constants.py 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927
  1. from __future__ import annotations
  2. import sys
  3. from enum import Enum, IntEnum, auto
  4. from typing import Any
  5. #
  6. # constants
  7. #
  8. GGUF_MAGIC = 0x46554747 # "GGUF"
  9. GGUF_VERSION = 3
  10. GGUF_DEFAULT_ALIGNMENT = 32
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. VERSION = "general.version"
  22. URL = "general.url"
  23. DESCRIPTION = "general.description"
  24. LICENSE = "general.license"
  25. SOURCE_URL = "general.source.url"
  26. SOURCE_HF_REPO = "general.source.huggingface.repository"
  27. FILE_TYPE = "general.file_type"
  28. class LLM:
  29. VOCAB_SIZE = "{arch}.vocab_size"
  30. CONTEXT_LENGTH = "{arch}.context_length"
  31. EMBEDDING_LENGTH = "{arch}.embedding_length"
  32. BLOCK_COUNT = "{arch}.block_count"
  33. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  34. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  35. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  36. EXPERT_COUNT = "{arch}.expert_count"
  37. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  38. POOLING_TYPE = "{arch}.pooling_type"
  39. LOGIT_SCALE = "{arch}.logit_scale"
  40. class Attention:
  41. HEAD_COUNT = "{arch}.attention.head_count"
  42. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  43. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  44. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  45. KEY_LENGTH = "{arch}.attention.key_length"
  46. VALUE_LENGTH = "{arch}.attention.value_length"
  47. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  48. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  49. CAUSAL = "{arch}.attention.causal"
  50. class Rope:
  51. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  52. FREQ_BASE = "{arch}.rope.freq_base"
  53. SCALING_TYPE = "{arch}.rope.scaling.type"
  54. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  55. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  56. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  57. class SSM:
  58. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  59. INNER_SIZE = "{arch}.ssm.inner_size"
  60. STATE_SIZE = "{arch}.ssm.state_size"
  61. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  62. class Tokenizer:
  63. MODEL = "tokenizer.ggml.model"
  64. LIST = "tokenizer.ggml.tokens"
  65. TOKEN_TYPE = "tokenizer.ggml.token_type"
  66. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  67. SCORES = "tokenizer.ggml.scores"
  68. MERGES = "tokenizer.ggml.merges"
  69. BOS_ID = "tokenizer.ggml.bos_token_id"
  70. EOS_ID = "tokenizer.ggml.eos_token_id"
  71. UNK_ID = "tokenizer.ggml.unknown_token_id"
  72. SEP_ID = "tokenizer.ggml.seperator_token_id"
  73. PAD_ID = "tokenizer.ggml.padding_token_id"
  74. CLS_ID = "tokenizer.ggml.cls_token_id"
  75. MASK_ID = "tokenizer.ggml.mask_token_id"
  76. ADD_BOS = "tokenizer.ggml.add_bos_token"
  77. ADD_EOS = "tokenizer.ggml.add_eos_token"
  78. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  79. HF_JSON = "tokenizer.huggingface.json"
  80. RWKV = "tokenizer.rwkv.world"
  81. CHAT_TEMPLATE = "tokenizer.chat_template"
  82. # FIM/Infill special tokens constants
  83. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  84. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  85. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  86. EOT_ID = "tokenizer.ggml.eot_token_id"
  87. #
  88. # recommended mapping of model tensor names for storage in gguf
  89. #
  90. class MODEL_ARCH(IntEnum):
  91. LLAMA = auto()
  92. FALCON = auto()
  93. BAICHUAN = auto()
  94. GROK = auto()
  95. GPT2 = auto()
