llama.h 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-cpu.h"
  5. #include "ggml-backend.h"
  6. #include <stddef.h>
  7. #include <stdint.h>
  8. #include <stdio.h>
  9. #include <stdbool.h>
  10. #ifdef LLAMA_SHARED
  11. # if defined(_WIN32) && !defined(__MINGW32__)
  12. # ifdef LLAMA_BUILD
  13. # define LLAMA_API __declspec(dllexport)
  14. # else
  15. # define LLAMA_API __declspec(dllimport)
  16. # endif
  17. # else
  18. # define LLAMA_API __attribute__ ((visibility ("default")))
  19. # endif
  20. #else
  21. # define LLAMA_API
  22. #endif
  23. #ifdef __GNUC__
  24. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  25. #elif defined(_MSC_VER)
  26. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  27. #else
  28. # define DEPRECATED(func, hint) func
  29. #endif
  30. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  31. // TODO: use everywhere in the implementation
  32. #define LLAMA_TOKEN_NULL -1
  33. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  34. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  35. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  36. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  37. #define LLAMA_SESSION_VERSION 9
  38. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  39. #define LLAMA_STATE_SEQ_VERSION 2
  40. #ifdef __cplusplus
  41. extern "C" {
  42. #endif
  43. //
  44. // C interface
  45. //
  46. // TODO: show sample usage
  47. //
  48. // struct llama_vocab; // TODO: add in the future
  49. struct llama_model;
  50. struct llama_context;
  51. struct llama_sampler;
  52. typedef int32_t llama_pos;
  53. typedef int32_t llama_token;
  54. typedef int32_t llama_seq_id;
  55. enum llama_vocab_type {
  56. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  57. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  58. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  59. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  60. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  61. LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
  62. };
  63. // pre-tokenization types
  64. enum llama_vocab_pre_type {
  65. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  66. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  67. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  68. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  69. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  70. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  71. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  72. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  73. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  74. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  75. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  76. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  77. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  78. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  79. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  80. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  81. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  82. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  83. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  84. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  85. LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
  86. LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
  87. LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
  88. LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
  89. LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
  90. LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
  91. LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
  92. };
  93. enum llama_rope_type {
  94. LLAMA_ROPE_TYPE_NONE = -1,
  95. LLAMA_ROPE_TYPE_NORM = 0,
  96. LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
  97. };
  98. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  99. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  100. LLAMA_TOKEN_TYPE_NORMAL = 1,
  101. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  102. LLAMA_TOKEN_TYPE_CONTROL = 3,
  103. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  104. LLAMA_TOKEN_TYPE_UNUSED = 5,
  105. LLAMA_TOKEN_TYPE_BYTE = 6,
  106. };
  107. enum llama_token_attr {
  108. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  109. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  110. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  111. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  112. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  113. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  114. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  115. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  116. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  117. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  118. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  119. };
  120. // model file types
  121. enum llama_ftype {
  122. LLAMA_FTYPE_ALL_F32 = 0,
  123. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  124. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  125. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  126. // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  127. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  128. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  129. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  130. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  131. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  132. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  133. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  139. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  142. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  143. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  144. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  145. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  146. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  147. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  148. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  150. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  151. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  152. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  153. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  154. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  155. LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
  156. LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
  157. LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
  158. LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
  159. LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
  160. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  161. };
  162. enum llama_rope_scaling_type {
