }
  8842. return;
  8843. }
  8844. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8845. return;
  8846. }
  8847. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8848. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8849. #if GGML_USE_LLAMAFILE
  8850. if (nb10 == ggml_type_size(src1->type) || src1->type != vec_dot_type) {
  8851. for (int64_t i13 = 0; i13 < ne13; i13++)
  8852. for (int64_t i12 = 0; i12 < ne12; i12++)
  8853. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8854. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8855. nb01/ggml_type_size(src0->type),
  8856. (const char *)wdata + (nb12/ggml_type_size(src1->type)*ggml_type_size(vec_dot_type)*i12 +
  8857. nb13/ggml_type_size(src1->type)*ggml_type_size(vec_dot_type)*i13),
  8858. row_size/ggml_type_size(vec_dot_type),
  8859. (char *)dst->data + i12*nb2 + i13*nb3,
  8860. nb1/ggml_type_size(dst->type),
  8861. ith, nth,
  8862. params->type,
  8863. src0->type,
  8864. vec_dot_type,
  8865. dst->type))
  8866. goto UseGgmlGemm2;
  8867. return;
  8868. }
  8869. UseGgmlGemm2:;
  8870. #endif
  8871. const int64_t nr0 = ne01; // src0 rows
  8872. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8873. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8874. // distribute the thread work across the inner or outer loop based on which one is larger
  8875. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8876. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8877. const int64_t ith0 = ith % nth0;
  8878. const int64_t ith1 = ith / nth0;
  8879. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8880. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8881. const int64_t ir010 = dr0*ith0;
  8882. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8883. const int64_t ir110 = dr1*ith1;
  8884. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8885. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8886. // threads with no work simply yield (not sure if it helps)
  8887. if (ir010 >= ir011 || ir110 >= ir111) {
  8888. sched_yield();
  8889. return;
  8890. }
  8891. assert(ne12 % ne02 == 0);
  8892. assert(ne13 % ne03 == 0);
  8893. // block-tiling attempt
  8894. const int64_t blck_0 = 16;
  8895. const int64_t blck_1 = 16;
  8896. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8897. int64_t nrc = vec_dot_num_rows;
  8898. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8899. // this check can be removed once they are extended to support odd numbered rows/cols too
  8900. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8901. nrc = 1;
  8902. }
  8903. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8904. // attempt to reduce false-sharing (does not seem to make a difference)
  8905. // 16 * 2, accounting for mmla kernels
  8906. float tmp[32];
  8907. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8908. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8909. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8910. const int64_t i13 = (ir1/(ne12*ne1));
  8911. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8912. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8913. // broadcast src0 into src1
  8914. const int64_t i03 = i13/r3;
  8915. const int64_t i02 = i12/r2;
  8916. const int64_t i1 = i11;
  8917. const int64_t i2 = i12;
  8918. const int64_t i3 = i13;
  8919. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8920. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8921. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8922. // the original src1 data pointer, so we should index using the indices directly
  8923. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8924. const char * src1_col = (const char *) wdata +
  8925. (src1_cont || src1->type != vec_dot_type
  8926. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8927. : (i11*nb11 + i12*nb12 + i13*nb13));
  8928. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8929. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8930. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8931. //}
  8932. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8933. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8934. }
  8935. for (int cn = 0; cn < nrc; ++cn) {
  8936. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8937. }
  8938. }
  8939. }
  8940. }
  8941. }
  8942. // ggml_compute_forward_mul_mat_id
  8943. static void ggml_compute_forward_mul_mat_id(
  8944. const struct ggml_compute_params * params,
  8945. struct ggml_tensor * dst) {
  8946. const struct ggml_tensor * src0 = dst->src[0];
  8947. const struct ggml_tensor * src1 = dst->src[1];
  8948. const struct ggml_tensor * ids = dst->src[2];
  8949. GGML_TENSOR_BINARY_OP_LOCALS
  8950. const int ith = params->ith;
  8951. const int nth = params->nth;
  8952. const enum ggml_type type = src0->type;
  8953. const bool src1_cont = ggml_is_contiguous(src1);
  8954. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8955. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8956. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8957. GGML_ASSERT(ne0 == ne01);
  8958. GGML_ASSERT(ne1 == ne11);
  8959. GGML_ASSERT(ne2 == ne12);
  8960. GGML_ASSERT(ne3 == ne13);
  8961. // we don't support permuted src0 or src1
  8962. GGML_ASSERT(nb00 == ggml_type_size(type));
  8963. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8964. // dst cannot be transposed or permuted
  8965. GGML_ASSERT(nb0 == sizeof(float));
  8966. GGML_ASSERT(nb0 <= nb1);
  8967. GGML_ASSERT(nb1 <= nb2);
  8968. GGML_ASSERT(nb2 <= nb3);
  8969. // broadcast is not supported with mmid
  8970. assert(ne12 == 1);
  8971. assert(ne13 == 1);
  8972. // row groups
  8973. const int id = ggml_get_op_params_i32(dst, 0);
  8974. const int n_as = src0->ne[2];
  8975. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8976. (char *) params->wdata :
  8977. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8978. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8979. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8980. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8981. if (params->type == GGML_TASK_TYPE_INIT) {
  8982. if (ith != 0) {
  8983. return;
  8984. }
  8985. char * wdata = params->wdata;
  8986. if (src1->type != vec_dot_type) {
  8987. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8988. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8989. assert(src1->type == GGML_TYPE_F32);
  8990. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8991. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8992. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8993. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8994. wdata += row_size;
  8995. }
  8996. }
  8997. }
  8998. }
  8999. // initialize matrix_row_counts
  9000. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  9001. // group rows by src0 matrix
  9002. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  9003. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  9004. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  9005. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  9006. matrix_row_counts[row_id] += 1;
  9007. }
  9008. return;
  9009. }
  9010. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9011. return;
  9012. }
  9013. // compute each matrix multiplication in sequence
  9014. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  9015. const int64_t cne1 = matrix_row_counts[cur_a];
  9016. if (cne1 == 0) {
  9017. continue;
  9018. }
  9019. size_t src0_offset = cur_a*src0->nb[2];
  9020. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9021. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9022. const int64_t nr0 = ne01; // src0 rows
  9023. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  9024. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9025. // distribute the thread work across the inner or outer loop based on which one is larger
  9026. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9027. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9028. const int64_t ith0 = ith % nth0;
  9029. const int64_t ith1 = ith / nth0;
  9030. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9031. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9032. const int64_t ir010 = dr0*ith0;
  9033. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9034. const int64_t ir110 = dr1*ith1;
  9035. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9036. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9037. // threads with no work simply yield (not sure if it helps)
  9038. if (ir010 >= ir011 || ir110 >= ir111) {
  9039. sched_yield();
  9040. continue;
  9041. }
  9042. // block-tiling attempt
  9043. const int64_t blck_0 = 16;
  9044. const int64_t blck_1 = 16;
  9045. // attempt to reduce false-sharing (does not seem to make a difference)
  9046. float tmp[16];
  9047. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9048. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9049. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9050. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  9051. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  9052. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  9053. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  9054. // broadcast src0 into src1
  9055. //const int64_t i03 = i13/r3;
  9056. //const int64_t i02 = i12/r2;
  9057. const int64_t i1 = i11;
  9058. const int64_t i2 = i12;
  9059. const int64_t i3 = i13;
  9060. const char * src0_row = (const char *) src0->data + src0_offset;
  9061. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9062. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9063. // the original src1 data pointer, so we should index using the indices directly
  9064. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9065. const char * src1_col = (const char *) wdata +
  9066. (src1_cont || src1->type != vec_dot_type
  9067. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9068. : (i11*nb11 + i12*nb12 + i13*nb13));
  9069. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9070. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9071. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9072. //}
  9073. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9074. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  9075. }
  9076. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9077. }
  9078. }
  9079. }
  9080. }
  9081. #undef MMID_MATRIX_ROW
  9082. }
  9083. // ggml_compute_forward_out_prod
  9084. static void ggml_compute_forward_out_prod_f32(
  9085. const struct ggml_compute_params * params,
  9086. struct ggml_tensor * dst) {
  9087. const struct ggml_tensor * src0 = dst->src[0];
  9088. const struct ggml_tensor * src1 = dst->src[1];
  9089. // int64_t t0 = ggml_perf_time_us();
  9090. // UNUSED(t0);
  9091. GGML_TENSOR_BINARY_OP_LOCALS
  9092. const int ith = params->ith;
  9093. const int nth = params->nth;
  9094. GGML_ASSERT(ne0 == ne00);
  9095. GGML_ASSERT(ne1 == ne10);
  9096. GGML_ASSERT(ne2 == ne02);
  9097. GGML_ASSERT(ne02 == ne12);
  9098. GGML_ASSERT(ne3 == ne13);
  9099. GGML_ASSERT(ne03 == ne13);
  9100. // we don't support permuted src0 or src1
  9101. GGML_ASSERT(nb00 == sizeof(float));
  9102. // dst cannot be transposed or permuted
  9103. GGML_ASSERT(nb0 == sizeof(float));
  9104. // GGML_ASSERT(nb0 <= nb1);
  9105. // GGML_ASSERT(nb1 <= nb2);
  9106. // GGML_ASSERT(nb2 <= nb3);
  9107. // nb01 >= nb00 - src0 is not transposed
  9108. // compute by src0 rows
  9109. // TODO: #if defined(GGML_USE_CLBLAST)
  9110. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9111. bool use_blas = ggml_is_matrix(src0) &&
  9112. ggml_is_matrix(src1) &&
  9113. ggml_is_contiguous(src0) &&
  9114. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9115. #endif
  9116. if (params->type == GGML_TASK_TYPE_INIT) {
  9117. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9118. if (use_blas) {
  9119. return;
  9120. }
  9121. #endif
  9122. if (ith != 0) {
  9123. return;
  9124. }
  9125. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9126. return;
  9127. }
  9128. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9129. return;
  9130. }
  9131. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9132. if (use_blas) {
  9133. if (params->ith != 0) { // All threads other than the first do no work.
  9134. return;
  9135. }
  9136. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9137. // src0: (k,n)
  9138. // src1: (k,m)
  9139. // dst: (m,n)
  9140. //
  9141. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9142. // Also expressed as (major,minor)
  9143. // a: (m,k): so src1 transposed
  9144. // b: (k,n): so src0
  9145. // c: (m,n)
  9146. //
  9147. // However, if ggml_is_transposed(src1) is true, then
  9148. // src1->data already contains a transposed version, so sgemm mustn't
  9149. // transpose it further.
  9150. int n = src0->ne[0];
  9151. int k = src0->ne[1];
  9152. int m = src1->ne[0];
  9153. int transposeA, lda;
  9154. if (!ggml_is_transposed(src1)) {
  9155. transposeA = CblasTrans;
  9156. lda = m;
  9157. } else {
  9158. transposeA = CblasNoTrans;
  9159. lda = k;
  9160. }
  9161. float * a = (float *) ((char *) src1->data);
  9162. float * b = (float *) ((char *) src0->data);
  9163. float * c = (float *) ((char *) dst->data);
  9164. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9165. return;
  9166. }
  9167. #endif
  9168. // dst[:,:,:,:] = 0
  9169. // for i2,i3:
  9170. // for i1:
  9171. // for i01:
  9172. // for i0:
  9173. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9174. // parallelize by last three dimensions
  9175. // total rows in dst
  9176. const int64_t nr = ne1*ne2*ne3;
  9177. // rows per thread
  9178. const int64_t dr = (nr + nth - 1)/nth;
  9179. // row range for this thread
  9180. const int64_t ir0 = dr*ith;
  9181. const int64_t ir1 = MIN(ir0 + dr, nr);
  9182. // block-tiling attempt
  9183. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9184. const int64_t blck_1 = 16;
  9185. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9186. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9187. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9188. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9189. for (int64_t ir = bir; ir < bir1; ++ir) {
  9190. // dst indices
  9191. const int64_t i3 = ir/(ne2*ne1);
  9192. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9193. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9194. const int64_t i02 = i2;
  9195. const int64_t i03 = i3;
  9196. //const int64_t i10 = i1;
  9197. const int64_t i12 = i2;
  9198. const int64_t i13 = i3;
  9199. #if GGML_VEC_MAD_UNROLL > 2
  9200. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9201. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9202. const int64_t i11 = i01;
  9203. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9204. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9205. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9206. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9207. }
  9208. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9209. const int64_t i11 = i01;
  9210. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9211. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9212. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9213. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9214. }
  9215. #else
  9216. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9217. const int64_t i11 = i01;
  9218. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9219. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9220. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9221. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9222. }
  9223. #endif
  9224. }
  9225. }
  9226. }
  9227. //int64_t t1 = ggml_perf_time_us();
  9228. //static int64_t acc = 0;
  9229. //acc += t1 - t0;
  9230. //if (t1 - t0 > 10) {
  9231. // printf("\n");
  9232. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9233. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9234. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9235. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9236. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9237. //}
  9238. }
  9239. static void ggml_compute_forward_out_prod_q_f32(
  9240. const struct ggml_compute_params * params,
  9241. struct ggml_tensor * dst) {
  9242. const struct ggml_tensor * src0 = dst->src[0];
  9243. const struct ggml_tensor * src1 = dst->src[1];
  9244. // int64_t t0 = ggml_perf_time_us();
  9245. // UNUSED(t0);
  9246. GGML_TENSOR_BINARY_OP_LOCALS;
  9247. const int ith = params->ith;
  9248. const int nth = params->nth;
  9249. const enum ggml_type type = src0->type;
  9250. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9251. GGML_ASSERT(ne02 == ne12);
  9252. GGML_ASSERT(ne03 == ne13);
  9253. GGML_ASSERT(ne2 == ne12);
  9254. GGML_ASSERT(ne3 == ne13);
  9255. // we don't support permuted src0 dim0
  9256. GGML_ASSERT(nb00 == ggml_type_size(type));
  9257. // dst dim0 cannot be transposed or permuted
  9258. GGML_ASSERT(nb0 == sizeof(float));
  9259. // GGML_ASSERT(nb0 <= nb1);
  9260. // GGML_ASSERT(nb1 <= nb2);
  9261. // GGML_ASSERT(nb2 <= nb3);
  9262. GGML_ASSERT(ne0 == ne00);
  9263. GGML_ASSERT(ne1 == ne10);
  9264. GGML_ASSERT(ne2 == ne02);
  9265. GGML_ASSERT(ne3 == ne03);
  9266. // nb01 >= nb00 - src0 is not transposed
  9267. // compute by src0 rows
  9268. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9269. if (params->type == GGML_TASK_TYPE_INIT) {
  9270. if (ith != 0) {
  9271. return;
  9272. }
  9273. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9274. return;
  9275. }
  9276. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9277. return;
  9278. }
  9279. // parallelize by last three dimensions
  9280. // total rows in dst
  9281. const int64_t nr = ne1*ne2*ne3;
  9282. // rows per thread
  9283. const int64_t dr = (nr + nth - 1)/nth;
  9284. // row range for this thread
  9285. const int64_t ir0 = dr*ith;
  9286. const int64_t ir1 = MIN(ir0 + dr, nr);
  9287. // dst[:,:,:,:] = 0
  9288. // for i2,i3:
  9289. // for i1:
  9290. // for i01:
  9291. // for i0:
  9292. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9293. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9294. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9295. // dst indices
  9296. const int64_t i3 = ir/(ne2*ne1);
  9297. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9298. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9299. const int64_t i02 = i2;
  9300. const int64_t i03 = i3;
  9301. //const int64_t i10 = i1;
  9302. const int64_t i12 = i2;
  9303. const int64_t i13 = i3;
  9304. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9305. const int64_t i11 = i01;
  9306. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9307. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9308. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9309. dequantize_row_q(s0, wdata, ne0);
  9310. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9311. }
  9312. }
  9313. //int64_t t1 = ggml_perf_time_us();
  9314. //static int64_t acc = 0;
  9315. //acc += t1 - t0;
  9316. //if (t1 - t0 > 10) {
  9317. // printf("\n");
  9318. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9319. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9320. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9321. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9322. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9323. //}
  9324. }
  9325. static void ggml_compute_forward_out_prod(
  9326. const struct ggml_compute_params * params,
  9327. struct ggml_tensor * dst) {
  9328. const struct ggml_tensor * src0 = dst->src[0];
  9329. switch (src0->type) {
  9330. case GGML_TYPE_Q4_0:
  9331. case GGML_TYPE_Q4_1:
  9332. case GGML_TYPE_Q5_0:
  9333. case GGML_TYPE_Q5_1:
  9334. case GGML_TYPE_Q8_0:
  9335. case GGML_TYPE_Q2_K:
  9336. case GGML_TYPE_Q3_K:
  9337. case GGML_TYPE_Q4_K:
  9338. case GGML_TYPE_Q5_K:
  9339. case GGML_TYPE_Q6_K:
  9340. case GGML_TYPE_IQ2_XXS:
  9341. case GGML_TYPE_IQ2_XS:
  9342. case GGML_TYPE_IQ3_XXS:
  9343. case GGML_TYPE_IQ1_S:
  9344. case GGML_TYPE_IQ1_M:
  9345. case GGML_TYPE_IQ4_NL:
  9346. case GGML_TYPE_IQ4_XS:
  9347. case GGML_TYPE_IQ3_S:
  9348. case GGML_TYPE_IQ2_S:
  9349. {
  9350. ggml_compute_forward_out_prod_q_f32(params, dst);
  9351. } break;
  9352. case GGML_TYPE_F16:
  9353. {
  9354. GGML_ASSERT(false); // todo
  9355. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9356. } break;
  9357. case GGML_TYPE_F32:
  9358. {
  9359. ggml_compute_forward_out_prod_f32(params, dst);
  9360. } break;
  9361. default:
  9362. {
  9363. GGML_ASSERT(false);
  9364. } break;
  9365. }
  9366. }
  9367. // ggml_compute_forward_scale
  9368. static void ggml_compute_forward_scale_f32(
  9369. const struct ggml_compute_params * params,
  9370. struct ggml_tensor * dst) {
  9371. const struct ggml_tensor * src0 = dst->src[0];
  9372. GGML_ASSERT(ggml_is_contiguous(src0));
  9373. GGML_ASSERT(ggml_is_contiguous(dst));
  9374. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9375. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9376. return;
  9377. }
  9378. // scale factor
  9379. float v;
  9380. memcpy(&v, dst->op_params, sizeof(float));
  9381. const int ith = params->ith;
  9382. const int nth = params->nth;
  9383. const int nc = src0->ne[0];
  9384. const int nr = ggml_nrows(src0);
  9385. // rows per thread
  9386. const int dr = (nr + nth - 1)/nth;
  9387. // row range for this thread
  9388. const int ir0 = dr*ith;
  9389. const int ir1 = MIN(ir0 + dr, nr);
  9390. const size_t nb01 = src0->nb[1];
  9391. const size_t nb1 = dst->nb[1];
  9392. for (int i1 = ir0; i1 < ir1; i1++) {
  9393. if (dst->data != src0->data) {
  9394. // src0 is same shape as dst => same indices
  9395. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9396. }
  9397. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9398. }
  9399. }
  9400. static void ggml_compute_forward_scale(
  9401. const struct ggml_compute_params * params,
  9402. struct ggml_tensor * dst) {
  9403. const struct ggml_tensor * src0 = dst->src[0];
  9404. switch (src0->type) {
  9405. case GGML_TYPE_F32:
  9406. {
  9407. ggml_compute_forward_scale_f32(params, dst);
  9408. } break;
  9409. default:
  9410. {
  9411. GGML_ASSERT(false);
  9412. } break;
  9413. }
  9414. }
  9415. // ggml_compute_forward_set
  9416. static void ggml_compute_forward_set_f32(
  9417. const struct ggml_compute_params * params,
  9418. struct ggml_tensor * dst) {
  9419. const struct ggml_tensor * src0 = dst->src[0];
  9420. const struct ggml_tensor * src1 = dst->src[1];
  9421. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9422. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9423. // view src0 and dst with these strides and data offset inbytes during set
  9424. // nb0 is implicitly element_size because src0 and dst are contiguous
  9425. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9426. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9427. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9428. size_t offset = ((int32_t *) dst->op_params)[3];
  9429. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9430. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9431. if (params->ith != 0) {
  9432. return;
  9433. }
  9434. // memcpy needs to be synchronized across threads to avoid race conditions.
  9435. // => do it in INIT phase
  9436. memcpy(
  9437. ((char *) dst->data),
  9438. ((char *) src0->data),
  9439. ggml_nbytes(dst));
  9440. }
  9441. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9442. return;
  9443. }
  9444. const int ith = params->ith;
  9445. const int nth = params->nth;
  9446. const int nr = ggml_nrows(src1);
  9447. const int nc = src1->ne[0];
  9448. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9449. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9450. // src0 and dst as viewed during set
  9451. const size_t nb0 = ggml_element_size(src0);
  9452. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9453. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9454. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9455. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9456. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9457. GGML_ASSERT(nb10 == sizeof(float));
  9458. // rows per thread
  9459. const int dr = (nr + nth - 1)/nth;
  9460. // row range for this thread
  9461. const int ir0 = dr*ith;
  9462. const int ir1 = MIN(ir0 + dr, nr);
  9463. for (int ir = ir0; ir < ir1; ++ir) {
  9464. // src0 and dst are viewed with shape of src1 and offset
  9465. // => same indices
  9466. const int i3 = ir/(ne12*ne11);
  9467. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9468. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9469. ggml_vec_cpy_f32(nc,
  9470. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9471. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9472. }
  9473. }
  9474. static void ggml_compute_forward_set(
  9475. const struct ggml_compute_params * params,
  9476. struct ggml_tensor * dst) {
  9477. const struct ggml_tensor * src0 = dst->src[0];
  9478. switch (src0->type) {
  9479. case GGML_TYPE_F32:
  9480. {
  9481. ggml_compute_forward_set_f32(params, dst);
  9482. } break;
  9483. case GGML_TYPE_F16:
  9484. case GGML_TYPE_Q4_0:
  9485. case GGML_TYPE_Q4_1:
  9486. case GGML_TYPE_Q5_0:
  9487. case GGML_TYPE_Q5_1:
  9488. case GGML_TYPE_Q8_0:
  9489. case GGML_TYPE_Q8_1:
  9490. case GGML_TYPE_Q2_K:
  9491. case GGML_TYPE_Q3_K:
  9492. case GGML_TYPE_Q4_K:
  9493. case GGML_TYPE_Q5_K:
  9494. case GGML_TYPE_Q6_K:
  9495. case GGML_TYPE_IQ2_XXS:
  9496. case GGML_TYPE_IQ2_XS:
  9497. case GGML_TYPE_IQ3_XXS:
  9498. case GGML_TYPE_IQ1_S:
  9499. case GGML_TYPE_IQ1_M:
  9500. case GGML_TYPE_IQ4_NL:
  9501. case GGML_TYPE_IQ4_XS:
  9502. case GGML_TYPE_IQ3_S:
  9503. case GGML_TYPE_IQ2_S:
  9504. default:
  9505. {
  9506. GGML_ASSERT(false);
  9507. } break;
  9508. }
  9509. }
  9510. // ggml_compute_forward_cpy
  9511. static void ggml_compute_forward_cpy(
  9512. const struct ggml_compute_params * params,
  9513. struct ggml_tensor * dst) {
  9514. ggml_compute_forward_dup(params, dst);
  9515. }
  9516. // ggml_compute_forward_cont
  9517. static void ggml_compute_forward_cont(
  9518. const struct ggml_compute_params * params,
  9519. struct ggml_tensor * dst) {
  9520. ggml_compute_forward_dup(params, dst);
  9521. }
  9522. // ggml_compute_forward_reshape
  9523. static void ggml_compute_forward_reshape(
  9524. const struct ggml_compute_params * params,
  9525. struct ggml_tensor * dst) {
  9526. // NOP
  9527. UNUSED(params);
  9528. UNUSED(dst);
  9529. }
  9530. // ggml_compute_forward_view
  9531. static void ggml_compute_forward_view(
  9532. const struct ggml_compute_params * params,
  9533. const struct ggml_tensor * dst) {
  9534. // NOP
  9535. UNUSED(params);
  9536. UNUSED(dst);
  9537. }
  9538. // ggml_compute_forward_permute
  9539. static void ggml_compute_forward_permute(
  9540. const struct ggml_compute_params * params,
  9541. const struct ggml_tensor * dst) {
  9542. // NOP
  9543. UNUSED(params);
  9544. UNUSED(dst);
  9545. }
  9546. // ggml_compute_forward_transpose
  9547. static void ggml_compute_forward_transpose(
  9548. const struct ggml_compute_params * params,
  9549. const struct ggml_tensor * dst) {
  9550. // NOP
  9551. UNUSED(params);
  9552. UNUSED(dst);
  9553. }
  9554. // ggml_compute_forward_get_rows
  9555. static void ggml_compute_forward_get_rows_q(
  9556. const struct ggml_compute_params * params,
  9557. struct ggml_tensor * dst) {
  9558. const struct ggml_tensor * src0 = dst->src[0];
  9559. const struct ggml_tensor * src1 = dst->src[1];
  9560. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9561. return;
  9562. }
  9563. GGML_TENSOR_BINARY_OP_LOCALS
  9564. const int64_t nc = ne00;
  9565. const int64_t nr = ggml_nelements(src1);
  9566. const enum ggml_type type = src0->type;
  9567. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9568. assert(ne0 == nc);
  9569. assert(ne02 == ne11);
  9570. assert(nb00 == ggml_type_size(type));
  9571. assert(ggml_nrows(dst) == nr);
  9572. const int ith = params->ith;
  9573. const int nth = params->nth;
  9574. // rows per thread
  9575. const int dr = (nr + nth - 1)/nth;
  9576. // row range for this thread
  9577. const int ir0 = dr*ith;
  9578. const int ir1 = MIN(ir0 + dr, nr);
  9579. for (int64_t i = ir0; i < ir1; ++i) {
  9580. const int64_t i12 = i/(ne11*ne10);
  9581. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9582. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9583. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9584. dequantize_row_q(
  9585. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9586. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9587. }
  9588. }
  9589. static void ggml_compute_forward_get_rows_f16(
  9590. const struct ggml_compute_params * params,
  9591. struct ggml_tensor * dst) {
  9592. const struct ggml_tensor * src0 = dst->src[0];
  9593. const struct ggml_tensor * src1 = dst->src[1];
  9594. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9595. return;
  9596. }
  9597. GGML_TENSOR_BINARY_OP_LOCALS
  9598. const int64_t nc = ne00;
  9599. const int64_t nr = ggml_nelements(src1);
  9600. assert(ne0 == nc);
  9601. assert(ne02 == ne11);
  9602. assert(nb00 == sizeof(ggml_fp16_t));
  9603. assert(ggml_nrows(dst) == nr);
  9604. const int ith = params->ith;
  9605. const int nth = params->nth;
  9606. // rows per thread
  9607. const int dr = (nr + nth - 1)/nth;
  9608. // row range for this thread
  9609. const int ir0 = dr*ith;
  9610. const int ir1 = MIN(ir0 + dr, nr);
  9611. for (int64_t i = ir0; i < ir1; ++i) {
  9612. const int64_t i12 = i/(ne11*ne10);
  9613. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9614. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9615. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9616. ggml_fp16_to_fp32_row(
  9617. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9618. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9619. }
  9620. }
  9621. static void ggml_compute_forward_get_rows_f32(
  9622. const struct ggml_compute_params * params,
  9623. struct ggml_tensor * dst) {
  9624. const struct ggml_tensor * src0 = dst->src[0];
  9625. const struct ggml_tensor * src1 = dst->src[1];
  9626. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9627. return;
  9628. }
  9629. GGML_TENSOR_BINARY_OP_LOCALS
  9630. const int64_t nc = ne00;
  9631. const int64_t nr = ggml_nelements(src1);
  9632. assert(ne0 == nc);
  9633. assert(ne02 == ne11);
  9634. assert(nb00 == sizeof(float));
  9635. assert(ggml_nrows(dst) == nr);
  9636. const int ith = params->ith;
  9637. const int nth = params->nth;
  9638. // rows per thread
  9639. const int dr = (nr + nth - 1)/nth;
  9640. // row range for this thread
  9641. const int ir0 = dr*ith;
  9642. const int ir1 = MIN(ir0 + dr, nr);
  9643. for (int64_t i = ir0; i < ir1; ++i) {
  9644. const int64_t i12 = i/(ne11*ne10);
  9645. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9646. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9647. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9648. ggml_vec_cpy_f32(nc,
  9649. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9650. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9651. }
  9652. }
  9653. static void ggml_compute_forward_get_rows(
  9654. const struct ggml_compute_params * params,
  9655. struct ggml_tensor * dst) {
  9656. const struct ggml_tensor * src0 = dst->src[0];
  9657. switch (src0->type) {
  9658. case GGML_TYPE_Q4_0:
  9659. case GGML_TYPE_Q4_1:
  9660. case GGML_TYPE_Q5_0:
  9661. case GGML_TYPE_Q5_1:
  9662. case GGML_TYPE_Q8_0:
  9663. case GGML_TYPE_Q8_1:
  9664. case GGML_TYPE_Q2_K:
  9665. case GGML_TYPE_Q3_K:
  9666. case GGML_TYPE_Q4_K:
  9667. case GGML_TYPE_Q5_K:
  9668. case GGML_TYPE_Q6_K:
  9669. case GGML_TYPE_IQ2_XXS:
  9670. case GGML_TYPE_IQ2_XS:
  9671. case GGML_TYPE_IQ3_XXS:
  9672. case GGML_TYPE_IQ1_S:
  9673. case GGML_TYPE_IQ1_M:
  9674. case GGML_TYPE_IQ4_NL:
  9675. case GGML_TYPE_IQ4_XS:
  9676. case GGML_TYPE_IQ3_S:
  9677. case GGML_TYPE_IQ2_S:
  9678. {
  9679. ggml_compute_forward_get_rows_q(params, dst);
  9680. } break;
  9681. case GGML_TYPE_F16:
  9682. {
  9683. ggml_compute_forward_get_rows_f16(params, dst);
  9684. } break;
  9685. case GGML_TYPE_F32:
  9686. case GGML_TYPE_I32:
  9687. {
  9688. ggml_compute_forward_get_rows_f32(params, dst);
  9689. } break;
  9690. default:
  9691. {
  9692. GGML_ASSERT(false);
  9693. } break;
  9694. }
  9695. //static bool first = true;
  9696. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9697. //if (first) {
  9698. // first = false;
  9699. //} else {
  9700. // for (int k = 0; k < dst->ne[1]; ++k) {
  9701. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9702. // for (int i = 0; i < 16; ++i) {
  9703. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9704. // }
  9705. // printf("\n");
  9706. // }
  9707. // printf("\n");
  9708. // }
  9709. // printf("\n");
  9710. // exit(0);
  9711. //}
  9712. }
  9713. // ggml_compute_forward_get_rows_back
  9714. static void ggml_compute_forward_get_rows_back_f32_f16(
  9715. const struct ggml_compute_params * params,
  9716. struct ggml_tensor * dst) {
  9717. const struct ggml_tensor * src0 = dst->src[0];
  9718. const struct ggml_tensor * src1 = dst->src[1];
  9719. GGML_ASSERT(params->ith == 0);
  9720. GGML_ASSERT(ggml_is_contiguous(dst));
  9721. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9722. if (params->type == GGML_TASK_TYPE_INIT) {
  9723. if (params->ith != 0) {
  9724. return;
  9725. }
  9726. memset(dst->data, 0, ggml_nbytes(dst));
  9727. }
  9728. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9729. return;
  9730. }
  9731. const int nc = src0->ne[0];
  9732. const int nr = ggml_nelements(src1);
  9733. GGML_ASSERT( dst->ne[0] == nc);
  9734. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9735. for (int i = 0; i < nr; ++i) {
  9736. const int r = ((int32_t *) src1->data)[i];
  9737. for (int j = 0; j < nc; ++j) {
  9738. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9739. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9740. }
  9741. }
  9742. }
  9743. static void ggml_compute_forward_get_rows_back_f32(
  9744. const struct ggml_compute_params * params,
  9745. struct ggml_tensor * dst) {
  9746. const struct ggml_tensor * src0 = dst->src[0];
  9747. const struct ggml_tensor * src1 = dst->src[1];
  9748. GGML_ASSERT(params->ith == 0);
  9749. GGML_ASSERT(ggml_is_contiguous(dst));
  9750. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9751. if (params->type == GGML_TASK_TYPE_INIT) {
  9752. if (params->ith != 0) {
  9753. return;
  9754. }
  9755. memset(dst->data, 0, ggml_nbytes(dst));
  9756. }
  9757. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9758. return;
  9759. }
  9760. const int nc = src0->ne[0];
  9761. const int nr = ggml_nelements(src1);
  9762. GGML_ASSERT( dst->ne[0] == nc);
  9763. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9764. for (int i = 0; i < nr; ++i) {
  9765. const int r = ((int32_t *) src1->data)[i];
  9766. ggml_vec_add_f32(nc,
  9767. (float *) ((char *) dst->data + r*dst->nb[1]),
  9768. (float *) ((char *) dst->data + r*dst->nb[1]),
  9769. (float *) ((char *) src0->data + i*src0->nb[1]));
  9770. }
  9771. }
  9772. static void ggml_compute_forward_get_rows_back(
  9773. const struct ggml_compute_params * params,
  9774. struct ggml_tensor * dst) {
  9775. const struct ggml_tensor * src0 = dst->src[0];
  9776. switch (src0->type) {
  9777. case GGML_TYPE_F16:
  9778. {
  9779. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9780. } break;
  9781. case GGML_TYPE_F32:
  9782. {
  9783. ggml_compute_forward_get_rows_back_f32(params, dst);
  9784. } break;
  9785. default:
  9786. {
  9787. GGML_ASSERT(false);
  9788. } break;
  9789. }
  9790. //static bool first = true;
  9791. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9792. //if (first) {
  9793. // first = false;
  9794. //} else {
  9795. // for (int k = 0; k < dst->ne[1]; ++k) {
  9796. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9797. // for (int i = 0; i < 16; ++i) {
  9798. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9799. // }
  9800. // printf("\n");
  9801. // }
  9802. // printf("\n");
  9803. // }
  9804. // printf("\n");
  9805. // exit(0);
  9806. //}
  9807. }
  9808. // ggml_compute_forward_diag
  9809. static void ggml_compute_forward_diag_f32(
  9810. const struct ggml_compute_params * params,
  9811. struct ggml_tensor * dst) {
  9812. const struct ggml_tensor * src0 = dst->src[0];
  9813. GGML_ASSERT(params->ith == 0);
  9814. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9815. return;
  9816. }
  9817. // TODO: handle transposed/permuted matrices
  9818. GGML_TENSOR_UNARY_OP_LOCALS
  9819. GGML_ASSERT(ne00 == ne0);
  9820. GGML_ASSERT(ne00 == ne1);
  9821. GGML_ASSERT(ne01 == 1);
  9822. GGML_ASSERT(ne02 == ne2);
  9823. GGML_ASSERT(ne03 == ne3);
  9824. GGML_ASSERT(nb00 == sizeof(float));
  9825. GGML_ASSERT(nb0 == sizeof(float));
  9826. for (int i3 = 0; i3 < ne3; i3++) {
  9827. for (int i2 = 0; i2 < ne2; i2++) {
  9828. for (int i1 = 0; i1 < ne1; i1++) {
  9829. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9830. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9831. for (int i0 = 0; i0 < i1; i0++) {
  9832. d[i0] = 0;
  9833. }
  9834. d[i1] = s[i1];
  9835. for (int i0 = i1+1; i0 < ne0; i0++) {
  9836. d[i0] = 0;
  9837. }
  9838. }
  9839. }
  9840. }
  9841. }
  9842. static void ggml_compute_forward_diag(
  9843. const struct ggml_compute_params * params,
  9844. struct ggml_tensor * dst) {
  9845. const struct ggml_tensor * src0 = dst->src[0];
  9846. switch (src0->type) {
  9847. case GGML_TYPE_F32:
  9848. {
  9849. ggml_compute_forward_diag_f32(params, dst);
  9850. } break;
  9851. default:
  9852. {
  9853. GGML_ASSERT(false);
  9854. } break;
  9855. }
  9856. }
  9857. // ggml_compute_forward_diag_mask_inf
  9858. static void ggml_compute_forward_diag_mask_f32(
  9859. const struct ggml_compute_params * params,
  9860. struct ggml_tensor * dst,
  9861. const float value) {
  9862. const struct ggml_tensor * src0 = dst->src[0];
  9863. const int ith = params->ith;
  9864. const int nth = params->nth;
  9865. const int n_past = ((int32_t *) dst->op_params)[0];
  9866. const bool inplace = src0->data == dst->data;
  9867. GGML_ASSERT(n_past >= 0);
  9868. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9869. if (ith != 0) {
  9870. return;
  9871. }
  9872. // memcpy needs to be synchronized across threads to avoid race conditions.
  9873. // => do it in INIT phase
  9874. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9875. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9876. memcpy(
  9877. ((char *) dst->data),
  9878. ((char *) src0->data),
  9879. ggml_nbytes(dst));
  9880. }
  9881. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9882. return;
  9883. }
  9884. // TODO: handle transposed/permuted matrices
  9885. const int n = ggml_nrows(src0);
  9886. const int nc = src0->ne[0];
  9887. const int nr = src0->ne[1];
  9888. const int nz = n/nr;
  9889. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9890. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9891. for (int k = 0; k < nz; k++) {
  9892. for (int j = ith; j < nr; j += nth) {
  9893. for (int i = n_past; i < nc; i++) {
  9894. if (i > n_past + j) {
  9895. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9896. }
  9897. }
  9898. }
  9899. }
  9900. }
  9901. static void ggml_compute_forward_diag_mask_inf(
  9902. const struct ggml_compute_params * params,
  9903. struct ggml_tensor * dst) {
  9904. const struct ggml_tensor * src0 = dst->src[0];
  9905. switch (src0->type) {
  9906. case GGML_TYPE_F32:
  9907. {
  9908. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9909. } break;
  9910. default:
  9911. {
  9912. GGML_ASSERT(false);
  9913. } break;
  9914. }
  9915. }
  9916. static void ggml_compute_forward_diag_mask_zero(
  9917. const struct ggml_compute_params * params,
  9918. struct ggml_tensor * dst) {
  9919. const struct ggml_tensor * src0 = dst->src[0];
  9920. switch (src0->type) {
  9921. case GGML_TYPE_F32:
  9922. {
  9923. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9924. } break;
  9925. default:
  9926. {
  9927. GGML_ASSERT(false);
  9928. } break;
  9929. }
  9930. }
  9931. // ggml_compute_forward_soft_max
  9932. static void ggml_compute_forward_soft_max_f32(
  9933. const struct ggml_compute_params * params,
  9934. struct ggml_tensor * dst) {
  9935. const struct ggml_tensor * src0 = dst->src[0];
  9936. const struct ggml_tensor * src1 = dst->src[1];
  9937. const struct ggml_tensor * src2 = dst->src[2];
  9938. assert(ggml_is_contiguous(dst));
  9939. assert(ggml_are_same_shape(src0, dst));
  9940. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9941. return;
  9942. }
  9943. float scale = 1.0f;
  9944. float max_bias = 0.0f;
  9945. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9946. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9947. // TODO: handle transposed/permuted matrices
  9948. const int ith = params->ith;
  9949. const int nth = params->nth;
  9950. GGML_TENSOR_UNARY_OP_LOCALS
  9951. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9952. // TODO: is this supposed to be ceil instead of floor?
  9953. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9954. const uint32_t n_head_kv = ne02;
  9955. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9956. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9957. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9958. const int nc = src0->ne[0];
  9959. const int nr = ggml_nrows(src0);
  9960. // rows per thread
  9961. const int dr = (nr + nth - 1)/nth;
  9962. // row range for this thread
  9963. const int ir0 = dr*ith;
  9964. const int ir1 = MIN(ir0 + dr, nr);
  9965. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9966. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9967. float * pos = src2 ? (float *) src2->data : src0->data;
  9968. for (int i1 = ir0; i1 < ir1; i1++) {
  9969. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9970. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9971. // broadcast the mask across rows
  9972. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9973. ggml_vec_cpy_f32 (nc, wp, sp);
  9974. ggml_vec_scale_f32(nc, wp, scale);
  9975. if (mp) {
  9976. ggml_vec_acc_f32(nc, wp, mp);
  9977. }
  9978. // ALiBi bias
  9979. if (max_bias > 0.0f) {
  9980. const uint32_t h = (i1/ne01)%ne02; // head
  9981. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9982. for (int i = 0; i < nc; i++) {
  9983. wp[i] = wp[i] + slope*pos[i];
  9984. }
  9985. }
  9986. #ifndef NDEBUG
  9987. for (int i = 0; i < nc; ++i) {
  9988. //printf("p[%d] = %f\n", i, p[i]);
  9989. assert(!isnan(wp[i]));
  9990. }
  9991. #endif
  9992. float max = -INFINITY;
  9993. ggml_vec_max_f32(nc, &max, wp);
  9994. ggml_float sum = 0.0;
  9995. uint16_t scvt;
  9996. for (int i = 0; i < nc; i++) {
  9997. if (wp[i] == -INFINITY) {
  9998. dp[i] = 0.0f;
  9999. } else {
  10000. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  10001. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  10002. memcpy(&scvt, &s, sizeof(scvt));
  10003. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  10004. sum += (ggml_float)val;
  10005. dp[i] = val;
  10006. }
  10007. }
  10008. assert(sum > 0.0);
  10009. sum = 1.0/sum;
  10010. ggml_vec_scale_f32(nc, dp, sum);
  10011. #ifndef NDEBUG
  10012. for (int i = 0; i < nc; ++i) {
  10013. assert(!isnan(dp[i]));
  10014. assert(!isinf(dp[i]));
  10015. }
  10016. #endif
  10017. }
  10018. }
  10019. static void ggml_compute_forward_soft_max(
  10020. const struct ggml_compute_params * params,
  10021. struct ggml_tensor * dst) {
  10022. const struct ggml_tensor * src0 = dst->src[0];
  10023. switch (src0->type) {
  10024. case GGML_TYPE_F32:
  10025. {
  10026. ggml_compute_forward_soft_max_f32(params, dst);
  10027. } break;
  10028. default:
  10029. {
  10030. GGML_ASSERT(false);
  10031. } break;
  10032. }
  10033. }
  10034. // ggml_compute_forward_soft_max_back
  10035. static void ggml_compute_forward_soft_max_back_f32(
  10036. const struct ggml_compute_params * params,
  10037. struct ggml_tensor * dst) {
  10038. const struct ggml_tensor * src0 = dst->src[0];
  10039. const struct ggml_tensor * src1 = dst->src[1];
  10040. GGML_ASSERT(ggml_is_contiguous(src0));
  10041. GGML_ASSERT(ggml_is_contiguous(src1));
  10042. GGML_ASSERT(ggml_is_contiguous(dst));
  10043. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10044. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10045. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10046. return;
  10047. }
  10048. // TODO: handle transposed/permuted matrices
  10049. const int ith = params->ith;
  10050. const int nth = params->nth;
  10051. const int nc = src0->ne[0];
  10052. const int nr = ggml_nrows(src0);
  10053. // rows per thread
  10054. const int dr = (nr + nth - 1)/nth;
  10055. // row range for this thread
  10056. const int ir0 = dr*ith;
  10057. const int ir1 = MIN(ir0 + dr, nr);
  10058. for (int i1 = ir0; i1 < ir1; i1++) {
  10059. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10060. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10061. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10062. #ifndef NDEBUG
  10063. for (int i = 0; i < nc; ++i) {
  10064. //printf("p[%d] = %f\n", i, p[i]);
  10065. assert(!isnan(dy[i]));
  10066. assert(!isnan(y[i]));
  10067. }
  10068. #endif
  10069. // Jii = yi - yi*yi
  10070. // Jij = -yi*yj
  10071. // J = diag(y)-y.T*y
  10072. // dx = J * dy
  10073. // dxk = sum_i(Jki * dyi)
  10074. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10075. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10076. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10077. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10078. // dxk = -yk * dot(y, dy) + yk*dyk
  10079. // dxk = yk * (- dot(y, dy) + dyk)
  10080. // dxk = yk * (dyk - dot(y, dy))
  10081. //
  10082. // post-order:
  10083. // dot_y_dy := dot(y, dy)
  10084. // dx := dy
  10085. // dx := dx - dot_y_dy
  10086. // dx := dx * y
  10087. // linear runtime, no additional memory
  10088. float dot_y_dy = 0;
  10089. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10090. ggml_vec_cpy_f32 (nc, dx, dy);
  10091. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10092. ggml_vec_mul_f32 (nc, dx, dx, y);
  10093. #ifndef NDEBUG
  10094. for (int i = 0; i < nc; ++i) {
  10095. assert(!isnan(dx[i]));
  10096. assert(!isinf(dx[i]));
  10097. }
  10098. #endif
  10099. }
  10100. }
  10101. static void ggml_compute_forward_soft_max_back(
  10102. const struct ggml_compute_params * params,
  10103. struct ggml_tensor * dst) {
  10104. const struct ggml_tensor * src0 = dst->src[0];
  10105. switch (src0->type) {
  10106. case GGML_TYPE_F32:
  10107. {
  10108. ggml_compute_forward_soft_max_back_f32(params, dst);
  10109. } break;
  10110. default:
  10111. {
  10112. GGML_ASSERT(false);
  10113. } break;
  10114. }
  10115. }
  10116. // ggml_compute_forward_alibi
  10117. static void ggml_compute_forward_alibi_f32(
  10118. const struct ggml_compute_params * params,
  10119. struct ggml_tensor * dst) {
  10120. const struct ggml_tensor * src0 = dst->src[0];
  10121. assert(params->ith == 0);
  10122. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10123. return;
  10124. }
  10125. //const int n_past = ((int32_t *) dst->op_params)[0];
  10126. const int n_head = ((int32_t *) dst->op_params)[1];
  10127. float max_bias;
  10128. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10129. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10130. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10131. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10132. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10133. const int64_t n = ggml_nrows(src0);
  10134. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10135. const size_t nb0 = src0->nb[0];
  10136. const size_t nb1 = src0->nb[1];
  10137. const size_t nb2 = src0->nb[2];
  10138. //const int nb3 = src0->nb[3];
  10139. GGML_ASSERT(nb0 == sizeof(float));
  10140. GGML_ASSERT(n_head == ne2);
  10141. // add alibi to src0 (KQ_scaled)
  10142. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10143. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10144. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10145. for (int64_t k = 0; k < ne2_ne3; k++) {
  10146. // TODO: k*nb2 or k*nb3
  10147. float m_k;
  10148. if (k < n_heads_log2_floor) {
  10149. m_k = powf(m0, k + 1);
  10150. } else {
  10151. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10152. }
  10153. for (int64_t i = 0; i < ne0; i++) {
  10154. for (int64_t j = 0; j < ne1; j++) {
  10155. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10156. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10157. pdst[0] = i * m_k + src[0];
  10158. }
  10159. }
  10160. }
  10161. }
  10162. static void ggml_compute_forward_alibi_f16(
  10163. const struct ggml_compute_params * params,
  10164. struct ggml_tensor * dst) {
  10165. const struct ggml_tensor * src0 = dst->src[0];
  10166. assert(params->ith == 0);
  10167. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10168. return;
  10169. }
  10170. //const int n_past = ((int32_t *) dst->op_params)[0];
  10171. const int n_head = ((int32_t *) dst->op_params)[1];
  10172. float max_bias;
  10173. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10174. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10175. const int ne1 = src0->ne[1]; // seq_len_without_past
  10176. const int ne2 = src0->ne[2]; // n_head -> this is k
  10177. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10178. const int n = ggml_nrows(src0);
  10179. const int ne2_ne3 = n/ne1; // ne2*ne3
  10180. const int nb0 = src0->nb[0];
  10181. const int nb1 = src0->nb[1];
  10182. const int nb2 = src0->nb[2];
  10183. //const int nb3 = src0->nb[3];
  10184. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10185. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10186. GGML_ASSERT(n_head == ne2);
  10187. // add alibi to src0 (KQ_scaled)
  10188. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10189. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10190. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10191. for (int k = 0; k < ne2_ne3; k++) {
  10192. // TODO: k*nb2 or k*nb3
  10193. float m_k;
  10194. if (k < n_heads_log2_floor) {
  10195. m_k = powf(m0, k + 1);
  10196. } else {
  10197. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10198. }
  10199. for (int i = 0; i < ne0; i++) {
  10200. for (int j = 0; j < ne1; j++) {
  10201. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10202. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10203. // we return F32
  10204. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10205. }
  10206. }
  10207. }
  10208. }
  10209. static void ggml_compute_forward_alibi(
  10210. const struct ggml_compute_params * params,
  10211. struct ggml_tensor * dst) {
  10212. const struct ggml_tensor * src0 = dst->src[0];
  10213. switch (src0->type) {
  10214. case GGML_TYPE_F16:
  10215. {
  10216. ggml_compute_forward_alibi_f16(params, dst);
  10217. } break;
  10218. case GGML_TYPE_F32:
  10219. {
  10220. ggml_compute_forward_alibi_f32(params, dst);
  10221. } break;
  10222. case GGML_TYPE_Q4_0:
  10223. case GGML_TYPE_Q4_1:
  10224. case GGML_TYPE_Q5_0:
  10225. case GGML_TYPE_Q5_1:
  10226. case GGML_TYPE_Q8_0:
  10227. case GGML_TYPE_Q8_1:
  10228. case GGML_TYPE_Q2_K:
  10229. case GGML_TYPE_Q3_K:
  10230. case GGML_TYPE_Q4_K:
  10231. case GGML_TYPE_Q5_K:
  10232. case GGML_TYPE_Q6_K:
  10233. case GGML_TYPE_IQ2_XXS:
  10234. case GGML_TYPE_IQ2_XS:
  10235. case GGML_TYPE_IQ3_XXS:
  10236. case GGML_TYPE_IQ1_S:
  10237. case GGML_TYPE_IQ1_M:
  10238. case GGML_TYPE_IQ4_NL:
  10239. case GGML_TYPE_IQ4_XS:
  10240. case GGML_TYPE_IQ3_S:
  10241. case GGML_TYPE_IQ2_S:
  10242. case GGML_TYPE_Q8_K:
  10243. case GGML_TYPE_I8:
  10244. case GGML_TYPE_I16:
  10245. case GGML_TYPE_I32:
  10246. case GGML_TYPE_I64:
  10247. case GGML_TYPE_F64:
  10248. case GGML_TYPE_COUNT:
  10249. {
  10250. GGML_ASSERT(false);
  10251. } break;
  10252. }
  10253. }
  10254. // ggml_compute_forward_clamp
  10255. static void ggml_compute_forward_clamp_f32(
  10256. const struct ggml_compute_params * params,
  10257. struct ggml_tensor * dst) {
  10258. const struct ggml_tensor * src0 = dst->src[0];
  10259. assert(params->ith == 0);
  10260. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10261. return;
  10262. }
  10263. float min;
  10264. float max;
  10265. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10266. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10267. const int ith = params->ith;
  10268. const int nth = params->nth;
  10269. const int n = ggml_nrows(src0);
  10270. const int nc = src0->ne[0];
  10271. const size_t nb00 = src0->nb[0];
  10272. const size_t nb01 = src0->nb[1];
  10273. const size_t nb0 = dst->nb[0];
  10274. const size_t nb1 = dst->nb[1];
  10275. GGML_ASSERT( nb0 == sizeof(float));
  10276. GGML_ASSERT(nb00 == sizeof(float));
  10277. for (int j = ith; j < n; j += nth) {
  10278. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10279. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10280. for (int i = 0; i < nc; i++) {
  10281. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10282. }
  10283. }
  10284. }
  10285. static void ggml_compute_forward_clamp(
  10286. const struct ggml_compute_params * params,
  10287. struct ggml_tensor * dst) {
  10288. const struct ggml_tensor * src0 = dst->src[0];
  10289. switch (src0->type) {
  10290. case GGML_TYPE_F32:
  10291. {
  10292. ggml_compute_forward_clamp_f32(params, dst);
  10293. } break;
  10294. case GGML_TYPE_F16:
  10295. case GGML_TYPE_Q4_0:
  10296. case GGML_TYPE_Q4_1:
  10297. case GGML_TYPE_Q5_0:
  10298. case GGML_TYPE_Q5_1:
  10299. case GGML_TYPE_Q8_0:
  10300. case GGML_TYPE_Q8_1:
  10301. case GGML_TYPE_Q2_K:
  10302. case GGML_TYPE_Q3_K:
  10303. case GGML_TYPE_Q4_K:
  10304. case GGML_TYPE_Q5_K:
  10305. case GGML_TYPE_Q6_K:
  10306. case GGML_TYPE_IQ2_XXS:
  10307. case GGML_TYPE_IQ2_XS:
  10308. case GGML_TYPE_IQ3_XXS:
  10309. case GGML_TYPE_IQ1_S:
  10310. case GGML_TYPE_IQ1_M:
  10311. case GGML_TYPE_IQ4_NL:
  10312. case GGML_TYPE_IQ4_XS:
  10313. case GGML_TYPE_IQ3_S:
  10314. case GGML_TYPE_IQ2_S:
  10315. case GGML_TYPE_Q8_K:
  10316. case GGML_TYPE_I8:
  10317. case GGML_TYPE_I16:
  10318. case GGML_TYPE_I32:
  10319. case GGML_TYPE_I64:
  10320. case GGML_TYPE_F64:
  10321. case GGML_TYPE_COUNT:
  10322. {
  10323. GGML_ASSERT(false);
  10324. } break;
  10325. }
  10326. }
  10327. // ggml_compute_forward_rope
  10328. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10329. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10330. return 1 - MIN(1, MAX(0, y));
  10331. }
  10332. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10333. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10334. static void rope_yarn(
  10335. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10336. float * cos_theta, float * sin_theta
  10337. ) {
  10338. // Get n-d rotational scaling corrected for extrapolation
  10339. float theta_interp = freq_scale * theta_extrap;
  10340. float theta = theta_interp;
  10341. if (ext_factor != 0.0f) {
  10342. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10343. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10344. // Get n-d magnitude scaling corrected for interpolation
  10345. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10346. }
  10347. *cos_theta = cosf(theta) * mscale;
  10348. *sin_theta = sinf(theta) * mscale;
  10349. }
  10350. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10351. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10352. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10353. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10354. }
  10355. static void ggml_rope_cache_init(
  10356. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10357. float * cache, float sin_sign, float theta_scale
  10358. ) {
  10359. float theta = theta_base;
  10360. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10361. rope_yarn(
  10362. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10363. );
  10364. cache[i0 + 1] *= sin_sign;
  10365. theta *= theta_scale;
  10366. }
  10367. }
  10368. GGML_CALL void ggml_rope_yarn_corr_dims(
  10369. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10370. ) {
  10371. // start and end correction dims
  10372. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10373. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10374. dims[0] = MAX(0, start);
  10375. dims[1] = MIN(n_dims - 1, end);
  10376. }
  10377. static void ggml_compute_forward_rope_f32(
  10378. const struct ggml_compute_params * params,
  10379. struct ggml_tensor * dst,
  10380. const bool forward) {
  10381. const struct ggml_tensor * src0 = dst->src[0];
  10382. const struct ggml_tensor * src1 = dst->src[1];
  10383. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10384. return;
  10385. }
  10386. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10387. // these two only relevant for xPos RoPE:
  10388. float xpos_base;
  10389. bool xpos_down;
  10390. //const int n_past = ((int32_t *) dst->op_params)[0];
  10391. const int n_dims = ((int32_t *) dst->op_params)[1];
  10392. const int mode = ((int32_t *) dst->op_params)[2];
  10393. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10394. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10395. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10396. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10397. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10398. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10399. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10400. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10401. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10402. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10403. GGML_TENSOR_UNARY_OP_LOCALS
  10404. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10405. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10406. GGML_ASSERT(nb00 == sizeof(float));
  10407. const int ith = params->ith;
  10408. const int nth = params->nth;
  10409. const int nr = ggml_nrows(dst);
  10410. GGML_ASSERT(n_dims <= ne0);
  10411. GGML_ASSERT(n_dims % 2 == 0);
  10412. // rows per thread
  10413. const int dr = (nr + nth - 1)/nth;
  10414. // row range for this thread
  10415. const int ir0 = dr*ith;
  10416. const int ir1 = MIN(ir0 + dr, nr);
  10417. // row index used to determine which thread to use
  10418. int ir = 0;
  10419. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10420. const float inv_ndims = -1.f/n_dims;
  10421. float corr_dims[2];
  10422. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10423. const bool is_neox = mode & 2;
  10424. const bool is_glm = mode & 4;
  10425. // backward process uses inverse rotation by cos and sin.
  10426. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10427. // this essentially just switches the sign of sin.
  10428. const float sin_sign = forward ? 1.0f : -1.0f;
  10429. const int32_t * pos = (const int32_t *) src1->data;
  10430. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10431. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10432. const int64_t p = pos[i2];
  10433. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10434. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10435. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10436. }
  10437. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10438. if (ir++ < ir0) continue;
  10439. if (ir > ir1) break;
  10440. float theta_base = (float)p;
  10441. if (is_glm) {
  10442. theta_base = MIN(p, n_ctx - 2);
  10443. float block_theta = MAX(p - (n_ctx - 2), 0);
  10444. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10445. const float cos_theta = cosf(theta_base);
  10446. const float sin_theta = sinf(theta_base) * sin_sign;
  10447. const float cos_block_theta = cosf(block_theta);
  10448. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10449. theta_base *= theta_scale;
  10450. block_theta *= theta_scale;
  10451. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10452. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10453. const float x0 = src[0];
  10454. const float x1 = src[n_dims/2];
  10455. const float x2 = src[n_dims];
  10456. const float x3 = src[n_dims/2*3];
  10457. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10458. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10459. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10460. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10461. }
  10462. } else if (!is_neox) {
  10463. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10464. const float cos_theta = cache[i0 + 0];
  10465. const float sin_theta = cache[i0 + 1];
  10466. // zeta scaling for xPos only:
  10467. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10468. if (xpos_down) zeta = 1.0f / zeta;
  10469. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10470. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10471. const float x0 = src[0];
  10472. const float x1 = src[1];
  10473. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10474. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10475. }
  10476. } else {
  10477. // TODO: this might be wrong for ne0 != n_dims - need double check
  10478. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10479. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10480. theta_base *= freq_scale;
  10481. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10482. if (ic < n_dims) {
  10483. const int64_t ib = 0;
  10484. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10485. float cur_rot = inv_ndims * ic - ib;
  10486. float cos_theta, sin_theta;
  10487. rope_yarn(
  10488. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10489. &cos_theta, &sin_theta
  10490. );
  10491. sin_theta *= sin_sign;
  10492. theta_base *= theta_scale;
  10493. const int64_t i0 = ib*n_dims + ic/2;
  10494. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10495. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10496. const float x0 = src[0];
  10497. const float x1 = src[n_dims/2];
  10498. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10499. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10500. } else {
  10501. const int64_t i0 = ic;
  10502. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10503. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10504. dst_data[0] = src[0];
  10505. dst_data[1] = src[1];
  10506. }
  10507. }
  10508. }
  10509. }
  10510. }
  10511. }
  10512. }
  10513. static void ggml_compute_forward_rope_f16(
  10514. const struct ggml_compute_params * params,
  10515. struct ggml_tensor * dst,
  10516. const bool forward) {
  10517. const struct ggml_tensor * src0 = dst->src[0];
  10518. const struct ggml_tensor * src1 = dst->src[1];
  10519. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10520. return;
  10521. }
  10522. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10523. //const int n_past = ((int32_t *) dst->op_params)[0];
  10524. const int n_dims = ((int32_t *) dst->op_params)[1];
  10525. const int mode = ((int32_t *) dst->op_params)[2];
  10526. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10527. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10528. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10529. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10530. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10531. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10532. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10533. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10534. GGML_TENSOR_UNARY_OP_LOCALS
  10535. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10536. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10537. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10538. const int ith = params->ith;
  10539. const int nth = params->nth;
  10540. const int nr = ggml_nrows(dst);
  10541. GGML_ASSERT(n_dims <= ne0);
  10542. GGML_ASSERT(n_dims % 2 == 0);
  10543. // rows per thread
  10544. const int dr = (nr + nth - 1)/nth;
  10545. // row range for this thread
  10546. const int ir0 = dr*ith;
  10547. const int ir1 = MIN(ir0 + dr, nr);
  10548. // row index used to determine which thread to use
  10549. int ir = 0;
  10550. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10551. const float inv_ndims = -1.f/n_dims;
  10552. float corr_dims[2];
  10553. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10554. const bool is_neox = mode & 2;
  10555. const bool is_glm = mode & 4;
  10556. // backward process uses inverse rotation by cos and sin.
  10557. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10558. // this essentially just switches the sign of sin.
  10559. const float sin_sign = forward ? 1.0f : -1.0f;
  10560. const int32_t * pos = (const int32_t *) src1->data;
  10561. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10562. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10563. const int64_t p = pos[i2];
  10564. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10565. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10566. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10567. }
  10568. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10569. if (ir++ < ir0) continue;
  10570. if (ir > ir1) break;
  10571. float theta_base = (float)p;
  10572. if (is_glm) {
  10573. theta_base = MIN(p, n_ctx - 2);
  10574. float block_theta = MAX(p - (n_ctx - 2), 0);
  10575. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10576. const float cos_theta = cosf(theta_base);
  10577. const float sin_theta = sinf(theta_base) * sin_sign;
  10578. const float cos_block_theta = cosf(block_theta);
  10579. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10580. theta_base *= theta_scale;
  10581. block_theta *= theta_scale;
  10582. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10583. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10584. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10585. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10586. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10587. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10588. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10589. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10590. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10591. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10592. }
  10593. } else if (!is_neox) {
  10594. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10595. const float cos_theta = cache[i0 + 0];
  10596. const float sin_theta = cache[i0 + 1];
  10597. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10598. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10599. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10600. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10601. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10602. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10603. }
  10604. } else {
  10605. // TODO: this might be wrong for ne0 != n_dims - need double check
  10606. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10607. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10608. theta_base *= freq_scale;
  10609. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10610. if (ic < n_dims) {
  10611. const int64_t ib = 0;
  10612. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10613. float cur_rot = inv_ndims * ic - ib;
  10614. float cos_theta, sin_theta;
  10615. rope_yarn(
  10616. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10617. &cos_theta, &sin_theta
  10618. );
  10619. sin_theta *= sin_sign;
  10620. theta_base *= theta_scale;
  10621. const int64_t i0 = ib*n_dims + ic/2;
  10622. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10623. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10624. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10625. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10626. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10627. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10628. } else {
  10629. const int64_t i0 = ic;
  10630. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10631. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10632. dst_data[0] = src[0];
  10633. dst_data[1] = src[1];
  10634. }
  10635. }
  10636. }
  10637. }
  10638. }
  10639. }
  10640. }
  10641. static void ggml_compute_forward_rope(
  10642. const struct ggml_compute_params * params,
  10643. struct ggml_tensor * dst) {
  10644. const struct ggml_tensor * src0 = dst->src[0];
  10645. switch (src0->type) {
  10646. case GGML_TYPE_F16:
  10647. {
  10648. ggml_compute_forward_rope_f16(params, dst, true);
  10649. } break;
  10650. case GGML_TYPE_F32:
  10651. {
  10652. ggml_compute_forward_rope_f32(params, dst, true);
  10653. } break;
  10654. default:
  10655. {
  10656. GGML_ASSERT(false);
  10657. } break;
  10658. }
  10659. }
  10660. // ggml_compute_forward_rope_back
  10661. static void ggml_compute_forward_rope_back(
  10662. const struct ggml_compute_params * params,
  10663. struct ggml_tensor * dst) {
  10664. const struct ggml_tensor * src0 = dst->src[0];
  10665. switch (src0->type) {
  10666. case GGML_TYPE_F16:
  10667. {
  10668. ggml_compute_forward_rope_f16(params, dst, false);
  10669. } break;
  10670. case GGML_TYPE_F32:
  10671. {
  10672. ggml_compute_forward_rope_f32(params, dst, false);
  10673. } break;
  10674. default:
  10675. {
  10676. GGML_ASSERT(false);
  10677. } break;
  10678. }
  10679. }
  10680. // ggml_compute_forward_conv_transpose_1d
  10681. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10682. const struct ggml_compute_params * params,
  10683. struct ggml_tensor * dst) {
  10684. const struct ggml_tensor * src0 = dst->src[0];
  10685. const struct ggml_tensor * src1 = dst->src[1];
  10686. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10687. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10688. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10689. int64_t t0 = ggml_perf_time_us();
  10690. UNUSED(t0);
  10691. GGML_TENSOR_BINARY_OP_LOCALS
  10692. const int ith = params->ith;
  10693. const int nth = params->nth;
  10694. const int nk = ne00*ne01*ne02;
  10695. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10696. GGML_ASSERT(nb10 == sizeof(float));
  10697. if (params->type == GGML_TASK_TYPE_INIT) {
  10698. if (ith != 0) {
  10699. return;
  10700. }
  10701. memset(params->wdata, 0, params->wsize);
  10702. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10703. {
  10704. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10705. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10706. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10707. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10708. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10709. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10710. dst_data[i00*ne02 + i02] = src[i00];
  10711. }
  10712. }
  10713. }
  10714. }
  10715. // permute source data (src1) from (L x Cin) to (Cin x L)
  10716. {
  10717. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10718. ggml_fp16_t * dst_data = wdata;
  10719. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10720. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10721. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10722. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10723. }
  10724. }
  10725. }
  10726. // need to zero dst since we are accumulating into it
  10727. memset(dst->data, 0, ggml_nbytes(dst));
  10728. return;
  10729. }
  10730. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10731. return;
  10732. }
  10733. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10734. // total rows in dst
  10735. const int nr = ne1;
  10736. // rows per thread
  10737. const int dr = (nr + nth - 1)/nth;
  10738. // row range for this thread
  10739. const int ir0 = dr*ith;
  10740. const int ir1 = MIN(ir0 + dr, nr);
  10741. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10742. ggml_fp16_t * const wdata_src = wdata + nk;
  10743. for (int i1 = ir0; i1 < ir1; i1++) {
  10744. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10745. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10746. for (int i10 = 0; i10 < ne10; i10++) {
  10747. const int i1n = i10*ne11;
  10748. for (int i00 = 0; i00 < ne00; i00++) {
  10749. float v = 0;
  10750. ggml_vec_dot_f16(ne02, &v, 0,
  10751. (ggml_fp16_t *) wdata_src + i1n, 0,
  10752. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10753. dst_data[i10*s0 + i00] += v;
  10754. }
  10755. }
  10756. }
  10757. }
  10758. static void ggml_compute_forward_conv_transpose_1d_f32(
  10759. const struct ggml_compute_params * params,
  10760. struct ggml_tensor * dst) {
  10761. const struct ggml_tensor * src0 = dst->src[0];
  10762. const struct ggml_tensor * src1 = dst->src[1];
  10763. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10764. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10765. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10766. int64_t t0 = ggml_perf_time_us();
  10767. UNUSED(t0);
  10768. GGML_TENSOR_BINARY_OP_LOCALS
  10769. const int ith = params->ith;
  10770. const int nth = params->nth;
  10771. const int nk = ne00*ne01*ne02;
  10772. GGML_ASSERT(nb00 == sizeof(float));
  10773. GGML_ASSERT(nb10 == sizeof(float));
  10774. if (params->type == GGML_TASK_TYPE_INIT) {
  10775. if (ith != 0) {
  10776. return;
  10777. }
  10778. memset(params->wdata, 0, params->wsize);
  10779. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10780. {
  10781. float * const wdata = (float *) params->wdata + 0;
  10782. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10783. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10784. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10785. float * dst_data = wdata + i01*ne00*ne02;
  10786. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10787. dst_data[i00*ne02 + i02] = src[i00];
  10788. }
  10789. }
  10790. }
  10791. }
  10792. // prepare source data (src1)
  10793. {
  10794. float * const wdata = (float *) params->wdata + nk;
  10795. float * dst_data = wdata;
  10796. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10797. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10798. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10799. dst_data[i10*ne11 + i11] = src[i10];
  10800. }
  10801. }
  10802. }
  10803. // need to zero dst since we are accumulating into it
  10804. memset(dst->data, 0, ggml_nbytes(dst));
  10805. return;
  10806. }
  10807. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10808. return;
  10809. }
  10810. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10811. // total rows in dst
  10812. const int nr = ne1;
  10813. // rows per thread
  10814. const int dr = (nr + nth - 1)/nth;
  10815. // row range for this thread
  10816. const int ir0 = dr*ith;
  10817. const int ir1 = MIN(ir0 + dr, nr);
  10818. float * const wdata = (float *) params->wdata + 0;
  10819. float * const wdata_src = wdata + nk;
  10820. for (int i1 = ir0; i1 < ir1; i1++) {
  10821. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10822. float * wdata_kernel = wdata + i1*ne02*ne00;
  10823. for (int i10 = 0; i10 < ne10; i10++) {
  10824. const int i1n = i10*ne11;
  10825. for (int i00 = 0; i00 < ne00; i00++) {
  10826. float v = 0;
  10827. ggml_vec_dot_f32(ne02, &v, 0,
  10828. wdata_src + i1n, 0,
  10829. wdata_kernel + i00*ne02, 0, 1);
  10830. dst_data[i10*s0 + i00] += v;
  10831. }
  10832. }
  10833. }
  10834. }
  10835. static void ggml_compute_forward_conv_transpose_1d(
  10836. const struct ggml_compute_params * params,
  10837. struct ggml_tensor * dst) {
  10838. const struct ggml_tensor * src0 = dst->src[0];
  10839. switch (src0->type) {
  10840. case GGML_TYPE_F16:
  10841. {
  10842. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10843. } break;
  10844. case GGML_TYPE_F32:
  10845. {
  10846. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10847. } break;
  10848. default:
  10849. {
  10850. GGML_ASSERT(false);
  10851. } break;
  10852. }
  10853. }
  10854. // src0: kernel [OC, IC, KH, KW]
  10855. // src1: image [N, IC, IH, IW]
  10856. // dst: result [N, OH, OW, IC*KH*KW]
  10857. static void ggml_compute_forward_im2col_f32(
  10858. const struct ggml_compute_params * params,
  10859. struct ggml_tensor * dst) {
  10860. const struct ggml_tensor * src0 = dst->src[0];
  10861. const struct ggml_tensor * src1 = dst->src[1];
  10862. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10863. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10864. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10865. int64_t t0 = ggml_perf_time_us();
  10866. UNUSED(t0);
  10867. GGML_TENSOR_BINARY_OP_LOCALS;
  10868. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10869. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10870. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10871. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10872. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10873. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10874. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10875. const int ith = params->ith;
  10876. const int nth = params->nth;
  10877. const int64_t N = is_2D ? ne13 : ne12;
  10878. const int64_t IC = is_2D ? ne12 : ne11;
  10879. const int64_t IH = is_2D ? ne11 : 1;
  10880. const int64_t IW = ne10;
  10881. const int64_t KH = is_2D ? ne01 : 1;
  10882. const int64_t KW = ne00;
  10883. const int64_t OH = is_2D ? ne2 : 1;
  10884. const int64_t OW = ne1;
  10885. int ofs0 = is_2D ? nb13 : nb12;
  10886. int ofs1 = is_2D ? nb12 : nb11;
  10887. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10888. GGML_ASSERT(nb10 == sizeof(float));
  10889. if (params->type == GGML_TASK_TYPE_INIT) {
  10890. return;
  10891. }
  10892. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10893. return;
  10894. }
  10895. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10896. {
  10897. float * const wdata = (float *) dst->data;
  10898. for (int64_t in = 0; in < N; in++) {
  10899. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10900. for (int64_t iow = 0; iow < OW; iow++) {
  10901. for (int64_t iic = ith; iic < IC; iic += nth) {
  10902. // micro kernel
  10903. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10904. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10905. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10906. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10907. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10908. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10909. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10910. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10911. } else {
  10912. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10913. }
  10914. }
  10915. }
  10916. }
  10917. }
  10918. }
  10919. }
  10920. }
  10921. }
  10922. // src0: kernel [OC, IC, KH, KW]
  10923. // src1: image [N, IC, IH, IW]
  10924. // dst: result [N, OH, OW, IC*KH*KW]
  10925. static void ggml_compute_forward_im2col_f16(
  10926. const struct ggml_compute_params * params,
  10927. struct ggml_tensor * dst) {
  10928. const struct ggml_tensor * src0 = dst->src[0];
  10929. const struct ggml_tensor * src1 = dst->src[1];
  10930. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10931. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10932. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10933. int64_t t0 = ggml_perf_time_us();
  10934. UNUSED(t0);
  10935. GGML_TENSOR_BINARY_OP_LOCALS;
  10936. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10937. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10938. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10939. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10940. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10941. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10942. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10943. const int ith = params->ith;
  10944. const int nth = params->nth;
  10945. const int64_t N = is_2D ? ne13 : ne12;
  10946. const int64_t IC = is_2D ? ne12 : ne11;
  10947. const int64_t IH = is_2D ? ne11 : 1;
  10948. const int64_t IW = ne10;
  10949. const int64_t KH = is_2D ? ne01 : 1;
  10950. const int64_t KW = ne00;
  10951. const int64_t OH = is_2D ? ne2 : 1;
  10952. const int64_t OW = ne1;
  10953. int ofs0 = is_2D ? nb13 : nb12;
  10954. int ofs1 = is_2D ? nb12 : nb11;
  10955. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10956. GGML_ASSERT(nb10 == sizeof(float));
  10957. if (params->type == GGML_TASK_TYPE_INIT) {
  10958. return;
  10959. }
  10960. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10961. return;
  10962. }
  10963. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10964. {
  10965. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10966. for (int64_t in = 0; in < N; in++) {
  10967. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10968. for (int64_t iow = 0; iow < OW; iow++) {
  10969. for (int64_t iic = ith; iic < IC; iic += nth) {
  10970. // micro kernel
  10971. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10972. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10973. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10974. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10975. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10976. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10977. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10978. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10979. } else {
  10980. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10981. }
  10982. }
  10983. }
  10984. }
  10985. }
  10986. }
  10987. }
  10988. }
  10989. }
  10990. static void ggml_compute_forward_im2col(
  10991. const struct ggml_compute_params * params,
  10992. struct ggml_tensor * dst) {
  10993. switch (dst->type) {
  10994. case GGML_TYPE_F16:
  10995. {
  10996. ggml_compute_forward_im2col_f16(params, dst);
  10997. } break;
  10998. case GGML_TYPE_F32:
  10999. {
  11000. ggml_compute_forward_im2col_f32(params, dst);
  11001. } break;
  11002. default:
  11003. {
  11004. GGML_ASSERT(false);
  11005. } break;
  11006. }
  11007. }
  11008. // ggml_compute_forward_conv_transpose_2d
  11009. static void ggml_compute_forward_conv_transpose_2d(
  11010. const struct ggml_compute_params * params,
  11011. struct ggml_tensor * dst) {
  11012. const struct ggml_tensor * src0 = dst->src[0];
  11013. const struct ggml_tensor * src1 = dst->src[1];
  11014. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11015. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11016. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11017. int64_t t0 = ggml_perf_time_us();
  11018. UNUSED(t0);
  11019. GGML_TENSOR_BINARY_OP_LOCALS
  11020. const int ith = params->ith;
  11021. const int nth = params->nth;
  11022. const int nk = ne00*ne01*ne02*ne03;
  11023. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11024. GGML_ASSERT(nb10 == sizeof(float));
  11025. if (params->type == GGML_TASK_TYPE_INIT) {
  11026. if (ith != 0) {
  11027. return;
  11028. }
  11029. memset(params->wdata, 0, params->wsize);
  11030. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11031. {
  11032. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11033. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11034. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11035. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11036. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11037. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11038. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11039. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11040. }
  11041. }
  11042. }
  11043. }
  11044. }
  11045. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11046. {
  11047. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11048. for (int i12 = 0; i12 < ne12; i12++) {
  11049. for (int i11 = 0; i11 < ne11; i11++) {
  11050. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11051. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11052. for (int i10 = 0; i10 < ne10; i10++) {
  11053. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11054. }
  11055. }
  11056. }
  11057. }
  11058. memset(dst->data, 0, ggml_nbytes(dst));
  11059. return;
  11060. }
  11061. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11062. return;
  11063. }
  11064. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11065. // total patches in dst
  11066. const int np = ne2;
  11067. // patches per thread
  11068. const int dp = (np + nth - 1)/nth;
  11069. // patch range for this thread
  11070. const int ip0 = dp*ith;
  11071. const int ip1 = MIN(ip0 + dp, np);
  11072. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11073. ggml_fp16_t * const wdata_src = wdata + nk;
  11074. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11075. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11076. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11077. for (int i11 = 0; i11 < ne11; i11++) {
  11078. for (int i10 = 0; i10 < ne10; i10++) {
  11079. const int i1n = i11*ne10*ne12 + i10*ne12;
  11080. for (int i01 = 0; i01 < ne01; i01++) {
  11081. for (int i00 = 0; i00 < ne00; i00++) {
  11082. float v = 0;
  11083. ggml_vec_dot_f16(ne03, &v, 0,
  11084. wdata_src + i1n, 0,
  11085. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11086. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11087. }
  11088. }
  11089. }
  11090. }
  11091. }
  11092. }
  11093. // ggml_compute_forward_pool_1d_sk_p0
  11094. static void ggml_compute_forward_pool_1d_sk_p0(
  11095. const struct ggml_compute_params * params,
  11096. const enum ggml_op_pool op,
  11097. const int k,
  11098. struct ggml_tensor * dst) {
  11099. const struct ggml_tensor * src = dst->src[0];
  11100. assert(src->type == GGML_TYPE_F32);
  11101. assert(params->ith == 0);
  11102. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11103. return;
  11104. }
  11105. const char * cdata = (const char *)src->data;
  11106. const char * const data_end = cdata + ggml_nbytes(src);
  11107. float * drow = (float *)dst->data;
  11108. const int64_t rs = dst->ne[0];
  11109. while (cdata < data_end) {
  11110. const float * const srow = (const float *)cdata;
  11111. int j = 0;
  11112. for (int64_t i = 0; i < rs; ++i) {
  11113. switch (op) {
  11114. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11115. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11116. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11117. }
  11118. for (int ki = 0; ki < k; ++ki) {
  11119. switch (op) {
  11120. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11121. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11122. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11123. }
  11124. ++j;
  11125. }
  11126. switch (op) {
  11127. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11128. case GGML_OP_POOL_MAX: break;
  11129. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11130. }
  11131. }
  11132. cdata += src->nb[1];
  11133. drow += rs;
  11134. }
  11135. }
  11136. // ggml_compute_forward_pool_1d
  11137. static void ggml_compute_forward_pool_1d(
  11138. const struct ggml_compute_params * params,
  11139. struct ggml_tensor * dst) {
  11140. const int32_t * opts = (const int32_t *)dst->op_params;
  11141. enum ggml_op_pool op = opts[0];
  11142. const int k0 = opts[1];
  11143. const int s0 = opts[2];
  11144. const int p0 = opts[3];
  11145. GGML_ASSERT(p0 == 0); // padding not supported
  11146. GGML_ASSERT(k0 == s0); // only s = k supported
  11147. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11148. }
  11149. // ggml_compute_forward_pool_2d
  11150. static void ggml_compute_forward_pool_2d(
  11151. const struct ggml_compute_params * params,
  11152. struct ggml_tensor * dst) {
  11153. const struct ggml_tensor * src = dst->src[0];
  11154. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11155. GGML_ASSERT(params->ith == 0);
  11156. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11157. return;
  11158. }
  11159. const int32_t * opts = (const int32_t *)dst->op_params;
  11160. enum ggml_op_pool op = opts[0];
  11161. const int k0 = opts[1];
  11162. const int k1 = opts[2];
  11163. const int s0 = opts[3];
  11164. const int s1 = opts[4];
  11165. const int p0 = opts[5];
  11166. const int p1 = opts[6];
  11167. const char * cdata = (const char*)src->data;
  11168. const char * const data_end = cdata + ggml_nbytes(src);
  11169. const int64_t px = dst->ne[0];
  11170. const int64_t py = dst->ne[1];
  11171. const int64_t pa = px * py;
  11172. float * dplane = (float *)dst->data;
  11173. const int ka = k0 * k1;
  11174. const int offset0 = -p0;
  11175. const int offset1 = -p1;
  11176. while (cdata < data_end) {
  11177. for (int oy = 0; oy < py; ++oy) {
  11178. float * const drow = dplane + oy * px;
  11179. for (int ox = 0; ox < px; ++ox) {
  11180. float * const out = drow + ox;
  11181. switch (op) {
  11182. case GGML_OP_POOL_AVG: *out = 0; break;
  11183. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11184. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11185. }
  11186. const int ix = offset0 + ox * s0;
  11187. const int iy = offset1 + oy * s1;
  11188. for (int ky = 0; ky < k1; ++ky) {
  11189. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11190. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11191. for (int kx = 0; kx < k0; ++kx) {
  11192. int j = ix + kx;
  11193. if (j < 0 || j >= src->ne[0]) continue;
  11194. switch (op) {
  11195. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11196. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11197. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11198. }
  11199. }
  11200. }
  11201. switch (op) {
  11202. case GGML_OP_POOL_AVG: *out /= ka; break;
  11203. case GGML_OP_POOL_MAX: break;
  11204. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11205. }
  11206. }
  11207. }
  11208. cdata += src->nb[2];
  11209. dplane += pa;
  11210. }
  11211. }
  11212. // ggml_compute_forward_upscale
  11213. static void ggml_compute_forward_upscale_f32(
  11214. const struct ggml_compute_params * params,
  11215. struct ggml_tensor * dst) {
  11216. const struct ggml_tensor * src0 = dst->src[0];
  11217. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11218. return;
  11219. }
  11220. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11221. const int ith = params->ith;
  11222. const int nth = params->nth;
  11223. GGML_TENSOR_UNARY_OP_LOCALS
  11224. const int scale_factor = dst->op_params[0];
  11225. // TODO: optimize
  11226. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11227. const int64_t i03 = i3;
  11228. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11229. const int64_t i02 = i2;
  11230. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11231. const int64_t i01 = i1 / scale_factor;
  11232. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11233. const int64_t i00 = i0 / scale_factor;
  11234. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11235. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11236. *y = *x;
  11237. }
  11238. }
  11239. }
  11240. }
  11241. }
  11242. static void ggml_compute_forward_upscale(
  11243. const struct ggml_compute_params * params,
  11244. struct ggml_tensor * dst) {
  11245. const struct ggml_tensor * src0 = dst->src[0];
  11246. switch (src0->type) {
  11247. case GGML_TYPE_F32:
  11248. {
  11249. ggml_compute_forward_upscale_f32(params, dst);
  11250. } break;
  11251. default:
  11252. {
  11253. GGML_ASSERT(false);
  11254. } break;
  11255. }
  11256. }
  11257. // ggml_compute_forward_pad
  11258. static void ggml_compute_forward_pad_f32(
  11259. const struct ggml_compute_params * params,
  11260. struct ggml_tensor * dst) {
  11261. const struct ggml_tensor * src0 = dst->src[0];
  11262. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11263. return;
  11264. }
  11265. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11266. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11267. const int ith = params->ith;
  11268. const int nth = params->nth;
  11269. GGML_TENSOR_UNARY_OP_LOCALS
  11270. float * dst_ptr = (float *) dst->data;
  11271. // TODO: optimize
  11272. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11273. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11274. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11275. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11276. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11277. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11278. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11279. dst_ptr[dst_idx] = *src_ptr;
  11280. } else {
  11281. dst_ptr[dst_idx] = 0;
  11282. }
  11283. }
  11284. }
  11285. }
  11286. }
  11287. }
  11288. static void ggml_compute_forward_pad(
  11289. const struct ggml_compute_params * params,
  11290. struct ggml_tensor * dst) {
  11291. const struct ggml_tensor * src0 = dst->src[0];
  11292. switch (src0->type) {
  11293. case GGML_TYPE_F32:
  11294. {
  11295. ggml_compute_forward_pad_f32(params, dst);
  11296. } break;
  11297. default:
  11298. {
  11299. GGML_ASSERT(false);
  11300. } break;
  11301. }
  11302. }
  11303. // ggml_compute_forward_arange
  11304. static void ggml_compute_forward_arange_f32(
  11305. const struct ggml_compute_params * params,
  11306. struct ggml_tensor * dst) {
  11307. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11308. return;
  11309. }
  11310. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11311. const int ith = params->ith;
  11312. const int nth = params->nth;
  11313. const float start = ggml_get_op_params_f32(dst, 0);
  11314. const float stop = ggml_get_op_params_f32(dst, 1);
  11315. const float step = ggml_get_op_params_f32(dst, 2);
  11316. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11317. GGML_ASSERT(ggml_nelements(dst) == steps);
  11318. for (int64_t i = ith; i < steps; i+= nth) {
  11319. float value = start + step * i;
  11320. ((float *)dst->data)[i] = value;
  11321. }
  11322. }
  11323. static void ggml_compute_forward_arange(
  11324. const struct ggml_compute_params * params,
  11325. struct ggml_tensor * dst) {
  11326. switch (dst->type) {
  11327. case GGML_TYPE_F32:
  11328. {
  11329. ggml_compute_forward_arange_f32(params, dst);
  11330. } break;
  11331. default:
  11332. {
  11333. GGML_ASSERT(false);
  11334. } break;
  11335. }
  11336. }
  11337. static void ggml_compute_forward_timestep_embedding_f32(
  11338. const struct ggml_compute_params * params,
  11339. struct ggml_tensor * dst) {
  11340. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11341. return;
  11342. }
  11343. const struct ggml_tensor * src0 = dst->src[0];
  11344. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11345. const int ith = params->ith;
  11346. const int nth = params->nth;
  11347. GGML_TENSOR_UNARY_OP_LOCALS
  11348. const int dim = ggml_get_op_params_i32(dst, 0);
  11349. const int max_period = ggml_get_op_params_i32(dst, 1);
  11350. int half = dim / 2;
  11351. for (int64_t i = 0; i < ne00; i++) {
  11352. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11353. for (int64_t j = ith; j < half; j += nth) {
  11354. float timestep = ((float *)src0->data)[i];
  11355. float freq = (float)expf(-logf(max_period) * j / half);
  11356. float arg = timestep * freq;
  11357. embed_data[j] = cosf(arg);
  11358. embed_data[j + half] = sinf(arg);
  11359. }
  11360. if (dim % 2 != 0 && ith == 0) {
  11361. embed_data[dim] = 0.f;
  11362. }
  11363. }
  11364. }
  11365. static void ggml_compute_forward_timestep_embedding(
  11366. const struct ggml_compute_params * params,
  11367. struct ggml_tensor * dst) {
  11368. const struct ggml_tensor * src0 = dst->src[0];
  11369. switch (src0->type) {
  11370. case GGML_TYPE_F32:
  11371. {
  11372. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11373. } break;
  11374. default:
  11375. {
  11376. GGML_ASSERT(false);
  11377. } break;
  11378. }
  11379. }
  11380. // ggml_compute_forward_argsort
  11381. static void ggml_compute_forward_argsort_f32(
  11382. const struct ggml_compute_params * params,
  11383. struct ggml_tensor * dst) {
  11384. const struct ggml_tensor * src0 = dst->src[0];
  11385. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11386. return;
  11387. }
  11388. GGML_TENSOR_UNARY_OP_LOCALS
  11389. GGML_ASSERT(nb0 == sizeof(float));
  11390. const int ith = params->ith;
  11391. const int nth = params->nth;
  11392. const int64_t nr = ggml_nrows(src0);
  11393. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11394. for (int64_t i = ith; i < nr; i += nth) {
  11395. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11396. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11397. for (int64_t j = 0; j < ne0; j++) {
  11398. dst_data[j] = j;
  11399. }
  11400. // C doesn't have a functional sort, so we do a bubble sort instead
  11401. for (int64_t j = 0; j < ne0; j++) {
  11402. for (int64_t k = j + 1; k < ne0; k++) {
  11403. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11404. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11405. int32_t tmp = dst_data[j];
  11406. dst_data[j] = dst_data[k];
  11407. dst_data[k] = tmp;
  11408. }
  11409. }
  11410. }
  11411. }
  11412. }
  11413. static void ggml_compute_forward_argsort(
  11414. const struct ggml_compute_params * params,
  11415. struct ggml_tensor * dst) {
  11416. const struct ggml_tensor * src0 = dst->src[0];
  11417. switch (src0->type) {
  11418. case GGML_TYPE_F32:
  11419. {
  11420. ggml_compute_forward_argsort_f32(params, dst);
  11421. } break;
  11422. default:
  11423. {
  11424. GGML_ASSERT(false);
  11425. } break;
  11426. }
  11427. }
  11428. // ggml_compute_forward_flash_attn
  11429. static void ggml_compute_forward_flash_attn_f32(
  11430. const struct ggml_compute_params * params,
  11431. const bool masked,
  11432. struct ggml_tensor * dst) {
  11433. const struct ggml_tensor * q = dst->src[0];
  11434. const struct ggml_tensor * k = dst->src[1];
  11435. const struct ggml_tensor * v = dst->src[2];
  11436. int64_t t0 = ggml_perf_time_us();
  11437. UNUSED(t0);
  11438. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11439. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11440. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11441. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11442. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11443. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11444. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11445. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11446. const int ith = params->ith;
  11447. const int nth = params->nth;
  11448. const int64_t D = neq0;
  11449. const int64_t N = neq1;
  11450. const int64_t P = nek1 - N;
  11451. const int64_t M = P + N;
  11452. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11453. GGML_ASSERT(ne0 == D);
  11454. GGML_ASSERT(ne1 == N);
  11455. GGML_ASSERT(P >= 0);
  11456. GGML_ASSERT(nbq0 == sizeof(float));
  11457. GGML_ASSERT(nbk0 == sizeof(float));
  11458. GGML_ASSERT(nbv0 == sizeof(float));
  11459. GGML_ASSERT(neq0 == D);
  11460. GGML_ASSERT(nek0 == D);
  11461. GGML_ASSERT(nev1 == D);
  11462. GGML_ASSERT(neq1 == N);
  11463. GGML_ASSERT(nek1 == N + P);
  11464. GGML_ASSERT(nev1 == D);
  11465. // dst cannot be transposed or permuted
  11466. GGML_ASSERT(nb0 == sizeof(float));
  11467. GGML_ASSERT(nb0 <= nb1);
  11468. GGML_ASSERT(nb1 <= nb2);
  11469. GGML_ASSERT(nb2 <= nb3);
  11470. if (params->type == GGML_TASK_TYPE_INIT) {
  11471. return;
  11472. }
  11473. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11474. return;
  11475. }
  11476. // parallelize by q rows using ggml_vec_dot_f32
  11477. // total rows in q
  11478. const int nr = neq1*neq2*neq3;
  11479. // rows per thread
  11480. const int dr = (nr + nth - 1)/nth;
  11481. // row range for this thread
  11482. const int ir0 = dr*ith;
  11483. const int ir1 = MIN(ir0 + dr, nr);
  11484. const float scale = 1.0f/sqrtf(D);
  11485. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11486. for (int ir = ir0; ir < ir1; ++ir) {
  11487. // q indices
  11488. const int iq3 = ir/(neq2*neq1);
  11489. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11490. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11491. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11492. for (int i = M; i < Mup; ++i) {
  11493. S[i] = -INFINITY;
  11494. }
  11495. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11496. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11497. // k indices
  11498. const int ik3 = iq3;
  11499. const int ik2 = iq2 % nek2;
  11500. const int ik1 = ic;
  11501. // S indices
  11502. const int i1 = ik1;
  11503. ggml_vec_dot_f32(neq0,
  11504. S + i1, 0,
  11505. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11506. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11507. }
  11508. // scale
  11509. ggml_vec_scale_f32(masked_begin, S, scale);
  11510. for (int64_t i = masked_begin; i < M; i++) {
  11511. S[i] = -INFINITY;
  11512. }
  11513. // softmax
  11514. // exclude known -INF S[..] values from max and loop
  11515. // dont forget to set their SW values to zero
  11516. {
  11517. float max = -INFINITY;
  11518. ggml_vec_max_f32(masked_begin, &max, S);
  11519. ggml_float sum = 0.0;
  11520. {
  11521. #ifdef GGML_SOFT_MAX_ACCELERATE
  11522. max = -max;
  11523. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11524. vvexpf(S, S, &Mup);
  11525. ggml_vec_sum_f32(Mup, &sum, S);
  11526. #else
  11527. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11528. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11529. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11530. if (i >= masked_begin) {
  11531. break;
  11532. }
  11533. float * SS = S + i;
  11534. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11535. if (i + j >= masked_begin) {
  11536. break;
  11537. } else if (SS[j] == -INFINITY) {
  11538. SS[j] = 0.0f;
  11539. } else {
  11540. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11541. const float val = expf(SS[j] - max);
  11542. #else
  11543. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11544. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11545. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11546. #endif
  11547. sump[j] += (ggml_float)val;
  11548. SS[j] = val;
  11549. }
  11550. }
  11551. }
  11552. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11553. sum += sump[i];
  11554. }
  11555. #endif
  11556. }
  11557. assert(sum > 0.0);
  11558. sum = 1.0/sum;
  11559. ggml_vec_scale_f32(masked_begin, S, sum);
  11560. #ifndef NDEBUG
  11561. for (int i = 0; i < masked_begin; ++i) {
  11562. assert(!isnan(S[i]));
  11563. assert(!isinf(S[i]));
  11564. }
  11565. #endif
  11566. }
  11567. for (int64_t ic = 0; ic < nev1; ++ic) {
  11568. // dst indices
  11569. const int i1 = iq1;
  11570. const int i2 = iq2;
  11571. const int i3 = iq3;
  11572. // v indices
  11573. const int iv2 = iq2 % nev2;
  11574. const int iv3 = iq3;
  11575. ggml_vec_dot_f32(masked_begin,
  11576. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11577. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11578. S, 0, 1);
  11579. }
  11580. }
  11581. }
  11582. static void ggml_compute_forward_flash_attn_f16(
  11583. const struct ggml_compute_params * params,
  11584. const bool masked,
  11585. struct ggml_tensor * dst) {
  11586. const struct ggml_tensor * q = dst->src[0];
  11587. const struct ggml_tensor * k = dst->src[1];
  11588. const struct ggml_tensor * v = dst->src[2];
  11589. int64_t t0 = ggml_perf_time_us();
  11590. UNUSED(t0);
  11591. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11592. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11593. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11594. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11595. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11596. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11597. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11598. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11599. const int ith = params->ith;
  11600. const int nth = params->nth;
  11601. const int64_t D = neq0;
  11602. const int64_t N = neq1;
  11603. const int64_t P = nek1 - N;
  11604. const int64_t M = P + N;
  11605. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11606. GGML_ASSERT(ne0 == D);
  11607. GGML_ASSERT(ne1 == N);
  11608. GGML_ASSERT(P >= 0);
  11609. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11610. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11611. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11612. GGML_ASSERT(neq0 == D);
  11613. GGML_ASSERT(nek0 == D);
  11614. GGML_ASSERT(nev1 == D);
  11615. GGML_ASSERT(neq1 == N);
  11616. GGML_ASSERT(nek1 == N + P);
  11617. GGML_ASSERT(nev1 == D);
  11618. // dst cannot be transposed or permuted
  11619. GGML_ASSERT(nb0 == sizeof(float));
  11620. GGML_ASSERT(nb0 <= nb1);
  11621. GGML_ASSERT(nb1 <= nb2);
  11622. GGML_ASSERT(nb2 <= nb3);
  11623. if (params->type == GGML_TASK_TYPE_INIT) {
  11624. return;
  11625. }
  11626. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11627. return;
  11628. }
  11629. // parallelize by q rows using ggml_vec_dot_f32
  11630. // total rows in q
  11631. const int nr = neq1*neq2*neq3;
  11632. // rows per thread
  11633. const int dr = (nr + nth - 1)/nth;
  11634. // row range for this thread
  11635. const int ir0 = dr*ith;
  11636. const int ir1 = MIN(ir0 + dr, nr);
  11637. const float scale = 1.0f/sqrtf(D);
  11638. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11639. for (int ir = ir0; ir < ir1; ++ir) {
  11640. // q indices
  11641. const int iq3 = ir/(neq2*neq1);
  11642. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11643. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11644. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11645. for (int i = M; i < Mup; ++i) {
  11646. S[i] = -INFINITY;
  11647. }
  11648. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11649. for (int64_t ic = 0; ic < nek1; ++ic) {
  11650. // k indices
  11651. const int ik3 = iq3;
  11652. const int ik2 = iq2 % nek2;
  11653. const int ik1 = ic;
  11654. // S indices
  11655. const int i1 = ik1;
  11656. ggml_vec_dot_f16(neq0,
  11657. S + i1, 0,
  11658. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11659. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11660. }
  11661. } else {
  11662. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11663. // k indices
  11664. const int ik3 = iq3;
  11665. const int ik2 = iq2 % nek2;
  11666. const int ik1 = ic;
  11667. // S indices
  11668. const int i1 = ik1;
  11669. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11670. S + i1,
  11671. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11672. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11673. }
  11674. }
  11675. // scale
  11676. ggml_vec_scale_f32(nek1, S, scale);
  11677. if (masked) {
  11678. for (int64_t i = P; i < M; i++) {
  11679. if (i > P + iq1) {
  11680. S[i] = -INFINITY;
  11681. }
  11682. }
  11683. }
  11684. // softmax
  11685. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11686. // dont forget to set their S values to zero
  11687. {
  11688. float max = -INFINITY;
  11689. ggml_vec_max_f32(M, &max, S);
  11690. ggml_float sum = 0.0;
  11691. {
  11692. #ifdef GGML_SOFT_MAX_ACCELERATE
  11693. max = -max;
  11694. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11695. vvexpf(S, S, &Mup);
  11696. ggml_vec_sum_f32(Mup, &sum, S);
  11697. #else
  11698. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11699. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11700. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11701. float * SS = S + i;
  11702. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11703. if (SS[j] == -INFINITY) {
  11704. SS[j] = 0.0f;
  11705. } else {
  11706. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11707. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11708. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11709. sump[j] += (ggml_float)val;
  11710. SS[j] = val;
  11711. }
  11712. }
  11713. }
  11714. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11715. sum += sump[i];
  11716. }
  11717. #endif
  11718. }
  11719. assert(sum > 0.0);
  11720. sum = 1.0/sum;
  11721. ggml_vec_scale_f32(M, S, sum);
  11722. #ifndef NDEBUG
  11723. for (int i = 0; i < M; ++i) {
  11724. assert(!isnan(S[i]));
  11725. assert(!isinf(S[i]));
  11726. }
  11727. #endif
  11728. }
  11729. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11730. for (int64_t i = 0; i < M; i++) {
  11731. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11732. }
  11733. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11734. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11735. for (int64_t ic = 0; ic < nev1; ++ic) {
  11736. // dst indices
  11737. const int i1 = iq1;
  11738. const int i2 = iq2;
  11739. const int i3 = iq3;
  11740. // v indices
  11741. const int iv2 = iq2 % nev2;
  11742. const int iv3 = iq3;
  11743. ggml_vec_dot_f16(nev0,
  11744. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11745. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11746. S16, 0, 1);
  11747. }
  11748. } else {
  11749. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11750. // dst indices
  11751. const int i1 = iq1;
  11752. const int i2 = iq2;
  11753. const int i3 = iq3;
  11754. // v indices
  11755. const int iv2 = iq2 % nev2;
  11756. const int iv3 = iq3;
  11757. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11758. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11759. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11760. S16);
  11761. }
  11762. }
  11763. }
  11764. }
  11765. static void ggml_compute_forward_flash_attn(
  11766. const struct ggml_compute_params * params,
  11767. const bool masked,
  11768. struct ggml_tensor * dst) {
  11769. const struct ggml_tensor * q = dst->src[0];
  11770. switch (q->type) {
  11771. case GGML_TYPE_F16:
  11772. {
  11773. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11774. } break;
  11775. case GGML_TYPE_F32:
  11776. {
  11777. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11778. } break;
  11779. default:
  11780. {
  11781. GGML_ASSERT(false);
  11782. } break;
  11783. }
  11784. }
  11785. // ggml_compute_forward_flash_ff
  11786. static void ggml_compute_forward_flash_ff_f16(
  11787. const struct ggml_compute_params * params,
  11788. struct ggml_tensor * dst) {
  11789. const struct ggml_tensor * a = dst->src[0]; // F16
  11790. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11791. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11792. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11793. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11794. int64_t t0 = ggml_perf_time_us();
  11795. UNUSED(t0);
  11796. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11797. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11798. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11799. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11800. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11801. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11802. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11803. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11804. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11805. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11806. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11807. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11808. const int ith = params->ith;
  11809. const int nth = params->nth;
  11810. const int64_t D = nea0;
  11811. //const int64_t N = nea1;
  11812. const int64_t M = neb01;
  11813. GGML_ASSERT(ne0 == nea0);
  11814. GGML_ASSERT(ne1 == nea1);
  11815. GGML_ASSERT(ne2 == nea2);
  11816. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11817. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11818. GGML_ASSERT(nbb10 == sizeof(float));
  11819. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11820. GGML_ASSERT(nbc10 == sizeof(float));
  11821. GGML_ASSERT(neb00 == D);
  11822. GGML_ASSERT(neb01 == M);
  11823. GGML_ASSERT(neb10 == M);
  11824. GGML_ASSERT(neb11 == 1);
  11825. GGML_ASSERT(nec00 == M);
  11826. GGML_ASSERT(nec01 == D);
  11827. GGML_ASSERT(nec10 == D);
  11828. GGML_ASSERT(nec11 == 1);
  11829. // dst cannot be transposed or permuted
  11830. GGML_ASSERT(nb0 == sizeof(float));
  11831. GGML_ASSERT(nb0 <= nb1);
  11832. GGML_ASSERT(nb1 <= nb2);
  11833. GGML_ASSERT(nb2 <= nb3);
  11834. if (params->type == GGML_TASK_TYPE_INIT) {
  11835. return;
  11836. }
  11837. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11838. return;
  11839. }
  11840. // parallelize by a rows using ggml_vec_dot_f32
  11841. // total rows in a
  11842. const int nr = nea1*nea2*nea3;
  11843. // rows per thread
  11844. const int dr = (nr + nth - 1)/nth;
  11845. // row range for this thread
  11846. const int ir0 = dr*ith;
  11847. const int ir1 = MIN(ir0 + dr, nr);
  11848. for (int ir = ir0; ir < ir1; ++ir) {
  11849. // a indices
  11850. const int ia3 = ir/(nea2*nea1);
  11851. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11852. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11853. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11854. for (int64_t ic = 0; ic < neb01; ++ic) {
  11855. // b0 indices
  11856. const int ib03 = ia3;
  11857. const int ib02 = ia2;
  11858. const int ib01 = ic;
  11859. // S indices
  11860. const int i1 = ib01;
  11861. ggml_vec_dot_f16(nea0,
  11862. S + i1, 0,
  11863. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11864. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11865. }
  11866. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11867. //ggml_vec_gelu_f32(neb01, S, S);
  11868. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11869. for (int64_t i = 0; i < M; i++) {
  11870. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11871. }
  11872. ggml_vec_gelu_f16(neb01, S16, S16);
  11873. {
  11874. // dst indices
  11875. const int i1 = ia1;
  11876. const int i2 = ia2;
  11877. const int i3 = ia3;
  11878. for (int64_t ic = 0; ic < nec01; ++ic) {
  11879. ggml_vec_dot_f16(neb01,
  11880. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11881. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11882. S16, 0, 1);
  11883. }
  11884. ggml_vec_add_f32(nec01,
  11885. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11886. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11887. (float *) c1->data);
  11888. }
  11889. }
  11890. }
  11891. static void ggml_compute_forward_flash_ff(
  11892. const struct ggml_compute_params * params,
  11893. struct ggml_tensor * dst) {
  11894. const struct ggml_tensor * b0 = dst->src[1];
  11895. switch (b0->type) {
  11896. case GGML_TYPE_F16:
  11897. {
  11898. ggml_compute_forward_flash_ff_f16(params, dst);
  11899. } break;
  11900. case GGML_TYPE_F32:
  11901. {
  11902. GGML_ASSERT(false); // TODO
  11903. } break;
  11904. default:
  11905. {
  11906. GGML_ASSERT(false);
  11907. } break;
  11908. }
  11909. }
  11910. // ggml_compute_forward_flash_attn_back
  11911. static void ggml_compute_forward_flash_attn_back_f32(
  11912. const struct ggml_compute_params * params,
  11913. const bool masked,
  11914. struct ggml_tensor * dst) {
  11915. const struct ggml_tensor * q = dst->src[0];
  11916. const struct ggml_tensor * k = dst->src[1];
  11917. const struct ggml_tensor * v = dst->src[2];
  11918. const struct ggml_tensor * d = dst->src[3];
  11919. int64_t t0 = ggml_perf_time_us();
  11920. UNUSED(t0);
  11921. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11922. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11923. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11924. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11925. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11926. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11927. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11928. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11929. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11930. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11931. const int ith = params->ith;
  11932. const int nth = params->nth;
  11933. const int64_t D = neq0;
  11934. const int64_t N = neq1;
  11935. const int64_t P = nek1 - N;
  11936. const int64_t M = P + N;
  11937. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11938. const int mxDM = MAX(D, Mup);
  11939. // GGML_ASSERT(ne0 == D);
  11940. // GGML_ASSERT(ne1 == N);
  11941. GGML_ASSERT(P >= 0);
  11942. GGML_ASSERT(nbq0 == sizeof(float));
  11943. GGML_ASSERT(nbk0 == sizeof(float));
  11944. GGML_ASSERT(nbv0 == sizeof(float));
  11945. GGML_ASSERT(neq0 == D);
  11946. GGML_ASSERT(nek0 == D);
  11947. GGML_ASSERT(nev1 == D);
  11948. GGML_ASSERT(ned0 == D);
  11949. GGML_ASSERT(neq1 == N);
  11950. GGML_ASSERT(nek1 == N + P);
  11951. GGML_ASSERT(nev1 == D);
  11952. GGML_ASSERT(ned1 == N);
  11953. // dst cannot be transposed or permuted
  11954. GGML_ASSERT(nb0 == sizeof(float));
  11955. GGML_ASSERT(nb0 <= nb1);
  11956. GGML_ASSERT(nb1 <= nb2);
  11957. GGML_ASSERT(nb2 <= nb3);
  11958. if (params->type == GGML_TASK_TYPE_INIT) {
  11959. if (ith == 0) {
  11960. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11961. }
  11962. return;
  11963. }
  11964. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11965. return;
  11966. }
  11967. const int64_t elem_q = ggml_nelements(q);
  11968. const int64_t elem_k = ggml_nelements(k);
  11969. enum ggml_type result_type = dst->type;
  11970. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11971. const size_t tsize = ggml_type_size(result_type);
  11972. const size_t offs_q = 0;
  11973. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11974. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11975. void * grad_q = (char *) dst->data;
  11976. void * grad_k = (char *) dst->data + offs_k;
  11977. void * grad_v = (char *) dst->data + offs_v;
  11978. const size_t nbgq1 = nb0*neq0;
  11979. const size_t nbgq2 = nb0*neq0*neq1;
  11980. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11981. const size_t nbgk1 = nb0*nek0;
  11982. const size_t nbgk2 = nb0*nek0*nek1;
  11983. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11984. const size_t nbgv1 = nb0*nev0;
  11985. const size_t nbgv2 = nb0*nev0*nev1;
  11986. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11987. // parallelize by k rows using ggml_vec_dot_f32
  11988. // total rows in k
  11989. const int nr = nek2*nek3;
  11990. // rows per thread
  11991. const int dr = (nr + nth - 1)/nth;
  11992. // row range for this thread
  11993. const int ir0 = dr*ith;
  11994. const int ir1 = MIN(ir0 + dr, nr);
  11995. const float scale = 1.0f/sqrtf(D);
  11996. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11997. // how often k2 (and v2) is repeated in q2
  11998. int nrep = neq2/nek2;
  11999. for (int ir = ir0; ir < ir1; ++ir) {
  12000. // q indices
  12001. const int ik3 = ir/(nek2);
  12002. const int ik2 = ir - ik3*nek2;
  12003. const int iq3 = ik3;
  12004. const int id3 = ik3;
  12005. const int iv3 = ik3;
  12006. const int iv2 = ik2;
  12007. for (int irep = 0; irep < nrep; ++irep) {
  12008. const int iq2 = ik2 + irep*nek2;
  12009. const int id2 = iq2;
  12010. // (ik2 + irep*nek2) % nek2 == ik2
  12011. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12012. const int id1 = iq1;
  12013. // not sure about CACHE_LINE_SIZE_F32..
  12014. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12015. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12016. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12017. for (int i = M; i < Mup; ++i) {
  12018. S[i] = -INFINITY;
  12019. }
  12020. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12021. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12022. // k indices
  12023. const int ik1 = ic;
  12024. // S indices
  12025. const int i1 = ik1;
  12026. ggml_vec_dot_f32(neq0,
  12027. S + i1, 0,
  12028. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12029. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12030. }
  12031. // scale
  12032. ggml_vec_scale_f32(masked_begin, S, scale);
  12033. for (int64_t i = masked_begin; i < M; i++) {
  12034. S[i] = -INFINITY;
  12035. }
  12036. // softmax
  12037. // exclude known -INF S[..] values from max and loop
  12038. // dont forget to set their SM values to zero
  12039. {
  12040. float max = -INFINITY;
  12041. ggml_vec_max_f32(masked_begin, &max, S);
  12042. ggml_float sum = 0.0;
  12043. {
  12044. #ifdef GGML_SOFT_MAX_ACCELERATE
  12045. max = -max;
  12046. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12047. vvexpf(SM, SM, &Mup);
  12048. ggml_vec_sum_f32(Mup, &sum, SM);
  12049. #else
  12050. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12051. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12052. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12053. if (i >= masked_begin) {
  12054. break;
  12055. }
  12056. float * SR = S + i;
  12057. float * SW = SM + i;
  12058. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12059. if (i + j >= masked_begin) {
  12060. break;
  12061. } else if (SR[j] == -INFINITY) {
  12062. SW[j] = 0.0f;
  12063. } else {
  12064. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12065. const float val = expf(SR[j] - max);
  12066. #else
  12067. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12068. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12069. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12070. #endif
  12071. sump[j] += (ggml_float)val;
  12072. SW[j] = val;
  12073. }
  12074. }
  12075. }
  12076. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12077. sum += sump[i];
  12078. }
  12079. #endif
  12080. }
  12081. assert(sum > 0.0);
  12082. sum = 1.0/sum;
  12083. ggml_vec_scale_f32(masked_begin, SM, sum);
  12084. }
  12085. // step-by-step explanation
  12086. {
  12087. // forward-process shape grads from backward process
  12088. // parallel_for ik2,ik3:
  12089. // for irep:
  12090. // iq2 = ik2 + irep*nek2
  12091. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12092. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12093. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12094. // for iq1:
  12095. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12096. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12097. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12098. // S0 = -Inf [D,1,1,1]
  12099. // ~S1[i] = dot(kcur[:D,i], qcur)
  12100. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12101. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12102. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12103. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12104. // ~S5[i] = dot(vcur[:,i], S4)
  12105. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12106. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12107. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12108. // dst backward-/ grad[dst] = d
  12109. //
  12110. // output gradients with their dependencies:
  12111. //
  12112. // grad[kcur] = grad[S1].T @ qcur
  12113. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12114. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12115. // grad[S4] = grad[S5] @ vcur
  12116. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12117. // grad[qcur] = grad[S1] @ kcur
  12118. // grad[vcur] = grad[S5].T @ S4
  12119. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12120. //
  12121. // in post-order:
  12122. //
  12123. // S1 = qcur @ kcur.T
  12124. // S2 = S1 * scale
  12125. // S3 = diag_mask_inf(S2, P)
  12126. // S4 = softmax(S3)
  12127. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12128. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12129. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12130. // grad[qcur] = grad[S1] @ kcur
  12131. // grad[kcur] = grad[S1].T @ qcur
  12132. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12133. //
  12134. // using less variables (SM=S4):
  12135. //
  12136. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12137. // SM = softmax(S)
  12138. // S = d[:D,iq1,iq2,iq3] @ vcur
  12139. // dot_SM_gradSM = dot(SM, S)
  12140. // S = SM * (S - dot(SM, S))
  12141. // S = diag_mask_zero(S, P) * scale
  12142. //
  12143. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12144. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12145. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12146. }
  12147. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12148. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12149. // for ic:
  12150. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12151. // exclude known future zero S[..] values from operation
  12152. ggml_vec_set_f32(masked_begin, S, 0);
  12153. for (int64_t ic = 0; ic < D; ++ic) {
  12154. ggml_vec_mad_f32(masked_begin,
  12155. S,
  12156. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12157. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12158. }
  12159. // S = SM * (S - dot(SM, S))
  12160. float dot_SM_gradSM = 0;
  12161. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12162. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12163. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12164. // S = diag_mask_zero(S, P) * scale
  12165. // already done by above ggml_vec_set_f32
  12166. // exclude known zero S[..] values from operation
  12167. ggml_vec_scale_f32(masked_begin, S, scale);
  12168. // S shape [M,1]
  12169. // SM shape [M,1]
  12170. // kcur shape [D,M]
  12171. // qcur shape [D,1]
  12172. // vcur shape [M,D]
  12173. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12174. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12175. // for ic:
  12176. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12177. // exclude known zero S[..] values from loop
  12178. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12179. ggml_vec_mad_f32(D,
  12180. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12181. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12182. S[ic]);
  12183. }
  12184. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12185. // for ic:
  12186. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12187. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12188. // exclude known zero S[..] values from loop
  12189. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12190. ggml_vec_mad_f32(D,
  12191. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12192. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12193. S[ic]);
  12194. }
  12195. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12196. // for ic:
  12197. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12198. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12199. // exclude known zero SM[..] values from mad
  12200. for (int64_t ic = 0; ic < D; ++ic) {
  12201. ggml_vec_mad_f32(masked_begin,
  12202. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12203. SM,
  12204. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12205. }
  12206. }
  12207. }
  12208. }
  12209. }
  12210. static void ggml_compute_forward_flash_attn_back(
  12211. const struct ggml_compute_params * params,
  12212. const bool masked,
  12213. struct ggml_tensor * dst) {
  12214. const struct ggml_tensor * q = dst->src[0];
  12215. switch (q->type) {
  12216. case GGML_TYPE_F32:
  12217. {
  12218. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12219. } break;
  12220. default:
  12221. {
  12222. GGML_ASSERT(false);
  12223. } break;
  12224. }
  12225. }
  12226. // ggml_compute_forward_ssm_conv
  12227. static void ggml_compute_forward_ssm_conv_f32(
  12228. const struct ggml_compute_params * params,
  12229. struct ggml_tensor * dst) {
  12230. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12231. return;
  12232. }
  12233. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12234. const struct ggml_tensor * src1 = dst->src[1]; // x
  12235. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12236. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12237. const int ith = params->ith;
  12238. const int nth = params->nth;
  12239. const int nc = src2->ne[0]; // d_conv
  12240. const int nr = src0->ne[1]; // d_inner
  12241. const int n_t = src1->ne[1]; // n_tokens
  12242. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12243. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12244. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12245. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12246. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12247. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12248. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12249. // for use with the destination state offset between sequences
  12250. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12251. // rows per thread
  12252. const int dr = (nr + nth - 1)/nth;
  12253. // row range for this thread
  12254. const int ir0 = dr*ith;
  12255. const int ir1 = MIN(ir0 + dr, nr);
  12256. const int ir = ir1 - ir0;
  12257. if (n_kv > 1) {
  12258. // multiple sequences means it's hard to know when it's the first time a state is read,
  12259. // so copy them all over to the destination, just to be sure.
  12260. for (int i3 = 0; i3 < n_kv; ++i3) {
  12261. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12262. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12263. // can't use memcpy because of d_conv vs d_conv - 1
  12264. for (int i1 = 0; i1 < ir; ++i1) {
  12265. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12266. // copy s0 to last (d_conv - 1) columns of s
  12267. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12268. }
  12269. }
  12270. }
  12271. }
  12272. for (int i2 = 0; i2 < n_t; ++i2) {
  12273. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12274. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12275. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12276. float * s0; // {d_conv - 1, d_inner, n_kv}
  12277. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12278. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12279. int ne0s0;
  12280. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12281. // avoid needing to copy the state for the first token
  12282. if (i2 == 0) {
  12283. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12284. ne0s0 = src0->ne[0];
  12285. } else {
  12286. // the source is the last (d_conv - 1) columns of the destination
  12287. s0 = s + 1;
  12288. ne0s0 = nc;
  12289. }
  12290. // d_inner
  12291. for (int i1 = 0; i1 < ir; ++i1) {
  12292. // shift state left
  12293. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12294. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12295. }
  12296. // insert x on the last column
  12297. s[(nc - 1) + i1*nc] = x0[i1];
  12298. }
  12299. // handle copies when there are multiple output states
  12300. for (int i3 = 1; i3 < n_kv; ++i3) {
  12301. int32_t seq = sq[i3];
  12302. if (0 <= seq && seq < n_kv) {
  12303. float * s1 = s + (seq - sq[0])*nc*nr;
  12304. memcpy(s1, s, nc*ir*sizeof(float));
  12305. } else {
  12306. // stop at negative or too big seq_ids
  12307. break;
  12308. }
  12309. }
  12310. // it seems a little faster when this is separate from the state shift
  12311. for (int i1 = 0; i1 < ir; ++i1) {
  12312. // rowwise dot product
  12313. float sumf = 0.0f;
  12314. for (int i0 = 0; i0 < nc; ++i0) {
  12315. int i = i0 + i1*nc;
  12316. sumf += s[i] * c[i];
  12317. }
  12318. x[i1] = sumf;
  12319. }
  12320. }
  12321. }
  12322. static void ggml_compute_forward_ssm_conv(
  12323. const struct ggml_compute_params * params,
  12324. struct ggml_tensor * dst) {
  12325. switch (dst->src[0]->type) {
  12326. case GGML_TYPE_F32:
  12327. {
  12328. ggml_compute_forward_ssm_conv_f32(params, dst);
  12329. } break;
  12330. default:
  12331. {
  12332. GGML_ASSERT(false);
  12333. } break;
  12334. }
  12335. }
  12336. // ggml_compute_forward_ssm_scan
  12337. static void ggml_compute_forward_ssm_scan_f32(
  12338. const struct ggml_compute_params * params,
  12339. struct ggml_tensor * dst) {
  12340. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12341. return;
  12342. }
  12343. const struct ggml_tensor * src0 = dst->src[0]; // s
  12344. const struct ggml_tensor * src1 = dst->src[1]; // x
  12345. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12346. const struct ggml_tensor * src3 = dst->src[3]; // A
  12347. const struct ggml_tensor * src4 = dst->src[4]; // B
  12348. const struct ggml_tensor * src5 = dst->src[5]; // C
  12349. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12350. const int ith = params->ith;
  12351. const int nth = params->nth;
  12352. const int64_t nc = src0->ne[0]; // d_state
  12353. const int64_t nr = src0->ne[1]; // d_inner
  12354. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12355. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12356. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12357. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12358. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12359. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12360. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12361. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12362. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12363. // required for the dot product between s and C, and when copying the states
  12364. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12365. // required for per-sequence offsets for states
  12366. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12367. // required to get correct offset for state destination (i.e. src1->nb[2])
  12368. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12369. // rows per thread
  12370. const int dr = (nr + nth - 1)/nth;
  12371. // row range for this thread
  12372. const int ir0 = dr*ith;
  12373. const int ir1 = MIN(ir0 + dr, nr);
  12374. const int ir = ir1 - ir0;
  12375. if (n_kv > 1) {
  12376. // it's hard to know if the source states have already been copied
  12377. // when there are multiple, so copy them already.
  12378. for (int i3 = 0; i3 < n_kv; ++i3) {
  12379. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12380. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12381. memcpy(s, s0, nc*ir*sizeof(float));
  12382. }
  12383. }
  12384. for (int i2 = 0; i2 < n_t; ++i2) {
  12385. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12386. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12387. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12388. float * s0;
  12389. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12390. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12391. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12392. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12393. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12394. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12395. // avoid needing to copy the state for the first token
  12396. if (i2 == 0) {
  12397. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12398. } else {
  12399. // otherwise the source is the same as the destination
  12400. s0 = s;
  12401. }
  12402. // d_inner
  12403. for (int i1 = 0; i1 < ir; ++i1) {
  12404. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12405. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12406. float x_dt = x[i1] * dt_soft_plus;
  12407. float sumf = 0.0f;
  12408. // d_state
  12409. for (int i0 = 0; i0 < nc; ++i0) {
  12410. int i = i0 + i1*nc;
  12411. // state = prev_state * dA + dB * x
  12412. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12413. // y = rowwise_dotprod(state, C)
  12414. sumf += state * C[i0];
  12415. s[i] = state;
  12416. }
  12417. y[i1] = sumf;
  12418. }
  12419. // handle copies when there are multiple output states
  12420. for (int i3 = 1; i3 < n_kv; ++i3) {
  12421. int32_t seq = sq[i3];
  12422. if (0 <= seq && seq < n_kv) {
  12423. float * s1 = s + (seq - sq[0])*nc*nr;
  12424. memcpy(s1, s, nc*ir*sizeof(float));
  12425. } else {
  12426. // stop at negative or too big seq_ids
  12427. break;
  12428. }
  12429. }
  12430. }
  12431. }
  12432. static void ggml_compute_forward_ssm_scan(
  12433. const struct ggml_compute_params * params,
  12434. struct ggml_tensor * dst) {
  12435. switch (dst->src[0]->type) {
  12436. case GGML_TYPE_F32:
  12437. {
  12438. ggml_compute_forward_ssm_scan_f32(params, dst);
  12439. } break;
  12440. default:
  12441. {
  12442. GGML_ASSERT(false);
  12443. } break;
  12444. }
  12445. }
  12446. // ggml_compute_forward_win_part
  12447. static void ggml_compute_forward_win_part_f32(
  12448. const struct ggml_compute_params * params,
  12449. struct ggml_tensor * dst) {
  12450. const struct ggml_tensor * src0 = dst->src[0];
  12451. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12452. return;
  12453. }
  12454. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12455. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12456. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12457. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12458. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12459. assert(ne00 == ne0);
  12460. assert(ne3 == nep0*nep1);
  12461. // TODO: optimize / multi-thread
  12462. for (int py = 0; py < nep1; ++py) {
  12463. for (int px = 0; px < nep0; ++px) {
  12464. const int64_t i3 = py*nep0 + px;
  12465. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12466. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12467. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12468. const int64_t i02 = py*w + i2;
  12469. const int64_t i01 = px*w + i1;
  12470. const int64_t i00 = i0;
  12471. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12472. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12473. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12474. ((float *) dst->data)[i] = 0.0f;
  12475. } else {
  12476. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12477. }
  12478. }
  12479. }
  12480. }
  12481. }
  12482. }
  12483. }
  12484. static void ggml_compute_forward_win_part(
  12485. const struct ggml_compute_params * params,
  12486. struct ggml_tensor * dst) {
  12487. const struct ggml_tensor * src0 = dst->src[0];
  12488. switch (src0->type) {
  12489. case GGML_TYPE_F32:
  12490. {
  12491. ggml_compute_forward_win_part_f32(params, dst);
  12492. } break;
  12493. default:
  12494. {
  12495. GGML_ASSERT(false);
  12496. } break;
  12497. }
  12498. }
  12499. // ggml_compute_forward_win_unpart
  12500. static void ggml_compute_forward_win_unpart_f32(
  12501. const struct ggml_compute_params * params,
  12502. struct ggml_tensor * dst) {
  12503. const struct ggml_tensor * src0 = dst->src[0];
  12504. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12505. return;
  12506. }
  12507. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12508. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12509. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12510. // padding
  12511. const int px = (w - ne1%w)%w;
  12512. //const int py = (w - ne2%w)%w;
  12513. const int npx = (px + ne1)/w;
  12514. //const int npy = (py + ne2)/w;
  12515. assert(ne0 == ne00);
  12516. // TODO: optimize / multi-thread
  12517. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12518. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12519. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12520. const int ip2 = i2/w;
  12521. const int ip1 = i1/w;
  12522. const int64_t i02 = i2%w;
  12523. const int64_t i01 = i1%w;
  12524. const int64_t i00 = i0;
  12525. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12526. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12527. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12528. }
  12529. }
  12530. }
  12531. }
  12532. static void ggml_compute_forward_win_unpart(
  12533. const struct ggml_compute_params * params,
  12534. struct ggml_tensor * dst) {
  12535. const struct ggml_tensor * src0 = dst->src[0];
  12536. switch (src0->type) {
  12537. case GGML_TYPE_F32:
  12538. {
  12539. ggml_compute_forward_win_unpart_f32(params, dst);
  12540. } break;
  12541. default:
  12542. {
  12543. GGML_ASSERT(false);
  12544. } break;
  12545. }
  12546. }
  12547. //gmml_compute_forward_unary
  12548. static void ggml_compute_forward_unary(
  12549. const struct ggml_compute_params * params,
  12550. struct ggml_tensor * dst) {
  12551. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12552. switch (op) {
  12553. case GGML_UNARY_OP_ABS:
  12554. {
  12555. ggml_compute_forward_abs(params, dst);
  12556. } break;
  12557. case GGML_UNARY_OP_SGN:
  12558. {
  12559. ggml_compute_forward_sgn(params, dst);
  12560. } break;
  12561. case GGML_UNARY_OP_NEG:
  12562. {
  12563. ggml_compute_forward_neg(params, dst);
  12564. } break;
  12565. case GGML_UNARY_OP_STEP:
  12566. {
  12567. ggml_compute_forward_step(params, dst);
  12568. } break;
  12569. case GGML_UNARY_OP_TANH:
  12570. {
  12571. ggml_compute_forward_tanh(params, dst);
  12572. } break;
  12573. case GGML_UNARY_OP_ELU:
  12574. {
  12575. ggml_compute_forward_elu(params, dst);
  12576. } break;
  12577. case GGML_UNARY_OP_RELU:
  12578. {
  12579. ggml_compute_forward_relu(params, dst);
  12580. } break;
  12581. case GGML_UNARY_OP_GELU:
  12582. {
  12583. ggml_compute_forward_gelu(params, dst);
  12584. } break;
  12585. case GGML_UNARY_OP_GELU_QUICK:
  12586. {
  12587. ggml_compute_forward_gelu_quick(params, dst);
  12588. } break;
  12589. case GGML_UNARY_OP_SILU:
  12590. {
  12591. ggml_compute_forward_silu(params, dst);
  12592. } break;
  12593. case GGML_UNARY_OP_HARDSWISH:
  12594. {
  12595. ggml_compute_forward_hardswish(params, dst);
  12596. } break;
  12597. case GGML_UNARY_OP_HARDSIGMOID:
  12598. {
  12599. ggml_compute_forward_hardsigmoid(params, dst);
  12600. } break;
  12601. default:
  12602. {
  12603. GGML_ASSERT(false);
  12604. } break;
  12605. }
  12606. }
  12607. // ggml_compute_forward_get_rel_pos
  12608. static void ggml_compute_forward_get_rel_pos_f16(
  12609. const struct ggml_compute_params * params,
  12610. struct ggml_tensor * dst) {
  12611. const struct ggml_tensor * src0 = dst->src[0];
  12612. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12613. return;
  12614. }
  12615. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12616. GGML_TENSOR_UNARY_OP_LOCALS
  12617. const int64_t w = ne1;
  12618. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12619. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12620. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12621. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12622. const int64_t pos = (w - i1 - 1) + i2;
  12623. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12624. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12625. }
  12626. }
  12627. }
  12628. }
  12629. static void ggml_compute_forward_get_rel_pos(
  12630. const struct ggml_compute_params * params,
  12631. struct ggml_tensor * dst) {
  12632. const struct ggml_tensor * src0 = dst->src[0];
  12633. switch (src0->type) {
  12634. case GGML_TYPE_F16:
  12635. {
  12636. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12637. } break;
  12638. default:
  12639. {
  12640. GGML_ASSERT(false);
  12641. } break;
  12642. }
  12643. }
  12644. // ggml_compute_forward_add_rel_pos
  12645. static void ggml_compute_forward_add_rel_pos_f32(
  12646. const struct ggml_compute_params * params,
  12647. struct ggml_tensor * dst) {
  12648. const struct ggml_tensor * src0 = dst->src[0];
  12649. const struct ggml_tensor * src1 = dst->src[1];
  12650. const struct ggml_tensor * src2 = dst->src[2];
  12651. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12652. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12653. if (params->ith != 0) {
  12654. return;
  12655. }
  12656. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12657. return;
  12658. }
  12659. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12660. return;
  12661. }
  12662. int64_t t0 = ggml_perf_time_us();
  12663. UNUSED(t0);
  12664. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12665. float * src1_data = (float *) src1->data;
  12666. float * src2_data = (float *) src2->data;
  12667. float * dst_data = (float *) dst->data;
  12668. const int64_t ne10 = src1->ne[0];
  12669. const int64_t ne11 = src1->ne[1];
  12670. const int64_t ne12 = src1->ne[2];
  12671. const int64_t ne13 = src1->ne[3];
  12672. const int ith = params->ith;
  12673. const int nth = params->nth;
  12674. // total patches in dst
  12675. const int np = ne13;
  12676. // patches per thread
  12677. const int dp = (np + nth - 1)/nth;
  12678. // patch range for this thread
  12679. const int ip0 = dp*ith;
  12680. const int ip1 = MIN(ip0 + dp, np);
  12681. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12682. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12683. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12684. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12685. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12686. const int64_t jp0 = jp1 + i10;
  12687. const float src1_e = src1_data[jp0];
  12688. const float src2_e = src2_data[jp0];
  12689. const int64_t jdh = jp0 * ne10;
  12690. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12691. for (int64_t j = 0; j < ne10; ++j) {
  12692. dst_data[jdh + j ] += src2_e;
  12693. dst_data[jdw + j*ne10] += src1_e;
  12694. }
  12695. }
  12696. }
  12697. }
  12698. }
  12699. }
  12700. static void ggml_compute_forward_add_rel_pos(
  12701. const struct ggml_compute_params * params,
  12702. struct ggml_tensor * dst) {
  12703. const struct ggml_tensor * src0 = dst->src[0];
  12704. switch (src0->type) {
  12705. case GGML_TYPE_F32:
  12706. {
  12707. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12708. } break;
  12709. default:
  12710. {
  12711. GGML_ASSERT(false);
  12712. } break;
  12713. }
  12714. }
  12715. // ggml_compute_forward_map_unary
  12716. static void ggml_compute_forward_map_unary_f32(
  12717. const struct ggml_compute_params * params,
  12718. struct ggml_tensor * dst,
  12719. const ggml_unary_op_f32_t fun) {
  12720. const struct ggml_tensor * src0 = dst->src[0];
  12721. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12722. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12723. return;
  12724. }
  12725. const int n = ggml_nrows(src0);
  12726. const int nc = src0->ne[0];
  12727. assert( dst->nb[0] == sizeof(float));
  12728. assert(src0->nb[0] == sizeof(float));
  12729. for (int i = 0; i < n; i++) {
  12730. fun(nc,
  12731. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12732. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12733. }
  12734. }
  12735. static void ggml_compute_forward_map_unary(
  12736. const struct ggml_compute_params * params,
  12737. struct ggml_tensor * dst,
  12738. const ggml_unary_op_f32_t fun) {
  12739. const struct ggml_tensor * src0 = dst->src[0];
  12740. switch (src0->type) {
  12741. case GGML_TYPE_F32:
  12742. {
  12743. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12744. } break;
  12745. default:
  12746. {
  12747. GGML_ASSERT(false);
  12748. } break;
  12749. }
  12750. }
  12751. // ggml_compute_forward_map_binary
  12752. static void ggml_compute_forward_map_binary_f32(
  12753. const struct ggml_compute_params * params,
  12754. struct ggml_tensor * dst,
  12755. const ggml_binary_op_f32_t fun) {
  12756. const struct ggml_tensor * src0 = dst->src[0];
  12757. const struct ggml_tensor * src1 = dst->src[1];
  12758. assert(params->ith == 0);
  12759. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12760. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12761. return;
  12762. }
  12763. const int n = ggml_nrows(src0);
  12764. const int nc = src0->ne[0];
  12765. assert( dst->nb[0] == sizeof(float));
  12766. assert(src0->nb[0] == sizeof(float));
  12767. assert(src1->nb[0] == sizeof(float));
  12768. for (int i = 0; i < n; i++) {
  12769. fun(nc,
  12770. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12771. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12772. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12773. }
  12774. }
  12775. static void ggml_compute_forward_map_binary(
  12776. const struct ggml_compute_params * params,
  12777. struct ggml_tensor * dst,
  12778. const ggml_binary_op_f32_t fun) {
  12779. const struct ggml_tensor * src0 = dst->src[0];
  12780. switch (src0->type) {
  12781. case GGML_TYPE_F32:
  12782. {
  12783. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12784. } break;
  12785. default:
  12786. {
  12787. GGML_ASSERT(false);
  12788. } break;
  12789. }
  12790. }
  12791. // ggml_compute_forward_map_custom1
  12792. static void ggml_compute_forward_map_custom1_f32(
  12793. const struct ggml_compute_params * params,
  12794. struct ggml_tensor * dst,
  12795. const ggml_custom1_op_f32_t fun) {
  12796. const struct ggml_tensor * a = dst->src[0];
  12797. assert(params->ith == 0);
  12798. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12799. return;
  12800. }
  12801. fun(dst, a);
  12802. }
  12803. // ggml_compute_forward_map_custom2
  12804. static void ggml_compute_forward_map_custom2_f32(
  12805. const struct ggml_compute_params * params,
  12806. struct ggml_tensor * dst,
  12807. const ggml_custom2_op_f32_t fun) {
  12808. const struct ggml_tensor * a = dst->src[0];
  12809. const struct ggml_tensor * b = dst->src[1];
  12810. assert(params->ith == 0);
  12811. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12812. return;
  12813. }
  12814. fun(dst, a, b);
  12815. }
  12816. // ggml_compute_forward_map_custom3
  12817. static void ggml_compute_forward_map_custom3_f32(
  12818. const struct ggml_compute_params * params,
  12819. struct ggml_tensor * dst,
  12820. const ggml_custom3_op_f32_t fun) {
  12821. const struct ggml_tensor * a = dst->src[0];
  12822. const struct ggml_tensor * b = dst->src[1];
  12823. const struct ggml_tensor * c = dst->src[1];
  12824. assert(params->ith == 0);
  12825. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12826. return;
  12827. }
  12828. fun(dst, a, b, c);
  12829. }
  12830. // ggml_compute_forward_map_custom1
  12831. static void ggml_compute_forward_map_custom1(
  12832. const struct ggml_compute_params * params,
  12833. struct ggml_tensor * dst) {
  12834. const struct ggml_tensor * a = dst->src[0];
  12835. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12836. return;
  12837. }
  12838. struct ggml_map_custom1_op_params p;
  12839. memcpy(&p, dst->op_params, sizeof(p));
  12840. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12841. }
  12842. // ggml_compute_forward_map_custom2
  12843. static void ggml_compute_forward_map_custom2(
  12844. const struct ggml_compute_params * params,
  12845. struct ggml_tensor * dst) {
  12846. const struct ggml_tensor * a = dst->src[0];
  12847. const struct ggml_tensor * b = dst->src[1];
  12848. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12849. return;
  12850. }
  12851. struct ggml_map_custom2_op_params p;
  12852. memcpy(&p, dst->op_params, sizeof(p));
  12853. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12854. }
  12855. // ggml_compute_forward_map_custom3
  12856. static void ggml_compute_forward_map_custom3(
  12857. const struct ggml_compute_params * params,
  12858. struct ggml_tensor * dst) {
  12859. const struct ggml_tensor * a = dst->src[0];
  12860. const struct ggml_tensor * b = dst->src[1];
  12861. const struct ggml_tensor * c = dst->src[2];
  12862. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12863. return;
  12864. }
  12865. struct ggml_map_custom3_op_params p;
  12866. memcpy(&p, dst->op_params, sizeof(p));
  12867. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12868. }
  12869. // ggml_compute_forward_cross_entropy_loss
  12870. static void ggml_compute_forward_cross_entropy_loss_f32(
  12871. const struct ggml_compute_params * params,
  12872. struct ggml_tensor * dst) {
  12873. const struct ggml_tensor * src0 = dst->src[0];
  12874. const struct ggml_tensor * src1 = dst->src[1];
  12875. GGML_ASSERT(ggml_is_contiguous(src0));
  12876. GGML_ASSERT(ggml_is_contiguous(src1));
  12877. GGML_ASSERT(ggml_is_scalar(dst));
  12878. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12879. const int ith = params->ith;
  12880. const int nth = params->nth;
  12881. float * sums = (float *) params->wdata;
  12882. // TODO: handle transposed/permuted matrices
  12883. const int nc = src0->ne[0];
  12884. const int nr = ggml_nrows(src0);
  12885. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12886. if (params->type == GGML_TASK_TYPE_INIT) {
  12887. if (ith == 0) {
  12888. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12889. }
  12890. return;
  12891. }
  12892. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12893. if (ith == 0) {
  12894. float * dp = (float *) dst->data;
  12895. ggml_vec_sum_f32(nth, dp, sums);
  12896. dp[0] *= -1.0f / (float) nr;
  12897. }
  12898. return;
  12899. }
  12900. const double eps = 1e-9;
  12901. // rows per thread
  12902. const int dr = (nr + nth - 1)/nth;
  12903. // row range for this thread
  12904. const int ir0 = dr*ith;
  12905. const int ir1 = MIN(ir0 + dr, nr);
  12906. for (int i1 = ir0; i1 < ir1; i1++) {
  12907. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12908. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12909. float * st = ((float *) params->wdata) + nth + ith*nc;
  12910. #ifndef NDEBUG
  12911. for (int i = 0; i < nc; ++i) {
  12912. //printf("p[%d] = %f\n", i, p[i]);
  12913. assert(!isnan(s0[i]));
  12914. assert(!isnan(s1[i]));
  12915. }
  12916. #endif
  12917. // soft_max
  12918. ggml_float sum = 0.0;
  12919. {
  12920. float max = -INFINITY;
  12921. ggml_vec_max_f32(nc, &max, s0);
  12922. uint16_t scvt; UNUSED(scvt);
  12923. for (int i = 0; i < nc; i++) {
  12924. if (s0[i] == -INFINITY) {
  12925. st[i] = 0.0f;
  12926. } else {
  12927. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12928. const float s = s0[i] - max;
  12929. const float val = expf(s);
  12930. #else
  12931. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12932. memcpy(&scvt, &s, sizeof(scvt));
  12933. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12934. #endif
  12935. sum += (ggml_float)val;
  12936. st[i] = val;
  12937. }
  12938. }
  12939. assert(sum > 0.0);
  12940. // sum = 1.0/sum;
  12941. }
  12942. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12943. sum = (1.0 - eps) / sum;
  12944. ggml_vec_scale_f32(nc, st, sum);
  12945. ggml_vec_add1_f32(nc, st, st, eps);
  12946. ggml_vec_log_f32(nc, st, st);
  12947. ggml_vec_mul_f32(nc, st, st, s1);
  12948. float st_sum = 0;
  12949. ggml_vec_sum_f32(nc, &st_sum, st);
  12950. sums[ith] += st_sum;
  12951. #ifndef NDEBUG
  12952. for (int i = 0; i < nc; ++i) {
  12953. assert(!isnan(st[i]));
  12954. assert(!isinf(st[i]));
  12955. }
  12956. #endif
  12957. }
  12958. }
  12959. static void ggml_compute_forward_cross_entropy_loss(
  12960. const struct ggml_compute_params * params,
  12961. struct ggml_tensor * dst) {
  12962. const struct ggml_tensor * src0 = dst->src[0];
  12963. switch (src0->type) {
  12964. case GGML_TYPE_F32:
  12965. {
  12966. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12967. } break;
  12968. default:
  12969. {
  12970. GGML_ASSERT(false);
  12971. } break;
  12972. }
  12973. }
  12974. // ggml_compute_forward_cross_entropy_loss_back
  12975. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12976. const struct ggml_compute_params * params,
  12977. struct ggml_tensor * dst) {
  12978. const struct ggml_tensor * src0 = dst->src[0];
  12979. const struct ggml_tensor * src1 = dst->src[1];
  12980. const struct ggml_tensor * opt0 = dst->src[2];
  12981. GGML_ASSERT(ggml_is_contiguous(dst));
  12982. GGML_ASSERT(ggml_is_contiguous(src0));
  12983. GGML_ASSERT(ggml_is_contiguous(src1));
  12984. GGML_ASSERT(ggml_is_contiguous(opt0));
  12985. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12986. const int64_t ith = params->ith;
  12987. const int64_t nth = params->nth;
  12988. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12989. return;
  12990. }
  12991. const double eps = 1e-9;
  12992. // TODO: handle transposed/permuted matrices
  12993. const int64_t nc = src0->ne[0];
  12994. const int64_t nr = ggml_nrows(src0);
  12995. // rows per thread
  12996. const int64_t dr = (nr + nth - 1)/nth;
  12997. // row range for this thread
  12998. const int64_t ir0 = dr*ith;
  12999. const int64_t ir1 = MIN(ir0 + dr, nr);
  13000. float * d = (float *) opt0->data;
  13001. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13002. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13003. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13004. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13005. #ifndef NDEBUG
  13006. for (int i = 0; i < nc; ++i) {
  13007. //printf("p[%d] = %f\n", i, p[i]);
  13008. assert(!isnan(s0[i]));
  13009. assert(!isnan(s1[i]));
  13010. }
  13011. #endif
  13012. // soft_max
  13013. ggml_float sum = 0.0;
  13014. {
  13015. float max = -INFINITY;
  13016. ggml_vec_max_f32(nc, &max, s0);
  13017. uint16_t scvt; UNUSED(scvt);
  13018. for (int i = 0; i < nc; i++) {
  13019. if (s0[i] == -INFINITY) {
  13020. ds0[i] = 0.0f;
  13021. } else {
  13022. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13023. const float s = s0[i] - max;
  13024. const float val = expf(s);
  13025. #else
  13026. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13027. memcpy(&scvt, &s, sizeof(scvt));
  13028. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13029. #endif
  13030. sum += (ggml_float)val;
  13031. ds0[i] = val;
  13032. }
  13033. }
  13034. assert(sum > 0.0);
  13035. sum = (1.0 - eps)/sum;
  13036. }
  13037. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13038. ggml_vec_scale_f32(nc, ds0, sum);
  13039. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13040. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13041. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13042. #ifndef NDEBUG
  13043. for (int i = 0; i < nc; ++i) {
  13044. assert(!isnan(ds0[i]));
  13045. assert(!isinf(ds0[i]));
  13046. }
  13047. #endif
  13048. }
  13049. }
  13050. static void ggml_compute_forward_cross_entropy_loss_back(
  13051. const struct ggml_compute_params * params,
  13052. struct ggml_tensor * dst) {
  13053. const struct ggml_tensor * src0 = dst->src[0];
  13054. switch (src0->type) {
  13055. case GGML_TYPE_F32:
  13056. {
  13057. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13058. } break;
  13059. default:
  13060. {
  13061. GGML_ASSERT(false);
  13062. } break;
  13063. }
  13064. }
  13065. /////////////////////////////////
  13066. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13067. GGML_ASSERT(params);
  13068. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13069. return;
  13070. }
  13071. switch (tensor->op) {
  13072. case GGML_OP_DUP:
  13073. {
  13074. ggml_compute_forward_dup(params, tensor);
  13075. } break;
  13076. case GGML_OP_ADD:
  13077. {
  13078. ggml_compute_forward_add(params, tensor);
  13079. } break;
  13080. case GGML_OP_ADD1:
  13081. {
  13082. ggml_compute_forward_add1(params, tensor);
  13083. } break;
  13084. case GGML_OP_ACC:
  13085. {
  13086. ggml_compute_forward_acc(params, tensor);
  13087. } break;
  13088. case GGML_OP_SUB:
  13089. {
  13090. ggml_compute_forward_sub(params, tensor);
  13091. } break;
  13092. case GGML_OP_MUL:
  13093. {
  13094. ggml_compute_forward_mul(params, tensor);
  13095. } break;
  13096. case GGML_OP_DIV:
  13097. {
  13098. ggml_compute_forward_div(params, tensor);
  13099. } break;
  13100. case GGML_OP_SQR:
  13101. {
  13102. ggml_compute_forward_sqr(params, tensor);
  13103. } break;
  13104. case GGML_OP_SQRT:
  13105. {
  13106. ggml_compute_forward_sqrt(params, tensor);
  13107. } break;
  13108. case GGML_OP_LOG:
  13109. {
  13110. ggml_compute_forward_log(params, tensor);
  13111. } break;
  13112. case GGML_OP_SUM:
  13113. {
  13114. ggml_compute_forward_sum(params, tensor);
  13115. } break;
  13116. case GGML_OP_SUM_ROWS:
  13117. {
  13118. ggml_compute_forward_sum_rows(params, tensor);
  13119. } break;
  13120. case GGML_OP_MEAN:
  13121. {
  13122. ggml_compute_forward_mean(params, tensor);
  13123. } break;
  13124. case GGML_OP_ARGMAX:
  13125. {
  13126. ggml_compute_forward_argmax(params, tensor);
  13127. } break;
  13128. case GGML_OP_REPEAT:
  13129. {
  13130. ggml_compute_forward_repeat(params, tensor);
  13131. } break;
  13132. case GGML_OP_REPEAT_BACK:
  13133. {
  13134. ggml_compute_forward_repeat_back(params, tensor);
  13135. } break;
  13136. case GGML_OP_CONCAT:
  13137. {
  13138. ggml_compute_forward_concat(params, tensor);
  13139. } break;
  13140. case GGML_OP_SILU_BACK:
  13141. {
  13142. ggml_compute_forward_silu_back(params, tensor);
  13143. } break;
  13144. case GGML_OP_NORM:
  13145. {
  13146. ggml_compute_forward_norm(params, tensor);
  13147. } break;
  13148. case GGML_OP_RMS_NORM:
  13149. {
  13150. ggml_compute_forward_rms_norm(params, tensor);
  13151. } break;
  13152. case GGML_OP_RMS_NORM_BACK:
  13153. {
  13154. ggml_compute_forward_rms_norm_back(params, tensor);
  13155. } break;
  13156. case GGML_OP_GROUP_NORM:
  13157. {
  13158. ggml_compute_forward_group_norm(params, tensor);
  13159. } break;
  13160. case GGML_OP_MUL_MAT:
  13161. {
  13162. ggml_compute_forward_mul_mat(params, tensor);
  13163. } break;
  13164. case GGML_OP_MUL_MAT_ID:
  13165. {
  13166. ggml_compute_forward_mul_mat_id(params, tensor);
  13167. } break;
  13168. case GGML_OP_OUT_PROD:
  13169. {
  13170. ggml_compute_forward_out_prod(params, tensor);
  13171. } break;
  13172. case GGML_OP_SCALE:
  13173. {
  13174. ggml_compute_forward_scale(params, tensor);
  13175. } break;
  13176. case GGML_OP_SET:
  13177. {
  13178. ggml_compute_forward_set(params, tensor);
  13179. } break;
  13180. case GGML_OP_CPY:
  13181. {
  13182. ggml_compute_forward_cpy(params, tensor);
  13183. } break;
  13184. case GGML_OP_CONT:
  13185. {
  13186. ggml_compute_forward_cont(params, tensor);
  13187. } break;
  13188. case GGML_OP_RESHAPE:
  13189. {
  13190. ggml_compute_forward_reshape(params, tensor);
  13191. } break;
  13192. case GGML_OP_VIEW:
  13193. {
  13194. ggml_compute_forward_view(params, tensor);
  13195. } break;
  13196. case GGML_OP_PERMUTE:
  13197. {
  13198. ggml_compute_forward_permute(params, tensor);
  13199. } break;
  13200. case GGML_OP_TRANSPOSE:
  13201. {
  13202. ggml_compute_forward_transpose(params, tensor);
  13203. } break;
  13204. case GGML_OP_GET_ROWS:
  13205. {
  13206. ggml_compute_forward_get_rows(params, tensor);
  13207. } break;
  13208. case GGML_OP_GET_ROWS_BACK:
  13209. {
  13210. ggml_compute_forward_get_rows_back(params, tensor);
  13211. } break;
  13212. case GGML_OP_DIAG:
  13213. {
  13214. ggml_compute_forward_diag(params, tensor);
  13215. } break;
  13216. case GGML_OP_DIAG_MASK_INF:
  13217. {
  13218. ggml_compute_forward_diag_mask_inf(params, tensor);
  13219. } break;
  13220. case GGML_OP_DIAG_MASK_ZERO:
  13221. {
  13222. ggml_compute_forward_diag_mask_zero(params, tensor);
  13223. } break;
  13224. case GGML_OP_SOFT_MAX:
  13225. {
  13226. ggml_compute_forward_soft_max(params, tensor);
  13227. } break;
  13228. case GGML_OP_SOFT_MAX_BACK:
  13229. {
  13230. ggml_compute_forward_soft_max_back(params, tensor);
  13231. } break;
  13232. case GGML_OP_ROPE:
  13233. {
  13234. ggml_compute_forward_rope(params, tensor);
  13235. } break;
  13236. case GGML_OP_ROPE_BACK:
  13237. {
  13238. ggml_compute_forward_rope_back(params, tensor);
  13239. } break;
  13240. case GGML_OP_ALIBI:
  13241. {
  13242. ggml_compute_forward_alibi(params, tensor);
  13243. } break;
  13244. case GGML_OP_CLAMP:
  13245. {
  13246. ggml_compute_forward_clamp(params, tensor);
  13247. } break;
  13248. case GGML_OP_CONV_TRANSPOSE_1D:
  13249. {
  13250. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13251. } break;
  13252. case GGML_OP_IM2COL:
  13253. {
  13254. ggml_compute_forward_im2col(params, tensor);
  13255. } break;
  13256. case GGML_OP_CONV_TRANSPOSE_2D:
  13257. {
  13258. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13259. } break;
  13260. case GGML_OP_POOL_1D:
  13261. {
  13262. ggml_compute_forward_pool_1d(params, tensor);
  13263. } break;
  13264. case GGML_OP_POOL_2D:
  13265. {
  13266. ggml_compute_forward_pool_2d(params, tensor);
  13267. } break;
  13268. case GGML_OP_UPSCALE:
  13269. {
  13270. ggml_compute_forward_upscale(params, tensor);
  13271. } break;
  13272. case GGML_OP_PAD:
  13273. {
  13274. ggml_compute_forward_pad(params, tensor);
  13275. } break;
  13276. case GGML_OP_ARANGE:
  13277. {
  13278. ggml_compute_forward_arange(params, tensor);
  13279. } break;
  13280. case GGML_OP_TIMESTEP_EMBEDDING:
  13281. {
  13282. ggml_compute_forward_timestep_embedding(params, tensor);
  13283. } break;
  13284. case GGML_OP_ARGSORT:
  13285. {
  13286. ggml_compute_forward_argsort(params, tensor);
  13287. } break;
  13288. case GGML_OP_LEAKY_RELU:
  13289. {
  13290. ggml_compute_forward_leaky_relu(params, tensor);
  13291. } break;
  13292. case GGML_OP_FLASH_ATTN:
  13293. {
  13294. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13295. GGML_ASSERT(t == 0 || t == 1);
  13296. const bool masked = t != 0;
  13297. ggml_compute_forward_flash_attn(params, masked, tensor);
  13298. } break;
  13299. case GGML_OP_FLASH_FF:
  13300. {
  13301. ggml_compute_forward_flash_ff(params, tensor);
  13302. } break;
  13303. case GGML_OP_FLASH_ATTN_BACK:
  13304. {
  13305. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13306. GGML_ASSERT(t == 0 || t == 1);
  13307. bool masked = t != 0;
  13308. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13309. } break;
  13310. case GGML_OP_SSM_CONV:
  13311. {
  13312. ggml_compute_forward_ssm_conv(params, tensor);
  13313. } break;
  13314. case GGML_OP_SSM_SCAN:
  13315. {
  13316. ggml_compute_forward_ssm_scan(params, tensor);
  13317. } break;
  13318. case GGML_OP_WIN_PART:
  13319. {
  13320. ggml_compute_forward_win_part(params, tensor);
  13321. } break;
  13322. case GGML_OP_WIN_UNPART:
  13323. {
  13324. ggml_compute_forward_win_unpart(params, tensor);
  13325. } break;
  13326. case GGML_OP_UNARY:
  13327. {
  13328. ggml_compute_forward_unary(params, tensor);
  13329. } break;
  13330. case GGML_OP_GET_REL_POS:
  13331. {
  13332. ggml_compute_forward_get_rel_pos(params, tensor);
  13333. } break;
  13334. case GGML_OP_ADD_REL_POS:
  13335. {
  13336. ggml_compute_forward_add_rel_pos(params, tensor);
  13337. } break;
  13338. case GGML_OP_MAP_UNARY:
  13339. {
  13340. ggml_unary_op_f32_t fun;
  13341. memcpy(&fun, tensor->op_params, sizeof(fun));
  13342. ggml_compute_forward_map_unary(params, tensor, fun);
  13343. }
  13344. break;
  13345. case GGML_OP_MAP_BINARY:
  13346. {
  13347. ggml_binary_op_f32_t fun;
  13348. memcpy(&fun, tensor->op_params, sizeof(fun));
  13349. ggml_compute_forward_map_binary(params, tensor, fun);
  13350. }
  13351. break;
  13352. case GGML_OP_MAP_CUSTOM1_F32:
  13353. {
  13354. ggml_custom1_op_f32_t fun;
  13355. memcpy(&fun, tensor->op_params, sizeof(fun));
  13356. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13357. }
  13358. break;
  13359. case GGML_OP_MAP_CUSTOM2_F32:
  13360. {
  13361. ggml_custom2_op_f32_t fun;
  13362. memcpy(&fun, tensor->op_params, sizeof(fun));
  13363. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13364. }
  13365. break;
  13366. case GGML_OP_MAP_CUSTOM3_F32:
  13367. {
  13368. ggml_custom3_op_f32_t fun;
  13369. memcpy(&fun, tensor->op_params, sizeof(fun));
  13370. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13371. }
  13372. break;
  13373. case GGML_OP_MAP_CUSTOM1:
  13374. {
  13375. ggml_compute_forward_map_custom1(params, tensor);
  13376. }
  13377. break;
  13378. case GGML_OP_MAP_CUSTOM2:
  13379. {
  13380. ggml_compute_forward_map_custom2(params, tensor);
  13381. }
  13382. break;
  13383. case GGML_OP_MAP_CUSTOM3:
  13384. {
  13385. ggml_compute_forward_map_custom3(params, tensor);
  13386. }
  13387. break;
  13388. case GGML_OP_CROSS_ENTROPY_LOSS:
  13389. {
  13390. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13391. }
  13392. break;
  13393. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13394. {
  13395. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13396. }
  13397. break;
  13398. case GGML_OP_NONE:
  13399. {
  13400. // nop
  13401. } break;
  13402. case GGML_OP_COUNT:
  13403. {
  13404. GGML_ASSERT(false);
  13405. } break;
  13406. }
  13407. }
  13408. ////////////////////////////////////////////////////////////////////////////////
  13409. static size_t ggml_hash_size(size_t min_sz) {
  13410. // next primes after powers of two
  13411. static const size_t primes[] = {
  13412. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13413. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13414. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13415. 16777259, 33554467, 67108879, 134217757, 268435459,
  13416. 536870923, 1073741827, 2147483659
  13417. };
  13418. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13419. // find the smallest prime that is larger or equal to min_sz
  13420. size_t l = 0;
  13421. size_t r = n_primes;
  13422. while (l < r) {
  13423. size_t m = (l + r)/2;
  13424. if (primes[m] < min_sz) {
  13425. l = m + 1;
  13426. } else {
  13427. r = m;
  13428. }
  13429. }
  13430. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13431. return sz;
  13432. }
  13433. static size_t ggml_hash(const void * p) {
  13434. return (size_t)p;
  13435. }
  13436. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13437. size_t h = ggml_hash(key) % hash_set.size;
  13438. // linear probing
  13439. size_t i = h;
  13440. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13441. i = (i + 1) % hash_set.size;
  13442. if (i == h) {
  13443. // visited all hash table entries -> not found
  13444. return GGML_HASHTABLE_FULL;
  13445. }
  13446. }
  13447. return i;
  13448. }
  13449. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13450. size_t i = ggml_hash_find(hash_set, key);
  13451. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13452. }
  13453. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13454. size_t i = ggml_hash_find(hash_set, key);
  13455. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13456. if (hash_set.keys[i] == key) {
  13457. return GGML_HASHTABLE_ALREADY_EXISTS;
  13458. }
  13459. // insert
  13460. GGML_ASSERT(hash_set.keys[i] == NULL);
  13461. hash_set.keys[i] = key;
  13462. return i;
  13463. }
  13464. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13465. size_t i = ggml_hash_find(hash_set, key);
  13466. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13467. hash_set.keys[i] = key;
  13468. return i;
  13469. }
  13470. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13471. size = ggml_hash_size(size);
  13472. struct ggml_hash_set result;
  13473. result.size = size;
  13474. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13475. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13476. return result;
  13477. }
  13478. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13479. GGML_FREE(hash_set.keys);
  13480. }
  13481. struct hash_map {
  13482. struct ggml_hash_set set;
  13483. struct ggml_tensor ** vals;
  13484. };
  13485. static struct hash_map * ggml_new_hash_map(size_t size) {
  13486. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13487. result->set = ggml_hash_set_new(size);
  13488. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13489. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13490. return result;
  13491. }
  13492. static void ggml_hash_map_free(struct hash_map * map) {
  13493. ggml_hash_set_free(map->set);
  13494. GGML_FREE(map->vals);
  13495. GGML_FREE(map);
  13496. }
  13497. // gradient checkpointing
  13498. static struct ggml_tensor * ggml_recompute_graph_node(
  13499. struct ggml_context * ctx,
  13500. struct ggml_cgraph * graph,
  13501. struct hash_map * replacements,
  13502. struct ggml_tensor * node) {
  13503. if (node == NULL) {
  13504. return NULL;
  13505. }
  13506. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13507. return node;
  13508. }
  13509. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13510. return node;
  13511. }
  13512. int count_children = 0;
  13513. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13514. if (node->src[k]) {
  13515. ++count_children;
  13516. }
  13517. }
  13518. if (count_children == 0) {
  13519. return node;
  13520. }
  13521. size_t i = ggml_hash_find(replacements->set, node);
  13522. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13523. if (replacements->set.keys[i] == node) {
  13524. return replacements->vals[i];
  13525. }
  13526. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13527. // insert clone into replacements
  13528. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13529. replacements->set.keys[i] = node;
  13530. replacements->vals[i] = clone;
  13531. clone->op = node->op;
  13532. clone->grad = node->grad;
  13533. clone->flags = node->flags;
  13534. clone->extra = node->extra;
  13535. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13536. clone->nb[k] = node->nb[k];
  13537. }
  13538. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13539. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13540. }
  13541. if (node->view_src != NULL) {
  13542. clone->data = (node->view_src->data == NULL)
  13543. ? NULL // view_src not yet allocated
  13544. : (char *) node->view_src->data // view_src already allocated
  13545. + node->view_offs;
  13546. clone->view_src = node->view_src;
  13547. clone->view_offs = node->view_offs;
  13548. }
  13549. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13550. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13551. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13552. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13553. return clone;
  13554. }
  13555. void ggml_build_backward_gradient_checkpointing(
  13556. struct ggml_context * ctx,
  13557. struct ggml_cgraph * gf,
  13558. struct ggml_cgraph * gb,
  13559. struct ggml_cgraph * gb_tmp,
  13560. struct ggml_tensor * * checkpoints,
  13561. int n_checkpoints) {
  13562. ggml_graph_cpy(gf, gb_tmp);
  13563. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13564. if (n_checkpoints <= 0) {
  13565. ggml_graph_cpy(gb_tmp, gb);
  13566. return;
  13567. }
  13568. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13569. // insert checkpoints in replacements
  13570. for (int i = 0; i < n_checkpoints; ++i) {
  13571. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13572. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13573. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13574. replacements->set.keys[k] = checkpoints[i];
  13575. replacements->vals[k] = checkpoints[i];
  13576. }
  13577. ggml_graph_cpy(gf, gb);
  13578. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13579. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13580. // by recomputing them from checkpoints
  13581. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13582. struct ggml_tensor * node = gb_tmp->nodes[i];
  13583. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13584. // insert new tensors recomputing src, reusing already made replacements,
  13585. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13586. // recurse for input tensors,
  13587. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13588. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13589. }
  13590. // insert rewritten backward node with replacements made into resulting backward graph gb
  13591. ggml_build_forward_expand(gb, node);
  13592. }
  13593. ggml_hash_map_free(replacements);
  13594. }
  13595. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13596. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13597. if (ggml_hash_contains(zero_table, a)) {
  13598. return b;
  13599. } else {
  13600. return ggml_add_impl(ctx, a, b, false);
  13601. }
  13602. }
  13603. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13604. if (ggml_hash_contains(zero_table, a)) {
  13605. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13606. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13607. } else {
  13608. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13609. }
  13610. }
  13611. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13612. if (ggml_hash_contains(zero_table, a)) {
  13613. return ggml_repeat(ctx, b, a);
  13614. } else {
  13615. return ggml_add1_impl(ctx, a, b, false);
  13616. }
  13617. }
  13618. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13619. if (ggml_hash_contains(zero_table, a)) {
  13620. return ggml_neg(ctx, b);
  13621. } else {
  13622. return ggml_sub_impl(ctx, a, b, false);
  13623. }
  13624. }
  13625. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13626. struct ggml_tensor * src0 = tensor->src[0];
  13627. struct ggml_tensor * src1 = tensor->src[1];
  13628. switch (tensor->op) {
  13629. case GGML_OP_DUP:
  13630. {
  13631. if (src0->grad) {
  13632. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13633. }
  13634. } break;
  13635. case GGML_OP_ADD:
  13636. {
  13637. if (src0->grad) {
  13638. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13639. }
  13640. if (src1->grad) {
  13641. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13642. }
  13643. } break;
  13644. case GGML_OP_ADD1:
  13645. {
  13646. if (src0->grad) {
  13647. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13648. }
  13649. if (src1->grad) {
  13650. src1->grad = ggml_add_or_set(ctx,
  13651. src1->grad,
  13652. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13653. zero_table);
  13654. }
  13655. } break;
  13656. case GGML_OP_ACC:
  13657. {
  13658. if (src0->grad) {
  13659. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13660. }
  13661. if (src1->grad) {
  13662. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13663. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13664. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13665. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13666. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13667. tensor->grad,
  13668. src1->grad->ne[0],
  13669. src1->grad->ne[1],
  13670. src1->grad->ne[2],
  13671. src1->grad->ne[3],
  13672. nb1, nb2, nb3, offset);
  13673. src1->grad =
  13674. ggml_add_or_set(ctx,
  13675. src1->grad,
  13676. ggml_reshape(ctx,
  13677. ggml_cont(ctx, tensor_grad_view),
  13678. src1->grad),
  13679. zero_table);
  13680. }
  13681. } break;
  13682. case GGML_OP_SUB:
  13683. {
  13684. if (src0->grad) {
  13685. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13686. }
  13687. if (src1->grad) {
  13688. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13689. }
  13690. } break;
  13691. case GGML_OP_MUL:
  13692. {
  13693. if (src0->grad) {
  13694. src0->grad =
  13695. ggml_add_or_set(ctx,
  13696. src0->grad,
  13697. ggml_mul(ctx, src1, tensor->grad),
  13698. zero_table);
  13699. }
  13700. if (src1->grad) {
  13701. src1->grad =
  13702. ggml_add_or_set(ctx,
  13703. src1->grad,
  13704. ggml_mul(ctx, src0, tensor->grad),
  13705. zero_table);
  13706. }
  13707. } break;
  13708. case GGML_OP_DIV:
  13709. {
  13710. if (src0->grad) {
  13711. src0->grad =
  13712. ggml_add_or_set(ctx,
  13713. src0->grad,
  13714. ggml_div(ctx, tensor->grad, src1),
  13715. zero_table);
  13716. }
  13717. if (src1->grad) {
  13718. src1->grad =
  13719. ggml_sub_or_set(ctx,
  13720. src1->grad,
  13721. ggml_mul(ctx,
  13722. tensor->grad,
  13723. ggml_div(ctx, tensor, src1)),
  13724. zero_table);
  13725. }
  13726. } break;
  13727. case GGML_OP_SQR:
  13728. {
  13729. if (src0->grad) {
  13730. src0->grad =
  13731. ggml_add_or_set(ctx,
  13732. src0->grad,
  13733. ggml_scale(ctx,
  13734. ggml_mul(ctx, src0, tensor->grad),
  13735. 2.0f),
  13736. zero_table);
  13737. }
  13738. } break;
  13739. case GGML_OP_SQRT:
  13740. {
  13741. if (src0->grad) {
  13742. src0->grad =
  13743. ggml_add_or_set(ctx,
  13744. src0->grad,
  13745. ggml_scale(ctx,
  13746. ggml_div(ctx,
  13747. tensor->grad,
  13748. tensor),
  13749. 0.5f),
  13750. zero_table);
  13751. }
  13752. } break;
  13753. case GGML_OP_LOG:
  13754. {
  13755. if (src0->grad) {
  13756. src0->grad =
  13757. ggml_add_or_set(ctx,
  13758. src0->grad,
  13759. ggml_div(ctx,
  13760. tensor->grad,
  13761. src0),
  13762. zero_table);
  13763. }
  13764. } break;
  13765. case GGML_OP_SUM:
  13766. {
  13767. if (src0->grad) {
  13768. src0->grad =
  13769. ggml_add1_or_set(ctx,
  13770. src0->grad,
  13771. tensor->grad,
  13772. zero_table);
  13773. }
  13774. } break;
  13775. case GGML_OP_SUM_ROWS:
  13776. {
  13777. if (src0->grad) {
  13778. src0->grad =
  13779. ggml_add_or_set(ctx,
  13780. src0->grad,
  13781. ggml_repeat(ctx,
  13782. tensor->grad,
  13783. src0->grad),
  13784. zero_table);
  13785. }
  13786. } break;
  13787. case GGML_OP_MEAN:
  13788. case GGML_OP_ARGMAX:
  13789. {
  13790. GGML_ASSERT(false); // TODO: implement
  13791. } break;
  13792. case GGML_OP_REPEAT:
  13793. {
  13794. // necessary for llama
  13795. if (src0->grad) {
  13796. src0->grad = ggml_add_or_set(ctx,
  13797. src0->grad,
  13798. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13799. zero_table);
  13800. }
  13801. } break;
  13802. case GGML_OP_REPEAT_BACK:
  13803. {
  13804. if (src0->grad) {
  13805. // TODO: test this
  13806. src0->grad = ggml_add_or_set(ctx,
  13807. src0->grad,
  13808. ggml_repeat(ctx, tensor->grad, src0->grad),
  13809. zero_table);
  13810. }
  13811. } break;
  13812. case GGML_OP_CONCAT:
  13813. {
  13814. GGML_ASSERT(false); // TODO: implement
  13815. } break;
  13816. case GGML_OP_SILU_BACK:
  13817. {
  13818. GGML_ASSERT(false); // TODO: not implemented
  13819. } break;
  13820. case GGML_OP_NORM:
  13821. {
  13822. GGML_ASSERT(false); // TODO: not implemented
  13823. } break;
  13824. case GGML_OP_RMS_NORM:
  13825. {
  13826. // necessary for llama
  13827. if (src0->grad) {
  13828. float eps;
  13829. memcpy(&eps, tensor->op_params, sizeof(float));
  13830. src0->grad = ggml_add_or_set(ctx,
  13831. src0->grad,
  13832. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13833. zero_table);
  13834. }
  13835. } break;
  13836. case GGML_OP_RMS_NORM_BACK:
  13837. {
  13838. GGML_ASSERT(false); // TODO: not implemented
  13839. } break;
  13840. case GGML_OP_GROUP_NORM:
  13841. {
  13842. GGML_ASSERT(false); // TODO: not implemented
  13843. } break;
  13844. case GGML_OP_MUL_MAT:
  13845. {
  13846. // https://cs231n.github.io/optimization-2/#staged
  13847. // # forward pass
  13848. // s0 = np.random.randn(5, 10)
  13849. // s1 = np.random.randn(10, 3)
  13850. // t = s0.dot(s1)
  13851. // # now suppose we had the gradient on t from above in the circuit
  13852. // dt = np.random.randn(*t.shape) # same shape as t
  13853. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13854. // ds1 = t.T.dot(dt)
  13855. // tensor.shape [m,p,qq,rr]
  13856. // src0.shape [n,m,q1,r1]
  13857. // src1.shape [n,p,qq,rr]
  13858. // necessary for llama
  13859. if (src0->grad) {
  13860. struct ggml_tensor * s1_tg =
  13861. ggml_out_prod(ctx, // [n,m,qq,rr]
  13862. src1, // [n,p,qq,rr]
  13863. tensor->grad); // [m,p,qq,rr]
  13864. const int64_t qq = s1_tg->ne[2];
  13865. const int64_t rr = s1_tg->ne[3];
  13866. const int64_t q1 = src0->ne[2];
  13867. const int64_t r1 = src0->ne[3];
  13868. const bool ne2_broadcasted = qq > q1;
  13869. const bool ne3_broadcasted = rr > r1;
  13870. if (ne2_broadcasted || ne3_broadcasted) {
  13871. // sum broadcast repetitions of s1_tg into shape of src0
  13872. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13873. }
  13874. src0->grad =
  13875. ggml_add_or_set(ctx,
  13876. src0->grad, // [n,m,q1,r1]
  13877. s1_tg, // [n,m,q1,r1]
  13878. zero_table);
  13879. }
  13880. if (src1->grad) {
  13881. src1->grad =
  13882. ggml_add_or_set(ctx,
  13883. src1->grad, // [n,p,qq,rr]
  13884. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13885. // ggml_cont(ctx, // [m,n,q1,r1]
  13886. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13887. // tensor->grad), // [m,p,qq,rr]
  13888. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13889. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13890. // // and then use ggml_out_prod
  13891. ggml_out_prod(ctx, // [n,p,qq,rr]
  13892. src0, // [n,m,q1,r1]
  13893. ggml_transpose(ctx, // [p,m,qq,rr]
  13894. tensor->grad)), // [m,p,qq,rr]
  13895. zero_table);
  13896. }
  13897. } break;
  13898. case GGML_OP_MUL_MAT_ID:
  13899. {
  13900. GGML_ASSERT(false); // TODO: not implemented
  13901. } break;
  13902. case GGML_OP_OUT_PROD:
  13903. {
  13904. GGML_ASSERT(false); // TODO: not implemented
  13905. } break;
  13906. case GGML_OP_SCALE:
  13907. {
  13908. // necessary for llama
  13909. if (src0->grad) {
  13910. float s;
  13911. memcpy(&s, tensor->op_params, sizeof(float));
  13912. src0->grad =
  13913. ggml_add_or_set(ctx,
  13914. src0->grad,
  13915. ggml_scale_impl(ctx, tensor->grad, s, false),
  13916. zero_table);
  13917. }
  13918. } break;
  13919. case GGML_OP_SET:
  13920. {
  13921. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13922. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13923. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13924. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13925. struct ggml_tensor * tensor_grad_view = NULL;
  13926. if (src0->grad || src1->grad) {
  13927. GGML_ASSERT(src0->type == tensor->type);
  13928. GGML_ASSERT(tensor->grad->type == tensor->type);
  13929. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13930. tensor_grad_view = ggml_view_4d(ctx,
  13931. tensor->grad,
  13932. src1->grad->ne[0],
  13933. src1->grad->ne[1],
  13934. src1->grad->ne[2],
  13935. src1->grad->ne[3],
  13936. nb1, nb2, nb3, offset);
  13937. }
  13938. if (src0->grad) {
  13939. src0->grad = ggml_add_or_set(ctx,
  13940. src0->grad,
  13941. ggml_acc_impl(ctx,
  13942. tensor->grad,
  13943. ggml_neg(ctx, tensor_grad_view),
  13944. nb1, nb2, nb3, offset, false),
  13945. zero_table);
  13946. }
  13947. if (src1->grad) {
  13948. src1->grad =
  13949. ggml_add_or_set(ctx,
  13950. src1->grad,
  13951. ggml_reshape(ctx,
  13952. ggml_cont(ctx, tensor_grad_view),
  13953. src1->grad),
  13954. zero_table);
  13955. }
  13956. } break;
  13957. case GGML_OP_CPY:
  13958. {
  13959. // necessary for llama
  13960. // cpy overwrites value of src1 by src0 and returns view(src1)
  13961. // the overwriting is mathematically equivalent to:
  13962. // tensor = src0 * 1 + src1 * 0
  13963. if (src0->grad) {
  13964. // dsrc0 = dtensor * 1
  13965. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13966. }
  13967. if (src1->grad) {
  13968. // dsrc1 = dtensor * 0 -> noop
  13969. }
  13970. } break;
  13971. case GGML_OP_CONT:
  13972. {
  13973. // same as cpy
  13974. if (src0->grad) {
  13975. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13976. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13977. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13978. }
  13979. } break;
  13980. case GGML_OP_RESHAPE:
  13981. {
  13982. // necessary for llama
  13983. if (src0->grad) {
  13984. src0->grad =
  13985. ggml_add_or_set(ctx, src0->grad,
  13986. ggml_reshape(ctx,
  13987. ggml_is_contiguous(tensor->grad)
  13988. ? tensor->grad
  13989. : ggml_cont(ctx, tensor->grad),
  13990. src0->grad),
  13991. zero_table);
  13992. }
  13993. } break;
  13994. case GGML_OP_VIEW:
  13995. {
  13996. // necessary for llama
  13997. if (src0->grad) {
  13998. size_t offset;
  13999. memcpy(&offset, tensor->op_params, sizeof(offset));
  14000. size_t nb1 = tensor->nb[1];
  14001. size_t nb2 = tensor->nb[2];
  14002. size_t nb3 = tensor->nb[3];
  14003. if (src0->type != src0->grad->type) {
  14004. // gradient is typically F32, but src0 could be other type
  14005. size_t ng = ggml_element_size(src0->grad);
  14006. size_t n0 = ggml_element_size(src0);
  14007. GGML_ASSERT(offset % n0 == 0);
  14008. GGML_ASSERT(nb1 % n0 == 0);
  14009. GGML_ASSERT(nb2 % n0 == 0);
  14010. GGML_ASSERT(nb3 % n0 == 0);
  14011. offset = (offset / n0) * ng;
  14012. nb1 = (nb1 / n0) * ng;
  14013. nb2 = (nb2 / n0) * ng;
  14014. nb3 = (nb3 / n0) * ng;
  14015. }
  14016. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14017. }
  14018. } break;
  14019. case GGML_OP_PERMUTE:
  14020. {
  14021. // necessary for llama
  14022. if (src0->grad) {
  14023. int32_t * axes = (int32_t *) tensor->op_params;
  14024. int axis0 = axes[0] & 0x3;
  14025. int axis1 = axes[1] & 0x3;
  14026. int axis2 = axes[2] & 0x3;
  14027. int axis3 = axes[3] & 0x3;
  14028. int axes_backward[4] = {0,0,0,0};
  14029. axes_backward[axis0] = 0;
  14030. axes_backward[axis1] = 1;
  14031. axes_backward[axis2] = 2;
  14032. axes_backward[axis3] = 3;
  14033. src0->grad =
  14034. ggml_add_or_set(ctx, src0->grad,
  14035. ggml_permute(ctx,
  14036. tensor->grad,
  14037. axes_backward[0],
  14038. axes_backward[1],
  14039. axes_backward[2],
  14040. axes_backward[3]),
  14041. zero_table);
  14042. }
  14043. } break;
  14044. case GGML_OP_TRANSPOSE:
  14045. {
  14046. // necessary for llama
  14047. if (src0->grad) {
  14048. src0->grad =
  14049. ggml_add_or_set(ctx, src0->grad,
  14050. ggml_transpose(ctx, tensor->grad),
  14051. zero_table);
  14052. }
  14053. } break;
  14054. case GGML_OP_GET_ROWS:
  14055. {
  14056. // necessary for llama (only for tokenizer)
  14057. if (src0->grad) {
  14058. src0->grad =
  14059. ggml_add_or_set(ctx, src0->grad,
  14060. // last ggml_get_rows_back argument src0->grad is only
  14061. // necessary to setup correct output shape
  14062. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14063. zero_table);
  14064. }
  14065. if (src1->grad) {
  14066. // noop
  14067. }
  14068. } break;
  14069. case GGML_OP_GET_ROWS_BACK:
  14070. {
  14071. GGML_ASSERT(false); // TODO: not implemented
  14072. } break;
  14073. case GGML_OP_DIAG:
  14074. {
  14075. GGML_ASSERT(false); // TODO: not implemented
  14076. } break;
  14077. case GGML_OP_DIAG_MASK_INF:
  14078. {
  14079. // necessary for llama
  14080. if (src0->grad) {
  14081. const int n_past = ((int32_t *) tensor->op_params)[0];
  14082. src0->grad =
  14083. ggml_add_or_set(ctx, src0->grad,
  14084. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14085. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14086. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14087. zero_table);
  14088. }
  14089. } break;
  14090. case GGML_OP_DIAG_MASK_ZERO:
  14091. {
  14092. // necessary for llama
  14093. if (src0->grad) {
  14094. const int n_past = ((int32_t *) tensor->op_params)[0];
  14095. src0->grad =
  14096. ggml_add_or_set(ctx, src0->grad,
  14097. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14098. zero_table);
  14099. }
  14100. } break;
  14101. case GGML_OP_SOFT_MAX:
  14102. {
  14103. // necessary for llama
  14104. if (src0->grad) {
  14105. src0->grad =
  14106. ggml_add_or_set(ctx, src0->grad,
  14107. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14108. zero_table);
  14109. }
  14110. } break;
  14111. case GGML_OP_SOFT_MAX_BACK:
  14112. {
  14113. GGML_ASSERT(false); // TODO: not implemented
  14114. } break;
  14115. case GGML_OP_ROPE:
  14116. {
  14117. // necessary for llama
  14118. if (src0->grad) {
  14119. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14120. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14121. const int mode = ((int32_t *) tensor->op_params)[2];
  14122. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14123. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14124. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14125. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14126. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14127. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14128. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14129. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14130. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14131. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14132. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14133. src0->grad = ggml_add_or_set(ctx,
  14134. src0->grad,
  14135. ggml_rope_back(ctx,
  14136. tensor->grad,
  14137. src1,
  14138. n_dims,
  14139. mode,
  14140. n_ctx,
  14141. n_orig_ctx,
  14142. freq_base,
  14143. freq_scale,
  14144. ext_factor,
  14145. attn_factor,
  14146. beta_fast,
  14147. beta_slow,
  14148. xpos_base,
  14149. xpos_down),
  14150. zero_table);
  14151. }
  14152. } break;
  14153. case GGML_OP_ROPE_BACK:
  14154. {
  14155. if (src0->grad) {
  14156. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14157. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14158. const int mode = ((int32_t *) tensor->op_params)[2];
  14159. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14160. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14161. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14162. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14163. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14164. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14165. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14166. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14167. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14168. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14169. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14170. src0->grad = ggml_add_or_set(ctx,
  14171. src0->grad,
  14172. ggml_rope_impl(ctx,
  14173. tensor->grad,
  14174. src1,
  14175. n_dims,
  14176. mode,
  14177. n_ctx,
  14178. n_orig_ctx,
  14179. freq_base,
  14180. freq_scale,
  14181. ext_factor,
  14182. attn_factor,
  14183. beta_fast,
  14184. beta_slow,
  14185. xpos_base,
  14186. xpos_down,
  14187. false),
  14188. zero_table);
  14189. }
  14190. } break;
  14191. case GGML_OP_ALIBI:
  14192. {
  14193. GGML_ASSERT(false); // TODO: not implemented
  14194. } break;
  14195. case GGML_OP_CLAMP:
  14196. {
  14197. GGML_ASSERT(false); // TODO: not implemented
  14198. } break;
  14199. case GGML_OP_CONV_TRANSPOSE_1D:
  14200. {
  14201. GGML_ASSERT(false); // TODO: not implemented
  14202. } break;
  14203. case GGML_OP_IM2COL:
  14204. {
  14205. GGML_ASSERT(false); // TODO: not implemented
  14206. } break;
  14207. case GGML_OP_CONV_TRANSPOSE_2D:
  14208. {
  14209. GGML_ASSERT(false); // TODO: not implemented
  14210. } break;
  14211. case GGML_OP_POOL_1D:
  14212. {
  14213. GGML_ASSERT(false); // TODO: not implemented
  14214. } break;
  14215. case GGML_OP_POOL_2D:
  14216. {
  14217. GGML_ASSERT(false); // TODO: not implemented
  14218. } break;
  14219. case GGML_OP_UPSCALE:
  14220. {
  14221. GGML_ASSERT(false); // TODO: not implemented
  14222. } break;
  14223. case GGML_OP_PAD:
  14224. {
  14225. GGML_ASSERT(false); // TODO: not implemented
  14226. } break;
  14227. case GGML_OP_ARANGE:
  14228. {
  14229. GGML_ASSERT(false); // TODO: not implemented
  14230. } break;
  14231. case GGML_OP_TIMESTEP_EMBEDDING:
  14232. {
  14233. GGML_ASSERT(false); // TODO: not implemented
  14234. } break;
  14235. case GGML_OP_ARGSORT:
  14236. {
  14237. GGML_ASSERT(false); // TODO: not implemented
  14238. } break;
  14239. case GGML_OP_LEAKY_RELU:
  14240. {
  14241. GGML_ASSERT(false); // TODO: not implemented
  14242. } break;
  14243. case GGML_OP_FLASH_ATTN:
  14244. {
  14245. struct ggml_tensor * flash_grad = NULL;
  14246. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14247. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14248. GGML_ASSERT(t == 0 || t == 1);
  14249. bool masked = t != 0;
  14250. flash_grad =
  14251. ggml_flash_attn_back(ctx,
  14252. src0,
  14253. src1,
  14254. tensor->src[2],
  14255. tensor->grad,
  14256. masked);
  14257. }
  14258. struct ggml_tensor * src2 = tensor->src[2];
  14259. const int64_t elem_q = ggml_nelements(src0);
  14260. const int64_t elem_k = ggml_nelements(src1);
  14261. const int64_t elem_v = ggml_nelements(src2);
  14262. enum ggml_type result_type = flash_grad->type;
  14263. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14264. const size_t tsize = ggml_type_size(result_type);
  14265. const size_t offs_q = 0;
  14266. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14267. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14268. if (src0->grad) {
  14269. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14270. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14271. src0->grad = ggml_add_or_set(ctx,
  14272. src0->grad,
  14273. grad_q,
  14274. zero_table);
  14275. }
  14276. if (src1->grad) {
  14277. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14278. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14279. src1->grad = ggml_add_or_set(ctx,
  14280. src1->grad,
  14281. grad_k,
  14282. zero_table);
  14283. }
  14284. if (src2->grad) {
  14285. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14286. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14287. src2->grad = ggml_add_or_set(ctx,
  14288. src2->grad,
  14289. grad_v,
  14290. zero_table);
  14291. }
  14292. } break;
  14293. case GGML_OP_FLASH_FF:
  14294. {
  14295. GGML_ASSERT(false); // not supported
  14296. } break;
  14297. case GGML_OP_FLASH_ATTN_BACK:
  14298. {
  14299. GGML_ASSERT(false); // not supported
  14300. } break;
  14301. case GGML_OP_SSM_CONV:
  14302. case GGML_OP_SSM_SCAN:
  14303. {
  14304. GGML_ASSERT(false); // TODO: not implemented
  14305. } break;
  14306. case GGML_OP_WIN_PART:
  14307. case GGML_OP_WIN_UNPART:
  14308. case GGML_OP_UNARY:
  14309. {
  14310. switch (ggml_get_unary_op(tensor)) {
  14311. case GGML_UNARY_OP_ABS:
  14312. {
  14313. if (src0->grad) {
  14314. src0->grad =
  14315. ggml_add_or_set(ctx,
  14316. src0->grad,
  14317. ggml_mul(ctx,
  14318. ggml_sgn(ctx, src0),
  14319. tensor->grad),
  14320. zero_table);
  14321. }
  14322. } break;
  14323. case GGML_UNARY_OP_SGN:
  14324. {
  14325. if (src0->grad) {
  14326. // noop
  14327. }
  14328. } break;
  14329. case GGML_UNARY_OP_NEG:
  14330. {
  14331. if (src0->grad) {
  14332. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14333. }
  14334. } break;
  14335. case GGML_UNARY_OP_STEP:
  14336. {
  14337. if (src0->grad) {
  14338. // noop
  14339. }
  14340. } break;
  14341. case GGML_UNARY_OP_TANH:
  14342. {
  14343. GGML_ASSERT(false); // TODO: not implemented
  14344. } break;
  14345. case GGML_UNARY_OP_ELU:
  14346. {
  14347. GGML_ASSERT(false); // TODO: not implemented
  14348. } break;
  14349. case GGML_UNARY_OP_RELU:
  14350. {
  14351. if (src0->grad) {
  14352. src0->grad = ggml_add_or_set(ctx,
  14353. src0->grad,
  14354. ggml_mul(ctx,
  14355. ggml_step(ctx, src0),
  14356. tensor->grad),
  14357. zero_table);
  14358. }
  14359. } break;
  14360. case GGML_UNARY_OP_GELU:
  14361. {
  14362. GGML_ASSERT(false); // TODO: not implemented
  14363. } break;
  14364. case GGML_UNARY_OP_GELU_QUICK:
  14365. {
  14366. GGML_ASSERT(false); // TODO: not implemented
  14367. } break;
  14368. case GGML_UNARY_OP_SILU:
  14369. {
  14370. // necessary for llama
  14371. if (src0->grad) {
  14372. src0->grad = ggml_add_or_set(ctx,
  14373. src0->grad,
  14374. ggml_silu_back(ctx, src0, tensor->grad),
  14375. zero_table);
  14376. }
  14377. } break;
  14378. default:
  14379. GGML_ASSERT(false);
  14380. }
  14381. } break;
  14382. case GGML_OP_GET_REL_POS:
  14383. case GGML_OP_ADD_REL_POS:
  14384. case GGML_OP_MAP_UNARY:
  14385. case GGML_OP_MAP_BINARY:
  14386. case GGML_OP_MAP_CUSTOM1_F32:
  14387. case GGML_OP_MAP_CUSTOM2_F32:
  14388. case GGML_OP_MAP_CUSTOM3_F32:
  14389. case GGML_OP_MAP_CUSTOM1:
  14390. case GGML_OP_MAP_CUSTOM2:
  14391. case GGML_OP_MAP_CUSTOM3:
  14392. {
  14393. GGML_ASSERT(false); // not supported
  14394. } break;
  14395. case GGML_OP_CROSS_ENTROPY_LOSS:
  14396. {
  14397. if (src0->grad) {
  14398. src0->grad = ggml_add_or_set(ctx,
  14399. src0->grad,
  14400. ggml_cross_entropy_loss_back(ctx,
  14401. src0,
  14402. src1,
  14403. tensor->grad),
  14404. zero_table);
  14405. }
  14406. } break;
  14407. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14408. {
  14409. GGML_ASSERT(false); // not supported
  14410. } break;
  14411. case GGML_OP_NONE:
  14412. {
  14413. // nop
  14414. } break;
  14415. case GGML_OP_COUNT:
  14416. {
  14417. GGML_ASSERT(false);
  14418. } break;
  14419. }
  14420. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14421. if (tensor->src[i] && tensor->src[i]->grad) {
  14422. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14423. }
  14424. }
  14425. }
  14426. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14427. if (node->grad == NULL) {
  14428. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14429. // it can also happen during forward pass, if the user performs computations with constants
  14430. if (node->op != GGML_OP_NONE) {
  14431. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14432. }
  14433. }
  14434. // check if already visited
  14435. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14436. return;
  14437. }
  14438. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14439. const int k =
  14440. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14441. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14442. /* unknown order, just fall back to using i*/ i;
  14443. if (node->src[k]) {
  14444. ggml_visit_parents(cgraph, node->src[k]);
  14445. }
  14446. }
  14447. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14448. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14449. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14450. if (strlen(node->name) == 0) {
  14451. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14452. }
  14453. cgraph->leafs[cgraph->n_leafs] = node;
  14454. cgraph->n_leafs++;
  14455. } else {
  14456. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14457. if (strlen(node->name) == 0) {
  14458. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14459. }
  14460. cgraph->nodes[cgraph->n_nodes] = node;
  14461. if (cgraph->grads) {
  14462. cgraph->grads[cgraph->n_nodes] = node->grad;
  14463. }
  14464. cgraph->n_nodes++;
  14465. }
  14466. }
  14467. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14468. if (!expand) {
  14469. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14470. ggml_graph_clear(cgraph);
  14471. }
  14472. const int n0 = cgraph->n_nodes;
  14473. UNUSED(n0);
  14474. ggml_visit_parents(cgraph, tensor);
  14475. const int n_new = cgraph->n_nodes - n0;
  14476. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14477. if (n_new > 0) {
  14478. // the last added node should always be starting point
  14479. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14480. }
  14481. }
  14482. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14483. ggml_build_forward_impl(cgraph, tensor, true);
  14484. }
  14485. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14486. GGML_ASSERT(gf->n_nodes > 0);
  14487. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14488. if (keep) {
  14489. for (int i = 0; i < gf->n_nodes; i++) {
  14490. struct ggml_tensor * node = gf->nodes[i];
  14491. if (node->grad) {
  14492. node->grad = ggml_dup_tensor(ctx, node);
  14493. gf->grads[i] = node->grad;
  14494. }
  14495. }
  14496. }
  14497. // remember original gradients which start with zero values
  14498. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14499. for (int i = 0; i < gf->n_nodes; i++) {
  14500. if (gf->grads[i]) {
  14501. ggml_hash_insert(zero_table, gf->grads[i]);
  14502. }
  14503. }
  14504. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14505. struct ggml_tensor * node = gf->nodes[i];
  14506. // inplace operations to add gradients are not created by ggml_compute_backward
  14507. // use allocator to automatically make inplace operations
  14508. if (node->grad) {
  14509. ggml_compute_backward(ctx, node, zero_table);
  14510. }
  14511. }
  14512. for (int i = 0; i < gf->n_nodes; i++) {
  14513. struct ggml_tensor * node = gf->nodes[i];
  14514. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14515. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14516. ggml_build_forward_expand(gb, node->grad);
  14517. }
  14518. }
  14519. ggml_hash_set_free(zero_table);
  14520. }
  14521. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14522. size_t nbytes = sizeof(struct ggml_cgraph);
  14523. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14524. if (grads) {
  14525. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14526. }
  14527. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14528. return nbytes;
  14529. }
  14530. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14531. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14532. }
  14533. size_t ggml_graph_overhead(void) {
  14534. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14535. }
  14536. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14537. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14538. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14539. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14540. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14541. size_t hash_size = ggml_hash_size(size * 2);
  14542. struct ggml_tensor ** nodes_ptr = data_start;
  14543. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14544. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14545. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14546. // check that we allocated the correct amount of memory
  14547. assert(obj_size == (size_t) (
  14548. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14549. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14550. *cgraph = (struct ggml_cgraph) {
  14551. /*.size =*/ size,
  14552. /*.n_nodes =*/ 0,
  14553. /*.n_leafs =*/ 0,
  14554. /*.nodes =*/ nodes_ptr,
  14555. /*.grads =*/ grads_ptr,
  14556. /*.leafs =*/ leafs_ptr,
  14557. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14558. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14559. /*.perf_runs =*/ 0,
  14560. /*.perf_cycles =*/ 0,
  14561. /*.perf_time_us =*/ 0,
  14562. };
  14563. return cgraph;
  14564. }
  14565. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14566. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14567. }
  14568. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14569. struct ggml_cgraph cgraph = {
  14570. /*.size =*/ 0,
  14571. /*.n_nodes =*/ i1 - i0,
  14572. /*.n_leafs =*/ 0,
  14573. /*.nodes =*/ cgraph0->nodes + i0,
  14574. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14575. /*.leafs =*/ NULL,
  14576. /*.hash_table =*/ { 0, NULL },
  14577. /*.order =*/ cgraph0->order,
  14578. /*.perf_runs =*/ 0,
  14579. /*.perf_cycles =*/ 0,
  14580. /*.perf_time_us =*/ 0,
  14581. };
  14582. return cgraph;
  14583. }
  14584. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14585. GGML_ASSERT(dst->size >= src->n_leafs);
  14586. GGML_ASSERT(dst->size >= src->n_nodes);
  14587. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14588. dst->n_leafs = src->n_leafs;
  14589. dst->n_nodes = src->n_nodes;
  14590. dst->order = src->order;
  14591. for (int i = 0; i < src->n_leafs; ++i) {
  14592. dst->leafs[i] = src->leafs[i];
  14593. }
  14594. for (int i = 0; i < src->n_nodes; ++i) {
  14595. dst->nodes[i] = src->nodes[i];
  14596. }
  14597. if (src->grads) {
  14598. GGML_ASSERT(dst->grads != NULL);
  14599. for (int i = 0; i < src->n_nodes; ++i) {
  14600. dst->grads[i] = src->grads[i];
  14601. }
  14602. }
  14603. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14604. if (src->visited_hash_table.keys[i]) {
  14605. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14606. }
  14607. }
  14608. }
  14609. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14610. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14611. ggml_graph_cpy(cgraph, result);
  14612. return result;
  14613. }
  14614. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14615. GGML_ASSERT(cgraph->grads != NULL);
  14616. for (int i = 0; i < cgraph->n_nodes; i++) {
  14617. struct ggml_tensor * grad = cgraph->grads[i];
  14618. if (grad) {
  14619. ggml_set_zero(grad);
  14620. }
  14621. }
  14622. }
  14623. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14624. cgraph->n_leafs = 0;
  14625. cgraph->n_nodes = 0;
  14626. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14627. }
  14628. //
  14629. // thread data
  14630. //
  14631. // synchronization is done via busy loops
  14632. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14633. //
  14634. #ifdef __APPLE__
  14635. //#include <os/lock.h>
  14636. //
  14637. //typedef os_unfair_lock ggml_lock_t;
  14638. //
  14639. //#define ggml_lock_init(x) UNUSED(x)
  14640. //#define ggml_lock_destroy(x) UNUSED(x)
  14641. //#define ggml_lock_lock os_unfair_lock_lock
  14642. //#define ggml_lock_unlock os_unfair_lock_unlock
  14643. //
  14644. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14645. typedef int ggml_lock_t;
  14646. #define ggml_lock_init(x) UNUSED(x)
  14647. #define ggml_lock_destroy(x) UNUSED(x)
  14648. #define ggml_lock_lock(x) UNUSED(x)
  14649. #define ggml_lock_unlock(x) UNUSED(x)
  14650. #define GGML_LOCK_INITIALIZER 0
  14651. typedef pthread_t ggml_thread_t;
  14652. #define ggml_thread_create pthread_create
  14653. #define ggml_thread_join pthread_join
  14654. #else
  14655. //typedef pthread_spinlock_t ggml_lock_t;
  14656. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14657. //#define ggml_lock_destroy pthread_spin_destroy
  14658. //#define ggml_lock_lock pthread_spin_lock
  14659. //#define ggml_lock_unlock pthread_spin_unlock
  14660. typedef int ggml_lock_t;
  14661. #define ggml_lock_init(x) UNUSED(x)
  14662. #define ggml_lock_destroy(x) UNUSED(x)
  14663. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14664. #define ggml_lock_lock(x) _mm_pause()
  14665. #else
  14666. #define ggml_lock_lock(x) UNUSED(x)
  14667. #endif
  14668. #define ggml_lock_unlock(x) UNUSED(x)
  14669. #define GGML_LOCK_INITIALIZER 0
  14670. typedef pthread_t ggml_thread_t;
  14671. #define ggml_thread_create pthread_create
  14672. #define ggml_thread_join pthread_join
  14673. #endif
  14674. // Android's libc implementation "bionic" does not support setting affinity
  14675. #if defined(__gnu_linux__)
  14676. static void set_numa_thread_affinity(int thread_n) {
  14677. if (!ggml_is_numa()) {
  14678. return;
  14679. }
  14680. int node_num;
  14681. int rv;
  14682. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14683. switch(g_state.numa.numa_strategy) {
  14684. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14685. // run thread on node_num thread_n / (threads per node)
  14686. node_num = thread_n % g_state.numa.n_nodes;
  14687. break;
  14688. case GGML_NUMA_STRATEGY_ISOLATE:
  14689. // run thread on current_node
  14690. node_num = g_state.numa.current_node;
  14691. break;
  14692. case GGML_NUMA_STRATEGY_NUMACTL:
  14693. // use the cpuset that numactl gave us
  14694. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14695. if (rv) {
  14696. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14697. }
  14698. return;
  14699. default:
  14700. return;
  14701. }
  14702. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14703. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14704. CPU_ZERO_S(setsize, cpus);
  14705. for (size_t i = 0; i < node->n_cpus; ++i) {
  14706. CPU_SET_S(node->cpus[i], setsize, cpus);
  14707. }
  14708. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14709. if (rv) {
  14710. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14711. }
  14712. CPU_FREE(cpus);
  14713. }
  14714. static void clear_numa_thread_affinity(void) {
  14715. if (!ggml_is_numa()) {
  14716. return;
  14717. }
  14718. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14719. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14720. CPU_ZERO_S(setsize, cpus);
  14721. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14722. CPU_SET_S(i, setsize, cpus);
  14723. }
  14724. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14725. if (rv) {
  14726. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14727. }
  14728. CPU_FREE(cpus);
  14729. }
  14730. #else
  14731. // TODO: Windows etc.
  14732. // (the linux implementation may also work on BSD, someone should test)
  14733. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14734. static void clear_numa_thread_affinity(void) {}
  14735. #endif
  14736. struct ggml_compute_state_shared {
  14737. const struct ggml_cgraph * cgraph;
  14738. const struct ggml_cplan * cplan;
  14739. int64_t perf_node_start_cycles;
  14740. int64_t perf_node_start_time_us;
  14741. const int n_threads;
  14742. // synchronization primitives
  14743. atomic_int n_active; // num active threads
  14744. atomic_int node_n; // active graph node
  14745. atomic_int node_task; // active graph node task phase
  14746. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14747. void * abort_callback_data;
  14748. };
  14749. struct ggml_compute_state {
  14750. ggml_thread_t thrd;
  14751. int ith;
  14752. struct ggml_compute_state_shared * shared;
  14753. enum ggml_status ec;
  14754. };
  14755. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14756. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14757. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14758. node->perf_runs++;
  14759. node->perf_cycles += cycles_cur;
  14760. node->perf_time_us += time_us_cur;
  14761. }
  14762. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14763. int n_tasks = 0;
  14764. if (ggml_is_empty(node)) {
  14765. // no need to multi-thread a no-op
  14766. n_tasks = 1;
  14767. return n_tasks;
  14768. }
  14769. switch (node->op) {
  14770. case GGML_OP_CPY:
  14771. case GGML_OP_DUP:
  14772. case GGML_OP_ADD:
  14773. case GGML_OP_ADD1:
  14774. case GGML_OP_ACC:
  14775. {
  14776. n_tasks = n_threads;
  14777. } break;
  14778. case GGML_OP_SUB:
  14779. case GGML_OP_SQR:
  14780. case GGML_OP_SQRT:
  14781. case GGML_OP_LOG:
  14782. case GGML_OP_SUM:
  14783. case GGML_OP_SUM_ROWS:
  14784. case GGML_OP_MEAN:
  14785. case GGML_OP_ARGMAX:
  14786. case GGML_OP_REPEAT:
  14787. case GGML_OP_REPEAT_BACK:
  14788. case GGML_OP_LEAKY_RELU:
  14789. {
  14790. n_tasks = 1;
  14791. } break;
  14792. case GGML_OP_UNARY:
  14793. switch (ggml_get_unary_op(node)) {
  14794. case GGML_UNARY_OP_ABS:
  14795. case GGML_UNARY_OP_SGN:
  14796. case GGML_UNARY_OP_NEG:
  14797. case GGML_UNARY_OP_STEP:
  14798. case GGML_UNARY_OP_TANH:
  14799. case GGML_UNARY_OP_ELU:
  14800. case GGML_UNARY_OP_RELU:
  14801. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14802. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14803. {
  14804. n_tasks = 1;
  14805. } break;
  14806. case GGML_UNARY_OP_GELU:
  14807. case GGML_UNARY_OP_GELU_QUICK:
  14808. case GGML_UNARY_OP_SILU:
  14809. {
  14810. n_tasks = n_threads;
  14811. } break;
  14812. default:
  14813. GGML_ASSERT(false);
  14814. }
  14815. break;
  14816. case GGML_OP_SILU_BACK:
  14817. case GGML_OP_MUL:
  14818. case GGML_OP_DIV:
  14819. case GGML_OP_NORM:
  14820. case GGML_OP_RMS_NORM:
  14821. case GGML_OP_RMS_NORM_BACK:
  14822. case GGML_OP_GROUP_NORM:
  14823. case GGML_OP_CONCAT:
  14824. {
  14825. n_tasks = n_threads;
  14826. } break;
  14827. case GGML_OP_MUL_MAT:
  14828. {
  14829. n_tasks = n_threads;
  14830. // TODO: use different scheduling for different matrix sizes
  14831. //const int nr0 = ggml_nrows(node->src[0]);
  14832. //const int nr1 = ggml_nrows(node->src[1]);
  14833. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14834. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14835. } break;
  14836. case GGML_OP_MUL_MAT_ID:
  14837. {
  14838. n_tasks = n_threads;
  14839. } break;
  14840. case GGML_OP_OUT_PROD:
  14841. {
  14842. n_tasks = n_threads;
  14843. } break;
  14844. case GGML_OP_GET_ROWS:
  14845. {
  14846. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14847. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14848. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14849. } break;
  14850. case GGML_OP_SCALE:
  14851. case GGML_OP_SET:
  14852. case GGML_OP_CONT:
  14853. case GGML_OP_RESHAPE:
  14854. case GGML_OP_VIEW:
  14855. case GGML_OP_PERMUTE:
  14856. case GGML_OP_TRANSPOSE:
  14857. case GGML_OP_GET_ROWS_BACK:
  14858. case GGML_OP_DIAG:
  14859. {
  14860. n_tasks = 1;
  14861. } break;
  14862. case GGML_OP_DIAG_MASK_ZERO:
  14863. case GGML_OP_DIAG_MASK_INF:
  14864. case GGML_OP_SOFT_MAX_BACK:
  14865. case GGML_OP_ROPE:
  14866. case GGML_OP_ROPE_BACK:
  14867. case GGML_OP_ADD_REL_POS:
  14868. {
  14869. n_tasks = n_threads;
  14870. } break;
  14871. case GGML_OP_ALIBI:
  14872. {
  14873. n_tasks = 1; //TODO
  14874. } break;
  14875. case GGML_OP_CLAMP:
  14876. {
  14877. n_tasks = 1; //TODO
  14878. } break;
  14879. case GGML_OP_SOFT_MAX:
  14880. {
  14881. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14882. } break;
  14883. case GGML_OP_CONV_TRANSPOSE_1D:
  14884. {
  14885. n_tasks = n_threads;
  14886. } break;
  14887. case GGML_OP_IM2COL:
  14888. {
  14889. n_tasks = n_threads;
  14890. } break;
  14891. case GGML_OP_CONV_TRANSPOSE_2D:
  14892. {
  14893. n_tasks = n_threads;
  14894. } break;
  14895. case GGML_OP_POOL_1D:
  14896. case GGML_OP_POOL_2D:
  14897. {
  14898. n_tasks = 1;
  14899. } break;
  14900. case GGML_OP_UPSCALE:
  14901. {
  14902. n_tasks = n_threads;
  14903. } break;
  14904. case GGML_OP_PAD:
  14905. {
  14906. n_tasks = n_threads;
  14907. } break;
  14908. case GGML_OP_ARANGE:
  14909. {
  14910. n_tasks = n_threads;
  14911. } break;
  14912. case GGML_OP_TIMESTEP_EMBEDDING:
  14913. {
  14914. n_tasks = n_threads;
  14915. } break;
  14916. case GGML_OP_ARGSORT:
  14917. {
  14918. n_tasks = n_threads;
  14919. } break;
  14920. case GGML_OP_FLASH_ATTN:
  14921. {
  14922. n_tasks = n_threads;
  14923. } break;
  14924. case GGML_OP_FLASH_FF:
  14925. {
  14926. n_tasks = n_threads;
  14927. } break;
  14928. case GGML_OP_FLASH_ATTN_BACK:
  14929. {
  14930. n_tasks = n_threads;
  14931. } break;
  14932. case GGML_OP_SSM_CONV:
  14933. case GGML_OP_SSM_SCAN:
  14934. {
  14935. n_tasks = n_threads;
  14936. } break;
  14937. case GGML_OP_WIN_PART:
  14938. case GGML_OP_WIN_UNPART:
  14939. case GGML_OP_GET_REL_POS:
  14940. case GGML_OP_MAP_UNARY:
  14941. case GGML_OP_MAP_BINARY:
  14942. case GGML_OP_MAP_CUSTOM1_F32:
  14943. case GGML_OP_MAP_CUSTOM2_F32:
  14944. case GGML_OP_MAP_CUSTOM3_F32:
  14945. {
  14946. n_tasks = 1;
  14947. } break;
  14948. case GGML_OP_MAP_CUSTOM1:
  14949. {
  14950. struct ggml_map_custom1_op_params p;
  14951. memcpy(&p, node->op_params, sizeof(p));
  14952. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14953. n_tasks = n_threads;
  14954. } else {
  14955. n_tasks = MIN(p.n_tasks, n_threads);
  14956. }
  14957. } break;
  14958. case GGML_OP_MAP_CUSTOM2:
  14959. {
  14960. struct ggml_map_custom2_op_params p;
  14961. memcpy(&p, node->op_params, sizeof(p));
  14962. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14963. n_tasks = n_threads;
  14964. } else {
  14965. n_tasks = MIN(p.n_tasks, n_threads);
  14966. }
  14967. } break;
  14968. case GGML_OP_MAP_CUSTOM3:
  14969. {
  14970. struct ggml_map_custom3_op_params p;
  14971. memcpy(&p, node->op_params, sizeof(p));
  14972. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14973. n_tasks = n_threads;
  14974. } else {
  14975. n_tasks = MIN(p.n_tasks, n_threads);
  14976. }
  14977. } break;
  14978. case GGML_OP_CROSS_ENTROPY_LOSS:
  14979. {
  14980. n_tasks = n_threads;
  14981. } break;
  14982. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14983. {
  14984. n_tasks = n_threads;
  14985. } break;
  14986. case GGML_OP_NONE:
  14987. {
  14988. n_tasks = 1;
  14989. } break;
  14990. case GGML_OP_COUNT:
  14991. {
  14992. GGML_ASSERT(false);
  14993. } break;
  14994. default:
  14995. {
  14996. fprintf(stderr, "%s: op not implemented: ", __func__);
  14997. if (node->op < GGML_OP_COUNT) {
  14998. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14999. } else {
  15000. fprintf(stderr, "%d\n", node->op);
  15001. }
  15002. GGML_ASSERT(false);
  15003. } break;
  15004. }
  15005. assert(n_tasks > 0);
  15006. return n_tasks;
  15007. }
  15008. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15009. // wait for other threads to finish
  15010. const int last_node_n = * node_n;
  15011. while (true) {
  15012. if (do_yield) {
  15013. sched_yield();
  15014. }
  15015. * node_n = atomic_load(&state->shared->node_n);
  15016. if (* node_n != last_node_n) break;
  15017. }
  15018. }
  15019. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15020. // wait for other threads to finish
  15021. const int last_task_phase = * task_phase;
  15022. while (true) {
  15023. if (do_yield) {
  15024. sched_yield();
  15025. }
  15026. * task_phase = atomic_load(&state->shared->node_task);
  15027. if (* task_phase != last_task_phase) break;
  15028. }
  15029. }
  15030. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15031. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15032. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15033. const struct ggml_cplan * cplan = state->shared->cplan;
  15034. const int n_threads = state->shared->n_threads;
  15035. set_numa_thread_affinity(state->ith);
  15036. int node_n = -1;
  15037. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15038. while (true) {
  15039. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15040. state->shared->node_n += 1;
  15041. state->ec = GGML_STATUS_ABORTED;
  15042. return 0;
  15043. }
  15044. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15045. // all other threads are finished and spinning
  15046. // do finalize and init here so we don't have synchronize again
  15047. struct ggml_compute_params params = {
  15048. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15049. /*.ith =*/ 0,
  15050. /*.nth =*/ 0,
  15051. /*.wsize =*/ cplan->work_size,
  15052. /*.wdata =*/ cplan->work_data,
  15053. };
  15054. if (node_n != -1) {
  15055. /* FINALIZE */
  15056. struct ggml_tensor * node = cgraph->nodes[node_n];
  15057. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15058. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15059. ggml_compute_forward(&params, node);
  15060. }
  15061. ggml_graph_compute_perf_stats_node(node, state->shared);
  15062. }
  15063. // distribute new work or execute it direct if 1T
  15064. while (++node_n < cgraph->n_nodes) {
  15065. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15066. struct ggml_tensor * node = cgraph->nodes[node_n];
  15067. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15068. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15069. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15070. params.nth = n_tasks;
  15071. if (n_tasks == 1) {
  15072. /* INIT */
  15073. if (GGML_OP_HAS_INIT[node->op]) {
  15074. params.type = GGML_TASK_TYPE_INIT;
  15075. ggml_compute_forward(&params, node);
  15076. }
  15077. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15078. // they do something more efficient than spinning (?)
  15079. params.type = GGML_TASK_TYPE_COMPUTE;
  15080. ggml_compute_forward(&params, node);
  15081. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15082. params.type = GGML_TASK_TYPE_FINALIZE;
  15083. ggml_compute_forward(&params, node);
  15084. }
  15085. ggml_graph_compute_perf_stats_node(node, state->shared);
  15086. } else {
  15087. break;
  15088. }
  15089. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15090. break;
  15091. }
  15092. }
  15093. task_phase = GGML_TASK_TYPE_INIT;
  15094. atomic_store(&state->shared->n_active, n_threads);
  15095. atomic_store(&state->shared->node_n, node_n);
  15096. atomic_store(&state->shared->node_task, task_phase);
  15097. } else {
  15098. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15099. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15100. }
  15101. // check if we should stop
  15102. if (node_n >= cgraph->n_nodes) break;
  15103. /* INIT & COMPUTE */
  15104. struct ggml_tensor * node = cgraph->nodes[node_n];
  15105. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15106. struct ggml_compute_params params = {
  15107. /*.type =*/ GGML_TASK_TYPE_INIT,
  15108. /*.ith =*/ state->ith,
  15109. /*.nth =*/ n_tasks,
  15110. /*.wsize =*/ cplan->work_size,
  15111. /*.wdata =*/ cplan->work_data,
  15112. };
  15113. if (state->ith < n_tasks) {
  15114. if (GGML_OP_HAS_INIT[node->op]) {
  15115. ggml_compute_forward(&params, node);
  15116. }
  15117. }
  15118. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15119. task_phase = GGML_TASK_TYPE_COMPUTE;
  15120. atomic_store(&state->shared->n_active, n_threads);
  15121. atomic_store(&state->shared->node_task, task_phase);
  15122. }
  15123. else {
  15124. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15125. // depending on the workload and the operating system.
  15126. // since it is not clear what is the best approach, it should potentially become user-configurable
  15127. // ref: https://github.com/ggerganov/ggml/issues/291
  15128. // UPD: adding the do_yield flag seems to resolve the issue universally
  15129. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15130. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15131. }
  15132. if (state->ith < n_tasks) {
  15133. params.type = GGML_TASK_TYPE_COMPUTE;
  15134. ggml_compute_forward(&params, node);
  15135. }
  15136. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15137. task_phase = GGML_TASK_TYPE_FINALIZE;
  15138. atomic_store(&state->shared->n_active, n_threads);
  15139. atomic_store(&state->shared->node_task, task_phase);
  15140. }
  15141. else {
  15142. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15143. }
  15144. }
  15145. return 0;
  15146. }
  15147. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15148. if (n_threads <= 0) {
  15149. n_threads = GGML_DEFAULT_N_THREADS;
  15150. }
  15151. size_t work_size = 0;
  15152. struct ggml_cplan cplan;
  15153. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15154. int max_tasks = 1;
  15155. // thread scheduling for the different operations + work buffer size estimation
  15156. for (int i = 0; i < cgraph->n_nodes; i++) {
  15157. struct ggml_tensor * node = cgraph->nodes[i];
  15158. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15159. max_tasks = MAX(max_tasks, n_tasks);
  15160. size_t cur = 0;
  15161. switch (node->op) {
  15162. case GGML_OP_CPY:
  15163. case GGML_OP_DUP:
  15164. {
  15165. if (ggml_is_quantized(node->type)) {
  15166. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15167. }
  15168. } break;
  15169. case GGML_OP_ADD:
  15170. case GGML_OP_ADD1:
  15171. {
  15172. if (ggml_is_quantized(node->src[0]->type)) {
  15173. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15174. }
  15175. } break;
  15176. case GGML_OP_ACC:
  15177. {
  15178. if (ggml_is_quantized(node->src[0]->type)) {
  15179. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15180. }
  15181. } break;
  15182. case GGML_OP_MUL_MAT:
  15183. {
  15184. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15185. #if defined(GGML_USE_CLBLAST)
  15186. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15187. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15188. } else
  15189. #endif
  15190. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15191. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15192. if (node->src[0]->type != GGML_TYPE_F32) {
  15193. // here we need memory for fully dequantized matrix from src0
  15194. // take into account that src0 can be broadcasted into src1[2,3]
  15195. cur = ggml_type_size(GGML_TYPE_F32)
  15196. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15197. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15198. }
  15199. } else
  15200. #endif
  15201. if (node->src[1]->type != vec_dot_type) {
  15202. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15203. }
  15204. } break;
  15205. case GGML_OP_MUL_MAT_ID:
  15206. {
  15207. cur = 0;
  15208. const struct ggml_tensor * src0 = node->src[0];
  15209. const struct ggml_tensor * src1 = node->src[1];
  15210. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15211. if (src1->type != vec_dot_type) {
  15212. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15213. }
  15214. const int n_as = src0->ne[2];
  15215. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15216. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15217. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15218. } break;
  15219. case GGML_OP_OUT_PROD:
  15220. {
  15221. if (ggml_is_quantized(node->src[0]->type)) {
  15222. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15223. }
  15224. } break;
  15225. case GGML_OP_SOFT_MAX:
  15226. case GGML_OP_ROPE:
  15227. {
  15228. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15229. } break;
  15230. case GGML_OP_CONV_TRANSPOSE_1D:
  15231. {
  15232. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15233. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15234. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15235. const int64_t ne00 = node->src[0]->ne[0]; // K
  15236. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15237. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15238. const int64_t ne10 = node->src[1]->ne[0]; // L
  15239. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15240. if (node->src[0]->type == GGML_TYPE_F16 &&
  15241. node->src[1]->type == GGML_TYPE_F32) {
  15242. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15243. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15244. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15245. node->src[1]->type == GGML_TYPE_F32) {
  15246. cur += sizeof(float)*ne00*ne01*ne02;
  15247. cur += sizeof(float)*ne10*ne11;
  15248. } else {
  15249. GGML_ASSERT(false);
  15250. }
  15251. } break;
  15252. case GGML_OP_CONV_TRANSPOSE_2D:
  15253. {
  15254. const int64_t ne00 = node->src[0]->ne[0]; // W
  15255. const int64_t ne01 = node->src[0]->ne[1]; // H
  15256. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15257. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15258. const int64_t ne10 = node->src[1]->ne[0]; // W
  15259. const int64_t ne11 = node->src[1]->ne[1]; // H
  15260. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15261. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15262. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15263. } break;
  15264. case GGML_OP_FLASH_ATTN:
  15265. {
  15266. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15267. if (node->src[1]->type == GGML_TYPE_F32) {
  15268. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15269. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15270. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15271. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15272. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15273. }
  15274. } break;
  15275. case GGML_OP_FLASH_FF:
  15276. {
  15277. if (node->src[1]->type == GGML_TYPE_F32) {
  15278. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15279. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15280. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15281. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15282. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15283. }
  15284. } break;
  15285. case GGML_OP_FLASH_ATTN_BACK:
  15286. {
  15287. const int64_t D = node->src[0]->ne[0];
  15288. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15289. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15290. if (node->src[1]->type == GGML_TYPE_F32) {
  15291. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15292. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15293. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15294. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15295. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15296. }
  15297. } break;
  15298. case GGML_OP_CROSS_ENTROPY_LOSS:
  15299. {
  15300. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15301. } break;
  15302. case GGML_OP_COUNT:
  15303. {
  15304. GGML_ASSERT(false);
  15305. } break;
  15306. default:
  15307. break;
  15308. }
  15309. work_size = MAX(work_size, cur);
  15310. }
  15311. if (work_size > 0) {
  15312. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15313. }
  15314. cplan.n_threads = MIN(max_tasks, n_threads);
  15315. cplan.work_size = work_size;
  15316. cplan.work_data = NULL;
  15317. return cplan;
  15318. }
  15319. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15320. {
  15321. GGML_ASSERT(cplan);
  15322. GGML_ASSERT(cplan->n_threads > 0);
  15323. if (cplan->work_size > 0) {
  15324. GGML_ASSERT(cplan->work_data);
  15325. }
  15326. }
  15327. const int n_threads = cplan->n_threads;
  15328. struct ggml_compute_state_shared state_shared = {
  15329. /*.cgraph =*/ cgraph,
  15330. /*.cgraph_plan =*/ cplan,
  15331. /*.perf_node_start_cycles =*/ 0,
  15332. /*.perf_node_start_time_us =*/ 0,
  15333. /*.n_threads =*/ n_threads,
  15334. /*.n_active =*/ n_threads,
  15335. /*.node_n =*/ -1,
  15336. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15337. /*.abort_callback =*/ NULL,
  15338. /*.abort_callback_data =*/ NULL,
  15339. };
  15340. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15341. // create thread pool
  15342. if (n_threads > 1) {
  15343. for (int j = 1; j < n_threads; ++j) {
  15344. workers[j] = (struct ggml_compute_state) {
  15345. .thrd = 0,
  15346. .ith = j,
  15347. .shared = &state_shared,
  15348. .ec = GGML_STATUS_SUCCESS,
  15349. };
  15350. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15351. GGML_ASSERT(rc == 0);
  15352. UNUSED(rc);
  15353. }
  15354. }
  15355. workers[0].ith = 0;
  15356. workers[0].shared = &state_shared;
  15357. workers[0].ec = GGML_STATUS_SUCCESS;
  15358. const int64_t perf_start_cycles = ggml_perf_cycles();
  15359. const int64_t perf_start_time_us = ggml_perf_time_us();
  15360. // this is a work thread too
  15361. ggml_graph_compute_thread(&workers[0]);
  15362. enum ggml_status compute_status = workers[0].ec;
  15363. // don't leave affinity set on the main thread
  15364. clear_numa_thread_affinity();
  15365. // join or kill thread pool
  15366. if (n_threads > 1) {
  15367. for (int j = 1; j < n_threads; j++) {
  15368. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15369. GGML_ASSERT(rc == 0);
  15370. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15371. compute_status = workers[j].ec;
  15372. }
  15373. }
  15374. // performance stats (graph)
  15375. {
  15376. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15377. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15378. cgraph->perf_runs++;
  15379. cgraph->perf_cycles += perf_cycles_cur;
  15380. cgraph->perf_time_us += perf_time_us_cur;
  15381. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15382. __func__, cgraph->perf_runs,
  15383. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15384. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15385. (double) perf_time_us_cur / 1000.0,
  15386. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15387. }
  15388. return compute_status;
  15389. }
  15390. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15391. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15392. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15393. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15394. return ggml_graph_compute(cgraph, &cplan);
  15395. }
  15396. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15397. for (int i = 0; i < cgraph->n_leafs; i++) {
  15398. struct ggml_tensor * leaf = cgraph->leafs[i];
  15399. if (strcmp(leaf->name, name) == 0) {
  15400. return leaf;
  15401. }
  15402. }
  15403. for (int i = 0; i < cgraph->n_nodes; i++) {
  15404. struct ggml_tensor * node = cgraph->nodes[i];
  15405. if (strcmp(node->name, name) == 0) {
  15406. return node;
  15407. }
  15408. }
  15409. return NULL;
  15410. }
  15411. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15412. const int64_t * ne = tensor->ne;
  15413. const size_t * nb = tensor->nb;
  15414. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15415. ggml_type_name(tensor->type),
  15416. ggml_op_name (tensor->op),
  15417. ggml_n_dims(tensor),
  15418. ne[0], ne[1], ne[2], ne[3],
  15419. nb[0], nb[1], nb[2], nb[3],
  15420. tensor->data,
  15421. tensor->name);
  15422. }
  15423. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15424. const int64_t * ne = tensor->ne;
  15425. const size_t * nb = tensor->nb;
  15426. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15427. arg,
  15428. ggml_type_name(tensor->type),
  15429. ggml_op_name (tensor->op),
  15430. ggml_n_dims(tensor),
  15431. ne[0], ne[1], ne[2], ne[3],
  15432. nb[0], nb[1], nb[2], nb[3],
  15433. tensor->data,
  15434. tensor->name);
  15435. }
  15436. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15437. uint64_t size_eval = 0;
  15438. // compute size of intermediate results
  15439. // TODO: does not take into account scratch buffers !!!!
  15440. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15441. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15442. }
  15443. // print
  15444. {
  15445. FILE * fout = stdout;
  15446. fprintf(fout, "\n");
  15447. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15448. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15449. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15450. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15451. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15452. // header
  15453. fprintf(fout, "\n");
  15454. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15455. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15456. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15457. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15458. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15459. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15460. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15461. }
  15462. // header
  15463. fprintf(fout, "\n");
  15464. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15465. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15466. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15467. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15468. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15469. if (cgraph->nodes[i]->src[j]) {
  15470. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15471. }
  15472. }
  15473. fprintf(fout, "\n");
  15474. }
  15475. fprintf(fout, "\n");
  15476. }
  15477. // write binary data
  15478. {
  15479. FILE * fout = ggml_fopen(fname, "wb");
  15480. if (!fout) {
  15481. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15482. return;
  15483. }
  15484. // header
  15485. {
  15486. const uint32_t magic = GGML_FILE_MAGIC;
  15487. const uint32_t version = GGML_FILE_VERSION;
  15488. const uint32_t n_leafs = cgraph->n_leafs;
  15489. const uint32_t n_nodes = cgraph->n_nodes;
  15490. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15491. fwrite(&version, sizeof(uint32_t), 1, fout);
  15492. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15493. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15494. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15495. }
  15496. // leafs
  15497. {
  15498. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15499. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15500. const uint32_t type = tensor->type;
  15501. const uint32_t op = tensor->op;
  15502. fwrite(&type, sizeof(uint32_t), 1, fout);
  15503. fwrite(&op, sizeof(uint32_t), 1, fout);
  15504. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15505. const uint64_t ne = tensor->ne[j];
  15506. const uint64_t nb = tensor->nb[j];
  15507. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15508. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15509. }
  15510. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15511. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15512. // dump the data
  15513. // TODO: pad this to 32 byte boundary
  15514. {
  15515. const size_t size = ggml_nbytes(tensor);
  15516. fwrite(tensor->data, sizeof(char), size, fout);
  15517. }
  15518. }
  15519. }
  15520. // nodes
  15521. {
  15522. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15523. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15524. const uint32_t type = tensor->type;
  15525. const uint32_t op = tensor->op;
  15526. fwrite(&type, sizeof(uint32_t), 1, fout);
  15527. fwrite(&op, sizeof(uint32_t), 1, fout);
  15528. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15529. const uint64_t ne = tensor->ne[j];
  15530. const uint64_t nb = tensor->nb[j];
  15531. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15532. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15533. }
  15534. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15535. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15536. // output the op arguments
  15537. {
  15538. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15539. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15540. args[j] = tensor->src[j];
  15541. }
  15542. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15543. if (args[j]) {
  15544. int32_t idx = -1;
  15545. // check if leaf
  15546. {
  15547. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15548. if (args[j] == cgraph->leafs[k]) {
  15549. idx = k;
  15550. break;
  15551. }
  15552. }
  15553. }
  15554. // check if node
  15555. if (idx == -1) {
  15556. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15557. if (args[j] == cgraph->nodes[k]) {
  15558. idx = cgraph->n_leafs + k;
  15559. break;
  15560. }
  15561. }
  15562. }
  15563. if (idx == -1) {
  15564. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15565. fclose(fout);
  15566. return;
  15567. }
  15568. fwrite(&idx, sizeof(int32_t), 1, fout);
  15569. } else {
  15570. const int32_t nul = -1;
  15571. fwrite(&nul, sizeof(int32_t), 1, fout);
  15572. }
  15573. }
  15574. }
  15575. }
  15576. }
  15577. fclose(fout);
  15578. }
  15579. }
  15580. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15581. assert(*ctx_data == NULL);
  15582. assert(*ctx_eval == NULL);
  15583. struct ggml_cgraph * result = NULL;
  15584. struct ggml_tensor * data = NULL;
  15585. // read file into data
  15586. {
  15587. FILE * fin = ggml_fopen(fname, "rb");
  15588. if (!fin) {
  15589. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15590. return result;
  15591. }
  15592. size_t fsize = 0;
  15593. fseek(fin, 0, SEEK_END);
  15594. fsize = ftell(fin);
  15595. fseek(fin, 0, SEEK_SET);
  15596. // create the data context
  15597. {
  15598. const size_t overhead = 1*ggml_tensor_overhead();
  15599. struct ggml_init_params params = {
  15600. .mem_size = fsize + overhead,
  15601. .mem_buffer = NULL,
  15602. .no_alloc = false,
  15603. };
  15604. *ctx_data = ggml_init(params);
  15605. if (!*ctx_data) {
  15606. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15607. fclose(fin);
  15608. return result;
  15609. }
  15610. }
  15611. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15612. {
  15613. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15614. if (ret != fsize) {
  15615. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15616. fclose(fin);
  15617. return result;
  15618. }
  15619. }
  15620. fclose(fin);
  15621. }
  15622. // populate result
  15623. {
  15624. char * ptr = (char *) data->data;
  15625. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15626. if (magic != GGML_FILE_MAGIC) {
  15627. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15628. return result;
  15629. }
  15630. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15631. if (version != GGML_FILE_VERSION) {
  15632. fprintf(stderr, "%s: invalid version number\n", __func__);
  15633. return result;
  15634. }
  15635. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15636. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15637. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15638. const int graph_size = MAX(n_leafs, n_nodes);
  15639. // create the data context
  15640. {
  15641. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15642. struct ggml_init_params params = {
  15643. .mem_size = size_eval + overhead,
  15644. .mem_buffer = NULL,
  15645. .no_alloc = true,
  15646. };
  15647. *ctx_eval = ggml_init(params);
  15648. if (!*ctx_eval) {
  15649. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15650. return result;
  15651. }
  15652. }
  15653. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15654. result->n_leafs = n_leafs;
  15655. result->n_nodes = n_nodes;
  15656. // leafs
  15657. {
  15658. uint32_t type;
  15659. uint32_t op;
  15660. for (uint32_t i = 0; i < n_leafs; ++i) {
  15661. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15662. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15663. int64_t ne[GGML_MAX_DIMS];
  15664. size_t nb[GGML_MAX_DIMS];
  15665. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15666. uint64_t ne_cur;
  15667. uint64_t nb_cur;
  15668. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15669. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15670. ne[j] = ne_cur;
  15671. nb[j] = nb_cur;
  15672. }
  15673. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15674. tensor->op = (enum ggml_op) op;
  15675. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15676. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15677. tensor->data = (void *) ptr;
  15678. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15679. tensor->nb[j] = nb[j];
  15680. }
  15681. result->leafs[i] = tensor;
  15682. ptr += ggml_nbytes(tensor);
  15683. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15684. }
  15685. }
  15686. ggml_set_no_alloc(*ctx_eval, false);
  15687. // nodes
  15688. {
  15689. uint32_t type;
  15690. uint32_t op;
  15691. for (uint32_t i = 0; i < n_nodes; ++i) {
  15692. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15693. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15694. enum ggml_op eop = (enum ggml_op) op;
  15695. int64_t ne[GGML_MAX_DIMS];
  15696. size_t nb[GGML_MAX_DIMS];
  15697. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15698. uint64_t ne_cur;
  15699. uint64_t nb_cur;
  15700. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15701. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15702. ne[j] = ne_cur;
  15703. nb[j] = nb_cur;
  15704. }
  15705. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15706. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15707. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15708. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15709. // parse args
  15710. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15711. const int32_t arg_idx = ptr_arg_idx[j];
  15712. if (arg_idx == -1) {
  15713. continue;
  15714. }
  15715. if (arg_idx < result->n_leafs) {
  15716. args[j] = result->leafs[arg_idx];
  15717. } else {
  15718. args[j] = result->nodes[arg_idx - result->n_leafs];
  15719. }
  15720. }
  15721. // create the tensor
  15722. // "view" operations are handled differently
  15723. // TODO: handle inplace ops - currently a copy is always made
  15724. struct ggml_tensor * tensor = NULL;
  15725. switch (eop) {
  15726. // TODO: implement other view ops
  15727. case GGML_OP_RESHAPE:
  15728. {
  15729. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15730. } break;
  15731. case GGML_OP_VIEW:
  15732. {
  15733. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15734. size_t offs;
  15735. memcpy(&offs, ptr_op_params, sizeof(offs));
  15736. tensor->data = ((char *) tensor->data) + offs;
  15737. } break;
  15738. case GGML_OP_TRANSPOSE:
  15739. {
  15740. tensor = ggml_transpose(*ctx_eval, args[0]);
  15741. } break;
  15742. case GGML_OP_PERMUTE:
  15743. {
  15744. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15745. } break;
  15746. default:
  15747. {
  15748. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15749. tensor->op = eop;
  15750. } break;
  15751. }
  15752. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15753. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15754. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15755. tensor->nb[j] = nb[j];
  15756. }
  15757. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15758. tensor->src[j] = args[j];
  15759. }
  15760. result->nodes[i] = tensor;
  15761. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15762. }
  15763. }
  15764. }
  15765. return result;
  15766. }
  15767. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15768. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15769. GGML_PRINT("=== GRAPH ===\n");
  15770. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15771. for (int i = 0; i < cgraph->n_nodes; i++) {
  15772. struct ggml_tensor * node = cgraph->nodes[i];
  15773. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15774. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15775. i,
  15776. node->ne[0], node->ne[1], node->ne[2],
  15777. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15778. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15779. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15780. (double) node->perf_time_us / 1000.0,
  15781. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15782. }
  15783. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15784. for (int i = 0; i < cgraph->n_leafs; i++) {
  15785. struct ggml_tensor * node = cgraph->leafs[i];
  15786. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15787. i,
  15788. node->ne[0], node->ne[1],
  15789. ggml_op_name(node->op),
  15790. ggml_get_name(node));
  15791. }
  15792. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15793. if (perf_total_per_op_us[i] == 0) {
  15794. continue;
  15795. }
  15796. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15797. }
  15798. GGML_PRINT("========================================\n");
  15799. }
  15800. // check if node is part of the graph
  15801. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15802. if (cgraph == NULL) {
  15803. return true;
  15804. }
  15805. for (int i = 0; i < cgraph->n_nodes; i++) {
  15806. if (cgraph->nodes[i] == node) {
  15807. return true;
  15808. }
  15809. }
  15810. return false;
  15811. }
  15812. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15813. for (int i = 0; i < cgraph->n_nodes; i++) {
  15814. struct ggml_tensor * parent = cgraph->nodes[i];
  15815. if (parent->grad == node) {
  15816. return parent;
  15817. }
  15818. }
  15819. return NULL;
  15820. }
  15821. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15822. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15823. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15824. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15825. gparent0 ? (void *) gparent0 : (void *) parent,
  15826. gparent0 ? "g" : "x",
  15827. gparent ? (void *) gparent : (void *) node,
  15828. gparent ? "g" : "x",
  15829. gparent ? "empty" : "vee",
  15830. gparent ? "dashed" : "solid",
  15831. label);
  15832. }
  15833. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15834. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15835. (void *) parent, "x",
  15836. (void *) node, "x",
  15837. label);
  15838. }
  15839. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15840. char color[16];
  15841. FILE * fp = ggml_fopen(filename, "w");
  15842. GGML_ASSERT(fp);
  15843. fprintf(fp, "digraph G {\n");
  15844. fprintf(fp, " newrank = true;\n");
  15845. fprintf(fp, " rankdir = LR;\n");
  15846. for (int i = 0; i < gb->n_nodes; i++) {
  15847. struct ggml_tensor * node = gb->nodes[i];
  15848. if (ggml_graph_get_parent(gb, node) != NULL) {
  15849. continue;
  15850. }
  15851. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15852. snprintf(color, sizeof(color), "yellow");
  15853. } else if (node->grad) {
  15854. if (ggml_graph_find(gf, node)) {
  15855. snprintf(color, sizeof(color), "green");
  15856. } else {
  15857. snprintf(color, sizeof(color), "lightblue");
  15858. }
  15859. } else {
  15860. snprintf(color, sizeof(color), "white");
  15861. }
  15862. fprintf(fp, " \"%p\" [ "
  15863. "style = filled; fillcolor = %s; shape = record; "
  15864. "label=\"",
  15865. (void *) node, color);
  15866. if (strlen(node->name) > 0) {
  15867. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15868. } else {
  15869. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15870. }
  15871. if (ggml_is_matrix(node)) {
  15872. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15873. } else {
  15874. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15875. }
  15876. if (node->grad) {
  15877. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15878. } else {
  15879. fprintf(fp, "\"; ]\n");
  15880. }
  15881. }
  15882. for (int i = 0; i < gb->n_leafs; i++) {
  15883. struct ggml_tensor * node = gb->leafs[i];
  15884. snprintf(color, sizeof(color), "pink");
  15885. fprintf(fp, " \"%p\" [ "
  15886. "style = filled; fillcolor = %s; shape = record; "
  15887. "label=\"<x>",
  15888. (void *) node, color);
  15889. if (strlen(node->name) > 0) {
  15890. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15891. } else {
  15892. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15893. }
  15894. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15895. if (ggml_nelements(node) < 5) {
  15896. fprintf(fp, " | (");
  15897. for (int j = 0; j < ggml_nelements(node); j++) {
  15898. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15899. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15900. }
  15901. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15902. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15903. }
  15904. else {
  15905. fprintf(fp, "#");
  15906. }
  15907. if (j < ggml_nelements(node) - 1) {
  15908. fprintf(fp, ", ");
  15909. }
  15910. }
  15911. fprintf(fp, ")");
  15912. }
  15913. fprintf(fp, "\"; ]\n");
  15914. }
  15915. for (int i = 0; i < gb->n_nodes; i++) {
  15916. struct ggml_tensor * node = gb->nodes[i];
  15917. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15918. if (node->src[j]) {
  15919. char label[16];
  15920. snprintf(label, sizeof(label), "src %d", j);
  15921. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15922. }
  15923. }
  15924. }
  15925. for (int i = 0; i < gb->n_leafs; i++) {
  15926. struct ggml_tensor * node = gb->leafs[i];
  15927. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15928. if (node->src[j]) {
  15929. char label[16];
  15930. snprintf(label, sizeof(label), "src %d", j);
  15931. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15932. }
  15933. }
  15934. }
  15935. fprintf(fp, "}\n");
  15936. fclose(fp);
  15937. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15938. }
  15939. ////////////////////////////////////////////////////////////////////////////////
  15940. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15941. int i = 0;
  15942. for (int p = 0; p < np; ++p) {
  15943. const int64_t ne = ggml_nelements(ps[p]) ;
  15944. // TODO: add function to set tensor from array
  15945. for (int64_t j = 0; j < ne; ++j) {
  15946. ggml_set_f32_1d(ps[p], j, x[i++]);
  15947. }
  15948. }
  15949. }
  15950. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15951. int i = 0;
  15952. for (int p = 0; p < np; ++p) {
  15953. const int64_t ne = ggml_nelements(ps[p]) ;
  15954. // TODO: add function to get all elements at once
  15955. for (int64_t j = 0; j < ne; ++j) {
  15956. x[i++] = ggml_get_f32_1d(ps[p], j);
  15957. }
  15958. }
  15959. }
  15960. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15961. int64_t i = 0;
  15962. for (int p = 0; p < np; ++p) {
  15963. const int64_t ne = ggml_nelements(ps[p]) ;
  15964. // TODO: add function to get all elements at once
  15965. for (int64_t j = 0; j < ne; ++j) {
  15966. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15967. }
  15968. }
  15969. }
  15970. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15971. int64_t i = 0;
  15972. for (int p = 0; p < np; ++p) {
  15973. const int64_t ne = ggml_nelements(ps[p]) ;
  15974. // TODO: add function to get all elements at once
  15975. for (int64_t j = 0; j < ne; ++j) {
  15976. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15977. }
  15978. }
  15979. }
  15980. //
  15981. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15982. //
  15983. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15984. //
  15985. static enum ggml_opt_result ggml_opt_adam(
  15986. struct ggml_context * ctx,
  15987. struct ggml_opt_context * opt,
  15988. struct ggml_opt_params params,
  15989. struct ggml_tensor * f,
  15990. struct ggml_cgraph * gf,
  15991. struct ggml_cgraph * gb,
  15992. ggml_opt_callback callback,
  15993. void * callback_data) {
  15994. GGML_ASSERT(ggml_is_scalar(f));
  15995. // these will store the parameters we want to optimize
  15996. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15997. int np = 0;
  15998. int64_t nx = 0;
  15999. for (int i = 0; i < gf->n_nodes; ++i) {
  16000. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16001. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16002. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16003. ps[np++] = gf->nodes[i];
  16004. nx += ggml_nelements(gf->nodes[i]);
  16005. }
  16006. }
  16007. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16008. int iter = opt->iter;
  16009. ggml_opt_init(opt->ctx, opt, params, nx);
  16010. opt->iter = iter;
  16011. }
  16012. // constants
  16013. float sched = params.adam.sched;
  16014. const float alpha = params.adam.alpha;
  16015. const float decay = params.adam.decay * alpha;
  16016. const float beta1 = params.adam.beta1;
  16017. const float beta2 = params.adam.beta2;
  16018. const float eps = params.adam.eps;
  16019. const float gclip = params.adam.gclip;
  16020. const int decay_min_ndim = params.adam.decay_min_ndim;
  16021. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16022. const float accum_norm = 1.0f / (float) n_accum;
  16023. float * g = opt->adam.g->data; // gradients
  16024. float * m = opt->adam.m->data; // first moment
  16025. float * v = opt->adam.v->data; // second moment
  16026. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16027. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16028. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16029. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16030. bool cancel = false;
  16031. // compute the function value
  16032. float fx = 0;
  16033. ggml_set_zero(opt->adam.g);
  16034. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16035. if (callback) {
  16036. callback(callback_data, accum_step, &sched, &cancel);
  16037. if (cancel) {
  16038. return GGML_OPT_RESULT_CANCEL;
  16039. }
  16040. }
  16041. // ggml_graph_reset (gf);
  16042. ggml_set_f32 (f->grad, 1.0f);
  16043. ggml_graph_compute(gb, &cplan);
  16044. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16045. fx += ggml_get_f32_1d(f, 0);
  16046. }
  16047. fx *= accum_norm;
  16048. opt->adam.fx_prev = fx;
  16049. opt->adam.fx_best = opt->adam.fx_prev;
  16050. if (pf) {
  16051. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16052. }
  16053. opt->loss_before = opt->adam.fx_prev;
  16054. opt->loss_after = opt->adam.fx_prev;
  16055. // initialize
  16056. if (opt->just_initialized) {
  16057. opt->adam.n_no_improvement = 0;
  16058. opt->just_initialized = false;
  16059. }
  16060. float * fx_best = &opt->adam.fx_best;
  16061. float * fx_prev = &opt->adam.fx_prev;
  16062. int * n_no_improvement = &opt->adam.n_no_improvement;
  16063. int iter0 = opt->iter;
  16064. // run the optimizer
  16065. for (int t = 0; t < params.adam.n_iter; ++t) {
  16066. opt->iter = iter0 + t + 1;
  16067. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16068. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16069. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16070. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16071. for (int i = 0; i < np; ++i) {
  16072. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16073. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16074. }
  16075. const int64_t t_start_wall = ggml_time_us();
  16076. const int64_t t_start_cpu = ggml_cycles();
  16077. UNUSED(t_start_wall);
  16078. UNUSED(t_start_cpu);
  16079. {
  16080. float gnorm = 1.0f;
  16081. if (gclip > 0.0f) {
  16082. // gradient clipping
  16083. ggml_float sum = 0.0;
  16084. for (int64_t i = 0; i < nx; ++i) {
  16085. sum += (ggml_float)(g[i]*g[i]);
  16086. }
  16087. ggml_float norm = sqrt(sum);
  16088. if (norm > (ggml_float) gclip) {
  16089. gnorm = (float) ((ggml_float) gclip / norm);
  16090. }
  16091. }
  16092. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16093. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16094. int64_t i = 0;
  16095. for (int p = 0; p < np; ++p) {
  16096. const int64_t ne = ggml_nelements(ps[p]);
  16097. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16098. for (int64_t j = 0; j < ne; ++j) {
  16099. float x = ggml_get_f32_1d(ps[p], j);
  16100. float g_ = g[i]*gnorm;
  16101. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16102. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16103. float mh = m[i]*beta1h;
  16104. float vh = v[i]*beta2h;
  16105. vh = sqrtf(vh) + eps;
  16106. x = x*(1.0f - p_decay) - mh/vh;
  16107. ggml_set_f32_1d(ps[p], j, x);
  16108. ++i;
  16109. }
  16110. }
  16111. }
  16112. fx = 0;
  16113. ggml_set_zero(opt->adam.g);
  16114. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16115. if (callback) {
  16116. callback(callback_data, accum_step, &sched, &cancel);
  16117. if (cancel) {
  16118. return GGML_OPT_RESULT_CANCEL;;
  16119. }
  16120. }
  16121. // ggml_graph_reset (gf);
  16122. ggml_set_f32 (f->grad, 1.0f);
  16123. ggml_graph_compute(gb, &cplan);
  16124. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16125. fx += ggml_get_f32_1d(f, 0);
  16126. }
  16127. fx *= accum_norm;
  16128. opt->loss_after = fx;
  16129. // check convergence
  16130. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16131. GGML_PRINT_DEBUG("converged\n");
  16132. return GGML_OPT_RESULT_OK;
  16133. }
  16134. // delta-based convergence test
  16135. if (pf != NULL) {
  16136. // need at least params.past iterations to start checking for convergence
  16137. if (params.past <= iter0 + t) {
  16138. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16139. if (fabsf(rate) < params.delta) {
  16140. return GGML_OPT_RESULT_OK;
  16141. }
  16142. }
  16143. pf[(iter0 + t)%params.past] = fx;
  16144. }
  16145. // check for improvement
  16146. if (params.max_no_improvement > 0) {
  16147. if (fx_best[0] > fx) {
  16148. fx_best[0] = fx;
  16149. n_no_improvement[0] = 0;
  16150. } else {
  16151. ++n_no_improvement[0];
  16152. if (n_no_improvement[0] >= params.max_no_improvement) {
  16153. return GGML_OPT_RESULT_OK;
  16154. }
  16155. }
  16156. }
  16157. fx_prev[0] = fx;
  16158. {
  16159. const int64_t t_end_cpu = ggml_cycles();
  16160. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16161. UNUSED(t_end_cpu);
  16162. const int64_t t_end_wall = ggml_time_us();
  16163. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16164. UNUSED(t_end_wall);
  16165. }
  16166. }
  16167. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16168. }
  16169. //
  16170. // L-BFGS
  16171. //
  16172. // the L-BFGS implementation below is based on the following implementation:
  16173. //
  16174. // https://github.com/chokkan/liblbfgs
  16175. //
  16176. struct ggml_lbfgs_iteration_data {
  16177. float alpha;
  16178. float ys;
  16179. float * s;
  16180. float * y;
  16181. };
  16182. static enum ggml_opt_result linesearch_backtracking(
  16183. const struct ggml_opt_params * params,
  16184. int nx,
  16185. float * x,
  16186. float * fx,
  16187. float * g,
  16188. float * d,
  16189. float * step,
  16190. const float * xp,
  16191. struct ggml_tensor * f,
  16192. struct ggml_cgraph * gb,
  16193. struct ggml_cplan * cplan,
  16194. const int np,
  16195. struct ggml_tensor * ps[],
  16196. bool * cancel,
  16197. ggml_opt_callback callback,
  16198. void * callback_data) {
  16199. int count = 0;
  16200. float width = 0.0f;
  16201. float dg = 0.0f;
  16202. float finit = 0.0f;
  16203. float dginit = 0.0f;
  16204. float dgtest = 0.0f;
  16205. const float dec = 0.5f;
  16206. const float inc = 2.1f;
  16207. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16208. const float accum_norm = 1.0f / (float) n_accum;
  16209. if (*step <= 0.f) {
  16210. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16211. }
  16212. // compute the initial gradient in the search direction
  16213. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16214. // make sure that d points to a descent direction
  16215. if (0 < dginit) {
  16216. return GGML_LINESEARCH_FAIL;
  16217. }
  16218. // initialize local variables
  16219. finit = *fx;
  16220. dgtest = params->lbfgs.ftol*dginit;
  16221. while (true) {
  16222. ggml_vec_cpy_f32(nx, x, xp);
  16223. ggml_vec_mad_f32(nx, x, d, *step);
  16224. // evaluate the function and gradient values
  16225. {
  16226. ggml_opt_set_params(np, ps, x);
  16227. *fx = 0;
  16228. memset(g, 0, sizeof(float)*nx);
  16229. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16230. if (callback) {
  16231. // LBFG-S does not support learning rate -> ignore learning schedule
  16232. float sched = 0;
  16233. callback(callback_data, accum_step, &sched, cancel);
  16234. if (*cancel) {
  16235. return GGML_OPT_RESULT_CANCEL;
  16236. }
  16237. }
  16238. // ggml_graph_reset (gf);
  16239. ggml_set_f32 (f->grad, 1.0f);
  16240. ggml_graph_compute(gb, cplan);
  16241. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16242. *fx += ggml_get_f32_1d(f, 0);
  16243. }
  16244. *fx *= accum_norm;
  16245. }
  16246. ++count;
  16247. if (*fx > finit + (*step)*dgtest) {
  16248. width = dec;
  16249. } else {
  16250. // Armijo condition is satisfied
  16251. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16252. return count;
  16253. }
  16254. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16255. // check the Wolfe condition
  16256. if (dg < params->lbfgs.wolfe * dginit) {
  16257. width = inc;
  16258. } else {
  16259. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16260. // regular Wolfe conditions
  16261. return count;
  16262. }
  16263. if(dg > -params->lbfgs.wolfe*dginit) {
  16264. width = dec;
  16265. } else {
  16266. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16267. return count;
  16268. }
  16269. }
  16270. }
  16271. if (*step < params->lbfgs.min_step) {
  16272. return GGML_LINESEARCH_MINIMUM_STEP;
  16273. }
  16274. if (*step > params->lbfgs.max_step) {
  16275. return GGML_LINESEARCH_MAXIMUM_STEP;
  16276. }
  16277. if (params->lbfgs.max_linesearch <= count) {
  16278. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16279. }
  16280. (*step) *= width;
  16281. }
  16282. GGML_ASSERT(false && "line search failed");
  16283. return GGML_LINESEARCH_FAIL;
  16284. }
  16285. static enum ggml_opt_result ggml_opt_lbfgs(
  16286. struct ggml_context * ctx,
  16287. struct ggml_opt_context * opt,
  16288. struct ggml_opt_params params,
  16289. struct ggml_tensor * f,
  16290. struct ggml_cgraph * gf,
  16291. struct ggml_cgraph * gb,
  16292. ggml_opt_callback callback,
  16293. void * callback_data) {
  16294. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16295. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16296. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16297. return GGML_OPT_RESULT_INVALID_WOLFE;
  16298. }
  16299. }
  16300. const int m = params.lbfgs.m;
  16301. // these will store the parameters we want to optimize
  16302. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16303. int np = 0;
  16304. int nx = 0;
  16305. for (int i = 0; i < gf->n_nodes; ++i) {
  16306. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16307. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16308. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16309. ps[np++] = gf->nodes[i];
  16310. nx += ggml_nelements(gf->nodes[i]);
  16311. }
  16312. }
  16313. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16314. int iter = opt->iter;
  16315. ggml_opt_init(ctx, opt, params, nx);
  16316. opt->iter = iter;
  16317. }
  16318. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16319. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16320. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16321. float * x = opt->lbfgs.x->data; // current parameters
  16322. float * xp = opt->lbfgs.xp->data; // previous parameters
  16323. float * g = opt->lbfgs.g->data; // current gradient
  16324. float * gp = opt->lbfgs.gp->data; // previous gradient
  16325. float * d = opt->lbfgs.d->data; // search direction
  16326. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16327. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16328. const float accum_norm = 1.0f / (float) n_accum;
  16329. float fx = 0.0f; // cost function value
  16330. float xnorm = 0.0f; // ||x||
  16331. float gnorm = 0.0f; // ||g||
  16332. // initialize x from the graph nodes
  16333. ggml_opt_get_params(np, ps, x);
  16334. // the L-BFGS memory
  16335. float * lm_alpha = opt->lbfgs.lmal->data;
  16336. float * lm_ys = opt->lbfgs.lmys->data;
  16337. float * lm_s = opt->lbfgs.lms->data;
  16338. float * lm_y = opt->lbfgs.lmy->data;
  16339. bool cancel = false;
  16340. // evaluate the function value and its gradient
  16341. {
  16342. ggml_opt_set_params(np, ps, x);
  16343. fx = 0;
  16344. memset(g, 0, sizeof(float)*nx);
  16345. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16346. if (callback) {
  16347. // LBFG-S does not support learning rate -> ignore learning schedule
  16348. float sched = 0;
  16349. callback(callback_data, accum_step, &sched, &cancel);
  16350. if (cancel) {
  16351. return GGML_OPT_RESULT_CANCEL;
  16352. }
  16353. }
  16354. // ggml_graph_reset (gf);
  16355. ggml_set_f32 (f->grad, 1.0f);
  16356. ggml_graph_compute(gb, &cplan);
  16357. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16358. fx += ggml_get_f32_1d(f, 0);
  16359. }
  16360. fx *= accum_norm;
  16361. opt->loss_before = fx;
  16362. opt->loss_after = fx;
  16363. }
  16364. // search direction = -gradient
  16365. ggml_vec_neg_f32(nx, d, g);
  16366. // ||x||, ||g||
  16367. ggml_vec_norm_f32(nx, &xnorm, x);
  16368. ggml_vec_norm_f32(nx, &gnorm, g);
  16369. if (xnorm < 1.0f) {
  16370. xnorm = 1.0f;
  16371. }
  16372. // already optimized
  16373. if (gnorm/xnorm <= params.lbfgs.eps) {
  16374. return GGML_OPT_RESULT_OK;
  16375. }
  16376. if (opt->just_initialized) {
  16377. if (pf) {
  16378. pf[0] = fx;
  16379. }
  16380. opt->lbfgs.fx_best = fx;
  16381. // initial step
  16382. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16383. opt->lbfgs.j = 0;
  16384. opt->lbfgs.k = 1;
  16385. opt->lbfgs.end = 0;
  16386. opt->lbfgs.n_no_improvement = 0;
  16387. opt->just_initialized = false;
  16388. }
  16389. float * fx_best = &opt->lbfgs.fx_best;
  16390. float * step = &opt->lbfgs.step;
  16391. int * j = &opt->lbfgs.j;
  16392. int * k = &opt->lbfgs.k;
  16393. int * end = &opt->lbfgs.end;
  16394. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16395. int ls = 0;
  16396. int bound = 0;
  16397. float ys = 0.0f;
  16398. float yy = 0.0f;
  16399. float beta = 0.0f;
  16400. int it = 0;
  16401. while (true) {
  16402. // store the current position and gradient vectors
  16403. ggml_vec_cpy_f32(nx, xp, x);
  16404. ggml_vec_cpy_f32(nx, gp, g);
  16405. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16406. // to determine if the optimization should be cancelled
  16407. // this is a simple change, but not doing this atm, since I don't have a nice
  16408. // way to test and don't want to break something with so many changes lined up
  16409. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16410. if (cancel) {
  16411. return GGML_OPT_RESULT_CANCEL;
  16412. }
  16413. if (ls < 0) {
  16414. // linesearch failed - go back to the previous point and return
  16415. ggml_vec_cpy_f32(nx, x, xp);
  16416. ggml_vec_cpy_f32(nx, g, gp);
  16417. return ls;
  16418. }
  16419. opt->loss_after = fx;
  16420. ggml_vec_norm_f32(nx, &xnorm, x);
  16421. ggml_vec_norm_f32(nx, &gnorm, g);
  16422. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16423. if (xnorm < 1.0f) {
  16424. xnorm = 1.0f;
  16425. }
  16426. if (gnorm/xnorm <= params.lbfgs.eps) {
  16427. // converged
  16428. return GGML_OPT_RESULT_OK;
  16429. }
  16430. // delta-based convergence test
  16431. if (pf != NULL) {
  16432. // need at least params.past iterations to start checking for convergence
  16433. if (params.past <= k[0]) {
  16434. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16435. if (fabsf(rate) < params.delta) {
  16436. return GGML_OPT_RESULT_OK;
  16437. }
  16438. }
  16439. pf[k[0]%params.past] = fx;
  16440. }
  16441. // check for improvement
  16442. if (params.max_no_improvement > 0) {
  16443. if (fx < fx_best[0]) {
  16444. fx_best[0] = fx;
  16445. n_no_improvement[0] = 0;
  16446. } else {
  16447. n_no_improvement[0]++;
  16448. if (n_no_improvement[0] >= params.max_no_improvement) {
  16449. return GGML_OPT_RESULT_OK;
  16450. }
  16451. }
  16452. }
  16453. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16454. // reached the maximum number of iterations
  16455. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16456. }
  16457. // update vectors s and y:
  16458. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16459. // y_{k+1} = g_{k+1} - g_{k}.
  16460. //
  16461. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16462. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16463. // compute scalars ys and yy:
  16464. // ys = y^t \cdot s -> 1 / \rho.
  16465. // yy = y^t \cdot y.
  16466. //
  16467. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16468. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16469. lm_ys[end[0]] = ys;
  16470. // find new search direction
  16471. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16472. bound = (m <= k[0]) ? m : k[0];
  16473. k[0]++;
  16474. it++;
  16475. end[0] = (end[0] + 1)%m;
  16476. // initialize search direction with -g
  16477. ggml_vec_neg_f32(nx, d, g);
  16478. j[0] = end[0];
  16479. for (int i = 0; i < bound; ++i) {
  16480. j[0] = (j[0] + m - 1) % m;
  16481. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16482. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16483. lm_alpha[j[0]] /= lm_ys[j[0]];
  16484. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16485. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16486. }
  16487. ggml_vec_scale_f32(nx, d, ys/yy);
  16488. for (int i = 0; i < bound; ++i) {
  16489. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16490. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16491. beta /= lm_ys[j[0]];
  16492. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16493. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16494. j[0] = (j[0] + 1)%m;
  16495. }
  16496. step[0] = 1.0;
  16497. }
  16498. GGML_ASSERT(false && "lbfgs failed");
  16499. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16500. }
  16501. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16502. struct ggml_opt_params result;
  16503. switch (type) {
  16504. case GGML_OPT_TYPE_ADAM:
  16505. {
  16506. result = (struct ggml_opt_params) {
  16507. .type = GGML_OPT_TYPE_ADAM,
  16508. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16509. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16510. .past = 0,
  16511. .delta = 1e-5f,
  16512. .max_no_improvement = 100,
  16513. .print_forward_graph = true,
  16514. .print_backward_graph = true,
  16515. .n_gradient_accumulation = 1,
  16516. .adam = {
  16517. .n_iter = 10000,
  16518. .sched = 1.000f,
  16519. .decay = 0.0f,
  16520. .decay_min_ndim = 2,
  16521. .alpha = 0.001f,
  16522. .beta1 = 0.9f,
  16523. .beta2 = 0.999f,
  16524. .eps = 1e-8f,
  16525. .eps_f = 1e-5f,
  16526. .eps_g = 1e-3f,
  16527. .gclip = 0.0f,
  16528. },
  16529. };
  16530. } break;
  16531. case GGML_OPT_TYPE_LBFGS:
  16532. {
  16533. result = (struct ggml_opt_params) {
  16534. .type = GGML_OPT_TYPE_LBFGS,
  16535. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16536. .n_threads = 1,
  16537. .past = 0,
  16538. .delta = 1e-5f,
  16539. .max_no_improvement = 0,
  16540. .print_forward_graph = true,
  16541. .print_backward_graph = true,
  16542. .n_gradient_accumulation = 1,
  16543. .lbfgs = {
  16544. .m = 6,
  16545. .n_iter = 100,
  16546. .max_linesearch = 20,
  16547. .eps = 1e-5f,
  16548. .ftol = 1e-4f,
  16549. .wolfe = 0.9f,
  16550. .min_step = 1e-20f,
  16551. .max_step = 1e+20f,
  16552. .linesearch = GGML_LINESEARCH_DEFAULT,
  16553. },
  16554. };
  16555. } break;
  16556. }
  16557. return result;
  16558. }
  16559. GGML_API void ggml_opt_init(
  16560. struct ggml_context * ctx,
  16561. struct ggml_opt_context * opt,
  16562. struct ggml_opt_params params,
  16563. int64_t nx) {
  16564. opt->ctx = ctx;
  16565. opt->params = params;
  16566. opt->iter = 0;
  16567. opt->nx = nx;
  16568. opt->just_initialized = true;
  16569. if (opt->ctx == NULL) {
  16570. struct ggml_init_params ctx_opt_params;
  16571. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16572. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16573. if (opt->params.past > 0) {
  16574. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16575. }
  16576. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16577. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16578. if (opt->params.past > 0) {
  16579. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16580. }
  16581. }
  16582. ctx_opt_params.mem_buffer = NULL;
  16583. ctx_opt_params.no_alloc = false;
  16584. opt->ctx = ggml_init(ctx_opt_params);
  16585. }
  16586. switch (opt->params.type) {
  16587. case GGML_OPT_TYPE_ADAM:
  16588. {
  16589. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16590. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16591. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16592. opt->adam.pf = params.past > 0
  16593. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16594. : NULL;
  16595. ggml_set_zero(opt->adam.m);
  16596. ggml_set_zero(opt->adam.v);
  16597. if (opt->adam.pf) {
  16598. ggml_set_zero(opt->adam.pf);
  16599. }
  16600. } break;
  16601. case GGML_OPT_TYPE_LBFGS:
  16602. {
  16603. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16604. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16605. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16606. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16607. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16608. opt->lbfgs.pf = params.past > 0
  16609. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16610. : NULL;
  16611. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16612. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16613. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16614. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16615. ggml_set_zero(opt->lbfgs.x);
  16616. ggml_set_zero(opt->lbfgs.xp);
  16617. ggml_set_zero(opt->lbfgs.g);
  16618. ggml_set_zero(opt->lbfgs.gp);
  16619. ggml_set_zero(opt->lbfgs.d);
  16620. if (opt->lbfgs.pf) {
  16621. ggml_set_zero(opt->lbfgs.pf);
  16622. }
  16623. ggml_set_zero(opt->lbfgs.lmal);
  16624. ggml_set_zero(opt->lbfgs.lmys);
  16625. ggml_set_zero(opt->lbfgs.lms);
  16626. ggml_set_zero(opt->lbfgs.lmy);
  16627. } break;
  16628. }
  16629. }
  16630. enum ggml_opt_result ggml_opt(
  16631. struct ggml_context * ctx,
  16632. struct ggml_opt_params params,
  16633. struct ggml_tensor * f) {
  16634. bool free_ctx = false;
  16635. if (ctx == NULL) {
  16636. struct ggml_init_params params_ctx = {
  16637. .mem_size = 16*1024*1024,
  16638. .mem_buffer = NULL,
  16639. .no_alloc = false,
  16640. };
  16641. ctx = ggml_init(params_ctx);
  16642. if (ctx == NULL) {
  16643. return GGML_OPT_RESULT_NO_CONTEXT;
  16644. }
  16645. free_ctx = true;
  16646. }
  16647. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16648. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16649. ggml_opt_init(ctx, opt, params, 0);
  16650. result = ggml_opt_resume(ctx, opt, f);
  16651. if (free_ctx) {
  16652. ggml_free(ctx);
  16653. }
  16654. return result;
  16655. }
  16656. enum ggml_opt_result ggml_opt_resume(
  16657. struct ggml_context * ctx,
  16658. struct ggml_opt_context * opt,
  16659. struct ggml_tensor * f) {
  16660. // build forward + backward compute graphs
  16661. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16662. ggml_build_forward_expand(gf, f);
  16663. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16664. ggml_build_backward_expand(ctx, gf, gb, true);
  16665. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16666. }
  16667. enum ggml_opt_result ggml_opt_resume_g(
  16668. struct ggml_context * ctx,
  16669. struct ggml_opt_context * opt,
  16670. struct ggml_tensor * f,
  16671. struct ggml_cgraph * gf,
  16672. struct ggml_cgraph * gb,
  16673. ggml_opt_callback callback,
  16674. void * callback_data) {
  16675. // build forward + backward compute graphs
  16676. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16677. switch (opt->params.type) {
  16678. case GGML_OPT_TYPE_ADAM:
  16679. {
  16680. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16681. } break;
  16682. case GGML_OPT_TYPE_LBFGS:
  16683. {
  16684. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16685. } break;
  16686. }
  16687. if (opt->params.print_forward_graph) {
  16688. ggml_graph_print (gf);
  16689. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16690. }
  16691. if (opt->params.print_backward_graph) {
  16692. ggml_graph_print (gb);
  16693. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16694. }
  16695. return result;
  16696. }
  16697. ////////////////////////////////////////////////////////////////////////////////
  16698. void ggml_set_input(struct ggml_tensor * tensor) {
  16699. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16700. }
  16701. void ggml_set_output(struct ggml_tensor * tensor) {
  16702. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16703. }
  16704. ////////////////////////////////////////////////////////////////////////////////
  16705. void ggml_quantize_init(enum ggml_type type) {
  16706. ggml_critical_section_start();
  16707. switch (type) {
  16708. case GGML_TYPE_IQ2_XXS:
  16709. case GGML_TYPE_IQ2_XS:
  16710. case GGML_TYPE_IQ2_S:
  16711. case GGML_TYPE_IQ1_S:
  16712. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16713. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16714. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16715. default: // nothing
  16716. break;
  16717. }
  16718. ggml_critical_section_end();
  16719. }
  16720. void ggml_quantize_free(void) {
  16721. ggml_critical_section_start();
  16722. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16723. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16724. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16725. iq3xs_free_impl(256);
  16726. ggml_critical_section_end();
  16727. }
  16728. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16729. return
  16730. type == GGML_TYPE_IQ2_XXS ||
  16731. type == GGML_TYPE_IQ2_XS ||
  16732. type == GGML_TYPE_IQ1_S;// ||
  16733. //type == GGML_TYPE_IQ1_M;
  16734. }
  16735. size_t ggml_quantize_chunk(
  16736. enum ggml_type type,
  16737. const float * src,
  16738. void * dst,
  16739. int64_t start,
  16740. int64_t nrows,
  16741. int64_t n_per_row,
  16742. const float * imatrix) {
  16743. const int64_t n = (int64_t) nrows * n_per_row;
  16744. if (ggml_quantize_requires_imatrix(type)) {
  16745. GGML_ASSERT(imatrix != NULL);
  16746. }
  16747. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16748. GGML_ASSERT(start % n_per_row == 0);
  16749. ggml_quantize_init(type); // this is noop if already initialized
  16750. const size_t start_row = start / n_per_row;
  16751. const size_t row_size = ggml_row_size(type, n_per_row);
  16752. size_t result = 0;
  16753. switch (type) {
  16754. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16755. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16756. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16757. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16758. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16759. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16760. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16761. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16762. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16763. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16764. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16765. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16766. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16767. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16768. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16769. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16770. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16771. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16772. #if QK_K == 64
  16773. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16774. #else
  16775. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16776. #endif
  16777. case GGML_TYPE_F16:
  16778. {
  16779. size_t elemsize = sizeof(ggml_fp16_t);
  16780. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16781. result = n * elemsize;
  16782. } break;
  16783. case GGML_TYPE_F32:
  16784. {
  16785. size_t elemsize = sizeof(float);
  16786. result = n * elemsize;
  16787. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16788. } break;
  16789. default:
  16790. assert(false);
  16791. }
  16792. GGML_ASSERT(result == nrows * row_size);
  16793. return result;
  16794. }
  16795. ////////////////////////////////////////////////////////////////////////////////
  16796. struct gguf_str {
  16797. uint64_t n; // GGUFv2
  16798. char * data;
  16799. };
  16800. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16801. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16802. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16803. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16804. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16805. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16806. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16807. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16808. [GGUF_TYPE_BOOL] = sizeof(bool),
  16809. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16810. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16811. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16812. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16813. [GGUF_TYPE_ARRAY] = 0, // undefined
  16814. };
  16815. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16816. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16817. [GGUF_TYPE_UINT8] = "u8",
  16818. [GGUF_TYPE_INT8] = "i8",
  16819. [GGUF_TYPE_UINT16] = "u16",
  16820. [GGUF_TYPE_INT16] = "i16",
  16821. [GGUF_TYPE_UINT32] = "u32",
  16822. [GGUF_TYPE_INT32] = "i32",
  16823. [GGUF_TYPE_FLOAT32] = "f32",
  16824. [GGUF_TYPE_BOOL] = "bool",
  16825. [GGUF_TYPE_STRING] = "str",
  16826. [GGUF_TYPE_ARRAY] = "arr",
  16827. [GGUF_TYPE_UINT64] = "u64",
  16828. [GGUF_TYPE_INT64] = "i64",
  16829. [GGUF_TYPE_FLOAT64] = "f64",
  16830. };
  16831. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16832. union gguf_value {
  16833. uint8_t uint8;
  16834. int8_t int8;
  16835. uint16_t uint16;
  16836. int16_t int16;
  16837. uint32_t uint32;
  16838. int32_t int32;
  16839. float float32;
  16840. uint64_t uint64;
  16841. int64_t int64;
  16842. double float64;
  16843. bool bool_;
  16844. struct gguf_str str;
  16845. struct {
  16846. enum gguf_type type;
  16847. uint64_t n; // GGUFv2
  16848. void * data;
  16849. } arr;
  16850. };
  16851. struct gguf_kv {
  16852. struct gguf_str key;
  16853. enum gguf_type type;
  16854. union gguf_value value;
  16855. };
  16856. struct gguf_header {
  16857. char magic[4];
  16858. uint32_t version;
  16859. uint64_t n_tensors; // GGUFv2
  16860. uint64_t n_kv; // GGUFv2
  16861. };
  16862. struct gguf_tensor_info {
  16863. struct gguf_str name;
  16864. uint32_t n_dims;
  16865. uint64_t ne[GGML_MAX_DIMS];
  16866. enum ggml_type type;
  16867. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16868. // for writing API
  16869. const void * data;
  16870. size_t size;
  16871. };
  16872. struct gguf_context {
  16873. struct gguf_header header;
  16874. struct gguf_kv * kv;
  16875. struct gguf_tensor_info * infos;
  16876. size_t alignment;
  16877. size_t offset; // offset of `data` from beginning of file
  16878. size_t size; // size of `data` in bytes
  16879. //uint8_t * padding;
  16880. void * data;
  16881. };
  16882. static size_t gguf_type_size(enum gguf_type type) {
  16883. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16884. return GGUF_TYPE_SIZE[type];
  16885. }
  16886. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16887. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16888. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16889. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16890. GGML_ASSERT(info->ne[i] > 0);
  16891. }
  16892. // prevent overflow for total number of elements
  16893. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16894. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16895. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16896. }
  16897. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16898. const size_t n = fread(dst, 1, size, file);
  16899. *offset += n;
  16900. return n == size;
  16901. }
  16902. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16903. p->n = 0;
  16904. p->data = NULL;
  16905. bool ok = true;
  16906. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16907. // early exit if string length is invalid, prevents from integer overflow
  16908. if (p->n == SIZE_MAX) {
  16909. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16910. return false;
  16911. }
  16912. p->data = GGML_CALLOC(p->n + 1, 1);
  16913. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16914. return ok;
  16915. }
  16916. static void gguf_free_kv(struct gguf_kv * kv) {
  16917. if (kv->key.data) {
  16918. GGML_FREE(kv->key.data);
  16919. }
  16920. if (kv->type == GGUF_TYPE_STRING) {
  16921. if (kv->value.str.data) {
  16922. GGML_FREE(kv->value.str.data);
  16923. }
  16924. }
  16925. if (kv->type == GGUF_TYPE_ARRAY) {
  16926. if (kv->value.arr.data) {
  16927. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16928. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16929. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16930. if (str->data) {
  16931. GGML_FREE(str->data);
  16932. }
  16933. }
  16934. }
  16935. GGML_FREE(kv->value.arr.data);
  16936. }
  16937. }
  16938. }
  16939. struct gguf_context * gguf_init_empty(void) {
  16940. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16941. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16942. ctx->header.version = GGUF_VERSION;
  16943. ctx->header.n_tensors = 0;
  16944. ctx->header.n_kv = 0;
  16945. ctx->kv = NULL;
  16946. ctx->infos = NULL;
  16947. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16948. ctx->offset = 0;
  16949. ctx->size = 0;
  16950. ctx->data = NULL;
  16951. return ctx;
  16952. }
  16953. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16954. FILE * file = ggml_fopen(fname, "rb");
  16955. if (!file) {
  16956. return NULL;
  16957. }
  16958. // offset from start of file
  16959. size_t offset = 0;
  16960. char magic[4];
  16961. // check the magic before making allocations
  16962. {
  16963. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16964. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16965. if (magic[i] != GGUF_MAGIC[i]) {
  16966. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16967. fclose(file);
  16968. return NULL;
  16969. }
  16970. }
  16971. }
  16972. bool ok = true;
  16973. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16974. // read the header
  16975. {
  16976. strncpy(ctx->header.magic, magic, 4);
  16977. ctx->kv = NULL;
  16978. ctx->infos = NULL;
  16979. ctx->data = NULL;
  16980. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16981. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16982. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16983. if (ctx->header.version == 1) {
  16984. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16985. fclose(file);
  16986. gguf_free(ctx);
  16987. return NULL;
  16988. }
  16989. // sanity-checks to prevent from integer/buffer overflows
  16990. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16991. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16992. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16993. if (!ok) {
  16994. fprintf(stderr, "%s: failed to read header\n", __func__);
  16995. fclose(file);
  16996. gguf_free(ctx);
  16997. return NULL;
  16998. }
  16999. }
  17000. // read the kv pairs
  17001. {
  17002. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  17003. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17004. struct gguf_kv * kv = &ctx->kv[i];
  17005. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17006. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17007. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17008. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17009. switch (kv->type) {
  17010. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17011. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17012. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17013. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17014. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17015. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17016. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17017. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17018. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17019. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17020. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17021. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17022. case GGUF_TYPE_ARRAY:
  17023. {
  17024. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17025. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17026. switch (kv->value.arr.type) {
  17027. case GGUF_TYPE_UINT8:
  17028. case GGUF_TYPE_INT8:
  17029. case GGUF_TYPE_UINT16:
  17030. case GGUF_TYPE_INT16:
  17031. case GGUF_TYPE_UINT32:
  17032. case GGUF_TYPE_INT32:
  17033. case GGUF_TYPE_FLOAT32:
  17034. case GGUF_TYPE_UINT64:
  17035. case GGUF_TYPE_INT64:
  17036. case GGUF_TYPE_FLOAT64:
  17037. case GGUF_TYPE_BOOL:
  17038. {
  17039. // prevent from integer overflow in the malloc below
  17040. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17041. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17042. fclose(file);
  17043. gguf_free(ctx);
  17044. return NULL;
  17045. }
  17046. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17047. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17048. } break;
  17049. case GGUF_TYPE_STRING:
  17050. {
  17051. // prevent from integer overflow in the malloc below
  17052. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17053. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17054. fclose(file);
  17055. gguf_free(ctx);
  17056. return NULL;
  17057. }
  17058. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  17059. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17060. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17061. }
  17062. } break;
  17063. case GGUF_TYPE_ARRAY:
  17064. default: GGML_ASSERT(false && "invalid type"); break;
  17065. }
  17066. } break;
  17067. default: GGML_ASSERT(false && "invalid type");
  17068. }
  17069. if (!ok) {
  17070. break;
  17071. }
  17072. }
  17073. if (!ok) {
  17074. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17075. fclose(file);
  17076. gguf_free(ctx);
  17077. return NULL;
  17078. }
  17079. }
  17080. // read the tensor infos
  17081. {
  17082. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17083. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17084. struct gguf_tensor_info * info = &ctx->infos[i];
  17085. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17086. info->ne[j] = 1;
  17087. }
  17088. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17089. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17090. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17091. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17092. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17093. }
  17094. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17095. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17096. gguf_tensor_info_sanitize(info);
  17097. if (!ok) {
  17098. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17099. fclose(file);
  17100. gguf_free(ctx);
  17101. return NULL;
  17102. }
  17103. }
  17104. }
  17105. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17106. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17107. if (alignment_idx != -1) {
  17108. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17109. }
  17110. // we require the data section to be aligned, so take into account any padding
  17111. {
  17112. const size_t offset_pad = offset % ctx->alignment;
  17113. if (offset_pad != 0) {
  17114. offset += ctx->alignment - offset_pad;
  17115. fseek(file, offset, SEEK_SET);
  17116. }
  17117. }
  17118. // store the current file offset - this is where the data section starts
  17119. ctx->offset = offset;
  17120. // compute the total size of the data section, taking into account the alignment
  17121. {
  17122. ctx->size = 0;
  17123. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17124. struct gguf_tensor_info * info = &ctx->infos[i];
  17125. const int64_t ne =
  17126. (int64_t) info->ne[0] *
  17127. (int64_t) info->ne[1] *
  17128. (int64_t) info->ne[2] *
  17129. (int64_t) info->ne[3];
  17130. if (ne % ggml_blck_size(info->type) != 0) {
  17131. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17132. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17133. fclose(file);
  17134. gguf_free(ctx);
  17135. return NULL;
  17136. }
  17137. const size_t size_cur = ggml_row_size(info->type, ne);
  17138. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17139. }
  17140. }
  17141. // load the tensor data only if requested
  17142. if (params.ctx != NULL) {
  17143. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17144. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17145. // the ggml_tensor structs to the appropriate locations in the binary blob
  17146. // compute the exact size needed for the new ggml_context
  17147. const size_t mem_size =
  17148. params.no_alloc ?
  17149. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17150. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17151. struct ggml_init_params pdata = {
  17152. .mem_size = mem_size,
  17153. .mem_buffer = NULL,
  17154. .no_alloc = params.no_alloc,
  17155. };
  17156. *params.ctx = ggml_init(pdata);
  17157. struct ggml_context * ctx_data = *params.ctx;
  17158. struct ggml_tensor * data = NULL;
  17159. if (!params.no_alloc) {
  17160. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17161. ok = ok && data != NULL;
  17162. // read the binary blob with the tensor data
  17163. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17164. if (!ok) {
  17165. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17166. fclose(file);
  17167. ggml_free(ctx_data);
  17168. gguf_free(ctx);
  17169. return NULL;
  17170. }
  17171. ctx->data = data->data;
  17172. }
  17173. ggml_set_no_alloc(ctx_data, true);
  17174. // create the tensors
  17175. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17176. const int64_t ne[GGML_MAX_DIMS] = {
  17177. ctx->infos[i].ne[0],
  17178. ctx->infos[i].ne[1],
  17179. ctx->infos[i].ne[2],
  17180. ctx->infos[i].ne[3],
  17181. };
  17182. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17183. ok = ok && cur != NULL;
  17184. ggml_set_name(cur, ctx->infos[i].name.data);
  17185. if (!ok) {
  17186. break;
  17187. }
  17188. // point the data member to the appropriate location in the binary blob using the tensor infos
  17189. if (!params.no_alloc) {
  17190. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17191. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17192. }
  17193. }
  17194. if (!ok) {
  17195. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17196. fclose(file);
  17197. ggml_free(ctx_data);
  17198. gguf_free(ctx);
  17199. return NULL;
  17200. }
  17201. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17202. }
  17203. fclose(file);
  17204. return ctx;
  17205. }
  17206. void gguf_free(struct gguf_context * ctx) {
  17207. if (ctx == NULL) {
  17208. return;
  17209. }
  17210. if (ctx->kv) {
  17211. // free string memory - not great..
  17212. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17213. gguf_free_kv(&ctx->kv[i]);
  17214. }
  17215. GGML_FREE(ctx->kv);
  17216. }
  17217. if (ctx->infos) {
  17218. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17219. struct gguf_tensor_info * info = &ctx->infos[i];
  17220. if (info->name.data) {
  17221. GGML_FREE(info->name.data);
  17222. }
  17223. }
  17224. GGML_FREE(ctx->infos);
  17225. }
  17226. GGML_ALIGNED_FREE(ctx);
  17227. }
  17228. const char * gguf_type_name(enum gguf_type type) {
  17229. return GGUF_TYPE_NAME[type];
  17230. }
  17231. int gguf_get_version(const struct gguf_context * ctx) {
  17232. return ctx->header.version;
  17233. }
  17234. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17235. return ctx->alignment;
  17236. }
  17237. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17238. return ctx->offset;
  17239. }
  17240. void * gguf_get_data(const struct gguf_context * ctx) {
  17241. return ctx->data;
  17242. }
  17243. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17244. return ctx->header.n_kv;
  17245. }
  17246. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17247. // return -1 if key not found
  17248. int keyfound = -1;
  17249. const int n_kv = gguf_get_n_kv(ctx);
  17250. for (int i = 0; i < n_kv; ++i) {
  17251. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17252. keyfound = i;
  17253. break;
  17254. }
  17255. }
  17256. return keyfound;
  17257. }
  17258. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17259. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17260. return ctx->kv[key_id].key.data;
  17261. }
  17262. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17263. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17264. return ctx->kv[key_id].type;
  17265. }
  17266. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17267. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17268. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17269. return ctx->kv[key_id].value.arr.type;
  17270. }
  17271. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17272. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17273. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17274. return ctx->kv[key_id].value.arr.data;
  17275. }
  17276. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17277. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17278. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17279. struct gguf_kv * kv = &ctx->kv[key_id];
  17280. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17281. return str->data;
  17282. }
  17283. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17284. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17285. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17286. return ctx->kv[key_id].value.arr.n;
  17287. }
  17288. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17289. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17290. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17291. return ctx->kv[key_id].value.uint8;
  17292. }
  17293. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17294. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17295. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17296. return ctx->kv[key_id].value.int8;
  17297. }
  17298. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17299. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17300. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17301. return ctx->kv[key_id].value.uint16;
  17302. }
  17303. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17304. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17305. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17306. return ctx->kv[key_id].value.int16;
  17307. }
  17308. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17309. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17310. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17311. return ctx->kv[key_id].value.uint32;
  17312. }
  17313. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17314. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17315. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17316. return ctx->kv[key_id].value.int32;
  17317. }
  17318. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17319. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17320. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17321. return ctx->kv[key_id].value.float32;
  17322. }
  17323. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17324. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17325. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17326. return ctx->kv[key_id].value.uint64;
  17327. }
  17328. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17329. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17330. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17331. return ctx->kv[key_id].value.int64;
  17332. }
  17333. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17334. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17335. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17336. return ctx->kv[key_id].value.float64;
  17337. }
  17338. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17339. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17340. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17341. return ctx->kv[key_id].value.bool_;
  17342. }
  17343. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17344. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17345. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17346. return ctx->kv[key_id].value.str.data;
  17347. }
  17348. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17349. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17350. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17351. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17352. return &ctx->kv[key_id].value;
  17353. }
  17354. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17355. return ctx->header.n_tensors;
  17356. }
  17357. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17358. // return -1 if tensor not found
  17359. int tensorfound = -1;
  17360. const int n_tensors = gguf_get_n_tensors(ctx);
  17361. for (int i = 0; i < n_tensors; ++i) {
  17362. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17363. tensorfound = i;
  17364. break;
  17365. }
  17366. }
  17367. return tensorfound;
  17368. }
  17369. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17370. return ctx->infos[i].offset;
  17371. }
  17372. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17373. return ctx->infos[i].name.data;
  17374. }
  17375. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17376. return ctx->infos[i].type;
  17377. }
  17378. // returns the index
  17379. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17380. const int idx = gguf_find_key(ctx, key);
  17381. if (idx >= 0) {
  17382. return idx;
  17383. }
  17384. const int n_kv = gguf_get_n_kv(ctx);
  17385. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17386. ctx->kv[n_kv].key.n = strlen(key);
  17387. ctx->kv[n_kv].key.data = strdup(key);
  17388. ctx->header.n_kv++;
  17389. return n_kv;
  17390. }
  17391. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17392. const int idx = gguf_find_key(ctx, key);
  17393. if (idx >= 0) {
  17394. const int n_kv = gguf_get_n_kv(ctx);
  17395. gguf_free_kv(&ctx->kv[idx]);
  17396. for (int i = idx; i < n_kv-1; ++i) {
  17397. ctx->kv[i] = ctx->kv[i+1];
  17398. }
  17399. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  17400. ctx->header.n_kv--;
  17401. }
  17402. }
  17403. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17404. const int idx = gguf_get_or_add_key(ctx, key);
  17405. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17406. ctx->kv[idx].value.uint8 = val;
  17407. }
  17408. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17409. const int idx = gguf_get_or_add_key(ctx, key);
  17410. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17411. ctx->kv[idx].value.int8 = val;
  17412. }
  17413. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17414. const int idx = gguf_get_or_add_key(ctx, key);
  17415. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17416. ctx->kv[idx].value.uint16 = val;
  17417. }
  17418. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17419. const int idx = gguf_get_or_add_key(ctx, key);
  17420. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17421. ctx->kv[idx].value.int16 = val;
  17422. }
  17423. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17424. const int idx = gguf_get_or_add_key(ctx, key);
  17425. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17426. ctx->kv[idx].value.uint32 = val;
  17427. }
  17428. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17429. const int idx = gguf_get_or_add_key(ctx, key);
  17430. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17431. ctx->kv[idx].value.int32 = val;
  17432. }
  17433. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17434. const int idx = gguf_get_or_add_key(ctx, key);
  17435. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17436. ctx->kv[idx].value.float32 = val;
  17437. }
  17438. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17439. const int idx = gguf_get_or_add_key(ctx, key);
  17440. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17441. ctx->kv[idx].value.uint64 = val;
  17442. }
  17443. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17444. const int idx = gguf_get_or_add_key(ctx, key);
  17445. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17446. ctx->kv[idx].value.int64 = val;
  17447. }
  17448. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17449. const int idx = gguf_get_or_add_key(ctx, key);
  17450. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17451. ctx->kv[idx].value.float64 = val;
  17452. }
  17453. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17454. const int idx = gguf_get_or_add_key(ctx, key);
  17455. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17456. ctx->kv[idx].value.bool_ = val;
  17457. }
  17458. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17459. const int idx = gguf_get_or_add_key(ctx, key);
  17460. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17461. ctx->kv[idx].value.str.n = strlen(val);
  17462. ctx->kv[idx].value.str.data = strdup(val);
  17463. }
  17464. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17465. const int idx = gguf_get_or_add_key(ctx, key);
  17466. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17467. ctx->kv[idx].value.arr.type = type;
  17468. ctx->kv[idx].value.arr.n = n;
  17469. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17470. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17471. }
  17472. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17473. const int idx = gguf_get_or_add_key(ctx, key);
  17474. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17475. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17476. ctx->kv[idx].value.arr.n = n;
  17477. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17478. for (int i = 0; i < n; i++) {
  17479. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17480. str->n = strlen(data[i]);
  17481. str->data = strdup(data[i]);
  17482. }
  17483. }
  17484. // set or add KV pairs from another context
  17485. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17486. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17487. switch (src->kv[i].type) {
  17488. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17489. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17490. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17491. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17492. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17493. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17494. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17495. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17496. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17497. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17498. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17499. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17500. case GGUF_TYPE_ARRAY:
  17501. {
  17502. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17503. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17504. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17505. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17506. }
  17507. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17508. GGML_FREE((void *)data);
  17509. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17510. GGML_ASSERT(false && "nested arrays not supported");
  17511. } else {
  17512. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17513. }
  17514. } break;
  17515. default: GGML_ASSERT(false && "invalid type"); break;
  17516. }
  17517. }
  17518. }
  17519. void gguf_add_tensor(
  17520. struct gguf_context * ctx,
  17521. const struct ggml_tensor * tensor) {
  17522. const int idx = ctx->header.n_tensors;
  17523. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17524. ctx->infos[idx].name.n = strlen(tensor->name);
  17525. ctx->infos[idx].name.data = strdup(tensor->name);
  17526. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17527. ctx->infos[idx].ne[i] = 1;
  17528. }
  17529. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17530. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17531. ctx->infos[idx].ne[i] = tensor->ne[i];
  17532. }
  17533. ctx->infos[idx].type = tensor->type;
  17534. ctx->infos[idx].offset = 0;
  17535. ctx->infos[idx].data = tensor->data;
  17536. ctx->infos[idx].size = ggml_nbytes(tensor);
  17537. if (ctx->header.n_tensors > 0) {
  17538. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17539. }
  17540. ctx->header.n_tensors++;
  17541. }
  17542. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17543. const int idx = gguf_find_tensor(ctx, name);
  17544. if (idx < 0) {
  17545. GGML_ASSERT(false && "tensor not found");
  17546. }
  17547. ctx->infos[idx].type = type;
  17548. }
  17549. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17550. const int idx = gguf_find_tensor(ctx, name);
  17551. if (idx < 0) {
  17552. GGML_ASSERT(false && "tensor not found");
  17553. }
  17554. ctx->infos[idx].data = data;
  17555. ctx->infos[idx].size = size;
  17556. // update offsets
  17557. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17558. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17559. }
  17560. }
  17561. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17562. // fwrite(&val->n, sizeof(val->n), 1, file);
  17563. // fwrite(val->data, sizeof(char), val->n, file);
  17564. //}
  17565. //
  17566. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17567. // fwrite(val, sizeof(char), size, file);
  17568. //}
  17569. struct gguf_buf {
  17570. void * data;
  17571. size_t size;
  17572. size_t offset;
  17573. };
  17574. static struct gguf_buf gguf_buf_init(size_t size) {
  17575. struct gguf_buf buf = {
  17576. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17577. /*buf.size =*/ size,
  17578. /*buf.offset =*/ 0,
  17579. };
  17580. return buf;
  17581. }
  17582. static void gguf_buf_free(struct gguf_buf buf) {
  17583. if (buf.data) {
  17584. GGML_FREE(buf.data);
  17585. }
  17586. }
  17587. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17588. if (buf->offset + size > buf->size) {
  17589. buf->size = 1.5*(buf->offset + size);
  17590. if (buf->data) {
  17591. buf->data = realloc(buf->data, buf->size);
  17592. }
  17593. }
  17594. }
  17595. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17596. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17597. if (buf->data) {
  17598. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17599. }
  17600. buf->offset += sizeof(val->n);
  17601. if (buf->data) {
  17602. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17603. }
  17604. buf->offset += val->n;
  17605. }
  17606. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17607. gguf_buf_grow(buf, el_size);
  17608. if (buf->data) {
  17609. memcpy((char *) buf->data + buf->offset, val, el_size);
  17610. }
  17611. buf->offset += el_size;
  17612. }
  17613. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17614. // write header
  17615. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17616. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17617. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17618. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17619. // write key-value pairs
  17620. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17621. struct gguf_kv * kv = &ctx->kv[i];
  17622. gguf_bwrite_str(buf, &kv->key);
  17623. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17624. switch (kv->type) {
  17625. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17626. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17627. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17628. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17629. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17630. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17631. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17632. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17633. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17634. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17635. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17636. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17637. case GGUF_TYPE_ARRAY:
  17638. {
  17639. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17640. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17641. switch (kv->value.arr.type) {
  17642. case GGUF_TYPE_UINT8:
  17643. case GGUF_TYPE_INT8:
  17644. case GGUF_TYPE_UINT16:
  17645. case GGUF_TYPE_INT16:
  17646. case GGUF_TYPE_UINT32:
  17647. case GGUF_TYPE_INT32:
  17648. case GGUF_TYPE_FLOAT32:
  17649. case GGUF_TYPE_UINT64:
  17650. case GGUF_TYPE_INT64:
  17651. case GGUF_TYPE_FLOAT64:
  17652. case GGUF_TYPE_BOOL:
  17653. {
  17654. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17655. } break;
  17656. case GGUF_TYPE_STRING:
  17657. {
  17658. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17659. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17660. }
  17661. } break;
  17662. case GGUF_TYPE_ARRAY:
  17663. default: GGML_ASSERT(false && "invalid type"); break;
  17664. }
  17665. } break;
  17666. default: GGML_ASSERT(false && "invalid type");
  17667. }
  17668. }
  17669. // write tensor infos
  17670. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17671. struct gguf_tensor_info * info = &ctx->infos[i];
  17672. gguf_bwrite_str(buf, &info->name);
  17673. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17674. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17675. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17676. }
  17677. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17678. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17679. }
  17680. // we require the data section to be aligned, so take into account any padding
  17681. {
  17682. const size_t offset = buf->offset;
  17683. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17684. if (offset_pad != offset) {
  17685. uint8_t pad = 0;
  17686. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17687. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17688. }
  17689. }
  17690. }
  17691. if (only_meta) {
  17692. return;
  17693. }
  17694. size_t offset = 0;
  17695. // write tensor data
  17696. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17697. struct gguf_tensor_info * info = &ctx->infos[i];
  17698. const size_t size = info->size;
  17699. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17700. gguf_bwrite_el(buf, info->data, size);
  17701. if (size_pad != size) {
  17702. uint8_t pad = 0;
  17703. for (size_t j = 0; j < size_pad - size; ++j) {
  17704. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17705. }
  17706. }
  17707. GGML_ASSERT(offset == info->offset);
  17708. offset += size_pad;
  17709. }
  17710. }
  17711. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17712. FILE * file = ggml_fopen(fname, "wb");
  17713. if (!file) {
  17714. GGML_ASSERT(false && "failed to open file for writing");
  17715. }
  17716. struct gguf_buf buf = gguf_buf_init(16*1024);
  17717. gguf_write_to_buf(ctx, &buf, only_meta);
  17718. fwrite(buf.data, 1, buf.offset, file);
  17719. gguf_buf_free(buf);
  17720. fclose(file);
  17721. }
  17722. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17723. // no allocs - only compute size
  17724. struct gguf_buf buf = gguf_buf_init(0);
  17725. gguf_write_to_buf(ctx, &buf, true);
  17726. return buf.offset;
  17727. }
  17728. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17729. struct gguf_buf buf = gguf_buf_init(16*1024);
  17730. gguf_write_to_buf(ctx, &buf, true);
  17731. memcpy(data, buf.data, buf.offset);
  17732. gguf_buf_free(buf);
  17733. }
  17734. ////////////////////////////////////////////////////////////////////////////////
  17735. int ggml_cpu_has_avx(void) {
  17736. #if defined(__AVX__)
  17737. return 1;
  17738. #else
  17739. return 0;
  17740. #endif
  17741. }
  17742. int ggml_cpu_has_avx_vnni(void) {
  17743. #if defined(__AVXVNNI__)
  17744. return 1;
  17745. #else
  17746. return 0;
  17747. #endif
  17748. }
  17749. int ggml_cpu_has_avx2(void) {
  17750. #if defined(__AVX2__)
  17751. return 1;
  17752. #else
  17753. return 0;
  17754. #endif
  17755. }
  17756. int ggml_cpu_has_avx512(void) {
  17757. #if defined(__AVX512F__)
  17758. return 1;
  17759. #else
  17760. return 0;
  17761. #endif
  17762. }
  17763. int ggml_cpu_has_avx512_vbmi(void) {
  17764. #if defined(__AVX512VBMI__)
  17765. return 1;
  17766. #else
  17767. return 0;
  17768. #endif
  17769. }
  17770. int ggml_cpu_has_avx512_vnni(void) {
  17771. #if defined(__AVX512VNNI__)
  17772. return 1;
  17773. #else
  17774. return 0;
  17775. #endif
  17776. }
  17777. int ggml_cpu_has_fma(void) {
  17778. #if defined(__FMA__)
  17779. return 1;
  17780. #else
  17781. return 0;
  17782. #endif
  17783. }
  17784. int ggml_cpu_has_neon(void) {
  17785. #if defined(__ARM_NEON)
  17786. return 1;
  17787. #else
  17788. return 0;
  17789. #endif
  17790. }
  17791. int ggml_cpu_has_arm_fma(void) {
  17792. #if defined(__ARM_FEATURE_FMA)
  17793. return 1;
  17794. #else
  17795. return 0;
  17796. #endif
  17797. }
  17798. int ggml_cpu_has_metal(void) {
  17799. #if defined(GGML_USE_METAL)
  17800. return 1;
  17801. #else
  17802. return 0;
  17803. #endif
  17804. }
  17805. int ggml_cpu_has_f16c(void) {
  17806. #if defined(__F16C__)
  17807. return 1;
  17808. #else
  17809. return 0;
  17810. #endif
  17811. }
  17812. int ggml_cpu_has_fp16_va(void) {
  17813. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17814. return 1;
  17815. #else
  17816. return 0;
  17817. #endif
  17818. }
  17819. int ggml_cpu_has_wasm_simd(void) {
  17820. #if defined(__wasm_simd128__)
  17821. return 1;
  17822. #else
  17823. return 0;
  17824. #endif
  17825. }
  17826. int ggml_cpu_has_blas(void) {
  17827. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17828. return 1;
  17829. #else
  17830. return 0;
  17831. #endif
  17832. }
  17833. int ggml_cpu_has_cuda(void) {
  17834. #if defined(GGML_USE_CUDA)
  17835. return 1;
  17836. #else
  17837. return 0;
  17838. #endif
  17839. }
  17840. int ggml_cpu_has_clblast(void) {
  17841. #if defined(GGML_USE_CLBLAST)
  17842. return 1;
  17843. #else
  17844. return 0;
  17845. #endif
  17846. }
  17847. int ggml_cpu_has_vulkan(void) {
  17848. #if defined(GGML_USE_VULKAN)
  17849. return 1;
  17850. #else
  17851. return 0;
  17852. #endif
  17853. }
  17854. int ggml_cpu_has_kompute(void) {
  17855. #if defined(GGML_USE_KOMPUTE)
  17856. return 1;
  17857. #else
  17858. return 0;
  17859. #endif
  17860. }
  17861. int ggml_cpu_has_sycl(void) {
  17862. #if defined(GGML_USE_SYCL)
  17863. return 1;
  17864. #else
  17865. return 0;
  17866. #endif
  17867. }
  17868. int ggml_cpu_has_gpublas(void) {
  17869. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17870. ggml_cpu_has_sycl();
  17871. }
  17872. int ggml_cpu_has_sse3(void) {
  17873. #if defined(__SSE3__)
  17874. return 1;
  17875. #else
  17876. return 0;
  17877. #endif
  17878. }
  17879. int ggml_cpu_has_ssse3(void) {
  17880. #if defined(__SSSE3__)
  17881. return 1;
  17882. #else
  17883. return 0;
  17884. #endif
  17885. }
  17886. int ggml_cpu_has_vsx(void) {
  17887. #if defined(__POWER9_VECTOR__)
  17888. return 1;
  17889. #else
  17890. return 0;
  17891. #endif
  17892. }
  17893. int ggml_cpu_has_matmul_int8(void) {
  17894. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17895. return 1;
  17896. #else
  17897. return 0;
  17898. #endif
  17899. }
  17900. ////////////////////////////////////////////////////////////////////////////////