  96. GPTJ = auto()
  97. GPTNEOX = auto()
  98. MPT = auto()
  99. STARCODER = auto()
  100. PERSIMMON = auto()
  101. REFACT = auto()
  102. BERT = auto()
  103. NOMIC_BERT = auto()
  104. BLOOM = auto()
  105. STABLELM = auto()
  106. QWEN = auto()
  107. QWEN2 = auto()
  108. QWEN2MOE = auto()
  109. PHI2 = auto()
  110. PLAMO = auto()
  111. CODESHELL = auto()
  112. ORION = auto()
  113. INTERNLM2 = auto()
  114. MINICPM = auto()
  115. GEMMA = auto()
  116. STARCODER2 = auto()
  117. MAMBA = auto()
  118. XVERSE = auto()
  119. COMMAND_R = auto()
  120. DBRX = auto()
  121. class MODEL_TENSOR(IntEnum):
  122. TOKEN_EMBD = auto()
  123. TOKEN_EMBD_NORM = auto()
  124. TOKEN_TYPES = auto()
  125. POS_EMBD = auto()
  126. OUTPUT = auto()
  127. OUTPUT_NORM = auto()
  128. ROPE_FREQS = auto()
  129. ATTN_Q = auto()
  130. ATTN_K = auto()
  131. ATTN_V = auto()
  132. ATTN_QKV = auto()
  133. ATTN_OUT = auto()
  134. ATTN_NORM = auto()
  135. ATTN_NORM_2 = auto()
  136. ATTN_OUT_NORM = auto()
  137. ATTN_ROT_EMBD = auto()
  138. FFN_GATE_INP = auto()
  139. FFN_GATE_INP_SHEXP = auto()
  140. FFN_NORM = auto()
  141. FFN_GATE = auto()
  142. FFN_DOWN = auto()
  143. FFN_UP = auto()
  144. FFN_ACT = auto()
  145. FFN_GATE_EXP = auto()
  146. FFN_DOWN_EXP = auto()
  147. FFN_UP_EXP = auto()
  148. FFN_GATE_SHEXP = auto()
  149. FFN_DOWN_SHEXP = auto()
  150. FFN_UP_SHEXP = auto()
  151. ATTN_Q_NORM = auto()
  152. ATTN_K_NORM = auto()
  153. LAYER_OUT_NORM = auto()
  154. SSM_IN = auto()
  155. SSM_CONV1D = auto()
  156. SSM_X = auto()
  157. SSM_DT = auto()
  158. SSM_A = auto()
  159. SSM_D = auto()
  160. SSM_OUT = auto()
  161. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  162. MODEL_ARCH.LLAMA: "llama",
  163. MODEL_ARCH.FALCON: "falcon",
  164. MODEL_ARCH.BAICHUAN: "baichuan",
  165. MODEL_ARCH.GROK: "grok",
  166. MODEL_ARCH.GPT2: "gpt2",
  167. MODEL_ARCH.GPTJ: "gptj",
  168. MODEL_ARCH.GPTNEOX: "gptneox",
  169. MODEL_ARCH.MPT: "mpt",
  170. MODEL_ARCH.STARCODER: "starcoder",
  171. MODEL_ARCH.PERSIMMON: "persimmon",
  172. MODEL_ARCH.REFACT: "refact",
  173. MODEL_ARCH.BERT: "bert",
  174. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  175. MODEL_ARCH.BLOOM: "bloom",
  176. MODEL_ARCH.STABLELM: "stablelm",
  177. MODEL_ARCH.QWEN: "qwen",
  178. MODEL_ARCH.QWEN2: "qwen2",
  179. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  180. MODEL_ARCH.PHI2: "phi2",
  181. MODEL_ARCH.PLAMO: "plamo",
  182. MODEL_ARCH.CODESHELL: "codeshell",
  183. MODEL_ARCH.ORION: "orion",
  184. MODEL_ARCH.INTERNLM2: "internlm2",
  185. MODEL_ARCH.MINICPM: "minicpm",
  186. MODEL_ARCH.GEMMA: "gemma",
  187. MODEL_ARCH.STARCODER2: "starcoder2",
  188. MODEL_ARCH.MAMBA: "mamba",
  189. MODEL_ARCH.XVERSE: "xverse",
  190. MODEL_ARCH.COMMAND_R: "command-r",
  191. MODEL_ARCH.DBRX: "dbrx",
  192. }
  193. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  194. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  195. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  196. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  197. MODEL_TENSOR.POS_EMBD: "position_embd",
  198. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  199. MODEL_TENSOR.OUTPUT: "output",