  163. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  164. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  165. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  166. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  167. LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3,
  168. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE,
  169. };
  170. enum llama_pooling_type {
  171. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  172. LLAMA_POOLING_TYPE_NONE = 0,
  173. LLAMA_POOLING_TYPE_MEAN = 1,
  174. LLAMA_POOLING_TYPE_CLS = 2,
  175. LLAMA_POOLING_TYPE_LAST = 3,
  176. LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph
  177. };
  178. enum llama_attention_type {
  179. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  180. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  181. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  182. };
  183. enum llama_split_mode {
  184. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  185. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  186. LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
  187. };
  188. // TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
  189. typedef struct llama_token_data {
  190. llama_token id; // token id
  191. float logit; // log-odds of the token
  192. float p; // probability of the token
  193. } llama_token_data;
  194. typedef struct llama_token_data_array {
  195. // TODO: consider SoA
  196. // NOTE: this pointer can be modified by the samplers
  197. llama_token_data * data;
  198. size_t size;
  199. int64_t selected; // this is the index in the data array (i.e. not the token id)
  200. bool sorted;
  201. } llama_token_data_array;
  202. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  203. // Input data for llama_decode
  204. // A llama_batch object can contain input about one or many sequences
  205. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  206. //
  207. // - token : the token ids of the input (used when embd is NULL)
  208. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  209. // - pos : the positions of the respective token in the sequence
  210. // (if set to NULL, the token position will be tracked automatically by llama_decode)
  211. // - seq_id : the sequence to which the respective token belongs
  212. // (if set to NULL, the sequence ID will be assumed to be 0)
  213. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  214. // (if set to NULL, only the logits for last token will be returned)
  215. //
  216. typedef struct llama_batch {
  217. int32_t n_tokens;
  218. llama_token * token;
  219. float * embd;
  220. llama_pos * pos;
  221. int32_t * n_seq_id;
  222. llama_seq_id ** seq_id;
  223. int8_t * logits; // TODO: rename this to "output"
  224. } llama_batch;
  225. enum llama_model_kv_override_type {
  226. LLAMA_KV_OVERRIDE_TYPE_INT,
  227. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  228. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  229. LLAMA_KV_OVERRIDE_TYPE_STR,
  230. };
  231. struct llama_model_kv_override {
  232. enum llama_model_kv_override_type tag;
  233. char key[128];
  234. union {
  235. int64_t val_i64;
  236. double val_f64;
  237. bool val_bool;
  238. char val_str[128];
  239. };
  240. };
  241. struct llama_model_params {
  242. // NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
  243. ggml_backend_dev_t * devices;
  244. int32_t n_gpu_layers; // number of layers to store in VRAM
  245. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  246. // the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
  247. int32_t main_gpu;
  248. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  249. const float * tensor_split;
  250. // comma separated list of RPC servers to use for offloading
  251. const char * rpc_servers;
  252. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  253. // If the provided progress_callback returns true, model loading continues.
  254. // If it returns false, model loading is immediately aborted.
  255. llama_progress_callback progress_callback;
  256. // context pointer passed to the progress callback
  257. void * progress_callback_user_data;
  258. // override key-value pairs of the model meta data
  259. const struct llama_model_kv_override * kv_overrides;
  260. // Keep the booleans together to avoid misalignment during copy-by-value.
  261. bool vocab_only; // only load the vocabulary, no weights
  262. bool use_mmap; // use mmap if possible
  263. bool use_mlock; // force system to keep model in RAM
  264. bool check_tensors; // validate model tensor data
  265. };
  266. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  267. // https://github.com/ggerganov/llama.cpp/pull/7544
  268. struct llama_context_params {
  269. uint32_t n_ctx; // text context, 0 = from model
  270. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  271. uint32_t n_ubatch; // physical maximum batch size
  272. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  273. int32_t n_threads; // number of threads to use for generation
  274. int32_t n_threads_batch; // number of threads to use for batch processing
  275. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  276. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  277. enum llama_attention_type attention_type; // attention type to use for embeddings
  278. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  279. float rope_freq_base; // RoPE base frequency, 0 = from model
  280. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  281. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  282. float yarn_attn_factor; // YaRN magnitude scaling factor
  283. float yarn_beta_fast; // YaRN low correction dim
  284. float yarn_beta_slow; // YaRN high correction dim
  285. uint32_t yarn_orig_ctx; // YaRN original context size
  286. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  287. ggml_backend_sched_eval_callback cb_eval;
  288. void * cb_eval_user_data;
  289. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  290. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  291. // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
  292. // TODO: move at the end of the struct
  293. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  294. bool embeddings; // if true, extract embeddings (together with logits)
  295. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  296. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  297. bool no_perf; // whether to measure performance timings
  298. // Abort callback
  299. // if it returns true, execution of llama_decode() will be aborted
  300. // currently works only with CPU execution
  301. ggml_abort_callback abort_callback;
  302. void * abort_callback_data;
  303. };
  304. // model quantization parameters
  305. typedef struct llama_model_quantize_params {
  306. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  307. enum llama_ftype ftype; // quantize to this llama_ftype
  308. enum ggml_type output_tensor_type; // output tensor type
  309. enum ggml_type token_embedding_type; // token embeddings tensor type
