clip.cpp 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "ggml.h"
  7. #include "ggml-cpu.h"
  8. #include "ggml-alloc.h"
  9. #include "ggml-backend.h"
  10. #ifdef GGML_USE_CUDA
  11. #include "ggml-cuda.h"
  12. #endif
  13. #ifdef GGML_USE_SYCL
  14. #include "ggml-sycl.h"
  15. #endif
  16. #ifdef GGML_USE_METAL
  17. #include "ggml-metal.h"
  18. #endif
  19. #ifdef GGML_USE_CANN
  20. #include "ggml-cann.h"
  21. #endif
  22. #ifdef GGML_USE_VULKAN
  23. #include "ggml-vulkan.h"
  24. #endif
  25. #define STB_IMAGE_IMPLEMENTATION
  26. #include "stb_image.h"
  27. #include <cassert>
  28. #include <cmath>
  29. #include <cstdlib>
  30. #include <cstring>
  31. #include <fstream>
  32. #include <map>
  33. #include <regex>
  34. #include <stdexcept>
  35. #include <vector>
  36. #include <sstream>
  37. #include <cinttypes>
  38. #include <limits>
  39. #if defined(LLAVA_LOG_OFF)
  40. # define LOG_INF(...)
  41. # define LOG_WRN(...)
  42. # define LOG_ERR(...)
  43. # define LOG_DBG(...)
  44. #else // defined(LLAVA_LOG_OFF)
  45. # define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  46. # define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  47. # define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  48. # define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  49. #endif // defined(LLAVA_LOG_OFF)
  50. //#define CLIP_DEBUG_FUNCTIONS
  51. // RGB uint8 image
  52. struct clip_image_u8 {
  53. int nx;
  54. int ny;
  55. std::vector<uint8_t> buf;
  56. };
  57. // RGB float32 image (NHWC)
  58. // Memory layout: RGBRGBRGB...
  59. struct clip_image_f32 {
  60. int nx;
  61. int ny;
  62. std::vector<float> buf;
  63. };
  64. static std::string format(const char * fmt, ...) {
  65. va_list ap;
  66. va_list ap2;
  67. va_start(ap, fmt);
  68. va_copy(ap2, ap);
  69. int size = vsnprintf(NULL, 0, fmt, ap);
  70. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  71. std::vector<char> buf(size + 1);
  72. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  73. GGML_ASSERT(size2 == size);
  74. va_end(ap2);
  75. va_end(ap);
  76. return std::string(buf.data(), buf.size());
  77. }
  78. //
  79. // key constants
  80. //
  81. #define KEY_FTYPE "general.file_type"
  82. #define KEY_NAME "general.name"
  83. #define KEY_DESCRIPTION "general.description"
  84. #define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
  85. #define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
  86. #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
  87. #define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
  88. #define KEY_MINICPMV_VERSION "clip.minicpmv_version"
  89. #define KEY_USE_GELU "clip.use_gelu"
  90. #define KEY_N_EMBD "clip.%s.embedding_length"
  91. #define KEY_N_FF "clip.%s.feed_forward_length"
  92. #define KEY_N_BLOCK "clip.%s.block_count"
  93. #define KEY_N_HEAD "clip.%s.attention.head_count"
  94. #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
  95. #define KEY_PROJ_DIM "clip.%s.projection_dim"
  96. #define KEY_TOKENS "tokenizer.ggml.tokens"
  97. #define KEY_N_POSITIONS "clip.text.context_length"
  98. #define KEY_IMAGE_SIZE "clip.vision.image_size"
  99. #define KEY_PATCH_SIZE "clip.vision.patch_size"
  100. #define KEY_IMAGE_MEAN "clip.vision.image_mean"
  101. #define KEY_IMAGE_STD "clip.vision.image_std"
  102. #define KEY_PROJ_TYPE "clip.projector_type"
  103. #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
  104. #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
  105. #define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
  106. //
  107. // tensor name constants
  108. //
  109. #define TN_TOKEN_EMBD "%s.token_embd.weight"
  110. #define TN_POS_EMBD "%s.position_embd.weight"
  111. #define TN_CLASS_EMBD "v.class_embd"
  112. #define TN_PATCH_EMBD "v.patch_embd.weight"
  113. #define TN_PATCH_BIAS "v.patch_embd.bias"
  114. #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
  115. #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
  116. #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
  117. #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
  118. #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
  119. #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
  120. #define TN_LN_1 "%s.blk.%d.ln1.%s"
  121. #define TN_LN_2 "%s.blk.%d.ln2.%s"
  122. #define TN_LN_PRE "%s.pre_ln.%s"
  123. #define TN_LN_POST "%s.post_ln.%s"
  124. #define TN_TEXT_PROJ "text_projection.weight"
  125. #define TN_VIS_PROJ "visual_projection.weight"
  126. #define TN_LLAVA_PROJ "mm.%d.%s"
  127. #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
  128. #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
  129. #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
  130. #define TN_IMAGE_NEWLINE "model.image_newline"
  131. #define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
  132. #define TN_MINICPMV_QUERY "resampler.query"
  133. #define TN_MINICPMV_PROJ "resampler.proj.weight"
  134. #define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
  135. #define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
  136. #define TN_MINICPMV_LN "resampler.ln_%s.%s"
  137. enum projector_type {
  138. PROJECTOR_TYPE_MLP,
  139. PROJECTOR_TYPE_MLP_NORM,
  140. PROJECTOR_TYPE_LDP,
  141. PROJECTOR_TYPE_LDPV2,
  142. PROJECTOR_TYPE_RESAMPLER,
  143. PROJECTOR_TYPE_UNKNOWN,
  144. };
  145. static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
  146. { PROJECTOR_TYPE_MLP, "mlp" },
  147. { PROJECTOR_TYPE_LDP, "ldp" },
  148. { PROJECTOR_TYPE_LDPV2, "ldpv2"},
  149. { PROJECTOR_TYPE_RESAMPLER, "resampler"},
  150. };
  151. //
  152. // utilities to get data from a gguf file
  153. //
  154. static int get_key_idx(const gguf_context * ctx, const char * key) {
  155. int i = gguf_find_key(ctx, key);
  156. if (i == -1) {
  157. LOG_ERR("key %s not found in file\n", key);
  158. throw std::runtime_error(format("Missing required key: %s", key));
  159. }
  160. return i;
  161. }
  162. static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
  163. const int i = get_key_idx(ctx, key.c_str());
  164. return gguf_get_val_u32(ctx, i);
  165. }
  166. static float get_f32(const gguf_context * ctx, const std::string & key) {
  167. const int i = get_key_idx(ctx, key.c_str());
  168. return gguf_get_val_f32(ctx, i);
  169. }
  170. static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
  171. struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
  172. if (!cur) {
  173. throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  174. }
  175. return cur;
  176. }
  177. static std::string get_ftype(int ftype) {
  178. return ggml_type_name(static_cast<ggml_type>(ftype));
  179. }
  180. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  181. switch (type) {
  182. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  183. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  184. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  185. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  186. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  187. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  188. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  189. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  190. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  191. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  192. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  193. default: return format("unknown type %d", type);
  194. }
  195. }
  196. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  197. if (search.empty()) {
  198. return;
  199. }
  200. std::string builder;
  201. builder.reserve(s.length());
  202. size_t pos = 0;
  203. size_t last_pos = 0;
  204. while ((pos = s.find(search, last_pos)) != std::string::npos) {
  205. builder.append(s, last_pos, pos - last_pos);
  206. builder.append(replace);
  207. last_pos = pos + search.length();
  208. }
  209. builder.append(s, last_pos, std::string::npos);
  210. s = std::move(builder);
  211. }
  212. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  213. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  214. switch (type) {
  215. case GGUF_TYPE_STRING:
  216. return gguf_get_val_str(ctx_gguf, i);
  217. case GGUF_TYPE_ARRAY:
  218. {
  219. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  220. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  221. const void * data = gguf_get_arr_data(ctx_gguf, i);
  222. std::stringstream ss;
  223. ss << "[";
  224. for (int j = 0; j < arr_n; j++) {
  225. if (arr_type == GGUF_TYPE_STRING) {
  226. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  227. // escape quotes
  228. replace_all(val, "\\", "\\\\");
  229. replace_all(val, "\"", "\\\"");
  230. ss << '"' << val << '"';
  231. } else if (arr_type == GGUF_TYPE_ARRAY) {
  232. ss << "???";
  233. } else {
  234. ss << gguf_data_to_str(arr_type, data, j);
  235. }
  236. if (j < arr_n - 1) {
  237. ss << ", ";
  238. }
  239. }
  240. ss << "]";
  241. return ss.str();
  242. }
  243. default:
  244. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  245. }
  246. }
  247. static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
  248. size_t tensor_size = ggml_nbytes(tensor);
  249. LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
  250. prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
  251. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
  252. }
  253. static projector_type clip_projector_type_from_string(const std::string & name) {
  254. for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
  255. if (kv.second == name) {
  256. return kv.first;
  257. }
  258. }
  259. return PROJECTOR_TYPE_UNKNOWN;
  260. }
  261. #ifdef CLIP_DEBUG_FUNCTIONS
  262. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  263. std::ofstream file(filename, std::ios::binary);
  264. if (!file.is_open()) {
  265. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  266. return;
  267. }
  268. // PPM header: P6 format, width, height, and max color value
  269. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  270. // Write pixel data
  271. for (size_t i = 0; i < img.buf.size(); i += 3) {
  272. // PPM expects binary data in RGB format, which matches our image buffer
  273. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  274. }
  275. file.close();
  276. }
  277. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  278. std::ofstream file(filename, std::ios::binary);
  279. if (!file.is_open()) {
  280. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  281. return;
  282. }
  283. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  284. int bytesPerPixel = 3;
  285. int widthInBytes = img.nx * bytesPerPixel;
  286. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  287. int stride = widthInBytes + paddingAmount;
  288. // Bitmap file header
  289. unsigned char fileHeader[14] = {
  290. 'B','M', // Signature
  291. 0,0,0,0, // Image file size in bytes
  292. 0,0,0,0, // Reserved
  293. 54,0,0,0 // Start of pixel array
  294. };
  295. // Total file size
  296. fileSize = 54 + (stride * img.ny);
  297. fileHeader[2] = (unsigned char)(fileSize);
  298. fileHeader[3] = (unsigned char)(fileSize >> 8);
  299. fileHeader[4] = (unsigned char)(fileSize >> 16);
  300. fileHeader[5] = (unsigned char)(fileSize >> 24);
  301. // Bitmap information header (BITMAPINFOHEADER)
  302. unsigned char infoHeader[40] = {
  303. 40,0,0,0, // Size of this header (40 bytes)
  304. 0,0,0,0, // Image width
  305. 0,0,0,0, // Image height
  306. 1,0, // Number of color planes
  307. 24,0, // Bits per pixel
  308. 0,0,0,0, // No compression
  309. 0,0,0,0, // Image size (can be 0 for no compression)
  310. 0,0,0,0, // X pixels per meter (not specified)
  311. 0,0,0,0, // Y pixels per meter (not specified)
  312. 0,0,0,0, // Total colors (color table not used)
  313. 0,0,0,0 // Important colors (all are important)
  314. };
  315. // Width and height in the information header
  316. infoHeader[4] = (unsigned char)(img.nx);
  317. infoHeader[5] = (unsigned char)(img.nx >> 8);
  318. infoHeader[6] = (unsigned char)(img.nx >> 16);
  319. infoHeader[7] = (unsigned char)(img.nx >> 24);
  320. infoHeader[8] = (unsigned char)(img.ny);
  321. infoHeader[9] = (unsigned char)(img.ny >> 8);
  322. infoHeader[10] = (unsigned char)(img.ny >> 16);
  323. infoHeader[11] = (unsigned char)(img.ny >> 24);
  324. // Write file headers
  325. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  326. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  327. // Pixel data
  328. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  329. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  330. for (int x = 0; x < img.nx; ++x) {
  331. // Each pixel
  332. size_t pixelIndex = (y * img.nx + x) * 3;
  333. unsigned char pixel[3] = {
  334. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  335. img.buf[pixelIndex + 1],
  336. img.buf[pixelIndex]
  337. };
  338. file.write(reinterpret_cast<char*>(pixel), 3);
  339. }
  340. // Write padding for the row
  341. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  342. }
  343. file.close();
  344. }
  345. // debug function to convert f32 to u8
  346. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  347. dst.nx = src.nx;
  348. dst.ny = src.ny;
  349. dst.buf.resize(3 * src.nx * src.ny);
  350. for (size_t i = 0; i < src.buf.size(); ++i) {
  351. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  352. }
  353. }
  354. #endif
  355. //
  356. // clip layers
  357. //
  358. struct clip_hparams {
  359. int32_t image_size;
  360. int32_t patch_size;
  361. int32_t hidden_size;
  362. int32_t n_intermediate;
  363. int32_t projection_dim;
  364. int32_t n_head;
  365. int32_t n_layer;
  366. float eps;
  367. char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
  368. int32_t image_grid_pinpoints[32];
  369. int32_t image_crop_resolution;
  370. };
  371. struct clip_layer {
  372. // attention
  373. struct ggml_tensor * k_w;
  374. struct ggml_tensor * k_b;
  375. struct ggml_tensor * q_w;
  376. struct ggml_tensor * q_b;
  377. struct ggml_tensor * v_w;
  378. struct ggml_tensor * v_b;
  379. struct ggml_tensor * o_w;
  380. struct ggml_tensor * o_b;
  381. // layernorm 1
  382. struct ggml_tensor * ln_1_w;
  383. struct ggml_tensor * ln_1_b;
  384. // ff
  385. struct ggml_tensor * ff_i_w;
  386. struct ggml_tensor * ff_i_b;
  387. struct ggml_tensor * ff_o_w;
  388. struct ggml_tensor * ff_o_b;
  389. // layernorm 2
  390. struct ggml_tensor * ln_2_w;
  391. struct ggml_tensor * ln_2_b;
  392. };
  393. struct clip_vision_model {
  394. struct clip_hparams hparams;
  395. // embeddings
  396. struct ggml_tensor * class_embedding;
  397. struct ggml_tensor * patch_embeddings;
  398. struct ggml_tensor * patch_bias;
  399. struct ggml_tensor * position_embeddings;
  400. struct ggml_tensor * pre_ln_w;
  401. struct ggml_tensor * pre_ln_b;
  402. std::vector<clip_layer> layers;
  403. struct ggml_tensor * post_ln_w;
  404. struct ggml_tensor * post_ln_b;
  405. struct ggml_tensor * projection;
  406. // LLaVA projection
  407. struct ggml_tensor * mm_0_w = NULL;
  408. struct ggml_tensor * mm_0_b = NULL;
  409. struct ggml_tensor * mm_2_w = NULL;
  410. struct ggml_tensor * mm_2_b = NULL;
  411. struct ggml_tensor * image_newline = NULL;
  412. // Yi type models with mlp+normalization projection
  413. struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
  414. struct ggml_tensor * mm_1_b = NULL;
  415. struct ggml_tensor * mm_3_w = NULL;
  416. struct ggml_tensor * mm_3_b = NULL;
  417. struct ggml_tensor * mm_4_w = NULL;
  418. struct ggml_tensor * mm_4_b = NULL;
  419. // MobileVLM projection
  420. struct ggml_tensor * mm_model_mlp_1_w;
  421. struct ggml_tensor * mm_model_mlp_1_b;
  422. struct ggml_tensor * mm_model_mlp_3_w;
  423. struct ggml_tensor * mm_model_mlp_3_b;
  424. struct ggml_tensor * mm_model_block_1_block_0_0_w;
  425. struct ggml_tensor * mm_model_block_1_block_0_1_w;
  426. struct ggml_tensor * mm_model_block_1_block_0_1_b;
  427. struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
  428. struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
  429. struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
  430. struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
  431. struct ggml_tensor * mm_model_block_1_block_2_0_w;
  432. struct ggml_tensor * mm_model_block_1_block_2_1_w;
  433. struct ggml_tensor * mm_model_block_1_block_2_1_b;
  434. struct ggml_tensor * mm_model_block_2_block_0_0_w;
  435. struct ggml_tensor * mm_model_block_2_block_0_1_w;
  436. struct ggml_tensor * mm_model_block_2_block_0_1_b;
  437. struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
  438. struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
  439. struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
  440. struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
  441. struct ggml_tensor * mm_model_block_2_block_2_0_w;
  442. struct ggml_tensor * mm_model_block_2_block_2_1_w;
  443. struct ggml_tensor * mm_model_block_2_block_2_1_b;
  444. // MobileVLM_V2 projection
  445. struct ggml_tensor * mm_model_mlp_0_w;
  446. struct ggml_tensor * mm_model_mlp_0_b;
  447. struct ggml_tensor * mm_model_mlp_2_w;
  448. struct ggml_tensor * mm_model_mlp_2_b;
  449. struct ggml_tensor * mm_model_peg_0_w;
  450. struct ggml_tensor * mm_model_peg_0_b;
  451. // MINICPMV projection
  452. struct ggml_tensor * mm_model_pos_embed_k;
  453. struct ggml_tensor * mm_model_query;
  454. struct ggml_tensor * mm_model_proj;
  455. struct ggml_tensor * mm_model_kv_proj;
  456. struct ggml_tensor * mm_model_attn_q_w;
  457. struct ggml_tensor * mm_model_attn_q_b;
  458. struct ggml_tensor * mm_model_attn_k_w;
  459. struct ggml_tensor * mm_model_attn_k_b;
  460. struct ggml_tensor * mm_model_attn_v_w;
  461. struct ggml_tensor * mm_model_attn_v_b;
  462. struct ggml_tensor * mm_model_attn_o_w;
  463. struct ggml_tensor * mm_model_attn_o_b;
  464. struct ggml_tensor * mm_model_ln_q_w;
  465. struct ggml_tensor * mm_model_ln_q_b;
  466. struct ggml_tensor * mm_model_ln_kv_w;
  467. struct ggml_tensor * mm_model_ln_kv_b;
  468. struct ggml_tensor * mm_model_ln_post_w;
  469. struct ggml_tensor * mm_model_ln_post_b;
  470. };
  471. struct clip_ctx {
  472. bool has_text_encoder = false;
  473. bool has_vision_encoder = false;
  474. bool has_llava_projector = false;
  475. bool has_minicpmv_projector = false;
  476. int minicpmv_version = 2;
  477. struct clip_vision_model vision_model;
  478. projector_type proj_type = PROJECTOR_TYPE_MLP;
  479. float image_mean[3];
  480. float image_std[3];
  481. bool use_gelu = false;
  482. int32_t ftype = 1;
  483. bool has_class_embedding = true;
  484. bool has_pre_norm = true;
  485. bool has_post_norm = false;
  486. bool has_patch_bias = false;
  487. struct gguf_context * ctx_gguf;
  488. struct ggml_context * ctx_data;
  489. std::vector<uint8_t> buf_compute_meta;
  490. // memory buffers to evaluate the model
  491. ggml_backend_buffer_t params_buffer = NULL;
  492. ggml_backend_t backend = NULL;
  493. ggml_gallocr_t compute_alloc = NULL;
  494. struct clip_image_size * load_image_size;
  495. };
  496. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
  497. if (!ctx->has_vision_encoder) {
  498. LOG_ERR("This gguf file seems to have no vision encoder\n");
  499. return nullptr;
  500. }
  501. const auto & model = ctx->vision_model;
  502. const auto & hparams = model.hparams;
  503. const int image_size = hparams.image_size;
  504. int image_size_width = image_size;
  505. int image_size_height = image_size;
  506. if (ctx->has_minicpmv_projector) {
  507. if (load_image_size == nullptr) {
  508. load_image_size = clip_image_size_init();
  509. }
  510. LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
  511. image_size_width = load_image_size->width;
  512. image_size_height = load_image_size->height;
  513. if (is_inf) {
  514. image_size_width = imgs->data->nx;
  515. image_size_height = imgs->data->ny;
  516. }
  517. }
  518. const int patch_size = hparams.patch_size;
  519. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  520. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  521. const int hidden_size = hparams.hidden_size;
  522. const int n_head = hparams.n_head;
  523. const int d_head = hidden_size / n_head;
  524. int n_layer = hparams.n_layer;
  525. const float eps = hparams.eps;
  526. const int batch_size = imgs->size;
  527. if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
  528. GGML_ASSERT(batch_size == 1);
  529. }
  530. struct ggml_init_params params = {
  531. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  532. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  533. /*.no_alloc =*/ true,
  534. };
  535. struct ggml_context * ctx0 = ggml_init(params);
  536. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  537. struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
  538. ggml_set_name(inp_raw, "inp_raw");
  539. ggml_set_input(inp_raw);
  540. struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  541. inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
  542. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
  543. if (ctx->has_patch_bias) {
  544. // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
  545. inp = ggml_add(ctx0, inp, model.patch_bias);
  546. }
  547. struct ggml_tensor * embeddings = inp;
  548. struct ggml_tensor * pos_embed = nullptr;
  549. if (ctx->has_llava_projector) {
  550. // concat class_embeddings and patch_embeddings
  551. if (ctx->has_class_embedding) {
  552. embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
  553. ggml_set_name(embeddings, "embeddings");
  554. ggml_set_input(embeddings);
  555. embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
  556. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
  557. embeddings = ggml_acc(ctx0, embeddings, inp,
  558. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
  559. }
  560. }
  561. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
  562. ggml_set_name(positions, "positions");
  563. ggml_set_input(positions);
  564. embeddings =
  565. ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
  566. if (ctx->has_minicpmv_projector) {
  567. int pos_w = image_size_width/patch_size;
  568. int pos_h = image_size_height/patch_size;
  569. if (ctx->minicpmv_version == 2) {
  570. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
  571. }
  572. else if (ctx->minicpmv_version == 3) {
  573. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
  574. }
  575. ggml_set_name(pos_embed, "pos_embed");
  576. ggml_set_input(pos_embed);
  577. }
  578. // pre-layernorm
  579. if (ctx->has_pre_norm) {
  580. embeddings = ggml_norm(ctx0, embeddings, eps);
  581. ggml_set_name(embeddings, "pre_ln");
  582. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
  583. }
  584. // loop over layers
  585. if (ctx->has_minicpmv_projector) {
  586. n_layer += 1;
  587. }
  588. for (int il = 0; il < n_layer - 1; il++) {
  589. struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
  590. //const size_t nb_q_w = model.layers[il].q_w->nb[0];
  591. // layernorm1
  592. {
  593. cur = ggml_norm(ctx0, cur, eps);
  594. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
  595. model.layers[il].ln_1_b);
  596. }
  597. // self-attention
  598. {
  599. struct ggml_tensor * Q =
  600. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
  601. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  602. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
  603. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  604. Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
  605. struct ggml_tensor * K =
  606. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
  607. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  608. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  609. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  610. struct ggml_tensor * V =
  611. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
  612. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  613. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  614. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  615. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  616. KQ = ggml_soft_max_inplace(ctx0, KQ);
  617. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  618. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
  619. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  620. cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
  621. }
  622. // attention output
  623. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
  624. // re-add the layer input, e.g., residual
  625. cur = ggml_add(ctx0, cur, embeddings);
  626. embeddings = cur; // embeddings = residual, cur = hidden_states
  627. // layernorm2
  628. {
  629. cur = ggml_norm(ctx0, cur, eps);
  630. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
  631. }
  632. cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
  633. cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
  634. if (ctx->use_gelu) {
  635. cur = ggml_gelu_inplace(ctx0, cur);
  636. } else {
  637. cur = ggml_gelu_quick_inplace(ctx0, cur);
  638. }
  639. cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
  640. cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
  641. // residual 2
  642. cur = ggml_add(ctx0, embeddings, cur);
  643. embeddings = cur;
  644. }
  645. // post-layernorm
  646. if (ctx->has_post_norm) {
  647. embeddings = ggml_norm(ctx0, embeddings, eps);
  648. ggml_set_name(embeddings, "post_ln");
  649. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
  650. }
  651. // llava projector
  652. if (ctx->has_llava_projector) {
  653. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  654. struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
  655. ggml_set_name(patches, "patches");
  656. ggml_set_input(patches);
  657. // shape [1, 576, 1024]
  658. // ne is whcn, ne = [1024, 576, 1, 1]
  659. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  660. // print_tensor_info(embeddings, "embeddings");
  661. // llava projector
  662. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  663. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  664. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  665. embeddings = ggml_gelu(ctx0, embeddings);
  666. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  667. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  668. }
  669. else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  670. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  671. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  672. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  673. // First LayerNorm
  674. embeddings = ggml_norm(ctx0, embeddings, eps);
  675. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  676. model.mm_1_b);
  677. // GELU activation
  678. embeddings = ggml_gelu(ctx0, embeddings);
  679. // Second linear layer
  680. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  681. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  682. // Second LayerNorm
  683. embeddings = ggml_norm(ctx0, embeddings, eps);
  684. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  685. model.mm_4_b);
  686. }
  687. else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  688. // MobileVLM projector
  689. int n_patch = 24;
  690. struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  691. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  692. mlp_1 = ggml_gelu(ctx0, mlp_1);
  693. struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  694. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  695. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  696. // block 1
  697. struct ggml_tensor * block_1 = nullptr;
  698. {
  699. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  700. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  701. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  702. // stride = 1, padding = 1, bias is nullptr
  703. block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  704. // layer norm
  705. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  706. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  707. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  708. block_1 = ggml_norm(ctx0, block_1, eps);
  709. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  710. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  711. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  712. // hardswish
  713. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  714. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  715. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  716. // pointwise conv
  717. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  718. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  719. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  720. block_1 = ggml_relu(ctx0, block_1);
  721. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  722. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  723. block_1 = ggml_hardsigmoid(ctx0, block_1);
  724. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  725. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  726. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  727. int w = block_1->ne[0], h = block_1->ne[1];
  728. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  729. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  730. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  731. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  732. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  733. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  734. block_1 = ggml_norm(ctx0, block_1, eps);
  735. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  736. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  737. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  738. // residual
  739. block_1 = ggml_add(ctx0, mlp_3, block_1);
  740. }
  741. // block_2
  742. {
  743. // stride = 2
  744. block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  745. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  746. // layer norm
  747. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  748. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  749. block_1 = ggml_norm(ctx0, block_1, eps);
  750. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  751. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  752. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  753. // hardswish
  754. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  755. // not sure the parameters is right for globalAvgPooling
  756. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  757. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  758. // pointwise conv
  759. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  760. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  761. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  762. block_1 = ggml_relu(ctx0, block_1);
  763. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  764. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  765. block_1 = ggml_hardsigmoid(ctx0, block_1);
  766. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  767. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  768. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  769. int w = block_1->ne[0], h = block_1->ne[1];
  770. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  771. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  772. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  773. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  774. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  775. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  776. block_1 = ggml_norm(ctx0, block_1, eps);
  777. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  778. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  779. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  780. }
  781. embeddings = block_1;
  782. }
  783. else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
  784. {
  785. int n_patch = 24;
  786. struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  787. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  788. mlp_0 = ggml_gelu(ctx0, mlp_0);
  789. struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  790. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  791. // mlp_2 ne = [2048, 576, 1, 1]
  792. // // AVG Pool Layer 2*2, strides = 2
  793. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  794. // mlp_2 ne = [576, 2048, 1, 1]
  795. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  796. // mlp_2 ne [24, 24, 2048, 1]
  797. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  798. // weight ne = [3, 3, 2048, 1]
  799. struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  800. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  801. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  802. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  803. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  804. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  805. embeddings = peg_0;
  806. }
  807. else {
  808. GGML_ABORT("fatal error");
  809. }
  810. }
  811. // minicpmv projector
  812. else if (ctx->has_minicpmv_projector)
  813. {
  814. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  815. struct ggml_tensor * q = model.mm_model_query;
  816. { // layernorm
  817. q = ggml_norm(ctx0, q, eps);
  818. q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  819. }
  820. struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  821. { // layernorm
  822. v = ggml_norm(ctx0, v, eps);
  823. v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
  824. }
  825. struct ggml_tensor * k;
  826. { // position
  827. // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
  828. k = ggml_add(ctx0, v, pos_embed);
  829. }
  830. { // attention
  831. int hidden_size = 4096;
  832. const int d_head = 128;
  833. int n_head = hidden_size/d_head;
  834. int num_query = 96;
  835. if (ctx->minicpmv_version == 2) {
  836. hidden_size = 4096;
  837. n_head = hidden_size/d_head;
  838. num_query = 96;
  839. }
  840. else if (ctx->minicpmv_version == 3) {
  841. hidden_size = 3584;
  842. n_head = hidden_size/d_head;
  843. num_query = 64;
  844. }
  845. struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
  846. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  847. struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
  848. struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
  849. // permute
  850. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
  851. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  852. Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
  853. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  854. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  855. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  856. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  857. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  858. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  859. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  860. KQ = ggml_soft_max_inplace(ctx0, KQ);
  861. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  862. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
  863. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  864. KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
  865. embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
  866. }
  867. { // layernorm
  868. embeddings = ggml_norm(ctx0, embeddings, eps);
  869. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
  870. }
  871. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  872. }
  873. else {
  874. GGML_ASSERT(false);
  875. }
  876. }
  877. // build the graph
  878. ggml_build_forward_expand(gf, embeddings);
  879. ggml_free(ctx0);
  880. return gf;
  881. }
  882. // read and create ggml_context containing the tensors and their data
  883. struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
  884. struct ggml_context * meta = NULL;
  885. struct gguf_init_params params = {
  886. /*.no_alloc = */ true,
  887. /*.ctx = */ &meta,
  888. };
  889. struct gguf_context * ctx = gguf_init_from_file(fname, params);
  890. if (!ctx) {
  891. throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  892. }
  893. if (verbosity >= 1) {
  894. const int n_tensors = gguf_get_n_tensors(ctx);
  895. const int n_kv = gguf_get_n_kv(ctx);
  896. const int ftype = get_u32(ctx, KEY_FTYPE);
  897. const std::string ftype_str = get_ftype(ftype);
  898. const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
  899. const std::string description = gguf_get_val_str(ctx, idx_desc);
  900. const int idx_name = gguf_find_key(ctx, KEY_NAME);
  901. if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
  902. const std::string name = gguf_get_val_str(ctx, idx_name);
  903. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  904. }
  905. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  906. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
  907. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
  908. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  909. LOG_INF("%s: n_kv: %d\n", __func__, n_kv);
  910. LOG_INF("%s: ftype: %s\n", __func__, ftype_str.c_str());
  911. LOG_INF("\n");
  912. }
  913. const int n_tensors = gguf_get_n_tensors(ctx);
  914. // kv
  915. const int n_kv = gguf_get_n_kv(ctx);
  916. LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
  917. __func__, n_kv, n_tensors, fname);
  918. {
  919. std::map<enum ggml_type, uint32_t> n_type;
  920. for (int i = 0; i < n_tensors; i++) {
  921. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  922. n_type[type]++;
  923. }
  924. LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  925. for (int i = 0; i < n_kv; i++) {
  926. const char * name = gguf_get_key(ctx, i);
  927. const enum gguf_type type = gguf_get_kv_type(ctx, i);
  928. const std::string type_name =
  929. type == GGUF_TYPE_ARRAY
  930. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
  931. : gguf_type_name(type);
  932. std::string value = gguf_kv_to_str(ctx, i);
  933. const size_t MAX_VALUE_LEN = 40;
  934. if (value.size() > MAX_VALUE_LEN) {
  935. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  936. }
  937. replace_all(value, "\n", "\\n");
  938. LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  939. }
  940. // print type counts
  941. for (auto & kv : n_type) {
  942. if (kv.second == 0) {
  943. continue;
  944. }
  945. LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  946. }
  947. }
  948. // data
  949. size_t model_size = 0;
  950. {
  951. for (int i = 0; i < n_tensors; ++i) {
  952. const char * name = gguf_get_tensor_name(ctx, i);
  953. const size_t offset = gguf_get_tensor_offset(ctx, i);
  954. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  955. struct ggml_tensor * cur = ggml_get_tensor(meta, name);
  956. size_t tensor_size = ggml_nbytes(cur);
  957. model_size += tensor_size;
  958. if (verbosity >= 3) {
  959. LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  960. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  961. }
  962. }
  963. }
  964. clip_ctx * new_clip = new clip_ctx{};
  965. // update projector type
  966. {
  967. int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
  968. if (idx != -1) {
  969. const std::string proj_type = gguf_get_val_str(ctx, idx);
  970. new_clip->proj_type = clip_projector_type_from_string(proj_type);
  971. } else {
  972. new_clip->proj_type = PROJECTOR_TYPE_MLP;
  973. }
  974. if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
  975. if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
  976. new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
  977. }
  978. }
  979. }
  980. #ifdef GGML_USE_CUDA
  981. new_clip->backend = ggml_backend_cuda_init(0);
  982. LOG_INF("%s: CLIP using CUDA backend\n", __func__);
  983. #endif
  984. #ifdef GGML_USE_METAL
  985. new_clip->backend = ggml_backend_metal_init();
  986. LOG_INF("%s: CLIP using Metal backend\n", __func__);
  987. #endif
  988. #ifdef GGML_USE_CANN
  989. new_clip->backend = ggml_backend_cann_init(0);
  990. LOG_INF("%s: CLIP using CANN backend\n", __func__);
  991. #endif
  992. #ifdef GGML_USE_VULKAN
  993. new_clip->backend = ggml_backend_vk_init(0);
  994. LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
  995. #endif
  996. #ifdef GGML_USE_SYCL
  997. new_clip->backend = ggml_backend_sycl_init(0);
  998. LOG_INF("%s: CLIP using SYCL backend\n", __func__);
  999. #endif
  1000. if (!new_clip->backend) {
  1001. new_clip->backend = ggml_backend_cpu_init();
  1002. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  1003. }
  1004. // model size and capabilities
  1005. {
  1006. int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
  1007. new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
  1008. idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
  1009. new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
  1010. idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
  1011. if (idx != -1) {
  1012. new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
  1013. }
  1014. idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
  1015. if (idx != -1) {
  1016. new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
  1017. }
  1018. idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION);
  1019. if (idx != -1) {
  1020. new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
  1021. }
  1022. // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
  1023. GGML_ASSERT(new_clip->has_vision_encoder);
  1024. GGML_ASSERT(!new_clip->has_text_encoder);
  1025. idx = get_key_idx(ctx, KEY_USE_GELU);
  1026. new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
  1027. if (verbosity >= 1) {
  1028. LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
  1029. LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
  1030. LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
  1031. LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
  1032. LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
  1033. LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
  1034. }
  1035. }
  1036. LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
  1037. // load tensors
  1038. {
  1039. std::vector<uint8_t> read_buf;
  1040. struct ggml_init_params params = {
  1041. /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
  1042. /*.mem_buffer =*/ NULL,
  1043. /*.no_alloc =*/ true,
  1044. };
  1045. new_clip->ctx_data = ggml_init(params);
  1046. if (!new_clip->ctx_data) {
  1047. LOG_ERR("%s: ggml_init() failed\n", __func__);
  1048. clip_free(new_clip);
  1049. gguf_free(ctx);
  1050. return nullptr;
  1051. }
  1052. auto fin = std::ifstream(fname, std::ios::binary);
  1053. if (!fin) {
  1054. LOG_ERR("cannot open model file for loading tensors\n");
  1055. clip_free(new_clip);
  1056. gguf_free(ctx);
  1057. return nullptr;
  1058. }
  1059. // add tensors to context
  1060. for (int i = 0; i < n_tensors; ++i) {
  1061. const char * name = gguf_get_tensor_name(ctx, i);
  1062. struct ggml_tensor * t = ggml_get_tensor(meta, name);
  1063. struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
  1064. ggml_set_name(cur, name);
  1065. }
  1066. // alloc memory and offload data
  1067. new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
  1068. for (int i = 0; i < n_tensors; ++i) {
  1069. const char * name = gguf_get_tensor_name(ctx, i);
  1070. struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
  1071. const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
  1072. fin.seekg(offset, std::ios::beg);
  1073. if (!fin) {
  1074. LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name);
  1075. clip_free(new_clip);
  1076. gguf_free(ctx);
  1077. return nullptr;
  1078. }
  1079. int num_bytes = ggml_nbytes(cur);
  1080. if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
  1081. // for the CPU and Metal backend, we can read directly into the tensor
  1082. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  1083. } else {
  1084. // read into a temporary buffer first, then copy to device memory
  1085. read_buf.resize(num_bytes);
  1086. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  1087. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  1088. }
  1089. }
  1090. fin.close();
  1091. }
  1092. // vision model
  1093. if (new_clip->has_vision_encoder) {
  1094. // load vision model
  1095. auto & vision_model = new_clip->vision_model;
  1096. auto & hparams = vision_model.hparams;
  1097. hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
  1098. hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
  1099. hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
  1100. hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
  1101. hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
  1102. hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
  1103. hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
  1104. hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
  1105. try {
  1106. int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
  1107. int n = gguf_get_arr_n(ctx, idx);
  1108. const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
  1109. for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
  1110. hparams.image_grid_pinpoints[i] = pinpoints[i];
  1111. }
  1112. if (n < 32)
  1113. hparams.image_grid_pinpoints[n] = 0;
  1114. } catch (std::runtime_error & /*e*/) {
  1115. hparams.image_grid_pinpoints[0]=0;
  1116. }
  1117. try {
  1118. int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
  1119. strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
  1120. } catch (std::runtime_error & /*e*/) {
  1121. strcpy(hparams.mm_patch_merge_type, "flat");
  1122. }
  1123. try {
  1124. hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
  1125. } catch(const std::exception& /*e*/) {
  1126. hparams.image_crop_resolution = hparams.image_size;
  1127. }
  1128. int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
  1129. int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
  1130. const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
  1131. const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std);
  1132. for (int i = 0; i < 3; ++i) {
  1133. new_clip->image_mean[i] = mean_data[i];
  1134. new_clip->image_std[i] = std_data[i];
  1135. }
  1136. if (verbosity >= 2) {
  1137. LOG_INF("\n%s: vision model hparams\n", __func__);
  1138. LOG_INF("image_size %d\n", hparams.image_size);
  1139. LOG_INF("patch_size %d\n", hparams.patch_size);
  1140. LOG_INF("v_hidden_size %d\n", hparams.hidden_size);
  1141. LOG_INF("v_n_intermediate %d\n", hparams.n_intermediate);
  1142. LOG_INF("v_projection_dim %d\n", hparams.projection_dim);
  1143. LOG_INF("v_n_head %d\n", hparams.n_head);
  1144. LOG_INF("v_n_layer %d\n", hparams.n_layer);
  1145. LOG_INF("v_eps %f\n", hparams.eps);
  1146. LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
  1147. LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
  1148. LOG_INF("v_image_grid_pinpoints: ");
  1149. for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
  1150. LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
  1151. }
  1152. LOG_INF("\n");
  1153. LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
  1154. }
  1155. try {
  1156. vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
  1157. new_clip->has_class_embedding = true;
  1158. } catch (const std::exception& /*e*/) {
  1159. new_clip->has_class_embedding = false;
  1160. }
  1161. try {
  1162. vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
  1163. vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
  1164. new_clip->has_pre_norm = true;
  1165. } catch (std::exception & /*e*/) {
  1166. new_clip->has_pre_norm = false;
  1167. }
  1168. try {
  1169. vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
  1170. vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
  1171. new_clip->has_post_norm = true;
  1172. } catch (std::exception & /*e*/) {
  1173. new_clip->has_post_norm = false;
  1174. }
  1175. try {
  1176. vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
  1177. new_clip->has_patch_bias = true;
  1178. } catch (std::exception & /*e*/) {
  1179. new_clip->has_patch_bias = false;
  1180. }
  1181. try {
  1182. vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
  1183. vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
  1184. } catch(const std::exception& /*e*/) {
  1185. LOG_ERR("%s: failed to load vision model tensors\n", __func__);
  1186. }
  1187. // LLaVA projection
  1188. if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  1189. vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
  1190. vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
  1191. try {
  1192. // Yi-type llava
  1193. vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
  1194. vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
  1195. } catch (std::runtime_error & /*e*/) { }
  1196. try {
  1197. // missing in Yi-type llava
  1198. vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
  1199. vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
  1200. } catch (std::runtime_error & /*e*/) { }
  1201. try {
  1202. // Yi-type llava
  1203. vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
  1204. vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
  1205. } catch (std::runtime_error & /*e*/) { }
  1206. try {
  1207. // Yi-type llava
  1208. vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
  1209. vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
  1210. } catch (std::runtime_error & /*e*/) { }
  1211. try {
  1212. vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
  1213. // LOG_INF("%s: image_newline tensor (llava-1.6) found\n", __func__);
  1214. } catch (std::runtime_error & /*e*/) { }
  1215. } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
  1216. // MobileVLM projection
  1217. vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1218. vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1219. vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1220. vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1221. vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  1222. vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  1223. vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  1224. vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  1225. vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  1226. vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  1227. vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  1228. vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  1229. vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  1230. vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  1231. vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  1232. vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  1233. vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  1234. vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  1235. vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  1236. vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  1237. vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  1238. vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  1239. vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  1240. vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  1241. }
  1242. else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
  1243. {
  1244. // MobilVLM_V2 projection
  1245. vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1246. vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1247. vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1248. vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
  1249. vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
  1250. vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
  1251. }
  1252. else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  1253. // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  1254. vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
  1255. vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
  1256. vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
  1257. vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
  1258. vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
  1259. vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
  1260. vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
  1261. vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
  1262. vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
  1263. vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
  1264. vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
  1265. vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
  1266. vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
  1267. vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
  1268. vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
  1269. vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
  1270. vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
  1271. vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
  1272. }
  1273. else {
  1274. std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
  1275. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  1276. }
  1277. vision_model.layers.resize(hparams.n_layer);
  1278. for (int il = 0; il < hparams.n_layer; ++il) {
  1279. auto & layer = vision_model.layers[il];
  1280. layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
  1281. layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
  1282. layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
  1283. layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
  1284. layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
  1285. layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
  1286. layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
  1287. layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
  1288. layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
  1289. layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
  1290. layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
  1291. layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
  1292. layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
  1293. layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
  1294. layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
  1295. layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
  1296. }
  1297. }
  1298. ggml_free(meta);
  1299. new_clip->ctx_gguf = ctx;
  1300. // measure mem requirement and allocate
  1301. {
  1302. new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
  1303. new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
  1304. clip_image_f32_batch batch;
  1305. batch.size = 1;
  1306. ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
  1307. ggml_gallocr_reserve(new_clip->compute_alloc, gf);
  1308. size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
  1309. LOG_INF("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
  1310. }
  1311. return new_clip;
  1312. }
  1313. void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
  1314. ctx_clip->load_image_size = load_image_size;
  1315. }
  1316. struct clip_image_size * clip_image_size_init() {
  1317. struct clip_image_size * load_image_size = new struct clip_image_size();
  1318. load_image_size->width = 448;
  1319. load_image_size->height = 448;
  1320. return load_image_size;
  1321. }
  1322. struct clip_image_u8 * clip_image_u8_init() {
  1323. return new clip_image_u8();
  1324. }
  1325. struct clip_image_f32 * clip_image_f32_init() {
  1326. return new clip_image_f32();
  1327. }
  1328. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  1329. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  1330. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
  1331. if (batch->size > 0) {
  1332. delete[] batch->data;
  1333. batch->size = 0;
  1334. }
  1335. }
  1336. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
  1337. if (batch->size > 0) {
  1338. delete[] batch->data;
  1339. batch->size = 0;
  1340. }
  1341. }
  1342. static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
  1343. img->nx = nx;
  1344. img->ny = ny;
  1345. img->buf.resize(3 * nx * ny);
  1346. memcpy(img->buf.data(), data, img->buf.size());
  1347. }
  1348. bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
  1349. int nx, ny, nc;
  1350. auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
  1351. if (!data) {
  1352. LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
  1353. return false;
  1354. }
  1355. build_clip_img_from_data(data, nx, ny, img);
  1356. stbi_image_free(data);
  1357. return true;
  1358. }
  1359. bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
  1360. int nx, ny, nc;
  1361. auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
  1362. if (!data) {
  1363. LOG_ERR("%s: failed to decode image bytes\n", __func__);
  1364. return false;
  1365. }
  1366. build_clip_img_from_data(data, nx, ny, img);
  1367. stbi_image_free(data);
  1368. return true;
  1369. }
  1370. // Linear interpolation between two points
  1371. inline float clip_lerp(float s, float e, float t) {
  1372. return s + (e - s) * t;
  1373. }
  1374. // Bilinear resize function
  1375. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  1376. dst.nx = target_width;
  1377. dst.ny = target_height;
  1378. dst.buf.resize(3 * target_width * target_height);
  1379. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  1380. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  1381. for (int y = 0; y < target_height; y++) {
  1382. for (int x = 0; x < target_width; x++) {
  1383. float px = x_ratio * x;
  1384. float py = y_ratio * y;
  1385. int x_floor = static_cast<int>(px);
  1386. int y_floor = static_cast<int>(py);
  1387. float x_lerp = px - x_floor;
  1388. float y_lerp = py - y_floor;
  1389. for (int c = 0; c < 3; c++) {
  1390. float top = clip_lerp(
  1391. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  1392. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  1393. x_lerp
  1394. );
  1395. float bottom = clip_lerp(
  1396. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  1397. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  1398. x_lerp
  1399. );
  1400. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
  1401. }
  1402. }
  1403. }
  1404. }
  1405. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  1406. static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
  1407. dst->nx = src->nx;
  1408. dst->ny = src->ny;
  1409. dst->buf.resize(src->buf.size());
  1410. for (size_t i = 0; i < src->buf.size(); ++i) {
  1411. int c = i % 3; // rgb
  1412. dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
  1413. }
  1414. }
  1415. inline int clip(int x, int lower, int upper) {
  1416. return std::max(lower, std::min(x, upper));
  1417. }
  1418. static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
  1419. const int nx = img.nx;
  1420. const int ny = img.ny;
  1421. dst.nx = target_width;
  1422. dst.ny = target_height;
  1423. dst.buf.resize(3 * target_width * target_height);
  1424. float Cc;
  1425. float C[5];
  1426. float d0, d2, d3, a0, a1, a2, a3;
  1427. int i, j, k, jj;
  1428. int x, y;
  1429. float dx, dy;
  1430. float tx, ty;
  1431. tx = (float)nx / (float)target_width;
  1432. ty = (float)ny / (float)target_height;
  1433. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  1434. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  1435. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  1436. for (i = 0; i < target_height; i++) {
  1437. for (j = 0; j < target_width; j++) {
  1438. x = (int)(tx * j);
  1439. y = (int)(ty * i);
  1440. dx = tx * j - x;
  1441. dy = ty * i - y;
  1442. for (k = 0; k < 3; k++) {
  1443. for (jj = 0; jj <= 3; jj++) {
  1444. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1445. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1446. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1447. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1448. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1449. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1450. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1451. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  1452. d0 = C[0] - C[1];
  1453. d2 = C[2] - C[1];
  1454. d3 = C[3] - C[1];
  1455. a0 = C[1];
  1456. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1457. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1458. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1459. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  1460. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  1461. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  1462. }
  1463. }
  1464. }
  1465. }
  1466. return true;
  1467. }
  1468. // llava-1.6 type of resize_and_pad (black)
  1469. static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
  1470. int target_width = target_resolution.first;
  1471. int target_height = target_resolution.second;
  1472. float scale_w = static_cast<float>(target_width) / image.nx;
  1473. float scale_h = static_cast<float>(target_height) / image.ny;
  1474. int new_width, new_height;
  1475. if (scale_w < scale_h) {
  1476. new_width = target_width;
  1477. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  1478. } else {
  1479. new_height = target_height;
  1480. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  1481. }
  1482. clip_image_u8 resized_image;
  1483. // bilinear_resize(image, resized_image, new_width, new_height);
  1484. bicubic_resize(image, resized_image, new_width, new_height);
  1485. clip_image_u8 padded_image;
  1486. padded_image.nx = target_width;
  1487. padded_image.ny = target_height;
  1488. padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
  1489. // Calculate padding offsets
  1490. int pad_x = (target_width - new_width) / 2;
  1491. int pad_y = (target_height - new_height) / 2;
  1492. // Copy the resized image into the center of the padded buffer
  1493. for (int y = 0; y < new_height; ++y) {
  1494. for (int x = 0; x < new_width; ++x) {
  1495. for (int c = 0; c < 3; ++c) {
  1496. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  1497. }
  1498. }
  1499. }
  1500. image_output = std::move(padded_image);
  1501. }
  1502. /**
  1503. * Selects the best resolution from a list of possible resolutions based on the original size.
  1504. *
  1505. * @param original_size The original size of the image in the format (width, height).
  1506. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  1507. * @return The best fit resolution in the format (width, height).
  1508. */
  1509. static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
  1510. int original_width = original_size.first;
  1511. int original_height = original_size.second;
  1512. std::pair<int, int> best_fit;
  1513. int max_effective_resolution = 0;
  1514. int min_wasted_resolution = std::numeric_limits<int>::max();
  1515. for (const auto& resolution : possible_resolutions) {
  1516. int width = resolution.first;
  1517. int height = resolution.second;
  1518. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  1519. int downscaled_width = static_cast<int>(original_width * scale);
  1520. int downscaled_height = static_cast<int>(original_height * scale);
  1521. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  1522. int wasted_resolution = (width * height) - effective_resolution;
  1523. // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  1524. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  1525. max_effective_resolution = effective_resolution;
  1526. min_wasted_resolution = wasted_resolution;
  1527. best_fit = resolution;
  1528. }
  1529. }
  1530. return best_fit;
  1531. }
  1532. static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
  1533. std::vector<clip_image_u8*> patches;
  1534. int width = image.nx;
  1535. int height = image.ny;
  1536. for (int i = 0; i < height; i += patch_size) {
  1537. for (int j = 0; j < width; j += patch_size) {
  1538. clip_image_u8 *patch = clip_image_u8_init();
  1539. patch->nx = std::min(patch_size, width - j);
  1540. patch->ny = std::min(patch_size, height - i);
  1541. patch->buf.resize(3 * patch->nx * patch->ny);
  1542. for (int y = 0; y < patch->ny; ++y) {
  1543. for (int x = 0; x < patch->nx; ++x) {
  1544. for (int c = 0; c < 3; ++c) {
  1545. patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
  1546. }
  1547. }
  1548. }
  1549. patches.push_back(patch);
  1550. }
  1551. }
  1552. return patches;
  1553. }
  1554. static int ensure_divide(int length, int patch_size) {
  1555. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  1556. }
  1557. static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1558. int width = original_size.first;
  1559. int height = original_size.second;
  1560. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  1561. float r = static_cast<float>(width) / height;
  1562. height = static_cast<int>(scale_resolution / std::sqrt(r));
  1563. width = static_cast<int>(height * r);
  1564. }
  1565. int best_width = ensure_divide(width, patch_size);
  1566. int best_height = ensure_divide(height, patch_size);
  1567. return std::make_pair(best_width, best_height);
  1568. }
  1569. static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1570. int width, height;
  1571. std::tie(width, height) = original_size;
  1572. int grid_x, grid_y;
  1573. std::tie(grid_x, grid_y) = grid;
  1574. int refine_width = ensure_divide(width, grid_x);
  1575. int refine_height = ensure_divide(height, grid_y);
  1576. int grid_width = refine_width / grid_x;
  1577. int grid_height = refine_height / grid_y;
  1578. // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
  1579. auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
  1580. int best_grid_width, best_grid_height;
  1581. std::tie(best_grid_width, best_grid_height) = best_grid_size;
  1582. // std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
  1583. std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
  1584. return refine_size;
  1585. }
  1586. static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  1587. std::vector<int> candidate_split_grids_nums;
  1588. for (int i : {multiple - 1, multiple, multiple + 1}) {
  1589. if (i == 1 || i > max_slice_nums) {
  1590. continue;
  1591. }
  1592. candidate_split_grids_nums.push_back(i);
  1593. }
  1594. std::vector<std::pair<int, int>> candidate_grids;
  1595. for (int split_grids_nums : candidate_split_grids_nums) {
  1596. int m = 1;
  1597. while (m <= split_grids_nums) {
  1598. if (split_grids_nums % m == 0) {
  1599. candidate_grids.emplace_back(m, split_grids_nums / m);
  1600. }
  1601. ++m;
  1602. }
  1603. }
  1604. std::pair<int, int> best_grid{1, 1};
  1605. float min_error = std::numeric_limits<float>::infinity();
  1606. for (const auto& grid : candidate_grids) {
  1607. float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
  1608. if (error < min_error) {
  1609. best_grid = grid;
  1610. min_error = error;
  1611. }
  1612. }
  1613. return best_grid;
  1614. }
  1615. // inspired from LLaVA-UHD:
  1616. // -> https://arxiv.org/pdf/2403.11703
  1617. // -> https://github.com/thunlp/LLaVA-UHD
  1618. // -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  1619. static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
  1620. const std::pair<int, int> original_size={img->nx,img->ny};
  1621. const int original_width = img->nx;
  1622. const int original_height = img->ny;
  1623. const float log_ratio = log(1.0*original_width/original_height);
  1624. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1625. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1626. std::vector<std::vector<clip_image_u8 *>> images;
  1627. LOG_INF("%s: multiple %d\n", __func__, multiple);
  1628. images.push_back(std::vector<clip_image_u8 *>());
  1629. if (multiple <= 1) {
  1630. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
  1631. clip_image_u8 * source_image = clip_image_u8_init();
  1632. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1633. // source_image = image.resize(best_size, Image.Resampling.BICUBIC)
  1634. images[images.size()-1].push_back(source_image);
  1635. }
  1636. else if (multiple > 1) {
  1637. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
  1638. clip_image_u8 * source_image = clip_image_u8_init();
  1639. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1640. // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
  1641. LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
  1642. images[images.size()-1].push_back(source_image);
  1643. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1644. LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
  1645. auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
  1646. clip_image_u8 * refine_image = clip_image_u8_init();
  1647. bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
  1648. LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
  1649. // split_to_patches
  1650. int width = refine_image->nx;
  1651. int height = refine_image->ny;
  1652. int grid_x = int(width / best_grid.first);
  1653. int grid_y = int(height / best_grid.second);
  1654. for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
  1655. images.push_back(std::vector<clip_image_u8 *>());
  1656. for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
  1657. clip_image_u8 * patch = clip_image_u8_init();
  1658. patch->nx = grid_x;
  1659. patch->ny = grid_y;
  1660. patch->buf.resize(3 * patch->nx * patch->ny);
  1661. for (int y = patches_i; y < patches_i + grid_y; ++y) {
  1662. for (int x = patches_j; x < patches_j + grid_x; ++x) {
  1663. const int i = 3 * (y * refine_image->nx + x);
  1664. const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
  1665. patch->buf[j] = refine_image->buf[i];
  1666. patch->buf[j+1] = refine_image->buf[i+1];
  1667. patch->buf[j+2] = refine_image->buf[i+2];
  1668. }
  1669. }
  1670. images[images.size()-1].push_back(patch);
  1671. }
  1672. }
  1673. }
  1674. return images;
  1675. }
  1676. int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
  1677. const int max_slice_nums=9;
  1678. const int scale_resolution=448;
  1679. const int original_width = ctx_clip->load_image_size->width;
  1680. const int original_height = ctx_clip->load_image_size->height;
  1681. const float log_ratio = log(1.0*original_width/original_height);
  1682. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1683. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1684. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1685. return best_grid.first;
  1686. }
  1687. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  1688. // res_imgs memory is being allocated here, previous allocations will be freed if found
  1689. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
  1690. if(clip_is_minicpmv(ctx)){
  1691. int max_slice_nums = 9;
  1692. std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums);
  1693. res_imgs->size = 0;
  1694. for (size_t i = 0; i < imgs.size(); ++i){
  1695. res_imgs->size += imgs[i].size();
  1696. }
  1697. res_imgs->data = new clip_image_f32[res_imgs->size];
  1698. int idx = 0;
  1699. for (size_t i = 0; i < imgs.size(); ++i) {
  1700. for (size_t j = 0; j < imgs[i].size(); ++j) {
  1701. LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
  1702. clip_image_f32 * res = clip_image_f32_init();
  1703. normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
  1704. res_imgs->data[idx++] = *res;
  1705. clip_image_f32_free(res);
  1706. }
  1707. }
  1708. return true;
  1709. }
  1710. bool pad_to_square = true;
  1711. if (!ctx->has_vision_encoder) {
  1712. LOG_ERR("This gguf file seems to have no vision encoder\n");
  1713. return false;
  1714. }
  1715. auto & params = ctx->vision_model.hparams;
  1716. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  1717. if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) {
  1718. pad_to_square = false;
  1719. }
  1720. // free the previous res_imgs if any set
  1721. if (res_imgs->size > 0) {
  1722. clip_image_f32_batch_free(res_imgs);
  1723. }
  1724. res_imgs->data = nullptr;
  1725. res_imgs->size = 0;
  1726. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  1727. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  1728. clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
  1729. if (pad_to_square && img->nx != img->ny) {
  1730. int longer_side = std::max(img->nx, img->ny);
  1731. temp->nx = longer_side;
  1732. temp->ny = longer_side;
  1733. temp->buf.resize(3 * longer_side * longer_side);
  1734. const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
  1735. // fill with background color
  1736. for (size_t i = 0; i < temp->buf.size(); i++) {
  1737. temp->buf[i] = bc[i % 3];
  1738. }
  1739. // copy from the input image
  1740. for (int y = 0; y < img->ny; y++) {
  1741. for (int x = 0; x < img->nx; x++) {
  1742. const int i = 3 * (y * img->nx + x);
  1743. const int j = 3 * (y * temp->nx + x);
  1744. temp->buf[j] = img->buf[i];
  1745. temp->buf[j+1] = img->buf[i+1];
  1746. temp->buf[j+2] = img->buf[i+2];
  1747. }
  1748. }
  1749. } else {
  1750. if (params.image_grid_pinpoints[0] != 0) {
  1751. // "spatial_unpad" with "anyres" processing for llava-1.6
  1752. std::vector<std::pair<int, int>> possible_resolutions;
  1753. for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
  1754. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  1755. }
  1756. std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
  1757. // clip_image_save_to_bmp(*img, "input.bmp");
  1758. resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
  1759. // clip_image_save_to_bmp(*temp, "resized.bmp");
  1760. // visually verify normalized image:
  1761. // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
  1762. // {
  1763. // clip_image_u8 * temp2 = clip_image_u8_init();
  1764. // clip_image_convert_f32_to_u8(*res, *temp2);
  1765. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
  1766. // clip_image_u8_free(temp2);
  1767. // }
  1768. std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
  1769. clip_image_u8 *image_original_resize = clip_image_u8_init();
  1770. // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1771. bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1772. patches.insert(patches.begin(), image_original_resize);
  1773. // clip_image_f32_batch_init(patches.size());
  1774. res_imgs->size = patches.size();
  1775. res_imgs->data = new clip_image_f32[res_imgs->size];
  1776. int num=0;
  1777. for (auto& patch : patches) {
  1778. normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
  1779. num++;
  1780. }
  1781. for (size_t i = 0; i < patches.size(); i++) {
  1782. // LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
  1783. clip_image_u8_free(patches[i]);
  1784. }
  1785. clip_image_u8_free(temp);
  1786. return true;
  1787. } else {
  1788. temp->nx = img->nx;
  1789. temp->ny = img->ny;
  1790. temp->buf.resize(img->buf.size());
  1791. memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
  1792. }
  1793. }
  1794. const int nx = temp->nx;
  1795. const int ny = temp->ny;
  1796. // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
  1797. const int nx2 = ctx->vision_model.hparams.image_size;
  1798. const int ny2 = ctx->vision_model.hparams.image_size;
  1799. clip_image_f32 * res = clip_image_f32_init();
  1800. res->nx = nx2;
  1801. res->ny = ny2;
  1802. res->buf.resize(3 * nx2 * ny2);
  1803. const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
  1804. const int nx3 = int(nx / scale + 0.5f);
  1805. const int ny3 = int(ny / scale + 0.5f);
  1806. const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
  1807. const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
  1808. for (int y = 0; y < ny3; y++) {
  1809. for (int x = 0; x < nx3; x++) {
  1810. for (int c = 0; c < 3; c++) {
  1811. // linear interpolation
  1812. const float sx = (x + 0.5f) * scale - 0.5f;
  1813. const float sy = (y + 0.5f) * scale - 0.5f;
  1814. const int x0 = std::max(0, (int)std::floor(sx));
  1815. const int y0 = std::max(0, (int)std::floor(sy));
  1816. const int x1 = std::min(x0 + 1, nx - 1);
  1817. const int y1 = std::min(y0 + 1, ny - 1);
  1818. const float dx = sx - x0;
  1819. const float dy = sy - y0;
  1820. const int j00 = 3 * (y0 * nx + x0) + c;
  1821. const int j01 = 3 * (y0 * nx + x1) + c;
  1822. const int j10 = 3 * (y1 * nx + x0) + c;
  1823. const int j11 = 3 * (y1 * nx + x1) + c;
  1824. const float v00 = temp->buf[j00];
  1825. const float v01 = temp->buf[j01];
  1826. const float v10 = temp->buf[j10];
  1827. const float v11 = temp->buf[j11];
  1828. const float v0 = v00 * (1.0f - dx) + v01 * dx;
  1829. const float v1 = v10 * (1.0f - dx) + v11 * dx;
  1830. const float v = v0 * (1.0f - dy) + v1 * dy;
  1831. const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
  1832. const int i = 3 * (y * nx3 + x) + c;
  1833. res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
  1834. }
  1835. }
  1836. }
  1837. clip_image_u8_free(temp);
  1838. // {
  1839. // clip_image_u8 * temp2 = clip_image_u8_init();
  1840. // clip_image_convert_f32_to_u8(*res, *temp2);
  1841. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
  1842. // clip_image_u8_free(temp2);
  1843. // }
  1844. // res_imgs.push_back(res);
  1845. res_imgs->size = 1;
  1846. res_imgs->data = new clip_image_f32[res_imgs->size];
  1847. res_imgs->data[0] = *res;
  1848. clip_image_f32_free(res);
  1849. return true;
  1850. }
  1851. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  1852. return ctx->vision_model.image_newline;
  1853. }
  1854. void clip_free(clip_ctx * ctx) {
  1855. ggml_free(ctx->ctx_data);
  1856. gguf_free(ctx->ctx_gguf);
  1857. ggml_backend_buffer_free(ctx->params_buffer);
  1858. ggml_backend_free(ctx->backend);
  1859. ggml_gallocr_free(ctx->compute_alloc);
  1860. delete ctx;
  1861. }
  1862. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  1863. return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
  1864. }
  1865. int32_t clip_image_size(const struct clip_ctx * ctx) {
  1866. return ctx->vision_model.hparams.image_size;
  1867. }
  1868. int32_t clip_patch_size(const struct clip_ctx * ctx) {
  1869. return ctx->vision_model.hparams.patch_size;
  1870. }
  1871. int32_t clip_hidden_size(const struct clip_ctx * ctx) {
  1872. return ctx->vision_model.hparams.hidden_size;
  1873. }
  1874. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  1875. return ctx->vision_model.hparams.mm_patch_merge_type;
  1876. }
  1877. const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
  1878. return ctx->vision_model.hparams.image_grid_pinpoints;
  1879. }
  1880. int clip_n_patches(const struct clip_ctx * ctx) {
  1881. const auto & params = ctx->vision_model.hparams;
  1882. int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  1883. if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  1884. n_patches /= 4;
  1885. } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  1886. if (ctx->minicpmv_version == 2) {
  1887. n_patches = 96;
  1888. }
  1889. else if (ctx->minicpmv_version == 3) {
  1890. n_patches = 64;
  1891. }
  1892. }
  1893. return n_patches;
  1894. }
  1895. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  1896. assert(embed_dim % 2 == 0);
  1897. int H = pos.size();
  1898. int W = pos[0].size();
  1899. std::vector<float> omega(embed_dim / 2);
  1900. for (int i = 0; i < embed_dim / 2; ++i) {
  1901. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  1902. }
  1903. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  1904. for (int h = 0; h < H; ++h) {
  1905. for (int w = 0; w < W; ++w) {
  1906. for (int d = 0; d < embed_dim / 2; ++d) {
  1907. float out_value = pos[h][w] * omega[d];
  1908. emb[h][w][d] = sin(out_value);
  1909. emb[h][w][d + embed_dim / 2] = cos(out_value);
  1910. }
  1911. }
  1912. }
  1913. return emb;
  1914. }
  1915. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  1916. assert(embed_dim % 2 == 0);
  1917. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  1918. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  1919. int H = emb_h.size();
  1920. int W = emb_h[0].size();
  1921. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  1922. for (int h = 0; h < H; ++h) {
  1923. for (int w = 0; w < W; ++w) {
  1924. for (int d = 0; d < embed_dim / 2; ++d) {
  1925. emb[h][w][d] = emb_h[h][w][d];
  1926. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  1927. }
  1928. }
  1929. }
  1930. return emb;
  1931. }
  1932. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  1933. int grid_h_size = image_size.first;
  1934. int grid_w_size = image_size.second;
  1935. std::vector<float> grid_h(grid_h_size);
  1936. std::vector<float> grid_w(grid_w_size);
  1937. for (int i = 0; i < grid_h_size; ++i) {
  1938. grid_h[i] = static_cast<float>(i);
  1939. }
  1940. for (int i = 0; i < grid_w_size; ++i) {
  1941. grid_w[i] = static_cast<float>(i);
  1942. }
  1943. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  1944. for (int h = 0; h < grid_h_size; ++h) {
  1945. for (int w = 0; w < grid_w_size; ++w) {
  1946. grid[h][w] = grid_w[w];
  1947. }
  1948. }
  1949. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  1950. for (int h = 0; h < grid_h_size; ++h) {
  1951. for (int w = 0; w < grid_w_size; ++w) {
  1952. grid_2d[0][h][w] = grid_h[h];
  1953. grid_2d[1][h][w] = grid_w[w];
  1954. }
  1955. }
  1956. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  1957. int H = image_size.first;
  1958. int W = image_size.second;
  1959. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  1960. for (int h = 0; h < H; ++h) {
  1961. for (int w = 0; w < W; ++w) {
  1962. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  1963. }
  1964. }
  1965. return pos_embed_2d;
  1966. }
  1967. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  1968. if (!ctx->has_vision_encoder) {
  1969. LOG_ERR("This gguf file seems to have no vision encoder\n");
  1970. return false;
  1971. }
  1972. clip_image_f32_batch imgs{};
  1973. imgs.size = 1;
  1974. imgs.data = img;
  1975. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  1976. }
  1977. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
  1978. if (!ctx->has_vision_encoder) {
  1979. LOG_ERR("This gguf file seems to have no vision encoder\n");
  1980. return false;
  1981. }
  1982. int batch_size = imgs->size;
  1983. if (ctx->has_llava_projector) {
  1984. GGML_ASSERT(batch_size == 1); // TODO: support multiple images
  1985. }
  1986. if (ctx->has_minicpmv_projector) {
  1987. GGML_ASSERT(batch_size == 1);
  1988. }
  1989. // build the inference graph
  1990. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
  1991. ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
  1992. // set inputs
  1993. const auto & model = ctx->vision_model;
  1994. const auto & hparams = model.hparams;
  1995. const int image_size = hparams.image_size;
  1996. int image_size_width = image_size;
  1997. int image_size_height = image_size;
  1998. if (ctx->has_minicpmv_projector) {
  1999. image_size_width = imgs->data[0].nx;
  2000. image_size_height = imgs->data[0].ny;
  2001. }
  2002. const int patch_size = hparams.patch_size;
  2003. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  2004. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  2005. if(ctx->load_image_size==nullptr){
  2006. ctx->load_image_size= clip_image_size_init();
  2007. }
  2008. const int pos_w = ctx->load_image_size->width/patch_size;
  2009. const int pos_h = ctx->load_image_size->height/patch_size;
  2010. {
  2011. struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
  2012. float * data = (float *)malloc(ggml_nbytes(inp_raw));
  2013. for (size_t i = 0; i < imgs->size; i++) {
  2014. const int nx = imgs->data[i].nx;
  2015. const int ny = imgs->data[i].ny;
  2016. if (!ctx->has_minicpmv_projector) {
  2017. GGML_ASSERT(nx == image_size && ny == image_size);
  2018. }
  2019. const int n = nx * ny;
  2020. for (int b = 0; b < batch_size; b++) {
  2021. for (int k = 0; k < 3; k++) {
  2022. for (int y = 0; y < ny; y++) {
  2023. for (int x = 0; x < nx; x++) {
  2024. data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
  2025. }
  2026. }
  2027. }
  2028. }
  2029. }
  2030. ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
  2031. free(data);
  2032. }
  2033. if (ctx->has_minicpmv_projector) {
  2034. {
  2035. // inspired from siglip:
  2036. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  2037. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  2038. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2039. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2040. int bucket_coords_h[70];
  2041. int bucket_coords_w[70];
  2042. for (int i = 0; i < pos_h; i++){
  2043. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  2044. }
  2045. for (int i = 0; i < pos_w; i++){
  2046. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  2047. }
  2048. for (int i = 0, id = 0; i < pos_h; i++){
  2049. for (int j = 0; j < pos_w; j++){
  2050. positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  2051. }
  2052. }
  2053. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2054. free(positions_data);
  2055. }
  2056. {
  2057. // inspired from resampler of Qwen-VL:
  2058. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  2059. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  2060. struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
  2061. int embed_dim = 4096;
  2062. if (ctx->minicpmv_version == 2) {
  2063. embed_dim = 4096;
  2064. }
  2065. else if (ctx->minicpmv_version == 3) {
  2066. embed_dim = 3584;
  2067. }
  2068. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  2069. float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
  2070. for(int i=0;i<pos_w * pos_h;++i){
  2071. for(int j=0;j<embed_dim;++j){
  2072. pos_embed_data[i*embed_dim+j]=pos_embed_t[i][j];
  2073. }
  2074. }
  2075. ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
  2076. free(pos_embed_data);
  2077. }
  2078. }
  2079. else{
  2080. {
  2081. if (ctx->has_class_embedding) {
  2082. struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
  2083. void* zero_mem = malloc(ggml_nbytes(embeddings));
  2084. memset(zero_mem, 0, ggml_nbytes(embeddings));
  2085. ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
  2086. free(zero_mem);
  2087. }
  2088. }
  2089. {
  2090. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2091. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2092. for (int i = 0; i < num_positions; i++) {
  2093. positions_data[i] = i;
  2094. }
  2095. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2096. free(positions_data);
  2097. }
  2098. {
  2099. struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
  2100. int* patches_data = (int*)malloc(ggml_nbytes(patches));
  2101. for (int i = 0; i < num_patches; i++) {
  2102. patches_data[i] = i + 1;
  2103. }
  2104. ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
  2105. free(patches_data);
  2106. }
  2107. }
  2108. if (ggml_backend_is_cpu(ctx->backend)) {
  2109. ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
  2110. }
  2111. ggml_backend_graph_compute(ctx->backend, gf);
  2112. // the last node is the embedding tensor
  2113. struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  2114. // copy the embeddings to the location passed by the user
  2115. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  2116. return true;
  2117. }
  2118. bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
  2119. ggml_type type = GGML_TYPE_Q4_1;
  2120. assert(itype < GGML_TYPE_COUNT);
  2121. type = static_cast<ggml_type>(itype);
  2122. auto * ctx_clip = clip_model_load(fname_inp, 2);
  2123. const auto & ctx_src = ctx_clip->ctx_gguf;
  2124. const auto & ctx_data = ctx_clip->ctx_data;
  2125. auto * ctx_out = gguf_init_empty();
  2126. gguf_set_kv(ctx_out, ctx_src);
  2127. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  2128. gguf_set_val_u32(ctx_out, "general.file_type", itype);
  2129. auto fout = std::ofstream(fname_out, std::ios::binary);
  2130. const int n_tensors = gguf_get_n_tensors(ctx_src);
  2131. for (int i = 0; i < n_tensors; ++i) {
  2132. const char * name = gguf_get_tensor_name(ctx_src, i);
  2133. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
  2134. gguf_add_tensor(ctx_out, cur);
  2135. }
  2136. const size_t meta_size = gguf_get_meta_size(ctx_out);
  2137. for (size_t i = 0; i < meta_size; ++i) {
  2138. fout.put(0);
  2139. }
  2140. // regexes of tensor names to be quantized
  2141. const std::vector<std::string> k_names = {
  2142. ".*weight",
  2143. };
  2144. std::vector<uint8_t> work(512);
  2145. std::vector<float> conv_buf(512);
  2146. size_t total_size_org = 0;
  2147. size_t total_size_new = 0;
  2148. for (int i = 0; i < n_tensors; ++i) {
  2149. const std::string name = gguf_get_tensor_name(ctx_src, i);
  2150. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
  2151. enum ggml_type new_type;
  2152. void * new_data;
  2153. size_t new_size;
  2154. bool quantize = false;
  2155. for (const auto & s : k_names) {
  2156. if (std::regex_match(name, std::regex(s))) {
  2157. quantize = true;
  2158. break;
  2159. }
  2160. }
  2161. // quantize only 2D tensors
  2162. quantize &= (ggml_n_dims(cur) == 2);
  2163. if (quantize) {
  2164. new_type = type;
  2165. if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
  2166. new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
  2167. // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
  2168. }
  2169. const size_t n_elms = ggml_nelements(cur);
  2170. float * f32_data;
  2171. switch (cur->type) {
  2172. case GGML_TYPE_F32:
  2173. f32_data = (float *)cur->data;
  2174. break;
  2175. case GGML_TYPE_F16:
  2176. if (conv_buf.size() < n_elms) {
  2177. conv_buf.resize(n_elms);
  2178. }
  2179. for (size_t j = 0; j < n_elms; ++j) {
  2180. conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
  2181. }
  2182. f32_data = (float *)conv_buf.data();
  2183. break;
  2184. default:
  2185. LOG_ERR("Please use an input file in f32 or f16\n");
  2186. gguf_free(ctx_out);
  2187. return false;
  2188. }
  2189. if (work.size() < n_elms * 4) {
  2190. work.resize(n_elms * 4);
  2191. }
  2192. new_data = work.data();
  2193. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
  2194. } else {
  2195. new_type = cur->type;
  2196. new_data = cur->data;
  2197. new_size = ggml_nbytes(cur);
  2198. }
  2199. const size_t orig_size = ggml_nbytes(cur);
  2200. total_size_org += orig_size;
  2201. total_size_new += new_size;
  2202. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  2203. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  2204. fout.write((const char *)new_data, new_size);
  2205. size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
  2206. for (size_t j = 0; j < pad; ++j) {
  2207. fout.put(0);
  2208. }
  2209. LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
  2210. orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  2211. }
  2212. // go back to beginning of file and write the updated metadata
  2213. fout.seekp(0, std::ios::beg);
  2214. std::vector<uint8_t> meta(meta_size);
  2215. gguf_get_meta_data(ctx_out, meta.data());
  2216. fout.write((const char *)meta.data(), meta_size);
  2217. fout.close();
  2218. clip_free(ctx_clip);
  2219. gguf_free(ctx_out);
  2220. {
  2221. LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
  2222. LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
  2223. }
  2224. return true;
  2225. }
  2226. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  2227. if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  2228. return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
  2229. }
  2230. if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  2231. return ctx->vision_model.mm_model_peg_0_b->ne[0];
  2232. }
  2233. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  2234. return ctx->vision_model.mm_2_b->ne[0];
  2235. }
  2236. if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  2237. return ctx->vision_model.mm_3_b->ne[0];
  2238. }
  2239. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  2240. if (ctx->minicpmv_version == 2) {
  2241. return 4096;
  2242. }
  2243. else if (ctx->minicpmv_version == 3) {
  2244. return 3584;
  2245. }
  2246. }
  2247. std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
  2248. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  2249. }
  2250. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  2251. if (ctx->has_minicpmv_projector) {
  2252. return ctx->minicpmv_version;
  2253. }
  2254. return 0;
  2255. }