  200. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  201. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  202. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  203. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  204. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  205. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  206. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  207. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  208. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  209. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  210. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  211. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  212. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  213. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  214. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  215. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  216. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  217. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  218. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  219. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  220. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  221. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  222. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  223. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  224. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  225. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  226. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  227. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  228. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  229. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  230. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  231. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  232. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  233. }
  234. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  235. MODEL_ARCH.LLAMA: [
  236. MODEL_TENSOR.TOKEN_EMBD,
  237. MODEL_TENSOR.OUTPUT_NORM,
  238. MODEL_TENSOR.OUTPUT,
  239. MODEL_TENSOR.ROPE_FREQS,
  240. MODEL_TENSOR.ATTN_NORM,
  241. MODEL_TENSOR.ATTN_Q,
  242. MODEL_TENSOR.ATTN_K,
  243. MODEL_TENSOR.ATTN_V,
  244. MODEL_TENSOR.ATTN_OUT,
  245. MODEL_TENSOR.ATTN_ROT_EMBD,
  246. MODEL_TENSOR.FFN_GATE_INP,
  247. MODEL_TENSOR.FFN_NORM,
  248. MODEL_TENSOR.FFN_GATE,
  249. MODEL_TENSOR.FFN_DOWN,
  250. MODEL_TENSOR.FFN_UP,
  251. MODEL_TENSOR.FFN_GATE_EXP,
  252. MODEL_TENSOR.FFN_DOWN_EXP,
  253. MODEL_TENSOR.FFN_UP_EXP,
  254. ],
  255. MODEL_ARCH.GROK: [
  256. MODEL_TENSOR.TOKEN_EMBD,
  257. MODEL_TENSOR.OUTPUT_NORM,
  258. MODEL_TENSOR.OUTPUT,
  259. MODEL_TENSOR.ROPE_FREQS,
  260. MODEL_TENSOR.ATTN_NORM,
  261. MODEL_TENSOR.ATTN_Q,
  262. MODEL_TENSOR.ATTN_K,
  263. MODEL_TENSOR.ATTN_V,
  264. MODEL_TENSOR.ATTN_OUT,
  265. MODEL_TENSOR.ATTN_ROT_EMBD,
  266. MODEL_TENSOR.ATTN_OUT_NORM,
  267. MODEL_TENSOR.FFN_GATE_INP,
  268. MODEL_TENSOR.FFN_NORM,
  269. MODEL_TENSOR.FFN_GATE,
  270. MODEL_TENSOR.FFN_DOWN,
  271. MODEL_TENSOR.FFN_UP,
  272. MODEL_TENSOR.FFN_GATE_EXP,
  273. MODEL_TENSOR.FFN_DOWN_EXP,
  274. MODEL_TENSOR.FFN_UP_EXP,
  275. MODEL_TENSOR.LAYER_OUT_NORM,
  276. ],
  277. MODEL_ARCH.GPTNEOX: [
  278. MODEL_TENSOR.TOKEN_EMBD,
  279. MODEL_TENSOR.OUTPUT_NORM,
  280. MODEL_TENSOR.OUTPUT,
  281. MODEL_TENSOR.ATTN_NORM,
  282. MODEL_TENSOR.ATTN_QKV,
  283. MODEL_TENSOR.ATTN_OUT,
  284. MODEL_TENSOR.FFN_NORM,
  285. MODEL_TENSOR.FFN_DOWN,
  286. MODEL_TENSOR.FFN_UP,
  287. ],
  288. MODEL_ARCH.FALCON: [
  289. MODEL_TENSOR.TOKEN_EMBD,
  290. MODEL_TENSOR.OUTPUT_NORM,
  291. MODEL_TENSOR.OUTPUT,
  292. MODEL_TENSOR.ATTN_NORM,
  293. MODEL_TENSOR.ATTN_NORM_2,
  294. MODEL_TENSOR.ATTN_QKV,
  295. MODEL_TENSOR.ATTN_OUT,
  296. MODEL_TENSOR.FFN_DOWN,
  297. MODEL_TENSOR.FFN_UP,
  298. ],
  299. MODEL_ARCH.BAICHUAN: [
  300. MODEL_TENSOR.TOKEN_EMBD,
  301. MODEL_TENSOR.OUTPUT_NORM,
  302. MODEL_TENSOR.OUTPUT,
  303. MODEL_TENSOR.ROPE_FREQS,
  304. MODEL_TENSOR.ATTN_NORM,