  310. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  311. bool quantize_output_tensor; // quantize output.weight
  312. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  313. bool pure; // quantize all tensors to the default type
  314. bool keep_split; // quantize to the same number of shards
  315. void * imatrix; // pointer to importance matrix data
  316. void * kv_overrides; // pointer to vector containing overrides
  317. } llama_model_quantize_params;
  318. typedef struct llama_logit_bias {
  319. llama_token token;
  320. float bias;
  321. } llama_logit_bias;
  322. typedef struct llama_sampler_chain_params {
  323. bool no_perf; // whether to measure performance timings
  324. } llama_sampler_chain_params;
  325. // used in chat template
  326. typedef struct llama_chat_message {
  327. const char * role;
  328. const char * content;
  329. } llama_chat_message;
  330. // lora adapter
  331. struct llama_lora_adapter;
  332. // Helpers for getting default parameters
  333. // TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
  334. LLAMA_API struct llama_model_params llama_model_default_params(void);
  335. LLAMA_API struct llama_context_params llama_context_default_params(void);
  336. LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
  337. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  338. // Initialize the llama + ggml backend
  339. // If numa is true, use NUMA optimizations
  340. // Call once at the start of the program
  341. LLAMA_API void llama_backend_init(void);
  342. //optional:
  343. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  344. // Optional: an auto threadpool gets created in ggml if not passed explicitly
  345. LLAMA_API void llama_attach_threadpool(
  346. struct llama_context * ctx,
  347. ggml_threadpool_t threadpool,
  348. ggml_threadpool_t threadpool_batch);
  349. LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
  350. // Call once at the end of the program - currently only used for MPI
  351. LLAMA_API void llama_backend_free(void);
  352. LLAMA_API struct llama_model * llama_load_model_from_file(
  353. const char * path_model,
  354. struct llama_model_params params);
  355. LLAMA_API void llama_free_model(struct llama_model * model);
  356. // TODO: rename to llama_init_from_model
  357. LLAMA_API struct llama_context * llama_new_context_with_model(
  358. struct llama_model * model,
  359. struct llama_context_params params);
  360. // Frees all allocated memory
  361. LLAMA_API void llama_free(struct llama_context * ctx);
  362. LLAMA_API int64_t llama_time_us(void);
  363. LLAMA_API size_t llama_max_devices(void);
  364. LLAMA_API bool llama_supports_mmap (void);
  365. LLAMA_API bool llama_supports_mlock (void);
  366. LLAMA_API bool llama_supports_gpu_offload(void);
  367. LLAMA_API bool llama_supports_rpc (void);
  368. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  369. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  370. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  371. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  372. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  373. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  374. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  375. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  376. LLAMA_API int32_t llama_n_head (const struct llama_model * model);
  377. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  378. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  379. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  380. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  381. // Get the model's RoPE frequency scaling factor
  382. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  383. // Functions to access the model's GGUF metadata scalar values
  384. // - The functions return the length of the string on success, or -1 on failure
  385. // - The output string is always null-terminated and cleared on failure
  386. // - GGUF array values are not supported by these functions
  387. // Get metadata value as a string by key name
  388. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  389. // Get the number of metadata key/value pairs
  390. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  391. // Get metadata key name by index
  392. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  393. // Get metadata value as a string by index
  394. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  395. // Get a string describing the model type
  396. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  397. // Returns the total size of all the tensors in the model in bytes
  398. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  399. // Returns the total number of parameters in the model
  400. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  401. // Get a llama model tensor
  402. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  403. // Returns true if the model contains an encoder that requires llama_encode() call
  404. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  405. // Returns true if the model contains a decoder that requires llama_decode() call
  406. LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
  407. // For encoder-decoder models, this function returns id of the token that must be provided
  408. // to the decoder to start generating output sequence. For other models, it returns -1.
  409. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  410. // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
  411. LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
  412. // Returns 0 on success
  413. LLAMA_API uint32_t llama_model_quantize(
  414. const char * fname_inp,
  415. const char * fname_out,
  416. const llama_model_quantize_params * params);
  417. // Load a LoRA adapter from file
  418. // The loaded adapter will be associated to the given model, and will be free when the model is deleted
  419. LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
  420. struct llama_model * model,
  421. const char * path_lora);
  422. // Add a loaded LoRA adapter to given context
  423. // This will not modify model's weight
  424. LLAMA_API int32_t llama_lora_adapter_set(
  425. struct llama_context * ctx,
  426. struct llama_lora_adapter * adapter,
  427. float scale);
  428. // Remove a specific LoRA adapter from given context
  429. // Return -1 if the adapter is not present in the context
  430. LLAMA_API int32_t llama_lora_adapter_remove(
  431. struct llama_context * ctx,
  432. struct llama_lora_adapter * adapter);
  433. // Remove all LoRA adapters from given context
  434. LLAMA_API void llama_lora_adapter_clear(
  435. struct llama_context * ctx);
  436. // Manually free a LoRA adapter
  437. // Note: loaded adapters will be free when the associated model is deleted
  438. LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
  439. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  440. // the currently loaded vector.
  441. // n_embd should be the size of a single layer's control, and data should point
  442. // to an n_embd x n_layers buffer starting from layer 1.
  443. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  444. // See llama_control_vector_load in common to load a control vector.
  445. LLAMA_API int32_t llama_control_vector_apply(
  446. struct llama_context * lctx,
  447. const float * data,
  448. size_t len,
  449. int32_t n_embd,
  450. int32_t il_start,
  451. int32_t il_end);
  452. //
  453. // KV cache
  454. //
  455. // Information associated with an individual cell in the KV cache view.
  456. struct llama_kv_cache_view_cell {
  457. // The position for this cell. Takes KV cache shifts into account.
  458. // May be negative if the cell is not populated.
  459. llama_pos pos;
  460. };
  461. // An updateable view of the KV cache.
  462. struct llama_kv_cache_view {
  463. // Number of KV cache cells. This will be the same as the context size.
  464. int32_t n_cells;
  465. // Maximum number of sequences that can exist in a cell. It's not an error
  466. // if there are more sequences in a cell than this value, however they will
  467. // not be visible in the view cells_sequences.
  468. int32_t n_seq_max;
  469. // Number of tokens in the cache. For example, if there are two populated
  470. // cells, the first with 1 sequence id in it and the second with 2 sequence
  471. // ids then you'll have 3 tokens.
  472. int32_t token_count;
  473. // Number of populated cache cells.
  474. int32_t used_cells;
  475. // Maximum contiguous empty slots in the cache.
  476. int32_t max_contiguous;
  477. // Index to the start of the max_contiguous slot range. Can be negative
  478. // when cache is full.
  479. int32_t max_contiguous_idx;
  480. // Information for an individual cell.
  481. struct llama_kv_cache_view_cell * cells;
  482. // The sequences for each cell. There will be n_seq_max items per cell.
  483. llama_seq_id * cells_sequences;
  484. };
  485. // Create an empty KV cache view. (use only for debugging purposes)
  486. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  487. // Free a KV cache view. (use only for debugging purposes)
  488. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  489. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  490. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  491. // Returns the number of tokens in the KV cache (slow, use only for debug)
  492. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  493. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  494. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  495. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  496. // Clear the KV cache - both cell info is erased and KV data is zeroed
  497. LLAMA_API void llama_kv_cache_clear(
  498. struct llama_context * ctx);
  499. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  500. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  501. // seq_id < 0 : match any sequence
  502. // p0 < 0 : [0, p1]
  503. // p1 < 0 : [p0, inf)
  504. LLAMA_API bool llama_kv_cache_seq_rm(
  505. struct llama_context * ctx,
  506. llama_seq_id seq_id,
  507. llama_pos p0,
  508. llama_pos p1);
  509. // Copy all tokens that belong to the specified sequence to another sequence
  510. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  511. // p0 < 0 : [0, p1]
  512. // p1 < 0 : [p0, inf)
  513. LLAMA_API void llama_kv_cache_seq_cp(
  514. struct llama_context * ctx,
  515. llama_seq_id seq_id_src,
  516. llama_seq_id seq_id_dst,
  517. llama_pos p0,
  518. llama_pos p1);
  519. // Removes all tokens that do not belong to the specified sequence
  520. LLAMA_API void llama_kv_cache_seq_keep(
  521. struct llama_context * ctx,
  522. llama_seq_id seq_id);
  523. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  524. // If the KV cache is RoPEd, the KV data is updated accordingly:
  525. // - lazily on next llama_decode()
  526. // - explicitly with llama_kv_cache_update()
  527. // p0 < 0 : [0, p1]
  528. // p1 < 0 : [p0, inf)
  529. LLAMA_API void llama_kv_cache_seq_add(
  530. struct llama_context * ctx,
  531. llama_seq_id seq_id,
  532. llama_pos p0,
  533. llama_pos p1,
  534. llama_pos delta);
  535. // Integer division of the positions by factor of `d > 1`
  536. // If the KV cache is RoPEd, the KV data is updated accordingly:
  537. // - lazily on next llama_decode()
  538. // - explicitly with llama_kv_cache_update()
  539. // p0 < 0 : [0, p1]
  540. // p1 < 0 : [p0, inf)
  541. LLAMA_API void llama_kv_cache_seq_div(
  542. struct llama_context * ctx,
  543. llama_seq_id seq_id,
  544. llama_pos p0,
  545. llama_pos p1,
  546. int d);
  547. // Returns the largest position present in the KV cache for the specified sequence
  548. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  549. struct llama_context * ctx,
  550. llama_seq_id seq_id);
  551. // Defragment the KV cache
  552. // This will be applied:
  553. // - lazily on next llama_decode()
  554. // - explicitly with llama_kv_cache_update()
  555. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  556. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  557. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  558. // Check if the context supports KV cache shifting
  559. LLAMA_API bool llama_kv_cache_can_shift(struct llama_context * ctx);
  560. //
  561. // State / sessions
  562. //
  563. // Returns the *actual* size in bytes of the state
  564. // (logits, embedding and kv_cache)
  565. // Only use when saving the state, not when restoring it, otherwise the size may be too small.