  305. MODEL_TENSOR.ATTN_Q,
  306. MODEL_TENSOR.ATTN_K,
  307. MODEL_TENSOR.ATTN_V,
  308. MODEL_TENSOR.ATTN_OUT,
  309. MODEL_TENSOR.ATTN_ROT_EMBD,
  310. MODEL_TENSOR.FFN_NORM,
  311. MODEL_TENSOR.FFN_GATE,
  312. MODEL_TENSOR.FFN_DOWN,
  313. MODEL_TENSOR.FFN_UP,
  314. ],
  315. MODEL_ARCH.STARCODER: [
  316. MODEL_TENSOR.TOKEN_EMBD,
  317. MODEL_TENSOR.POS_EMBD,
  318. MODEL_TENSOR.OUTPUT_NORM,
  319. MODEL_TENSOR.OUTPUT,
  320. MODEL_TENSOR.ATTN_NORM,
  321. MODEL_TENSOR.ATTN_QKV,
  322. MODEL_TENSOR.ATTN_OUT,
  323. MODEL_TENSOR.FFN_NORM,
  324. MODEL_TENSOR.FFN_DOWN,
  325. MODEL_TENSOR.FFN_UP,
  326. ],
  327. MODEL_ARCH.BERT: [
  328. MODEL_TENSOR.TOKEN_EMBD,
  329. MODEL_TENSOR.TOKEN_EMBD_NORM,
  330. MODEL_TENSOR.TOKEN_TYPES,
  331. MODEL_TENSOR.POS_EMBD,
  332. MODEL_TENSOR.OUTPUT_NORM,
  333. MODEL_TENSOR.ATTN_OUT_NORM,
  334. MODEL_TENSOR.ATTN_Q,
  335. MODEL_TENSOR.ATTN_K,
  336. MODEL_TENSOR.ATTN_V,
  337. MODEL_TENSOR.ATTN_OUT,
  338. MODEL_TENSOR.FFN_DOWN,
  339. MODEL_TENSOR.FFN_UP,
  340. MODEL_TENSOR.LAYER_OUT_NORM,
  341. ],
  342. MODEL_ARCH.NOMIC_BERT: [
  343. MODEL_TENSOR.TOKEN_EMBD,
  344. MODEL_TENSOR.TOKEN_EMBD_NORM,
  345. MODEL_TENSOR.TOKEN_TYPES,
  346. MODEL_TENSOR.POS_EMBD,
  347. MODEL_TENSOR.OUTPUT_NORM,
  348. MODEL_TENSOR.ATTN_OUT_NORM,
  349. MODEL_TENSOR.ATTN_QKV,
  350. MODEL_TENSOR.ATTN_OUT,
  351. MODEL_TENSOR.FFN_GATE,
  352. MODEL_TENSOR.FFN_DOWN,
  353. MODEL_TENSOR.FFN_UP,
  354. MODEL_TENSOR.LAYER_OUT_NORM,
  355. ],
  356. MODEL_ARCH.MPT: [
  357. MODEL_TENSOR.TOKEN_EMBD,
  358. MODEL_TENSOR.OUTPUT_NORM,
  359. MODEL_TENSOR.OUTPUT,
  360. MODEL_TENSOR.ATTN_NORM,
  361. MODEL_TENSOR.ATTN_QKV,
  362. MODEL_TENSOR.ATTN_OUT,
  363. MODEL_TENSOR.FFN_NORM,
  364. MODEL_TENSOR.FFN_DOWN,
  365. MODEL_TENSOR.FFN_UP,
  366. MODEL_TENSOR.FFN_ACT,
  367. MODEL_TENSOR.ATTN_Q_NORM,
  368. MODEL_TENSOR.ATTN_K_NORM,
  369. MODEL_TENSOR.POS_EMBD,
  370. ],
  371. MODEL_ARCH.GPTJ: [
  372. MODEL_TENSOR.TOKEN_EMBD,
  373. MODEL_TENSOR.OUTPUT_NORM,
  374. MODEL_TENSOR.OUTPUT,
  375. MODEL_TENSOR.ATTN_NORM,
  376. MODEL_TENSOR.ATTN_Q,
  377. MODEL_TENSOR.ATTN_K,
  378. MODEL_TENSOR.ATTN_V,
  379. MODEL_TENSOR.ATTN_OUT,
  380. MODEL_TENSOR.FFN_DOWN,
  381. MODEL_TENSOR.FFN_UP,
  382. ],
  383. MODEL_ARCH.PERSIMMON: [
  384. MODEL_TENSOR.TOKEN_EMBD,
  385. MODEL_TENSOR.OUTPUT,
  386. MODEL_TENSOR.OUTPUT_NORM,
  387. MODEL_TENSOR.ATTN_NORM,
  388. MODEL_TENSOR.ATTN_QKV,
  389. MODEL_TENSOR.ATTN_OUT,
  390. MODEL_TENSOR.FFN_NORM,
  391. MODEL_TENSOR.FFN_DOWN,
  392. MODEL_TENSOR.FFN_UP,
  393. MODEL_TENSOR.ATTN_Q_NORM,
  394. MODEL_TENSOR.ATTN_K_NORM,
  395. MODEL_TENSOR.ATTN_ROT_EMBD,
  396. ],
  397. MODEL_ARCH.REFACT: [
  398. MODEL_TENSOR.TOKEN_EMBD,
  399. MODEL_TENSOR.OUTPUT_NORM,
  400. MODEL_TENSOR.OUTPUT,
  401. MODEL_TENSOR.ATTN_NORM,
  402. MODEL_TENSOR.ATTN_Q,
  403. MODEL_TENSOR.ATTN_K,
  404. MODEL_TENSOR.ATTN_V,
  405. MODEL_TENSOR.ATTN_OUT,
  406. MODEL_TENSOR.FFN_NORM,
  407. MODEL_TENSOR.FFN_GATE,
  408. MODEL_TENSOR.FFN_DOWN,
  409. MODEL_TENSOR.FFN_UP,
  410. ],
  411. MODEL_ARCH.BLOOM: [
  412. MODEL_TENSOR.TOKEN_EMBD,
  413. MODEL_TENSOR.TOKEN_EMBD_NORM,
  414. MODEL_TENSOR.OUTPUT_NORM,
  415. MODEL_TENSOR.OUTPUT,
  416. MODEL_TENSOR.ATTN_NORM,
  417. MODEL_TENSOR.ATTN_QKV,
  418. MODEL_TENSOR.ATTN_OUT,
  419. MODEL_TENSOR.FFN_NORM,
  420. MODEL_TENSOR.FFN_DOWN,
  421. MODEL_TENSOR.FFN_UP,
  422. ],
  423. MODEL_ARCH.STABLELM: [
  424. MODEL_TENSOR.TOKEN_EMBD,
  425. MODEL_TENSOR.OUTPUT_NORM,
  426. MODEL_TENSOR.OUTPUT,
  427. MODEL_TENSOR.ROPE_FREQS,
  428. MODEL_TENSOR.ATTN_NORM,
  429. MODEL_TENSOR.ATTN_Q,
  430. MODEL_TENSOR.ATTN_K,
  431. MODEL_TENSOR.ATTN_V,
  432. MODEL_TENSOR.ATTN_OUT,
  433. MODEL_TENSOR.FFN_NORM,
  434. MODEL_TENSOR.FFN_GATE,
  435. MODEL_TENSOR.FFN_DOWN,
  436. MODEL_TENSOR.FFN_UP,
  437. MODEL_TENSOR.ATTN_Q_NORM,
  438. MODEL_TENSOR.ATTN_K_NORM,
  439. ],
  440. MODEL_ARCH.QWEN: [
  441. MODEL_TENSOR.TOKEN_EMBD,
  442. MODEL_TENSOR.OUTPUT_NORM,
  443. MODEL_TENSOR.OUTPUT,
  444. MODEL_TENSOR.ROPE_FREQS,
  445. MODEL_TENSOR.ATTN_NORM,
  446. MODEL_TENSOR.ATTN_QKV,
  447. MODEL_TENSOR.ATTN_OUT,
  448. MODEL_TENSOR.ATTN_ROT_EMBD,
  449. MODEL_TENSOR.FFN_NORM,
  450. MODEL_TENSOR.FFN_GATE,
  451. MODEL_TENSOR.FFN_DOWN,
  452. MODEL_TENSOR.FFN_UP,
  453. ],
  454. MODEL_ARCH.QWEN2: [
  455. MODEL_TENSOR.TOKEN_EMBD,
  456. MODEL_TENSOR.OUTPUT_NORM,
  457. MODEL_TENSOR.OUTPUT,
  458. MODEL_TENSOR.ATTN_NORM,
  459. MODEL_TENSOR.ATTN_Q,
  460. MODEL_TENSOR.ATTN_K,
  461. MODEL_TENSOR.ATTN_V,
  462. MODEL_TENSOR.ATTN_OUT,
  463. MODEL_TENSOR.FFN_NORM,
  464. MODEL_TENSOR.FFN_GATE,
  465. MODEL_TENSOR.FFN_DOWN,
  466. MODEL_TENSOR.FFN_UP,
  467. ],
  468. MODEL_ARCH.QWEN2MOE: [
  469. MODEL_TENSOR.TOKEN_EMBD,
  470. MODEL_TENSOR.OUTPUT_NORM,
  471. MODEL_TENSOR.OUTPUT,
  472. MODEL_TENSOR.ATTN_NORM,
  473. MODEL_TENSOR.ATTN_Q,
  474. MODEL_TENSOR.ATTN_K,
  475. MODEL_TENSOR.ATTN_V,
  476. MODEL_TENSOR.ATTN_OUT,
  477. MODEL_TENSOR.FFN_NORM,
  478. MODEL_TENSOR.FFN_GATE_INP,
  479. MODEL_TENSOR.FFN_GATE_EXP,
  480. MODEL_TENSOR.FFN_DOWN_EXP,
  481. MODEL_TENSOR.FFN_UP_EXP,
  482. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  483. MODEL_TENSOR.FFN_GATE_SHEXP,
  484. MODEL_TENSOR.FFN_DOWN_SHEXP,
  485. MODEL_TENSOR.FFN_UP_SHEXP,
  486. ],
  487. MODEL_ARCH.PLAMO: [
  488. MODEL_TENSOR.TOKEN_EMBD,
  489. MODEL_TENSOR.OUTPUT_NORM,
  490. MODEL_TENSOR.OUTPUT,
  491. MODEL_TENSOR.ROPE_FREQS,
  492. MODEL_TENSOR.ATTN_NORM,
  493. MODEL_TENSOR.ATTN_Q,
  494. MODEL_TENSOR.ATTN_K,
  495. MODEL_TENSOR.ATTN_V,
  496. MODEL_TENSOR.ATTN_OUT,
  497. MODEL_TENSOR.ATTN_ROT_EMBD,
  498. MODEL_TENSOR.FFN_GATE,
  499. MODEL_TENSOR.FFN_DOWN,
  500. MODEL_TENSOR.FFN_UP,
  501. ],
  502. MODEL_ARCH.GPT2: [
  503. MODEL_TENSOR.TOKEN_EMBD,
  504. MODEL_TENSOR.POS_EMBD,
  505. MODEL_TENSOR.OUTPUT_NORM,
  506. MODEL_TENSOR.OUTPUT,
  507. MODEL_TENSOR.ATTN_NORM,
  508. MODEL_TENSOR.ATTN_QKV,
  509. MODEL_TENSOR.ATTN_OUT,
  510. MODEL_TENSOR.FFN_NORM,
  511. MODEL_TENSOR.FFN_DOWN,
  512. MODEL_TENSOR.FFN_UP,
  513. ],
  514. MODEL_ARCH.PHI2: [
  515. MODEL_TENSOR.TOKEN_EMBD,
  516. MODEL_TENSOR.OUTPUT_NORM,
  517. MODEL_TENSOR.OUTPUT,
  518. MODEL_TENSOR.ATTN_NORM,
  519. MODEL_TENSOR.ATTN_QKV,
  520. MODEL_TENSOR.ATTN_Q,
  521. MODEL_TENSOR.ATTN_K,
  522. MODEL_TENSOR.ATTN_V,
  523. MODEL_TENSOR.ATTN_OUT,
  524. MODEL_TENSOR.FFN_NORM,
  525. MODEL_TENSOR.FFN_DOWN,
  526. MODEL_TENSOR.FFN_UP,
  527. ],
  528. MODEL_ARCH.CODESHELL: [
  529. MODEL_TENSOR.TOKEN_EMBD,
  530. MODEL_TENSOR.POS_EMBD,
  531. MODEL_TENSOR.OUTPUT_NORM,
  532. MODEL_TENSOR.OUTPUT,
  533. MODEL_TENSOR.ATTN_NORM,
  534. MODEL_TENSOR.ATTN_QKV,
  535. MODEL_TENSOR.ATTN_OUT,
  536. MODEL_TENSOR.ATTN_ROT_EMBD,
  537. MODEL_TENSOR.FFN_NORM,
  538. MODEL_TENSOR.FFN_DOWN,
  539. MODEL_TENSOR.FFN_UP,
  540. ],
  541. MODEL_ARCH.ORION: [
  542. MODEL_TENSOR.TOKEN_EMBD,
  543. MODEL_TENSOR.OUTPUT_NORM,
  544. MODEL_TENSOR.OUTPUT,
  545. MODEL_TENSOR.ROPE_FREQS,
  546. MODEL_TENSOR.ATTN_NORM,
  547. MODEL_TENSOR.ATTN_Q,
  548. MODEL_TENSOR.ATTN_K,
  549. MODEL_TENSOR.ATTN_V,
  550. MODEL_TENSOR.ATTN_OUT,
  551. MODEL_TENSOR.ATTN_ROT_EMBD,
  552. MODEL_TENSOR.FFN_NORM,
  553. MODEL_TENSOR.FFN_GATE,
  554. MODEL_TENSOR.FFN_DOWN,
  555. MODEL_TENSOR.FFN_UP,