  566. LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
  567. LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
  568. "use llama_state_get_size instead");
  569. // Copies the state to the specified destination address.
  570. // Destination needs to have allocated enough memory.
  571. // Returns the number of bytes copied
  572. LLAMA_API size_t llama_state_get_data(
  573. struct llama_context * ctx,
  574. uint8_t * dst,
  575. size_t size);
  576. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  577. struct llama_context * ctx,
  578. uint8_t * dst),
  579. "use llama_state_get_data instead");
  580. // Set the state reading from the specified address
  581. // Returns the number of bytes read
  582. LLAMA_API size_t llama_state_set_data(
  583. struct llama_context * ctx,
  584. const uint8_t * src,
  585. size_t size);
  586. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  587. struct llama_context * ctx,
  588. const uint8_t * src),
  589. "use llama_state_set_data instead");
  590. // Save/load session file
  591. LLAMA_API bool llama_state_load_file(
  592. struct llama_context * ctx,
  593. const char * path_session,
  594. llama_token * tokens_out,
  595. size_t n_token_capacity,
  596. size_t * n_token_count_out);
  597. LLAMA_API DEPRECATED(bool llama_load_session_file(
  598. struct llama_context * ctx,
  599. const char * path_session,
  600. llama_token * tokens_out,
  601. size_t n_token_capacity,
  602. size_t * n_token_count_out),
  603. "use llama_state_load_file instead");
  604. LLAMA_API bool llama_state_save_file(
  605. struct llama_context * ctx,
  606. const char * path_session,
  607. const llama_token * tokens,
  608. size_t n_token_count);
  609. LLAMA_API DEPRECATED(bool llama_save_session_file(
  610. struct llama_context * ctx,
  611. const char * path_session,
  612. const llama_token * tokens,
  613. size_t n_token_count),
  614. "use llama_state_save_file instead");
  615. // Get the exact size needed to copy the KV cache of a single sequence
  616. LLAMA_API size_t llama_state_seq_get_size(
  617. struct llama_context * ctx,
  618. llama_seq_id seq_id);
  619. // Copy the KV cache of a single sequence into the specified buffer
  620. LLAMA_API size_t llama_state_seq_get_data(
  621. struct llama_context * ctx,
  622. uint8_t * dst,
  623. size_t size,
  624. llama_seq_id seq_id);
  625. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  626. // Returns:
  627. // - Positive: Ok
  628. // - Zero: Failed to load
  629. LLAMA_API size_t llama_state_seq_set_data(
  630. struct llama_context * ctx,
  631. const uint8_t * src,
  632. size_t size,
  633. llama_seq_id dest_seq_id);
  634. LLAMA_API size_t llama_state_seq_save_file(
  635. struct llama_context * ctx,
  636. const char * filepath,
  637. llama_seq_id seq_id,
  638. const llama_token * tokens,
  639. size_t n_token_count);
  640. LLAMA_API size_t llama_state_seq_load_file(
  641. struct llama_context * ctx,
  642. const char * filepath,
  643. llama_seq_id dest_seq_id,
  644. llama_token * tokens_out,
  645. size_t n_token_capacity,
  646. size_t * n_token_count_out);
  647. //
  648. // Decoding
  649. //
  650. // Return batch for single sequence of tokens
  651. // The sequence ID will be fixed to 0
  652. // The position of the tokens will be tracked automatically by llama_decode
  653. //
  654. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  655. //
  656. LLAMA_API struct llama_batch llama_batch_get_one(
  657. llama_token * tokens,
  658. int32_t n_tokens);
  659. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  660. // Each token can be assigned up to n_seq_max sequence ids
  661. // The batch has to be freed with llama_batch_free()
  662. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  663. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  664. // The rest of the llama_batch members are allocated with size n_tokens
  665. // All members are left uninitialized
  666. LLAMA_API struct llama_batch llama_batch_init(
  667. int32_t n_tokens,
  668. int32_t embd,
  669. int32_t n_seq_max);
  670. // Frees a batch of tokens allocated with llama_batch_init()
  671. LLAMA_API void llama_batch_free(struct llama_batch batch);
  672. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  673. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  674. // 0 - success
  675. // < 0 - error. the KV cache state is restored to the state before this call
  676. LLAMA_API int32_t llama_encode(
  677. struct llama_context * ctx,
  678. struct llama_batch batch);
  679. // Positive return values does not mean a fatal error, but rather a warning.
  680. // 0 - success
  681. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  682. // < 0 - error. the KV cache state is restored to the state before this call
  683. LLAMA_API int32_t llama_decode(
  684. struct llama_context * ctx,
  685. struct llama_batch batch);
  686. // Set the number of threads used for decoding
  687. // n_threads is the number of threads used for generation (single token)
  688. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  689. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
  690. // Get the number of threads used for generation of a single token.
  691. LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
  692. // Get the number of threads used for prompt and batch processing (multiple token).
  693. LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
  694. // Set whether the model is in embeddings mode or not
  695. // If true, embeddings will be returned but logits will not
  696. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  697. // Set whether to use causal attention or not
  698. // If set to true, the model will only attend to the past tokens
  699. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  700. // Set abort callback
  701. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  702. // Wait until all computations are finished
  703. // This is automatically done when using one of the functions below to obtain the computation results
  704. // and is not necessary to call it explicitly in most cases
  705. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  706. // Token logits obtained from the last call to llama_decode()
  707. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  708. // in the order they have appeared in the batch.
  709. // Rows: number of tokens for which llama_batch.logits[i] != 0
  710. // Cols: n_vocab
  711. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  712. // Logits for the ith token. For positive indices, Equivalent to:
  713. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  714. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  715. // returns NULL for invalid ids.
  716. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  717. // Get all output token embeddings.
  718. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  719. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  720. // in the order they have appeared in the batch.
  721. // shape: [n_outputs*n_embd]
  722. // Otherwise, returns NULL.
  723. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  724. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  725. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  726. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  727. // shape: [n_embd] (1-dimensional)
  728. // returns NULL for invalid ids.
  729. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  730. // Get the embeddings for a sequence id
  731. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  732. // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence
  733. // otherwise: float[n_embd] (1-dimensional)
  734. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  735. //
  736. // Vocab
  737. //
  738. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  739. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  740. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  741. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  742. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  743. // Identify if Token Id is a control token or a render-able token
  744. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  745. // Special tokens
  746. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  747. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  748. LLAMA_API llama_token llama_token_eot(const struct llama_model * model); // end-of-turn
  749. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  750. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  751. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  752. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  753. LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
  754. LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
  755. // infill tokens
  756. DEPRECATED(LLAMA_API llama_token llama_token_prefix(const struct llama_model * model), "use llama_token_fim_pre instead");
  757. DEPRECATED(LLAMA_API llama_token llama_token_middle(const struct llama_model * model), "use llama_token_fim_mid instead");
  758. DEPRECATED(LLAMA_API llama_token llama_token_suffix(const struct llama_model * model), "use llama_token_fim_suf instead");
  759. LLAMA_API llama_token llama_token_fim_pre(const struct llama_model * model);
  760. LLAMA_API llama_token llama_token_fim_suf(const struct llama_model * model);
  761. LLAMA_API llama_token llama_token_fim_mid(const struct llama_model * model);
  762. LLAMA_API llama_token llama_token_fim_pad(const struct llama_model * model);
  763. LLAMA_API llama_token llama_token_fim_rep(const struct llama_model * model);
  764. LLAMA_API llama_token llama_token_fim_sep(const struct llama_model * model);
  765. //
  766. // Tokenization
  767. //
  768. // The API is thread-safe.
  769. //
  770. /// @details Convert the provided text into tokens.
  771. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  772. /// @return Returns the number of tokens on success, no more than n_tokens_max
  773. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  774. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  775. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  776. /// as plaintext. Does not insert a leading space.
  777. LLAMA_API int32_t llama_tokenize(
  778. const struct llama_model * model,
  779. const char * text,
  780. int32_t text_len,
  781. llama_token * tokens,
  782. int32_t n_tokens_max,
  783. bool add_special,
  784. bool parse_special);
  785. // Token Id -> Piece.
  786. // Uses the vocabulary in the provided context.
  787. // Does not write null terminator to the buffer.
  788. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  789. // @param special If true, special tokens are rendered in the output.
  790. LLAMA_API int32_t llama_token_to_piece(
  791. const struct llama_model * model,
  792. llama_token token,
  793. char * buf,
  794. int32_t length,
  795. int32_t lstrip,
  796. bool special);
  797. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  798. /// @param text The char pointer must be large enough to hold the resulting text.
  799. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  800. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  801. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  802. /// @param unparse_special If true, special tokens are rendered in the output.
  803. LLAMA_API int32_t llama_detokenize(
  804. const struct llama_model * model,
  805. const llama_token * tokens,
  806. int32_t n_tokens,
  807. char * text,
  808. int32_t text_len_max,
  809. bool remove_special,
  810. bool unparse_special);
  811. //
  812. // Chat templates
  813. //
  814. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  815. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  816. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  817. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  818. /// @param chat Pointer to a list of multiple llama_chat_message
  819. /// @param n_msg Number of llama_chat_message in this chat
  820. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  821. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  822. /// @param length The size of the allocated buffer
  823. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  824. LLAMA_API int32_t llama_chat_apply_template(
  825. const struct llama_model * model,
  826. const char * tmpl,
  827. const struct llama_chat_message * chat,
  828. size_t n_msg,
  829. bool add_ass,
  830. char * buf,
  831. int32_t length);
  832. // Get list of built-in chat templates
  833. LLAMA_API int32_t llama_chat_builtin_templates(const char ** output, size_t len);
  834. //
  835. // Sampling API
  836. //
  837. // Sample usage:
  838. //
  839. // // prepare the sampling chain at the start
  840. // auto sparams = llama_sampler_chain_default_params();
  841. //
  842. // llama_sampler * smpl = llama_sampler_chain_init(sparams);
  843. //
  844. // llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
  845. // llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
  846. // llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
  847. //
  848. // // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
  849. // // this sampler will be responsible to select the actual token
  850. // llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
  851. //
  852. // ...
  853. //
  854. // // decoding loop:
  855. // while (...) {
  856. // ...
  857. //
  858. // llama_decode(ctx, batch);
  859. //
  860. // // sample from the logits of the last token in the batch
  861. // const llama_token id = llama_sampler_sample(smpl, ctx, -1);
  862. //
  863. // // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
  864. // llama_sampler_accept(smpl, id);
  865. // ...
  866. // }
  867. //
  868. // llama_sampler_free(smpl);
  869. //
  870. // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
  871. // TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
  872. //
  873. typedef void * llama_sampler_context_t;
  874. // user code can implement the interface below in order to create custom llama_sampler
  875. struct llama_sampler_i {
  876. const char * (*name) (const struct llama_sampler * smpl); // can be NULL
  877. void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
  878. void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
  879. void (*reset) ( struct llama_sampler * smpl); // can be NULL
  880. struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
  881. void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
  882. // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
  883. //void (*apply_ggml) (struct llama_sampler * smpl, ...);
  884. };
  885. struct llama_sampler {
  886. struct llama_sampler_i * iface;
  887. llama_sampler_context_t ctx;
  888. };
  889. // mirror of llama_sampler_i:
  890. LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
  891. LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
  892. LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
  893. LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
  894. LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
  895. // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
  896. LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
  897. // llama_sampler_chain
  898. // a type of llama_sampler that can chain multiple samplers one after another
  899. LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
  900. // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
  901. LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
  902. LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
  903. LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
  904. // after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
  905. LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
  906. // available samplers:
  907. LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
  908. LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
  909. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  910. /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
  911. DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void),
  912. "will be removed in the future (see https://github.com/ggerganov/llama.cpp/pull/9896#discussion_r1800920915)");
  913. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  914. LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
  915. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  916. LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
  917. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  918. LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
  919. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  920. LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
  921. /// #details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf
  922. LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
  923. /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
  924. LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
  925. /// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
  926. LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
  927. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  928. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  929. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  930. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  931. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  932. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  933. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
  934. int32_t n_vocab,
  935. uint32_t seed,
  936. float tau,
  937. float eta,
  938. int32_t m);
  939. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  940. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  941. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  942. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  943. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  944. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
  945. uint32_t seed,
  946. float tau,
  947. float eta);
  948. LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
  949. const struct llama_model * model,
  950. const char * grammar_str,
  951. const char * grammar_root);
  952. LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
  953. int32_t n_vocab, // llama_n_vocab()
  954. llama_token special_eos_id, // llama_token_eos()
  955. llama_token linefeed_id, // llama_token_nl()
  956. int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
  957. float penalty_repeat, // 1.0 = disabled
  958. float penalty_freq, // 0.0 = disabled
  959. float penalty_present, // 0.0 = disabled
  960. bool penalize_nl, // consider newlines as a repeatable token
  961. bool ignore_eos); // ignore the end-of-sequence token
  962. /// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
  963. LLAMA_API struct llama_sampler * llama_sampler_init_dry(
  964. const struct llama_model * model,
  965. float dry_multiplier,
  966. float dry_base,
  967. int32_t dry_allowed_length,
  968. int32_t dry_penalty_last_n,
  969. const char ** seq_breakers,
  970. size_t num_breakers);
  971. LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
  972. int32_t n_vocab,
  973. int32_t n_logit_bias,
  974. const llama_logit_bias * logit_bias);
  975. // this sampler is meant to be used for fill-in-the-middle infilling
  976. // it's supposed to be used after top_k + top_p sampling
  977. //
  978. // 1. if the sum of the EOG probs times the number of candidates is higher than the sum of the other probs -> pick EOG
  979. // 2. combine probs of tokens that have the same prefix
  980. //
  981. // example:
  982. //
  983. // - before:
  984. // "hel": 0.5
  985. // "hell": 0.2
  986. // "hello": 0.1
  987. // "dummy": 0.1
  988. //
  989. // - after:
  990. // "hel": 0.8
  991. // "dummy": 0.1
  992. //
  993. // 3. discard non-EOG tokens with low prob
  994. // 4. if no tokens are left -> pick EOT
  995. //
  996. LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model);
  997. // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
  998. LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
  999. /// @details Sample and accept a token from the idx-th output of the last evaluation
  1000. //
  1001. // Shorthand for:
  1002. // const auto * logits = llama_get_logits_ith(ctx, idx);
  1003. // llama_token_data_array cur_p = { ... init from logits ... };
  1004. // llama_sampler_apply(smpl, &cur_p);
  1005. // auto token = cur_p.data[cur_p.selected].id;
  1006. // llama_sampler_accept(smpl, token);
  1007. // return token;
  1008. // Returns the sampled token
  1009. LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
  1010. // TODO: extend in the future
  1011. //LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);
  1012. //
  1013. // Model split
  1014. //
  1015. /// @details Build a split GGUF final path for this chunk.
  1016. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  1017. // Returns the split_path length.
  1018. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  1019. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  1020. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  1021. // Returns the split_prefix length.
  1022. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  1023. // Print system information
  1024. LLAMA_API const char * llama_print_system_info(void);
  1025. // Set callback for all future logging events.
  1026. // If this is not called, or NULL is supplied, everything is output on stderr.
  1027. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  1028. //
  1029. // Performance utils
  1030. //
  1031. // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
  1032. //
  1033. struct llama_perf_context_data {
  1034. double t_start_ms;
  1035. double t_load_ms;
  1036. double t_p_eval_ms;
  1037. double t_eval_ms;
  1038. int32_t n_p_eval;
  1039. int32_t n_eval;
  1040. };
  1041. struct llama_perf_sampler_data {
  1042. double t_sample_ms;
  1043. int32_t n_sample;
  1044. };
  1045. LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
  1046. LLAMA_API void llama_perf_context_print(const struct llama_context * ctx);
  1047. LLAMA_API void llama_perf_context_reset( struct llama_context * ctx);
  1048. // NOTE: the following work only with samplers constructed via llama_sampler_chain_init
  1049. LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain);
  1050. LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
  1051. LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
  1052. #ifdef __cplusplus
  1053. }
  1054. #endif
  1055. #endif // LLAMA_H