  556. ],
  557. MODEL_ARCH.INTERNLM2: [
  558. MODEL_TENSOR.TOKEN_EMBD,
  559. MODEL_TENSOR.OUTPUT_NORM,
  560. MODEL_TENSOR.OUTPUT,
  561. MODEL_TENSOR.ATTN_NORM,
  562. MODEL_TENSOR.ATTN_Q,
  563. MODEL_TENSOR.ATTN_K,
  564. MODEL_TENSOR.ATTN_V,
  565. MODEL_TENSOR.ATTN_OUT,
  566. MODEL_TENSOR.ATTN_ROT_EMBD,
  567. MODEL_TENSOR.FFN_NORM,
  568. MODEL_TENSOR.FFN_GATE,
  569. MODEL_TENSOR.FFN_DOWN,
  570. MODEL_TENSOR.FFN_UP,
  571. ],
  572. MODEL_ARCH.MINICPM: [
  573. MODEL_TENSOR.TOKEN_EMBD,
  574. MODEL_TENSOR.OUTPUT_NORM,
  575. MODEL_TENSOR.ROPE_FREQS,
  576. MODEL_TENSOR.ATTN_NORM,
  577. MODEL_TENSOR.ATTN_Q,
  578. MODEL_TENSOR.ATTN_K,
  579. MODEL_TENSOR.ATTN_V,
  580. MODEL_TENSOR.ATTN_OUT,
  581. MODEL_TENSOR.ATTN_ROT_EMBD,
  582. MODEL_TENSOR.FFN_GATE_INP,
  583. MODEL_TENSOR.FFN_NORM,
  584. MODEL_TENSOR.FFN_GATE,
  585. MODEL_TENSOR.FFN_DOWN,
  586. MODEL_TENSOR.FFN_UP,
  587. MODEL_TENSOR.FFN_GATE_EXP,
  588. MODEL_TENSOR.FFN_DOWN_EXP,
  589. MODEL_TENSOR.FFN_UP_EXP,
  590. ],
  591. MODEL_ARCH.GEMMA: [
  592. MODEL_TENSOR.TOKEN_EMBD,
  593. MODEL_TENSOR.OUTPUT_NORM,
  594. MODEL_TENSOR.ATTN_NORM,
  595. MODEL_TENSOR.ATTN_Q,
  596. MODEL_TENSOR.ATTN_K,
  597. MODEL_TENSOR.ATTN_V,
  598. MODEL_TENSOR.ATTN_OUT,
  599. MODEL_TENSOR.FFN_GATE,
  600. MODEL_TENSOR.FFN_DOWN,
  601. MODEL_TENSOR.FFN_UP,
  602. MODEL_TENSOR.FFN_NORM,
  603. ],
  604. MODEL_ARCH.STARCODER2: [
  605. MODEL_TENSOR.TOKEN_EMBD,
  606. MODEL_TENSOR.OUTPUT_NORM,
  607. MODEL_TENSOR.OUTPUT,
  608. MODEL_TENSOR.ROPE_FREQS,
  609. MODEL_TENSOR.ATTN_NORM,
  610. MODEL_TENSOR.ATTN_Q,
  611. MODEL_TENSOR.ATTN_K,
  612. MODEL_TENSOR.ATTN_V,
  613. MODEL_TENSOR.ATTN_OUT,
  614. MODEL_TENSOR.ATTN_ROT_EMBD,
  615. MODEL_TENSOR.FFN_NORM,
  616. MODEL_TENSOR.FFN_DOWN,
  617. MODEL_TENSOR.FFN_UP,
  618. ],
  619. MODEL_ARCH.MAMBA: [
  620. MODEL_TENSOR.TOKEN_EMBD,
  621. MODEL_TENSOR.OUTPUT_NORM,
  622. MODEL_TENSOR.OUTPUT,
  623. MODEL_TENSOR.ATTN_NORM,
  624. MODEL_TENSOR.SSM_IN,
  625. MODEL_TENSOR.SSM_CONV1D,
  626. MODEL_TENSOR.SSM_X,
  627. MODEL_TENSOR.SSM_DT,
  628. MODEL_TENSOR.SSM_A,
  629. MODEL_TENSOR.SSM_D,
  630. MODEL_TENSOR.SSM_OUT,
  631. ],
  632. MODEL_ARCH.XVERSE: [
  633. MODEL_TENSOR.TOKEN_EMBD,
  634. MODEL_TENSOR.OUTPUT_NORM,
  635. MODEL_TENSOR.OUTPUT,
  636. MODEL_TENSOR.ROPE_FREQS,
  637. MODEL_TENSOR.ATTN_NORM,
  638. MODEL_TENSOR.ATTN_Q,
  639. MODEL_TENSOR.ATTN_K,
  640. MODEL_TENSOR.ATTN_V,
  641. MODEL_TENSOR.ATTN_OUT,
  642. MODEL_TENSOR.ATTN_ROT_EMBD,
  643. MODEL_TENSOR.FFN_NORM,
  644. MODEL_TENSOR.FFN_GATE,
  645. MODEL_TENSOR.FFN_DOWN,
  646. MODEL_TENSOR.FFN_UP,
  647. ],
  648. MODEL_ARCH.COMMAND_R: [
  649. MODEL_TENSOR.TOKEN_EMBD,
  650. MODEL_TENSOR.OUTPUT_NORM,
  651. MODEL_TENSOR.ATTN_NORM,
  652. MODEL_TENSOR.ATTN_Q,
  653. MODEL_TENSOR.ATTN_K,
  654. MODEL_TENSOR.ATTN_V,
  655. MODEL_TENSOR.ATTN_OUT,
  656. MODEL_TENSOR.FFN_GATE,
  657. MODEL_TENSOR.FFN_DOWN,
  658. MODEL_TENSOR.FFN_UP,
  659. MODEL_TENSOR.ATTN_K_NORM,
  660. MODEL_TENSOR.ATTN_Q_NORM,
  661. ],
  662. MODEL_ARCH.DBRX: [
  663. MODEL_TENSOR.TOKEN_EMBD,
  664. MODEL_TENSOR.OUTPUT_NORM,
  665. MODEL_TENSOR.OUTPUT,
  666. MODEL_TENSOR.ATTN_NORM,
  667. MODEL_TENSOR.ATTN_QKV,
  668. MODEL_TENSOR.ATTN_OUT,
  669. MODEL_TENSOR.ATTN_OUT_NORM,
  670. MODEL_TENSOR.FFN_GATE_INP,
  671. MODEL_TENSOR.FFN_GATE_EXP,
  672. MODEL_TENSOR.FFN_DOWN_EXP,
  673. MODEL_TENSOR.FFN_UP_EXP,
  674. ],
  675. # TODO
  676. }
  677. # tensors that will not be serialized
  678. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  679. MODEL_ARCH.LLAMA: [
  680. MODEL_TENSOR.ROPE_FREQS,
  681. MODEL_TENSOR.ATTN_ROT_EMBD,
  682. ],
  683. MODEL_ARCH.BAICHUAN: [
  684. MODEL_TENSOR.ROPE_FREQS,
  685. MODEL_TENSOR.ATTN_ROT_EMBD,
  686. ],
  687. MODEL_ARCH.PERSIMMON: [
  688. MODEL_TENSOR.ROPE_FREQS,
  689. ],
  690. MODEL_ARCH.QWEN: [
  691. MODEL_TENSOR.ROPE_FREQS,
  692. MODEL_TENSOR.ATTN_ROT_EMBD,
  693. ],
  694. MODEL_ARCH.CODESHELL: [
  695. MODEL_TENSOR.ROPE_FREQS,
  696. MODEL_TENSOR.ATTN_ROT_EMBD,
  697. ],
  698. MODEL_ARCH.ORION: [
  699. MODEL_TENSOR.ROPE_FREQS,
  700. MODEL_TENSOR.ATTN_ROT_EMBD,
  701. ],
  702. MODEL_ARCH.STARCODER2: [
  703. MODEL_TENSOR.ROPE_FREQS,
  704. MODEL_TENSOR.ATTN_ROT_EMBD,
  705. ],
  706. MODEL_ARCH.XVERSE: [
  707. MODEL_TENSOR.ROPE_FREQS,
  708. MODEL_TENSOR.ATTN_ROT_EMBD,
  709. ],
  710. }
  711. #
  712. # types
  713. #
  714. class TokenType(IntEnum):
  715. NORMAL = 1
  716. UNKNOWN = 2
  717. CONTROL = 3
  718. USER_DEFINED = 4
  719. UNUSED = 5
  720. BYTE = 6
  721. class RopeScalingType(Enum):
  722. NONE = 'none'
  723. LINEAR = 'linear'
  724. YARN = 'yarn'
  725. class PoolingType(IntEnum):
  726. NONE = 0
  727. MEAN = 1
  728. CLS = 2
  729. class GGMLQuantizationType(IntEnum):
  730. F32 = 0
  731. F16 = 1
  732. Q4_0 = 2
  733. Q4_1 = 3
  734. Q5_0 = 6
  735. Q5_1 = 7
  736. Q8_0 = 8
  737. Q8_1 = 9
  738. Q2_K = 10
  739. Q3_K = 11
  740. Q4_K = 12
  741. Q5_K = 13
  742. Q6_K = 14
  743. Q8_K = 15
  744. IQ2_XXS = 16
  745. IQ2_XS = 17
  746. IQ3_XXS = 18
  747. IQ1_S = 19
  748. IQ4_NL = 20
  749. IQ3_S = 21
  750. IQ2_S = 22
  751. IQ4_XS = 23
  752. I8 = 24
  753. I16 = 25
  754. I32 = 26
  755. I64 = 27
  756. F64 = 28
  757. IQ1_M = 29
  758. class GGUFEndian(IntEnum):
  759. LITTLE = 0
  760. BIG = 1
  761. class GGUFValueType(IntEnum):
  762. UINT8 = 0
  763. INT8 = 1
  764. UINT16 = 2
  765. INT16 = 3
  766. UINT32 = 4
  767. INT32 = 5
  768. FLOAT32 = 6
  769. BOOL = 7
  770. STRING = 8
  771. ARRAY = 9
  772. UINT64 = 10
  773. INT64 = 11
  774. FLOAT64 = 12
  775. @staticmethod
  776. def get_type(val: Any) -> GGUFValueType:
  777. if isinstance(val, (str, bytes, bytearray)):
  778. return GGUFValueType.STRING
  779. elif isinstance(val, list):
  780. return GGUFValueType.ARRAY
  781. elif isinstance(val, float):
  782. return GGUFValueType.FLOAT32
  783. elif isinstance(val, bool):
  784. return GGUFValueType.BOOL
  785. elif isinstance(val, int):
  786. return GGUFValueType.INT32
  787. # TODO: need help with 64-bit types in Python
  788. else:
  789. print("Unknown type:", type(val))
  790. sys.exit()
  791. # Note: Does not support GGML_QKK_64
  792. QK_K = 256
  793. # Items here are (block size, type size)
  794. GGML_QUANT_SIZES = {
  795. GGMLQuantizationType.F32: (1, 4),
  796. GGMLQuantizationType.F16: (1, 2),
  797. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  798. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  799. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  800. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  801. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  802. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  803. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  804. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  805. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  806. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  807. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  808. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  809. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  810. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  811. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  812. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  813. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  814. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  815. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  816. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  817. GGMLQuantizationType.I8: (1, 1),
  818. GGMLQuantizationType.I16: (1, 2),
  819. GGMLQuantizationType.I32: (1, 4),
  820. GGMLQuantizationType.I64: (1, 8),
  821. GGMLQuantizationType.F64: (1, 8),
  822. }
  823. # Aliases for backward compatibility.
  824. # general
  825. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  826. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  827. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  828. KEY_GENERAL_NAME = Keys.General.NAME
  829. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  830. KEY_GENERAL_URL = Keys.General.URL
  831. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  832. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  833. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  834. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  835. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  836. # LLM
  837. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  838. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  839. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  840. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  841. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  842. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  843. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  844. # attention
  845. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  846. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  847. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  848. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  849. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  850. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  851. # RoPE
  852. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  853. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  854. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  855. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  856. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  857. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  858. # SSM
  859. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  860. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  861. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  862. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  863. # tokenization
  864. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  865. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  866. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  867. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  868. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  869. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  870. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  871. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  872. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  873. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  874. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  875. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  876. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  877. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  878. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  879. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  880. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  881. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID