ggml.c 657 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #elif defined(GGML_USE_VULKAN)
  213. #include "ggml-vulkan.h"
  214. #elif defined(GGML_USE_SYCL)
  215. #include "ggml-sycl.h"
  216. #endif
  217. // floating point type used to accumulate sums
  218. typedef double ggml_float;
  219. #undef MIN
  220. #undef MAX
  221. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  222. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  223. //
  224. // global data
  225. //
  226. // precomputed gelu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  228. // precomputed quick gelu table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  230. // precomputed silu table for f16 (128 KB)
  231. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  232. // precomputed exp table for f16 (128 KB)
  233. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  234. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  235. float ggml_table_f32_f16[1 << 16];
  236. // note: do not use these inside ggml.c
  237. // these are meant to be used via the ggml.h API
  238. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  239. return (float) GGML_FP16_TO_FP32(x);
  240. }
  241. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  242. return GGML_FP32_TO_FP16(x);
  243. }
  244. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  245. for (int i = 0; i < n; i++) {
  246. y[i] = GGML_FP16_TO_FP32(x[i]);
  247. }
  248. }
  249. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  250. int i = 0;
  251. #if defined(__F16C__)
  252. for (; i + 7 < n; i += 8) {
  253. __m256 x_vec = _mm256_loadu_ps(x + i);
  254. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  255. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  256. }
  257. for(; i + 3 < n; i += 4) {
  258. __m128 x_vec = _mm_loadu_ps(x + i);
  259. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  260. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  261. }
  262. #endif
  263. for (; i < n; i++) {
  264. y[i] = GGML_FP32_TO_FP16(x[i]);
  265. }
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq, timer_start;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER t;
  274. QueryPerformanceFrequency(&t);
  275. timer_freq = t.QuadPart;
  276. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  277. // and the uptime is high enough.
  278. // We subtract the program start time to reduce the likelihood of that happening.
  279. QueryPerformanceCounter(&t);
  280. timer_start = t.QuadPart;
  281. }
  282. int64_t ggml_time_ms(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  286. }
  287. int64_t ggml_time_us(void) {
  288. LARGE_INTEGER t;
  289. QueryPerformanceCounter(&t);
  290. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  291. }
  292. #else
  293. void ggml_time_init(void) {}
  294. int64_t ggml_time_ms(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  298. }
  299. int64_t ggml_time_us(void) {
  300. struct timespec ts;
  301. clock_gettime(CLOCK_MONOTONIC, &ts);
  302. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  303. }
  304. #endif
  305. int64_t ggml_cycles(void) {
  306. return clock();
  307. }
  308. int64_t ggml_cycles_per_ms(void) {
  309. return CLOCKS_PER_SEC/1000;
  310. }
  311. #ifdef GGML_PERF
  312. #define ggml_perf_time_ms() ggml_time_ms()
  313. #define ggml_perf_time_us() ggml_time_us()
  314. #define ggml_perf_cycles() ggml_cycles()
  315. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  316. #else
  317. #define ggml_perf_time_ms() 0
  318. #define ggml_perf_time_us() 0
  319. #define ggml_perf_cycles() 0
  320. #define ggml_perf_cycles_per_ms() 0
  321. #endif
  322. //
  323. // cache line
  324. //
  325. #if defined(__cpp_lib_hardware_interference_size)
  326. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  327. #else
  328. #if defined(__POWER9_VECTOR__)
  329. #define CACHE_LINE_SIZE 128
  330. #else
  331. #define CACHE_LINE_SIZE 64
  332. #endif
  333. #endif
  334. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  335. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  336. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  337. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  338. [GGML_TYPE_I8] = {
  339. .type_name = "i8",
  340. .blck_size = 1,
  341. .type_size = sizeof(int8_t),
  342. .is_quantized = false,
  343. },
  344. [GGML_TYPE_I16] = {
  345. .type_name = "i16",
  346. .blck_size = 1,
  347. .type_size = sizeof(int16_t),
  348. .is_quantized = false,
  349. },
  350. [GGML_TYPE_I32] = {
  351. .type_name = "i32",
  352. .blck_size = 1,
  353. .type_size = sizeof(int32_t),
  354. .is_quantized = false,
  355. },
  356. [GGML_TYPE_F32] = {
  357. .type_name = "f32",
  358. .blck_size = 1,
  359. .type_size = sizeof(float),
  360. .is_quantized = false,
  361. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  362. .vec_dot_type = GGML_TYPE_F32,
  363. },
  364. [GGML_TYPE_F16] = {
  365. .type_name = "f16",
  366. .blck_size = 1,
  367. .type_size = sizeof(ggml_fp16_t),
  368. .is_quantized = false,
  369. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  370. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  371. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  372. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  373. .vec_dot_type = GGML_TYPE_F16,
  374. },
  375. [GGML_TYPE_Q4_0] = {
  376. .type_name = "q4_0",
  377. .blck_size = QK4_0,
  378. .type_size = sizeof(block_q4_0),
  379. .is_quantized = true,
  380. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  381. .from_float = quantize_row_q4_0,
  382. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  383. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  384. .vec_dot_type = GGML_TYPE_Q8_0,
  385. },
  386. [GGML_TYPE_Q4_1] = {
  387. .type_name = "q4_1",
  388. .blck_size = QK4_1,
  389. .type_size = sizeof(block_q4_1),
  390. .is_quantized = true,
  391. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  392. .from_float = quantize_row_q4_1,
  393. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  394. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  395. .vec_dot_type = GGML_TYPE_Q8_1,
  396. },
  397. [4] = { // GGML_TYPE_Q4_2
  398. .type_name = "DEPRECATED",
  399. .blck_size = 0,
  400. .type_size = 0,
  401. .is_quantized = false,
  402. .to_float = NULL,
  403. .from_float = NULL,
  404. .from_float_reference = NULL,
  405. .vec_dot = NULL,
  406. .vec_dot_type = GGML_TYPE_COUNT,
  407. },
  408. [5] = { // GGML_TYPE_Q4_3
  409. .type_name = "DEPRECATED",
  410. .blck_size = 0,
  411. .type_size = 0,
  412. .is_quantized = false,
  413. .to_float = NULL,
  414. .from_float = NULL,
  415. .from_float_reference = NULL,
  416. .vec_dot = NULL,
  417. .vec_dot_type = GGML_TYPE_COUNT,
  418. },
  419. [GGML_TYPE_Q5_0] = {
  420. .type_name = "q5_0",
  421. .blck_size = QK5_0,
  422. .type_size = sizeof(block_q5_0),
  423. .is_quantized = true,
  424. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  425. .from_float = quantize_row_q5_0,
  426. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  427. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  428. .vec_dot_type = GGML_TYPE_Q8_0,
  429. },
  430. [GGML_TYPE_Q5_1] = {
  431. .type_name = "q5_1",
  432. .blck_size = QK5_1,
  433. .type_size = sizeof(block_q5_1),
  434. .is_quantized = true,
  435. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  436. .from_float = quantize_row_q5_1,
  437. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  438. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  439. .vec_dot_type = GGML_TYPE_Q8_1,
  440. },
  441. [GGML_TYPE_Q8_0] = {
  442. .type_name = "q8_0",
  443. .blck_size = QK8_0,
  444. .type_size = sizeof(block_q8_0),
  445. .is_quantized = true,
  446. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  447. .from_float = quantize_row_q8_0,
  448. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  449. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  450. .vec_dot_type = GGML_TYPE_Q8_0,
  451. },
  452. [GGML_TYPE_Q8_1] = {
  453. .type_name = "q8_1",
  454. .blck_size = QK8_1,
  455. .type_size = sizeof(block_q8_1),
  456. .is_quantized = true,
  457. .from_float = quantize_row_q8_1,
  458. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  459. .vec_dot_type = GGML_TYPE_Q8_1,
  460. },
  461. [GGML_TYPE_Q2_K] = {
  462. .type_name = "q2_K",
  463. .blck_size = QK_K,
  464. .type_size = sizeof(block_q2_K),
  465. .is_quantized = true,
  466. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  467. .from_float = quantize_row_q2_K,
  468. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  469. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  470. .vec_dot_type = GGML_TYPE_Q8_K,
  471. },
  472. [GGML_TYPE_Q3_K] = {
  473. .type_name = "q3_K",
  474. .blck_size = QK_K,
  475. .type_size = sizeof(block_q3_K),
  476. .is_quantized = true,
  477. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  478. .from_float = quantize_row_q3_K,
  479. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  480. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  481. .vec_dot_type = GGML_TYPE_Q8_K,
  482. },
  483. [GGML_TYPE_Q4_K] = {
  484. .type_name = "q4_K",
  485. .blck_size = QK_K,
  486. .type_size = sizeof(block_q4_K),
  487. .is_quantized = true,
  488. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  489. .from_float = quantize_row_q4_K,
  490. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  491. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  492. .vec_dot_type = GGML_TYPE_Q8_K,
  493. },
  494. [GGML_TYPE_Q5_K] = {
  495. .type_name = "q5_K",
  496. .blck_size = QK_K,
  497. .type_size = sizeof(block_q5_K),
  498. .is_quantized = true,
  499. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  500. .from_float = quantize_row_q5_K,
  501. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  502. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  503. .vec_dot_type = GGML_TYPE_Q8_K,
  504. },
  505. [GGML_TYPE_Q6_K] = {
  506. .type_name = "q6_K",
  507. .blck_size = QK_K,
  508. .type_size = sizeof(block_q6_K),
  509. .is_quantized = true,
  510. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  511. .from_float = quantize_row_q6_K,
  512. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  513. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  514. .vec_dot_type = GGML_TYPE_Q8_K,
  515. },
  516. [GGML_TYPE_IQ2_XXS] = {
  517. .type_name = "iq2_xxs",
  518. .blck_size = QK_K,
  519. .type_size = sizeof(block_iq2_xxs),
  520. .is_quantized = true,
  521. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  522. .from_float = NULL,
  523. .from_float_reference = NULL,
  524. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  525. .vec_dot_type = GGML_TYPE_Q8_K,
  526. },
  527. [GGML_TYPE_IQ2_XS] = {
  528. .type_name = "iq2_xs",
  529. .blck_size = QK_K,
  530. .type_size = sizeof(block_iq2_xs),
  531. .is_quantized = true,
  532. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  533. .from_float = NULL,
  534. .from_float_reference = NULL,
  535. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  536. .vec_dot_type = GGML_TYPE_Q8_K,
  537. },
  538. [GGML_TYPE_IQ3_XXS] = {
  539. .type_name = "iq3_xxs",
  540. .blck_size = QK_K,
  541. .type_size = sizeof(block_iq3_xxs),
  542. .is_quantized = true,
  543. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  544. .from_float = quantize_row_iq3_xxs,
  545. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  546. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  547. .vec_dot_type = GGML_TYPE_Q8_K,
  548. },
  549. [GGML_TYPE_Q8_K] = {
  550. .type_name = "q8_K",
  551. .blck_size = QK_K,
  552. .type_size = sizeof(block_q8_K),
  553. .is_quantized = true,
  554. .from_float = quantize_row_q8_K,
  555. }
  556. };
  557. // For internal test use
  558. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  559. GGML_ASSERT(type < GGML_TYPE_COUNT);
  560. return type_traits[type];
  561. }
  562. //
  563. // simd mappings
  564. //
  565. #if defined(__ARM_NEON)
  566. #if !defined(__aarch64__)
  567. // 64-bit compatibility
  568. inline static float vaddvq_f32(float32x4_t v) {
  569. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  570. }
  571. #endif
  572. #endif
  573. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  574. // we then implement the fundamental computation operations below using only these macros
  575. // adding support for new architectures requires to define the corresponding SIMD macros
  576. //
  577. // GGML_F32_STEP / GGML_F16_STEP
  578. // number of elements to process in a single step
  579. //
  580. // GGML_F32_EPR / GGML_F16_EPR
  581. // number of elements to fit in a single register
  582. //
  583. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  584. #define GGML_SIMD
  585. // F32 NEON
  586. #define GGML_F32_STEP 16
  587. #define GGML_F32_EPR 4
  588. #define GGML_F32x4 float32x4_t
  589. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  590. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  591. #define GGML_F32x4_LOAD vld1q_f32
  592. #define GGML_F32x4_STORE vst1q_f32
  593. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  594. #define GGML_F32x4_ADD vaddq_f32
  595. #define GGML_F32x4_MUL vmulq_f32
  596. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  597. #define GGML_F32x4_REDUCE(res, x) \
  598. { \
  599. int offset = GGML_F32_ARR >> 1; \
  600. for (int i = 0; i < offset; ++i) { \
  601. x[i] = vaddq_f32(x[i], x[offset+i]); \
  602. } \
  603. offset >>= 1; \
  604. for (int i = 0; i < offset; ++i) { \
  605. x[i] = vaddq_f32(x[i], x[offset+i]); \
  606. } \
  607. offset >>= 1; \
  608. for (int i = 0; i < offset; ++i) { \
  609. x[i] = vaddq_f32(x[i], x[offset+i]); \
  610. } \
  611. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  612. }
  613. #define GGML_F32_VEC GGML_F32x4
  614. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  615. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  616. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  617. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  618. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  619. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  620. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  621. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  622. // F16 NEON
  623. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  624. #define GGML_F16_STEP 32
  625. #define GGML_F16_EPR 8
  626. #define GGML_F16x8 float16x8_t
  627. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  628. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  629. #define GGML_F16x8_LOAD vld1q_f16
  630. #define GGML_F16x8_STORE vst1q_f16
  631. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  632. #define GGML_F16x8_ADD vaddq_f16
  633. #define GGML_F16x8_MUL vmulq_f16
  634. #define GGML_F16x8_REDUCE(res, x) \
  635. do { \
  636. int offset = GGML_F16_ARR >> 1; \
  637. for (int i = 0; i < offset; ++i) { \
  638. x[i] = vaddq_f16(x[i], x[offset+i]); \
  639. } \
  640. offset >>= 1; \
  641. for (int i = 0; i < offset; ++i) { \
  642. x[i] = vaddq_f16(x[i], x[offset+i]); \
  643. } \
  644. offset >>= 1; \
  645. for (int i = 0; i < offset; ++i) { \
  646. x[i] = vaddq_f16(x[i], x[offset+i]); \
  647. } \
  648. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  649. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  650. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  651. } while (0)
  652. #define GGML_F16_VEC GGML_F16x8
  653. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  654. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  655. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  656. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  657. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  658. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  659. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  660. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  661. #else
  662. // if FP16 vector arithmetic is not supported, we use FP32 instead
  663. // and take advantage of the vcvt_ functions to convert to/from FP16
  664. #define GGML_F16_STEP 16
  665. #define GGML_F16_EPR 4
  666. #define GGML_F32Cx4 float32x4_t
  667. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  668. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  669. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  670. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  671. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  672. #define GGML_F32Cx4_ADD vaddq_f32
  673. #define GGML_F32Cx4_MUL vmulq_f32
  674. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  675. #define GGML_F16_VEC GGML_F32Cx4
  676. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  677. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  678. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  679. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  680. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  681. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  682. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  683. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  684. #endif
  685. #elif defined(__AVX__)
  686. #define GGML_SIMD
  687. // F32 AVX
  688. #define GGML_F32_STEP 32
  689. #define GGML_F32_EPR 8
  690. #define GGML_F32x8 __m256
  691. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  692. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  693. #define GGML_F32x8_LOAD _mm256_loadu_ps
  694. #define GGML_F32x8_STORE _mm256_storeu_ps
  695. #if defined(__FMA__)
  696. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  697. #else
  698. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  699. #endif
  700. #define GGML_F32x8_ADD _mm256_add_ps
  701. #define GGML_F32x8_MUL _mm256_mul_ps
  702. #define GGML_F32x8_REDUCE(res, x) \
  703. do { \
  704. int offset = GGML_F32_ARR >> 1; \
  705. for (int i = 0; i < offset; ++i) { \
  706. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  707. } \
  708. offset >>= 1; \
  709. for (int i = 0; i < offset; ++i) { \
  710. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  711. } \
  712. offset >>= 1; \
  713. for (int i = 0; i < offset; ++i) { \
  714. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  715. } \
  716. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  717. _mm256_extractf128_ps(x[0], 1)); \
  718. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  719. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  720. } while (0)
  721. // TODO: is this optimal ?
  722. #define GGML_F32_VEC GGML_F32x8
  723. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  724. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  725. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  726. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  727. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  728. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  729. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  730. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  731. // F16 AVX
  732. #define GGML_F16_STEP 32
  733. #define GGML_F16_EPR 8
  734. // F16 arithmetic is not supported by AVX, so we use F32 instead
  735. #define GGML_F32Cx8 __m256
  736. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  737. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  738. #if defined(__F16C__)
  739. // the _mm256_cvt intrinsics require F16C
  740. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  741. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  742. #else
  743. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  744. float tmp[8];
  745. for (int i = 0; i < 8; i++) {
  746. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  747. }
  748. return _mm256_loadu_ps(tmp);
  749. }
  750. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  751. float arr[8];
  752. _mm256_storeu_ps(arr, y);
  753. for (int i = 0; i < 8; i++)
  754. x[i] = GGML_FP32_TO_FP16(arr[i]);
  755. }
  756. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  757. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  758. #endif
  759. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  760. #define GGML_F32Cx8_ADD _mm256_add_ps
  761. #define GGML_F32Cx8_MUL _mm256_mul_ps
  762. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  763. #define GGML_F16_VEC GGML_F32Cx8
  764. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  765. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  766. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  767. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  768. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  769. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  770. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  771. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  772. #elif defined(__POWER9_VECTOR__)
  773. #define GGML_SIMD
  774. // F32 POWER9
  775. #define GGML_F32_STEP 32
  776. #define GGML_F32_EPR 4
  777. #define GGML_F32x4 vector float
  778. #define GGML_F32x4_ZERO 0.0f
  779. #define GGML_F32x4_SET1 vec_splats
  780. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  781. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  782. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  783. #define GGML_F32x4_ADD vec_add
  784. #define GGML_F32x4_MUL vec_mul
  785. #define GGML_F32x4_REDUCE(res, x) \
  786. { \
  787. int offset = GGML_F32_ARR >> 1; \
  788. for (int i = 0; i < offset; ++i) { \
  789. x[i] = vec_add(x[i], x[offset+i]); \
  790. } \
  791. offset >>= 1; \
  792. for (int i = 0; i < offset; ++i) { \
  793. x[i] = vec_add(x[i], x[offset+i]); \
  794. } \
  795. offset >>= 1; \
  796. for (int i = 0; i < offset; ++i) { \
  797. x[i] = vec_add(x[i], x[offset+i]); \
  798. } \
  799. res = vec_extract(x[0], 0) + \
  800. vec_extract(x[0], 1) + \
  801. vec_extract(x[0], 2) + \
  802. vec_extract(x[0], 3); \
  803. }
  804. #define GGML_F32_VEC GGML_F32x4
  805. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  806. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  807. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  808. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  809. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  810. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  811. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  812. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  813. // F16 POWER9
  814. #define GGML_F16_STEP GGML_F32_STEP
  815. #define GGML_F16_EPR GGML_F32_EPR
  816. #define GGML_F16_VEC GGML_F32x4
  817. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  818. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  819. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  820. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  821. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  822. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  823. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  824. vec_extract_fp32_from_shortl(vec_xl(0, p))
  825. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  826. #define GGML_F16_VEC_STORE(p, r, i) \
  827. if (i & 0x1) \
  828. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  829. r[i - GGML_ENDIAN_BYTE(0)]), \
  830. 0, p - GGML_F16_EPR)
  831. #elif defined(__wasm_simd128__)
  832. #define GGML_SIMD
  833. // F32 WASM
  834. #define GGML_F32_STEP 16
  835. #define GGML_F32_EPR 4
  836. #define GGML_F32x4 v128_t
  837. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  838. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  839. #define GGML_F32x4_LOAD wasm_v128_load
  840. #define GGML_F32x4_STORE wasm_v128_store
  841. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  842. #define GGML_F32x4_ADD wasm_f32x4_add
  843. #define GGML_F32x4_MUL wasm_f32x4_mul
  844. #define GGML_F32x4_REDUCE(res, x) \
  845. { \
  846. int offset = GGML_F32_ARR >> 1; \
  847. for (int i = 0; i < offset; ++i) { \
  848. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  849. } \
  850. offset >>= 1; \
  851. for (int i = 0; i < offset; ++i) { \
  852. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  853. } \
  854. offset >>= 1; \
  855. for (int i = 0; i < offset; ++i) { \
  856. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  857. } \
  858. res = wasm_f32x4_extract_lane(x[0], 0) + \
  859. wasm_f32x4_extract_lane(x[0], 1) + \
  860. wasm_f32x4_extract_lane(x[0], 2) + \
  861. wasm_f32x4_extract_lane(x[0], 3); \
  862. }
  863. #define GGML_F32_VEC GGML_F32x4
  864. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  865. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  866. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  867. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  868. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  869. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  870. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  871. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  872. // F16 WASM
  873. #define GGML_F16_STEP 16
  874. #define GGML_F16_EPR 4
  875. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  876. float tmp[4];
  877. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  878. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  879. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  880. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  881. return wasm_v128_load(tmp);
  882. }
  883. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  884. float tmp[4];
  885. wasm_v128_store(tmp, x);
  886. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  887. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  888. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  889. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  890. }
  891. #define GGML_F16x4 v128_t
  892. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  893. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  894. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  895. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  896. #define GGML_F16x4_FMA GGML_F32x4_FMA
  897. #define GGML_F16x4_ADD wasm_f32x4_add
  898. #define GGML_F16x4_MUL wasm_f32x4_mul
  899. #define GGML_F16x4_REDUCE(res, x) \
  900. { \
  901. int offset = GGML_F16_ARR >> 1; \
  902. for (int i = 0; i < offset; ++i) { \
  903. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  904. } \
  905. offset >>= 1; \
  906. for (int i = 0; i < offset; ++i) { \
  907. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  908. } \
  909. offset >>= 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  912. } \
  913. res = wasm_f32x4_extract_lane(x[0], 0) + \
  914. wasm_f32x4_extract_lane(x[0], 1) + \
  915. wasm_f32x4_extract_lane(x[0], 2) + \
  916. wasm_f32x4_extract_lane(x[0], 3); \
  917. }
  918. #define GGML_F16_VEC GGML_F16x4
  919. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  920. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  921. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  922. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  923. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  924. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  925. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  926. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  927. #elif defined(__SSE3__)
  928. #define GGML_SIMD
  929. // F32 SSE
  930. #define GGML_F32_STEP 32
  931. #define GGML_F32_EPR 4
  932. #define GGML_F32x4 __m128
  933. #define GGML_F32x4_ZERO _mm_setzero_ps()
  934. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  935. #define GGML_F32x4_LOAD _mm_loadu_ps
  936. #define GGML_F32x4_STORE _mm_storeu_ps
  937. #if defined(__FMA__)
  938. // TODO: Does this work?
  939. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  940. #else
  941. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  942. #endif
  943. #define GGML_F32x4_ADD _mm_add_ps
  944. #define GGML_F32x4_MUL _mm_mul_ps
  945. #define GGML_F32x4_REDUCE(res, x) \
  946. { \
  947. int offset = GGML_F32_ARR >> 1; \
  948. for (int i = 0; i < offset; ++i) { \
  949. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  950. } \
  951. offset >>= 1; \
  952. for (int i = 0; i < offset; ++i) { \
  953. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  954. } \
  955. offset >>= 1; \
  956. for (int i = 0; i < offset; ++i) { \
  957. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  958. } \
  959. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  960. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  961. }
  962. // TODO: is this optimal ?
  963. #define GGML_F32_VEC GGML_F32x4
  964. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  965. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  966. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  967. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  968. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  969. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  970. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  971. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  972. // F16 SSE
  973. #define GGML_F16_STEP 32
  974. #define GGML_F16_EPR 4
  975. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  976. float tmp[4];
  977. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  978. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  979. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  980. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  981. return _mm_loadu_ps(tmp);
  982. }
  983. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  984. float arr[4];
  985. _mm_storeu_ps(arr, y);
  986. x[0] = GGML_FP32_TO_FP16(arr[0]);
  987. x[1] = GGML_FP32_TO_FP16(arr[1]);
  988. x[2] = GGML_FP32_TO_FP16(arr[2]);
  989. x[3] = GGML_FP32_TO_FP16(arr[3]);
  990. }
  991. #define GGML_F32Cx4 __m128
  992. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  993. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  994. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  995. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  996. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  997. #define GGML_F32Cx4_ADD _mm_add_ps
  998. #define GGML_F32Cx4_MUL _mm_mul_ps
  999. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1000. #define GGML_F16_VEC GGML_F32Cx4
  1001. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1002. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1003. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1004. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1005. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1006. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1007. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1008. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1009. #endif
  1010. // GGML_F32_ARR / GGML_F16_ARR
  1011. // number of registers to use per step
  1012. #ifdef GGML_SIMD
  1013. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1014. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1015. #endif
  1016. //
  1017. // fundamental operations
  1018. //
  1019. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1020. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1021. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1022. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1023. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1024. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1025. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1026. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1027. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1028. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1029. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1030. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1031. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1032. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1033. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1034. #ifdef GGML_SIMD
  1035. float sumf = 0.0f;
  1036. const int np = (n & ~(GGML_F32_STEP - 1));
  1037. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1038. GGML_F32_VEC ax[GGML_F32_ARR];
  1039. GGML_F32_VEC ay[GGML_F32_ARR];
  1040. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1041. for (int j = 0; j < GGML_F32_ARR; j++) {
  1042. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1043. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1044. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1045. }
  1046. }
  1047. // reduce sum0..sum3 to sum0
  1048. GGML_F32_VEC_REDUCE(sumf, sum);
  1049. // leftovers
  1050. for (int i = np; i < n; ++i) {
  1051. sumf += x[i]*y[i];
  1052. }
  1053. #else
  1054. // scalar
  1055. ggml_float sumf = 0.0;
  1056. for (int i = 0; i < n; ++i) {
  1057. sumf += (ggml_float)(x[i]*y[i]);
  1058. }
  1059. #endif
  1060. *s = sumf;
  1061. }
  1062. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1063. ggml_float sumf = 0.0;
  1064. #if defined(GGML_SIMD)
  1065. const int np = (n & ~(GGML_F16_STEP - 1));
  1066. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1067. GGML_F16_VEC ax[GGML_F16_ARR];
  1068. GGML_F16_VEC ay[GGML_F16_ARR];
  1069. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1070. for (int j = 0; j < GGML_F16_ARR; j++) {
  1071. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1072. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1073. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1074. }
  1075. }
  1076. // reduce sum0..sum3 to sum0
  1077. GGML_F16_VEC_REDUCE(sumf, sum);
  1078. // leftovers
  1079. for (int i = np; i < n; ++i) {
  1080. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1081. }
  1082. #else
  1083. for (int i = 0; i < n; ++i) {
  1084. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1085. }
  1086. #endif
  1087. *s = sumf;
  1088. }
  1089. // compute GGML_VEC_DOT_UNROLL dot products at once
  1090. // xs - x row stride in bytes
  1091. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1092. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1093. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1094. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1095. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1096. }
  1097. #if defined(GGML_SIMD)
  1098. const int np = (n & ~(GGML_F16_STEP - 1));
  1099. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1100. GGML_F16_VEC ax[GGML_F16_ARR];
  1101. GGML_F16_VEC ay[GGML_F16_ARR];
  1102. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1103. for (int j = 0; j < GGML_F16_ARR; j++) {
  1104. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1105. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1106. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1107. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1108. }
  1109. }
  1110. }
  1111. // reduce sum0..sum3 to sum0
  1112. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1113. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1114. }
  1115. // leftovers
  1116. for (int i = np; i < n; ++i) {
  1117. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1118. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1119. }
  1120. }
  1121. #else
  1122. for (int i = 0; i < n; ++i) {
  1123. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1124. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1125. }
  1126. }
  1127. #endif
  1128. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1129. s[i] = sumf[i];
  1130. }
  1131. }
  1132. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1133. #if defined(GGML_SIMD)
  1134. const int np = (n & ~(GGML_F32_STEP - 1));
  1135. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1136. GGML_F32_VEC ax[GGML_F32_ARR];
  1137. GGML_F32_VEC ay[GGML_F32_ARR];
  1138. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1139. for (int j = 0; j < GGML_F32_ARR; j++) {
  1140. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1141. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1142. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1143. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1144. }
  1145. }
  1146. // leftovers
  1147. for (int i = np; i < n; ++i) {
  1148. y[i] += x[i]*v;
  1149. }
  1150. #else
  1151. // scalar
  1152. for (int i = 0; i < n; ++i) {
  1153. y[i] += x[i]*v;
  1154. }
  1155. #endif
  1156. }
  1157. // xs and vs are byte strides of x and v
  1158. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1159. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1160. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1161. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1162. x[i] = (const float *) ((const char *) xv + i*xs);
  1163. v[i] = (const float *) ((const char *) vv + i*vs);
  1164. }
  1165. #if defined(GGML_SIMD)
  1166. const int np = (n & ~(GGML_F32_STEP - 1));
  1167. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1168. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1169. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1170. }
  1171. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1172. GGML_F32_VEC ay[GGML_F32_ARR];
  1173. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1174. for (int j = 0; j < GGML_F32_ARR; j++) {
  1175. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1176. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1177. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1178. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1179. }
  1180. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1181. }
  1182. }
  1183. // leftovers
  1184. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1185. for (int i = np; i < n; ++i) {
  1186. y[i] += x[k][i]*v[k][0];
  1187. }
  1188. }
  1189. #else
  1190. // scalar
  1191. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1192. for (int i = 0; i < n; ++i) {
  1193. y[i] += x[k][i]*v[k][0];
  1194. }
  1195. }
  1196. #endif
  1197. }
  1198. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1199. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1200. #if defined(GGML_USE_ACCELERATE)
  1201. vDSP_vsmul(y, 1, &v, y, 1, n);
  1202. #elif defined(GGML_SIMD)
  1203. const int np = (n & ~(GGML_F32_STEP - 1));
  1204. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1205. GGML_F32_VEC ay[GGML_F32_ARR];
  1206. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1207. for (int j = 0; j < GGML_F32_ARR; j++) {
  1208. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1209. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1210. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1211. }
  1212. }
  1213. // leftovers
  1214. for (int i = np; i < n; ++i) {
  1215. y[i] *= v;
  1216. }
  1217. #else
  1218. // scalar
  1219. for (int i = 0; i < n; ++i) {
  1220. y[i] *= v;
  1221. }
  1222. #endif
  1223. }
  1224. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1225. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1226. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1227. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1228. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1229. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1230. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1231. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1232. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1233. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1234. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1235. // TODO: optimize performance
  1236. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1237. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1238. static const float GELU_COEF_A = 0.044715f;
  1239. static const float GELU_QUICK_COEF = -1.702f;
  1240. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1241. inline static float ggml_gelu_f32(float x) {
  1242. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1243. }
  1244. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1245. const uint16_t * i16 = (const uint16_t *) x;
  1246. for (int i = 0; i < n; ++i) {
  1247. y[i] = ggml_table_gelu_f16[i16[i]];
  1248. }
  1249. }
  1250. #ifdef GGML_GELU_FP16
  1251. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1252. uint16_t t;
  1253. for (int i = 0; i < n; ++i) {
  1254. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1255. memcpy(&t, &fp16, sizeof(uint16_t));
  1256. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1257. }
  1258. }
  1259. #else
  1260. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1261. for (int i = 0; i < n; ++i) {
  1262. y[i] = ggml_gelu_f32(x[i]);
  1263. }
  1264. }
  1265. #endif
  1266. inline static float ggml_gelu_quick_f32(float x) {
  1267. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1268. }
  1269. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1270. // const uint16_t * i16 = (const uint16_t *) x;
  1271. // for (int i = 0; i < n; ++i) {
  1272. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1273. // }
  1274. //}
  1275. #ifdef GGML_GELU_QUICK_FP16
  1276. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1277. uint16_t t;
  1278. for (int i = 0; i < n; ++i) {
  1279. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1280. memcpy(&t, &fp16, sizeof(uint16_t));
  1281. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1282. }
  1283. }
  1284. #else
  1285. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1286. for (int i = 0; i < n; ++i) {
  1287. y[i] = ggml_gelu_quick_f32(x[i]);
  1288. }
  1289. }
  1290. #endif
  1291. // Sigmoid Linear Unit (SiLU) function
  1292. inline static float ggml_silu_f32(float x) {
  1293. return x/(1.0f + expf(-x));
  1294. }
  1295. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1296. // const uint16_t * i16 = (const uint16_t *) x;
  1297. // for (int i = 0; i < n; ++i) {
  1298. // y[i] = ggml_table_silu_f16[i16[i]];
  1299. // }
  1300. //}
  1301. #ifdef GGML_SILU_FP16
  1302. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1303. uint16_t t;
  1304. for (int i = 0; i < n; ++i) {
  1305. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1306. memcpy(&t, &fp16, sizeof(uint16_t));
  1307. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1308. }
  1309. }
  1310. #else
  1311. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1312. for (int i = 0; i < n; ++i) {
  1313. y[i] = ggml_silu_f32(x[i]);
  1314. }
  1315. }
  1316. #endif
  1317. inline static float ggml_silu_backward_f32(float x, float dy) {
  1318. const float s = 1.0f/(1.0f + expf(-x));
  1319. return dy*s*(1.0f + x*(1.0f - s));
  1320. }
  1321. #ifdef GGML_SILU_FP16
  1322. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1323. for (int i = 0; i < n; ++i) {
  1324. // we did not use x[i] to compute forward silu but its f16 equivalent
  1325. // take derivative at f16 of x[i]:
  1326. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1327. float usedx = GGML_FP16_TO_FP32(fp16);
  1328. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1329. }
  1330. }
  1331. #else
  1332. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1333. for (int i = 0; i < n; ++i) {
  1334. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1335. }
  1336. }
  1337. #endif
  1338. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1339. #ifndef GGML_USE_ACCELERATE
  1340. ggml_float sum = 0.0;
  1341. for (int i = 0; i < n; ++i) {
  1342. sum += (ggml_float)x[i];
  1343. }
  1344. *s = sum;
  1345. #else
  1346. vDSP_sve(x, 1, s, n);
  1347. #endif
  1348. }
  1349. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1350. ggml_float sum = 0.0;
  1351. for (int i = 0; i < n; ++i) {
  1352. sum += (ggml_float)x[i];
  1353. }
  1354. *s = sum;
  1355. }
  1356. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1357. float sum = 0.0f;
  1358. for (int i = 0; i < n; ++i) {
  1359. sum += GGML_FP16_TO_FP32(x[i]);
  1360. }
  1361. *s = sum;
  1362. }
  1363. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1364. #ifndef GGML_USE_ACCELERATE
  1365. float max = -INFINITY;
  1366. for (int i = 0; i < n; ++i) {
  1367. max = MAX(max, x[i]);
  1368. }
  1369. *s = max;
  1370. #else
  1371. vDSP_maxv(x, 1, s, n);
  1372. #endif
  1373. }
  1374. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1375. ggml_vec_norm_f32(n, s, x);
  1376. *s = 1.f/(*s);
  1377. }
  1378. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1379. float max = -INFINITY;
  1380. int idx = 0;
  1381. for (int i = 0; i < n; ++i) {
  1382. max = MAX(max, x[i]);
  1383. if (max == x[i]) { idx = i; }
  1384. }
  1385. *s = idx;
  1386. }
  1387. //
  1388. // data types
  1389. //
  1390. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1391. "NONE",
  1392. "DUP",
  1393. "ADD",
  1394. "ADD1",
  1395. "ACC",
  1396. "SUB",
  1397. "MUL",
  1398. "DIV",
  1399. "SQR",
  1400. "SQRT",
  1401. "LOG",
  1402. "SUM",
  1403. "SUM_ROWS",
  1404. "MEAN",
  1405. "ARGMAX",
  1406. "REPEAT",
  1407. "REPEAT_BACK",
  1408. "CONCAT",
  1409. "SILU_BACK",
  1410. "NORM",
  1411. "RMS_NORM",
  1412. "RMS_NORM_BACK",
  1413. "GROUP_NORM",
  1414. "MUL_MAT",
  1415. "MUL_MAT_ID",
  1416. "OUT_PROD",
  1417. "SCALE",
  1418. "SET",
  1419. "CPY",
  1420. "CONT",
  1421. "RESHAPE",
  1422. "VIEW",
  1423. "PERMUTE",
  1424. "TRANSPOSE",
  1425. "GET_ROWS",
  1426. "GET_ROWS_BACK",
  1427. "DIAG",
  1428. "DIAG_MASK_INF",
  1429. "DIAG_MASK_ZERO",
  1430. "SOFT_MAX",
  1431. "SOFT_MAX_BACK",
  1432. "ROPE",
  1433. "ROPE_BACK",
  1434. "ALIBI",
  1435. "CLAMP",
  1436. "CONV_TRANSPOSE_1D",
  1437. "IM2COL",
  1438. "CONV_TRANSPOSE_2D",
  1439. "POOL_1D",
  1440. "POOL_2D",
  1441. "UPSCALE",
  1442. "PAD",
  1443. "ARGSORT",
  1444. "LEAKY_RELU",
  1445. "FLASH_ATTN",
  1446. "FLASH_FF",
  1447. "FLASH_ATTN_BACK",
  1448. "WIN_PART",
  1449. "WIN_UNPART",
  1450. "GET_REL_POS",
  1451. "ADD_REL_POS",
  1452. "UNARY",
  1453. "MAP_UNARY",
  1454. "MAP_BINARY",
  1455. "MAP_CUSTOM1_F32",
  1456. "MAP_CUSTOM2_F32",
  1457. "MAP_CUSTOM3_F32",
  1458. "MAP_CUSTOM1",
  1459. "MAP_CUSTOM2",
  1460. "MAP_CUSTOM3",
  1461. "CROSS_ENTROPY_LOSS",
  1462. "CROSS_ENTROPY_LOSS_BACK",
  1463. };
  1464. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1465. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1466. "none",
  1467. "x",
  1468. "x+y",
  1469. "x+y",
  1470. "view(x,nb,offset)+=y->x",
  1471. "x-y",
  1472. "x*y",
  1473. "x/y",
  1474. "x^2",
  1475. "√x",
  1476. "log(x)",
  1477. "Σx",
  1478. "Σx_k",
  1479. "Σx/n",
  1480. "argmax(x)",
  1481. "repeat(x)",
  1482. "repeat_back(x)",
  1483. "concat(x, y)",
  1484. "silu_back(x)",
  1485. "norm(x)",
  1486. "rms_norm(x)",
  1487. "rms_norm_back(x)",
  1488. "group_norm(x)",
  1489. "X*Y",
  1490. "X[i]*Y",
  1491. "X*Y",
  1492. "x*v",
  1493. "y-\\>view(x)",
  1494. "x-\\>y",
  1495. "cont(x)",
  1496. "reshape(x)",
  1497. "view(x)",
  1498. "permute(x)",
  1499. "transpose(x)",
  1500. "get_rows(x)",
  1501. "get_rows_back(x)",
  1502. "diag(x)",
  1503. "diag_mask_inf(x)",
  1504. "diag_mask_zero(x)",
  1505. "soft_max(x)",
  1506. "soft_max_back(x)",
  1507. "rope(x)",
  1508. "rope_back(x)",
  1509. "alibi(x)",
  1510. "clamp(x)",
  1511. "conv_transpose_1d(x)",
  1512. "im2col(x)",
  1513. "conv_transpose_2d(x)",
  1514. "pool_1d(x)",
  1515. "pool_2d(x)",
  1516. "upscale(x)",
  1517. "pad(x)",
  1518. "argsort(x)",
  1519. "leaky_relu(x)",
  1520. "flash_attn(x)",
  1521. "flash_ff(x)",
  1522. "flash_attn_back(x)",
  1523. "win_part(x)",
  1524. "win_unpart(x)",
  1525. "get_rel_pos(x)",
  1526. "add_rel_pos(x)",
  1527. "unary(x)",
  1528. "f(x)",
  1529. "f(x,y)",
  1530. "custom_f32(x)",
  1531. "custom_f32(x,y)",
  1532. "custom_f32(x,y,z)",
  1533. "custom(x)",
  1534. "custom(x,y)",
  1535. "custom(x,y,z)",
  1536. "cross_entropy_loss(x,y)",
  1537. "cross_entropy_loss_back(x,y)",
  1538. };
  1539. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1540. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1541. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1542. "ABS",
  1543. "SGN",
  1544. "NEG",
  1545. "STEP",
  1546. "TANH",
  1547. "ELU",
  1548. "RELU",
  1549. "GELU",
  1550. "GELU_QUICK",
  1551. "SILU",
  1552. "HARDSWISH",
  1553. "HARDSIGMOID",
  1554. };
  1555. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1556. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1557. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1558. // WARN:
  1559. // Mis-configuration can lead to problem that's hard to reason about:
  1560. // * At best it crash or talks nosense.
  1561. // * At worst it talks slightly difference but hard to perceive.
  1562. //
  1563. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1564. // Take care about compile options (e.g., GGML_USE_xxx).
  1565. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1566. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1567. static void ggml_setup_op_has_task_pass(void) {
  1568. { // INIT
  1569. bool * p = GGML_OP_HAS_INIT;
  1570. p[GGML_OP_ACC ] = true;
  1571. p[GGML_OP_MUL_MAT ] = true;
  1572. p[GGML_OP_MUL_MAT_ID ] = true;
  1573. p[GGML_OP_OUT_PROD ] = true;
  1574. p[GGML_OP_SET ] = true;
  1575. p[GGML_OP_GET_ROWS_BACK ] = true;
  1576. p[GGML_OP_DIAG_MASK_INF ] = true;
  1577. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1578. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1579. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1580. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1581. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1582. p[GGML_OP_ADD_REL_POS ] = true;
  1583. }
  1584. { // FINALIZE
  1585. bool * p = GGML_OP_HAS_FINALIZE;
  1586. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1587. }
  1588. }
  1589. //
  1590. // ggml context
  1591. //
  1592. struct ggml_context {
  1593. size_t mem_size;
  1594. void * mem_buffer;
  1595. bool mem_buffer_owned;
  1596. bool no_alloc;
  1597. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1598. int n_objects;
  1599. struct ggml_object * objects_begin;
  1600. struct ggml_object * objects_end;
  1601. struct ggml_scratch scratch;
  1602. struct ggml_scratch scratch_save;
  1603. };
  1604. struct ggml_context_container {
  1605. bool used;
  1606. struct ggml_context context;
  1607. };
  1608. //
  1609. // NUMA support
  1610. //
  1611. #define GGML_NUMA_MAX_NODES 8
  1612. #define GGML_NUMA_MAX_CPUS 512
  1613. struct ggml_numa_node {
  1614. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1615. uint32_t n_cpus;
  1616. };
  1617. struct ggml_numa_nodes {
  1618. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1619. uint32_t n_nodes;
  1620. uint32_t total_cpus; // hardware threads on system
  1621. };
  1622. //
  1623. // ggml state
  1624. //
  1625. struct ggml_state {
  1626. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1627. struct ggml_numa_nodes numa;
  1628. };
  1629. // global state
  1630. static struct ggml_state g_state;
  1631. static atomic_int g_state_barrier = 0;
  1632. // barrier via spin lock
  1633. inline static void ggml_critical_section_start(void) {
  1634. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1635. while (processing > 0) {
  1636. // wait for other threads to finish
  1637. atomic_fetch_sub(&g_state_barrier, 1);
  1638. sched_yield(); // TODO: reconsider this
  1639. processing = atomic_fetch_add(&g_state_barrier, 1);
  1640. }
  1641. }
  1642. // TODO: make this somehow automatically executed
  1643. // some sort of "sentry" mechanism
  1644. inline static void ggml_critical_section_end(void) {
  1645. atomic_fetch_sub(&g_state_barrier, 1);
  1646. }
  1647. void ggml_numa_init(void) {
  1648. if (g_state.numa.n_nodes > 0) {
  1649. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1650. return;
  1651. }
  1652. #ifdef __linux__
  1653. struct stat st;
  1654. char path[256];
  1655. int rv;
  1656. // enumerate nodes
  1657. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1658. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1659. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1660. if (stat(path, &st) != 0) { break; }
  1661. ++g_state.numa.n_nodes;
  1662. }
  1663. // enumerate CPUs
  1664. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1665. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1666. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1667. if (stat(path, &st) != 0) { break; }
  1668. ++g_state.numa.total_cpus;
  1669. }
  1670. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1671. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1672. g_state.numa.n_nodes = 0;
  1673. return;
  1674. }
  1675. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1676. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1677. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1678. node->n_cpus = 0;
  1679. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1680. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1681. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1682. if (stat(path, &st) == 0) {
  1683. node->cpus[node->n_cpus++] = c;
  1684. GGML_PRINT_DEBUG(" %u", c);
  1685. }
  1686. }
  1687. GGML_PRINT_DEBUG("\n");
  1688. }
  1689. if (ggml_is_numa()) {
  1690. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1691. if (fptr != NULL) {
  1692. char buf[42];
  1693. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1694. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1695. }
  1696. fclose(fptr);
  1697. }
  1698. }
  1699. #else
  1700. // TODO
  1701. #endif
  1702. }
  1703. bool ggml_is_numa(void) {
  1704. return g_state.numa.n_nodes > 1;
  1705. }
  1706. ////////////////////////////////////////////////////////////////////////////////
  1707. void ggml_print_object(const struct ggml_object * obj) {
  1708. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1709. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1710. }
  1711. void ggml_print_objects(const struct ggml_context * ctx) {
  1712. struct ggml_object * obj = ctx->objects_begin;
  1713. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1714. while (obj != NULL) {
  1715. ggml_print_object(obj);
  1716. obj = obj->next;
  1717. }
  1718. GGML_PRINT("%s: --- end ---\n", __func__);
  1719. }
  1720. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1721. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1722. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1723. }
  1724. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1725. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1726. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1727. }
  1728. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1729. size_t nbytes;
  1730. size_t blck_size = ggml_blck_size(tensor->type);
  1731. if (blck_size == 1) {
  1732. nbytes = ggml_type_size(tensor->type);
  1733. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1734. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1735. }
  1736. }
  1737. else {
  1738. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1739. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1740. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1741. }
  1742. }
  1743. return nbytes;
  1744. }
  1745. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1746. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1747. }
  1748. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1749. return type_traits[type].blck_size;
  1750. }
  1751. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1752. return type_traits[type].type_size;
  1753. }
  1754. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1755. assert(ne % ggml_blck_size(type) == 0);
  1756. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1757. }
  1758. double ggml_type_sizef(enum ggml_type type) {
  1759. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1760. }
  1761. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1762. return type_traits[type].type_name;
  1763. }
  1764. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1765. return type_traits[type].is_quantized;
  1766. }
  1767. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1768. return GGML_OP_NAME[op];
  1769. }
  1770. const char * ggml_op_symbol(enum ggml_op op) {
  1771. return GGML_OP_SYMBOL[op];
  1772. }
  1773. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1774. return GGML_UNARY_OP_NAME[op];
  1775. }
  1776. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1777. if (t->op == GGML_OP_UNARY) {
  1778. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1779. return ggml_unary_op_name(uop);
  1780. }
  1781. else {
  1782. return ggml_op_name(t->op);
  1783. }
  1784. }
  1785. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1786. return ggml_type_size(tensor->type);
  1787. }
  1788. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1789. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1790. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1791. }
  1792. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1793. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1794. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1795. }
  1796. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1797. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1798. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1799. }
  1800. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1801. return tensor->ne[3] == 1;
  1802. }
  1803. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1804. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1805. if (tensor->ne[i] > 1) {
  1806. return i + 1;
  1807. }
  1808. }
  1809. return 1;
  1810. }
  1811. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1812. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1813. return (t0->ne[0] == t1->ne[0]) &&
  1814. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1815. (t1->ne[3]%t0->ne[3] == 0);
  1816. }
  1817. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1818. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1819. return (t0->ne[1] == t1->ne[1]) &&
  1820. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1821. (t1->ne[3]%t0->ne[3] == 0);
  1822. }
  1823. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1824. enum ggml_type wtype = GGML_TYPE_COUNT;
  1825. switch (ftype) {
  1826. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1827. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1828. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1829. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1830. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1831. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1832. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1833. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1834. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1835. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1836. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1837. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1838. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1839. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1840. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  1841. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1842. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1843. }
  1844. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1845. return wtype;
  1846. }
  1847. size_t ggml_tensor_overhead(void) {
  1848. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1849. }
  1850. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1851. return tensor->nb[0] > tensor->nb[1];
  1852. }
  1853. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1854. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1855. return
  1856. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1857. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1858. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1859. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1860. }
  1861. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1862. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1863. return
  1864. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1865. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1866. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1867. }
  1868. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1869. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1870. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1871. }
  1872. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1873. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1874. return
  1875. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1876. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1877. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1878. }
  1879. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1880. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1881. return
  1882. (t0->ne[0] == t1->ne[0] ) &&
  1883. (t0->ne[1] == t1->ne[1] ) &&
  1884. (t0->ne[2] == t1->ne[2] ) &&
  1885. (t0->ne[3] == t1->ne[3] );
  1886. }
  1887. // check if t1 can be represented as a repeatition of t0
  1888. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1889. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1890. return
  1891. (t1->ne[0]%t0->ne[0] == 0) &&
  1892. (t1->ne[1]%t0->ne[1] == 0) &&
  1893. (t1->ne[2]%t0->ne[2] == 0) &&
  1894. (t1->ne[3]%t0->ne[3] == 0);
  1895. }
  1896. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1897. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1898. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1899. }
  1900. static inline int ggml_up32(int n) {
  1901. return (n + 31) & ~31;
  1902. }
  1903. //static inline int ggml_up64(int n) {
  1904. // return (n + 63) & ~63;
  1905. //}
  1906. static inline int ggml_up(int n, int m) {
  1907. // assert m is a power of 2
  1908. GGML_ASSERT((m & (m - 1)) == 0);
  1909. return (n + m - 1) & ~(m - 1);
  1910. }
  1911. // assert that pointer is aligned to GGML_MEM_ALIGN
  1912. #define ggml_assert_aligned(ptr) \
  1913. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1914. ////////////////////////////////////////////////////////////////////////////////
  1915. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1916. // make this function thread safe
  1917. ggml_critical_section_start();
  1918. static bool is_first_call = true;
  1919. if (is_first_call) {
  1920. // initialize time system (required on Windows)
  1921. ggml_time_init();
  1922. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1923. {
  1924. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1925. ggml_fp16_t ii;
  1926. for (int i = 0; i < (1 << 16); ++i) {
  1927. uint16_t ui = i;
  1928. memcpy(&ii, &ui, sizeof(ii));
  1929. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1930. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1931. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1932. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1933. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1934. }
  1935. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1936. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1937. }
  1938. // initialize g_state
  1939. {
  1940. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1941. g_state = (struct ggml_state) {
  1942. /*.contexts =*/ { { 0 } },
  1943. /*.numa =*/ {
  1944. .n_nodes = 0,
  1945. .total_cpus = 0,
  1946. },
  1947. };
  1948. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1949. g_state.contexts[i].used = false;
  1950. }
  1951. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1952. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1953. }
  1954. #if defined(GGML_USE_CUBLAS)
  1955. ggml_init_cublas();
  1956. #elif defined(GGML_USE_CLBLAST)
  1957. ggml_cl_init();
  1958. #elif defined(GGML_USE_VULKAN)
  1959. ggml_vk_init();
  1960. #elif defined(GGML_USE_SYCL)
  1961. ggml_init_sycl();
  1962. #endif
  1963. ggml_setup_op_has_task_pass();
  1964. is_first_call = false;
  1965. }
  1966. // find non-used context in g_state
  1967. struct ggml_context * ctx = NULL;
  1968. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1969. if (!g_state.contexts[i].used) {
  1970. g_state.contexts[i].used = true;
  1971. ctx = &g_state.contexts[i].context;
  1972. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1973. break;
  1974. }
  1975. }
  1976. if (ctx == NULL) {
  1977. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1978. ggml_critical_section_end();
  1979. return NULL;
  1980. }
  1981. // allow to call ggml_init with 0 size
  1982. if (params.mem_size == 0) {
  1983. params.mem_size = GGML_MEM_ALIGN;
  1984. }
  1985. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1986. *ctx = (struct ggml_context) {
  1987. /*.mem_size =*/ mem_size,
  1988. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1989. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1990. /*.no_alloc =*/ params.no_alloc,
  1991. /*.no_alloc_save =*/ params.no_alloc,
  1992. /*.n_objects =*/ 0,
  1993. /*.objects_begin =*/ NULL,
  1994. /*.objects_end =*/ NULL,
  1995. /*.scratch =*/ { 0, 0, NULL, },
  1996. /*.scratch_save =*/ { 0, 0, NULL, },
  1997. };
  1998. GGML_ASSERT(ctx->mem_buffer != NULL);
  1999. ggml_assert_aligned(ctx->mem_buffer);
  2000. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2001. ggml_critical_section_end();
  2002. return ctx;
  2003. }
  2004. void ggml_free(struct ggml_context * ctx) {
  2005. if (ctx == NULL) {
  2006. return;
  2007. }
  2008. // make this function thread safe
  2009. ggml_critical_section_start();
  2010. bool found = false;
  2011. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2012. if (&g_state.contexts[i].context == ctx) {
  2013. g_state.contexts[i].used = false;
  2014. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2015. __func__, i, ggml_used_mem(ctx));
  2016. if (ctx->mem_buffer_owned) {
  2017. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2018. }
  2019. found = true;
  2020. break;
  2021. }
  2022. }
  2023. if (!found) {
  2024. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2025. }
  2026. ggml_critical_section_end();
  2027. }
  2028. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2029. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2030. }
  2031. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2032. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2033. ctx->scratch = scratch;
  2034. return result;
  2035. }
  2036. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2037. return ctx->no_alloc;
  2038. }
  2039. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2040. ctx->no_alloc = no_alloc;
  2041. }
  2042. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2043. return ctx->mem_buffer;
  2044. }
  2045. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2046. return ctx->mem_size;
  2047. }
  2048. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2049. size_t max_size = 0;
  2050. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2051. max_size = MAX(max_size, ggml_nbytes(tensor));
  2052. }
  2053. return max_size;
  2054. }
  2055. // IMPORTANT:
  2056. // when creating "opt" tensors, always save and load the scratch buffer
  2057. // this is an error prone process, but it is necessary to support inplace
  2058. // operators when using scratch buffers
  2059. // TODO: implement a better way
  2060. static void ggml_scratch_save(struct ggml_context * ctx) {
  2061. // this is needed to allow opt tensors to store their data
  2062. // TODO: again, need to find a better way
  2063. ctx->no_alloc_save = ctx->no_alloc;
  2064. ctx->no_alloc = false;
  2065. ctx->scratch_save = ctx->scratch;
  2066. ctx->scratch.data = NULL;
  2067. }
  2068. static void ggml_scratch_load(struct ggml_context * ctx) {
  2069. ctx->no_alloc = ctx->no_alloc_save;
  2070. ctx->scratch = ctx->scratch_save;
  2071. }
  2072. ////////////////////////////////////////////////////////////////////////////////
  2073. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2074. // always insert objects at the end of the context's memory pool
  2075. struct ggml_object * obj_cur = ctx->objects_end;
  2076. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2077. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2078. const size_t cur_end = cur_offs + cur_size;
  2079. // align to GGML_MEM_ALIGN
  2080. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2081. char * const mem_buffer = ctx->mem_buffer;
  2082. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2083. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2084. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2085. __func__, cur_end + size_needed, ctx->mem_size);
  2086. assert(false);
  2087. return NULL;
  2088. }
  2089. *obj_new = (struct ggml_object) {
  2090. .offs = cur_end + GGML_OBJECT_SIZE,
  2091. .size = size_needed,
  2092. .next = NULL,
  2093. .type = type,
  2094. };
  2095. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2096. if (obj_cur != NULL) {
  2097. obj_cur->next = obj_new;
  2098. } else {
  2099. // this is the first object in this context
  2100. ctx->objects_begin = obj_new;
  2101. }
  2102. ctx->objects_end = obj_new;
  2103. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2104. return obj_new;
  2105. }
  2106. static struct ggml_tensor * ggml_new_tensor_impl(
  2107. struct ggml_context * ctx,
  2108. enum ggml_type type,
  2109. int n_dims,
  2110. const int64_t * ne,
  2111. struct ggml_tensor * view_src,
  2112. size_t view_offs) {
  2113. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2114. // find the base tensor and absolute offset
  2115. if (view_src != NULL && view_src->view_src != NULL) {
  2116. view_offs += view_src->view_offs;
  2117. view_src = view_src->view_src;
  2118. }
  2119. size_t data_size = ggml_row_size(type, ne[0]);
  2120. for (int i = 1; i < n_dims; i++) {
  2121. data_size *= ne[i];
  2122. }
  2123. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2124. void * data = view_src != NULL ? view_src->data : NULL;
  2125. if (data != NULL) {
  2126. data = (char *) data + view_offs;
  2127. }
  2128. size_t obj_alloc_size = 0;
  2129. if (view_src == NULL && !ctx->no_alloc) {
  2130. if (ctx->scratch.data != NULL) {
  2131. // allocate tensor data in the scratch buffer
  2132. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2133. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2134. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2135. assert(false);
  2136. return NULL;
  2137. }
  2138. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2139. ctx->scratch.offs += data_size;
  2140. } else {
  2141. // allocate tensor data in the context's memory pool
  2142. obj_alloc_size = data_size;
  2143. }
  2144. }
  2145. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2146. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2147. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2148. *result = (struct ggml_tensor) {
  2149. /*.type =*/ type,
  2150. /*.backend =*/ GGML_BACKEND_CPU,
  2151. /*.buffer =*/ NULL,
  2152. /*.ne =*/ { 1, 1, 1, 1 },
  2153. /*.nb =*/ { 0, 0, 0, 0 },
  2154. /*.op =*/ GGML_OP_NONE,
  2155. /*.op_params =*/ { 0 },
  2156. /*.is_param =*/ false,
  2157. /*.grad =*/ NULL,
  2158. /*.src =*/ { NULL },
  2159. /*.perf_runs =*/ 0,
  2160. /*.perf_cycles =*/ 0,
  2161. /*.perf_time_us =*/ 0,
  2162. /*.view_src =*/ view_src,
  2163. /*.view_offs =*/ view_offs,
  2164. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2165. /*.name =*/ { 0 },
  2166. /*.extra =*/ NULL,
  2167. /*.padding =*/ { 0 },
  2168. };
  2169. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2170. //ggml_assert_aligned(result->data);
  2171. for (int i = 0; i < n_dims; i++) {
  2172. result->ne[i] = ne[i];
  2173. }
  2174. result->nb[0] = ggml_type_size(type);
  2175. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2176. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2177. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2178. }
  2179. ctx->n_objects++;
  2180. return result;
  2181. }
  2182. struct ggml_tensor * ggml_new_tensor(
  2183. struct ggml_context * ctx,
  2184. enum ggml_type type,
  2185. int n_dims,
  2186. const int64_t * ne) {
  2187. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2188. }
  2189. struct ggml_tensor * ggml_new_tensor_1d(
  2190. struct ggml_context * ctx,
  2191. enum ggml_type type,
  2192. int64_t ne0) {
  2193. return ggml_new_tensor(ctx, type, 1, &ne0);
  2194. }
  2195. struct ggml_tensor * ggml_new_tensor_2d(
  2196. struct ggml_context * ctx,
  2197. enum ggml_type type,
  2198. int64_t ne0,
  2199. int64_t ne1) {
  2200. const int64_t ne[2] = { ne0, ne1 };
  2201. return ggml_new_tensor(ctx, type, 2, ne);
  2202. }
  2203. struct ggml_tensor * ggml_new_tensor_3d(
  2204. struct ggml_context * ctx,
  2205. enum ggml_type type,
  2206. int64_t ne0,
  2207. int64_t ne1,
  2208. int64_t ne2) {
  2209. const int64_t ne[3] = { ne0, ne1, ne2 };
  2210. return ggml_new_tensor(ctx, type, 3, ne);
  2211. }
  2212. struct ggml_tensor * ggml_new_tensor_4d(
  2213. struct ggml_context * ctx,
  2214. enum ggml_type type,
  2215. int64_t ne0,
  2216. int64_t ne1,
  2217. int64_t ne2,
  2218. int64_t ne3) {
  2219. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2220. return ggml_new_tensor(ctx, type, 4, ne);
  2221. }
  2222. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2223. ggml_scratch_save(ctx);
  2224. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2225. ggml_scratch_load(ctx);
  2226. ggml_set_i32(result, value);
  2227. return result;
  2228. }
  2229. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2230. ggml_scratch_save(ctx);
  2231. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2232. ggml_scratch_load(ctx);
  2233. ggml_set_f32(result, value);
  2234. return result;
  2235. }
  2236. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2237. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2238. }
  2239. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2240. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2241. assert(params_size <= GGML_MAX_OP_PARAMS);
  2242. memcpy(tensor->op_params, params, params_size);
  2243. }
  2244. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2245. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2246. return ((const int32_t *)(tensor->op_params))[i];
  2247. }
  2248. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2249. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2250. ((int32_t *)(tensor->op_params))[i] = value;
  2251. }
  2252. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2253. memset(tensor->data, 0, ggml_nbytes(tensor));
  2254. return tensor;
  2255. }
  2256. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2257. const int n = ggml_nrows(tensor);
  2258. const int nc = tensor->ne[0];
  2259. const size_t n1 = tensor->nb[1];
  2260. char * const data = tensor->data;
  2261. switch (tensor->type) {
  2262. case GGML_TYPE_I8:
  2263. {
  2264. assert(tensor->nb[0] == sizeof(int8_t));
  2265. for (int i = 0; i < n; i++) {
  2266. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2267. }
  2268. } break;
  2269. case GGML_TYPE_I16:
  2270. {
  2271. assert(tensor->nb[0] == sizeof(int16_t));
  2272. for (int i = 0; i < n; i++) {
  2273. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2274. }
  2275. } break;
  2276. case GGML_TYPE_I32:
  2277. {
  2278. assert(tensor->nb[0] == sizeof(int32_t));
  2279. for (int i = 0; i < n; i++) {
  2280. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2281. }
  2282. } break;
  2283. case GGML_TYPE_F16:
  2284. {
  2285. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2286. for (int i = 0; i < n; i++) {
  2287. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2288. }
  2289. } break;
  2290. case GGML_TYPE_F32:
  2291. {
  2292. assert(tensor->nb[0] == sizeof(float));
  2293. for (int i = 0; i < n; i++) {
  2294. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2295. }
  2296. } break;
  2297. default:
  2298. {
  2299. GGML_ASSERT(false);
  2300. } break;
  2301. }
  2302. return tensor;
  2303. }
  2304. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2305. const int n = ggml_nrows(tensor);
  2306. const int nc = tensor->ne[0];
  2307. const size_t n1 = tensor->nb[1];
  2308. char * const data = tensor->data;
  2309. switch (tensor->type) {
  2310. case GGML_TYPE_I8:
  2311. {
  2312. assert(tensor->nb[0] == sizeof(int8_t));
  2313. for (int i = 0; i < n; i++) {
  2314. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2315. }
  2316. } break;
  2317. case GGML_TYPE_I16:
  2318. {
  2319. assert(tensor->nb[0] == sizeof(int16_t));
  2320. for (int i = 0; i < n; i++) {
  2321. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2322. }
  2323. } break;
  2324. case GGML_TYPE_I32:
  2325. {
  2326. assert(tensor->nb[0] == sizeof(int32_t));
  2327. for (int i = 0; i < n; i++) {
  2328. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2329. }
  2330. } break;
  2331. case GGML_TYPE_F16:
  2332. {
  2333. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2334. for (int i = 0; i < n; i++) {
  2335. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2336. }
  2337. } break;
  2338. case GGML_TYPE_F32:
  2339. {
  2340. assert(tensor->nb[0] == sizeof(float));
  2341. for (int i = 0; i < n; i++) {
  2342. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2343. }
  2344. } break;
  2345. default:
  2346. {
  2347. GGML_ASSERT(false);
  2348. } break;
  2349. }
  2350. return tensor;
  2351. }
  2352. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2353. const int64_t ne2 = tensor->ne[2];
  2354. const int64_t ne1 = tensor->ne[1];
  2355. const int64_t ne0 = tensor->ne[0];
  2356. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2357. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2358. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2359. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2360. if (i0) {
  2361. * i0 = i0_;
  2362. }
  2363. if (i1) {
  2364. * i1 = i1_;
  2365. }
  2366. if (i2) {
  2367. * i2 = i2_;
  2368. }
  2369. if (i3) {
  2370. * i3 = i3_;
  2371. }
  2372. }
  2373. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2374. if (!ggml_is_contiguous(tensor)) {
  2375. int64_t id[4] = { 0, 0, 0, 0 };
  2376. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2377. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2378. }
  2379. switch (tensor->type) {
  2380. case GGML_TYPE_I8:
  2381. {
  2382. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2383. return ((int8_t *)(tensor->data))[i];
  2384. }
  2385. case GGML_TYPE_I16:
  2386. {
  2387. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2388. return ((int16_t *)(tensor->data))[i];
  2389. }
  2390. case GGML_TYPE_I32:
  2391. {
  2392. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2393. return ((int32_t *)(tensor->data))[i];
  2394. }
  2395. case GGML_TYPE_F16:
  2396. {
  2397. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2398. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2399. }
  2400. case GGML_TYPE_F32:
  2401. {
  2402. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2403. return ((float *)(tensor->data))[i];
  2404. }
  2405. default:
  2406. {
  2407. GGML_ASSERT(false);
  2408. }
  2409. }
  2410. return 0.0f;
  2411. }
  2412. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2413. if (!ggml_is_contiguous(tensor)) {
  2414. int64_t id[4] = { 0, 0, 0, 0 };
  2415. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2416. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2417. return;
  2418. }
  2419. switch (tensor->type) {
  2420. case GGML_TYPE_I8:
  2421. {
  2422. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2423. ((int8_t *)(tensor->data))[i] = value;
  2424. } break;
  2425. case GGML_TYPE_I16:
  2426. {
  2427. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2428. ((int16_t *)(tensor->data))[i] = value;
  2429. } break;
  2430. case GGML_TYPE_I32:
  2431. {
  2432. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2433. ((int32_t *)(tensor->data))[i] = value;
  2434. } break;
  2435. case GGML_TYPE_F16:
  2436. {
  2437. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2438. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2439. } break;
  2440. case GGML_TYPE_F32:
  2441. {
  2442. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2443. ((float *)(tensor->data))[i] = value;
  2444. } break;
  2445. default:
  2446. {
  2447. GGML_ASSERT(false);
  2448. } break;
  2449. }
  2450. }
  2451. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2452. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2453. switch (tensor->type) {
  2454. case GGML_TYPE_I8:
  2455. return ((int8_t *) data)[0];
  2456. case GGML_TYPE_I16:
  2457. return ((int16_t *) data)[0];
  2458. case GGML_TYPE_I32:
  2459. return ((int32_t *) data)[0];
  2460. case GGML_TYPE_F16:
  2461. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2462. case GGML_TYPE_F32:
  2463. return ((float *) data)[0];
  2464. default:
  2465. GGML_ASSERT(false);
  2466. }
  2467. return 0.0f;
  2468. }
  2469. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2470. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2471. switch (tensor->type) {
  2472. case GGML_TYPE_I8:
  2473. {
  2474. ((int8_t *)(data))[0] = value;
  2475. } break;
  2476. case GGML_TYPE_I16:
  2477. {
  2478. ((int16_t *)(data))[0] = value;
  2479. } break;
  2480. case GGML_TYPE_I32:
  2481. {
  2482. ((int32_t *)(data))[0] = value;
  2483. } break;
  2484. case GGML_TYPE_F16:
  2485. {
  2486. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2487. } break;
  2488. case GGML_TYPE_F32:
  2489. {
  2490. ((float *)(data))[0] = value;
  2491. } break;
  2492. default:
  2493. {
  2494. GGML_ASSERT(false);
  2495. } break;
  2496. }
  2497. }
  2498. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2499. if (!ggml_is_contiguous(tensor)) {
  2500. int64_t id[4] = { 0, 0, 0, 0 };
  2501. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2502. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2503. }
  2504. switch (tensor->type) {
  2505. case GGML_TYPE_I8:
  2506. {
  2507. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2508. return ((int8_t *)(tensor->data))[i];
  2509. }
  2510. case GGML_TYPE_I16:
  2511. {
  2512. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2513. return ((int16_t *)(tensor->data))[i];
  2514. }
  2515. case GGML_TYPE_I32:
  2516. {
  2517. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2518. return ((int32_t *)(tensor->data))[i];
  2519. }
  2520. case GGML_TYPE_F16:
  2521. {
  2522. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2523. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2524. }
  2525. case GGML_TYPE_F32:
  2526. {
  2527. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2528. return ((float *)(tensor->data))[i];
  2529. }
  2530. default:
  2531. {
  2532. GGML_ASSERT(false);
  2533. }
  2534. }
  2535. return 0.0f;
  2536. }
  2537. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2538. if (!ggml_is_contiguous(tensor)) {
  2539. int64_t id[4] = { 0, 0, 0, 0 };
  2540. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2541. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2542. return;
  2543. }
  2544. switch (tensor->type) {
  2545. case GGML_TYPE_I8:
  2546. {
  2547. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2548. ((int8_t *)(tensor->data))[i] = value;
  2549. } break;
  2550. case GGML_TYPE_I16:
  2551. {
  2552. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2553. ((int16_t *)(tensor->data))[i] = value;
  2554. } break;
  2555. case GGML_TYPE_I32:
  2556. {
  2557. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2558. ((int32_t *)(tensor->data))[i] = value;
  2559. } break;
  2560. case GGML_TYPE_F16:
  2561. {
  2562. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2563. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2564. } break;
  2565. case GGML_TYPE_F32:
  2566. {
  2567. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2568. ((float *)(tensor->data))[i] = value;
  2569. } break;
  2570. default:
  2571. {
  2572. GGML_ASSERT(false);
  2573. } break;
  2574. }
  2575. }
  2576. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2577. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2578. switch (tensor->type) {
  2579. case GGML_TYPE_I8:
  2580. return ((int8_t *) data)[0];
  2581. case GGML_TYPE_I16:
  2582. return ((int16_t *) data)[0];
  2583. case GGML_TYPE_I32:
  2584. return ((int32_t *) data)[0];
  2585. case GGML_TYPE_F16:
  2586. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2587. case GGML_TYPE_F32:
  2588. return ((float *) data)[0];
  2589. default:
  2590. GGML_ASSERT(false);
  2591. }
  2592. return 0.0f;
  2593. }
  2594. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2595. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2596. switch (tensor->type) {
  2597. case GGML_TYPE_I8:
  2598. {
  2599. ((int8_t *)(data))[0] = value;
  2600. } break;
  2601. case GGML_TYPE_I16:
  2602. {
  2603. ((int16_t *)(data))[0] = value;
  2604. } break;
  2605. case GGML_TYPE_I32:
  2606. {
  2607. ((int32_t *)(data))[0] = value;
  2608. } break;
  2609. case GGML_TYPE_F16:
  2610. {
  2611. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2612. } break;
  2613. case GGML_TYPE_F32:
  2614. {
  2615. ((float *)(data))[0] = value;
  2616. } break;
  2617. default:
  2618. {
  2619. GGML_ASSERT(false);
  2620. } break;
  2621. }
  2622. }
  2623. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2624. return tensor->data;
  2625. }
  2626. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2627. assert(tensor->type == GGML_TYPE_F32);
  2628. return (float *)(tensor->data);
  2629. }
  2630. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2631. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2632. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2633. }
  2634. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2635. return tensor->name;
  2636. }
  2637. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2638. strncpy(tensor->name, name, sizeof(tensor->name));
  2639. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2640. return tensor;
  2641. }
  2642. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2643. va_list args;
  2644. va_start(args, fmt);
  2645. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2646. va_end(args);
  2647. return tensor;
  2648. }
  2649. struct ggml_tensor * ggml_view_tensor(
  2650. struct ggml_context * ctx,
  2651. struct ggml_tensor * src) {
  2652. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2653. ggml_format_name(result, "%s (view)", src->name);
  2654. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2655. result->nb[i] = src->nb[i];
  2656. }
  2657. return result;
  2658. }
  2659. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2660. struct ggml_object * obj = ctx->objects_begin;
  2661. char * const mem_buffer = ctx->mem_buffer;
  2662. while (obj != NULL) {
  2663. if (obj->type == GGML_OBJECT_TENSOR) {
  2664. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2665. }
  2666. obj = obj->next;
  2667. }
  2668. return NULL;
  2669. }
  2670. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2671. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2672. obj = obj->next;
  2673. char * const mem_buffer = ctx->mem_buffer;
  2674. while (obj != NULL) {
  2675. if (obj->type == GGML_OBJECT_TENSOR) {
  2676. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2677. }
  2678. obj = obj->next;
  2679. }
  2680. return NULL;
  2681. }
  2682. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2683. struct ggml_object * obj = ctx->objects_begin;
  2684. char * const mem_buffer = ctx->mem_buffer;
  2685. while (obj != NULL) {
  2686. if (obj->type == GGML_OBJECT_TENSOR) {
  2687. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2688. if (strcmp(cur->name, name) == 0) {
  2689. return cur;
  2690. }
  2691. }
  2692. obj = obj->next;
  2693. }
  2694. return NULL;
  2695. }
  2696. ////////////////////////////////////////////////////////////////////////////////
  2697. // ggml_dup
  2698. static struct ggml_tensor * ggml_dup_impl(
  2699. struct ggml_context * ctx,
  2700. struct ggml_tensor * a,
  2701. bool inplace) {
  2702. bool is_node = false;
  2703. if (!inplace && (a->grad)) {
  2704. is_node = true;
  2705. }
  2706. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2707. result->op = GGML_OP_DUP;
  2708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2709. result->src[0] = a;
  2710. return result;
  2711. }
  2712. struct ggml_tensor * ggml_dup(
  2713. struct ggml_context * ctx,
  2714. struct ggml_tensor * a) {
  2715. return ggml_dup_impl(ctx, a, false);
  2716. }
  2717. struct ggml_tensor * ggml_dup_inplace(
  2718. struct ggml_context * ctx,
  2719. struct ggml_tensor * a) {
  2720. return ggml_dup_impl(ctx, a, true);
  2721. }
  2722. // ggml_add
  2723. static struct ggml_tensor * ggml_add_impl(
  2724. struct ggml_context * ctx,
  2725. struct ggml_tensor * a,
  2726. struct ggml_tensor * b,
  2727. bool inplace) {
  2728. GGML_ASSERT(ggml_can_repeat(b, a));
  2729. bool is_node = false;
  2730. if (!inplace && (a->grad || b->grad)) {
  2731. // TODO: support backward pass for broadcasting
  2732. GGML_ASSERT(ggml_are_same_shape(a, b));
  2733. is_node = true;
  2734. }
  2735. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2736. result->op = GGML_OP_ADD;
  2737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2738. result->src[0] = a;
  2739. result->src[1] = b;
  2740. return result;
  2741. }
  2742. struct ggml_tensor * ggml_add(
  2743. struct ggml_context * ctx,
  2744. struct ggml_tensor * a,
  2745. struct ggml_tensor * b) {
  2746. return ggml_add_impl(ctx, a, b, false);
  2747. }
  2748. struct ggml_tensor * ggml_add_inplace(
  2749. struct ggml_context * ctx,
  2750. struct ggml_tensor * a,
  2751. struct ggml_tensor * b) {
  2752. return ggml_add_impl(ctx, a, b, true);
  2753. }
  2754. // ggml_add_cast
  2755. static struct ggml_tensor * ggml_add_cast_impl(
  2756. struct ggml_context * ctx,
  2757. struct ggml_tensor * a,
  2758. struct ggml_tensor * b,
  2759. enum ggml_type type) {
  2760. // TODO: support less-strict constraint
  2761. // GGML_ASSERT(ggml_can_repeat(b, a));
  2762. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2763. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2764. bool is_node = false;
  2765. if (a->grad || b->grad) {
  2766. // TODO: support backward pass for broadcasting
  2767. GGML_ASSERT(ggml_are_same_shape(a, b));
  2768. is_node = true;
  2769. }
  2770. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2771. result->op = GGML_OP_ADD;
  2772. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2773. result->src[0] = a;
  2774. result->src[1] = b;
  2775. return result;
  2776. }
  2777. struct ggml_tensor * ggml_add_cast(
  2778. struct ggml_context * ctx,
  2779. struct ggml_tensor * a,
  2780. struct ggml_tensor * b,
  2781. enum ggml_type type) {
  2782. return ggml_add_cast_impl(ctx, a, b, type);
  2783. }
  2784. // ggml_add1
  2785. static struct ggml_tensor * ggml_add1_impl(
  2786. struct ggml_context * ctx,
  2787. struct ggml_tensor * a,
  2788. struct ggml_tensor * b,
  2789. bool inplace) {
  2790. GGML_ASSERT(ggml_is_scalar(b));
  2791. GGML_ASSERT(ggml_is_padded_1d(a));
  2792. bool is_node = false;
  2793. if (a->grad || b->grad) {
  2794. is_node = true;
  2795. }
  2796. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2797. result->op = GGML_OP_ADD1;
  2798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2799. result->src[0] = a;
  2800. result->src[1] = b;
  2801. return result;
  2802. }
  2803. struct ggml_tensor * ggml_add1(
  2804. struct ggml_context * ctx,
  2805. struct ggml_tensor * a,
  2806. struct ggml_tensor * b) {
  2807. return ggml_add1_impl(ctx, a, b, false);
  2808. }
  2809. struct ggml_tensor * ggml_add1_inplace(
  2810. struct ggml_context * ctx,
  2811. struct ggml_tensor * a,
  2812. struct ggml_tensor * b) {
  2813. return ggml_add1_impl(ctx, a, b, true);
  2814. }
  2815. // ggml_acc
  2816. static struct ggml_tensor * ggml_acc_impl(
  2817. struct ggml_context * ctx,
  2818. struct ggml_tensor * a,
  2819. struct ggml_tensor * b,
  2820. size_t nb1,
  2821. size_t nb2,
  2822. size_t nb3,
  2823. size_t offset,
  2824. bool inplace) {
  2825. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2826. GGML_ASSERT(ggml_is_contiguous(a));
  2827. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2828. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2829. bool is_node = false;
  2830. if (!inplace && (a->grad || b->grad)) {
  2831. is_node = true;
  2832. }
  2833. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2834. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2835. ggml_set_op_params(result, params, sizeof(params));
  2836. result->op = GGML_OP_ACC;
  2837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2838. result->src[0] = a;
  2839. result->src[1] = b;
  2840. return result;
  2841. }
  2842. struct ggml_tensor * ggml_acc(
  2843. struct ggml_context * ctx,
  2844. struct ggml_tensor * a,
  2845. struct ggml_tensor * b,
  2846. size_t nb1,
  2847. size_t nb2,
  2848. size_t nb3,
  2849. size_t offset) {
  2850. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2851. }
  2852. struct ggml_tensor * ggml_acc_inplace(
  2853. struct ggml_context * ctx,
  2854. struct ggml_tensor * a,
  2855. struct ggml_tensor * b,
  2856. size_t nb1,
  2857. size_t nb2,
  2858. size_t nb3,
  2859. size_t offset) {
  2860. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2861. }
  2862. // ggml_sub
  2863. static struct ggml_tensor * ggml_sub_impl(
  2864. struct ggml_context * ctx,
  2865. struct ggml_tensor * a,
  2866. struct ggml_tensor * b,
  2867. bool inplace) {
  2868. GGML_ASSERT(ggml_are_same_shape(a, b));
  2869. bool is_node = false;
  2870. if (!inplace && (a->grad || b->grad)) {
  2871. is_node = true;
  2872. }
  2873. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2874. result->op = GGML_OP_SUB;
  2875. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2876. result->src[0] = a;
  2877. result->src[1] = b;
  2878. return result;
  2879. }
  2880. struct ggml_tensor * ggml_sub(
  2881. struct ggml_context * ctx,
  2882. struct ggml_tensor * a,
  2883. struct ggml_tensor * b) {
  2884. return ggml_sub_impl(ctx, a, b, false);
  2885. }
  2886. struct ggml_tensor * ggml_sub_inplace(
  2887. struct ggml_context * ctx,
  2888. struct ggml_tensor * a,
  2889. struct ggml_tensor * b) {
  2890. return ggml_sub_impl(ctx, a, b, true);
  2891. }
  2892. // ggml_mul
  2893. static struct ggml_tensor * ggml_mul_impl(
  2894. struct ggml_context * ctx,
  2895. struct ggml_tensor * a,
  2896. struct ggml_tensor * b,
  2897. bool inplace) {
  2898. GGML_ASSERT(ggml_can_repeat(b, a));
  2899. bool is_node = false;
  2900. if (!inplace && (a->grad || b->grad)) {
  2901. // TODO: support backward pass for broadcasting
  2902. GGML_ASSERT(ggml_are_same_shape(a, b));
  2903. is_node = true;
  2904. }
  2905. if (inplace) {
  2906. GGML_ASSERT(!is_node);
  2907. }
  2908. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2909. result->op = GGML_OP_MUL;
  2910. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2911. result->src[0] = a;
  2912. result->src[1] = b;
  2913. return result;
  2914. }
  2915. struct ggml_tensor * ggml_mul(
  2916. struct ggml_context * ctx,
  2917. struct ggml_tensor * a,
  2918. struct ggml_tensor * b) {
  2919. return ggml_mul_impl(ctx, a, b, false);
  2920. }
  2921. struct ggml_tensor * ggml_mul_inplace(
  2922. struct ggml_context * ctx,
  2923. struct ggml_tensor * a,
  2924. struct ggml_tensor * b) {
  2925. return ggml_mul_impl(ctx, a, b, true);
  2926. }
  2927. // ggml_div
  2928. static struct ggml_tensor * ggml_div_impl(
  2929. struct ggml_context * ctx,
  2930. struct ggml_tensor * a,
  2931. struct ggml_tensor * b,
  2932. bool inplace) {
  2933. GGML_ASSERT(ggml_can_repeat(b, a));
  2934. bool is_node = false;
  2935. if (!inplace && (a->grad || b->grad)) {
  2936. is_node = true;
  2937. }
  2938. if (inplace) {
  2939. GGML_ASSERT(!is_node);
  2940. }
  2941. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2942. result->op = GGML_OP_DIV;
  2943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2944. result->src[0] = a;
  2945. result->src[1] = b;
  2946. return result;
  2947. }
  2948. struct ggml_tensor * ggml_div(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a,
  2951. struct ggml_tensor * b) {
  2952. return ggml_div_impl(ctx, a, b, false);
  2953. }
  2954. struct ggml_tensor * ggml_div_inplace(
  2955. struct ggml_context * ctx,
  2956. struct ggml_tensor * a,
  2957. struct ggml_tensor * b) {
  2958. return ggml_div_impl(ctx, a, b, true);
  2959. }
  2960. // ggml_sqr
  2961. static struct ggml_tensor * ggml_sqr_impl(
  2962. struct ggml_context * ctx,
  2963. struct ggml_tensor * a,
  2964. bool inplace) {
  2965. bool is_node = false;
  2966. if (!inplace && (a->grad)) {
  2967. is_node = true;
  2968. }
  2969. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2970. result->op = GGML_OP_SQR;
  2971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2972. result->src[0] = a;
  2973. return result;
  2974. }
  2975. struct ggml_tensor * ggml_sqr(
  2976. struct ggml_context * ctx,
  2977. struct ggml_tensor * a) {
  2978. return ggml_sqr_impl(ctx, a, false);
  2979. }
  2980. struct ggml_tensor * ggml_sqr_inplace(
  2981. struct ggml_context * ctx,
  2982. struct ggml_tensor * a) {
  2983. return ggml_sqr_impl(ctx, a, true);
  2984. }
  2985. // ggml_sqrt
  2986. static struct ggml_tensor * ggml_sqrt_impl(
  2987. struct ggml_context * ctx,
  2988. struct ggml_tensor * a,
  2989. bool inplace) {
  2990. bool is_node = false;
  2991. if (!inplace && (a->grad)) {
  2992. is_node = true;
  2993. }
  2994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2995. result->op = GGML_OP_SQRT;
  2996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2997. result->src[0] = a;
  2998. return result;
  2999. }
  3000. struct ggml_tensor * ggml_sqrt(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a) {
  3003. return ggml_sqrt_impl(ctx, a, false);
  3004. }
  3005. struct ggml_tensor * ggml_sqrt_inplace(
  3006. struct ggml_context * ctx,
  3007. struct ggml_tensor * a) {
  3008. return ggml_sqrt_impl(ctx, a, true);
  3009. }
  3010. // ggml_log
  3011. static struct ggml_tensor * ggml_log_impl(
  3012. struct ggml_context * ctx,
  3013. struct ggml_tensor * a,
  3014. bool inplace) {
  3015. bool is_node = false;
  3016. if (!inplace && (a->grad)) {
  3017. is_node = true;
  3018. }
  3019. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3020. result->op = GGML_OP_LOG;
  3021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3022. result->src[0] = a;
  3023. return result;
  3024. }
  3025. struct ggml_tensor * ggml_log(
  3026. struct ggml_context * ctx,
  3027. struct ggml_tensor * a) {
  3028. return ggml_log_impl(ctx, a, false);
  3029. }
  3030. struct ggml_tensor * ggml_log_inplace(
  3031. struct ggml_context * ctx,
  3032. struct ggml_tensor * a) {
  3033. return ggml_log_impl(ctx, a, true);
  3034. }
  3035. // ggml_sum
  3036. struct ggml_tensor * ggml_sum(
  3037. struct ggml_context * ctx,
  3038. struct ggml_tensor * a) {
  3039. bool is_node = false;
  3040. if (a->grad) {
  3041. is_node = true;
  3042. }
  3043. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3044. result->op = GGML_OP_SUM;
  3045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3046. result->src[0] = a;
  3047. return result;
  3048. }
  3049. // ggml_sum_rows
  3050. struct ggml_tensor * ggml_sum_rows(
  3051. struct ggml_context * ctx,
  3052. struct ggml_tensor * a) {
  3053. bool is_node = false;
  3054. if (a->grad) {
  3055. is_node = true;
  3056. }
  3057. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3058. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3059. ne[i] = a->ne[i];
  3060. }
  3061. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3062. result->op = GGML_OP_SUM_ROWS;
  3063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3064. result->src[0] = a;
  3065. return result;
  3066. }
  3067. // ggml_mean
  3068. struct ggml_tensor * ggml_mean(
  3069. struct ggml_context * ctx,
  3070. struct ggml_tensor * a) {
  3071. bool is_node = false;
  3072. if (a->grad) {
  3073. GGML_ASSERT(false); // TODO: implement
  3074. is_node = true;
  3075. }
  3076. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3077. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3078. result->op = GGML_OP_MEAN;
  3079. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3080. result->src[0] = a;
  3081. return result;
  3082. }
  3083. // ggml_argmax
  3084. struct ggml_tensor * ggml_argmax(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a) {
  3087. GGML_ASSERT(ggml_is_matrix(a));
  3088. bool is_node = false;
  3089. if (a->grad) {
  3090. GGML_ASSERT(false);
  3091. is_node = true;
  3092. }
  3093. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3094. result->op = GGML_OP_ARGMAX;
  3095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3096. result->src[0] = a;
  3097. return result;
  3098. }
  3099. // ggml_repeat
  3100. struct ggml_tensor * ggml_repeat(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a,
  3103. struct ggml_tensor * b) {
  3104. GGML_ASSERT(ggml_can_repeat(a, b));
  3105. bool is_node = false;
  3106. if (a->grad) {
  3107. is_node = true;
  3108. }
  3109. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3110. result->op = GGML_OP_REPEAT;
  3111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3112. result->src[0] = a;
  3113. return result;
  3114. }
  3115. // ggml_repeat_back
  3116. struct ggml_tensor * ggml_repeat_back(
  3117. struct ggml_context * ctx,
  3118. struct ggml_tensor * a,
  3119. struct ggml_tensor * b) {
  3120. GGML_ASSERT(ggml_can_repeat(b, a));
  3121. bool is_node = false;
  3122. if (a->grad) {
  3123. is_node = true;
  3124. }
  3125. if (ggml_are_same_shape(a, b) && !is_node) {
  3126. return a;
  3127. }
  3128. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3129. result->op = GGML_OP_REPEAT_BACK;
  3130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3131. result->src[0] = a;
  3132. return result;
  3133. }
  3134. // ggml_concat
  3135. struct ggml_tensor * ggml_concat(
  3136. struct ggml_context* ctx,
  3137. struct ggml_tensor* a,
  3138. struct ggml_tensor* b) {
  3139. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3140. bool is_node = false;
  3141. if (a->grad || b->grad) {
  3142. is_node = true;
  3143. }
  3144. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3145. result->op = GGML_OP_CONCAT;
  3146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3147. result->src[0] = a;
  3148. result->src[1] = b;
  3149. return result;
  3150. }
  3151. // ggml_abs
  3152. struct ggml_tensor * ggml_abs(
  3153. struct ggml_context * ctx,
  3154. struct ggml_tensor * a) {
  3155. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3156. }
  3157. struct ggml_tensor * ggml_abs_inplace(
  3158. struct ggml_context * ctx,
  3159. struct ggml_tensor * a) {
  3160. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3161. }
  3162. // ggml_sgn
  3163. struct ggml_tensor * ggml_sgn(
  3164. struct ggml_context * ctx,
  3165. struct ggml_tensor * a) {
  3166. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3167. }
  3168. struct ggml_tensor * ggml_sgn_inplace(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a) {
  3171. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3172. }
  3173. // ggml_neg
  3174. struct ggml_tensor * ggml_neg(
  3175. struct ggml_context * ctx,
  3176. struct ggml_tensor * a) {
  3177. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3178. }
  3179. struct ggml_tensor * ggml_neg_inplace(
  3180. struct ggml_context * ctx,
  3181. struct ggml_tensor * a) {
  3182. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3183. }
  3184. // ggml_step
  3185. struct ggml_tensor * ggml_step(
  3186. struct ggml_context * ctx,
  3187. struct ggml_tensor * a) {
  3188. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3189. }
  3190. struct ggml_tensor * ggml_step_inplace(
  3191. struct ggml_context * ctx,
  3192. struct ggml_tensor * a) {
  3193. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3194. }
  3195. // ggml_tanh
  3196. struct ggml_tensor * ggml_tanh(
  3197. struct ggml_context * ctx,
  3198. struct ggml_tensor * a) {
  3199. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3200. }
  3201. struct ggml_tensor * ggml_tanh_inplace(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a) {
  3204. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3205. }
  3206. // ggml_elu
  3207. struct ggml_tensor * ggml_elu(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a) {
  3210. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3211. }
  3212. struct ggml_tensor * ggml_elu_inplace(
  3213. struct ggml_context * ctx,
  3214. struct ggml_tensor * a) {
  3215. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3216. }
  3217. // ggml_relu
  3218. struct ggml_tensor * ggml_relu(
  3219. struct ggml_context * ctx,
  3220. struct ggml_tensor * a) {
  3221. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3222. }
  3223. struct ggml_tensor * ggml_relu_inplace(
  3224. struct ggml_context * ctx,
  3225. struct ggml_tensor * a) {
  3226. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3227. }
  3228. // ggml_leaky_relu
  3229. struct ggml_tensor * ggml_leaky_relu(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3232. bool is_node = false;
  3233. if (!inplace && (a->grad)) {
  3234. is_node = true;
  3235. }
  3236. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3237. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3238. result->op = GGML_OP_LEAKY_RELU;
  3239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3240. result->src[0] = a;
  3241. return result;
  3242. }
  3243. // ggml_gelu
  3244. struct ggml_tensor * ggml_gelu(
  3245. struct ggml_context * ctx,
  3246. struct ggml_tensor * a) {
  3247. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3248. }
  3249. struct ggml_tensor * ggml_gelu_inplace(
  3250. struct ggml_context * ctx,
  3251. struct ggml_tensor * a) {
  3252. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3253. }
  3254. // ggml_gelu_quick
  3255. struct ggml_tensor * ggml_gelu_quick(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a) {
  3258. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3259. }
  3260. struct ggml_tensor * ggml_gelu_quick_inplace(
  3261. struct ggml_context * ctx,
  3262. struct ggml_tensor * a) {
  3263. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3264. }
  3265. // ggml_silu
  3266. struct ggml_tensor * ggml_silu(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a) {
  3269. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3270. }
  3271. struct ggml_tensor * ggml_silu_inplace(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a) {
  3274. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3275. }
  3276. // ggml_silu_back
  3277. struct ggml_tensor * ggml_silu_back(
  3278. struct ggml_context * ctx,
  3279. struct ggml_tensor * a,
  3280. struct ggml_tensor * b) {
  3281. bool is_node = false;
  3282. if (a->grad || b->grad) {
  3283. // TODO: implement backward
  3284. is_node = true;
  3285. }
  3286. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3287. result->op = GGML_OP_SILU_BACK;
  3288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3289. result->src[0] = a;
  3290. result->src[1] = b;
  3291. return result;
  3292. }
  3293. // ggml hardswish
  3294. struct ggml_tensor * ggml_hardswish(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a) {
  3297. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3298. }
  3299. // ggml hardsigmoid
  3300. struct ggml_tensor * ggml_hardsigmoid(
  3301. struct ggml_context * ctx,
  3302. struct ggml_tensor * a) {
  3303. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3304. }
  3305. // ggml_norm
  3306. static struct ggml_tensor * ggml_norm_impl(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a,
  3309. float eps,
  3310. bool inplace) {
  3311. bool is_node = false;
  3312. if (!inplace && (a->grad)) {
  3313. GGML_ASSERT(false); // TODO: implement backward
  3314. is_node = true;
  3315. }
  3316. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3317. ggml_set_op_params(result, &eps, sizeof(eps));
  3318. result->op = GGML_OP_NORM;
  3319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3320. result->src[0] = a;
  3321. return result;
  3322. }
  3323. struct ggml_tensor * ggml_norm(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a,
  3326. float eps) {
  3327. return ggml_norm_impl(ctx, a, eps, false);
  3328. }
  3329. struct ggml_tensor * ggml_norm_inplace(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a,
  3332. float eps) {
  3333. return ggml_norm_impl(ctx, a, eps, true);
  3334. }
  3335. // ggml_rms_norm
  3336. static struct ggml_tensor * ggml_rms_norm_impl(
  3337. struct ggml_context * ctx,
  3338. struct ggml_tensor * a,
  3339. float eps,
  3340. bool inplace) {
  3341. bool is_node = false;
  3342. if (!inplace && (a->grad)) {
  3343. is_node = true;
  3344. }
  3345. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3346. ggml_set_op_params(result, &eps, sizeof(eps));
  3347. result->op = GGML_OP_RMS_NORM;
  3348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3349. result->src[0] = a;
  3350. return result;
  3351. }
  3352. struct ggml_tensor * ggml_rms_norm(
  3353. struct ggml_context * ctx,
  3354. struct ggml_tensor * a,
  3355. float eps) {
  3356. return ggml_rms_norm_impl(ctx, a, eps, false);
  3357. }
  3358. struct ggml_tensor * ggml_rms_norm_inplace(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a,
  3361. float eps) {
  3362. return ggml_rms_norm_impl(ctx, a, eps, true);
  3363. }
  3364. // ggml_rms_norm_back
  3365. struct ggml_tensor * ggml_rms_norm_back(
  3366. struct ggml_context * ctx,
  3367. struct ggml_tensor * a,
  3368. struct ggml_tensor * b,
  3369. float eps) {
  3370. bool is_node = false;
  3371. if (a->grad) {
  3372. // TODO: implement backward
  3373. is_node = true;
  3374. }
  3375. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3376. ggml_set_op_params(result, &eps, sizeof(eps));
  3377. result->op = GGML_OP_RMS_NORM_BACK;
  3378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3379. result->src[0] = a;
  3380. result->src[1] = b;
  3381. return result;
  3382. }
  3383. // ggml_group_norm
  3384. static struct ggml_tensor * ggml_group_norm_impl(
  3385. struct ggml_context * ctx,
  3386. struct ggml_tensor * a,
  3387. int n_groups,
  3388. bool inplace) {
  3389. bool is_node = false;
  3390. if (!inplace && (a->grad)) {
  3391. GGML_ASSERT(false); // TODO: implement backward
  3392. is_node = true;
  3393. }
  3394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3395. result->op_params[0] = n_groups;
  3396. result->op = GGML_OP_GROUP_NORM;
  3397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3398. result->src[0] = a;
  3399. return result;
  3400. }
  3401. struct ggml_tensor * ggml_group_norm(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a,
  3404. int n_groups) {
  3405. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3406. }
  3407. struct ggml_tensor * ggml_group_norm_inplace(
  3408. struct ggml_context * ctx,
  3409. struct ggml_tensor * a,
  3410. int n_groups) {
  3411. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3412. }
  3413. // ggml_mul_mat
  3414. struct ggml_tensor * ggml_mul_mat(
  3415. struct ggml_context * ctx,
  3416. struct ggml_tensor * a,
  3417. struct ggml_tensor * b) {
  3418. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3419. GGML_ASSERT(!ggml_is_transposed(a));
  3420. bool is_node = false;
  3421. if (a->grad || b->grad) {
  3422. is_node = true;
  3423. }
  3424. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3425. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3426. result->op = GGML_OP_MUL_MAT;
  3427. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3428. result->src[0] = a;
  3429. result->src[1] = b;
  3430. return result;
  3431. }
  3432. void ggml_mul_mat_set_prec(
  3433. struct ggml_tensor * a,
  3434. enum ggml_prec prec) {
  3435. const int32_t prec_i32 = (int32_t) prec;
  3436. ggml_set_op_params_i32(a, 0, prec_i32);
  3437. }
  3438. // ggml_mul_mat_id
  3439. struct ggml_tensor * ggml_mul_mat_id(
  3440. struct ggml_context * ctx,
  3441. struct ggml_tensor * const as[],
  3442. int n_as,
  3443. struct ggml_tensor * ids,
  3444. int id,
  3445. struct ggml_tensor * b) {
  3446. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3447. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3448. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3449. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3450. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3451. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3452. bool is_node = false;
  3453. if (as[0]->grad || b->grad) {
  3454. is_node = true;
  3455. }
  3456. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3457. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3458. ggml_set_op_params_i32(result, 0, id);
  3459. ggml_set_op_params_i32(result, 1, n_as);
  3460. result->op = GGML_OP_MUL_MAT_ID;
  3461. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3462. result->src[0] = ids;
  3463. result->src[1] = b;
  3464. for (int i = 0; i < n_as; i++) {
  3465. struct ggml_tensor * a = as[i];
  3466. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3467. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3468. GGML_ASSERT(!ggml_is_transposed(a));
  3469. result->src[i + 2] = a;
  3470. }
  3471. return result;
  3472. }
  3473. // ggml_out_prod
  3474. struct ggml_tensor * ggml_out_prod(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a,
  3477. struct ggml_tensor * b) {
  3478. GGML_ASSERT(ggml_can_out_prod(a, b));
  3479. GGML_ASSERT(!ggml_is_transposed(a));
  3480. bool is_node = false;
  3481. if (a->grad || b->grad) {
  3482. is_node = true;
  3483. }
  3484. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3485. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3486. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3487. result->op = GGML_OP_OUT_PROD;
  3488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3489. result->src[0] = a;
  3490. result->src[1] = b;
  3491. return result;
  3492. }
  3493. // ggml_scale
  3494. static struct ggml_tensor * ggml_scale_impl(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. float s,
  3498. bool inplace) {
  3499. GGML_ASSERT(ggml_is_padded_1d(a));
  3500. bool is_node = false;
  3501. if (a->grad) {
  3502. is_node = true;
  3503. }
  3504. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3505. ggml_set_op_params(result, &s, sizeof(s));
  3506. result->op = GGML_OP_SCALE;
  3507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3508. result->src[0] = a;
  3509. return result;
  3510. }
  3511. struct ggml_tensor * ggml_scale(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a,
  3514. float s) {
  3515. return ggml_scale_impl(ctx, a, s, false);
  3516. }
  3517. struct ggml_tensor * ggml_scale_inplace(
  3518. struct ggml_context * ctx,
  3519. struct ggml_tensor * a,
  3520. float s) {
  3521. return ggml_scale_impl(ctx, a, s, true);
  3522. }
  3523. // ggml_set
  3524. static struct ggml_tensor * ggml_set_impl(
  3525. struct ggml_context * ctx,
  3526. struct ggml_tensor * a,
  3527. struct ggml_tensor * b,
  3528. size_t nb1,
  3529. size_t nb2,
  3530. size_t nb3,
  3531. size_t offset,
  3532. bool inplace) {
  3533. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3534. bool is_node = false;
  3535. if (a->grad || b->grad) {
  3536. is_node = true;
  3537. }
  3538. // make a view of the destination
  3539. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3540. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3541. ggml_set_op_params(result, params, sizeof(params));
  3542. result->op = GGML_OP_SET;
  3543. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3544. result->src[0] = a;
  3545. result->src[1] = b;
  3546. return result;
  3547. }
  3548. struct ggml_tensor * ggml_set(
  3549. struct ggml_context * ctx,
  3550. struct ggml_tensor * a,
  3551. struct ggml_tensor * b,
  3552. size_t nb1,
  3553. size_t nb2,
  3554. size_t nb3,
  3555. size_t offset) {
  3556. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3557. }
  3558. struct ggml_tensor * ggml_set_inplace(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a,
  3561. struct ggml_tensor * b,
  3562. size_t nb1,
  3563. size_t nb2,
  3564. size_t nb3,
  3565. size_t offset) {
  3566. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3567. }
  3568. struct ggml_tensor * ggml_set_1d(
  3569. struct ggml_context * ctx,
  3570. struct ggml_tensor * a,
  3571. struct ggml_tensor * b,
  3572. size_t offset) {
  3573. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3574. }
  3575. struct ggml_tensor * ggml_set_1d_inplace(
  3576. struct ggml_context * ctx,
  3577. struct ggml_tensor * a,
  3578. struct ggml_tensor * b,
  3579. size_t offset) {
  3580. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3581. }
  3582. struct ggml_tensor * ggml_set_2d(
  3583. struct ggml_context * ctx,
  3584. struct ggml_tensor * a,
  3585. struct ggml_tensor * b,
  3586. size_t nb1,
  3587. size_t offset) {
  3588. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3589. }
  3590. struct ggml_tensor * ggml_set_2d_inplace(
  3591. struct ggml_context * ctx,
  3592. struct ggml_tensor * a,
  3593. struct ggml_tensor * b,
  3594. size_t nb1,
  3595. size_t offset) {
  3596. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3597. }
  3598. // ggml_cpy
  3599. static struct ggml_tensor * ggml_cpy_impl(
  3600. struct ggml_context * ctx,
  3601. struct ggml_tensor * a,
  3602. struct ggml_tensor * b) {
  3603. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3604. bool is_node = false;
  3605. if (a->grad || b->grad) {
  3606. // inplace is false and either one have a grad
  3607. is_node = true;
  3608. }
  3609. // make a view of the destination
  3610. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3611. if (strlen(b->name) > 0) {
  3612. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3613. } else {
  3614. ggml_format_name(result, "%s (copy)", a->name);
  3615. }
  3616. result->op = GGML_OP_CPY;
  3617. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3618. result->src[0] = a;
  3619. result->src[1] = b;
  3620. return result;
  3621. }
  3622. struct ggml_tensor * ggml_cpy(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a,
  3625. struct ggml_tensor * b) {
  3626. return ggml_cpy_impl(ctx, a, b);
  3627. }
  3628. struct ggml_tensor * ggml_cast(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a,
  3631. enum ggml_type type) {
  3632. bool is_node = false;
  3633. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3634. ggml_format_name(result, "%s (copy)", a->name);
  3635. result->op = GGML_OP_CPY;
  3636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3637. result->src[0] = a;
  3638. result->src[1] = result;
  3639. return result;
  3640. }
  3641. // ggml_cont
  3642. static struct ggml_tensor * ggml_cont_impl(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * a) {
  3645. bool is_node = false;
  3646. if (a->grad) {
  3647. is_node = true;
  3648. }
  3649. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3650. ggml_format_name(result, "%s (cont)", a->name);
  3651. result->op = GGML_OP_CONT;
  3652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3653. result->src[0] = a;
  3654. return result;
  3655. }
  3656. struct ggml_tensor * ggml_cont(
  3657. struct ggml_context * ctx,
  3658. struct ggml_tensor * a) {
  3659. return ggml_cont_impl(ctx, a);
  3660. }
  3661. // make contiguous, with new shape
  3662. GGML_API struct ggml_tensor * ggml_cont_1d(
  3663. struct ggml_context * ctx,
  3664. struct ggml_tensor * a,
  3665. int64_t ne0) {
  3666. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3667. }
  3668. GGML_API struct ggml_tensor * ggml_cont_2d(
  3669. struct ggml_context * ctx,
  3670. struct ggml_tensor * a,
  3671. int64_t ne0,
  3672. int64_t ne1) {
  3673. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3674. }
  3675. GGML_API struct ggml_tensor * ggml_cont_3d(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. int64_t ne0,
  3679. int64_t ne1,
  3680. int64_t ne2) {
  3681. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3682. }
  3683. struct ggml_tensor * ggml_cont_4d(
  3684. struct ggml_context * ctx,
  3685. struct ggml_tensor * a,
  3686. int64_t ne0,
  3687. int64_t ne1,
  3688. int64_t ne2,
  3689. int64_t ne3) {
  3690. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3691. bool is_node = false;
  3692. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3693. ggml_format_name(result, "%s (cont)", a->name);
  3694. result->op = GGML_OP_CONT;
  3695. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3696. result->src[0] = a;
  3697. return result;
  3698. }
  3699. // ggml_reshape
  3700. struct ggml_tensor * ggml_reshape(
  3701. struct ggml_context * ctx,
  3702. struct ggml_tensor * a,
  3703. struct ggml_tensor * b) {
  3704. GGML_ASSERT(ggml_is_contiguous(a));
  3705. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3706. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3707. bool is_node = false;
  3708. if (a->grad) {
  3709. is_node = true;
  3710. }
  3711. if (b->grad) {
  3712. // gradient propagation is not supported
  3713. //GGML_ASSERT(false);
  3714. }
  3715. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3716. ggml_format_name(result, "%s (reshaped)", a->name);
  3717. result->op = GGML_OP_RESHAPE;
  3718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3719. result->src[0] = a;
  3720. return result;
  3721. }
  3722. struct ggml_tensor * ggml_reshape_1d(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a,
  3725. int64_t ne0) {
  3726. GGML_ASSERT(ggml_is_contiguous(a));
  3727. GGML_ASSERT(ggml_nelements(a) == ne0);
  3728. bool is_node = false;
  3729. if (a->grad) {
  3730. is_node = true;
  3731. }
  3732. const int64_t ne[1] = { ne0 };
  3733. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3734. ggml_format_name(result, "%s (reshaped)", a->name);
  3735. result->op = GGML_OP_RESHAPE;
  3736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3737. result->src[0] = a;
  3738. return result;
  3739. }
  3740. struct ggml_tensor * ggml_reshape_2d(
  3741. struct ggml_context * ctx,
  3742. struct ggml_tensor * a,
  3743. int64_t ne0,
  3744. int64_t ne1) {
  3745. GGML_ASSERT(ggml_is_contiguous(a));
  3746. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3747. bool is_node = false;
  3748. if (a->grad) {
  3749. is_node = true;
  3750. }
  3751. const int64_t ne[2] = { ne0, ne1 };
  3752. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3753. ggml_format_name(result, "%s (reshaped)", a->name);
  3754. result->op = GGML_OP_RESHAPE;
  3755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3756. result->src[0] = a;
  3757. return result;
  3758. }
  3759. struct ggml_tensor * ggml_reshape_3d(
  3760. struct ggml_context * ctx,
  3761. struct ggml_tensor * a,
  3762. int64_t ne0,
  3763. int64_t ne1,
  3764. int64_t ne2) {
  3765. GGML_ASSERT(ggml_is_contiguous(a));
  3766. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3767. bool is_node = false;
  3768. if (a->grad) {
  3769. is_node = true;
  3770. }
  3771. const int64_t ne[3] = { ne0, ne1, ne2 };
  3772. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3773. ggml_format_name(result, "%s (reshaped)", a->name);
  3774. result->op = GGML_OP_RESHAPE;
  3775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3776. result->src[0] = a;
  3777. return result;
  3778. }
  3779. struct ggml_tensor * ggml_reshape_4d(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. int64_t ne0,
  3783. int64_t ne1,
  3784. int64_t ne2,
  3785. int64_t ne3) {
  3786. GGML_ASSERT(ggml_is_contiguous(a));
  3787. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3788. bool is_node = false;
  3789. if (a->grad) {
  3790. is_node = true;
  3791. }
  3792. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3793. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3794. ggml_format_name(result, "%s (reshaped)", a->name);
  3795. result->op = GGML_OP_RESHAPE;
  3796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3797. result->src[0] = a;
  3798. return result;
  3799. }
  3800. static struct ggml_tensor * ggml_view_impl(
  3801. struct ggml_context * ctx,
  3802. struct ggml_tensor * a,
  3803. int n_dims,
  3804. const int64_t * ne,
  3805. size_t offset) {
  3806. bool is_node = false;
  3807. if (a->grad) {
  3808. is_node = true;
  3809. }
  3810. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3811. ggml_format_name(result, "%s (view)", a->name);
  3812. ggml_set_op_params(result, &offset, sizeof(offset));
  3813. result->op = GGML_OP_VIEW;
  3814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3815. result->src[0] = a;
  3816. return result;
  3817. }
  3818. // ggml_view_1d
  3819. struct ggml_tensor * ggml_view_1d(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a,
  3822. int64_t ne0,
  3823. size_t offset) {
  3824. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3825. return result;
  3826. }
  3827. // ggml_view_2d
  3828. struct ggml_tensor * ggml_view_2d(
  3829. struct ggml_context * ctx,
  3830. struct ggml_tensor * a,
  3831. int64_t ne0,
  3832. int64_t ne1,
  3833. size_t nb1,
  3834. size_t offset) {
  3835. const int64_t ne[2] = { ne0, ne1 };
  3836. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3837. result->nb[1] = nb1;
  3838. result->nb[2] = result->nb[1]*ne1;
  3839. result->nb[3] = result->nb[2];
  3840. return result;
  3841. }
  3842. // ggml_view_3d
  3843. struct ggml_tensor * ggml_view_3d(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. int64_t ne0,
  3847. int64_t ne1,
  3848. int64_t ne2,
  3849. size_t nb1,
  3850. size_t nb2,
  3851. size_t offset) {
  3852. const int64_t ne[3] = { ne0, ne1, ne2 };
  3853. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3854. result->nb[1] = nb1;
  3855. result->nb[2] = nb2;
  3856. result->nb[3] = result->nb[2]*ne2;
  3857. return result;
  3858. }
  3859. // ggml_view_4d
  3860. struct ggml_tensor * ggml_view_4d(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a,
  3863. int64_t ne0,
  3864. int64_t ne1,
  3865. int64_t ne2,
  3866. int64_t ne3,
  3867. size_t nb1,
  3868. size_t nb2,
  3869. size_t nb3,
  3870. size_t offset) {
  3871. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3872. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3873. result->nb[1] = nb1;
  3874. result->nb[2] = nb2;
  3875. result->nb[3] = nb3;
  3876. return result;
  3877. }
  3878. // ggml_permute
  3879. struct ggml_tensor * ggml_permute(
  3880. struct ggml_context * ctx,
  3881. struct ggml_tensor * a,
  3882. int axis0,
  3883. int axis1,
  3884. int axis2,
  3885. int axis3) {
  3886. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3887. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3888. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3889. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3890. GGML_ASSERT(axis0 != axis1);
  3891. GGML_ASSERT(axis0 != axis2);
  3892. GGML_ASSERT(axis0 != axis3);
  3893. GGML_ASSERT(axis1 != axis2);
  3894. GGML_ASSERT(axis1 != axis3);
  3895. GGML_ASSERT(axis2 != axis3);
  3896. bool is_node = false;
  3897. if (a->grad) {
  3898. is_node = true;
  3899. }
  3900. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3901. ggml_format_name(result, "%s (permuted)", a->name);
  3902. int ne[GGML_MAX_DIMS];
  3903. int nb[GGML_MAX_DIMS];
  3904. ne[axis0] = a->ne[0];
  3905. ne[axis1] = a->ne[1];
  3906. ne[axis2] = a->ne[2];
  3907. ne[axis3] = a->ne[3];
  3908. nb[axis0] = a->nb[0];
  3909. nb[axis1] = a->nb[1];
  3910. nb[axis2] = a->nb[2];
  3911. nb[axis3] = a->nb[3];
  3912. result->ne[0] = ne[0];
  3913. result->ne[1] = ne[1];
  3914. result->ne[2] = ne[2];
  3915. result->ne[3] = ne[3];
  3916. result->nb[0] = nb[0];
  3917. result->nb[1] = nb[1];
  3918. result->nb[2] = nb[2];
  3919. result->nb[3] = nb[3];
  3920. result->op = GGML_OP_PERMUTE;
  3921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3922. result->src[0] = a;
  3923. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3924. ggml_set_op_params(result, params, sizeof(params));
  3925. return result;
  3926. }
  3927. // ggml_transpose
  3928. struct ggml_tensor * ggml_transpose(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a) {
  3931. bool is_node = false;
  3932. if (a->grad) {
  3933. is_node = true;
  3934. }
  3935. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3936. ggml_format_name(result, "%s (transposed)", a->name);
  3937. result->ne[0] = a->ne[1];
  3938. result->ne[1] = a->ne[0];
  3939. result->nb[0] = a->nb[1];
  3940. result->nb[1] = a->nb[0];
  3941. result->op = GGML_OP_TRANSPOSE;
  3942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3943. result->src[0] = a;
  3944. return result;
  3945. }
  3946. // ggml_get_rows
  3947. struct ggml_tensor * ggml_get_rows(
  3948. struct ggml_context * ctx,
  3949. struct ggml_tensor * a,
  3950. struct ggml_tensor * b) {
  3951. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3952. GGML_ASSERT(b->ne[3] == 1);
  3953. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3954. bool is_node = false;
  3955. if (a->grad || b->grad) {
  3956. is_node = true;
  3957. }
  3958. // TODO: implement non F32 return
  3959. enum ggml_type type = GGML_TYPE_F32;
  3960. if (a->type == GGML_TYPE_I32) {
  3961. type = a->type;
  3962. }
  3963. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3964. result->op = GGML_OP_GET_ROWS;
  3965. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3966. result->src[0] = a;
  3967. result->src[1] = b;
  3968. return result;
  3969. }
  3970. // ggml_get_rows_back
  3971. struct ggml_tensor * ggml_get_rows_back(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a,
  3974. struct ggml_tensor * b,
  3975. struct ggml_tensor * c) {
  3976. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3977. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3978. bool is_node = false;
  3979. if (a->grad || b->grad) {
  3980. is_node = true;
  3981. }
  3982. // TODO: implement non F32 return
  3983. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3984. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3985. result->op = GGML_OP_GET_ROWS_BACK;
  3986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3987. result->src[0] = a;
  3988. result->src[1] = b;
  3989. return result;
  3990. }
  3991. // ggml_diag
  3992. struct ggml_tensor * ggml_diag(
  3993. struct ggml_context * ctx,
  3994. struct ggml_tensor * a) {
  3995. GGML_ASSERT(a->ne[1] == 1);
  3996. bool is_node = false;
  3997. if (a->grad) {
  3998. is_node = true;
  3999. }
  4000. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4001. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4002. result->op = GGML_OP_DIAG;
  4003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4004. result->src[0] = a;
  4005. return result;
  4006. }
  4007. // ggml_diag_mask_inf
  4008. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a,
  4011. int n_past,
  4012. bool inplace) {
  4013. bool is_node = false;
  4014. if (a->grad) {
  4015. is_node = true;
  4016. }
  4017. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4018. int32_t params[] = { n_past };
  4019. ggml_set_op_params(result, params, sizeof(params));
  4020. result->op = GGML_OP_DIAG_MASK_INF;
  4021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4022. result->src[0] = a;
  4023. return result;
  4024. }
  4025. struct ggml_tensor * ggml_diag_mask_inf(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a,
  4028. int n_past) {
  4029. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4030. }
  4031. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a,
  4034. int n_past) {
  4035. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4036. }
  4037. // ggml_diag_mask_zero
  4038. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a,
  4041. int n_past,
  4042. bool inplace) {
  4043. bool is_node = false;
  4044. if (a->grad) {
  4045. is_node = true;
  4046. }
  4047. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4048. int32_t params[] = { n_past };
  4049. ggml_set_op_params(result, params, sizeof(params));
  4050. result->op = GGML_OP_DIAG_MASK_ZERO;
  4051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4052. result->src[0] = a;
  4053. return result;
  4054. }
  4055. struct ggml_tensor * ggml_diag_mask_zero(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a,
  4058. int n_past) {
  4059. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4060. }
  4061. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a,
  4064. int n_past) {
  4065. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4066. }
  4067. // ggml_soft_max
  4068. static struct ggml_tensor * ggml_soft_max_impl(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a,
  4071. struct ggml_tensor * mask,
  4072. float scale,
  4073. bool inplace) {
  4074. GGML_ASSERT(ggml_is_contiguous(a));
  4075. if (mask) {
  4076. GGML_ASSERT(ggml_is_contiguous(mask));
  4077. GGML_ASSERT(mask->ne[2] == 1);
  4078. GGML_ASSERT(mask->ne[3] == 1);
  4079. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4080. }
  4081. bool is_node = false;
  4082. if (a->grad) {
  4083. is_node = true;
  4084. }
  4085. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4086. float params[] = { scale };
  4087. ggml_set_op_params(result, params, sizeof(params));
  4088. result->op = GGML_OP_SOFT_MAX;
  4089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4090. result->src[0] = a;
  4091. result->src[1] = mask;
  4092. return result;
  4093. }
  4094. struct ggml_tensor * ggml_soft_max(
  4095. struct ggml_context * ctx,
  4096. struct ggml_tensor * a) {
  4097. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4098. }
  4099. struct ggml_tensor * ggml_soft_max_inplace(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a) {
  4102. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4103. }
  4104. struct ggml_tensor * ggml_soft_max_ext(
  4105. struct ggml_context * ctx,
  4106. struct ggml_tensor * a,
  4107. struct ggml_tensor * mask,
  4108. float scale) {
  4109. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4110. }
  4111. // ggml_soft_max_back
  4112. static struct ggml_tensor * ggml_soft_max_back_impl(
  4113. struct ggml_context * ctx,
  4114. struct ggml_tensor * a,
  4115. struct ggml_tensor * b,
  4116. bool inplace) {
  4117. bool is_node = false;
  4118. if (a->grad || b->grad) {
  4119. is_node = true; // TODO : implement backward pass
  4120. }
  4121. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4122. result->op = GGML_OP_SOFT_MAX_BACK;
  4123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4124. result->src[0] = a;
  4125. result->src[1] = b;
  4126. return result;
  4127. }
  4128. struct ggml_tensor * ggml_soft_max_back(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a,
  4131. struct ggml_tensor * b) {
  4132. return ggml_soft_max_back_impl(ctx, a, b, false);
  4133. }
  4134. struct ggml_tensor * ggml_soft_max_back_inplace(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a,
  4137. struct ggml_tensor * b) {
  4138. return ggml_soft_max_back_impl(ctx, a, b, true);
  4139. }
  4140. // ggml_rope
  4141. static struct ggml_tensor * ggml_rope_impl(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. struct ggml_tensor * b,
  4145. int n_dims,
  4146. int mode,
  4147. int n_ctx,
  4148. int n_orig_ctx,
  4149. float freq_base,
  4150. float freq_scale,
  4151. float ext_factor,
  4152. float attn_factor,
  4153. float beta_fast,
  4154. float beta_slow,
  4155. float xpos_base,
  4156. bool xpos_down,
  4157. bool inplace) {
  4158. GGML_ASSERT(ggml_is_vector(b));
  4159. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4160. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4161. bool is_node = false;
  4162. if (a->grad) {
  4163. is_node = true;
  4164. }
  4165. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4166. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4167. memcpy(params + 5, &freq_base, sizeof(float));
  4168. memcpy(params + 6, &freq_scale, sizeof(float));
  4169. memcpy(params + 7, &ext_factor, sizeof(float));
  4170. memcpy(params + 8, &attn_factor, sizeof(float));
  4171. memcpy(params + 9, &beta_fast, sizeof(float));
  4172. memcpy(params + 10, &beta_slow, sizeof(float));
  4173. memcpy(params + 11, &xpos_base, sizeof(float));
  4174. memcpy(params + 12, &xpos_down, sizeof(bool));
  4175. ggml_set_op_params(result, params, sizeof(params));
  4176. result->op = GGML_OP_ROPE;
  4177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4178. result->src[0] = a;
  4179. result->src[1] = b;
  4180. return result;
  4181. }
  4182. struct ggml_tensor * ggml_rope(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a,
  4185. struct ggml_tensor * b,
  4186. int n_dims,
  4187. int mode,
  4188. int n_ctx) {
  4189. return ggml_rope_impl(
  4190. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4191. );
  4192. }
  4193. struct ggml_tensor * ggml_rope_inplace(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. struct ggml_tensor * b,
  4197. int n_dims,
  4198. int mode,
  4199. int n_ctx) {
  4200. return ggml_rope_impl(
  4201. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4202. );
  4203. }
  4204. struct ggml_tensor * ggml_rope_custom(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a,
  4207. struct ggml_tensor * b,
  4208. int n_dims,
  4209. int mode,
  4210. int n_ctx,
  4211. int n_orig_ctx,
  4212. float freq_base,
  4213. float freq_scale,
  4214. float ext_factor,
  4215. float attn_factor,
  4216. float beta_fast,
  4217. float beta_slow) {
  4218. return ggml_rope_impl(
  4219. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4220. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4221. );
  4222. }
  4223. struct ggml_tensor * ggml_rope_custom_inplace(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b,
  4227. int n_dims,
  4228. int mode,
  4229. int n_ctx,
  4230. int n_orig_ctx,
  4231. float freq_base,
  4232. float freq_scale,
  4233. float ext_factor,
  4234. float attn_factor,
  4235. float beta_fast,
  4236. float beta_slow) {
  4237. return ggml_rope_impl(
  4238. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4239. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4240. );
  4241. }
  4242. struct ggml_tensor * ggml_rope_xpos_inplace(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a,
  4245. struct ggml_tensor * b,
  4246. int n_dims,
  4247. float base,
  4248. bool down) {
  4249. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4250. }
  4251. // ggml_rope_back
  4252. struct ggml_tensor * ggml_rope_back(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. struct ggml_tensor * b,
  4256. int n_dims,
  4257. int mode,
  4258. int n_ctx,
  4259. int n_orig_ctx,
  4260. float freq_base,
  4261. float freq_scale,
  4262. float ext_factor,
  4263. float attn_factor,
  4264. float beta_fast,
  4265. float beta_slow,
  4266. float xpos_base,
  4267. bool xpos_down) {
  4268. GGML_ASSERT(ggml_is_vector(b));
  4269. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4270. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4271. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4272. bool is_node = false;
  4273. if (a->grad) {
  4274. is_node = false; // TODO: implement backward
  4275. }
  4276. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4277. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4278. memcpy(params + 5, &freq_base, sizeof(float));
  4279. memcpy(params + 6, &freq_scale, sizeof(float));
  4280. memcpy(params + 7, &ext_factor, sizeof(float));
  4281. memcpy(params + 8, &attn_factor, sizeof(float));
  4282. memcpy(params + 9, &beta_fast, sizeof(float));
  4283. memcpy(params + 10, &beta_slow, sizeof(float));
  4284. memcpy(params + 11, &xpos_base, sizeof(float));
  4285. memcpy(params + 12, &xpos_down, sizeof(bool));
  4286. ggml_set_op_params(result, params, sizeof(params));
  4287. result->op = GGML_OP_ROPE_BACK;
  4288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4289. result->src[0] = a;
  4290. result->src[1] = b;
  4291. return result;
  4292. }
  4293. // ggml_alibi
  4294. struct ggml_tensor * ggml_alibi(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a,
  4297. int n_past,
  4298. int n_head,
  4299. float bias_max) {
  4300. GGML_ASSERT(n_past >= 0);
  4301. bool is_node = false;
  4302. if (a->grad) {
  4303. GGML_ASSERT(false); // TODO: implement backward
  4304. is_node = true;
  4305. }
  4306. // TODO: when implement backward, fix this:
  4307. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4308. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4309. int32_t op_params[3] = { n_past, n_head };
  4310. memcpy(op_params + 2, &bias_max, sizeof(float));
  4311. ggml_set_op_params(result, op_params, sizeof(op_params));
  4312. result->op = GGML_OP_ALIBI;
  4313. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4314. result->src[0] = a;
  4315. return result;
  4316. }
  4317. // ggml_clamp
  4318. struct ggml_tensor * ggml_clamp(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a,
  4321. float min,
  4322. float max) {
  4323. bool is_node = false;
  4324. if (a->grad) {
  4325. GGML_ASSERT(false); // TODO: implement backward
  4326. is_node = true;
  4327. }
  4328. // TODO: when implement backward, fix this:
  4329. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4330. float params[] = { min, max };
  4331. ggml_set_op_params(result, params, sizeof(params));
  4332. result->op = GGML_OP_CLAMP;
  4333. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4334. result->src[0] = a;
  4335. return result;
  4336. }
  4337. // ggml_conv_1d
  4338. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4339. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4340. }
  4341. GGML_API struct ggml_tensor * ggml_conv_1d(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b,
  4345. int s0,
  4346. int p0,
  4347. int d0) {
  4348. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4349. struct ggml_tensor * result =
  4350. ggml_mul_mat(ctx,
  4351. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4352. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4353. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4354. return result;
  4355. }
  4356. // ggml_conv_1d_ph
  4357. struct ggml_tensor* ggml_conv_1d_ph(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. struct ggml_tensor * b,
  4361. int s,
  4362. int d) {
  4363. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4364. }
  4365. // ggml_conv_transpose_1d
  4366. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4367. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4368. }
  4369. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a,
  4372. struct ggml_tensor * b,
  4373. int s0,
  4374. int p0,
  4375. int d0) {
  4376. GGML_ASSERT(ggml_is_matrix(b));
  4377. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4378. GGML_ASSERT(a->ne[3] == 1);
  4379. GGML_ASSERT(p0 == 0);
  4380. GGML_ASSERT(d0 == 1);
  4381. bool is_node = false;
  4382. if (a->grad || b->grad) {
  4383. GGML_ASSERT(false); // TODO: implement backward
  4384. is_node = true;
  4385. }
  4386. const int64_t ne[4] = {
  4387. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4388. a->ne[1], b->ne[2], 1,
  4389. };
  4390. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4391. int32_t params[] = { s0, p0, d0 };
  4392. ggml_set_op_params(result, params, sizeof(params));
  4393. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4395. result->src[0] = a;
  4396. result->src[1] = b;
  4397. return result;
  4398. }
  4399. // ggml_conv_depthwise
  4400. struct ggml_tensor * ggml_conv_depthwise_2d(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a,
  4403. struct ggml_tensor * b,
  4404. int s0,
  4405. int s1,
  4406. int p0,
  4407. int p1,
  4408. int d0,
  4409. int d1) {
  4410. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4411. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4412. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4413. s0, s1, p0, p1, d0, d1, true); // [N * IC, OH, OW, KH * KW]
  4414. struct ggml_tensor * result =
  4415. ggml_mul_mat(ctx,
  4416. ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1), // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4417. ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3])); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4418. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4419. return result;
  4420. }
  4421. // ggml_conv_2d
  4422. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4423. // a: [OC,IC, KH, KW]
  4424. // b: [N, IC, IH, IW]
  4425. // result: [N, OH, OW, IC*KH*KW]
  4426. struct ggml_tensor * ggml_im2col(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a,
  4429. struct ggml_tensor * b,
  4430. int s0,
  4431. int s1,
  4432. int p0,
  4433. int p1,
  4434. int d0,
  4435. int d1,
  4436. bool is_2D) {
  4437. if(is_2D) {
  4438. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4439. } else {
  4440. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4441. }
  4442. bool is_node = false;
  4443. if (a->grad || b->grad) {
  4444. GGML_ASSERT(false); // TODO: implement backward
  4445. is_node = true;
  4446. }
  4447. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4448. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4449. const int64_t ne[4] = {
  4450. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4451. OW,
  4452. is_2D ? OH : b->ne[2],
  4453. is_2D ? b->ne[3] : 1,
  4454. };
  4455. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4456. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4457. ggml_set_op_params(result, params, sizeof(params));
  4458. result->op = GGML_OP_IM2COL;
  4459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4460. result->src[0] = a;
  4461. result->src[1] = b;
  4462. return result;
  4463. }
  4464. // a: [OC,IC, KH, KW]
  4465. // b: [N, IC, IH, IW]
  4466. // result: [N, OC, OH, OW]
  4467. struct ggml_tensor * ggml_conv_2d(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. struct ggml_tensor * b,
  4471. int s0,
  4472. int s1,
  4473. int p0,
  4474. int p1,
  4475. int d0,
  4476. int d1) {
  4477. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4478. struct ggml_tensor * result =
  4479. ggml_mul_mat(ctx,
  4480. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4481. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4482. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4483. return result;
  4484. }
  4485. // ggml_conv_2d_sk_p0
  4486. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * a,
  4489. struct ggml_tensor * b) {
  4490. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4491. }
  4492. // ggml_conv_2d_s1_ph
  4493. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b) {
  4497. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4498. }
  4499. // ggml_conv_transpose_2d_p0
  4500. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4501. return (ins - 1) * s - 2 * p + ks;
  4502. }
  4503. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4504. struct ggml_context * ctx,
  4505. struct ggml_tensor * a,
  4506. struct ggml_tensor * b,
  4507. int stride) {
  4508. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4509. bool is_node = false;
  4510. if (a->grad || b->grad) {
  4511. GGML_ASSERT(false); // TODO: implement backward
  4512. is_node = true;
  4513. }
  4514. const int64_t ne[4] = {
  4515. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4516. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4517. a->ne[2], b->ne[3],
  4518. };
  4519. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4520. ggml_set_op_params_i32(result, 0, stride);
  4521. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4523. result->src[0] = a;
  4524. result->src[1] = b;
  4525. return result;
  4526. }
  4527. // ggml_pool_*
  4528. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4529. return (ins + 2 * p - ks) / s + 1;
  4530. }
  4531. // ggml_pool_1d
  4532. struct ggml_tensor * ggml_pool_1d(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. enum ggml_op_pool op,
  4536. int k0,
  4537. int s0,
  4538. int p0) {
  4539. bool is_node = false;
  4540. if (a->grad) {
  4541. GGML_ASSERT(false); // TODO: implement backward
  4542. is_node = true;
  4543. }
  4544. const int64_t ne[2] = {
  4545. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4546. a->ne[1],
  4547. };
  4548. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4549. int32_t params[] = { op, k0, s0, p0 };
  4550. ggml_set_op_params(result, params, sizeof(params));
  4551. result->op = GGML_OP_POOL_1D;
  4552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4553. result->src[0] = a;
  4554. return result;
  4555. }
  4556. // ggml_pool_2d
  4557. struct ggml_tensor * ggml_pool_2d(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a,
  4560. enum ggml_op_pool op,
  4561. int k0,
  4562. int k1,
  4563. int s0,
  4564. int s1,
  4565. float p0,
  4566. float p1) {
  4567. bool is_node = false;
  4568. if (a->grad) {
  4569. GGML_ASSERT(false); // TODO: implement backward
  4570. is_node = true;
  4571. }
  4572. const int64_t ne[3] = {
  4573. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4574. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4575. a->ne[2],
  4576. };
  4577. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4578. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4579. ggml_set_op_params(result, params, sizeof(params));
  4580. result->op = GGML_OP_POOL_2D;
  4581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4582. result->src[0] = a;
  4583. return result;
  4584. }
  4585. // ggml_upscale
  4586. static struct ggml_tensor * ggml_upscale_impl(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a,
  4589. int scale_factor) {
  4590. bool is_node = false;
  4591. if (a->grad) {
  4592. GGML_ASSERT(false); // TODO: implement backward
  4593. is_node = true;
  4594. }
  4595. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4596. a->ne[0] * scale_factor,
  4597. a->ne[1] * scale_factor,
  4598. a->ne[2], a->ne[3]);
  4599. result->op = GGML_OP_UPSCALE;
  4600. result->op_params[0] = scale_factor;
  4601. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4602. result->src[0] = a;
  4603. return result;
  4604. }
  4605. struct ggml_tensor * ggml_pad(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a,
  4608. int p0, int p1, int p2, int p3) {
  4609. bool is_node = false;
  4610. if (a->grad) {
  4611. GGML_ASSERT(false); // TODO: implement backward
  4612. is_node = true;
  4613. }
  4614. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4615. a->ne[0] + p0,
  4616. a->ne[1] + p1,
  4617. a->ne[2] + p2,
  4618. a->ne[3] + p3);
  4619. result->op = GGML_OP_PAD;
  4620. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4621. result->src[0] = a;
  4622. return result;
  4623. }
  4624. struct ggml_tensor * ggml_upscale(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. int scale_factor) {
  4628. return ggml_upscale_impl(ctx, a, scale_factor);
  4629. }
  4630. // ggml_argsort
  4631. struct ggml_tensor * ggml_argsort(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * a,
  4634. enum ggml_sort_order order) {
  4635. bool is_node = false;
  4636. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4637. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4638. result->op = GGML_OP_ARGSORT;
  4639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4640. result->src[0] = a;
  4641. return result;
  4642. }
  4643. // ggml_top_k
  4644. struct ggml_tensor * ggml_top_k(
  4645. struct ggml_context * ctx,
  4646. struct ggml_tensor * a,
  4647. int k) {
  4648. GGML_ASSERT(a->ne[0] >= k);
  4649. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4650. result = ggml_view_4d(ctx, result,
  4651. k, result->ne[1], result->ne[2], result->ne[3],
  4652. result->nb[1], result->nb[2], result->nb[3],
  4653. 0);
  4654. return result;
  4655. }
  4656. // ggml_flash_attn
  4657. struct ggml_tensor * ggml_flash_attn(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * q,
  4660. struct ggml_tensor * k,
  4661. struct ggml_tensor * v,
  4662. bool masked) {
  4663. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4664. // TODO: check if vT can be multiplied by (k*qT)
  4665. bool is_node = false;
  4666. if (q->grad || k->grad || v->grad) {
  4667. is_node = true;
  4668. }
  4669. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4670. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4671. int32_t t = masked ? 1 : 0;
  4672. ggml_set_op_params(result, &t, sizeof(t));
  4673. result->op = GGML_OP_FLASH_ATTN;
  4674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4675. result->src[0] = q;
  4676. result->src[1] = k;
  4677. result->src[2] = v;
  4678. return result;
  4679. }
  4680. // ggml_flash_ff
  4681. struct ggml_tensor * ggml_flash_ff(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. struct ggml_tensor * b0,
  4685. struct ggml_tensor * b1,
  4686. struct ggml_tensor * c0,
  4687. struct ggml_tensor * c1) {
  4688. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4689. // TODO: more checks
  4690. bool is_node = false;
  4691. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4692. is_node = true;
  4693. }
  4694. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4695. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4696. result->op = GGML_OP_FLASH_FF;
  4697. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4698. result->src[0] = a;
  4699. result->src[1] = b0;
  4700. result->src[2] = b1;
  4701. result->src[3] = c0;
  4702. result->src[4] = c1;
  4703. return result;
  4704. }
  4705. // ggml_flash_attn_back
  4706. struct ggml_tensor * ggml_flash_attn_back(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * q,
  4709. struct ggml_tensor * k,
  4710. struct ggml_tensor * v,
  4711. struct ggml_tensor * d,
  4712. bool masked) {
  4713. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4714. // TODO: check if vT can be multiplied by (k*qT)
  4715. // d shape [D,N,ne2,ne3]
  4716. // q shape [D,N,ne2,ne3]
  4717. // k shape [D,M,kvne2,ne3]
  4718. // v shape [M,D,kvne2,ne3]
  4719. const int64_t D = q->ne[0];
  4720. const int64_t N = q->ne[1];
  4721. const int64_t M = k->ne[1];
  4722. const int64_t ne2 = q->ne[2];
  4723. const int64_t ne3 = q->ne[3];
  4724. const int64_t kvne2 = k->ne[2];
  4725. GGML_ASSERT(k->ne[0] == D);
  4726. GGML_ASSERT(v->ne[0] == M);
  4727. GGML_ASSERT(v->ne[1] == D);
  4728. GGML_ASSERT(d->ne[0] == D);
  4729. GGML_ASSERT(d->ne[1] == N);
  4730. GGML_ASSERT(k->ne[2] == kvne2);
  4731. GGML_ASSERT(k->ne[3] == ne3);
  4732. GGML_ASSERT(v->ne[2] == kvne2);
  4733. GGML_ASSERT(v->ne[3] == ne3);
  4734. GGML_ASSERT(d->ne[2] == ne2);
  4735. GGML_ASSERT(d->ne[3] == ne3);
  4736. GGML_ASSERT(ne2 % kvne2 == 0);
  4737. bool is_node = false;
  4738. if (q->grad || k->grad || v->grad) {
  4739. // when using this operation (in backwards pass) these grads are set.
  4740. // we don't want to create (big) grad of our result, so is_node is false.
  4741. is_node = false;
  4742. }
  4743. // store gradients of q, k and v as continuous tensors concatenated in result.
  4744. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4745. const int64_t elem_q = ggml_nelements(q);
  4746. const int64_t elem_k = ggml_nelements(k);
  4747. const int64_t elem_v = ggml_nelements(v);
  4748. enum ggml_type result_type = GGML_TYPE_F32;
  4749. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4750. const size_t tsize = ggml_type_size(result_type);
  4751. const size_t offs_q = 0;
  4752. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4753. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4754. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4755. const size_t nelements = (end + tsize - 1)/tsize;
  4756. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4757. int32_t masked_i = masked ? 1 : 0;
  4758. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4759. result->op = GGML_OP_FLASH_ATTN_BACK;
  4760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4761. result->src[0] = q;
  4762. result->src[1] = k;
  4763. result->src[2] = v;
  4764. result->src[3] = d;
  4765. return result;
  4766. }
  4767. // ggml_win_part
  4768. struct ggml_tensor * ggml_win_part(
  4769. struct ggml_context * ctx,
  4770. struct ggml_tensor * a,
  4771. int w) {
  4772. GGML_ASSERT(a->ne[3] == 1);
  4773. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4774. bool is_node = false;
  4775. if (a->grad) {
  4776. GGML_ASSERT(false); // TODO: implement backward
  4777. is_node = true;
  4778. }
  4779. // padding
  4780. const int px = (w - a->ne[1]%w)%w;
  4781. const int py = (w - a->ne[2]%w)%w;
  4782. const int npx = (px + a->ne[1])/w;
  4783. const int npy = (py + a->ne[2])/w;
  4784. const int np = npx*npy;
  4785. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4786. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4787. int32_t params[] = { npx, npy, w };
  4788. ggml_set_op_params(result, params, sizeof(params));
  4789. result->op = GGML_OP_WIN_PART;
  4790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4791. result->src[0] = a;
  4792. return result;
  4793. }
  4794. // ggml_win_unpart
  4795. struct ggml_tensor * ggml_win_unpart(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. int w0,
  4799. int h0,
  4800. int w) {
  4801. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4802. bool is_node = false;
  4803. if (a->grad) {
  4804. GGML_ASSERT(false); // TODO: implement backward
  4805. is_node = true;
  4806. }
  4807. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4808. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4809. int32_t params[] = { w };
  4810. ggml_set_op_params(result, params, sizeof(params));
  4811. result->op = GGML_OP_WIN_UNPART;
  4812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4813. result->src[0] = a;
  4814. return result;
  4815. }
  4816. // ggml_get_rel_pos
  4817. struct ggml_tensor * ggml_get_rel_pos(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. int qh,
  4821. int kh) {
  4822. GGML_ASSERT(qh == kh);
  4823. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4824. bool is_node = false;
  4825. if (a->grad) {
  4826. GGML_ASSERT(false); // TODO: implement backward
  4827. is_node = true;
  4828. }
  4829. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4830. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4831. result->op = GGML_OP_GET_REL_POS;
  4832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4833. result->src[0] = a;
  4834. return result;
  4835. }
  4836. // ggml_add_rel_pos
  4837. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4838. struct ggml_context * ctx,
  4839. struct ggml_tensor * a,
  4840. struct ggml_tensor * pw,
  4841. struct ggml_tensor * ph,
  4842. bool inplace) {
  4843. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4844. GGML_ASSERT(ggml_is_contiguous(a));
  4845. GGML_ASSERT(ggml_is_contiguous(pw));
  4846. GGML_ASSERT(ggml_is_contiguous(ph));
  4847. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4848. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4849. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4850. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4851. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4852. bool is_node = false;
  4853. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4854. is_node = true;
  4855. }
  4856. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4857. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4858. result->op = GGML_OP_ADD_REL_POS;
  4859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4860. result->src[0] = a;
  4861. result->src[1] = pw;
  4862. result->src[2] = ph;
  4863. return result;
  4864. }
  4865. struct ggml_tensor * ggml_add_rel_pos(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * a,
  4868. struct ggml_tensor * pw,
  4869. struct ggml_tensor * ph) {
  4870. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4871. }
  4872. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a,
  4875. struct ggml_tensor * pw,
  4876. struct ggml_tensor * ph) {
  4877. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4878. }
  4879. // gmml_unary
  4880. static struct ggml_tensor * ggml_unary_impl(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. enum ggml_unary_op op,
  4884. bool inplace) {
  4885. bool is_node = false;
  4886. if (!inplace && (a->grad)) {
  4887. is_node = true;
  4888. }
  4889. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4890. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4891. result->op = GGML_OP_UNARY;
  4892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4893. result->src[0] = a;
  4894. return result;
  4895. }
  4896. struct ggml_tensor * ggml_unary(
  4897. struct ggml_context * ctx,
  4898. struct ggml_tensor * a,
  4899. enum ggml_unary_op op) {
  4900. return ggml_unary_impl(ctx, a, op, false);
  4901. }
  4902. struct ggml_tensor * ggml_unary_inplace(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. enum ggml_unary_op op) {
  4906. return ggml_unary_impl(ctx, a, op, true);
  4907. }
  4908. // ggml_map_unary
  4909. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4910. struct ggml_context * ctx,
  4911. struct ggml_tensor * a,
  4912. const ggml_unary_op_f32_t fun,
  4913. bool inplace) {
  4914. bool is_node = false;
  4915. if (!inplace && a->grad) {
  4916. is_node = true;
  4917. }
  4918. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4919. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4920. result->op = GGML_OP_MAP_UNARY;
  4921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4922. result->src[0] = a;
  4923. return result;
  4924. }
  4925. struct ggml_tensor * ggml_map_unary_f32(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. const ggml_unary_op_f32_t fun) {
  4929. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4930. }
  4931. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4932. struct ggml_context * ctx,
  4933. struct ggml_tensor * a,
  4934. const ggml_unary_op_f32_t fun) {
  4935. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4936. }
  4937. // ggml_map_binary
  4938. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. struct ggml_tensor * b,
  4942. const ggml_binary_op_f32_t fun,
  4943. bool inplace) {
  4944. GGML_ASSERT(ggml_are_same_shape(a, b));
  4945. bool is_node = false;
  4946. if (!inplace && (a->grad || b->grad)) {
  4947. is_node = true;
  4948. }
  4949. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4950. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4951. result->op = GGML_OP_MAP_BINARY;
  4952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4953. result->src[0] = a;
  4954. result->src[1] = b;
  4955. return result;
  4956. }
  4957. struct ggml_tensor * ggml_map_binary_f32(
  4958. struct ggml_context * ctx,
  4959. struct ggml_tensor * a,
  4960. struct ggml_tensor * b,
  4961. const ggml_binary_op_f32_t fun) {
  4962. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4963. }
  4964. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4965. struct ggml_context * ctx,
  4966. struct ggml_tensor * a,
  4967. struct ggml_tensor * b,
  4968. const ggml_binary_op_f32_t fun) {
  4969. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4970. }
  4971. // ggml_map_custom1_f32
  4972. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. const ggml_custom1_op_f32_t fun,
  4976. bool inplace) {
  4977. bool is_node = false;
  4978. if (!inplace && a->grad) {
  4979. is_node = true;
  4980. }
  4981. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4982. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4983. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4984. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4985. result->src[0] = a;
  4986. return result;
  4987. }
  4988. struct ggml_tensor * ggml_map_custom1_f32(
  4989. struct ggml_context * ctx,
  4990. struct ggml_tensor * a,
  4991. const ggml_custom1_op_f32_t fun) {
  4992. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4993. }
  4994. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4995. struct ggml_context * ctx,
  4996. struct ggml_tensor * a,
  4997. const ggml_custom1_op_f32_t fun) {
  4998. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4999. }
  5000. // ggml_map_custom2_f32
  5001. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. struct ggml_tensor * b,
  5005. const ggml_custom2_op_f32_t fun,
  5006. bool inplace) {
  5007. bool is_node = false;
  5008. if (!inplace && (a->grad || b->grad)) {
  5009. is_node = true;
  5010. }
  5011. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5012. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5013. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5015. result->src[0] = a;
  5016. result->src[1] = b;
  5017. return result;
  5018. }
  5019. struct ggml_tensor * ggml_map_custom2_f32(
  5020. struct ggml_context * ctx,
  5021. struct ggml_tensor * a,
  5022. struct ggml_tensor * b,
  5023. const ggml_custom2_op_f32_t fun) {
  5024. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5025. }
  5026. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5027. struct ggml_context * ctx,
  5028. struct ggml_tensor * a,
  5029. struct ggml_tensor * b,
  5030. const ggml_custom2_op_f32_t fun) {
  5031. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5032. }
  5033. // ggml_map_custom3_f32
  5034. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * a,
  5037. struct ggml_tensor * b,
  5038. struct ggml_tensor * c,
  5039. const ggml_custom3_op_f32_t fun,
  5040. bool inplace) {
  5041. bool is_node = false;
  5042. if (!inplace && (a->grad || b->grad || c->grad)) {
  5043. is_node = true;
  5044. }
  5045. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5046. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5047. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5049. result->src[0] = a;
  5050. result->src[1] = b;
  5051. result->src[2] = c;
  5052. return result;
  5053. }
  5054. struct ggml_tensor * ggml_map_custom3_f32(
  5055. struct ggml_context * ctx,
  5056. struct ggml_tensor * a,
  5057. struct ggml_tensor * b,
  5058. struct ggml_tensor * c,
  5059. const ggml_custom3_op_f32_t fun) {
  5060. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5061. }
  5062. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. struct ggml_tensor * b,
  5066. struct ggml_tensor * c,
  5067. const ggml_custom3_op_f32_t fun) {
  5068. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5069. }
  5070. // ggml_map_custom1
  5071. struct ggml_map_custom1_op_params {
  5072. ggml_custom1_op_t fun;
  5073. int n_tasks;
  5074. void * userdata;
  5075. };
  5076. static struct ggml_tensor * ggml_map_custom1_impl(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * a,
  5079. const ggml_custom1_op_t fun,
  5080. int n_tasks,
  5081. void * userdata,
  5082. bool inplace) {
  5083. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5084. bool is_node = false;
  5085. if (!inplace && a->grad) {
  5086. is_node = true;
  5087. }
  5088. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5089. struct ggml_map_custom1_op_params params = {
  5090. /*.fun =*/ fun,
  5091. /*.n_tasks =*/ n_tasks,
  5092. /*.userdata =*/ userdata
  5093. };
  5094. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5095. result->op = GGML_OP_MAP_CUSTOM1;
  5096. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5097. result->src[0] = a;
  5098. return result;
  5099. }
  5100. struct ggml_tensor * ggml_map_custom1(
  5101. struct ggml_context * ctx,
  5102. struct ggml_tensor * a,
  5103. const ggml_custom1_op_t fun,
  5104. int n_tasks,
  5105. void * userdata) {
  5106. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5107. }
  5108. struct ggml_tensor * ggml_map_custom1_inplace(
  5109. struct ggml_context * ctx,
  5110. struct ggml_tensor * a,
  5111. const ggml_custom1_op_t fun,
  5112. int n_tasks,
  5113. void * userdata) {
  5114. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5115. }
  5116. // ggml_map_custom2
  5117. struct ggml_map_custom2_op_params {
  5118. ggml_custom2_op_t fun;
  5119. int n_tasks;
  5120. void * userdata;
  5121. };
  5122. static struct ggml_tensor * ggml_map_custom2_impl(
  5123. struct ggml_context * ctx,
  5124. struct ggml_tensor * a,
  5125. struct ggml_tensor * b,
  5126. const ggml_custom2_op_t fun,
  5127. int n_tasks,
  5128. void * userdata,
  5129. bool inplace) {
  5130. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5131. bool is_node = false;
  5132. if (!inplace && (a->grad || b->grad)) {
  5133. is_node = true;
  5134. }
  5135. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5136. struct ggml_map_custom2_op_params params = {
  5137. /*.fun =*/ fun,
  5138. /*.n_tasks =*/ n_tasks,
  5139. /*.userdata =*/ userdata
  5140. };
  5141. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5142. result->op = GGML_OP_MAP_CUSTOM2;
  5143. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5144. result->src[0] = a;
  5145. result->src[1] = b;
  5146. return result;
  5147. }
  5148. struct ggml_tensor * ggml_map_custom2(
  5149. struct ggml_context * ctx,
  5150. struct ggml_tensor * a,
  5151. struct ggml_tensor * b,
  5152. const ggml_custom2_op_t fun,
  5153. int n_tasks,
  5154. void * userdata) {
  5155. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5156. }
  5157. struct ggml_tensor * ggml_map_custom2_inplace(
  5158. struct ggml_context * ctx,
  5159. struct ggml_tensor * a,
  5160. struct ggml_tensor * b,
  5161. const ggml_custom2_op_t fun,
  5162. int n_tasks,
  5163. void * userdata) {
  5164. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5165. }
  5166. // ggml_map_custom3
  5167. struct ggml_map_custom3_op_params {
  5168. ggml_custom3_op_t fun;
  5169. int n_tasks;
  5170. void * userdata;
  5171. };
  5172. static struct ggml_tensor * ggml_map_custom3_impl(
  5173. struct ggml_context * ctx,
  5174. struct ggml_tensor * a,
  5175. struct ggml_tensor * b,
  5176. struct ggml_tensor * c,
  5177. const ggml_custom3_op_t fun,
  5178. int n_tasks,
  5179. void * userdata,
  5180. bool inplace) {
  5181. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5182. bool is_node = false;
  5183. if (!inplace && (a->grad || b->grad || c->grad)) {
  5184. is_node = true;
  5185. }
  5186. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5187. struct ggml_map_custom3_op_params params = {
  5188. /*.fun =*/ fun,
  5189. /*.n_tasks =*/ n_tasks,
  5190. /*.userdata =*/ userdata
  5191. };
  5192. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5193. result->op = GGML_OP_MAP_CUSTOM3;
  5194. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5195. result->src[0] = a;
  5196. result->src[1] = b;
  5197. result->src[2] = c;
  5198. return result;
  5199. }
  5200. struct ggml_tensor * ggml_map_custom3(
  5201. struct ggml_context * ctx,
  5202. struct ggml_tensor * a,
  5203. struct ggml_tensor * b,
  5204. struct ggml_tensor * c,
  5205. const ggml_custom3_op_t fun,
  5206. int n_tasks,
  5207. void * userdata) {
  5208. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5209. }
  5210. struct ggml_tensor * ggml_map_custom3_inplace(
  5211. struct ggml_context * ctx,
  5212. struct ggml_tensor * a,
  5213. struct ggml_tensor * b,
  5214. struct ggml_tensor * c,
  5215. const ggml_custom3_op_t fun,
  5216. int n_tasks,
  5217. void * userdata) {
  5218. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5219. }
  5220. // ggml_cross_entropy_loss
  5221. struct ggml_tensor * ggml_cross_entropy_loss(
  5222. struct ggml_context * ctx,
  5223. struct ggml_tensor * a,
  5224. struct ggml_tensor * b) {
  5225. GGML_ASSERT(ggml_are_same_shape(a, b));
  5226. bool is_node = false;
  5227. if (a->grad || b->grad) {
  5228. is_node = true;
  5229. }
  5230. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5231. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5233. result->src[0] = a;
  5234. result->src[1] = b;
  5235. return result;
  5236. }
  5237. // ggml_cross_entropy_loss_back
  5238. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5239. struct ggml_context * ctx,
  5240. struct ggml_tensor * a,
  5241. struct ggml_tensor * b,
  5242. struct ggml_tensor * c) {
  5243. GGML_ASSERT(ggml_are_same_shape(a, b));
  5244. GGML_ASSERT(ggml_is_scalar(c));
  5245. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5246. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5247. result->grad = NULL;
  5248. result->src[0] = a;
  5249. result->src[1] = b;
  5250. result->src[2] = c;
  5251. return result;
  5252. }
  5253. ////////////////////////////////////////////////////////////////////////////////
  5254. void ggml_set_param(
  5255. struct ggml_context * ctx,
  5256. struct ggml_tensor * tensor) {
  5257. tensor->is_param = true;
  5258. GGML_ASSERT(tensor->grad == NULL);
  5259. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5260. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5261. }
  5262. // ggml_compute_forward_dup
  5263. static void ggml_compute_forward_dup_same_cont(
  5264. const struct ggml_compute_params * params,
  5265. const struct ggml_tensor * src0,
  5266. struct ggml_tensor * dst) {
  5267. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5268. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5269. GGML_ASSERT(src0->type == dst->type);
  5270. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5271. return;
  5272. }
  5273. const size_t nb00 = src0->nb[0];
  5274. const size_t nb0 = dst->nb[0];
  5275. const int ith = params->ith; // thread index
  5276. const int nth = params->nth; // number of threads
  5277. // parallelize by elements
  5278. const int ne = ggml_nelements(dst);
  5279. const int dr = (ne + nth - 1) / nth;
  5280. const int ie0 = dr * ith;
  5281. const int ie1 = MIN(ie0 + dr, ne);
  5282. if (ie0 < ie1) {
  5283. memcpy(
  5284. ((char *) dst->data + ie0*nb0),
  5285. ((char *) src0->data + ie0*nb00),
  5286. (ie1 - ie0) * ggml_type_size(src0->type));
  5287. }
  5288. }
  5289. static void ggml_compute_forward_dup_f16(
  5290. const struct ggml_compute_params * params,
  5291. const struct ggml_tensor * src0,
  5292. struct ggml_tensor * dst) {
  5293. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5294. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5295. return;
  5296. }
  5297. GGML_TENSOR_UNARY_OP_LOCALS
  5298. const int ith = params->ith; // thread index
  5299. const int nth = params->nth; // number of threads
  5300. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5301. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5302. return;
  5303. }
  5304. // parallelize by rows
  5305. const int nr = ne01;
  5306. // number of rows per thread
  5307. const int dr = (nr + nth - 1) / nth;
  5308. // row range for this thread
  5309. const int ir0 = dr * ith;
  5310. const int ir1 = MIN(ir0 + dr, nr);
  5311. if (src0->type == dst->type &&
  5312. ne00 == ne0 &&
  5313. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5314. // copy by rows
  5315. const size_t rs = ne00*nb00;
  5316. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5317. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5318. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5319. memcpy(
  5320. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5321. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5322. rs);
  5323. }
  5324. }
  5325. }
  5326. return;
  5327. }
  5328. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5329. if (ggml_is_contiguous(dst)) {
  5330. if (nb00 == sizeof(ggml_fp16_t)) {
  5331. if (dst->type == GGML_TYPE_F16) {
  5332. size_t id = 0;
  5333. const size_t rs = ne00 * nb00;
  5334. char * dst_ptr = (char *) dst->data;
  5335. for (int i03 = 0; i03 < ne03; i03++) {
  5336. for (int i02 = 0; i02 < ne02; i02++) {
  5337. id += rs * ir0;
  5338. for (int i01 = ir0; i01 < ir1; i01++) {
  5339. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5340. memcpy(dst_ptr + id, src0_ptr, rs);
  5341. id += rs;
  5342. }
  5343. id += rs * (ne01 - ir1);
  5344. }
  5345. }
  5346. } else if (dst->type == GGML_TYPE_F32) {
  5347. size_t id = 0;
  5348. float * dst_ptr = (float *) dst->data;
  5349. for (int i03 = 0; i03 < ne03; i03++) {
  5350. for (int i02 = 0; i02 < ne02; i02++) {
  5351. id += ne00 * ir0;
  5352. for (int i01 = ir0; i01 < ir1; i01++) {
  5353. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5354. for (int i00 = 0; i00 < ne00; i00++) {
  5355. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5356. id++;
  5357. }
  5358. }
  5359. id += ne00 * (ne01 - ir1);
  5360. }
  5361. }
  5362. } else if (type_traits[dst->type].from_float) {
  5363. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5364. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5365. size_t id = 0;
  5366. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5367. char * dst_ptr = (char *) dst->data;
  5368. for (int i03 = 0; i03 < ne03; i03++) {
  5369. for (int i02 = 0; i02 < ne02; i02++) {
  5370. id += rs * ir0;
  5371. for (int i01 = ir0; i01 < ir1; i01++) {
  5372. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5373. for (int i00 = 0; i00 < ne00; i00++) {
  5374. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5375. }
  5376. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5377. id += rs;
  5378. }
  5379. id += rs * (ne01 - ir1);
  5380. }
  5381. }
  5382. } else {
  5383. GGML_ASSERT(false); // TODO: implement
  5384. }
  5385. } else {
  5386. //printf("%s: this is not optimal - fix me\n", __func__);
  5387. if (dst->type == GGML_TYPE_F32) {
  5388. size_t id = 0;
  5389. float * dst_ptr = (float *) dst->data;
  5390. for (int i03 = 0; i03 < ne03; i03++) {
  5391. for (int i02 = 0; i02 < ne02; i02++) {
  5392. id += ne00 * ir0;
  5393. for (int i01 = ir0; i01 < ir1; i01++) {
  5394. for (int i00 = 0; i00 < ne00; i00++) {
  5395. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5396. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5397. id++;
  5398. }
  5399. }
  5400. id += ne00 * (ne01 - ir1);
  5401. }
  5402. }
  5403. } else if (dst->type == GGML_TYPE_F16) {
  5404. size_t id = 0;
  5405. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5406. for (int i03 = 0; i03 < ne03; i03++) {
  5407. for (int i02 = 0; i02 < ne02; i02++) {
  5408. id += ne00 * ir0;
  5409. for (int i01 = ir0; i01 < ir1; i01++) {
  5410. for (int i00 = 0; i00 < ne00; i00++) {
  5411. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5412. dst_ptr[id] = *src0_ptr;
  5413. id++;
  5414. }
  5415. }
  5416. id += ne00 * (ne01 - ir1);
  5417. }
  5418. }
  5419. } else {
  5420. GGML_ASSERT(false); // TODO: implement
  5421. }
  5422. }
  5423. return;
  5424. }
  5425. // dst counters
  5426. int64_t i10 = 0;
  5427. int64_t i11 = 0;
  5428. int64_t i12 = 0;
  5429. int64_t i13 = 0;
  5430. if (dst->type == GGML_TYPE_F16) {
  5431. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5432. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5433. i10 += ne00 * ir0;
  5434. while (i10 >= ne0) {
  5435. i10 -= ne0;
  5436. if (++i11 == ne1) {
  5437. i11 = 0;
  5438. if (++i12 == ne2) {
  5439. i12 = 0;
  5440. if (++i13 == ne3) {
  5441. i13 = 0;
  5442. }
  5443. }
  5444. }
  5445. }
  5446. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5447. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5448. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5449. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5450. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5451. if (++i10 == ne00) {
  5452. i10 = 0;
  5453. if (++i11 == ne01) {
  5454. i11 = 0;
  5455. if (++i12 == ne02) {
  5456. i12 = 0;
  5457. if (++i13 == ne03) {
  5458. i13 = 0;
  5459. }
  5460. }
  5461. }
  5462. }
  5463. }
  5464. }
  5465. i10 += ne00 * (ne01 - ir1);
  5466. while (i10 >= ne0) {
  5467. i10 -= ne0;
  5468. if (++i11 == ne1) {
  5469. i11 = 0;
  5470. if (++i12 == ne2) {
  5471. i12 = 0;
  5472. if (++i13 == ne3) {
  5473. i13 = 0;
  5474. }
  5475. }
  5476. }
  5477. }
  5478. }
  5479. }
  5480. } else if (dst->type == GGML_TYPE_F32) {
  5481. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5482. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5483. i10 += ne00 * ir0;
  5484. while (i10 >= ne0) {
  5485. i10 -= ne0;
  5486. if (++i11 == ne1) {
  5487. i11 = 0;
  5488. if (++i12 == ne2) {
  5489. i12 = 0;
  5490. if (++i13 == ne3) {
  5491. i13 = 0;
  5492. }
  5493. }
  5494. }
  5495. }
  5496. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5497. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5498. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5499. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5500. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5501. if (++i10 == ne0) {
  5502. i10 = 0;
  5503. if (++i11 == ne1) {
  5504. i11 = 0;
  5505. if (++i12 == ne2) {
  5506. i12 = 0;
  5507. if (++i13 == ne3) {
  5508. i13 = 0;
  5509. }
  5510. }
  5511. }
  5512. }
  5513. }
  5514. }
  5515. i10 += ne00 * (ne01 - ir1);
  5516. while (i10 >= ne0) {
  5517. i10 -= ne0;
  5518. if (++i11 == ne1) {
  5519. i11 = 0;
  5520. if (++i12 == ne2) {
  5521. i12 = 0;
  5522. if (++i13 == ne3) {
  5523. i13 = 0;
  5524. }
  5525. }
  5526. }
  5527. }
  5528. }
  5529. }
  5530. } else {
  5531. GGML_ASSERT(false); // TODO: implement
  5532. }
  5533. }
  5534. static void ggml_compute_forward_dup_f32(
  5535. const struct ggml_compute_params * params,
  5536. const struct ggml_tensor * src0,
  5537. struct ggml_tensor * dst) {
  5538. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5539. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5540. return;
  5541. }
  5542. GGML_TENSOR_UNARY_OP_LOCALS
  5543. const int ith = params->ith; // thread index
  5544. const int nth = params->nth; // number of threads
  5545. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5546. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5547. return;
  5548. }
  5549. // parallelize by rows
  5550. const int nr = ne01;
  5551. // number of rows per thread
  5552. const int dr = (nr + nth - 1) / nth;
  5553. // row range for this thread
  5554. const int ir0 = dr * ith;
  5555. const int ir1 = MIN(ir0 + dr, nr);
  5556. if (src0->type == dst->type &&
  5557. ne00 == ne0 &&
  5558. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5559. // copy by rows
  5560. const size_t rs = ne00*nb00;
  5561. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5562. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5563. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5564. memcpy(
  5565. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5566. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5567. rs);
  5568. }
  5569. }
  5570. }
  5571. return;
  5572. }
  5573. if (ggml_is_contiguous(dst)) {
  5574. // TODO: simplify
  5575. if (nb00 == sizeof(float)) {
  5576. if (dst->type == GGML_TYPE_F32) {
  5577. size_t id = 0;
  5578. const size_t rs = ne00 * nb00;
  5579. char * dst_ptr = (char *) dst->data;
  5580. for (int i03 = 0; i03 < ne03; i03++) {
  5581. for (int i02 = 0; i02 < ne02; i02++) {
  5582. id += rs * ir0;
  5583. for (int i01 = ir0; i01 < ir1; i01++) {
  5584. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5585. memcpy(dst_ptr + id, src0_ptr, rs);
  5586. id += rs;
  5587. }
  5588. id += rs * (ne01 - ir1);
  5589. }
  5590. }
  5591. } else if (type_traits[dst->type].from_float) {
  5592. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5593. size_t id = 0;
  5594. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5595. char * dst_ptr = (char *) dst->data;
  5596. for (int i03 = 0; i03 < ne03; i03++) {
  5597. for (int i02 = 0; i02 < ne02; i02++) {
  5598. id += rs * ir0;
  5599. for (int i01 = ir0; i01 < ir1; i01++) {
  5600. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5601. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5602. id += rs;
  5603. }
  5604. id += rs * (ne01 - ir1);
  5605. }
  5606. }
  5607. } else {
  5608. GGML_ASSERT(false); // TODO: implement
  5609. }
  5610. } else {
  5611. //printf("%s: this is not optimal - fix me\n", __func__);
  5612. if (dst->type == GGML_TYPE_F32) {
  5613. size_t id = 0;
  5614. float * dst_ptr = (float *) dst->data;
  5615. for (int i03 = 0; i03 < ne03; i03++) {
  5616. for (int i02 = 0; i02 < ne02; i02++) {
  5617. id += ne00 * ir0;
  5618. for (int i01 = ir0; i01 < ir1; i01++) {
  5619. for (int i00 = 0; i00 < ne00; i00++) {
  5620. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5621. dst_ptr[id] = *src0_ptr;
  5622. id++;
  5623. }
  5624. }
  5625. id += ne00 * (ne01 - ir1);
  5626. }
  5627. }
  5628. } else if (dst->type == GGML_TYPE_F16) {
  5629. size_t id = 0;
  5630. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5631. for (int i03 = 0; i03 < ne03; i03++) {
  5632. for (int i02 = 0; i02 < ne02; i02++) {
  5633. id += ne00 * ir0;
  5634. for (int i01 = ir0; i01 < ir1; i01++) {
  5635. for (int i00 = 0; i00 < ne00; i00++) {
  5636. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5637. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5638. id++;
  5639. }
  5640. }
  5641. id += ne00 * (ne01 - ir1);
  5642. }
  5643. }
  5644. } else {
  5645. GGML_ASSERT(false); // TODO: implement
  5646. }
  5647. }
  5648. return;
  5649. }
  5650. // dst counters
  5651. int64_t i10 = 0;
  5652. int64_t i11 = 0;
  5653. int64_t i12 = 0;
  5654. int64_t i13 = 0;
  5655. if (dst->type == GGML_TYPE_F32) {
  5656. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5657. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5658. i10 += ne00 * ir0;
  5659. while (i10 >= ne0) {
  5660. i10 -= ne0;
  5661. if (++i11 == ne1) {
  5662. i11 = 0;
  5663. if (++i12 == ne2) {
  5664. i12 = 0;
  5665. if (++i13 == ne3) {
  5666. i13 = 0;
  5667. }
  5668. }
  5669. }
  5670. }
  5671. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5672. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5673. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5674. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5675. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5676. if (++i10 == ne0) {
  5677. i10 = 0;
  5678. if (++i11 == ne1) {
  5679. i11 = 0;
  5680. if (++i12 == ne2) {
  5681. i12 = 0;
  5682. if (++i13 == ne3) {
  5683. i13 = 0;
  5684. }
  5685. }
  5686. }
  5687. }
  5688. }
  5689. }
  5690. i10 += ne00 * (ne01 - ir1);
  5691. while (i10 >= ne0) {
  5692. i10 -= ne0;
  5693. if (++i11 == ne1) {
  5694. i11 = 0;
  5695. if (++i12 == ne2) {
  5696. i12 = 0;
  5697. if (++i13 == ne3) {
  5698. i13 = 0;
  5699. }
  5700. }
  5701. }
  5702. }
  5703. }
  5704. }
  5705. } else if (dst->type == GGML_TYPE_F16) {
  5706. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5707. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5708. i10 += ne00 * ir0;
  5709. while (i10 >= ne0) {
  5710. i10 -= ne0;
  5711. if (++i11 == ne1) {
  5712. i11 = 0;
  5713. if (++i12 == ne2) {
  5714. i12 = 0;
  5715. if (++i13 == ne3) {
  5716. i13 = 0;
  5717. }
  5718. }
  5719. }
  5720. }
  5721. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5722. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5723. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5724. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5725. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5726. if (++i10 == ne0) {
  5727. i10 = 0;
  5728. if (++i11 == ne1) {
  5729. i11 = 0;
  5730. if (++i12 == ne2) {
  5731. i12 = 0;
  5732. if (++i13 == ne3) {
  5733. i13 = 0;
  5734. }
  5735. }
  5736. }
  5737. }
  5738. }
  5739. }
  5740. i10 += ne00 * (ne01 - ir1);
  5741. while (i10 >= ne0) {
  5742. i10 -= ne0;
  5743. if (++i11 == ne1) {
  5744. i11 = 0;
  5745. if (++i12 == ne2) {
  5746. i12 = 0;
  5747. if (++i13 == ne3) {
  5748. i13 = 0;
  5749. }
  5750. }
  5751. }
  5752. }
  5753. }
  5754. }
  5755. } else {
  5756. GGML_ASSERT(false); // TODO: implement
  5757. }
  5758. }
  5759. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5760. static void ggml_compute_forward_dup_bytes(
  5761. const struct ggml_compute_params * params,
  5762. const struct ggml_tensor * src0,
  5763. struct ggml_tensor * dst) {
  5764. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5765. GGML_ASSERT(src0->type == dst->type);
  5766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5767. return;
  5768. }
  5769. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5770. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5771. return;
  5772. }
  5773. GGML_TENSOR_UNARY_OP_LOCALS;
  5774. const size_t type_size = ggml_type_size(src0->type);
  5775. const int ith = params->ith; // thread index
  5776. const int nth = params->nth; // number of threads
  5777. // parallelize by rows
  5778. const int nr = ne01;
  5779. // number of rows per thread
  5780. const int dr = (nr + nth - 1) / nth;
  5781. // row range for this thread
  5782. const int ir0 = dr * ith;
  5783. const int ir1 = MIN(ir0 + dr, nr);
  5784. if (src0->type == dst->type &&
  5785. ne00 == ne0 &&
  5786. nb00 == type_size && nb0 == type_size) {
  5787. // copy by rows
  5788. const size_t rs = ne00 * type_size;
  5789. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5790. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5791. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5792. memcpy(
  5793. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5794. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5795. rs);
  5796. }
  5797. }
  5798. }
  5799. return;
  5800. }
  5801. if (ggml_is_contiguous(dst)) {
  5802. size_t id = 0;
  5803. char * dst_ptr = (char *) dst->data;
  5804. const size_t rs = ne00 * type_size;
  5805. if (nb00 == type_size) {
  5806. // src0 is contigous on first dimension, copy by rows
  5807. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5808. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5809. id += rs * ir0;
  5810. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5811. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5812. memcpy(dst_ptr + id, src0_ptr, rs);
  5813. id += rs;
  5814. }
  5815. id += rs * (ne01 - ir1);
  5816. }
  5817. }
  5818. } else {
  5819. //printf("%s: this is not optimal - fix me\n", __func__);
  5820. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5821. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5822. id += rs * ir0;
  5823. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5824. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5825. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5826. memcpy(dst_ptr + id, src0_ptr, type_size);
  5827. id += type_size;
  5828. }
  5829. }
  5830. id += rs * (ne01 - ir1);
  5831. }
  5832. }
  5833. }
  5834. return;
  5835. }
  5836. // dst counters
  5837. int64_t i10 = 0;
  5838. int64_t i11 = 0;
  5839. int64_t i12 = 0;
  5840. int64_t i13 = 0;
  5841. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5842. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5843. i10 += ne00 * ir0;
  5844. while (i10 >= ne0) {
  5845. i10 -= ne0;
  5846. if (++i11 == ne1) {
  5847. i11 = 0;
  5848. if (++i12 == ne2) {
  5849. i12 = 0;
  5850. if (++i13 == ne3) {
  5851. i13 = 0;
  5852. }
  5853. }
  5854. }
  5855. }
  5856. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5857. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5858. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5859. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5860. memcpy(dst_ptr, src0_ptr, type_size);
  5861. if (++i10 == ne0) {
  5862. i10 = 0;
  5863. if (++i11 == ne1) {
  5864. i11 = 0;
  5865. if (++i12 == ne2) {
  5866. i12 = 0;
  5867. if (++i13 == ne3) {
  5868. i13 = 0;
  5869. }
  5870. }
  5871. }
  5872. }
  5873. }
  5874. }
  5875. i10 += ne00 * (ne01 - ir1);
  5876. while (i10 >= ne0) {
  5877. i10 -= ne0;
  5878. if (++i11 == ne1) {
  5879. i11 = 0;
  5880. if (++i12 == ne2) {
  5881. i12 = 0;
  5882. if (++i13 == ne3) {
  5883. i13 = 0;
  5884. }
  5885. }
  5886. }
  5887. }
  5888. }
  5889. }
  5890. }
  5891. static void ggml_compute_forward_dup(
  5892. const struct ggml_compute_params * params,
  5893. const struct ggml_tensor * src0,
  5894. struct ggml_tensor * dst) {
  5895. if (src0->type == dst->type) {
  5896. ggml_compute_forward_dup_bytes(params, src0, dst);
  5897. return;
  5898. }
  5899. switch (src0->type) {
  5900. case GGML_TYPE_F16:
  5901. {
  5902. ggml_compute_forward_dup_f16(params, src0, dst);
  5903. } break;
  5904. case GGML_TYPE_F32:
  5905. {
  5906. ggml_compute_forward_dup_f32(params, src0, dst);
  5907. } break;
  5908. default:
  5909. {
  5910. GGML_ASSERT(false);
  5911. } break;
  5912. }
  5913. }
  5914. // ggml_compute_forward_add
  5915. static void ggml_compute_forward_add_f32(
  5916. const struct ggml_compute_params * params,
  5917. const struct ggml_tensor * src0,
  5918. const struct ggml_tensor * src1,
  5919. struct ggml_tensor * dst) {
  5920. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5921. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5922. return;
  5923. }
  5924. const int ith = params->ith;
  5925. const int nth = params->nth;
  5926. #ifdef GGML_USE_CLBLAST
  5927. if (src1->backend == GGML_BACKEND_GPU) {
  5928. // TODO: OpenCL kernel support full broadcast
  5929. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  5930. if (ith == 0) {
  5931. ggml_cl_add(src0, src1, dst);
  5932. }
  5933. return;
  5934. }
  5935. #endif
  5936. const int nr = ggml_nrows(src0);
  5937. GGML_TENSOR_BINARY_OP_LOCALS
  5938. GGML_ASSERT( nb0 == sizeof(float));
  5939. GGML_ASSERT(nb00 == sizeof(float));
  5940. // rows per thread
  5941. const int dr = (nr + nth - 1)/nth;
  5942. // row range for this thread
  5943. const int ir0 = dr*ith;
  5944. const int ir1 = MIN(ir0 + dr, nr);
  5945. if (nb10 == sizeof(float)) {
  5946. for (int ir = ir0; ir < ir1; ++ir) {
  5947. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5948. const int64_t i03 = ir/(ne02*ne01);
  5949. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5950. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5951. const int64_t i13 = i03 % ne13;
  5952. const int64_t i12 = i02 % ne12;
  5953. const int64_t i11 = i01 % ne11;
  5954. const int64_t nr0 = ne00 / ne10;
  5955. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5956. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5957. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5958. for (int64_t r = 0; r < nr0; ++r) {
  5959. #ifdef GGML_USE_ACCELERATE
  5960. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5961. #else
  5962. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5963. #endif
  5964. }
  5965. }
  5966. } else {
  5967. // src1 is not contiguous
  5968. for (int ir = ir0; ir < ir1; ++ir) {
  5969. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5970. const int64_t i03 = ir/(ne02*ne01);
  5971. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5972. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5973. const int64_t i13 = i03 % ne13;
  5974. const int64_t i12 = i02 % ne12;
  5975. const int64_t i11 = i01 % ne11;
  5976. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5977. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5978. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5979. const int64_t i10 = i0 % ne10;
  5980. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5981. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5982. }
  5983. }
  5984. }
  5985. }
  5986. static void ggml_compute_forward_add_f16_f32(
  5987. const struct ggml_compute_params * params,
  5988. const struct ggml_tensor * src0,
  5989. const struct ggml_tensor * src1,
  5990. struct ggml_tensor * dst) {
  5991. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5993. return;
  5994. }
  5995. const int ith = params->ith;
  5996. const int nth = params->nth;
  5997. const int nr = ggml_nrows(src0);
  5998. GGML_TENSOR_BINARY_OP_LOCALS
  5999. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6000. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6001. if (dst->type == GGML_TYPE_F32) {
  6002. GGML_ASSERT( nb0 == sizeof(float));
  6003. }
  6004. else {
  6005. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6006. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6007. }
  6008. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6009. // rows per thread
  6010. const int dr = (nr + nth - 1)/nth;
  6011. // row range for this thread
  6012. const int ir0 = dr*ith;
  6013. const int ir1 = MIN(ir0 + dr, nr);
  6014. if (nb10 == sizeof(float)) {
  6015. if (dst->type == GGML_TYPE_F16) {
  6016. for (int ir = ir0; ir < ir1; ++ir) {
  6017. // src0, src1 and dst are same shape => same indices
  6018. const int i3 = ir/(ne2*ne1);
  6019. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6020. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6021. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6022. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6023. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6024. for (int i = 0; i < ne0; i++) {
  6025. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6026. }
  6027. }
  6028. } else {
  6029. for (int ir = ir0; ir < ir1; ++ir) {
  6030. // src0, src1 and dst are same shape => same indices
  6031. const int i3 = ir/(ne2*ne1);
  6032. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6033. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6034. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6035. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6036. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6037. for (int i = 0; i < ne0; i++) {
  6038. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6039. }
  6040. }
  6041. }
  6042. }
  6043. else {
  6044. // src1 is not contiguous
  6045. GGML_ASSERT(false);
  6046. }
  6047. }
  6048. static void ggml_compute_forward_add_f16_f16(
  6049. const struct ggml_compute_params * params,
  6050. const struct ggml_tensor * src0,
  6051. const struct ggml_tensor * src1,
  6052. struct ggml_tensor * dst) {
  6053. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6054. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6055. return;
  6056. }
  6057. const int ith = params->ith;
  6058. const int nth = params->nth;
  6059. const int nr = ggml_nrows(src0);
  6060. GGML_TENSOR_BINARY_OP_LOCALS
  6061. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6062. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6063. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6064. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6065. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6066. // rows per thread
  6067. const int dr = (nr + nth - 1)/nth;
  6068. // row range for this thread
  6069. const int ir0 = dr*ith;
  6070. const int ir1 = MIN(ir0 + dr, nr);
  6071. if (nb10 == sizeof(ggml_fp16_t)) {
  6072. for (int ir = ir0; ir < ir1; ++ir) {
  6073. // src0, src1 and dst are same shape => same indices
  6074. const int i3 = ir/(ne2*ne1);
  6075. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6076. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6077. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6078. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6079. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6080. for (int i = 0; i < ne0; i++) {
  6081. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6082. }
  6083. }
  6084. }
  6085. else {
  6086. // src1 is not contiguous
  6087. GGML_ASSERT(false);
  6088. }
  6089. }
  6090. static void ggml_compute_forward_add_q_f32(
  6091. const struct ggml_compute_params * params,
  6092. const struct ggml_tensor * src0,
  6093. const struct ggml_tensor * src1,
  6094. struct ggml_tensor * dst) {
  6095. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6096. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6097. return;
  6098. }
  6099. const int nr = ggml_nrows(src0);
  6100. GGML_TENSOR_BINARY_OP_LOCALS
  6101. const int ith = params->ith;
  6102. const int nth = params->nth;
  6103. const enum ggml_type type = src0->type;
  6104. const enum ggml_type dtype = dst->type;
  6105. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6106. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6107. // we don't support permuted src0 or src1
  6108. GGML_ASSERT(nb00 == ggml_type_size(type));
  6109. GGML_ASSERT(nb10 == sizeof(float));
  6110. // dst cannot be transposed or permuted
  6111. GGML_ASSERT(nb0 <= nb1);
  6112. GGML_ASSERT(nb1 <= nb2);
  6113. GGML_ASSERT(nb2 <= nb3);
  6114. GGML_ASSERT(ggml_is_quantized(src0->type));
  6115. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6116. // rows per thread
  6117. const int dr = (nr + nth - 1)/nth;
  6118. // row range for this thread
  6119. const int ir0 = dr*ith;
  6120. const int ir1 = MIN(ir0 + dr, nr);
  6121. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6122. for (int ir = ir0; ir < ir1; ++ir) {
  6123. // src0 indices
  6124. const int i03 = ir/(ne02*ne01);
  6125. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6126. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6127. // src1 and dst are same shape as src0 => same indices
  6128. const int i13 = i03;
  6129. const int i12 = i02;
  6130. const int i11 = i01;
  6131. const int i3 = i03;
  6132. const int i2 = i02;
  6133. const int i1 = i01;
  6134. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6135. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6136. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6137. assert(ne00 % 32 == 0);
  6138. // unquantize row from src0 to temp buffer
  6139. dequantize_row_q(src0_row, wdata, ne00);
  6140. // add src1
  6141. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6142. // quantize row to dst
  6143. if (quantize_row_q != NULL) {
  6144. quantize_row_q(wdata, dst_row, ne00);
  6145. } else {
  6146. memcpy(dst_row, wdata, ne0*nb0);
  6147. }
  6148. }
  6149. }
  6150. static void ggml_compute_forward_add(
  6151. const struct ggml_compute_params * params,
  6152. const struct ggml_tensor * src0,
  6153. const struct ggml_tensor * src1,
  6154. struct ggml_tensor * dst) {
  6155. switch (src0->type) {
  6156. case GGML_TYPE_F32:
  6157. {
  6158. if (src1->type == GGML_TYPE_F32) {
  6159. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6160. }
  6161. else {
  6162. GGML_ASSERT(false);
  6163. }
  6164. } break;
  6165. case GGML_TYPE_F16:
  6166. {
  6167. if (src1->type == GGML_TYPE_F16) {
  6168. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6169. }
  6170. else if (src1->type == GGML_TYPE_F32) {
  6171. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6172. }
  6173. else {
  6174. GGML_ASSERT(false);
  6175. }
  6176. } break;
  6177. case GGML_TYPE_Q4_0:
  6178. case GGML_TYPE_Q4_1:
  6179. case GGML_TYPE_Q5_0:
  6180. case GGML_TYPE_Q5_1:
  6181. case GGML_TYPE_Q8_0:
  6182. case GGML_TYPE_Q2_K:
  6183. case GGML_TYPE_Q3_K:
  6184. case GGML_TYPE_Q4_K:
  6185. case GGML_TYPE_Q5_K:
  6186. case GGML_TYPE_Q6_K:
  6187. case GGML_TYPE_IQ2_XXS:
  6188. case GGML_TYPE_IQ2_XS:
  6189. case GGML_TYPE_IQ3_XXS:
  6190. {
  6191. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6192. } break;
  6193. default:
  6194. {
  6195. GGML_ASSERT(false);
  6196. } break;
  6197. }
  6198. }
  6199. // ggml_compute_forward_add1
  6200. static void ggml_compute_forward_add1_f32(
  6201. const struct ggml_compute_params * params,
  6202. const struct ggml_tensor * src0,
  6203. const struct ggml_tensor * src1,
  6204. struct ggml_tensor * dst) {
  6205. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6206. GGML_ASSERT(ggml_is_scalar(src1));
  6207. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6208. return;
  6209. }
  6210. const int ith = params->ith;
  6211. const int nth = params->nth;
  6212. const int nr = ggml_nrows(src0);
  6213. GGML_TENSOR_UNARY_OP_LOCALS
  6214. GGML_ASSERT( nb0 == sizeof(float));
  6215. GGML_ASSERT(nb00 == sizeof(float));
  6216. // rows per thread
  6217. const int dr = (nr + nth - 1)/nth;
  6218. // row range for this thread
  6219. const int ir0 = dr*ith;
  6220. const int ir1 = MIN(ir0 + dr, nr);
  6221. for (int ir = ir0; ir < ir1; ++ir) {
  6222. // src0 and dst are same shape => same indices
  6223. const int i3 = ir/(ne2*ne1);
  6224. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6225. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6226. #ifdef GGML_USE_ACCELERATE
  6227. UNUSED(ggml_vec_add1_f32);
  6228. vDSP_vadd(
  6229. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6230. (float *) ((char *) src1->data), 0,
  6231. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6232. ne0);
  6233. #else
  6234. ggml_vec_add1_f32(ne0,
  6235. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6236. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6237. *(float *) src1->data);
  6238. #endif
  6239. }
  6240. }
  6241. static void ggml_compute_forward_add1_f16_f32(
  6242. const struct ggml_compute_params * params,
  6243. const struct ggml_tensor * src0,
  6244. const struct ggml_tensor * src1,
  6245. struct ggml_tensor * dst) {
  6246. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6247. GGML_ASSERT(ggml_is_scalar(src1));
  6248. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6249. return;
  6250. }
  6251. // scalar to add
  6252. const float v = *(float *) src1->data;
  6253. const int ith = params->ith;
  6254. const int nth = params->nth;
  6255. const int nr = ggml_nrows(src0);
  6256. GGML_TENSOR_UNARY_OP_LOCALS
  6257. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6258. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6259. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6260. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6261. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6262. // rows per thread
  6263. const int dr = (nr + nth - 1)/nth;
  6264. // row range for this thread
  6265. const int ir0 = dr*ith;
  6266. const int ir1 = MIN(ir0 + dr, nr);
  6267. for (int ir = ir0; ir < ir1; ++ir) {
  6268. // src0 and dst are same shape => same indices
  6269. const int i3 = ir/(ne2*ne1);
  6270. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6271. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6272. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6273. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6274. for (int i = 0; i < ne0; i++) {
  6275. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6276. }
  6277. }
  6278. }
  6279. static void ggml_compute_forward_add1_f16_f16(
  6280. const struct ggml_compute_params * params,
  6281. const struct ggml_tensor * src0,
  6282. const struct ggml_tensor * src1,
  6283. struct ggml_tensor * dst) {
  6284. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6285. GGML_ASSERT(ggml_is_scalar(src1));
  6286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6287. return;
  6288. }
  6289. // scalar to add
  6290. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6291. const int ith = params->ith;
  6292. const int nth = params->nth;
  6293. const int nr = ggml_nrows(src0);
  6294. GGML_TENSOR_UNARY_OP_LOCALS
  6295. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6296. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6297. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6298. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6299. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6300. // rows per thread
  6301. const int dr = (nr + nth - 1)/nth;
  6302. // row range for this thread
  6303. const int ir0 = dr*ith;
  6304. const int ir1 = MIN(ir0 + dr, nr);
  6305. for (int ir = ir0; ir < ir1; ++ir) {
  6306. // src0 and dst are same shape => same indices
  6307. const int i3 = ir/(ne2*ne1);
  6308. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6309. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6310. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6311. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6312. for (int i = 0; i < ne0; i++) {
  6313. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6314. }
  6315. }
  6316. }
  6317. static void ggml_compute_forward_add1_q_f32(
  6318. const struct ggml_compute_params * params,
  6319. const struct ggml_tensor * src0,
  6320. const struct ggml_tensor * src1,
  6321. struct ggml_tensor * dst) {
  6322. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6323. GGML_ASSERT(ggml_is_scalar(src1));
  6324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6325. return;
  6326. }
  6327. // scalar to add
  6328. const float v = *(float *) src1->data;
  6329. const int ith = params->ith;
  6330. const int nth = params->nth;
  6331. const int nr = ggml_nrows(src0);
  6332. GGML_TENSOR_UNARY_OP_LOCALS
  6333. const enum ggml_type type = src0->type;
  6334. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6335. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6336. // we don't support permuted src0
  6337. GGML_ASSERT(nb00 == ggml_type_size(type));
  6338. // dst cannot be transposed or permuted
  6339. GGML_ASSERT(nb0 <= nb1);
  6340. GGML_ASSERT(nb1 <= nb2);
  6341. GGML_ASSERT(nb2 <= nb3);
  6342. GGML_ASSERT(ggml_is_quantized(src0->type));
  6343. GGML_ASSERT(dst->type == src0->type);
  6344. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6345. // rows per thread
  6346. const int dr = (nr + nth - 1)/nth;
  6347. // row range for this thread
  6348. const int ir0 = dr*ith;
  6349. const int ir1 = MIN(ir0 + dr, nr);
  6350. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6351. for (int ir = ir0; ir < ir1; ++ir) {
  6352. // src0 and dst are same shape => same indices
  6353. const int i3 = ir/(ne2*ne1);
  6354. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6355. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6356. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6357. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6358. assert(ne0 % 32 == 0);
  6359. // unquantize row from src0 to temp buffer
  6360. dequantize_row_q(src0_row, wdata, ne0);
  6361. // add src1
  6362. ggml_vec_acc1_f32(ne0, wdata, v);
  6363. // quantize row to dst
  6364. quantize_row_q(wdata, dst_row, ne0);
  6365. }
  6366. }
  6367. static void ggml_compute_forward_add1(
  6368. const struct ggml_compute_params * params,
  6369. const struct ggml_tensor * src0,
  6370. const struct ggml_tensor * src1,
  6371. struct ggml_tensor * dst) {
  6372. switch (src0->type) {
  6373. case GGML_TYPE_F32:
  6374. {
  6375. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6376. } break;
  6377. case GGML_TYPE_F16:
  6378. {
  6379. if (src1->type == GGML_TYPE_F16) {
  6380. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6381. }
  6382. else if (src1->type == GGML_TYPE_F32) {
  6383. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6384. }
  6385. else {
  6386. GGML_ASSERT(false);
  6387. }
  6388. } break;
  6389. case GGML_TYPE_Q4_0:
  6390. case GGML_TYPE_Q4_1:
  6391. case GGML_TYPE_Q5_0:
  6392. case GGML_TYPE_Q5_1:
  6393. case GGML_TYPE_Q8_0:
  6394. case GGML_TYPE_Q8_1:
  6395. case GGML_TYPE_Q2_K:
  6396. case GGML_TYPE_Q3_K:
  6397. case GGML_TYPE_Q4_K:
  6398. case GGML_TYPE_Q5_K:
  6399. case GGML_TYPE_Q6_K:
  6400. case GGML_TYPE_IQ2_XXS:
  6401. case GGML_TYPE_IQ2_XS:
  6402. case GGML_TYPE_IQ3_XXS:
  6403. {
  6404. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6405. } break;
  6406. default:
  6407. {
  6408. GGML_ASSERT(false);
  6409. } break;
  6410. }
  6411. }
  6412. // ggml_compute_forward_acc
  6413. static void ggml_compute_forward_acc_f32(
  6414. const struct ggml_compute_params * params,
  6415. const struct ggml_tensor * src0,
  6416. const struct ggml_tensor * src1,
  6417. struct ggml_tensor * dst) {
  6418. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6419. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6420. // view src0 and dst with these strides and data offset inbytes during acc
  6421. // nb0 is implicitly element_size because src0 and dst are contiguous
  6422. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6423. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6424. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6425. size_t offset = ((int32_t *) dst->op_params)[3];
  6426. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6427. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6428. if (params->ith != 0) {
  6429. return;
  6430. }
  6431. // memcpy needs to be synchronized across threads to avoid race conditions.
  6432. // => do it in INIT phase
  6433. memcpy(
  6434. ((char *) dst->data),
  6435. ((char *) src0->data),
  6436. ggml_nbytes(dst));
  6437. }
  6438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6439. return;
  6440. }
  6441. const int ith = params->ith;
  6442. const int nth = params->nth;
  6443. const int nr = ggml_nrows(src1);
  6444. const int nc = src1->ne[0];
  6445. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6446. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6447. // src0 and dst as viewed during acc
  6448. const size_t nb0 = ggml_element_size(src0);
  6449. const size_t nb00 = nb0;
  6450. const size_t nb01 = nb1;
  6451. const size_t nb02 = nb2;
  6452. const size_t nb03 = nb3;
  6453. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6454. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6455. GGML_ASSERT(nb10 == sizeof(float));
  6456. // rows per thread
  6457. const int dr = (nr + nth - 1)/nth;
  6458. // row range for this thread
  6459. const int ir0 = dr*ith;
  6460. const int ir1 = MIN(ir0 + dr, nr);
  6461. for (int ir = ir0; ir < ir1; ++ir) {
  6462. // src0 and dst are viewed with shape of src1 and offset
  6463. // => same indices
  6464. const int i3 = ir/(ne12*ne11);
  6465. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6466. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6467. #ifdef GGML_USE_ACCELERATE
  6468. vDSP_vadd(
  6469. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6470. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6471. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6472. #else
  6473. ggml_vec_add_f32(nc,
  6474. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6475. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6476. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6477. #endif
  6478. }
  6479. }
  6480. static void ggml_compute_forward_acc(
  6481. const struct ggml_compute_params * params,
  6482. const struct ggml_tensor * src0,
  6483. const struct ggml_tensor * src1,
  6484. struct ggml_tensor * dst) {
  6485. switch (src0->type) {
  6486. case GGML_TYPE_F32:
  6487. {
  6488. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6489. } break;
  6490. case GGML_TYPE_F16:
  6491. case GGML_TYPE_Q4_0:
  6492. case GGML_TYPE_Q4_1:
  6493. case GGML_TYPE_Q5_0:
  6494. case GGML_TYPE_Q5_1:
  6495. case GGML_TYPE_Q8_0:
  6496. case GGML_TYPE_Q8_1:
  6497. case GGML_TYPE_Q2_K:
  6498. case GGML_TYPE_Q3_K:
  6499. case GGML_TYPE_Q4_K:
  6500. case GGML_TYPE_Q5_K:
  6501. case GGML_TYPE_Q6_K:
  6502. case GGML_TYPE_IQ2_XXS:
  6503. case GGML_TYPE_IQ2_XS:
  6504. case GGML_TYPE_IQ3_XXS:
  6505. default:
  6506. {
  6507. GGML_ASSERT(false);
  6508. } break;
  6509. }
  6510. }
  6511. // ggml_compute_forward_sub
  6512. static void ggml_compute_forward_sub_f32(
  6513. const struct ggml_compute_params * params,
  6514. const struct ggml_tensor * src0,
  6515. const struct ggml_tensor * src1,
  6516. struct ggml_tensor * dst) {
  6517. assert(params->ith == 0);
  6518. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6519. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6520. return;
  6521. }
  6522. const int nr = ggml_nrows(src0);
  6523. GGML_TENSOR_BINARY_OP_LOCALS
  6524. GGML_ASSERT( nb0 == sizeof(float));
  6525. GGML_ASSERT(nb00 == sizeof(float));
  6526. if (nb10 == sizeof(float)) {
  6527. for (int ir = 0; ir < nr; ++ir) {
  6528. // src0, src1 and dst are same shape => same indices
  6529. const int i3 = ir/(ne2*ne1);
  6530. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6531. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6532. #ifdef GGML_USE_ACCELERATE
  6533. vDSP_vsub(
  6534. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6535. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6536. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6537. ne0);
  6538. #else
  6539. ggml_vec_sub_f32(ne0,
  6540. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6541. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6542. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6543. #endif
  6544. // }
  6545. // }
  6546. }
  6547. } else {
  6548. // src1 is not contiguous
  6549. for (int ir = 0; ir < nr; ++ir) {
  6550. // src0, src1 and dst are same shape => same indices
  6551. const int i3 = ir/(ne2*ne1);
  6552. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6553. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6554. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6555. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6556. for (int i0 = 0; i0 < ne0; i0++) {
  6557. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6558. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6559. }
  6560. }
  6561. }
  6562. }
  6563. static void ggml_compute_forward_sub(
  6564. const struct ggml_compute_params * params,
  6565. const struct ggml_tensor * src0,
  6566. const struct ggml_tensor * src1,
  6567. struct ggml_tensor * dst) {
  6568. switch (src0->type) {
  6569. case GGML_TYPE_F32:
  6570. {
  6571. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6572. } break;
  6573. default:
  6574. {
  6575. GGML_ASSERT(false);
  6576. } break;
  6577. }
  6578. }
  6579. // ggml_compute_forward_mul
  6580. static void ggml_compute_forward_mul_f32(
  6581. const struct ggml_compute_params * params,
  6582. const struct ggml_tensor * src0,
  6583. const struct ggml_tensor * src1,
  6584. struct ggml_tensor * dst) {
  6585. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6587. return;
  6588. }
  6589. const int ith = params->ith;
  6590. const int nth = params->nth;
  6591. #if defined(GGML_USE_CLBLAST)
  6592. if (src1->backend == GGML_BACKEND_GPU) {
  6593. // TODO: OpenCL kernel support full broadcast
  6594. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6595. if (ith == 0) {
  6596. ggml_cl_mul(src0, src1, dst);
  6597. }
  6598. return;
  6599. }
  6600. #endif
  6601. const int64_t nr = ggml_nrows(src0);
  6602. GGML_TENSOR_BINARY_OP_LOCALS
  6603. GGML_ASSERT( nb0 == sizeof(float));
  6604. GGML_ASSERT(nb00 == sizeof(float));
  6605. if (nb10 == sizeof(float)) {
  6606. for (int64_t ir = ith; ir < nr; ir += nth) {
  6607. // src0 and dst are same shape => same indices
  6608. const int64_t i03 = ir/(ne02*ne01);
  6609. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6610. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6611. const int64_t i13 = i03 % ne13;
  6612. const int64_t i12 = i02 % ne12;
  6613. const int64_t i11 = i01 % ne11;
  6614. const int64_t nr0 = ne00 / ne10;
  6615. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6616. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6617. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6618. for (int64_t r = 0 ; r < nr0; ++r) {
  6619. #ifdef GGML_USE_ACCELERATE
  6620. UNUSED(ggml_vec_mul_f32);
  6621. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6622. #else
  6623. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6624. #endif
  6625. }
  6626. }
  6627. } else {
  6628. // src1 is not contiguous
  6629. for (int64_t ir = ith; ir < nr; ir += nth) {
  6630. // src0 and dst are same shape => same indices
  6631. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6632. const int64_t i03 = ir/(ne02*ne01);
  6633. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6634. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6635. const int64_t i13 = i03 % ne13;
  6636. const int64_t i12 = i02 % ne12;
  6637. const int64_t i11 = i01 % ne11;
  6638. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6639. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6640. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6641. const int64_t i10 = i0 % ne10;
  6642. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6643. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6644. }
  6645. }
  6646. }
  6647. }
  6648. static void ggml_compute_forward_mul(
  6649. const struct ggml_compute_params * params,
  6650. const struct ggml_tensor * src0,
  6651. const struct ggml_tensor * src1,
  6652. struct ggml_tensor * dst) {
  6653. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6654. switch (src0->type) {
  6655. case GGML_TYPE_F32:
  6656. {
  6657. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6658. } break;
  6659. default:
  6660. {
  6661. GGML_ASSERT(false);
  6662. } break;
  6663. }
  6664. }
  6665. // ggml_compute_forward_div
  6666. static void ggml_compute_forward_div_f32(
  6667. const struct ggml_compute_params * params,
  6668. const struct ggml_tensor * src0,
  6669. const struct ggml_tensor * src1,
  6670. struct ggml_tensor * dst) {
  6671. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6672. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6673. return;
  6674. }
  6675. const int ith = params->ith;
  6676. const int nth = params->nth;
  6677. const int64_t nr = ggml_nrows(src0);
  6678. GGML_TENSOR_BINARY_OP_LOCALS
  6679. GGML_ASSERT( nb0 == sizeof(float));
  6680. GGML_ASSERT(nb00 == sizeof(float));
  6681. if (nb10 == sizeof(float)) {
  6682. for (int64_t ir = ith; ir < nr; ir += nth) {
  6683. // src0 and dst are same shape => same indices
  6684. const int64_t i03 = ir/(ne02*ne01);
  6685. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6686. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6687. const int64_t i13 = i03 % ne13;
  6688. const int64_t i12 = i02 % ne12;
  6689. const int64_t i11 = i01 % ne11;
  6690. const int64_t nr0 = ne00 / ne10;
  6691. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6692. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6693. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6694. for (int64_t r = 0; r < nr0; ++r) {
  6695. #ifdef GGML_USE_ACCELERATE
  6696. UNUSED(ggml_vec_div_f32);
  6697. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6698. #else
  6699. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6700. #endif
  6701. }
  6702. }
  6703. } else {
  6704. // src1 is not contiguous
  6705. for (int64_t ir = ith; ir < nr; ir += nth) {
  6706. // src0 and dst are same shape => same indices
  6707. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6708. const int64_t i03 = ir/(ne02*ne01);
  6709. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6710. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6711. const int64_t i13 = i03 % ne13;
  6712. const int64_t i12 = i02 % ne12;
  6713. const int64_t i11 = i01 % ne11;
  6714. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6715. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6716. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6717. const int64_t i10 = i0 % ne10;
  6718. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6719. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6720. }
  6721. }
  6722. }
  6723. }
  6724. static void ggml_compute_forward_div(
  6725. const struct ggml_compute_params * params,
  6726. const struct ggml_tensor * src0,
  6727. const struct ggml_tensor * src1,
  6728. struct ggml_tensor * dst) {
  6729. switch (src0->type) {
  6730. case GGML_TYPE_F32:
  6731. {
  6732. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6733. } break;
  6734. default:
  6735. {
  6736. GGML_ASSERT(false);
  6737. } break;
  6738. }
  6739. }
  6740. // ggml_compute_forward_sqr
  6741. static void ggml_compute_forward_sqr_f32(
  6742. const struct ggml_compute_params * params,
  6743. const struct ggml_tensor * src0,
  6744. struct ggml_tensor * dst) {
  6745. assert(params->ith == 0);
  6746. assert(ggml_are_same_shape(src0, dst));
  6747. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6748. return;
  6749. }
  6750. const int n = ggml_nrows(src0);
  6751. const int nc = src0->ne[0];
  6752. assert( dst->nb[0] == sizeof(float));
  6753. assert(src0->nb[0] == sizeof(float));
  6754. for (int i = 0; i < n; i++) {
  6755. ggml_vec_sqr_f32(nc,
  6756. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6757. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6758. }
  6759. }
  6760. static void ggml_compute_forward_sqr(
  6761. const struct ggml_compute_params * params,
  6762. const struct ggml_tensor * src0,
  6763. struct ggml_tensor * dst) {
  6764. switch (src0->type) {
  6765. case GGML_TYPE_F32:
  6766. {
  6767. ggml_compute_forward_sqr_f32(params, src0, dst);
  6768. } break;
  6769. default:
  6770. {
  6771. GGML_ASSERT(false);
  6772. } break;
  6773. }
  6774. }
  6775. // ggml_compute_forward_sqrt
  6776. static void ggml_compute_forward_sqrt_f32(
  6777. const struct ggml_compute_params * params,
  6778. const struct ggml_tensor * src0,
  6779. struct ggml_tensor * dst) {
  6780. assert(params->ith == 0);
  6781. assert(ggml_are_same_shape(src0, dst));
  6782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6783. return;
  6784. }
  6785. const int n = ggml_nrows(src0);
  6786. const int nc = src0->ne[0];
  6787. assert( dst->nb[0] == sizeof(float));
  6788. assert(src0->nb[0] == sizeof(float));
  6789. for (int i = 0; i < n; i++) {
  6790. ggml_vec_sqrt_f32(nc,
  6791. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6792. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6793. }
  6794. }
  6795. static void ggml_compute_forward_sqrt(
  6796. const struct ggml_compute_params * params,
  6797. const struct ggml_tensor * src0,
  6798. struct ggml_tensor * dst) {
  6799. switch (src0->type) {
  6800. case GGML_TYPE_F32:
  6801. {
  6802. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6803. } break;
  6804. default:
  6805. {
  6806. GGML_ASSERT(false);
  6807. } break;
  6808. }
  6809. }
  6810. // ggml_compute_forward_log
  6811. static void ggml_compute_forward_log_f32(
  6812. const struct ggml_compute_params * params,
  6813. const struct ggml_tensor * src0,
  6814. struct ggml_tensor * dst) {
  6815. GGML_ASSERT(params->ith == 0);
  6816. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6817. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6818. return;
  6819. }
  6820. const int n = ggml_nrows(src0);
  6821. const int nc = src0->ne[0];
  6822. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6823. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6824. for (int i = 0; i < n; i++) {
  6825. ggml_vec_log_f32(nc,
  6826. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6827. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6828. }
  6829. }
  6830. static void ggml_compute_forward_log(
  6831. const struct ggml_compute_params * params,
  6832. const struct ggml_tensor * src0,
  6833. struct ggml_tensor * dst) {
  6834. switch (src0->type) {
  6835. case GGML_TYPE_F32:
  6836. {
  6837. ggml_compute_forward_log_f32(params, src0, dst);
  6838. } break;
  6839. default:
  6840. {
  6841. GGML_ASSERT(false);
  6842. } break;
  6843. }
  6844. }
  6845. // ggml_compute_forward_sum
  6846. static void ggml_compute_forward_sum_f32(
  6847. const struct ggml_compute_params * params,
  6848. const struct ggml_tensor * src0,
  6849. struct ggml_tensor * dst) {
  6850. assert(params->ith == 0);
  6851. assert(ggml_is_scalar(dst));
  6852. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6853. return;
  6854. }
  6855. assert(ggml_is_scalar(dst));
  6856. assert(src0->nb[0] == sizeof(float));
  6857. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6858. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6859. ggml_float sum = 0;
  6860. ggml_float row_sum = 0;
  6861. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6862. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6863. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6864. ggml_vec_sum_f32_ggf(ne00,
  6865. &row_sum,
  6866. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6867. sum += row_sum;
  6868. }
  6869. }
  6870. }
  6871. ((float *) dst->data)[0] = sum;
  6872. }
  6873. static void ggml_compute_forward_sum_f16(
  6874. const struct ggml_compute_params * params,
  6875. const struct ggml_tensor * src0,
  6876. struct ggml_tensor * dst) {
  6877. assert(params->ith == 0);
  6878. assert(ggml_is_scalar(dst));
  6879. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6880. return;
  6881. }
  6882. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6883. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6884. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6885. float sum = 0;
  6886. float row_sum = 0;
  6887. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6888. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6889. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6890. ggml_vec_sum_f16_ggf(ne00,
  6891. &row_sum,
  6892. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6893. sum += row_sum;
  6894. }
  6895. }
  6896. }
  6897. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6898. }
  6899. static void ggml_compute_forward_sum(
  6900. const struct ggml_compute_params * params,
  6901. const struct ggml_tensor * src0,
  6902. struct ggml_tensor * dst) {
  6903. switch (src0->type) {
  6904. case GGML_TYPE_F32:
  6905. {
  6906. ggml_compute_forward_sum_f32(params, src0, dst);
  6907. } break;
  6908. case GGML_TYPE_F16:
  6909. {
  6910. ggml_compute_forward_sum_f16(params, src0, dst);
  6911. } break;
  6912. default:
  6913. {
  6914. GGML_ASSERT(false);
  6915. } break;
  6916. }
  6917. }
  6918. // ggml_compute_forward_sum_rows
  6919. static void ggml_compute_forward_sum_rows_f32(
  6920. const struct ggml_compute_params * params,
  6921. const struct ggml_tensor * src0,
  6922. struct ggml_tensor * dst) {
  6923. GGML_ASSERT(params->ith == 0);
  6924. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6925. return;
  6926. }
  6927. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6928. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6929. GGML_TENSOR_UNARY_OP_LOCALS
  6930. GGML_ASSERT(ne0 == 1);
  6931. GGML_ASSERT(ne1 == ne01);
  6932. GGML_ASSERT(ne2 == ne02);
  6933. GGML_ASSERT(ne3 == ne03);
  6934. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6935. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6936. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6937. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6938. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6939. float row_sum = 0;
  6940. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6941. dst_row[0] = row_sum;
  6942. }
  6943. }
  6944. }
  6945. }
  6946. static void ggml_compute_forward_sum_rows(
  6947. const struct ggml_compute_params * params,
  6948. const struct ggml_tensor * src0,
  6949. struct ggml_tensor * dst) {
  6950. switch (src0->type) {
  6951. case GGML_TYPE_F32:
  6952. {
  6953. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6954. } break;
  6955. default:
  6956. {
  6957. GGML_ASSERT(false);
  6958. } break;
  6959. }
  6960. }
  6961. // ggml_compute_forward_mean
  6962. static void ggml_compute_forward_mean_f32(
  6963. const struct ggml_compute_params * params,
  6964. const struct ggml_tensor * src0,
  6965. struct ggml_tensor * dst) {
  6966. assert(params->ith == 0);
  6967. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6968. return;
  6969. }
  6970. assert(src0->nb[0] == sizeof(float));
  6971. GGML_TENSOR_UNARY_OP_LOCALS
  6972. assert(ne0 == 1);
  6973. assert(ne1 == ne01);
  6974. assert(ne2 == ne02);
  6975. assert(ne3 == ne03);
  6976. UNUSED(ne0);
  6977. UNUSED(ne1);
  6978. UNUSED(ne2);
  6979. UNUSED(ne3);
  6980. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6981. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6982. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6983. ggml_vec_sum_f32(ne00,
  6984. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6985. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6986. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6987. }
  6988. }
  6989. }
  6990. }
  6991. static void ggml_compute_forward_mean(
  6992. const struct ggml_compute_params * params,
  6993. const struct ggml_tensor * src0,
  6994. struct ggml_tensor * dst) {
  6995. switch (src0->type) {
  6996. case GGML_TYPE_F32:
  6997. {
  6998. ggml_compute_forward_mean_f32(params, src0, dst);
  6999. } break;
  7000. default:
  7001. {
  7002. GGML_ASSERT(false);
  7003. } break;
  7004. }
  7005. }
  7006. // ggml_compute_forward_argmax
  7007. static void ggml_compute_forward_argmax_f32(
  7008. const struct ggml_compute_params * params,
  7009. const struct ggml_tensor * src0,
  7010. struct ggml_tensor * dst) {
  7011. assert(params->ith == 0);
  7012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7013. return;
  7014. }
  7015. assert(src0->nb[0] == sizeof(float));
  7016. assert(dst->nb[0] == sizeof(float));
  7017. const int64_t ne00 = src0->ne[0];
  7018. const int64_t ne01 = src0->ne[1];
  7019. const size_t nb01 = src0->nb[1];
  7020. const size_t nb0 = dst->nb[0];
  7021. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7022. float * src = (float *) ((char *) src0->data + i1*nb01);
  7023. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7024. int v = 0;
  7025. ggml_vec_argmax_f32(ne00, &v, src);
  7026. dst_[0] = v;
  7027. }
  7028. }
  7029. static void ggml_compute_forward_argmax(
  7030. const struct ggml_compute_params * params,
  7031. const struct ggml_tensor * src0,
  7032. struct ggml_tensor * dst) {
  7033. switch (src0->type) {
  7034. case GGML_TYPE_F32:
  7035. {
  7036. ggml_compute_forward_argmax_f32(params, src0, dst);
  7037. } break;
  7038. default:
  7039. {
  7040. GGML_ASSERT(false);
  7041. } break;
  7042. }
  7043. }
  7044. // ggml_compute_forward_repeat
  7045. static void ggml_compute_forward_repeat_f32(
  7046. const struct ggml_compute_params * params,
  7047. const struct ggml_tensor * src0,
  7048. struct ggml_tensor * dst) {
  7049. GGML_ASSERT(params->ith == 0);
  7050. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7051. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7052. return;
  7053. }
  7054. GGML_TENSOR_UNARY_OP_LOCALS
  7055. // guaranteed to be an integer due to the check in ggml_can_repeat
  7056. const int nr0 = (int)(ne0/ne00);
  7057. const int nr1 = (int)(ne1/ne01);
  7058. const int nr2 = (int)(ne2/ne02);
  7059. const int nr3 = (int)(ne3/ne03);
  7060. // TODO: support for transposed / permuted tensors
  7061. GGML_ASSERT(nb0 == sizeof(float));
  7062. GGML_ASSERT(nb00 == sizeof(float));
  7063. // TODO: maybe this is not optimal?
  7064. for (int i3 = 0; i3 < nr3; i3++) {
  7065. for (int k3 = 0; k3 < ne03; k3++) {
  7066. for (int i2 = 0; i2 < nr2; i2++) {
  7067. for (int k2 = 0; k2 < ne02; k2++) {
  7068. for (int i1 = 0; i1 < nr1; i1++) {
  7069. for (int k1 = 0; k1 < ne01; k1++) {
  7070. for (int i0 = 0; i0 < nr0; i0++) {
  7071. ggml_vec_cpy_f32(ne00,
  7072. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7073. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7074. }
  7075. }
  7076. }
  7077. }
  7078. }
  7079. }
  7080. }
  7081. }
  7082. static void ggml_compute_forward_repeat_f16(
  7083. const struct ggml_compute_params * params,
  7084. const struct ggml_tensor * src0,
  7085. struct ggml_tensor * dst) {
  7086. GGML_ASSERT(params->ith == 0);
  7087. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7088. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7089. return;
  7090. }
  7091. GGML_TENSOR_UNARY_OP_LOCALS
  7092. // guaranteed to be an integer due to the check in ggml_can_repeat
  7093. const int nr0 = (int)(ne0/ne00);
  7094. const int nr1 = (int)(ne1/ne01);
  7095. const int nr2 = (int)(ne2/ne02);
  7096. const int nr3 = (int)(ne3/ne03);
  7097. // TODO: support for transposed / permuted tensors
  7098. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7099. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7100. // TODO: maybe this is not optimal?
  7101. for (int i3 = 0; i3 < nr3; i3++) {
  7102. for (int k3 = 0; k3 < ne03; k3++) {
  7103. for (int i2 = 0; i2 < nr2; i2++) {
  7104. for (int k2 = 0; k2 < ne02; k2++) {
  7105. for (int i1 = 0; i1 < nr1; i1++) {
  7106. for (int k1 = 0; k1 < ne01; k1++) {
  7107. for (int i0 = 0; i0 < nr0; i0++) {
  7108. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7109. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7110. // ggml_vec_cpy_f16(ne00, y, x)
  7111. for (int i = 0; i < ne00; ++i) {
  7112. y[i] = x[i];
  7113. }
  7114. }
  7115. }
  7116. }
  7117. }
  7118. }
  7119. }
  7120. }
  7121. }
  7122. static void ggml_compute_forward_repeat(
  7123. const struct ggml_compute_params * params,
  7124. const struct ggml_tensor * src0,
  7125. struct ggml_tensor * dst) {
  7126. switch (src0->type) {
  7127. case GGML_TYPE_F16:
  7128. case GGML_TYPE_I16:
  7129. {
  7130. ggml_compute_forward_repeat_f16(params, src0, dst);
  7131. } break;
  7132. case GGML_TYPE_F32:
  7133. case GGML_TYPE_I32:
  7134. {
  7135. ggml_compute_forward_repeat_f32(params, src0, dst);
  7136. } break;
  7137. default:
  7138. {
  7139. GGML_ASSERT(false);
  7140. } break;
  7141. }
  7142. }
  7143. // ggml_compute_forward_repeat_back
  7144. static void ggml_compute_forward_repeat_back_f32(
  7145. const struct ggml_compute_params * params,
  7146. const struct ggml_tensor * src0,
  7147. struct ggml_tensor * dst) {
  7148. GGML_ASSERT(params->ith == 0);
  7149. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7150. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7151. return;
  7152. }
  7153. GGML_TENSOR_UNARY_OP_LOCALS
  7154. // guaranteed to be an integer due to the check in ggml_can_repeat
  7155. const int nr0 = (int)(ne00/ne0);
  7156. const int nr1 = (int)(ne01/ne1);
  7157. const int nr2 = (int)(ne02/ne2);
  7158. const int nr3 = (int)(ne03/ne3);
  7159. // TODO: support for transposed / permuted tensors
  7160. GGML_ASSERT(nb0 == sizeof(float));
  7161. GGML_ASSERT(nb00 == sizeof(float));
  7162. if (ggml_is_contiguous(dst)) {
  7163. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7164. } else {
  7165. for (int k3 = 0; k3 < ne3; k3++) {
  7166. for (int k2 = 0; k2 < ne2; k2++) {
  7167. for (int k1 = 0; k1 < ne1; k1++) {
  7168. ggml_vec_set_f32(ne0,
  7169. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7170. 0);
  7171. }
  7172. }
  7173. }
  7174. }
  7175. // TODO: maybe this is not optimal?
  7176. for (int i3 = 0; i3 < nr3; i3++) {
  7177. for (int k3 = 0; k3 < ne3; k3++) {
  7178. for (int i2 = 0; i2 < nr2; i2++) {
  7179. for (int k2 = 0; k2 < ne2; k2++) {
  7180. for (int i1 = 0; i1 < nr1; i1++) {
  7181. for (int k1 = 0; k1 < ne1; k1++) {
  7182. for (int i0 = 0; i0 < nr0; i0++) {
  7183. ggml_vec_acc_f32(ne0,
  7184. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7185. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7186. }
  7187. }
  7188. }
  7189. }
  7190. }
  7191. }
  7192. }
  7193. }
  7194. static void ggml_compute_forward_repeat_back(
  7195. const struct ggml_compute_params * params,
  7196. const struct ggml_tensor * src0,
  7197. struct ggml_tensor * dst) {
  7198. switch (src0->type) {
  7199. case GGML_TYPE_F32:
  7200. {
  7201. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7202. } break;
  7203. default:
  7204. {
  7205. GGML_ASSERT(false);
  7206. } break;
  7207. }
  7208. }
  7209. // ggml_compute_forward_concat
  7210. static void ggml_compute_forward_concat_f32(
  7211. const struct ggml_compute_params * params,
  7212. const struct ggml_tensor * src0,
  7213. const struct ggml_tensor * src1,
  7214. struct ggml_tensor * dst) {
  7215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7216. return;
  7217. }
  7218. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7219. const int ith = params->ith;
  7220. const int nth = params->nth;
  7221. GGML_TENSOR_BINARY_OP_LOCALS
  7222. // TODO: support for transposed / permuted tensors
  7223. GGML_ASSERT(nb0 == sizeof(float));
  7224. GGML_ASSERT(nb00 == sizeof(float));
  7225. GGML_ASSERT(nb10 == sizeof(float));
  7226. for (int i3 = 0; i3 < ne3; i3++) {
  7227. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7228. if (i2 < ne02) { // src0
  7229. for (int i1 = 0; i1 < ne1; i1++) {
  7230. for (int i0 = 0; i0 < ne0; i0++) {
  7231. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7232. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7233. *y = *x;
  7234. }
  7235. }
  7236. } // src1
  7237. else {
  7238. for (int i1 = 0; i1 < ne1; i1++) {
  7239. for (int i0 = 0; i0 < ne0; i0++) {
  7240. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7241. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7242. *y = *x;
  7243. }
  7244. }
  7245. }
  7246. }
  7247. }
  7248. }
  7249. static void ggml_compute_forward_concat(
  7250. const struct ggml_compute_params* params,
  7251. const struct ggml_tensor* src0,
  7252. const struct ggml_tensor* src1,
  7253. struct ggml_tensor* dst) {
  7254. switch (src0->type) {
  7255. case GGML_TYPE_F32:
  7256. case GGML_TYPE_I32:
  7257. {
  7258. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7259. } break;
  7260. default:
  7261. {
  7262. GGML_ASSERT(false);
  7263. } break;
  7264. }
  7265. }
  7266. // ggml_compute_forward_abs
  7267. static void ggml_compute_forward_abs_f32(
  7268. const struct ggml_compute_params * params,
  7269. const struct ggml_tensor * src0,
  7270. struct ggml_tensor * dst) {
  7271. assert(params->ith == 0);
  7272. assert(ggml_are_same_shape(src0, dst));
  7273. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7274. return;
  7275. }
  7276. const int n = ggml_nrows(src0);
  7277. const int nc = src0->ne[0];
  7278. assert(dst->nb[0] == sizeof(float));
  7279. assert(src0->nb[0] == sizeof(float));
  7280. for (int i = 0; i < n; i++) {
  7281. ggml_vec_abs_f32(nc,
  7282. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7283. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7284. }
  7285. }
  7286. static void ggml_compute_forward_abs(
  7287. const struct ggml_compute_params * params,
  7288. const struct ggml_tensor * src0,
  7289. struct ggml_tensor * dst) {
  7290. switch (src0->type) {
  7291. case GGML_TYPE_F32:
  7292. {
  7293. ggml_compute_forward_abs_f32(params, src0, dst);
  7294. } break;
  7295. default:
  7296. {
  7297. GGML_ASSERT(false);
  7298. } break;
  7299. }
  7300. }
  7301. // ggml_compute_forward_sgn
  7302. static void ggml_compute_forward_sgn_f32(
  7303. const struct ggml_compute_params * params,
  7304. const struct ggml_tensor * src0,
  7305. struct ggml_tensor * dst) {
  7306. assert(params->ith == 0);
  7307. assert(ggml_are_same_shape(src0, dst));
  7308. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7309. return;
  7310. }
  7311. const int n = ggml_nrows(src0);
  7312. const int nc = src0->ne[0];
  7313. assert(dst->nb[0] == sizeof(float));
  7314. assert(src0->nb[0] == sizeof(float));
  7315. for (int i = 0; i < n; i++) {
  7316. ggml_vec_sgn_f32(nc,
  7317. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7318. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7319. }
  7320. }
  7321. static void ggml_compute_forward_sgn(
  7322. const struct ggml_compute_params * params,
  7323. const struct ggml_tensor * src0,
  7324. struct ggml_tensor * dst) {
  7325. switch (src0->type) {
  7326. case GGML_TYPE_F32:
  7327. {
  7328. ggml_compute_forward_sgn_f32(params, src0, dst);
  7329. } break;
  7330. default:
  7331. {
  7332. GGML_ASSERT(false);
  7333. } break;
  7334. }
  7335. }
  7336. // ggml_compute_forward_neg
  7337. static void ggml_compute_forward_neg_f32(
  7338. const struct ggml_compute_params * params,
  7339. const struct ggml_tensor * src0,
  7340. struct ggml_tensor * dst) {
  7341. assert(params->ith == 0);
  7342. assert(ggml_are_same_shape(src0, dst));
  7343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7344. return;
  7345. }
  7346. const int n = ggml_nrows(src0);
  7347. const int nc = src0->ne[0];
  7348. assert(dst->nb[0] == sizeof(float));
  7349. assert(src0->nb[0] == sizeof(float));
  7350. for (int i = 0; i < n; i++) {
  7351. ggml_vec_neg_f32(nc,
  7352. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7353. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7354. }
  7355. }
  7356. static void ggml_compute_forward_neg(
  7357. const struct ggml_compute_params * params,
  7358. const struct ggml_tensor * src0,
  7359. struct ggml_tensor * dst) {
  7360. switch (src0->type) {
  7361. case GGML_TYPE_F32:
  7362. {
  7363. ggml_compute_forward_neg_f32(params, src0, dst);
  7364. } break;
  7365. default:
  7366. {
  7367. GGML_ASSERT(false);
  7368. } break;
  7369. }
  7370. }
  7371. // ggml_compute_forward_step
  7372. static void ggml_compute_forward_step_f32(
  7373. const struct ggml_compute_params * params,
  7374. const struct ggml_tensor * src0,
  7375. struct ggml_tensor * dst) {
  7376. assert(params->ith == 0);
  7377. assert(ggml_are_same_shape(src0, dst));
  7378. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7379. return;
  7380. }
  7381. const int n = ggml_nrows(src0);
  7382. const int nc = src0->ne[0];
  7383. assert(dst->nb[0] == sizeof(float));
  7384. assert(src0->nb[0] == sizeof(float));
  7385. for (int i = 0; i < n; i++) {
  7386. ggml_vec_step_f32(nc,
  7387. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7388. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7389. }
  7390. }
  7391. static void ggml_compute_forward_step(
  7392. const struct ggml_compute_params * params,
  7393. const struct ggml_tensor * src0,
  7394. struct ggml_tensor * dst) {
  7395. switch (src0->type) {
  7396. case GGML_TYPE_F32:
  7397. {
  7398. ggml_compute_forward_step_f32(params, src0, dst);
  7399. } break;
  7400. default:
  7401. {
  7402. GGML_ASSERT(false);
  7403. } break;
  7404. }
  7405. }
  7406. // ggml_compute_forward_tanh
  7407. static void ggml_compute_forward_tanh_f32(
  7408. const struct ggml_compute_params * params,
  7409. const struct ggml_tensor * src0,
  7410. struct ggml_tensor * dst) {
  7411. assert(params->ith == 0);
  7412. assert(ggml_are_same_shape(src0, dst));
  7413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7414. return;
  7415. }
  7416. const int n = ggml_nrows(src0);
  7417. const int nc = src0->ne[0];
  7418. assert(dst->nb[0] == sizeof(float));
  7419. assert(src0->nb[0] == sizeof(float));
  7420. for (int i = 0; i < n; i++) {
  7421. ggml_vec_tanh_f32(nc,
  7422. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7423. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7424. }
  7425. }
  7426. static void ggml_compute_forward_tanh(
  7427. const struct ggml_compute_params * params,
  7428. const struct ggml_tensor * src0,
  7429. struct ggml_tensor * dst) {
  7430. switch (src0->type) {
  7431. case GGML_TYPE_F32:
  7432. {
  7433. ggml_compute_forward_tanh_f32(params, src0, dst);
  7434. } break;
  7435. default:
  7436. {
  7437. GGML_ASSERT(false);
  7438. } break;
  7439. }
  7440. }
  7441. // ggml_compute_forward_elu
  7442. static void ggml_compute_forward_elu_f32(
  7443. const struct ggml_compute_params * params,
  7444. const struct ggml_tensor * src0,
  7445. struct ggml_tensor * dst) {
  7446. assert(params->ith == 0);
  7447. assert(ggml_are_same_shape(src0, dst));
  7448. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7449. return;
  7450. }
  7451. const int n = ggml_nrows(src0);
  7452. const int nc = src0->ne[0];
  7453. assert(dst->nb[0] == sizeof(float));
  7454. assert(src0->nb[0] == sizeof(float));
  7455. for (int i = 0; i < n; i++) {
  7456. ggml_vec_elu_f32(nc,
  7457. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7458. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7459. }
  7460. }
  7461. static void ggml_compute_forward_elu(
  7462. const struct ggml_compute_params * params,
  7463. const struct ggml_tensor * src0,
  7464. struct ggml_tensor * dst) {
  7465. switch (src0->type) {
  7466. case GGML_TYPE_F32:
  7467. {
  7468. ggml_compute_forward_elu_f32(params, src0, dst);
  7469. } break;
  7470. default:
  7471. {
  7472. GGML_ASSERT(false);
  7473. } break;
  7474. }
  7475. }
  7476. // ggml_compute_forward_relu
  7477. static void ggml_compute_forward_relu_f32(
  7478. const struct ggml_compute_params * params,
  7479. const struct ggml_tensor * src0,
  7480. struct ggml_tensor * dst) {
  7481. assert(params->ith == 0);
  7482. assert(ggml_are_same_shape(src0, dst));
  7483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7484. return;
  7485. }
  7486. const int n = ggml_nrows(src0);
  7487. const int nc = src0->ne[0];
  7488. assert(dst->nb[0] == sizeof(float));
  7489. assert(src0->nb[0] == sizeof(float));
  7490. for (int i = 0; i < n; i++) {
  7491. ggml_vec_relu_f32(nc,
  7492. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7493. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7494. }
  7495. }
  7496. static void ggml_compute_forward_relu(
  7497. const struct ggml_compute_params * params,
  7498. const struct ggml_tensor * src0,
  7499. struct ggml_tensor * dst) {
  7500. switch (src0->type) {
  7501. case GGML_TYPE_F32:
  7502. {
  7503. ggml_compute_forward_relu_f32(params, src0, dst);
  7504. } break;
  7505. default:
  7506. {
  7507. GGML_ASSERT(false);
  7508. } break;
  7509. }
  7510. }
  7511. // ggml_compute_forward_gelu
  7512. static void ggml_compute_forward_gelu_f32(
  7513. const struct ggml_compute_params * params,
  7514. const struct ggml_tensor * src0,
  7515. struct ggml_tensor * dst) {
  7516. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7517. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7518. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7519. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7520. return;
  7521. }
  7522. const int ith = params->ith;
  7523. const int nth = params->nth;
  7524. const int nc = src0->ne[0];
  7525. const int nr = ggml_nrows(src0);
  7526. // rows per thread
  7527. const int dr = (nr + nth - 1)/nth;
  7528. // row range for this thread
  7529. const int ir0 = dr*ith;
  7530. const int ir1 = MIN(ir0 + dr, nr);
  7531. for (int i1 = ir0; i1 < ir1; i1++) {
  7532. ggml_vec_gelu_f32(nc,
  7533. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7534. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7535. #ifndef NDEBUG
  7536. for (int k = 0; k < nc; k++) {
  7537. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7538. UNUSED(x);
  7539. assert(!isnan(x));
  7540. assert(!isinf(x));
  7541. }
  7542. #endif
  7543. }
  7544. }
  7545. static void ggml_compute_forward_gelu(
  7546. const struct ggml_compute_params * params,
  7547. const struct ggml_tensor * src0,
  7548. struct ggml_tensor * dst) {
  7549. switch (src0->type) {
  7550. case GGML_TYPE_F32:
  7551. {
  7552. ggml_compute_forward_gelu_f32(params, src0, dst);
  7553. } break;
  7554. default:
  7555. {
  7556. GGML_ASSERT(false);
  7557. } break;
  7558. }
  7559. }
  7560. // ggml_compute_forward_gelu_quick
  7561. static void ggml_compute_forward_gelu_quick_f32(
  7562. const struct ggml_compute_params * params,
  7563. const struct ggml_tensor * src0,
  7564. struct ggml_tensor * dst) {
  7565. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7566. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7567. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7568. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7569. return;
  7570. }
  7571. const int ith = params->ith;
  7572. const int nth = params->nth;
  7573. const int nc = src0->ne[0];
  7574. const int nr = ggml_nrows(src0);
  7575. // rows per thread
  7576. const int dr = (nr + nth - 1)/nth;
  7577. // row range for this thread
  7578. const int ir0 = dr*ith;
  7579. const int ir1 = MIN(ir0 + dr, nr);
  7580. for (int i1 = ir0; i1 < ir1; i1++) {
  7581. ggml_vec_gelu_quick_f32(nc,
  7582. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7583. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7584. #ifndef NDEBUG
  7585. for (int k = 0; k < nc; k++) {
  7586. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7587. UNUSED(x);
  7588. assert(!isnan(x));
  7589. assert(!isinf(x));
  7590. }
  7591. #endif
  7592. }
  7593. }
  7594. static void ggml_compute_forward_gelu_quick(
  7595. const struct ggml_compute_params * params,
  7596. const struct ggml_tensor * src0,
  7597. struct ggml_tensor * dst) {
  7598. switch (src0->type) {
  7599. case GGML_TYPE_F32:
  7600. {
  7601. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7602. } break;
  7603. default:
  7604. {
  7605. GGML_ASSERT(false);
  7606. } break;
  7607. }
  7608. }
  7609. // ggml_compute_forward_silu
  7610. static void ggml_compute_forward_silu_f32(
  7611. const struct ggml_compute_params * params,
  7612. const struct ggml_tensor * src0,
  7613. struct ggml_tensor * dst) {
  7614. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7615. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7616. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7617. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7618. return;
  7619. }
  7620. const int ith = params->ith;
  7621. const int nth = params->nth;
  7622. const int nc = src0->ne[0];
  7623. const int nr = ggml_nrows(src0);
  7624. // rows per thread
  7625. const int dr = (nr + nth - 1)/nth;
  7626. // row range for this thread
  7627. const int ir0 = dr*ith;
  7628. const int ir1 = MIN(ir0 + dr, nr);
  7629. for (int i1 = ir0; i1 < ir1; i1++) {
  7630. ggml_vec_silu_f32(nc,
  7631. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7632. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7633. #ifndef NDEBUG
  7634. for (int k = 0; k < nc; k++) {
  7635. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7636. UNUSED(x);
  7637. assert(!isnan(x));
  7638. assert(!isinf(x));
  7639. }
  7640. #endif
  7641. }
  7642. }
  7643. static void ggml_compute_forward_silu(
  7644. const struct ggml_compute_params * params,
  7645. const struct ggml_tensor * src0,
  7646. struct ggml_tensor * dst) {
  7647. switch (src0->type) {
  7648. case GGML_TYPE_F32:
  7649. {
  7650. ggml_compute_forward_silu_f32(params, src0, dst);
  7651. } break;
  7652. default:
  7653. {
  7654. GGML_ASSERT(false);
  7655. } break;
  7656. }
  7657. }
  7658. // ggml_compute_forward_leaky_relu
  7659. static void ggml_compute_forward_leaky_relu_f32(
  7660. const struct ggml_compute_params * params,
  7661. const struct ggml_tensor * src0,
  7662. struct ggml_tensor * dst) {
  7663. assert(params->ith == 0);
  7664. assert(ggml_are_same_shape(src0, dst));
  7665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7666. return;
  7667. }
  7668. const int n = ggml_nrows(src0);
  7669. const int nc = src0->ne[0];
  7670. float negative_slope;
  7671. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7672. assert(dst->nb[0] == sizeof(float));
  7673. assert(src0->nb[0] == sizeof(float));
  7674. for (int i = 0; i < n; i++) {
  7675. ggml_vec_leaky_relu_f32(nc,
  7676. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7677. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7678. }
  7679. }
  7680. static void ggml_compute_forward_leaky_relu(
  7681. const struct ggml_compute_params * params,
  7682. const struct ggml_tensor * src0,
  7683. struct ggml_tensor * dst) {
  7684. switch (src0->type) {
  7685. case GGML_TYPE_F32:
  7686. {
  7687. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7688. } break;
  7689. default:
  7690. {
  7691. GGML_ASSERT(false);
  7692. } break;
  7693. }
  7694. }
  7695. // ggml_compute_forward_silu_back
  7696. static void ggml_compute_forward_silu_back_f32(
  7697. const struct ggml_compute_params * params,
  7698. const struct ggml_tensor * src0,
  7699. const struct ggml_tensor * grad,
  7700. struct ggml_tensor * dst) {
  7701. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7702. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7703. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7704. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7705. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7706. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7707. return;
  7708. }
  7709. const int ith = params->ith;
  7710. const int nth = params->nth;
  7711. const int nc = src0->ne[0];
  7712. const int nr = ggml_nrows(src0);
  7713. // rows per thread
  7714. const int dr = (nr + nth - 1)/nth;
  7715. // row range for this thread
  7716. const int ir0 = dr*ith;
  7717. const int ir1 = MIN(ir0 + dr, nr);
  7718. for (int i1 = ir0; i1 < ir1; i1++) {
  7719. ggml_vec_silu_backward_f32(nc,
  7720. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7721. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7722. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7723. #ifndef NDEBUG
  7724. for (int k = 0; k < nc; k++) {
  7725. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7726. UNUSED(x);
  7727. assert(!isnan(x));
  7728. assert(!isinf(x));
  7729. }
  7730. #endif
  7731. }
  7732. }
  7733. static void ggml_compute_forward_silu_back(
  7734. const struct ggml_compute_params * params,
  7735. const struct ggml_tensor * src0,
  7736. const struct ggml_tensor * grad,
  7737. struct ggml_tensor * dst) {
  7738. switch (src0->type) {
  7739. case GGML_TYPE_F32:
  7740. {
  7741. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7742. } break;
  7743. default:
  7744. {
  7745. GGML_ASSERT(false);
  7746. } break;
  7747. }
  7748. }
  7749. static void ggml_compute_forward_hardswish_f32(
  7750. const struct ggml_compute_params * params,
  7751. const struct ggml_tensor * src0,
  7752. struct ggml_tensor * dst) {
  7753. assert(params->ith == 0);
  7754. assert(ggml_are_same_shape(src0, dst));
  7755. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7756. return;
  7757. }
  7758. const int n = ggml_nrows(src0);
  7759. const int nc = src0->ne[0];
  7760. assert(dst->nb[0] == sizeof(float));
  7761. assert(src0->nb[0] == sizeof(float));
  7762. for (int i = 0; i < n; i++) {
  7763. ggml_vec_hardswish_f32(nc,
  7764. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7765. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7766. }
  7767. }
  7768. static void ggml_compute_forward_hardswish(
  7769. const struct ggml_compute_params * params,
  7770. const struct ggml_tensor * src0,
  7771. struct ggml_tensor * dst) {
  7772. switch (src0->type) {
  7773. case GGML_TYPE_F32:
  7774. {
  7775. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7776. } break;
  7777. default:
  7778. {
  7779. GGML_ASSERT(false);
  7780. } break;
  7781. }
  7782. }
  7783. static void ggml_compute_forward_hardsigmoid_f32(
  7784. const struct ggml_compute_params * params,
  7785. const struct ggml_tensor * src0,
  7786. struct ggml_tensor * dst) {
  7787. assert(params->ith == 0);
  7788. assert(ggml_are_same_shape(src0, dst));
  7789. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7790. return;
  7791. }
  7792. const int n = ggml_nrows(src0);
  7793. const int nc = src0->ne[0];
  7794. assert(dst->nb[0] == sizeof(float));
  7795. assert(src0->nb[0] == sizeof(float));
  7796. for (int i = 0; i < n; i++) {
  7797. ggml_vec_hardsigmoid_f32(nc,
  7798. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7799. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7800. }
  7801. }
  7802. static void ggml_compute_forward_hardsigmoid(
  7803. const struct ggml_compute_params * params,
  7804. const struct ggml_tensor * src0,
  7805. struct ggml_tensor * dst) {
  7806. switch (src0->type) {
  7807. case GGML_TYPE_F32:
  7808. {
  7809. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7810. } break;
  7811. default:
  7812. {
  7813. GGML_ASSERT(false);
  7814. } break;
  7815. }
  7816. }
  7817. // ggml_compute_forward_norm
  7818. static void ggml_compute_forward_norm_f32(
  7819. const struct ggml_compute_params * params,
  7820. const struct ggml_tensor * src0,
  7821. struct ggml_tensor * dst) {
  7822. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7823. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7824. return;
  7825. }
  7826. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7827. const int ith = params->ith;
  7828. const int nth = params->nth;
  7829. GGML_TENSOR_UNARY_OP_LOCALS
  7830. float eps;
  7831. memcpy(&eps, dst->op_params, sizeof(float));
  7832. GGML_ASSERT(eps > 0.0f);
  7833. // TODO: optimize
  7834. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7835. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7836. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7837. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7838. ggml_float sum = 0.0;
  7839. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7840. sum += (ggml_float)x[i00];
  7841. }
  7842. float mean = sum/ne00;
  7843. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7844. ggml_float sum2 = 0.0;
  7845. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7846. float v = x[i00] - mean;
  7847. y[i00] = v;
  7848. sum2 += (ggml_float)(v*v);
  7849. }
  7850. float variance = sum2/ne00;
  7851. const float scale = 1.0f/sqrtf(variance + eps);
  7852. ggml_vec_scale_f32(ne00, y, scale);
  7853. }
  7854. }
  7855. }
  7856. }
  7857. static void ggml_compute_forward_norm(
  7858. const struct ggml_compute_params * params,
  7859. const struct ggml_tensor * src0,
  7860. struct ggml_tensor * dst) {
  7861. switch (src0->type) {
  7862. case GGML_TYPE_F32:
  7863. {
  7864. ggml_compute_forward_norm_f32(params, src0, dst);
  7865. } break;
  7866. default:
  7867. {
  7868. GGML_ASSERT(false);
  7869. } break;
  7870. }
  7871. }
  7872. // ggml_compute_forward_group_rms_norm
  7873. static void ggml_compute_forward_rms_norm_f32(
  7874. const struct ggml_compute_params * params,
  7875. const struct ggml_tensor * src0,
  7876. struct ggml_tensor * dst) {
  7877. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7878. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7879. return;
  7880. }
  7881. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7882. const int ith = params->ith;
  7883. const int nth = params->nth;
  7884. GGML_TENSOR_UNARY_OP_LOCALS
  7885. float eps;
  7886. memcpy(&eps, dst->op_params, sizeof(float));
  7887. GGML_ASSERT(eps > 0.0f);
  7888. // TODO: optimize
  7889. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7890. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7891. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7892. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7893. ggml_float sum = 0.0;
  7894. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7895. sum += (ggml_float)(x[i00] * x[i00]);
  7896. }
  7897. const float mean = sum/ne00;
  7898. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7899. memcpy(y, x, ne00 * sizeof(float));
  7900. // for (int i00 = 0; i00 < ne00; i00++) {
  7901. // y[i00] = x[i00];
  7902. // }
  7903. const float scale = 1.0f/sqrtf(mean + eps);
  7904. ggml_vec_scale_f32(ne00, y, scale);
  7905. }
  7906. }
  7907. }
  7908. }
  7909. static void ggml_compute_forward_rms_norm(
  7910. const struct ggml_compute_params * params,
  7911. const struct ggml_tensor * src0,
  7912. struct ggml_tensor * dst) {
  7913. switch (src0->type) {
  7914. case GGML_TYPE_F32:
  7915. {
  7916. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7917. } break;
  7918. default:
  7919. {
  7920. GGML_ASSERT(false);
  7921. } break;
  7922. }
  7923. }
  7924. static void ggml_compute_forward_rms_norm_back_f32(
  7925. const struct ggml_compute_params * params,
  7926. const struct ggml_tensor * src0,
  7927. const struct ggml_tensor * src1,
  7928. struct ggml_tensor * dst) {
  7929. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7930. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7931. return;
  7932. }
  7933. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7934. const int ith = params->ith;
  7935. const int nth = params->nth;
  7936. GGML_TENSOR_BINARY_OP_LOCALS
  7937. float eps;
  7938. memcpy(&eps, dst->op_params, sizeof(float));
  7939. // TODO: optimize
  7940. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7941. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7942. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7943. // src1 is same shape as src0 => same indices
  7944. const int64_t i11 = i01;
  7945. const int64_t i12 = i02;
  7946. const int64_t i13 = i03;
  7947. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7948. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7949. ggml_float sum_xx = 0.0;
  7950. ggml_float sum_xdz = 0.0;
  7951. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7952. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7953. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7954. }
  7955. //const float mean = (float)(sum_xx)/ne00;
  7956. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7957. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7958. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7959. // we could cache rms from forward pass to improve performance.
  7960. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7961. //const float rms = sqrtf(mean_eps);
  7962. const float rrms = 1.0f / sqrtf(mean_eps);
  7963. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7964. {
  7965. // z = rms_norm(x)
  7966. //
  7967. // rms_norm(src0) =
  7968. // scale(
  7969. // src0,
  7970. // div(
  7971. // 1,
  7972. // sqrt(
  7973. // add(
  7974. // scale(
  7975. // sum(
  7976. // sqr(
  7977. // src0)),
  7978. // (1.0/N)),
  7979. // eps))));
  7980. // postorder:
  7981. // ## op args grad
  7982. // 00 param src0 grad[#00]
  7983. // 01 const 1
  7984. // 02 sqr (#00) grad[#02]
  7985. // 03 sum (#02) grad[#03]
  7986. // 04 const 1/N
  7987. // 05 scale (#03, #04) grad[#05]
  7988. // 06 const eps
  7989. // 07 add (#05, #06) grad[#07]
  7990. // 08 sqrt (#07) grad[#08]
  7991. // 09 div (#01,#08) grad[#09]
  7992. // 10 scale (#00,#09) grad[#10]
  7993. //
  7994. // backward pass, given grad[#10]
  7995. // #10: scale
  7996. // grad[#00] += scale(grad[#10],#09)
  7997. // grad[#09] += sum(mul(grad[#10],#00))
  7998. // #09: div
  7999. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8000. // #08: sqrt
  8001. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8002. // #07: add
  8003. // grad[#05] += grad[#07]
  8004. // #05: scale
  8005. // grad[#03] += scale(grad[#05],#04)
  8006. // #03: sum
  8007. // grad[#02] += repeat(grad[#03], #02)
  8008. // #02:
  8009. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8010. //
  8011. // substitute and simplify:
  8012. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8013. // grad[#02] = repeat(grad[#03], #02)
  8014. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8015. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8016. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8017. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8018. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8019. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8020. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8021. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8022. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8023. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8024. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8025. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8026. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8027. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8028. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8029. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8030. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8031. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8032. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8033. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8034. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8035. // a = b*c + d*e
  8036. // a = b*c*f/f + d*e*f/f
  8037. // a = (b*c*f + d*e*f)*(1/f)
  8038. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8039. // a = (b + d*e/c)*c
  8040. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8041. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8042. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8043. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8044. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8045. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8046. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8047. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8048. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8049. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8050. }
  8051. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8052. // post-order:
  8053. // dx := x
  8054. // dx := scale(dx,-mean_xdz/mean_eps)
  8055. // dx := add(dx, dz)
  8056. // dx := scale(dx, rrms)
  8057. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8058. ggml_vec_cpy_f32 (ne00, dx, x);
  8059. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8060. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8061. ggml_vec_acc_f32 (ne00, dx, dz);
  8062. ggml_vec_scale_f32(ne00, dx, rrms);
  8063. }
  8064. }
  8065. }
  8066. }
  8067. static void ggml_compute_forward_rms_norm_back(
  8068. const struct ggml_compute_params * params,
  8069. const struct ggml_tensor * src0,
  8070. const struct ggml_tensor * src1,
  8071. struct ggml_tensor * dst) {
  8072. switch (src0->type) {
  8073. case GGML_TYPE_F32:
  8074. {
  8075. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8076. } break;
  8077. default:
  8078. {
  8079. GGML_ASSERT(false);
  8080. } break;
  8081. }
  8082. }
  8083. // ggml_compute_forward_group_norm
  8084. static void ggml_compute_forward_group_norm_f32(
  8085. const struct ggml_compute_params * params,
  8086. const struct ggml_tensor * src0,
  8087. struct ggml_tensor * dst) {
  8088. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8090. return;
  8091. }
  8092. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8093. const int ith = params->ith;
  8094. const int nth = params->nth;
  8095. GGML_TENSOR_UNARY_OP_LOCALS
  8096. const float eps = 1e-6f; // TODO: make this a parameter
  8097. // TODO: optimize
  8098. int n_channels = src0->ne[2];
  8099. int n_groups = dst->op_params[0];
  8100. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8101. for (int i = ith; i < n_groups; i+=nth) {
  8102. int start = i * n_channels_per_group;
  8103. int end = start + n_channels_per_group;
  8104. if (end > n_channels) {
  8105. end = n_channels;
  8106. }
  8107. int step = end - start;
  8108. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8109. ggml_float sum = 0.0;
  8110. for (int64_t i02 = start; i02 < end; i02++) {
  8111. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8112. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8113. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8114. sum += (ggml_float)x[i00];
  8115. }
  8116. }
  8117. }
  8118. float mean = sum / (ne00 * ne01 * step);
  8119. ggml_float sum2 = 0.0;
  8120. for (int64_t i02 = start; i02 < end; i02++) {
  8121. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8122. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8123. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8124. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8125. float v = x[i00] - mean;
  8126. y[i00] = v;
  8127. sum2 += (ggml_float)(v * v);
  8128. }
  8129. }
  8130. }
  8131. float variance = sum2 / (ne00 * ne01 * step);
  8132. const float scale = 1.0f / sqrtf(variance + eps);
  8133. for (int64_t i02 = start; i02 < end; i02++) {
  8134. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8135. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8136. ggml_vec_scale_f32(ne00, y, scale);
  8137. }
  8138. }
  8139. }
  8140. }
  8141. }
  8142. static void ggml_compute_forward_group_norm(
  8143. const struct ggml_compute_params * params,
  8144. const struct ggml_tensor * src0,
  8145. struct ggml_tensor * dst) {
  8146. switch (src0->type) {
  8147. case GGML_TYPE_F32:
  8148. {
  8149. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8150. } break;
  8151. default:
  8152. {
  8153. GGML_ASSERT(false);
  8154. } break;
  8155. }
  8156. }
  8157. // ggml_compute_forward_mul_mat
  8158. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8159. // helper function to determine if it is better to use BLAS or not
  8160. // for large matrices, BLAS is faster
  8161. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8162. const struct ggml_tensor * src0 = dst->src[0];
  8163. const struct ggml_tensor * src1 = dst->src[1];
  8164. //const int64_t ne00 = src0->ne[0];
  8165. //const int64_t ne01 = src0->ne[1];
  8166. const int64_t ne10 = src1->ne[0];
  8167. const int64_t ne0 = dst->ne[0];
  8168. const int64_t ne1 = dst->ne[1];
  8169. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8170. // all the experts for each batch element and the processing would become incredibly slow
  8171. // TODO: find the optimal values for these
  8172. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8173. ggml_is_contiguous(src0) &&
  8174. ggml_is_contiguous(src1) &&
  8175. //src0->type == GGML_TYPE_F32 &&
  8176. src1->type == GGML_TYPE_F32 &&
  8177. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8178. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8179. return true;
  8180. }
  8181. return false;
  8182. }
  8183. #endif
  8184. static void ggml_compute_forward_mul_mat(
  8185. const struct ggml_compute_params * params,
  8186. const struct ggml_tensor * src0,
  8187. const struct ggml_tensor * src1,
  8188. struct ggml_tensor * dst) {
  8189. int64_t t0 = ggml_perf_time_us();
  8190. UNUSED(t0);
  8191. GGML_TENSOR_BINARY_OP_LOCALS
  8192. const int ith = params->ith;
  8193. const int nth = params->nth;
  8194. const enum ggml_type type = src0->type;
  8195. const bool src1_cont = ggml_is_contiguous(src1);
  8196. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8197. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8198. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8199. GGML_ASSERT(ne0 == ne01);
  8200. GGML_ASSERT(ne1 == ne11);
  8201. GGML_ASSERT(ne2 == ne12);
  8202. GGML_ASSERT(ne3 == ne13);
  8203. // we don't support permuted src0 or src1
  8204. GGML_ASSERT(nb00 == ggml_type_size(type));
  8205. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8206. // dst cannot be transposed or permuted
  8207. GGML_ASSERT(nb0 == sizeof(float));
  8208. GGML_ASSERT(nb0 <= nb1);
  8209. GGML_ASSERT(nb1 <= nb2);
  8210. GGML_ASSERT(nb2 <= nb3);
  8211. // broadcast factors
  8212. const int64_t r2 = ne12/ne02;
  8213. const int64_t r3 = ne13/ne03;
  8214. // nb01 >= nb00 - src0 is not transposed
  8215. // compute by src0 rows
  8216. #if defined(GGML_USE_CLBLAST)
  8217. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8218. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8219. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8220. }
  8221. return;
  8222. }
  8223. #endif
  8224. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8225. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8226. const int64_t ne_plane = ne01*ne00;
  8227. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8228. UNUSED(desired_wsize);
  8229. if (params->type == GGML_TASK_INIT) {
  8230. if (type != GGML_TYPE_F32) {
  8231. assert(params->wsize >= desired_wsize);
  8232. // parallelize by src0 rows
  8233. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8234. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8235. // broadcast src0 into src1 across 2nd,3rd dimension
  8236. const int64_t i03 = i13/r3;
  8237. const int64_t i02 = i12/r2;
  8238. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8239. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8240. ggml_to_float_t const to_float = type_traits[type].to_float;
  8241. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8242. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8243. }
  8244. }
  8245. }
  8246. }
  8247. return;
  8248. }
  8249. if (params->type == GGML_TASK_FINALIZE) {
  8250. return;
  8251. }
  8252. // perform sgemm, parallelization controlled by blas lib
  8253. if (ith != 0) {
  8254. return;
  8255. }
  8256. //const int64_t tgemm0 = ggml_perf_time_us();
  8257. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8258. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8259. const int64_t i03 = i13/r3;
  8260. const int64_t i02 = i12/r2;
  8261. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8262. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8263. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8264. if (type != GGML_TYPE_F32) {
  8265. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8266. }
  8267. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8268. ne1, ne01, ne10,
  8269. 1.0f, y, ne10,
  8270. x, ne00,
  8271. 0.0f, d, ne01);
  8272. }
  8273. }
  8274. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8275. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8276. return;
  8277. }
  8278. #endif
  8279. if (params->type == GGML_TASK_INIT) {
  8280. if (ith != 0) {
  8281. return;
  8282. }
  8283. if (src1->type != vec_dot_type) {
  8284. char * wdata = params->wdata;
  8285. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8286. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8287. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8288. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8289. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8290. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8291. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8292. wdata += row_size;
  8293. }
  8294. }
  8295. }
  8296. }
  8297. return;
  8298. }
  8299. if (params->type == GGML_TASK_FINALIZE) {
  8300. return;
  8301. }
  8302. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8303. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8304. const int64_t nr0 = ne01; // src0 rows
  8305. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8306. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8307. // distribute the thread work across the inner or outer loop based on which one is larger
  8308. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8309. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8310. const int64_t ith0 = ith % nth0;
  8311. const int64_t ith1 = ith / nth0;
  8312. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8313. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8314. const int64_t ir010 = dr0*ith0;
  8315. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8316. const int64_t ir110 = dr1*ith1;
  8317. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8318. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8319. // threads with no work simply yield (not sure if it helps)
  8320. if (ir010 >= ir011 || ir110 >= ir111) {
  8321. sched_yield();
  8322. return;
  8323. }
  8324. assert(ne12 % ne02 == 0);
  8325. assert(ne13 % ne03 == 0);
  8326. // block-tiling attempt
  8327. const int64_t blck_0 = 16;
  8328. const int64_t blck_1 = 16;
  8329. // attempt to reduce false-sharing (does not seem to make a difference)
  8330. float tmp[16];
  8331. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8332. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8333. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8334. const int64_t i13 = (ir1/(ne12*ne1));
  8335. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8336. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8337. // broadcast src0 into src1
  8338. const int64_t i03 = i13/r3;
  8339. const int64_t i02 = i12/r2;
  8340. const int64_t i1 = i11;
  8341. const int64_t i2 = i12;
  8342. const int64_t i3 = i13;
  8343. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8344. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8345. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8346. // the original src1 data pointer, so we should index using the indices directly
  8347. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8348. const char * src1_col = (const char *) wdata +
  8349. (src1_cont || src1->type != vec_dot_type
  8350. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8351. : (i11*nb11 + i12*nb12 + i13*nb13));
  8352. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8353. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8354. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8355. //}
  8356. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8357. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8358. }
  8359. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8360. }
  8361. }
  8362. }
  8363. }
  8364. // ggml_compute_forward_mul_mat_id
  8365. static void ggml_compute_forward_mul_mat_id(
  8366. const struct ggml_compute_params * params,
  8367. const struct ggml_tensor * ids,
  8368. const struct ggml_tensor * src1,
  8369. struct ggml_tensor * dst) {
  8370. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8371. GGML_TENSOR_BINARY_OP_LOCALS
  8372. const int ith = params->ith;
  8373. const int nth = params->nth;
  8374. const enum ggml_type type = src0->type;
  8375. const bool src1_cont = ggml_is_contiguous(src1);
  8376. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8377. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8378. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8379. GGML_ASSERT(ne0 == ne01);
  8380. GGML_ASSERT(ne1 == ne11);
  8381. GGML_ASSERT(ne2 == ne12);
  8382. GGML_ASSERT(ne3 == ne13);
  8383. // we don't support permuted src0 or src1
  8384. GGML_ASSERT(nb00 == ggml_type_size(type));
  8385. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8386. // dst cannot be transposed or permuted
  8387. GGML_ASSERT(nb0 == sizeof(float));
  8388. GGML_ASSERT(nb0 <= nb1);
  8389. GGML_ASSERT(nb1 <= nb2);
  8390. GGML_ASSERT(nb2 <= nb3);
  8391. // broadcast factors
  8392. const int64_t r2 = ne12/ne02;
  8393. const int64_t r3 = ne13/ne03;
  8394. // row groups
  8395. const int id = ggml_get_op_params_i32(dst, 0);
  8396. const int n_as = ggml_get_op_params_i32(dst, 1);
  8397. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8398. (char *) params->wdata :
  8399. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8400. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8401. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8402. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8403. if (params->type == GGML_TASK_INIT) {
  8404. if (ith != 0) {
  8405. return;
  8406. }
  8407. char * wdata = params->wdata;
  8408. if (src1->type != vec_dot_type) {
  8409. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8410. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8411. assert(src1->type == GGML_TYPE_F32);
  8412. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8413. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8414. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8415. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8416. wdata += row_size;
  8417. }
  8418. }
  8419. }
  8420. }
  8421. // initialize matrix_row_counts
  8422. GGML_ASSERT(wdata == wdata_src1_end);
  8423. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8424. // group rows by src0 matrix
  8425. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8426. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8427. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8428. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8429. matrix_row_counts[row_id] += 1;
  8430. }
  8431. return;
  8432. }
  8433. if (params->type == GGML_TASK_FINALIZE) {
  8434. return;
  8435. }
  8436. // compute each matrix multiplication in sequence
  8437. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8438. const int64_t cne1 = matrix_row_counts[cur_a];
  8439. if (cne1 == 0) {
  8440. continue;
  8441. }
  8442. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8443. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8444. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8445. const int64_t nr0 = ne01; // src0 rows
  8446. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8447. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8448. // distribute the thread work across the inner or outer loop based on which one is larger
  8449. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8450. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8451. const int64_t ith0 = ith % nth0;
  8452. const int64_t ith1 = ith / nth0;
  8453. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8454. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8455. const int64_t ir010 = dr0*ith0;
  8456. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8457. const int64_t ir110 = dr1*ith1;
  8458. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8459. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8460. // threads with no work simply yield (not sure if it helps)
  8461. if (ir010 >= ir011 || ir110 >= ir111) {
  8462. sched_yield();
  8463. continue;
  8464. }
  8465. assert(ne12 % ne02 == 0);
  8466. assert(ne13 % ne03 == 0);
  8467. // block-tiling attempt
  8468. const int64_t blck_0 = 16;
  8469. const int64_t blck_1 = 16;
  8470. // attempt to reduce false-sharing (does not seem to make a difference)
  8471. float tmp[16];
  8472. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8473. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8474. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8475. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8476. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8477. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8478. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8479. // broadcast src0 into src1
  8480. const int64_t i03 = i13/r3;
  8481. const int64_t i02 = i12/r2;
  8482. const int64_t i1 = i11;
  8483. const int64_t i2 = i12;
  8484. const int64_t i3 = i13;
  8485. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8486. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8487. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8488. // the original src1 data pointer, so we should index using the indices directly
  8489. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8490. const char * src1_col = (const char *) wdata +
  8491. (src1_cont || src1->type != vec_dot_type
  8492. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8493. : (i11*nb11 + i12*nb12 + i13*nb13));
  8494. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8495. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8496. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8497. //}
  8498. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8499. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8500. }
  8501. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8502. }
  8503. }
  8504. }
  8505. }
  8506. #undef MMID_MATRIX_ROW
  8507. }
  8508. // ggml_compute_forward_out_prod
  8509. static void ggml_compute_forward_out_prod_f32(
  8510. const struct ggml_compute_params * params,
  8511. const struct ggml_tensor * src0,
  8512. const struct ggml_tensor * src1,
  8513. struct ggml_tensor * dst) {
  8514. // int64_t t0 = ggml_perf_time_us();
  8515. // UNUSED(t0);
  8516. GGML_TENSOR_BINARY_OP_LOCALS
  8517. const int ith = params->ith;
  8518. const int nth = params->nth;
  8519. GGML_ASSERT(ne0 == ne00);
  8520. GGML_ASSERT(ne1 == ne10);
  8521. GGML_ASSERT(ne2 == ne02);
  8522. GGML_ASSERT(ne02 == ne12);
  8523. GGML_ASSERT(ne3 == ne13);
  8524. GGML_ASSERT(ne03 == ne13);
  8525. // we don't support permuted src0 or src1
  8526. GGML_ASSERT(nb00 == sizeof(float));
  8527. // dst cannot be transposed or permuted
  8528. GGML_ASSERT(nb0 == sizeof(float));
  8529. // GGML_ASSERT(nb0 <= nb1);
  8530. // GGML_ASSERT(nb1 <= nb2);
  8531. // GGML_ASSERT(nb2 <= nb3);
  8532. // nb01 >= nb00 - src0 is not transposed
  8533. // compute by src0 rows
  8534. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8535. // TODO: #if defined(GGML_USE_CLBLAST)
  8536. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8537. bool use_blas = ggml_is_matrix(src0) &&
  8538. ggml_is_matrix(src1) &&
  8539. ggml_is_contiguous(src0) &&
  8540. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8541. #endif
  8542. if (params->type == GGML_TASK_INIT) {
  8543. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8544. if (use_blas) {
  8545. return;
  8546. }
  8547. #endif
  8548. if (ith != 0) {
  8549. return;
  8550. }
  8551. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8552. return;
  8553. }
  8554. if (params->type == GGML_TASK_FINALIZE) {
  8555. return;
  8556. }
  8557. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8558. if (use_blas) {
  8559. if (params->ith != 0) { // All threads other than the first do no work.
  8560. return;
  8561. }
  8562. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8563. // src0: (k,n)
  8564. // src1: (k,m)
  8565. // dst: (m,n)
  8566. //
  8567. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8568. // Also expressed as (major,minor)
  8569. // a: (m,k): so src1 transposed
  8570. // b: (k,n): so src0
  8571. // c: (m,n)
  8572. //
  8573. // However, if ggml_is_transposed(src1) is true, then
  8574. // src1->data already contains a transposed version, so sgemm mustn't
  8575. // transpose it further.
  8576. int n = src0->ne[0];
  8577. int k = src0->ne[1];
  8578. int m = src1->ne[0];
  8579. int transposeA, lda;
  8580. if (!ggml_is_transposed(src1)) {
  8581. transposeA = CblasTrans;
  8582. lda = m;
  8583. } else {
  8584. transposeA = CblasNoTrans;
  8585. lda = k;
  8586. }
  8587. float * a = (float *) ((char *) src1->data);
  8588. float * b = (float *) ((char *) src0->data);
  8589. float * c = (float *) ((char *) dst->data);
  8590. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8591. return;
  8592. }
  8593. #endif
  8594. // dst[:,:,:,:] = 0
  8595. // for i2,i3:
  8596. // for i1:
  8597. // for i01:
  8598. // for i0:
  8599. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8600. // parallelize by last three dimensions
  8601. // total rows in dst
  8602. const int64_t nr = ne1*ne2*ne3;
  8603. // rows per thread
  8604. const int64_t dr = (nr + nth - 1)/nth;
  8605. // row range for this thread
  8606. const int64_t ir0 = dr*ith;
  8607. const int64_t ir1 = MIN(ir0 + dr, nr);
  8608. // block-tiling attempt
  8609. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8610. const int64_t blck_1 = 16;
  8611. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8612. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8613. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8614. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8615. for (int64_t ir = bir; ir < bir1; ++ir) {
  8616. // dst indices
  8617. const int64_t i3 = ir/(ne2*ne1);
  8618. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8619. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8620. const int64_t i02 = i2;
  8621. const int64_t i03 = i3;
  8622. //const int64_t i10 = i1;
  8623. const int64_t i12 = i2;
  8624. const int64_t i13 = i3;
  8625. #if GGML_VEC_MAD_UNROLL > 2
  8626. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8627. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8628. const int64_t i11 = i01;
  8629. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8630. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8631. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8632. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8633. }
  8634. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8635. const int64_t i11 = i01;
  8636. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8637. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8638. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8639. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8640. }
  8641. #else
  8642. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8643. const int64_t i11 = i01;
  8644. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8645. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8646. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8647. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8648. }
  8649. #endif
  8650. }
  8651. }
  8652. }
  8653. //int64_t t1 = ggml_perf_time_us();
  8654. //static int64_t acc = 0;
  8655. //acc += t1 - t0;
  8656. //if (t1 - t0 > 10) {
  8657. // printf("\n");
  8658. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8659. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8660. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8661. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8662. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8663. //}
  8664. }
  8665. static void ggml_compute_forward_out_prod_q_f32(
  8666. const struct ggml_compute_params * params,
  8667. const struct ggml_tensor * src0,
  8668. const struct ggml_tensor * src1,
  8669. struct ggml_tensor * dst) {
  8670. // int64_t t0 = ggml_perf_time_us();
  8671. // UNUSED(t0);
  8672. GGML_TENSOR_BINARY_OP_LOCALS;
  8673. const int ith = params->ith;
  8674. const int nth = params->nth;
  8675. const enum ggml_type type = src0->type;
  8676. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8677. GGML_ASSERT(ne02 == ne12);
  8678. GGML_ASSERT(ne03 == ne13);
  8679. GGML_ASSERT(ne2 == ne12);
  8680. GGML_ASSERT(ne3 == ne13);
  8681. // we don't support permuted src0 dim0
  8682. GGML_ASSERT(nb00 == ggml_type_size(type));
  8683. // dst dim0 cannot be transposed or permuted
  8684. GGML_ASSERT(nb0 == sizeof(float));
  8685. // GGML_ASSERT(nb0 <= nb1);
  8686. // GGML_ASSERT(nb1 <= nb2);
  8687. // GGML_ASSERT(nb2 <= nb3);
  8688. GGML_ASSERT(ne0 == ne00);
  8689. GGML_ASSERT(ne1 == ne10);
  8690. GGML_ASSERT(ne2 == ne02);
  8691. GGML_ASSERT(ne3 == ne03);
  8692. // nb01 >= nb00 - src0 is not transposed
  8693. // compute by src0 rows
  8694. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8695. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8696. if (params->type == GGML_TASK_INIT) {
  8697. if (ith != 0) {
  8698. return;
  8699. }
  8700. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8701. return;
  8702. }
  8703. if (params->type == GGML_TASK_FINALIZE) {
  8704. return;
  8705. }
  8706. // parallelize by last three dimensions
  8707. // total rows in dst
  8708. const int64_t nr = ne1*ne2*ne3;
  8709. // rows per thread
  8710. const int64_t dr = (nr + nth - 1)/nth;
  8711. // row range for this thread
  8712. const int64_t ir0 = dr*ith;
  8713. const int64_t ir1 = MIN(ir0 + dr, nr);
  8714. // dst[:,:,:,:] = 0
  8715. // for i2,i3:
  8716. // for i1:
  8717. // for i01:
  8718. // for i0:
  8719. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8720. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8721. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8722. // dst indices
  8723. const int64_t i3 = ir/(ne2*ne1);
  8724. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8725. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8726. const int64_t i02 = i2;
  8727. const int64_t i03 = i3;
  8728. //const int64_t i10 = i1;
  8729. const int64_t i12 = i2;
  8730. const int64_t i13 = i3;
  8731. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8732. const int64_t i11 = i01;
  8733. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8734. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8735. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8736. dequantize_row_q(s0, wdata, ne0);
  8737. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8738. }
  8739. }
  8740. //int64_t t1 = ggml_perf_time_us();
  8741. //static int64_t acc = 0;
  8742. //acc += t1 - t0;
  8743. //if (t1 - t0 > 10) {
  8744. // printf("\n");
  8745. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8746. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8747. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8748. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8749. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8750. //}
  8751. }
  8752. static void ggml_compute_forward_out_prod(
  8753. const struct ggml_compute_params * params,
  8754. const struct ggml_tensor * src0,
  8755. const struct ggml_tensor * src1,
  8756. struct ggml_tensor * dst) {
  8757. switch (src0->type) {
  8758. case GGML_TYPE_Q4_0:
  8759. case GGML_TYPE_Q4_1:
  8760. case GGML_TYPE_Q5_0:
  8761. case GGML_TYPE_Q5_1:
  8762. case GGML_TYPE_Q8_0:
  8763. case GGML_TYPE_Q2_K:
  8764. case GGML_TYPE_Q3_K:
  8765. case GGML_TYPE_Q4_K:
  8766. case GGML_TYPE_Q5_K:
  8767. case GGML_TYPE_Q6_K:
  8768. case GGML_TYPE_IQ2_XXS:
  8769. case GGML_TYPE_IQ2_XS:
  8770. case GGML_TYPE_IQ3_XXS:
  8771. {
  8772. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8773. } break;
  8774. case GGML_TYPE_F16:
  8775. {
  8776. GGML_ASSERT(false); // todo
  8777. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8778. } break;
  8779. case GGML_TYPE_F32:
  8780. {
  8781. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8782. } break;
  8783. default:
  8784. {
  8785. GGML_ASSERT(false);
  8786. } break;
  8787. }
  8788. }
  8789. // ggml_compute_forward_scale
  8790. static void ggml_compute_forward_scale_f32(
  8791. const struct ggml_compute_params * params,
  8792. const struct ggml_tensor * src0,
  8793. struct ggml_tensor * dst) {
  8794. GGML_ASSERT(ggml_is_contiguous(src0));
  8795. GGML_ASSERT(ggml_is_contiguous(dst));
  8796. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8797. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8798. return;
  8799. }
  8800. // scale factor
  8801. float v;
  8802. memcpy(&v, dst->op_params, sizeof(float));
  8803. const int ith = params->ith;
  8804. const int nth = params->nth;
  8805. const int nc = src0->ne[0];
  8806. const int nr = ggml_nrows(src0);
  8807. // rows per thread
  8808. const int dr = (nr + nth - 1)/nth;
  8809. // row range for this thread
  8810. const int ir0 = dr*ith;
  8811. const int ir1 = MIN(ir0 + dr, nr);
  8812. const size_t nb01 = src0->nb[1];
  8813. const size_t nb1 = dst->nb[1];
  8814. for (int i1 = ir0; i1 < ir1; i1++) {
  8815. if (dst->data != src0->data) {
  8816. // src0 is same shape as dst => same indices
  8817. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8818. }
  8819. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8820. }
  8821. }
  8822. static void ggml_compute_forward_scale(
  8823. const struct ggml_compute_params * params,
  8824. const struct ggml_tensor * src0,
  8825. struct ggml_tensor * dst) {
  8826. switch (src0->type) {
  8827. case GGML_TYPE_F32:
  8828. {
  8829. ggml_compute_forward_scale_f32(params, src0, dst);
  8830. } break;
  8831. default:
  8832. {
  8833. GGML_ASSERT(false);
  8834. } break;
  8835. }
  8836. }
  8837. // ggml_compute_forward_set
  8838. static void ggml_compute_forward_set_f32(
  8839. const struct ggml_compute_params * params,
  8840. const struct ggml_tensor * src0,
  8841. const struct ggml_tensor * src1,
  8842. struct ggml_tensor * dst) {
  8843. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8844. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8845. // view src0 and dst with these strides and data offset inbytes during set
  8846. // nb0 is implicitly element_size because src0 and dst are contiguous
  8847. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8848. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8849. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8850. size_t offset = ((int32_t *) dst->op_params)[3];
  8851. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8852. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8853. if (params->ith != 0) {
  8854. return;
  8855. }
  8856. // memcpy needs to be synchronized across threads to avoid race conditions.
  8857. // => do it in INIT phase
  8858. memcpy(
  8859. ((char *) dst->data),
  8860. ((char *) src0->data),
  8861. ggml_nbytes(dst));
  8862. }
  8863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8864. return;
  8865. }
  8866. const int ith = params->ith;
  8867. const int nth = params->nth;
  8868. const int nr = ggml_nrows(src1);
  8869. const int nc = src1->ne[0];
  8870. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8871. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8872. // src0 and dst as viewed during set
  8873. const size_t nb0 = ggml_element_size(src0);
  8874. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8875. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8876. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8877. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8878. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8879. GGML_ASSERT(nb10 == sizeof(float));
  8880. // rows per thread
  8881. const int dr = (nr + nth - 1)/nth;
  8882. // row range for this thread
  8883. const int ir0 = dr*ith;
  8884. const int ir1 = MIN(ir0 + dr, nr);
  8885. for (int ir = ir0; ir < ir1; ++ir) {
  8886. // src0 and dst are viewed with shape of src1 and offset
  8887. // => same indices
  8888. const int i3 = ir/(ne12*ne11);
  8889. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8890. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8891. ggml_vec_cpy_f32(nc,
  8892. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8893. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8894. }
  8895. }
  8896. static void ggml_compute_forward_set(
  8897. const struct ggml_compute_params * params,
  8898. const struct ggml_tensor * src0,
  8899. const struct ggml_tensor * src1,
  8900. struct ggml_tensor * dst) {
  8901. switch (src0->type) {
  8902. case GGML_TYPE_F32:
  8903. {
  8904. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8905. } break;
  8906. case GGML_TYPE_F16:
  8907. case GGML_TYPE_Q4_0:
  8908. case GGML_TYPE_Q4_1:
  8909. case GGML_TYPE_Q5_0:
  8910. case GGML_TYPE_Q5_1:
  8911. case GGML_TYPE_Q8_0:
  8912. case GGML_TYPE_Q8_1:
  8913. case GGML_TYPE_Q2_K:
  8914. case GGML_TYPE_Q3_K:
  8915. case GGML_TYPE_Q4_K:
  8916. case GGML_TYPE_Q5_K:
  8917. case GGML_TYPE_Q6_K:
  8918. case GGML_TYPE_IQ2_XXS:
  8919. case GGML_TYPE_IQ2_XS:
  8920. case GGML_TYPE_IQ3_XXS:
  8921. default:
  8922. {
  8923. GGML_ASSERT(false);
  8924. } break;
  8925. }
  8926. }
  8927. // ggml_compute_forward_cpy
  8928. static void ggml_compute_forward_cpy(
  8929. const struct ggml_compute_params * params,
  8930. const struct ggml_tensor * src0,
  8931. struct ggml_tensor * dst) {
  8932. ggml_compute_forward_dup(params, src0, dst);
  8933. }
  8934. // ggml_compute_forward_cont
  8935. static void ggml_compute_forward_cont(
  8936. const struct ggml_compute_params * params,
  8937. const struct ggml_tensor * src0,
  8938. struct ggml_tensor * dst) {
  8939. ggml_compute_forward_dup(params, src0, dst);
  8940. }
  8941. // ggml_compute_forward_reshape
  8942. static void ggml_compute_forward_reshape(
  8943. const struct ggml_compute_params * params,
  8944. const struct ggml_tensor * src0,
  8945. struct ggml_tensor * dst) {
  8946. // NOP
  8947. UNUSED(params);
  8948. UNUSED(src0);
  8949. UNUSED(dst);
  8950. }
  8951. // ggml_compute_forward_view
  8952. static void ggml_compute_forward_view(
  8953. const struct ggml_compute_params * params,
  8954. const struct ggml_tensor * src0) {
  8955. // NOP
  8956. UNUSED(params);
  8957. UNUSED(src0);
  8958. }
  8959. // ggml_compute_forward_permute
  8960. static void ggml_compute_forward_permute(
  8961. const struct ggml_compute_params * params,
  8962. const struct ggml_tensor * src0) {
  8963. // NOP
  8964. UNUSED(params);
  8965. UNUSED(src0);
  8966. }
  8967. // ggml_compute_forward_transpose
  8968. static void ggml_compute_forward_transpose(
  8969. const struct ggml_compute_params * params,
  8970. const struct ggml_tensor * src0) {
  8971. // NOP
  8972. UNUSED(params);
  8973. UNUSED(src0);
  8974. }
  8975. // ggml_compute_forward_get_rows
  8976. static void ggml_compute_forward_get_rows_q(
  8977. const struct ggml_compute_params * params,
  8978. const struct ggml_tensor * src0,
  8979. const struct ggml_tensor * src1,
  8980. struct ggml_tensor * dst) {
  8981. assert(params->ith == 0);
  8982. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8983. return;
  8984. }
  8985. GGML_TENSOR_BINARY_OP_LOCALS
  8986. const int64_t nc = ne00;
  8987. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8988. const enum ggml_type type = src0->type;
  8989. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8990. assert(ne0 == nc);
  8991. assert(ne02 == ne11);
  8992. assert(nb00 == ggml_type_size(type));
  8993. assert(ggml_nrows(dst) == nr);
  8994. // TODO: multi-thread
  8995. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8996. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8997. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8998. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8999. dequantize_row_q(
  9000. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9001. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9002. }
  9003. }
  9004. }
  9005. }
  9006. static void ggml_compute_forward_get_rows_f16(
  9007. const struct ggml_compute_params * params,
  9008. const struct ggml_tensor * src0,
  9009. const struct ggml_tensor * src1,
  9010. struct ggml_tensor * dst) {
  9011. assert(params->ith == 0);
  9012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9013. return;
  9014. }
  9015. GGML_TENSOR_BINARY_OP_LOCALS
  9016. const int64_t nc = ne00;
  9017. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9018. assert(ne0 == nc);
  9019. assert(ne02 == ne11);
  9020. assert(nb00 == sizeof(ggml_fp16_t));
  9021. assert(ggml_nrows(dst) == nr);
  9022. // TODO: multi-thread
  9023. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9024. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9025. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9026. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9027. ggml_fp16_to_fp32_row(
  9028. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9029. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9030. }
  9031. }
  9032. }
  9033. }
  9034. static void ggml_compute_forward_get_rows_f32(
  9035. const struct ggml_compute_params * params,
  9036. const struct ggml_tensor * src0,
  9037. const struct ggml_tensor * src1,
  9038. struct ggml_tensor * dst) {
  9039. assert(params->ith == 0);
  9040. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9041. return;
  9042. }
  9043. GGML_TENSOR_BINARY_OP_LOCALS
  9044. const int64_t nc = ne00;
  9045. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9046. assert(ne0 == nc);
  9047. assert(ne02 == ne11);
  9048. assert(nb00 == sizeof(float));
  9049. assert(ggml_nrows(dst) == nr);
  9050. // TODO: multi-thread
  9051. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9052. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9053. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9054. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9055. ggml_vec_cpy_f32(nc,
  9056. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9057. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9058. }
  9059. }
  9060. }
  9061. }
  9062. static void ggml_compute_forward_get_rows(
  9063. const struct ggml_compute_params * params,
  9064. const struct ggml_tensor * src0,
  9065. const struct ggml_tensor * src1,
  9066. struct ggml_tensor * dst) {
  9067. switch (src0->type) {
  9068. case GGML_TYPE_Q4_0:
  9069. case GGML_TYPE_Q4_1:
  9070. case GGML_TYPE_Q5_0:
  9071. case GGML_TYPE_Q5_1:
  9072. case GGML_TYPE_Q8_0:
  9073. case GGML_TYPE_Q8_1:
  9074. case GGML_TYPE_Q2_K:
  9075. case GGML_TYPE_Q3_K:
  9076. case GGML_TYPE_Q4_K:
  9077. case GGML_TYPE_Q5_K:
  9078. case GGML_TYPE_Q6_K:
  9079. case GGML_TYPE_IQ2_XXS:
  9080. case GGML_TYPE_IQ2_XS:
  9081. case GGML_TYPE_IQ3_XXS:
  9082. {
  9083. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9084. } break;
  9085. case GGML_TYPE_F16:
  9086. {
  9087. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9088. } break;
  9089. case GGML_TYPE_F32:
  9090. case GGML_TYPE_I32:
  9091. {
  9092. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9093. } break;
  9094. default:
  9095. {
  9096. GGML_ASSERT(false);
  9097. } break;
  9098. }
  9099. //static bool first = true;
  9100. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9101. //if (first) {
  9102. // first = false;
  9103. //} else {
  9104. // for (int k = 0; k < dst->ne[1]; ++k) {
  9105. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9106. // for (int i = 0; i < 16; ++i) {
  9107. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9108. // }
  9109. // printf("\n");
  9110. // }
  9111. // printf("\n");
  9112. // }
  9113. // printf("\n");
  9114. // exit(0);
  9115. //}
  9116. }
  9117. // ggml_compute_forward_get_rows_back
  9118. static void ggml_compute_forward_get_rows_back_f32_f16(
  9119. const struct ggml_compute_params * params,
  9120. const struct ggml_tensor * src0,
  9121. const struct ggml_tensor * src1,
  9122. struct ggml_tensor * dst) {
  9123. GGML_ASSERT(params->ith == 0);
  9124. GGML_ASSERT(ggml_is_contiguous(dst));
  9125. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9126. if (params->type == GGML_TASK_INIT) {
  9127. if (params->ith != 0) {
  9128. return;
  9129. }
  9130. memset(dst->data, 0, ggml_nbytes(dst));
  9131. }
  9132. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9133. return;
  9134. }
  9135. const int nc = src0->ne[0];
  9136. const int nr = ggml_nelements(src1);
  9137. GGML_ASSERT( dst->ne[0] == nc);
  9138. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9139. for (int i = 0; i < nr; ++i) {
  9140. const int r = ((int32_t *) src1->data)[i];
  9141. for (int j = 0; j < nc; ++j) {
  9142. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9143. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9144. }
  9145. }
  9146. }
  9147. static void ggml_compute_forward_get_rows_back_f32(
  9148. const struct ggml_compute_params * params,
  9149. const struct ggml_tensor * src0,
  9150. const struct ggml_tensor * src1,
  9151. struct ggml_tensor * dst) {
  9152. GGML_ASSERT(params->ith == 0);
  9153. GGML_ASSERT(ggml_is_contiguous(dst));
  9154. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9155. if (params->type == GGML_TASK_INIT) {
  9156. if (params->ith != 0) {
  9157. return;
  9158. }
  9159. memset(dst->data, 0, ggml_nbytes(dst));
  9160. }
  9161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9162. return;
  9163. }
  9164. const int nc = src0->ne[0];
  9165. const int nr = ggml_nelements(src1);
  9166. GGML_ASSERT( dst->ne[0] == nc);
  9167. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9168. for (int i = 0; i < nr; ++i) {
  9169. const int r = ((int32_t *) src1->data)[i];
  9170. ggml_vec_add_f32(nc,
  9171. (float *) ((char *) dst->data + r*dst->nb[1]),
  9172. (float *) ((char *) dst->data + r*dst->nb[1]),
  9173. (float *) ((char *) src0->data + i*src0->nb[1]));
  9174. }
  9175. }
  9176. static void ggml_compute_forward_get_rows_back(
  9177. const struct ggml_compute_params * params,
  9178. const struct ggml_tensor * src0,
  9179. const struct ggml_tensor * src1,
  9180. struct ggml_tensor * dst) {
  9181. switch (src0->type) {
  9182. case GGML_TYPE_F16:
  9183. {
  9184. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9185. } break;
  9186. case GGML_TYPE_F32:
  9187. {
  9188. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9189. } break;
  9190. default:
  9191. {
  9192. GGML_ASSERT(false);
  9193. } break;
  9194. }
  9195. //static bool first = true;
  9196. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9197. //if (first) {
  9198. // first = false;
  9199. //} else {
  9200. // for (int k = 0; k < dst->ne[1]; ++k) {
  9201. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9202. // for (int i = 0; i < 16; ++i) {
  9203. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9204. // }
  9205. // printf("\n");
  9206. // }
  9207. // printf("\n");
  9208. // }
  9209. // printf("\n");
  9210. // exit(0);
  9211. //}
  9212. }
  9213. // ggml_compute_forward_diag
  9214. static void ggml_compute_forward_diag_f32(
  9215. const struct ggml_compute_params * params,
  9216. const struct ggml_tensor * src0,
  9217. struct ggml_tensor * dst) {
  9218. GGML_ASSERT(params->ith == 0);
  9219. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9220. return;
  9221. }
  9222. // TODO: handle transposed/permuted matrices
  9223. GGML_TENSOR_UNARY_OP_LOCALS
  9224. GGML_ASSERT(ne00 == ne0);
  9225. GGML_ASSERT(ne00 == ne1);
  9226. GGML_ASSERT(ne01 == 1);
  9227. GGML_ASSERT(ne02 == ne2);
  9228. GGML_ASSERT(ne03 == ne3);
  9229. GGML_ASSERT(nb00 == sizeof(float));
  9230. GGML_ASSERT(nb0 == sizeof(float));
  9231. for (int i3 = 0; i3 < ne3; i3++) {
  9232. for (int i2 = 0; i2 < ne2; i2++) {
  9233. for (int i1 = 0; i1 < ne1; i1++) {
  9234. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9235. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9236. for (int i0 = 0; i0 < i1; i0++) {
  9237. d[i0] = 0;
  9238. }
  9239. d[i1] = s[i1];
  9240. for (int i0 = i1+1; i0 < ne0; i0++) {
  9241. d[i0] = 0;
  9242. }
  9243. }
  9244. }
  9245. }
  9246. }
  9247. static void ggml_compute_forward_diag(
  9248. const struct ggml_compute_params * params,
  9249. const struct ggml_tensor * src0,
  9250. struct ggml_tensor * dst) {
  9251. switch (src0->type) {
  9252. case GGML_TYPE_F32:
  9253. {
  9254. ggml_compute_forward_diag_f32(params, src0, dst);
  9255. } break;
  9256. default:
  9257. {
  9258. GGML_ASSERT(false);
  9259. } break;
  9260. }
  9261. }
  9262. // ggml_compute_forward_diag_mask_inf
  9263. static void ggml_compute_forward_diag_mask_f32(
  9264. const struct ggml_compute_params * params,
  9265. const struct ggml_tensor * src0,
  9266. struct ggml_tensor * dst,
  9267. const float value) {
  9268. const int ith = params->ith;
  9269. const int nth = params->nth;
  9270. const int n_past = ((int32_t *) dst->op_params)[0];
  9271. const bool inplace = src0->data == dst->data;
  9272. GGML_ASSERT(n_past >= 0);
  9273. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9274. if (ith != 0) {
  9275. return;
  9276. }
  9277. // memcpy needs to be synchronized across threads to avoid race conditions.
  9278. // => do it in INIT phase
  9279. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9280. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9281. memcpy(
  9282. ((char *) dst->data),
  9283. ((char *) src0->data),
  9284. ggml_nbytes(dst));
  9285. }
  9286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9287. return;
  9288. }
  9289. // TODO: handle transposed/permuted matrices
  9290. const int n = ggml_nrows(src0);
  9291. const int nc = src0->ne[0];
  9292. const int nr = src0->ne[1];
  9293. const int nz = n/nr;
  9294. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9295. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9296. for (int k = 0; k < nz; k++) {
  9297. for (int j = ith; j < nr; j += nth) {
  9298. for (int i = n_past; i < nc; i++) {
  9299. if (i > n_past + j) {
  9300. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9301. }
  9302. }
  9303. }
  9304. }
  9305. }
  9306. static void ggml_compute_forward_diag_mask_inf(
  9307. const struct ggml_compute_params * params,
  9308. const struct ggml_tensor * src0,
  9309. struct ggml_tensor * dst) {
  9310. switch (src0->type) {
  9311. case GGML_TYPE_F32:
  9312. {
  9313. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9314. } break;
  9315. default:
  9316. {
  9317. GGML_ASSERT(false);
  9318. } break;
  9319. }
  9320. }
  9321. static void ggml_compute_forward_diag_mask_zero(
  9322. const struct ggml_compute_params * params,
  9323. const struct ggml_tensor * src0,
  9324. struct ggml_tensor * dst) {
  9325. switch (src0->type) {
  9326. case GGML_TYPE_F32:
  9327. {
  9328. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9329. } break;
  9330. default:
  9331. {
  9332. GGML_ASSERT(false);
  9333. } break;
  9334. }
  9335. }
  9336. // ggml_compute_forward_soft_max
  9337. static void ggml_compute_forward_soft_max_f32(
  9338. const struct ggml_compute_params * params,
  9339. const struct ggml_tensor * src0,
  9340. const struct ggml_tensor * src1,
  9341. struct ggml_tensor * dst) {
  9342. assert(ggml_is_contiguous(dst));
  9343. assert(ggml_are_same_shape(src0, dst));
  9344. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9345. return;
  9346. }
  9347. float scale = 1.0f;
  9348. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9349. // TODO: handle transposed/permuted matrices
  9350. const int ith = params->ith;
  9351. const int nth = params->nth;
  9352. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9353. const int nc = src0->ne[0];
  9354. const int nr = ggml_nrows(src0);
  9355. // rows per thread
  9356. const int dr = (nr + nth - 1)/nth;
  9357. // row range for this thread
  9358. const int ir0 = dr*ith;
  9359. const int ir1 = MIN(ir0 + dr, nr);
  9360. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9361. for (int i1 = ir0; i1 < ir1; i1++) {
  9362. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9363. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9364. // broadcast the mask across rows
  9365. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9366. ggml_vec_cpy_f32 (nc, wp, sp);
  9367. ggml_vec_scale_f32(nc, wp, scale);
  9368. if (mp) {
  9369. ggml_vec_acc_f32(nc, wp, mp);
  9370. }
  9371. #ifndef NDEBUG
  9372. for (int i = 0; i < nc; ++i) {
  9373. //printf("p[%d] = %f\n", i, p[i]);
  9374. assert(!isnan(wp[i]));
  9375. }
  9376. #endif
  9377. float max = -INFINITY;
  9378. ggml_vec_max_f32(nc, &max, wp);
  9379. ggml_float sum = 0.0;
  9380. uint16_t scvt;
  9381. for (int i = 0; i < nc; i++) {
  9382. if (wp[i] == -INFINITY) {
  9383. dp[i] = 0.0f;
  9384. } else {
  9385. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9386. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9387. memcpy(&scvt, &s, sizeof(scvt));
  9388. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9389. sum += (ggml_float)val;
  9390. dp[i] = val;
  9391. }
  9392. }
  9393. assert(sum > 0.0);
  9394. sum = 1.0/sum;
  9395. ggml_vec_scale_f32(nc, dp, sum);
  9396. #ifndef NDEBUG
  9397. for (int i = 0; i < nc; ++i) {
  9398. assert(!isnan(dp[i]));
  9399. assert(!isinf(dp[i]));
  9400. }
  9401. #endif
  9402. }
  9403. }
  9404. static void ggml_compute_forward_soft_max(
  9405. const struct ggml_compute_params * params,
  9406. const struct ggml_tensor * src0,
  9407. const struct ggml_tensor * src1,
  9408. struct ggml_tensor * dst) {
  9409. switch (src0->type) {
  9410. case GGML_TYPE_F32:
  9411. {
  9412. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9413. } break;
  9414. default:
  9415. {
  9416. GGML_ASSERT(false);
  9417. } break;
  9418. }
  9419. }
  9420. // ggml_compute_forward_soft_max_back
  9421. static void ggml_compute_forward_soft_max_back_f32(
  9422. const struct ggml_compute_params * params,
  9423. const struct ggml_tensor * src0,
  9424. const struct ggml_tensor * src1,
  9425. struct ggml_tensor * dst) {
  9426. GGML_ASSERT(ggml_is_contiguous(src0));
  9427. GGML_ASSERT(ggml_is_contiguous(src1));
  9428. GGML_ASSERT(ggml_is_contiguous(dst));
  9429. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9430. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9432. return;
  9433. }
  9434. // TODO: handle transposed/permuted matrices
  9435. const int ith = params->ith;
  9436. const int nth = params->nth;
  9437. const int nc = src0->ne[0];
  9438. const int nr = ggml_nrows(src0);
  9439. // rows per thread
  9440. const int dr = (nr + nth - 1)/nth;
  9441. // row range for this thread
  9442. const int ir0 = dr*ith;
  9443. const int ir1 = MIN(ir0 + dr, nr);
  9444. for (int i1 = ir0; i1 < ir1; i1++) {
  9445. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9446. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9447. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9448. #ifndef NDEBUG
  9449. for (int i = 0; i < nc; ++i) {
  9450. //printf("p[%d] = %f\n", i, p[i]);
  9451. assert(!isnan(dy[i]));
  9452. assert(!isnan(y[i]));
  9453. }
  9454. #endif
  9455. // Jii = yi - yi*yi
  9456. // Jij = -yi*yj
  9457. // J = diag(y)-y.T*y
  9458. // dx = J * dy
  9459. // dxk = sum_i(Jki * dyi)
  9460. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9461. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9462. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9463. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9464. // dxk = -yk * dot(y, dy) + yk*dyk
  9465. // dxk = yk * (- dot(y, dy) + dyk)
  9466. // dxk = yk * (dyk - dot(y, dy))
  9467. //
  9468. // post-order:
  9469. // dot_y_dy := dot(y, dy)
  9470. // dx := dy
  9471. // dx := dx - dot_y_dy
  9472. // dx := dx * y
  9473. // linear runtime, no additional memory
  9474. float dot_y_dy = 0;
  9475. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9476. ggml_vec_cpy_f32 (nc, dx, dy);
  9477. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9478. ggml_vec_mul_f32 (nc, dx, dx, y);
  9479. #ifndef NDEBUG
  9480. for (int i = 0; i < nc; ++i) {
  9481. assert(!isnan(dx[i]));
  9482. assert(!isinf(dx[i]));
  9483. }
  9484. #endif
  9485. }
  9486. }
  9487. static void ggml_compute_forward_soft_max_back(
  9488. const struct ggml_compute_params * params,
  9489. const struct ggml_tensor * src0,
  9490. const struct ggml_tensor * src1,
  9491. struct ggml_tensor * dst) {
  9492. switch (src0->type) {
  9493. case GGML_TYPE_F32:
  9494. {
  9495. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9496. } break;
  9497. default:
  9498. {
  9499. GGML_ASSERT(false);
  9500. } break;
  9501. }
  9502. }
  9503. // ggml_compute_forward_alibi
  9504. static void ggml_compute_forward_alibi_f32(
  9505. const struct ggml_compute_params * params,
  9506. const struct ggml_tensor * src0,
  9507. struct ggml_tensor * dst) {
  9508. assert(params->ith == 0);
  9509. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9510. return;
  9511. }
  9512. //const int n_past = ((int32_t *) dst->op_params)[0];
  9513. const int n_head = ((int32_t *) dst->op_params)[1];
  9514. float max_bias;
  9515. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9516. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9517. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9518. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9519. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9520. const int64_t n = ggml_nrows(src0);
  9521. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9522. const size_t nb0 = src0->nb[0];
  9523. const size_t nb1 = src0->nb[1];
  9524. const size_t nb2 = src0->nb[2];
  9525. //const int nb3 = src0->nb[3];
  9526. GGML_ASSERT(nb0 == sizeof(float));
  9527. GGML_ASSERT(n_head == ne2);
  9528. // add alibi to src0 (KQ_scaled)
  9529. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9530. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9531. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9532. for (int64_t i = 0; i < ne0; i++) {
  9533. for (int64_t j = 0; j < ne1; j++) {
  9534. for (int64_t k = 0; k < ne2_ne3; k++) {
  9535. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9536. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9537. // TODO: k*nb2 or k*nb3
  9538. float m_k;
  9539. if (k < n_heads_log2_floor) {
  9540. m_k = powf(m0, k + 1);
  9541. } else {
  9542. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9543. }
  9544. pdst[0] = i * m_k + src[0];
  9545. }
  9546. }
  9547. }
  9548. }
  9549. static void ggml_compute_forward_alibi_f16(
  9550. const struct ggml_compute_params * params,
  9551. const struct ggml_tensor * src0,
  9552. struct ggml_tensor * dst) {
  9553. assert(params->ith == 0);
  9554. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9555. return;
  9556. }
  9557. //const int n_past = ((int32_t *) dst->op_params)[0];
  9558. const int n_head = ((int32_t *) dst->op_params)[1];
  9559. float max_bias;
  9560. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9561. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9562. const int ne1 = src0->ne[1]; // seq_len_without_past
  9563. const int ne2 = src0->ne[2]; // n_head -> this is k
  9564. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9565. const int n = ggml_nrows(src0);
  9566. const int ne2_ne3 = n/ne1; // ne2*ne3
  9567. const int nb0 = src0->nb[0];
  9568. const int nb1 = src0->nb[1];
  9569. const int nb2 = src0->nb[2];
  9570. //const int nb3 = src0->nb[3];
  9571. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9572. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9573. GGML_ASSERT(n_head == ne2);
  9574. // add alibi to src0 (KQ_scaled)
  9575. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9576. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9577. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9578. for (int i = 0; i < ne0; i++) {
  9579. for (int j = 0; j < ne1; j++) {
  9580. for (int k = 0; k < ne2_ne3; k++) {
  9581. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9582. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9583. // TODO: k*nb2 or k*nb3
  9584. float m_k;
  9585. if (k < n_heads_log2_floor) {
  9586. m_k = powf(m0, k + 1);
  9587. } else {
  9588. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9589. }
  9590. // we return F32
  9591. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9592. }
  9593. }
  9594. }
  9595. }
  9596. static void ggml_compute_forward_alibi(
  9597. const struct ggml_compute_params * params,
  9598. const struct ggml_tensor * src0,
  9599. struct ggml_tensor * dst) {
  9600. switch (src0->type) {
  9601. case GGML_TYPE_F16:
  9602. {
  9603. ggml_compute_forward_alibi_f16(params, src0, dst);
  9604. } break;
  9605. case GGML_TYPE_F32:
  9606. {
  9607. ggml_compute_forward_alibi_f32(params, src0, dst);
  9608. } break;
  9609. case GGML_TYPE_Q4_0:
  9610. case GGML_TYPE_Q4_1:
  9611. case GGML_TYPE_Q5_0:
  9612. case GGML_TYPE_Q5_1:
  9613. case GGML_TYPE_Q8_0:
  9614. case GGML_TYPE_Q8_1:
  9615. case GGML_TYPE_Q2_K:
  9616. case GGML_TYPE_Q3_K:
  9617. case GGML_TYPE_Q4_K:
  9618. case GGML_TYPE_Q5_K:
  9619. case GGML_TYPE_Q6_K:
  9620. case GGML_TYPE_IQ2_XXS:
  9621. case GGML_TYPE_IQ2_XS:
  9622. case GGML_TYPE_IQ3_XXS:
  9623. case GGML_TYPE_Q8_K:
  9624. case GGML_TYPE_I8:
  9625. case GGML_TYPE_I16:
  9626. case GGML_TYPE_I32:
  9627. case GGML_TYPE_COUNT:
  9628. {
  9629. GGML_ASSERT(false);
  9630. } break;
  9631. }
  9632. }
  9633. // ggml_compute_forward_clamp
  9634. static void ggml_compute_forward_clamp_f32(
  9635. const struct ggml_compute_params * params,
  9636. const struct ggml_tensor * src0,
  9637. struct ggml_tensor * dst) {
  9638. assert(params->ith == 0);
  9639. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9640. return;
  9641. }
  9642. float min;
  9643. float max;
  9644. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9645. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9646. const int ith = params->ith;
  9647. const int nth = params->nth;
  9648. const int n = ggml_nrows(src0);
  9649. const int nc = src0->ne[0];
  9650. const size_t nb00 = src0->nb[0];
  9651. const size_t nb01 = src0->nb[1];
  9652. const size_t nb0 = dst->nb[0];
  9653. const size_t nb1 = dst->nb[1];
  9654. GGML_ASSERT( nb0 == sizeof(float));
  9655. GGML_ASSERT(nb00 == sizeof(float));
  9656. for (int j = ith; j < n; j += nth) {
  9657. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9658. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9659. for (int i = 0; i < nc; i++) {
  9660. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9661. }
  9662. }
  9663. }
  9664. static void ggml_compute_forward_clamp(
  9665. const struct ggml_compute_params * params,
  9666. const struct ggml_tensor * src0,
  9667. struct ggml_tensor * dst) {
  9668. switch (src0->type) {
  9669. case GGML_TYPE_F32:
  9670. {
  9671. ggml_compute_forward_clamp_f32(params, src0, dst);
  9672. } break;
  9673. case GGML_TYPE_F16:
  9674. case GGML_TYPE_Q4_0:
  9675. case GGML_TYPE_Q4_1:
  9676. case GGML_TYPE_Q5_0:
  9677. case GGML_TYPE_Q5_1:
  9678. case GGML_TYPE_Q8_0:
  9679. case GGML_TYPE_Q8_1:
  9680. case GGML_TYPE_Q2_K:
  9681. case GGML_TYPE_Q3_K:
  9682. case GGML_TYPE_Q4_K:
  9683. case GGML_TYPE_Q5_K:
  9684. case GGML_TYPE_Q6_K:
  9685. case GGML_TYPE_IQ2_XXS:
  9686. case GGML_TYPE_IQ2_XS:
  9687. case GGML_TYPE_IQ3_XXS:
  9688. case GGML_TYPE_Q8_K:
  9689. case GGML_TYPE_I8:
  9690. case GGML_TYPE_I16:
  9691. case GGML_TYPE_I32:
  9692. case GGML_TYPE_COUNT:
  9693. {
  9694. GGML_ASSERT(false);
  9695. } break;
  9696. }
  9697. }
  9698. // ggml_compute_forward_rope
  9699. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9700. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9701. return 1 - MIN(1, MAX(0, y));
  9702. }
  9703. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9704. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9705. static void rope_yarn(
  9706. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9707. float * cos_theta, float * sin_theta
  9708. ) {
  9709. // Get n-d rotational scaling corrected for extrapolation
  9710. float theta_interp = freq_scale * theta_extrap;
  9711. float theta = theta_interp;
  9712. if (ext_factor != 0.0f) {
  9713. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9714. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9715. // Get n-d magnitude scaling corrected for interpolation
  9716. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9717. }
  9718. *cos_theta = cosf(theta) * mscale;
  9719. *sin_theta = sinf(theta) * mscale;
  9720. }
  9721. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9722. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9723. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9724. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9725. }
  9726. static void ggml_rope_cache_init(
  9727. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9728. float * cache, float sin_sign, float theta_scale
  9729. ) {
  9730. float theta = theta_base;
  9731. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9732. rope_yarn(
  9733. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9734. );
  9735. cache[i0 + 1] *= sin_sign;
  9736. theta *= theta_scale;
  9737. }
  9738. }
  9739. GGML_CALL void ggml_rope_yarn_corr_dims(
  9740. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9741. ) {
  9742. // start and end correction dims
  9743. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9744. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9745. }
  9746. static void ggml_compute_forward_rope_f32(
  9747. const struct ggml_compute_params * params,
  9748. const struct ggml_tensor * src0,
  9749. const struct ggml_tensor * src1,
  9750. struct ggml_tensor * dst,
  9751. const bool forward) {
  9752. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9753. return;
  9754. }
  9755. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9756. // these two only relevant for xPos RoPE:
  9757. float xpos_base;
  9758. bool xpos_down;
  9759. //const int n_past = ((int32_t *) dst->op_params)[0];
  9760. const int n_dims = ((int32_t *) dst->op_params)[1];
  9761. const int mode = ((int32_t *) dst->op_params)[2];
  9762. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9763. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9764. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9765. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9766. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9767. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9768. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9769. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9770. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9771. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9772. GGML_TENSOR_UNARY_OP_LOCALS
  9773. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9774. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9775. GGML_ASSERT(nb00 == sizeof(float));
  9776. const int ith = params->ith;
  9777. const int nth = params->nth;
  9778. const int nr = ggml_nrows(dst);
  9779. GGML_ASSERT(n_dims <= ne0);
  9780. GGML_ASSERT(n_dims % 2 == 0);
  9781. // rows per thread
  9782. const int dr = (nr + nth - 1)/nth;
  9783. // row range for this thread
  9784. const int ir0 = dr*ith;
  9785. const int ir1 = MIN(ir0 + dr, nr);
  9786. // row index used to determine which thread to use
  9787. int ir = 0;
  9788. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9789. const float inv_ndims = -1.f/n_dims;
  9790. float corr_dims[2];
  9791. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9792. const bool is_neox = mode & 2;
  9793. const bool is_glm = mode & 4;
  9794. // backward process uses inverse rotation by cos and sin.
  9795. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9796. // this essentially just switches the sign of sin.
  9797. const float sin_sign = forward ? 1.0f : -1.0f;
  9798. const int32_t * pos = (const int32_t *) src1->data;
  9799. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9800. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9801. const int64_t p = pos[i2];
  9802. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9803. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9804. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9805. }
  9806. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9807. if (ir++ < ir0) continue;
  9808. if (ir > ir1) break;
  9809. float theta_base = (float)p;
  9810. if (is_glm) {
  9811. theta_base = MIN(p, n_ctx - 2);
  9812. float block_theta = MAX(p - (n_ctx - 2), 0);
  9813. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9814. const float cos_theta = cosf(theta_base);
  9815. const float sin_theta = sinf(theta_base) * sin_sign;
  9816. const float cos_block_theta = cosf(block_theta);
  9817. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9818. theta_base *= theta_scale;
  9819. block_theta *= theta_scale;
  9820. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9821. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9822. const float x0 = src[0];
  9823. const float x1 = src[n_dims/2];
  9824. const float x2 = src[n_dims];
  9825. const float x3 = src[n_dims/2*3];
  9826. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9827. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9828. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9829. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9830. }
  9831. } else if (!is_neox) {
  9832. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9833. const float cos_theta = cache[i0 + 0];
  9834. const float sin_theta = cache[i0 + 1];
  9835. // zeta scaling for xPos only:
  9836. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9837. if (xpos_down) zeta = 1.0f / zeta;
  9838. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9839. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9840. const float x0 = src[0];
  9841. const float x1 = src[1];
  9842. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9843. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9844. }
  9845. } else {
  9846. // TODO: this might be wrong for ne0 != n_dims - need double check
  9847. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9848. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9849. theta_base *= freq_scale;
  9850. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9851. if (ic < n_dims) {
  9852. const int64_t ib = 0;
  9853. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9854. float cur_rot = inv_ndims * ic - ib;
  9855. float cos_theta, sin_theta;
  9856. rope_yarn(
  9857. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9858. &cos_theta, &sin_theta
  9859. );
  9860. sin_theta *= sin_sign;
  9861. theta_base *= theta_scale;
  9862. const int64_t i0 = ib*n_dims + ic/2;
  9863. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9864. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9865. const float x0 = src[0];
  9866. const float x1 = src[n_dims/2];
  9867. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9868. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9869. } else {
  9870. const int64_t i0 = ic;
  9871. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9872. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9873. dst_data[0] = src[0];
  9874. dst_data[1] = src[1];
  9875. }
  9876. }
  9877. }
  9878. }
  9879. }
  9880. }
  9881. }
  9882. static void ggml_compute_forward_rope_f16(
  9883. const struct ggml_compute_params * params,
  9884. const struct ggml_tensor * src0,
  9885. const struct ggml_tensor * src1,
  9886. struct ggml_tensor * dst,
  9887. const bool forward) {
  9888. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9889. return;
  9890. }
  9891. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9892. //const int n_past = ((int32_t *) dst->op_params)[0];
  9893. const int n_dims = ((int32_t *) dst->op_params)[1];
  9894. const int mode = ((int32_t *) dst->op_params)[2];
  9895. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9896. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9897. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9898. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9899. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9900. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9901. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9902. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9903. GGML_TENSOR_UNARY_OP_LOCALS
  9904. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9905. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9906. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9907. const int ith = params->ith;
  9908. const int nth = params->nth;
  9909. const int nr = ggml_nrows(dst);
  9910. GGML_ASSERT(n_dims <= ne0);
  9911. GGML_ASSERT(n_dims % 2 == 0);
  9912. // rows per thread
  9913. const int dr = (nr + nth - 1)/nth;
  9914. // row range for this thread
  9915. const int ir0 = dr*ith;
  9916. const int ir1 = MIN(ir0 + dr, nr);
  9917. // row index used to determine which thread to use
  9918. int ir = 0;
  9919. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9920. const float inv_ndims = -1.f/n_dims;
  9921. float corr_dims[2];
  9922. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9923. const bool is_neox = mode & 2;
  9924. const bool is_glm = mode & 4;
  9925. // backward process uses inverse rotation by cos and sin.
  9926. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9927. // this essentially just switches the sign of sin.
  9928. const float sin_sign = forward ? 1.0f : -1.0f;
  9929. const int32_t * pos = (const int32_t *) src1->data;
  9930. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9931. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9932. const int64_t p = pos[i2];
  9933. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9934. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9935. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9936. }
  9937. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9938. if (ir++ < ir0) continue;
  9939. if (ir > ir1) break;
  9940. float theta_base = (float)p;
  9941. if (is_glm) {
  9942. theta_base = MIN(p, n_ctx - 2);
  9943. float block_theta = MAX(p - (n_ctx - 2), 0);
  9944. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9945. const float cos_theta = cosf(theta_base);
  9946. const float sin_theta = sinf(theta_base) * sin_sign;
  9947. const float cos_block_theta = cosf(block_theta);
  9948. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9949. theta_base *= theta_scale;
  9950. block_theta *= theta_scale;
  9951. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9952. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9953. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9954. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9955. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9956. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9957. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9958. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9959. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9960. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9961. }
  9962. } else if (!is_neox) {
  9963. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9964. const float cos_theta = cache[i0 + 0];
  9965. const float sin_theta = cache[i0 + 1];
  9966. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9967. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9968. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9969. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9970. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9971. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9972. }
  9973. } else {
  9974. // TODO: this might be wrong for ne0 != n_dims - need double check
  9975. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9976. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9977. theta_base *= freq_scale;
  9978. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9979. if (ic < n_dims) {
  9980. const int64_t ib = 0;
  9981. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9982. float cur_rot = inv_ndims * ic - ib;
  9983. float cos_theta, sin_theta;
  9984. rope_yarn(
  9985. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9986. &cos_theta, &sin_theta
  9987. );
  9988. sin_theta *= sin_sign;
  9989. theta_base *= theta_scale;
  9990. const int64_t i0 = ib*n_dims + ic/2;
  9991. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9992. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9993. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9994. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9995. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9996. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9997. } else {
  9998. const int64_t i0 = ic;
  9999. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10000. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10001. dst_data[0] = src[0];
  10002. dst_data[1] = src[1];
  10003. }
  10004. }
  10005. }
  10006. }
  10007. }
  10008. }
  10009. }
  10010. static void ggml_compute_forward_rope(
  10011. const struct ggml_compute_params * params,
  10012. const struct ggml_tensor * src0,
  10013. const struct ggml_tensor * src1,
  10014. struct ggml_tensor * dst) {
  10015. switch (src0->type) {
  10016. case GGML_TYPE_F16:
  10017. {
  10018. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  10019. } break;
  10020. case GGML_TYPE_F32:
  10021. {
  10022. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  10023. } break;
  10024. default:
  10025. {
  10026. GGML_ASSERT(false);
  10027. } break;
  10028. }
  10029. }
  10030. // ggml_compute_forward_rope_back
  10031. static void ggml_compute_forward_rope_back(
  10032. const struct ggml_compute_params * params,
  10033. const struct ggml_tensor * src0,
  10034. const struct ggml_tensor * src1,
  10035. struct ggml_tensor * dst) {
  10036. switch (src0->type) {
  10037. case GGML_TYPE_F16:
  10038. {
  10039. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  10040. } break;
  10041. case GGML_TYPE_F32:
  10042. {
  10043. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10044. } break;
  10045. default:
  10046. {
  10047. GGML_ASSERT(false);
  10048. } break;
  10049. }
  10050. }
  10051. // ggml_compute_forward_conv_transpose_1d
  10052. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10053. const struct ggml_compute_params * params,
  10054. const struct ggml_tensor * src0,
  10055. const struct ggml_tensor * src1,
  10056. struct ggml_tensor * dst) {
  10057. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10058. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10059. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10060. int64_t t0 = ggml_perf_time_us();
  10061. UNUSED(t0);
  10062. GGML_TENSOR_BINARY_OP_LOCALS
  10063. const int ith = params->ith;
  10064. const int nth = params->nth;
  10065. const int nk = ne00*ne01*ne02;
  10066. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10067. GGML_ASSERT(nb10 == sizeof(float));
  10068. if (params->type == GGML_TASK_INIT) {
  10069. if (ith != 0) {
  10070. return;
  10071. }
  10072. memset(params->wdata, 0, params->wsize);
  10073. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10074. {
  10075. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10076. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10077. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10078. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10079. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10080. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10081. dst_data[i00*ne02 + i02] = src[i00];
  10082. }
  10083. }
  10084. }
  10085. }
  10086. // permute source data (src1) from (L x Cin) to (Cin x L)
  10087. {
  10088. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10089. ggml_fp16_t * dst_data = wdata;
  10090. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10091. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10092. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10093. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10094. }
  10095. }
  10096. }
  10097. // need to zero dst since we are accumulating into it
  10098. memset(dst->data, 0, ggml_nbytes(dst));
  10099. return;
  10100. }
  10101. if (params->type == GGML_TASK_FINALIZE) {
  10102. return;
  10103. }
  10104. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10105. // total rows in dst
  10106. const int nr = ne1;
  10107. // rows per thread
  10108. const int dr = (nr + nth - 1)/nth;
  10109. // row range for this thread
  10110. const int ir0 = dr*ith;
  10111. const int ir1 = MIN(ir0 + dr, nr);
  10112. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10113. ggml_fp16_t * const wdata_src = wdata + nk;
  10114. for (int i1 = ir0; i1 < ir1; i1++) {
  10115. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10116. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10117. for (int i10 = 0; i10 < ne10; i10++) {
  10118. const int i1n = i10*ne11;
  10119. for (int i00 = 0; i00 < ne00; i00++) {
  10120. float v = 0;
  10121. ggml_vec_dot_f16(ne02, &v,
  10122. (ggml_fp16_t *) wdata_src + i1n,
  10123. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  10124. dst_data[i10*s0 + i00] += v;
  10125. }
  10126. }
  10127. }
  10128. }
  10129. static void ggml_compute_forward_conv_transpose_1d_f32(
  10130. const struct ggml_compute_params * params,
  10131. const struct ggml_tensor * src0,
  10132. const struct ggml_tensor * src1,
  10133. struct ggml_tensor * dst) {
  10134. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10135. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10136. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10137. int64_t t0 = ggml_perf_time_us();
  10138. UNUSED(t0);
  10139. GGML_TENSOR_BINARY_OP_LOCALS
  10140. const int ith = params->ith;
  10141. const int nth = params->nth;
  10142. const int nk = ne00*ne01*ne02;
  10143. GGML_ASSERT(nb00 == sizeof(float));
  10144. GGML_ASSERT(nb10 == sizeof(float));
  10145. if (params->type == GGML_TASK_INIT) {
  10146. if (ith != 0) {
  10147. return;
  10148. }
  10149. memset(params->wdata, 0, params->wsize);
  10150. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10151. {
  10152. float * const wdata = (float *) params->wdata + 0;
  10153. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10154. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10155. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10156. float * dst_data = wdata + i01*ne00*ne02;
  10157. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10158. dst_data[i00*ne02 + i02] = src[i00];
  10159. }
  10160. }
  10161. }
  10162. }
  10163. // prepare source data (src1)
  10164. {
  10165. float * const wdata = (float *) params->wdata + nk;
  10166. float * dst_data = wdata;
  10167. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10168. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10169. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10170. dst_data[i10*ne11 + i11] = src[i10];
  10171. }
  10172. }
  10173. }
  10174. // need to zero dst since we are accumulating into it
  10175. memset(dst->data, 0, ggml_nbytes(dst));
  10176. return;
  10177. }
  10178. if (params->type == GGML_TASK_FINALIZE) {
  10179. return;
  10180. }
  10181. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10182. // total rows in dst
  10183. const int nr = ne1;
  10184. // rows per thread
  10185. const int dr = (nr + nth - 1)/nth;
  10186. // row range for this thread
  10187. const int ir0 = dr*ith;
  10188. const int ir1 = MIN(ir0 + dr, nr);
  10189. float * const wdata = (float *) params->wdata + 0;
  10190. float * const wdata_src = wdata + nk;
  10191. for (int i1 = ir0; i1 < ir1; i1++) {
  10192. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10193. float * wdata_kernel = wdata + i1*ne02*ne00;
  10194. for (int i10 = 0; i10 < ne10; i10++) {
  10195. const int i1n = i10*ne11;
  10196. for (int i00 = 0; i00 < ne00; i00++) {
  10197. float v = 0;
  10198. ggml_vec_dot_f32(ne02, &v,
  10199. wdata_src + i1n,
  10200. wdata_kernel + i00*ne02);
  10201. dst_data[i10*s0 + i00] += v;
  10202. }
  10203. }
  10204. }
  10205. }
  10206. static void ggml_compute_forward_conv_transpose_1d(
  10207. const struct ggml_compute_params * params,
  10208. const struct ggml_tensor * src0,
  10209. const struct ggml_tensor * src1,
  10210. struct ggml_tensor * dst) {
  10211. switch (src0->type) {
  10212. case GGML_TYPE_F16:
  10213. {
  10214. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10215. } break;
  10216. case GGML_TYPE_F32:
  10217. {
  10218. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10219. } break;
  10220. default:
  10221. {
  10222. GGML_ASSERT(false);
  10223. } break;
  10224. }
  10225. }
  10226. // src0: kernel [OC, IC, KH, KW]
  10227. // src1: image [N, IC, IH, IW]
  10228. // dst: result [N, OH, OW, IC*KH*KW]
  10229. static void ggml_compute_forward_im2col_f16(
  10230. const struct ggml_compute_params * params,
  10231. const struct ggml_tensor * src0,
  10232. const struct ggml_tensor * src1,
  10233. struct ggml_tensor * dst) {
  10234. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10235. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10236. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10237. int64_t t0 = ggml_perf_time_us();
  10238. UNUSED(t0);
  10239. GGML_TENSOR_BINARY_OP_LOCALS;
  10240. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10241. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10242. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10243. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10244. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10245. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10246. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10247. const int ith = params->ith;
  10248. const int nth = params->nth;
  10249. const int64_t N = is_2D ? ne13 : ne12;
  10250. const int64_t IC = is_2D ? ne12 : ne11;
  10251. const int64_t IH = is_2D ? ne11 : 1;
  10252. const int64_t IW = ne10;
  10253. const int64_t KH = is_2D ? ne01 : 1;
  10254. const int64_t KW = ne00;
  10255. const int64_t OH = is_2D ? ne2 : 1;
  10256. const int64_t OW = ne1;
  10257. int ofs0 = is_2D ? nb13 : nb12;
  10258. int ofs1 = is_2D ? nb12 : nb11;
  10259. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10260. GGML_ASSERT(nb10 == sizeof(float));
  10261. if (params->type == GGML_TASK_INIT) {
  10262. return;
  10263. }
  10264. if (params->type == GGML_TASK_FINALIZE) {
  10265. return;
  10266. }
  10267. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10268. {
  10269. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10270. for (int64_t in = 0; in < N; in++) {
  10271. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10272. for (int64_t iow = 0; iow < OW; iow++) {
  10273. for (int64_t iic = ith; iic < IC; iic += nth) {
  10274. // micro kernel
  10275. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10276. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10277. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10278. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10279. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10280. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10281. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10282. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10283. } else {
  10284. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10285. }
  10286. }
  10287. }
  10288. }
  10289. }
  10290. }
  10291. }
  10292. }
  10293. }
  10294. static void ggml_compute_forward_im2col(
  10295. const struct ggml_compute_params * params,
  10296. const struct ggml_tensor * src0,
  10297. const struct ggml_tensor * src1,
  10298. struct ggml_tensor * dst) {
  10299. switch (src0->type) {
  10300. case GGML_TYPE_F16:
  10301. {
  10302. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10303. } break;
  10304. case GGML_TYPE_F32:
  10305. {
  10306. GGML_ASSERT(false);
  10307. } break;
  10308. default:
  10309. {
  10310. GGML_ASSERT(false);
  10311. } break;
  10312. }
  10313. }
  10314. // ggml_compute_forward_conv_transpose_2d
  10315. static void ggml_compute_forward_conv_transpose_2d(
  10316. const struct ggml_compute_params * params,
  10317. const struct ggml_tensor * src0,
  10318. const struct ggml_tensor * src1,
  10319. struct ggml_tensor * dst) {
  10320. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10321. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10322. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10323. int64_t t0 = ggml_perf_time_us();
  10324. UNUSED(t0);
  10325. GGML_TENSOR_BINARY_OP_LOCALS
  10326. const int ith = params->ith;
  10327. const int nth = params->nth;
  10328. const int nk = ne00*ne01*ne02*ne03;
  10329. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10330. GGML_ASSERT(nb10 == sizeof(float));
  10331. if (params->type == GGML_TASK_INIT) {
  10332. if (ith != 0) {
  10333. return;
  10334. }
  10335. memset(params->wdata, 0, params->wsize);
  10336. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10337. {
  10338. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10339. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10340. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10341. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10342. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10343. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10344. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10345. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10346. }
  10347. }
  10348. }
  10349. }
  10350. }
  10351. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10352. {
  10353. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10354. for (int i12 = 0; i12 < ne12; i12++) {
  10355. for (int i11 = 0; i11 < ne11; i11++) {
  10356. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10357. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10358. for (int i10 = 0; i10 < ne10; i10++) {
  10359. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10360. }
  10361. }
  10362. }
  10363. }
  10364. memset(dst->data, 0, ggml_nbytes(dst));
  10365. return;
  10366. }
  10367. if (params->type == GGML_TASK_FINALIZE) {
  10368. return;
  10369. }
  10370. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10371. // total patches in dst
  10372. const int np = ne2;
  10373. // patches per thread
  10374. const int dp = (np + nth - 1)/nth;
  10375. // patch range for this thread
  10376. const int ip0 = dp*ith;
  10377. const int ip1 = MIN(ip0 + dp, np);
  10378. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10379. ggml_fp16_t * const wdata_src = wdata + nk;
  10380. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10381. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10382. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10383. for (int i11 = 0; i11 < ne11; i11++) {
  10384. for (int i10 = 0; i10 < ne10; i10++) {
  10385. const int i1n = i11*ne10*ne12 + i10*ne12;
  10386. for (int i01 = 0; i01 < ne01; i01++) {
  10387. for (int i00 = 0; i00 < ne00; i00++) {
  10388. float v = 0;
  10389. ggml_vec_dot_f16(ne03, &v,
  10390. wdata_src + i1n,
  10391. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10392. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10393. }
  10394. }
  10395. }
  10396. }
  10397. }
  10398. }
  10399. // ggml_compute_forward_pool_1d_sk_p0
  10400. static void ggml_compute_forward_pool_1d_sk_p0(
  10401. const struct ggml_compute_params * params,
  10402. const enum ggml_op_pool op,
  10403. const struct ggml_tensor * src,
  10404. const int k,
  10405. struct ggml_tensor * dst) {
  10406. assert(src->type == GGML_TYPE_F32);
  10407. assert(params->ith == 0);
  10408. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10409. return;
  10410. }
  10411. const char * cdata = (const char *)src->data;
  10412. const char * const data_end = cdata + ggml_nbytes(src);
  10413. float * drow = (float *)dst->data;
  10414. const int64_t rs = dst->ne[0];
  10415. while (cdata < data_end) {
  10416. const float * const srow = (const float *)cdata;
  10417. int j = 0;
  10418. for (int64_t i = 0; i < rs; ++i) {
  10419. switch (op) {
  10420. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10421. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10422. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10423. }
  10424. for (int ki = 0; ki < k; ++ki) {
  10425. switch (op) {
  10426. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10427. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10428. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10429. }
  10430. ++j;
  10431. }
  10432. switch (op) {
  10433. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10434. case GGML_OP_POOL_MAX: break;
  10435. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10436. }
  10437. }
  10438. cdata += src->nb[1];
  10439. drow += rs;
  10440. }
  10441. }
  10442. // ggml_compute_forward_pool_1d
  10443. static void ggml_compute_forward_pool_1d(
  10444. const struct ggml_compute_params * params,
  10445. const struct ggml_tensor * src0,
  10446. struct ggml_tensor * dst) {
  10447. const int32_t * opts = (const int32_t *)dst->op_params;
  10448. enum ggml_op_pool op = opts[0];
  10449. const int k0 = opts[1];
  10450. const int s0 = opts[2];
  10451. const int p0 = opts[3];
  10452. GGML_ASSERT(p0 == 0); // padding not supported
  10453. GGML_ASSERT(k0 == s0); // only s = k supported
  10454. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10455. }
  10456. // ggml_compute_forward_pool_2d
  10457. static void ggml_compute_forward_pool_2d(
  10458. const struct ggml_compute_params * params,
  10459. const struct ggml_tensor * src,
  10460. struct ggml_tensor * dst) {
  10461. assert(src->type == GGML_TYPE_F32);
  10462. assert(params->ith == 0);
  10463. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10464. return;
  10465. }
  10466. const int32_t * opts = (const int32_t *)dst->op_params;
  10467. enum ggml_op_pool op = opts[0];
  10468. const int k0 = opts[1];
  10469. const int k1 = opts[2];
  10470. const int s0 = opts[3];
  10471. const int s1 = opts[4];
  10472. const int p0 = opts[5];
  10473. const int p1 = opts[6];
  10474. const char * cdata = (const char*)src->data;
  10475. const char * const data_end = cdata + ggml_nbytes(src);
  10476. const int64_t px = dst->ne[0];
  10477. const int64_t py = dst->ne[1];
  10478. const int64_t pa = px * py;
  10479. float * dplane = (float *)dst->data;
  10480. const int ka = k0 * k1;
  10481. const int offset0 = -p0;
  10482. const int offset1 = -p1;
  10483. while (cdata < data_end) {
  10484. for (int oy = 0; oy < py; ++oy) {
  10485. float * const drow = dplane + oy * px;
  10486. for (int ox = 0; ox < px; ++ox) {
  10487. float * const out = drow + ox;
  10488. switch (op) {
  10489. case GGML_OP_POOL_AVG: *out = 0; break;
  10490. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10491. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10492. }
  10493. const int ix = offset0 + ox * s0;
  10494. const int iy = offset1 + oy * s1;
  10495. for (int ky = 0; ky < k1; ++ky) {
  10496. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10497. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10498. for (int kx = 0; kx < k0; ++kx) {
  10499. int j = ix + kx;
  10500. if (j < 0 || j >= src->ne[0]) continue;
  10501. switch (op) {
  10502. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10503. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10504. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10505. }
  10506. }
  10507. }
  10508. switch (op) {
  10509. case GGML_OP_POOL_AVG: *out /= ka; break;
  10510. case GGML_OP_POOL_MAX: break;
  10511. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10512. }
  10513. }
  10514. }
  10515. cdata += src->nb[2];
  10516. dplane += pa;
  10517. }
  10518. }
  10519. // ggml_compute_forward_upscale
  10520. static void ggml_compute_forward_upscale_f32(
  10521. const struct ggml_compute_params * params,
  10522. const struct ggml_tensor * src0,
  10523. struct ggml_tensor * dst) {
  10524. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10525. return;
  10526. }
  10527. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10528. const int ith = params->ith;
  10529. const int nth = params->nth;
  10530. GGML_TENSOR_UNARY_OP_LOCALS
  10531. const int scale_factor = dst->op_params[0];
  10532. // TODO: optimize
  10533. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10534. const int64_t i03 = i3;
  10535. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10536. const int64_t i02 = i2;
  10537. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10538. const int64_t i01 = i1 / scale_factor;
  10539. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10540. const int64_t i00 = i0 / scale_factor;
  10541. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10542. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10543. *y = *x;
  10544. }
  10545. }
  10546. }
  10547. }
  10548. }
  10549. static void ggml_compute_forward_upscale(
  10550. const struct ggml_compute_params * params,
  10551. const struct ggml_tensor * src0,
  10552. struct ggml_tensor * dst) {
  10553. switch (src0->type) {
  10554. case GGML_TYPE_F32:
  10555. {
  10556. ggml_compute_forward_upscale_f32(params, src0, dst);
  10557. } break;
  10558. default:
  10559. {
  10560. GGML_ASSERT(false);
  10561. } break;
  10562. }
  10563. }
  10564. // ggml_compute_forward_pad
  10565. static void ggml_compute_forward_pad_f32(
  10566. const struct ggml_compute_params * params,
  10567. const struct ggml_tensor * src0,
  10568. struct ggml_tensor * dst) {
  10569. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10570. return;
  10571. }
  10572. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10573. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10574. const int ith = params->ith;
  10575. const int nth = params->nth;
  10576. GGML_TENSOR_UNARY_OP_LOCALS
  10577. float * dst_ptr = (float *) dst->data;
  10578. // TODO: optimize
  10579. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10580. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10581. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10582. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10583. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10584. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10585. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10586. dst_ptr[dst_idx] = *src_ptr;
  10587. } else {
  10588. dst_ptr[dst_idx] = 0;
  10589. }
  10590. }
  10591. }
  10592. }
  10593. }
  10594. }
  10595. static void ggml_compute_forward_pad(
  10596. const struct ggml_compute_params * params,
  10597. const struct ggml_tensor * src0,
  10598. struct ggml_tensor * dst) {
  10599. switch (src0->type) {
  10600. case GGML_TYPE_F32:
  10601. {
  10602. ggml_compute_forward_pad_f32(params, src0, dst);
  10603. } break;
  10604. default:
  10605. {
  10606. GGML_ASSERT(false);
  10607. } break;
  10608. }
  10609. }
  10610. // ggml_compute_forward_argsort
  10611. static void ggml_compute_forward_argsort_f32(
  10612. const struct ggml_compute_params * params,
  10613. const struct ggml_tensor * src0,
  10614. struct ggml_tensor * dst) {
  10615. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10616. return;
  10617. }
  10618. GGML_TENSOR_UNARY_OP_LOCALS
  10619. GGML_ASSERT(nb0 == sizeof(float));
  10620. const int ith = params->ith;
  10621. const int nth = params->nth;
  10622. const int64_t nr = ggml_nrows(src0);
  10623. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10624. for (int64_t i = ith; i < nr; i += nth) {
  10625. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10626. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10627. for (int64_t j = 0; j < ne0; j++) {
  10628. dst_data[j] = j;
  10629. }
  10630. // C doesn't have a functional sort, so we do a bubble sort instead
  10631. for (int64_t j = 0; j < ne0; j++) {
  10632. for (int64_t k = j + 1; k < ne0; k++) {
  10633. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10634. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10635. int32_t tmp = dst_data[j];
  10636. dst_data[j] = dst_data[k];
  10637. dst_data[k] = tmp;
  10638. }
  10639. }
  10640. }
  10641. }
  10642. }
  10643. static void ggml_compute_forward_argsort(
  10644. const struct ggml_compute_params * params,
  10645. const struct ggml_tensor * src0,
  10646. struct ggml_tensor * dst) {
  10647. switch (src0->type) {
  10648. case GGML_TYPE_F32:
  10649. {
  10650. ggml_compute_forward_argsort_f32(params, src0, dst);
  10651. } break;
  10652. default:
  10653. {
  10654. GGML_ASSERT(false);
  10655. } break;
  10656. }
  10657. }
  10658. // ggml_compute_forward_flash_attn
  10659. static void ggml_compute_forward_flash_attn_f32(
  10660. const struct ggml_compute_params * params,
  10661. const struct ggml_tensor * q,
  10662. const struct ggml_tensor * k,
  10663. const struct ggml_tensor * v,
  10664. const bool masked,
  10665. struct ggml_tensor * dst) {
  10666. int64_t t0 = ggml_perf_time_us();
  10667. UNUSED(t0);
  10668. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10669. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10670. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10671. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10672. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10673. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10674. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10675. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10676. const int ith = params->ith;
  10677. const int nth = params->nth;
  10678. const int64_t D = neq0;
  10679. const int64_t N = neq1;
  10680. const int64_t P = nek1 - N;
  10681. const int64_t M = P + N;
  10682. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10683. GGML_ASSERT(ne0 == D);
  10684. GGML_ASSERT(ne1 == N);
  10685. GGML_ASSERT(P >= 0);
  10686. GGML_ASSERT(nbq0 == sizeof(float));
  10687. GGML_ASSERT(nbk0 == sizeof(float));
  10688. GGML_ASSERT(nbv0 == sizeof(float));
  10689. GGML_ASSERT(neq0 == D);
  10690. GGML_ASSERT(nek0 == D);
  10691. GGML_ASSERT(nev1 == D);
  10692. GGML_ASSERT(neq1 == N);
  10693. GGML_ASSERT(nek1 == N + P);
  10694. GGML_ASSERT(nev1 == D);
  10695. // dst cannot be transposed or permuted
  10696. GGML_ASSERT(nb0 == sizeof(float));
  10697. GGML_ASSERT(nb0 <= nb1);
  10698. GGML_ASSERT(nb1 <= nb2);
  10699. GGML_ASSERT(nb2 <= nb3);
  10700. if (params->type == GGML_TASK_INIT) {
  10701. return;
  10702. }
  10703. if (params->type == GGML_TASK_FINALIZE) {
  10704. return;
  10705. }
  10706. // parallelize by q rows using ggml_vec_dot_f32
  10707. // total rows in q
  10708. const int nr = neq1*neq2*neq3;
  10709. // rows per thread
  10710. const int dr = (nr + nth - 1)/nth;
  10711. // row range for this thread
  10712. const int ir0 = dr*ith;
  10713. const int ir1 = MIN(ir0 + dr, nr);
  10714. const float scale = 1.0f/sqrtf(D);
  10715. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10716. for (int ir = ir0; ir < ir1; ++ir) {
  10717. // q indices
  10718. const int iq3 = ir/(neq2*neq1);
  10719. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10720. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10721. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10722. for (int i = M; i < Mup; ++i) {
  10723. S[i] = -INFINITY;
  10724. }
  10725. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10726. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10727. // k indices
  10728. const int ik3 = iq3;
  10729. const int ik2 = iq2 % nek2;
  10730. const int ik1 = ic;
  10731. // S indices
  10732. const int i1 = ik1;
  10733. ggml_vec_dot_f32(neq0,
  10734. S + i1,
  10735. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10736. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10737. }
  10738. // scale
  10739. ggml_vec_scale_f32(masked_begin, S, scale);
  10740. for (int64_t i = masked_begin; i < M; i++) {
  10741. S[i] = -INFINITY;
  10742. }
  10743. // softmax
  10744. // exclude known -INF S[..] values from max and loop
  10745. // dont forget to set their SW values to zero
  10746. {
  10747. float max = -INFINITY;
  10748. ggml_vec_max_f32(masked_begin, &max, S);
  10749. ggml_float sum = 0.0;
  10750. {
  10751. #ifdef GGML_SOFT_MAX_ACCELERATE
  10752. max = -max;
  10753. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10754. vvexpf(S, S, &Mup);
  10755. ggml_vec_sum_f32(Mup, &sum, S);
  10756. #else
  10757. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10758. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10759. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10760. if (i >= masked_begin) {
  10761. break;
  10762. }
  10763. float * SS = S + i;
  10764. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10765. if (i + j >= masked_begin) {
  10766. break;
  10767. } else if (SS[j] == -INFINITY) {
  10768. SS[j] = 0.0f;
  10769. } else {
  10770. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10771. const float val = expf(SS[j] - max);
  10772. #else
  10773. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10774. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10775. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10776. #endif
  10777. sump[j] += (ggml_float)val;
  10778. SS[j] = val;
  10779. }
  10780. }
  10781. }
  10782. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10783. sum += sump[i];
  10784. }
  10785. #endif
  10786. }
  10787. assert(sum > 0.0);
  10788. sum = 1.0/sum;
  10789. ggml_vec_scale_f32(masked_begin, S, sum);
  10790. #ifndef NDEBUG
  10791. for (int i = 0; i < masked_begin; ++i) {
  10792. assert(!isnan(S[i]));
  10793. assert(!isinf(S[i]));
  10794. }
  10795. #endif
  10796. }
  10797. for (int64_t ic = 0; ic < nev1; ++ic) {
  10798. // dst indices
  10799. const int i1 = iq1;
  10800. const int i2 = iq2;
  10801. const int i3 = iq3;
  10802. // v indices
  10803. const int iv2 = iq2 % nev2;
  10804. const int iv3 = iq3;
  10805. ggml_vec_dot_f32(masked_begin,
  10806. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10807. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10808. S);
  10809. }
  10810. }
  10811. }
  10812. static void ggml_compute_forward_flash_attn_f16(
  10813. const struct ggml_compute_params * params,
  10814. const struct ggml_tensor * q,
  10815. const struct ggml_tensor * k,
  10816. const struct ggml_tensor * v,
  10817. const bool masked,
  10818. struct ggml_tensor * dst) {
  10819. int64_t t0 = ggml_perf_time_us();
  10820. UNUSED(t0);
  10821. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10822. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10823. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10824. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10825. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10826. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10827. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10828. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10829. const int ith = params->ith;
  10830. const int nth = params->nth;
  10831. const int64_t D = neq0;
  10832. const int64_t N = neq1;
  10833. const int64_t P = nek1 - N;
  10834. const int64_t M = P + N;
  10835. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10836. GGML_ASSERT(ne0 == D);
  10837. GGML_ASSERT(ne1 == N);
  10838. GGML_ASSERT(P >= 0);
  10839. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10840. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10841. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10842. GGML_ASSERT(neq0 == D);
  10843. GGML_ASSERT(nek0 == D);
  10844. GGML_ASSERT(nev1 == D);
  10845. GGML_ASSERT(neq1 == N);
  10846. GGML_ASSERT(nek1 == N + P);
  10847. GGML_ASSERT(nev1 == D);
  10848. // dst cannot be transposed or permuted
  10849. GGML_ASSERT(nb0 == sizeof(float));
  10850. GGML_ASSERT(nb0 <= nb1);
  10851. GGML_ASSERT(nb1 <= nb2);
  10852. GGML_ASSERT(nb2 <= nb3);
  10853. if (params->type == GGML_TASK_INIT) {
  10854. return;
  10855. }
  10856. if (params->type == GGML_TASK_FINALIZE) {
  10857. return;
  10858. }
  10859. // parallelize by q rows using ggml_vec_dot_f32
  10860. // total rows in q
  10861. const int nr = neq1*neq2*neq3;
  10862. // rows per thread
  10863. const int dr = (nr + nth - 1)/nth;
  10864. // row range for this thread
  10865. const int ir0 = dr*ith;
  10866. const int ir1 = MIN(ir0 + dr, nr);
  10867. const float scale = 1.0f/sqrtf(D);
  10868. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10869. for (int ir = ir0; ir < ir1; ++ir) {
  10870. // q indices
  10871. const int iq3 = ir/(neq2*neq1);
  10872. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10873. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10874. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10875. for (int i = M; i < Mup; ++i) {
  10876. S[i] = -INFINITY;
  10877. }
  10878. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10879. for (int64_t ic = 0; ic < nek1; ++ic) {
  10880. // k indices
  10881. const int ik3 = iq3;
  10882. const int ik2 = iq2 % nek2;
  10883. const int ik1 = ic;
  10884. // S indices
  10885. const int i1 = ik1;
  10886. ggml_vec_dot_f16(neq0,
  10887. S + i1,
  10888. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10889. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10890. }
  10891. } else {
  10892. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10893. // k indices
  10894. const int ik3 = iq3;
  10895. const int ik2 = iq2 % nek2;
  10896. const int ik1 = ic;
  10897. // S indices
  10898. const int i1 = ik1;
  10899. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10900. S + i1,
  10901. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10902. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10903. }
  10904. }
  10905. // scale
  10906. ggml_vec_scale_f32(nek1, S, scale);
  10907. if (masked) {
  10908. for (int64_t i = P; i < M; i++) {
  10909. if (i > P + iq1) {
  10910. S[i] = -INFINITY;
  10911. }
  10912. }
  10913. }
  10914. // softmax
  10915. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10916. // dont forget to set their S values to zero
  10917. {
  10918. float max = -INFINITY;
  10919. ggml_vec_max_f32(M, &max, S);
  10920. ggml_float sum = 0.0;
  10921. {
  10922. #ifdef GGML_SOFT_MAX_ACCELERATE
  10923. max = -max;
  10924. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10925. vvexpf(S, S, &Mup);
  10926. ggml_vec_sum_f32(Mup, &sum, S);
  10927. #else
  10928. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10929. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10930. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10931. float * SS = S + i;
  10932. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10933. if (SS[j] == -INFINITY) {
  10934. SS[j] = 0.0f;
  10935. } else {
  10936. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10937. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10938. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10939. sump[j] += (ggml_float)val;
  10940. SS[j] = val;
  10941. }
  10942. }
  10943. }
  10944. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10945. sum += sump[i];
  10946. }
  10947. #endif
  10948. }
  10949. assert(sum > 0.0);
  10950. sum = 1.0/sum;
  10951. ggml_vec_scale_f32(M, S, sum);
  10952. #ifndef NDEBUG
  10953. for (int i = 0; i < M; ++i) {
  10954. assert(!isnan(S[i]));
  10955. assert(!isinf(S[i]));
  10956. }
  10957. #endif
  10958. }
  10959. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10960. for (int64_t i = 0; i < M; i++) {
  10961. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10962. }
  10963. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10964. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10965. for (int64_t ic = 0; ic < nev1; ++ic) {
  10966. // dst indices
  10967. const int i1 = iq1;
  10968. const int i2 = iq2;
  10969. const int i3 = iq3;
  10970. // v indices
  10971. const int iv2 = iq2 % nev2;
  10972. const int iv3 = iq3;
  10973. ggml_vec_dot_f16(nev0,
  10974. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10975. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10976. S16);
  10977. }
  10978. } else {
  10979. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10980. // dst indices
  10981. const int i1 = iq1;
  10982. const int i2 = iq2;
  10983. const int i3 = iq3;
  10984. // v indices
  10985. const int iv2 = iq2 % nev2;
  10986. const int iv3 = iq3;
  10987. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10988. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10989. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10990. S16);
  10991. }
  10992. }
  10993. }
  10994. }
  10995. static void ggml_compute_forward_flash_attn(
  10996. const struct ggml_compute_params * params,
  10997. const struct ggml_tensor * q,
  10998. const struct ggml_tensor * k,
  10999. const struct ggml_tensor * v,
  11000. const bool masked,
  11001. struct ggml_tensor * dst) {
  11002. switch (q->type) {
  11003. case GGML_TYPE_F16:
  11004. {
  11005. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11006. } break;
  11007. case GGML_TYPE_F32:
  11008. {
  11009. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11010. } break;
  11011. default:
  11012. {
  11013. GGML_ASSERT(false);
  11014. } break;
  11015. }
  11016. }
  11017. // ggml_compute_forward_flash_ff
  11018. static void ggml_compute_forward_flash_ff_f16(
  11019. const struct ggml_compute_params * params,
  11020. const struct ggml_tensor * a, // F16
  11021. const struct ggml_tensor * b0, // F16 fc_w
  11022. const struct ggml_tensor * b1, // F32 fc_b
  11023. const struct ggml_tensor * c0, // F16 proj_w
  11024. const struct ggml_tensor * c1, // F32 proj_b
  11025. struct ggml_tensor * dst) {
  11026. int64_t t0 = ggml_perf_time_us();
  11027. UNUSED(t0);
  11028. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11029. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11030. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11031. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11032. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11033. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11034. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11035. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11036. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11037. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11038. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11039. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11040. const int ith = params->ith;
  11041. const int nth = params->nth;
  11042. const int64_t D = nea0;
  11043. //const int64_t N = nea1;
  11044. const int64_t M = neb01;
  11045. GGML_ASSERT(ne0 == nea0);
  11046. GGML_ASSERT(ne1 == nea1);
  11047. GGML_ASSERT(ne2 == nea2);
  11048. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11049. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11050. GGML_ASSERT(nbb10 == sizeof(float));
  11051. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11052. GGML_ASSERT(nbc10 == sizeof(float));
  11053. GGML_ASSERT(neb00 == D);
  11054. GGML_ASSERT(neb01 == M);
  11055. GGML_ASSERT(neb10 == M);
  11056. GGML_ASSERT(neb11 == 1);
  11057. GGML_ASSERT(nec00 == M);
  11058. GGML_ASSERT(nec01 == D);
  11059. GGML_ASSERT(nec10 == D);
  11060. GGML_ASSERT(nec11 == 1);
  11061. // dst cannot be transposed or permuted
  11062. GGML_ASSERT(nb0 == sizeof(float));
  11063. GGML_ASSERT(nb0 <= nb1);
  11064. GGML_ASSERT(nb1 <= nb2);
  11065. GGML_ASSERT(nb2 <= nb3);
  11066. if (params->type == GGML_TASK_INIT) {
  11067. return;
  11068. }
  11069. if (params->type == GGML_TASK_FINALIZE) {
  11070. return;
  11071. }
  11072. // parallelize by a rows using ggml_vec_dot_f32
  11073. // total rows in a
  11074. const int nr = nea1*nea2*nea3;
  11075. // rows per thread
  11076. const int dr = (nr + nth - 1)/nth;
  11077. // row range for this thread
  11078. const int ir0 = dr*ith;
  11079. const int ir1 = MIN(ir0 + dr, nr);
  11080. for (int ir = ir0; ir < ir1; ++ir) {
  11081. // a indices
  11082. const int ia3 = ir/(nea2*nea1);
  11083. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11084. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11085. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11086. for (int64_t ic = 0; ic < neb01; ++ic) {
  11087. // b0 indices
  11088. const int ib03 = ia3;
  11089. const int ib02 = ia2;
  11090. const int ib01 = ic;
  11091. // S indices
  11092. const int i1 = ib01;
  11093. ggml_vec_dot_f16(nea0,
  11094. S + i1,
  11095. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11096. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11097. }
  11098. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11099. //ggml_vec_gelu_f32(neb01, S, S);
  11100. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11101. for (int64_t i = 0; i < M; i++) {
  11102. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11103. }
  11104. ggml_vec_gelu_f16(neb01, S16, S16);
  11105. {
  11106. // dst indices
  11107. const int i1 = ia1;
  11108. const int i2 = ia2;
  11109. const int i3 = ia3;
  11110. for (int64_t ic = 0; ic < nec01; ++ic) {
  11111. ggml_vec_dot_f16(neb01,
  11112. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11113. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11114. S16);
  11115. }
  11116. ggml_vec_add_f32(nec01,
  11117. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11118. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11119. (float *) c1->data);
  11120. }
  11121. }
  11122. }
  11123. static void ggml_compute_forward_flash_ff(
  11124. const struct ggml_compute_params * params,
  11125. const struct ggml_tensor * a,
  11126. const struct ggml_tensor * b0,
  11127. const struct ggml_tensor * b1,
  11128. const struct ggml_tensor * c0,
  11129. const struct ggml_tensor * c1,
  11130. struct ggml_tensor * dst) {
  11131. switch (b0->type) {
  11132. case GGML_TYPE_F16:
  11133. {
  11134. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11135. } break;
  11136. case GGML_TYPE_F32:
  11137. {
  11138. GGML_ASSERT(false); // TODO
  11139. } break;
  11140. default:
  11141. {
  11142. GGML_ASSERT(false);
  11143. } break;
  11144. }
  11145. }
  11146. // ggml_compute_forward_flash_attn_back
  11147. static void ggml_compute_forward_flash_attn_back_f32(
  11148. const struct ggml_compute_params * params,
  11149. const struct ggml_tensor * q,
  11150. const struct ggml_tensor * k,
  11151. const struct ggml_tensor * v,
  11152. const struct ggml_tensor * d,
  11153. const bool masked,
  11154. struct ggml_tensor * dst) {
  11155. int64_t t0 = ggml_perf_time_us();
  11156. UNUSED(t0);
  11157. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11158. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11159. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11160. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11161. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11162. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11163. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11164. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11165. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11166. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11167. const int ith = params->ith;
  11168. const int nth = params->nth;
  11169. const int64_t D = neq0;
  11170. const int64_t N = neq1;
  11171. const int64_t P = nek1 - N;
  11172. const int64_t M = P + N;
  11173. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11174. const int mxDM = MAX(D, Mup);
  11175. // GGML_ASSERT(ne0 == D);
  11176. // GGML_ASSERT(ne1 == N);
  11177. GGML_ASSERT(P >= 0);
  11178. GGML_ASSERT(nbq0 == sizeof(float));
  11179. GGML_ASSERT(nbk0 == sizeof(float));
  11180. GGML_ASSERT(nbv0 == sizeof(float));
  11181. GGML_ASSERT(neq0 == D);
  11182. GGML_ASSERT(nek0 == D);
  11183. GGML_ASSERT(nev1 == D);
  11184. GGML_ASSERT(ned0 == D);
  11185. GGML_ASSERT(neq1 == N);
  11186. GGML_ASSERT(nek1 == N + P);
  11187. GGML_ASSERT(nev1 == D);
  11188. GGML_ASSERT(ned1 == N);
  11189. // dst cannot be transposed or permuted
  11190. GGML_ASSERT(nb0 == sizeof(float));
  11191. GGML_ASSERT(nb0 <= nb1);
  11192. GGML_ASSERT(nb1 <= nb2);
  11193. GGML_ASSERT(nb2 <= nb3);
  11194. if (params->type == GGML_TASK_INIT) {
  11195. if (ith == 0) {
  11196. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11197. }
  11198. return;
  11199. }
  11200. if (params->type == GGML_TASK_FINALIZE) {
  11201. return;
  11202. }
  11203. const int64_t elem_q = ggml_nelements(q);
  11204. const int64_t elem_k = ggml_nelements(k);
  11205. enum ggml_type result_type = dst->type;
  11206. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11207. const size_t tsize = ggml_type_size(result_type);
  11208. const size_t offs_q = 0;
  11209. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11210. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11211. void * grad_q = (char *) dst->data;
  11212. void * grad_k = (char *) dst->data + offs_k;
  11213. void * grad_v = (char *) dst->data + offs_v;
  11214. const size_t nbgq1 = nb0*neq0;
  11215. const size_t nbgq2 = nb0*neq0*neq1;
  11216. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11217. const size_t nbgk1 = nb0*nek0;
  11218. const size_t nbgk2 = nb0*nek0*nek1;
  11219. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11220. const size_t nbgv1 = nb0*nev0;
  11221. const size_t nbgv2 = nb0*nev0*nev1;
  11222. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11223. // parallelize by k rows using ggml_vec_dot_f32
  11224. // total rows in k
  11225. const int nr = nek2*nek3;
  11226. // rows per thread
  11227. const int dr = (nr + nth - 1)/nth;
  11228. // row range for this thread
  11229. const int ir0 = dr*ith;
  11230. const int ir1 = MIN(ir0 + dr, nr);
  11231. const float scale = 1.0f/sqrtf(D);
  11232. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11233. // how often k2 (and v2) is repeated in q2
  11234. int nrep = neq2/nek2;
  11235. for (int ir = ir0; ir < ir1; ++ir) {
  11236. // q indices
  11237. const int ik3 = ir/(nek2);
  11238. const int ik2 = ir - ik3*nek2;
  11239. const int iq3 = ik3;
  11240. const int id3 = ik3;
  11241. const int iv3 = ik3;
  11242. const int iv2 = ik2;
  11243. for (int irep = 0; irep < nrep; ++irep) {
  11244. const int iq2 = ik2 + irep*nek2;
  11245. const int id2 = iq2;
  11246. // (ik2 + irep*nek2) % nek2 == ik2
  11247. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11248. const int id1 = iq1;
  11249. // not sure about CACHE_LINE_SIZE_F32..
  11250. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11251. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11252. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11253. for (int i = M; i < Mup; ++i) {
  11254. S[i] = -INFINITY;
  11255. }
  11256. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11257. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11258. // k indices
  11259. const int ik1 = ic;
  11260. // S indices
  11261. const int i1 = ik1;
  11262. ggml_vec_dot_f32(neq0,
  11263. S + i1,
  11264. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11265. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11266. }
  11267. // scale
  11268. ggml_vec_scale_f32(masked_begin, S, scale);
  11269. for (int64_t i = masked_begin; i < M; i++) {
  11270. S[i] = -INFINITY;
  11271. }
  11272. // softmax
  11273. // exclude known -INF S[..] values from max and loop
  11274. // dont forget to set their SM values to zero
  11275. {
  11276. float max = -INFINITY;
  11277. ggml_vec_max_f32(masked_begin, &max, S);
  11278. ggml_float sum = 0.0;
  11279. {
  11280. #ifdef GGML_SOFT_MAX_ACCELERATE
  11281. max = -max;
  11282. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11283. vvexpf(SM, SM, &Mup);
  11284. ggml_vec_sum_f32(Mup, &sum, SM);
  11285. #else
  11286. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11287. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11288. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11289. if (i >= masked_begin) {
  11290. break;
  11291. }
  11292. float * SR = S + i;
  11293. float * SW = SM + i;
  11294. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11295. if (i + j >= masked_begin) {
  11296. break;
  11297. } else if (SR[j] == -INFINITY) {
  11298. SW[j] = 0.0f;
  11299. } else {
  11300. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11301. const float val = expf(SR[j] - max);
  11302. #else
  11303. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11304. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11305. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11306. #endif
  11307. sump[j] += (ggml_float)val;
  11308. SW[j] = val;
  11309. }
  11310. }
  11311. }
  11312. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11313. sum += sump[i];
  11314. }
  11315. #endif
  11316. }
  11317. assert(sum > 0.0);
  11318. sum = 1.0/sum;
  11319. ggml_vec_scale_f32(masked_begin, SM, sum);
  11320. }
  11321. // step-by-step explanation
  11322. {
  11323. // forward-process shape grads from backward process
  11324. // parallel_for ik2,ik3:
  11325. // for irep:
  11326. // iq2 = ik2 + irep*nek2
  11327. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11328. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11329. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11330. // for iq1:
  11331. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11332. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11333. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11334. // S0 = -Inf [D,1,1,1]
  11335. // ~S1[i] = dot(kcur[:D,i], qcur)
  11336. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11337. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11338. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11339. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11340. // ~S5[i] = dot(vcur[:,i], S4)
  11341. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11342. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11343. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11344. // dst backward-/ grad[dst] = d
  11345. //
  11346. // output gradients with their dependencies:
  11347. //
  11348. // grad[kcur] = grad[S1].T @ qcur
  11349. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11350. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11351. // grad[S4] = grad[S5] @ vcur
  11352. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11353. // grad[qcur] = grad[S1] @ kcur
  11354. // grad[vcur] = grad[S5].T @ S4
  11355. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11356. //
  11357. // in post-order:
  11358. //
  11359. // S1 = qcur @ kcur.T
  11360. // S2 = S1 * scale
  11361. // S3 = diag_mask_inf(S2, P)
  11362. // S4 = softmax(S3)
  11363. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11364. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11365. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11366. // grad[qcur] = grad[S1] @ kcur
  11367. // grad[kcur] = grad[S1].T @ qcur
  11368. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11369. //
  11370. // using less variables (SM=S4):
  11371. //
  11372. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11373. // SM = softmax(S)
  11374. // S = d[:D,iq1,iq2,iq3] @ vcur
  11375. // dot_SM_gradSM = dot(SM, S)
  11376. // S = SM * (S - dot(SM, S))
  11377. // S = diag_mask_zero(S, P) * scale
  11378. //
  11379. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11380. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11381. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11382. }
  11383. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11384. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11385. // for ic:
  11386. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11387. // exclude known future zero S[..] values from operation
  11388. ggml_vec_set_f32(masked_begin, S, 0);
  11389. for (int64_t ic = 0; ic < D; ++ic) {
  11390. ggml_vec_mad_f32(masked_begin,
  11391. S,
  11392. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11393. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11394. }
  11395. // S = SM * (S - dot(SM, S))
  11396. float dot_SM_gradSM = 0;
  11397. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11398. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11399. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11400. // S = diag_mask_zero(S, P) * scale
  11401. // already done by above ggml_vec_set_f32
  11402. // exclude known zero S[..] values from operation
  11403. ggml_vec_scale_f32(masked_begin, S, scale);
  11404. // S shape [M,1]
  11405. // SM shape [M,1]
  11406. // kcur shape [D,M]
  11407. // qcur shape [D,1]
  11408. // vcur shape [M,D]
  11409. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11410. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11411. // for ic:
  11412. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11413. // exclude known zero S[..] values from loop
  11414. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11415. ggml_vec_mad_f32(D,
  11416. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11417. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11418. S[ic]);
  11419. }
  11420. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11421. // for ic:
  11422. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11423. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11424. // exclude known zero S[..] values from loop
  11425. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11426. ggml_vec_mad_f32(D,
  11427. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11428. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11429. S[ic]);
  11430. }
  11431. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11432. // for ic:
  11433. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11434. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11435. // exclude known zero SM[..] values from mad
  11436. for (int64_t ic = 0; ic < D; ++ic) {
  11437. ggml_vec_mad_f32(masked_begin,
  11438. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11439. SM,
  11440. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11441. }
  11442. }
  11443. }
  11444. }
  11445. }
  11446. static void ggml_compute_forward_flash_attn_back(
  11447. const struct ggml_compute_params * params,
  11448. const struct ggml_tensor * q,
  11449. const struct ggml_tensor * k,
  11450. const struct ggml_tensor * v,
  11451. const struct ggml_tensor * d,
  11452. const bool masked,
  11453. struct ggml_tensor * dst) {
  11454. switch (q->type) {
  11455. case GGML_TYPE_F32:
  11456. {
  11457. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11458. } break;
  11459. default:
  11460. {
  11461. GGML_ASSERT(false);
  11462. } break;
  11463. }
  11464. }
  11465. // ggml_compute_forward_win_part
  11466. static void ggml_compute_forward_win_part_f32(
  11467. const struct ggml_compute_params * params,
  11468. const struct ggml_tensor * src0,
  11469. struct ggml_tensor * dst) {
  11470. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11471. return;
  11472. }
  11473. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11474. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11475. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11476. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11477. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11478. assert(ne00 == ne0);
  11479. assert(ne3 == nep0*nep1);
  11480. // TODO: optimize / multi-thread
  11481. for (int py = 0; py < nep1; ++py) {
  11482. for (int px = 0; px < nep0; ++px) {
  11483. const int64_t i3 = py*nep0 + px;
  11484. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11485. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11486. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11487. const int64_t i02 = py*w + i2;
  11488. const int64_t i01 = px*w + i1;
  11489. const int64_t i00 = i0;
  11490. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11491. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11492. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11493. ((float *) dst->data)[i] = 0.0f;
  11494. } else {
  11495. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11496. }
  11497. }
  11498. }
  11499. }
  11500. }
  11501. }
  11502. }
  11503. static void ggml_compute_forward_win_part(
  11504. const struct ggml_compute_params * params,
  11505. const struct ggml_tensor * src0,
  11506. struct ggml_tensor * dst) {
  11507. switch (src0->type) {
  11508. case GGML_TYPE_F32:
  11509. {
  11510. ggml_compute_forward_win_part_f32(params, src0, dst);
  11511. } break;
  11512. default:
  11513. {
  11514. GGML_ASSERT(false);
  11515. } break;
  11516. }
  11517. }
  11518. // ggml_compute_forward_win_unpart
  11519. static void ggml_compute_forward_win_unpart_f32(
  11520. const struct ggml_compute_params * params,
  11521. const struct ggml_tensor * src0,
  11522. struct ggml_tensor * dst) {
  11523. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11524. return;
  11525. }
  11526. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11527. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11528. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11529. // padding
  11530. const int px = (w - ne1%w)%w;
  11531. //const int py = (w - ne2%w)%w;
  11532. const int npx = (px + ne1)/w;
  11533. //const int npy = (py + ne2)/w;
  11534. assert(ne0 == ne00);
  11535. // TODO: optimize / multi-thread
  11536. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11537. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11538. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11539. const int ip2 = i2/w;
  11540. const int ip1 = i1/w;
  11541. const int64_t i02 = i2%w;
  11542. const int64_t i01 = i1%w;
  11543. const int64_t i00 = i0;
  11544. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11545. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11546. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11547. }
  11548. }
  11549. }
  11550. }
  11551. static void ggml_compute_forward_win_unpart(
  11552. const struct ggml_compute_params * params,
  11553. const struct ggml_tensor * src0,
  11554. struct ggml_tensor * dst) {
  11555. switch (src0->type) {
  11556. case GGML_TYPE_F32:
  11557. {
  11558. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11559. } break;
  11560. default:
  11561. {
  11562. GGML_ASSERT(false);
  11563. } break;
  11564. }
  11565. }
  11566. //gmml_compute_forward_unary
  11567. static void ggml_compute_forward_unary(
  11568. const struct ggml_compute_params * params,
  11569. const struct ggml_tensor * src0,
  11570. struct ggml_tensor * dst) {
  11571. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11572. switch (op) {
  11573. case GGML_UNARY_OP_ABS:
  11574. {
  11575. ggml_compute_forward_abs(params, src0, dst);
  11576. } break;
  11577. case GGML_UNARY_OP_SGN:
  11578. {
  11579. ggml_compute_forward_sgn(params, src0, dst);
  11580. } break;
  11581. case GGML_UNARY_OP_NEG:
  11582. {
  11583. ggml_compute_forward_neg(params, src0, dst);
  11584. } break;
  11585. case GGML_UNARY_OP_STEP:
  11586. {
  11587. ggml_compute_forward_step(params, src0, dst);
  11588. } break;
  11589. case GGML_UNARY_OP_TANH:
  11590. {
  11591. ggml_compute_forward_tanh(params, src0, dst);
  11592. } break;
  11593. case GGML_UNARY_OP_ELU:
  11594. {
  11595. ggml_compute_forward_elu(params, src0, dst);
  11596. } break;
  11597. case GGML_UNARY_OP_RELU:
  11598. {
  11599. ggml_compute_forward_relu(params, src0, dst);
  11600. } break;
  11601. case GGML_UNARY_OP_GELU:
  11602. {
  11603. ggml_compute_forward_gelu(params, src0, dst);
  11604. } break;
  11605. case GGML_UNARY_OP_GELU_QUICK:
  11606. {
  11607. ggml_compute_forward_gelu_quick(params, src0, dst);
  11608. } break;
  11609. case GGML_UNARY_OP_SILU:
  11610. {
  11611. ggml_compute_forward_silu(params, src0, dst);
  11612. } break;
  11613. case GGML_UNARY_OP_HARDSWISH:
  11614. {
  11615. ggml_compute_forward_hardswish(params, src0, dst);
  11616. } break;
  11617. case GGML_UNARY_OP_HARDSIGMOID:
  11618. {
  11619. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11620. } break;
  11621. default:
  11622. {
  11623. GGML_ASSERT(false);
  11624. } break;
  11625. }
  11626. }
  11627. // ggml_compute_forward_get_rel_pos
  11628. static void ggml_compute_forward_get_rel_pos_f16(
  11629. const struct ggml_compute_params * params,
  11630. const struct ggml_tensor * src0,
  11631. struct ggml_tensor * dst) {
  11632. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11633. return;
  11634. }
  11635. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11636. GGML_TENSOR_UNARY_OP_LOCALS
  11637. const int64_t w = ne1;
  11638. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11639. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11640. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11641. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11642. const int64_t pos = (w - i1 - 1) + i2;
  11643. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11644. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11645. }
  11646. }
  11647. }
  11648. }
  11649. static void ggml_compute_forward_get_rel_pos(
  11650. const struct ggml_compute_params * params,
  11651. const struct ggml_tensor * src0,
  11652. struct ggml_tensor * dst) {
  11653. switch (src0->type) {
  11654. case GGML_TYPE_F16:
  11655. {
  11656. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11657. } break;
  11658. default:
  11659. {
  11660. GGML_ASSERT(false);
  11661. } break;
  11662. }
  11663. }
  11664. // ggml_compute_forward_add_rel_pos
  11665. static void ggml_compute_forward_add_rel_pos_f32(
  11666. const struct ggml_compute_params * params,
  11667. const struct ggml_tensor * src0,
  11668. const struct ggml_tensor * src1,
  11669. const struct ggml_tensor * src2,
  11670. struct ggml_tensor * dst) {
  11671. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11672. if (!inplace && params->type == GGML_TASK_INIT) {
  11673. if (params->ith != 0) {
  11674. return;
  11675. }
  11676. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11677. return;
  11678. }
  11679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11680. return;
  11681. }
  11682. int64_t t0 = ggml_perf_time_us();
  11683. UNUSED(t0);
  11684. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11685. float * src1_data = (float *) src1->data;
  11686. float * src2_data = (float *) src2->data;
  11687. float * dst_data = (float *) dst->data;
  11688. const int64_t ne10 = src1->ne[0];
  11689. const int64_t ne11 = src1->ne[1];
  11690. const int64_t ne12 = src1->ne[2];
  11691. const int64_t ne13 = src1->ne[3];
  11692. const int ith = params->ith;
  11693. const int nth = params->nth;
  11694. // total patches in dst
  11695. const int np = ne13;
  11696. // patches per thread
  11697. const int dp = (np + nth - 1)/nth;
  11698. // patch range for this thread
  11699. const int ip0 = dp*ith;
  11700. const int ip1 = MIN(ip0 + dp, np);
  11701. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11702. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11703. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11704. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11705. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11706. const int64_t jp0 = jp1 + i10;
  11707. const float src1_e = src1_data[jp0];
  11708. const float src2_e = src2_data[jp0];
  11709. const int64_t jdh = jp0 * ne10;
  11710. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11711. for (int64_t j = 0; j < ne10; ++j) {
  11712. dst_data[jdh + j ] += src2_e;
  11713. dst_data[jdw + j*ne10] += src1_e;
  11714. }
  11715. }
  11716. }
  11717. }
  11718. }
  11719. }
  11720. static void ggml_compute_forward_add_rel_pos(
  11721. const struct ggml_compute_params * params,
  11722. const struct ggml_tensor * src0,
  11723. const struct ggml_tensor * src1,
  11724. const struct ggml_tensor * src2,
  11725. struct ggml_tensor * dst) {
  11726. switch (src0->type) {
  11727. case GGML_TYPE_F32:
  11728. {
  11729. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11730. } break;
  11731. default:
  11732. {
  11733. GGML_ASSERT(false);
  11734. } break;
  11735. }
  11736. }
  11737. // ggml_compute_forward_map_unary
  11738. static void ggml_compute_forward_map_unary_f32(
  11739. const struct ggml_compute_params * params,
  11740. const struct ggml_tensor * src0,
  11741. struct ggml_tensor * dst,
  11742. const ggml_unary_op_f32_t fun) {
  11743. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11744. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11745. return;
  11746. }
  11747. const int n = ggml_nrows(src0);
  11748. const int nc = src0->ne[0];
  11749. assert( dst->nb[0] == sizeof(float));
  11750. assert(src0->nb[0] == sizeof(float));
  11751. for (int i = 0; i < n; i++) {
  11752. fun(nc,
  11753. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11754. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11755. }
  11756. }
  11757. static void ggml_compute_forward_map_unary(
  11758. const struct ggml_compute_params * params,
  11759. const struct ggml_tensor * src0,
  11760. struct ggml_tensor * dst,
  11761. const ggml_unary_op_f32_t fun) {
  11762. switch (src0->type) {
  11763. case GGML_TYPE_F32:
  11764. {
  11765. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11766. } break;
  11767. default:
  11768. {
  11769. GGML_ASSERT(false);
  11770. } break;
  11771. }
  11772. }
  11773. // ggml_compute_forward_map_binary
  11774. static void ggml_compute_forward_map_binary_f32(
  11775. const struct ggml_compute_params * params,
  11776. const struct ggml_tensor * src0,
  11777. const struct ggml_tensor * src1,
  11778. struct ggml_tensor * dst,
  11779. const ggml_binary_op_f32_t fun) {
  11780. assert(params->ith == 0);
  11781. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11783. return;
  11784. }
  11785. const int n = ggml_nrows(src0);
  11786. const int nc = src0->ne[0];
  11787. assert( dst->nb[0] == sizeof(float));
  11788. assert(src0->nb[0] == sizeof(float));
  11789. assert(src1->nb[0] == sizeof(float));
  11790. for (int i = 0; i < n; i++) {
  11791. fun(nc,
  11792. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11793. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11794. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11795. }
  11796. }
  11797. static void ggml_compute_forward_map_binary(
  11798. const struct ggml_compute_params * params,
  11799. const struct ggml_tensor * src0,
  11800. const struct ggml_tensor * src1,
  11801. struct ggml_tensor * dst,
  11802. const ggml_binary_op_f32_t fun) {
  11803. switch (src0->type) {
  11804. case GGML_TYPE_F32:
  11805. {
  11806. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11807. } break;
  11808. default:
  11809. {
  11810. GGML_ASSERT(false);
  11811. } break;
  11812. }
  11813. }
  11814. // ggml_compute_forward_map_custom1
  11815. static void ggml_compute_forward_map_custom1_f32(
  11816. const struct ggml_compute_params * params,
  11817. const struct ggml_tensor * a,
  11818. struct ggml_tensor * dst,
  11819. const ggml_custom1_op_f32_t fun) {
  11820. assert(params->ith == 0);
  11821. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11822. return;
  11823. }
  11824. fun(dst, a);
  11825. }
  11826. // ggml_compute_forward_map_custom2
  11827. static void ggml_compute_forward_map_custom2_f32(
  11828. const struct ggml_compute_params * params,
  11829. const struct ggml_tensor * a,
  11830. const struct ggml_tensor * b,
  11831. struct ggml_tensor * dst,
  11832. const ggml_custom2_op_f32_t fun) {
  11833. assert(params->ith == 0);
  11834. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11835. return;
  11836. }
  11837. fun(dst, a, b);
  11838. }
  11839. // ggml_compute_forward_map_custom3
  11840. static void ggml_compute_forward_map_custom3_f32(
  11841. const struct ggml_compute_params * params,
  11842. const struct ggml_tensor * a,
  11843. const struct ggml_tensor * b,
  11844. const struct ggml_tensor * c,
  11845. struct ggml_tensor * dst,
  11846. const ggml_custom3_op_f32_t fun) {
  11847. assert(params->ith == 0);
  11848. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11849. return;
  11850. }
  11851. fun(dst, a, b, c);
  11852. }
  11853. // ggml_compute_forward_map_custom1
  11854. static void ggml_compute_forward_map_custom1(
  11855. const struct ggml_compute_params * params,
  11856. const struct ggml_tensor * a,
  11857. struct ggml_tensor * dst) {
  11858. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11859. return;
  11860. }
  11861. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11862. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11863. }
  11864. // ggml_compute_forward_map_custom2
  11865. static void ggml_compute_forward_map_custom2(
  11866. const struct ggml_compute_params * params,
  11867. const struct ggml_tensor * a,
  11868. const struct ggml_tensor * b,
  11869. struct ggml_tensor * dst) {
  11870. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11871. return;
  11872. }
  11873. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11874. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11875. }
  11876. // ggml_compute_forward_map_custom3
  11877. static void ggml_compute_forward_map_custom3(
  11878. const struct ggml_compute_params * params,
  11879. const struct ggml_tensor * a,
  11880. const struct ggml_tensor * b,
  11881. const struct ggml_tensor * c,
  11882. struct ggml_tensor * dst) {
  11883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11884. return;
  11885. }
  11886. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11887. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11888. }
  11889. // ggml_compute_forward_cross_entropy_loss
  11890. static void ggml_compute_forward_cross_entropy_loss_f32(
  11891. const struct ggml_compute_params * params,
  11892. const struct ggml_tensor * src0,
  11893. const struct ggml_tensor * src1,
  11894. struct ggml_tensor * dst) {
  11895. GGML_ASSERT(ggml_is_contiguous(src0));
  11896. GGML_ASSERT(ggml_is_contiguous(src1));
  11897. GGML_ASSERT(ggml_is_scalar(dst));
  11898. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11899. const int ith = params->ith;
  11900. const int nth = params->nth;
  11901. float * sums = (float *) params->wdata;
  11902. // TODO: handle transposed/permuted matrices
  11903. const int nc = src0->ne[0];
  11904. const int nr = ggml_nrows(src0);
  11905. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11906. if (params->type == GGML_TASK_INIT) {
  11907. if (ith == 0) {
  11908. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11909. }
  11910. return;
  11911. }
  11912. if (params->type == GGML_TASK_FINALIZE) {
  11913. if (ith == 0) {
  11914. float * dp = (float *) dst->data;
  11915. ggml_vec_sum_f32(nth, dp, sums);
  11916. dp[0] *= -1.0f / (float) nr;
  11917. }
  11918. return;
  11919. }
  11920. const double eps = 1e-9;
  11921. // rows per thread
  11922. const int dr = (nr + nth - 1)/nth;
  11923. // row range for this thread
  11924. const int ir0 = dr*ith;
  11925. const int ir1 = MIN(ir0 + dr, nr);
  11926. for (int i1 = ir0; i1 < ir1; i1++) {
  11927. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11928. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11929. float * st = ((float *) params->wdata) + nth + ith*nc;
  11930. #ifndef NDEBUG
  11931. for (int i = 0; i < nc; ++i) {
  11932. //printf("p[%d] = %f\n", i, p[i]);
  11933. assert(!isnan(s0[i]));
  11934. assert(!isnan(s1[i]));
  11935. }
  11936. #endif
  11937. // soft_max
  11938. ggml_float sum = 0.0;
  11939. {
  11940. float max = -INFINITY;
  11941. ggml_vec_max_f32(nc, &max, s0);
  11942. uint16_t scvt; UNUSED(scvt);
  11943. for (int i = 0; i < nc; i++) {
  11944. if (s0[i] == -INFINITY) {
  11945. st[i] = 0.0f;
  11946. } else {
  11947. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11948. const float s = s0[i] - max;
  11949. const float val = expf(s);
  11950. #else
  11951. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11952. memcpy(&scvt, &s, sizeof(scvt));
  11953. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11954. #endif
  11955. sum += (ggml_float)val;
  11956. st[i] = val;
  11957. }
  11958. }
  11959. assert(sum > 0.0);
  11960. // sum = 1.0/sum;
  11961. }
  11962. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11963. sum = (1.0 - eps) / sum;
  11964. ggml_vec_scale_f32(nc, st, sum);
  11965. ggml_vec_add1_f32(nc, st, st, eps);
  11966. ggml_vec_log_f32(nc, st, st);
  11967. ggml_vec_mul_f32(nc, st, st, s1);
  11968. float st_sum = 0;
  11969. ggml_vec_sum_f32(nc, &st_sum, st);
  11970. sums[ith] += st_sum;
  11971. #ifndef NDEBUG
  11972. for (int i = 0; i < nc; ++i) {
  11973. assert(!isnan(st[i]));
  11974. assert(!isinf(st[i]));
  11975. }
  11976. #endif
  11977. }
  11978. }
  11979. static void ggml_compute_forward_cross_entropy_loss(
  11980. const struct ggml_compute_params * params,
  11981. const struct ggml_tensor * src0,
  11982. const struct ggml_tensor * src1,
  11983. struct ggml_tensor * dst) {
  11984. switch (src0->type) {
  11985. case GGML_TYPE_F32:
  11986. {
  11987. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11988. } break;
  11989. default:
  11990. {
  11991. GGML_ASSERT(false);
  11992. } break;
  11993. }
  11994. }
  11995. // ggml_compute_forward_cross_entropy_loss_back
  11996. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11997. const struct ggml_compute_params * params,
  11998. const struct ggml_tensor * src0,
  11999. const struct ggml_tensor * src1,
  12000. const struct ggml_tensor * opt0,
  12001. struct ggml_tensor * dst) {
  12002. GGML_ASSERT(ggml_is_contiguous(dst));
  12003. GGML_ASSERT(ggml_is_contiguous(src0));
  12004. GGML_ASSERT(ggml_is_contiguous(src1));
  12005. GGML_ASSERT(ggml_is_contiguous(opt0));
  12006. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12007. const int64_t ith = params->ith;
  12008. const int64_t nth = params->nth;
  12009. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12010. return;
  12011. }
  12012. const double eps = 1e-9;
  12013. // TODO: handle transposed/permuted matrices
  12014. const int64_t nc = src0->ne[0];
  12015. const int64_t nr = ggml_nrows(src0);
  12016. // rows per thread
  12017. const int64_t dr = (nr + nth - 1)/nth;
  12018. // row range for this thread
  12019. const int64_t ir0 = dr*ith;
  12020. const int64_t ir1 = MIN(ir0 + dr, nr);
  12021. float * d = (float *) opt0->data;
  12022. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12023. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12024. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12025. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12026. #ifndef NDEBUG
  12027. for (int i = 0; i < nc; ++i) {
  12028. //printf("p[%d] = %f\n", i, p[i]);
  12029. assert(!isnan(s0[i]));
  12030. assert(!isnan(s1[i]));
  12031. }
  12032. #endif
  12033. // soft_max
  12034. ggml_float sum = 0.0;
  12035. {
  12036. float max = -INFINITY;
  12037. ggml_vec_max_f32(nc, &max, s0);
  12038. uint16_t scvt; UNUSED(scvt);
  12039. for (int i = 0; i < nc; i++) {
  12040. if (s0[i] == -INFINITY) {
  12041. ds0[i] = 0.0f;
  12042. } else {
  12043. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12044. const float s = s0[i] - max;
  12045. const float val = expf(s);
  12046. #else
  12047. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12048. memcpy(&scvt, &s, sizeof(scvt));
  12049. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12050. #endif
  12051. sum += (ggml_float)val;
  12052. ds0[i] = val;
  12053. }
  12054. }
  12055. assert(sum > 0.0);
  12056. sum = (1.0 - eps)/sum;
  12057. }
  12058. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12059. ggml_vec_scale_f32(nc, ds0, sum);
  12060. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12061. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12062. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12063. #ifndef NDEBUG
  12064. for (int i = 0; i < nc; ++i) {
  12065. assert(!isnan(ds0[i]));
  12066. assert(!isinf(ds0[i]));
  12067. }
  12068. #endif
  12069. }
  12070. }
  12071. static void ggml_compute_forward_cross_entropy_loss_back(
  12072. const struct ggml_compute_params * params,
  12073. const struct ggml_tensor * src0,
  12074. const struct ggml_tensor * src1,
  12075. const struct ggml_tensor * opt0,
  12076. struct ggml_tensor * dst) {
  12077. switch (src0->type) {
  12078. case GGML_TYPE_F32:
  12079. {
  12080. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12081. } break;
  12082. default:
  12083. {
  12084. GGML_ASSERT(false);
  12085. } break;
  12086. }
  12087. }
  12088. /////////////////////////////////
  12089. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12090. GGML_ASSERT(params);
  12091. if (tensor->op == GGML_OP_NONE) {
  12092. return;
  12093. }
  12094. #ifdef GGML_USE_CUBLAS
  12095. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12096. if (skip_cpu) {
  12097. return;
  12098. }
  12099. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12100. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12101. #elif defined(GGML_USE_VULKAN)
  12102. const bool skip_cpu = ggml_vk_compute_forward(params, tensor);
  12103. #ifdef GGML_VULKAN_CHECK_RESULTS
  12104. if (skip_cpu) {
  12105. ggml_vk_check_results_1(params, tensor);
  12106. }
  12107. #endif
  12108. if (skip_cpu) {
  12109. return;
  12110. }
  12111. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12112. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12113. #endif // GGML_USE_CUBLAS
  12114. #ifdef GGML_USE_SYCL
  12115. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12116. if (skip_cpu) {
  12117. return;
  12118. }
  12119. #endif // GGML_USE_SYCL
  12120. switch (tensor->op) {
  12121. case GGML_OP_DUP:
  12122. {
  12123. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12124. } break;
  12125. case GGML_OP_ADD:
  12126. {
  12127. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12128. } break;
  12129. case GGML_OP_ADD1:
  12130. {
  12131. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12132. } break;
  12133. case GGML_OP_ACC:
  12134. {
  12135. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12136. } break;
  12137. case GGML_OP_SUB:
  12138. {
  12139. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12140. } break;
  12141. case GGML_OP_MUL:
  12142. {
  12143. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12144. } break;
  12145. case GGML_OP_DIV:
  12146. {
  12147. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12148. } break;
  12149. case GGML_OP_SQR:
  12150. {
  12151. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12152. } break;
  12153. case GGML_OP_SQRT:
  12154. {
  12155. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12156. } break;
  12157. case GGML_OP_LOG:
  12158. {
  12159. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12160. } break;
  12161. case GGML_OP_SUM:
  12162. {
  12163. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12164. } break;
  12165. case GGML_OP_SUM_ROWS:
  12166. {
  12167. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12168. } break;
  12169. case GGML_OP_MEAN:
  12170. {
  12171. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12172. } break;
  12173. case GGML_OP_ARGMAX:
  12174. {
  12175. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12176. } break;
  12177. case GGML_OP_REPEAT:
  12178. {
  12179. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12180. } break;
  12181. case GGML_OP_REPEAT_BACK:
  12182. {
  12183. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12184. } break;
  12185. case GGML_OP_CONCAT:
  12186. {
  12187. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12188. } break;
  12189. case GGML_OP_SILU_BACK:
  12190. {
  12191. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12192. } break;
  12193. case GGML_OP_NORM:
  12194. {
  12195. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12196. } break;
  12197. case GGML_OP_RMS_NORM:
  12198. {
  12199. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12200. } break;
  12201. case GGML_OP_RMS_NORM_BACK:
  12202. {
  12203. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12204. } break;
  12205. case GGML_OP_GROUP_NORM:
  12206. {
  12207. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12208. } break;
  12209. case GGML_OP_MUL_MAT:
  12210. {
  12211. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12212. } break;
  12213. case GGML_OP_MUL_MAT_ID:
  12214. {
  12215. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12216. } break;
  12217. case GGML_OP_OUT_PROD:
  12218. {
  12219. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12220. } break;
  12221. case GGML_OP_SCALE:
  12222. {
  12223. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12224. } break;
  12225. case GGML_OP_SET:
  12226. {
  12227. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12228. } break;
  12229. case GGML_OP_CPY:
  12230. {
  12231. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12232. } break;
  12233. case GGML_OP_CONT:
  12234. {
  12235. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12236. } break;
  12237. case GGML_OP_RESHAPE:
  12238. {
  12239. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12240. } break;
  12241. case GGML_OP_VIEW:
  12242. {
  12243. ggml_compute_forward_view(params, tensor->src[0]);
  12244. } break;
  12245. case GGML_OP_PERMUTE:
  12246. {
  12247. ggml_compute_forward_permute(params, tensor->src[0]);
  12248. } break;
  12249. case GGML_OP_TRANSPOSE:
  12250. {
  12251. ggml_compute_forward_transpose(params, tensor->src[0]);
  12252. } break;
  12253. case GGML_OP_GET_ROWS:
  12254. {
  12255. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12256. } break;
  12257. case GGML_OP_GET_ROWS_BACK:
  12258. {
  12259. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12260. } break;
  12261. case GGML_OP_DIAG:
  12262. {
  12263. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12264. } break;
  12265. case GGML_OP_DIAG_MASK_INF:
  12266. {
  12267. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12268. } break;
  12269. case GGML_OP_DIAG_MASK_ZERO:
  12270. {
  12271. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12272. } break;
  12273. case GGML_OP_SOFT_MAX:
  12274. {
  12275. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12276. } break;
  12277. case GGML_OP_SOFT_MAX_BACK:
  12278. {
  12279. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12280. } break;
  12281. case GGML_OP_ROPE:
  12282. {
  12283. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12284. } break;
  12285. case GGML_OP_ROPE_BACK:
  12286. {
  12287. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12288. } break;
  12289. case GGML_OP_ALIBI:
  12290. {
  12291. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12292. } break;
  12293. case GGML_OP_CLAMP:
  12294. {
  12295. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12296. } break;
  12297. case GGML_OP_CONV_TRANSPOSE_1D:
  12298. {
  12299. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12300. } break;
  12301. case GGML_OP_IM2COL:
  12302. {
  12303. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12304. } break;
  12305. case GGML_OP_CONV_TRANSPOSE_2D:
  12306. {
  12307. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12308. } break;
  12309. case GGML_OP_POOL_1D:
  12310. {
  12311. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12312. } break;
  12313. case GGML_OP_POOL_2D:
  12314. {
  12315. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12316. } break;
  12317. case GGML_OP_UPSCALE:
  12318. {
  12319. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12320. } break;
  12321. case GGML_OP_PAD:
  12322. {
  12323. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12324. } break;
  12325. case GGML_OP_ARGSORT:
  12326. {
  12327. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12328. } break;
  12329. case GGML_OP_LEAKY_RELU:
  12330. {
  12331. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12332. } break;
  12333. case GGML_OP_FLASH_ATTN:
  12334. {
  12335. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12336. GGML_ASSERT(t == 0 || t == 1);
  12337. const bool masked = t != 0;
  12338. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12339. } break;
  12340. case GGML_OP_FLASH_FF:
  12341. {
  12342. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12343. } break;
  12344. case GGML_OP_FLASH_ATTN_BACK:
  12345. {
  12346. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12347. GGML_ASSERT(t == 0 || t == 1);
  12348. bool masked = t != 0;
  12349. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12350. } break;
  12351. case GGML_OP_WIN_PART:
  12352. {
  12353. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12354. } break;
  12355. case GGML_OP_WIN_UNPART:
  12356. {
  12357. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12358. } break;
  12359. case GGML_OP_UNARY:
  12360. {
  12361. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12362. } break;
  12363. case GGML_OP_GET_REL_POS:
  12364. {
  12365. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12366. } break;
  12367. case GGML_OP_ADD_REL_POS:
  12368. {
  12369. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12370. } break;
  12371. case GGML_OP_MAP_UNARY:
  12372. {
  12373. ggml_unary_op_f32_t fun;
  12374. memcpy(&fun, tensor->op_params, sizeof(fun));
  12375. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12376. }
  12377. break;
  12378. case GGML_OP_MAP_BINARY:
  12379. {
  12380. ggml_binary_op_f32_t fun;
  12381. memcpy(&fun, tensor->op_params, sizeof(fun));
  12382. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12383. }
  12384. break;
  12385. case GGML_OP_MAP_CUSTOM1_F32:
  12386. {
  12387. ggml_custom1_op_f32_t fun;
  12388. memcpy(&fun, tensor->op_params, sizeof(fun));
  12389. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12390. }
  12391. break;
  12392. case GGML_OP_MAP_CUSTOM2_F32:
  12393. {
  12394. ggml_custom2_op_f32_t fun;
  12395. memcpy(&fun, tensor->op_params, sizeof(fun));
  12396. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12397. }
  12398. break;
  12399. case GGML_OP_MAP_CUSTOM3_F32:
  12400. {
  12401. ggml_custom3_op_f32_t fun;
  12402. memcpy(&fun, tensor->op_params, sizeof(fun));
  12403. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12404. }
  12405. break;
  12406. case GGML_OP_MAP_CUSTOM1:
  12407. {
  12408. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12409. }
  12410. break;
  12411. case GGML_OP_MAP_CUSTOM2:
  12412. {
  12413. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12414. }
  12415. break;
  12416. case GGML_OP_MAP_CUSTOM3:
  12417. {
  12418. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12419. }
  12420. break;
  12421. case GGML_OP_CROSS_ENTROPY_LOSS:
  12422. {
  12423. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12424. }
  12425. break;
  12426. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12427. {
  12428. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12429. }
  12430. break;
  12431. case GGML_OP_NONE:
  12432. {
  12433. // nop
  12434. } break;
  12435. case GGML_OP_COUNT:
  12436. {
  12437. GGML_ASSERT(false);
  12438. } break;
  12439. }
  12440. }
  12441. ////////////////////////////////////////////////////////////////////////////////
  12442. static size_t ggml_hash_size(size_t min_sz) {
  12443. // next primes after powers of two
  12444. static const size_t primes[] = {
  12445. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12446. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12447. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12448. 16777259, 33554467, 67108879, 134217757, 268435459,
  12449. 536870923, 1073741827, 2147483659
  12450. };
  12451. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12452. // find the smallest prime that is larger or equal to min_sz
  12453. size_t l = 0;
  12454. size_t r = n_primes;
  12455. while (l < r) {
  12456. size_t m = (l + r)/2;
  12457. if (primes[m] < min_sz) {
  12458. l = m + 1;
  12459. } else {
  12460. r = m;
  12461. }
  12462. }
  12463. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12464. return sz;
  12465. }
  12466. static size_t ggml_hash(const void * p) {
  12467. return (size_t)p;
  12468. }
  12469. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12470. size_t h = ggml_hash(key) % hash_set.size;
  12471. // linear probing
  12472. size_t i = h;
  12473. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12474. i = (i + 1) % hash_set.size;
  12475. if (i == h) {
  12476. // visited all hash table entries -> not found
  12477. return GGML_HASHTABLE_FULL;
  12478. }
  12479. }
  12480. return i;
  12481. }
  12482. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12483. size_t i = ggml_hash_find(hash_set, key);
  12484. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12485. }
  12486. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12487. size_t i = ggml_hash_find(hash_set, key);
  12488. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12489. if (hash_set.keys[i] == key) {
  12490. return GGML_HASHTABLE_ALREADY_EXISTS;
  12491. }
  12492. // insert
  12493. GGML_ASSERT(hash_set.keys[i] == NULL);
  12494. hash_set.keys[i] = key;
  12495. return i;
  12496. }
  12497. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12498. size_t i = ggml_hash_find(hash_set, key);
  12499. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12500. hash_set.keys[i] = key;
  12501. return i;
  12502. }
  12503. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12504. size = ggml_hash_size(size);
  12505. struct ggml_hash_set result;
  12506. result.size = size;
  12507. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12508. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12509. return result;
  12510. }
  12511. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12512. free(hash_set.keys);
  12513. }
  12514. struct hash_map {
  12515. struct ggml_hash_set set;
  12516. struct ggml_tensor ** vals;
  12517. };
  12518. static struct hash_map * ggml_new_hash_map(size_t size) {
  12519. struct hash_map * result = malloc(sizeof(struct hash_map));
  12520. result->set = ggml_hash_set_new(size);
  12521. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12522. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12523. return result;
  12524. }
  12525. static void ggml_hash_map_free(struct hash_map * map) {
  12526. ggml_hash_set_free(map->set);
  12527. free(map->vals);
  12528. free(map);
  12529. }
  12530. // gradient checkpointing
  12531. static struct ggml_tensor * ggml_recompute_graph_node(
  12532. struct ggml_context * ctx,
  12533. struct ggml_cgraph * graph,
  12534. struct hash_map * replacements,
  12535. struct ggml_tensor * node) {
  12536. if (node == NULL) {
  12537. return NULL;
  12538. }
  12539. if (node->is_param) {
  12540. return node;
  12541. }
  12542. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12543. return node;
  12544. }
  12545. int count_children = 0;
  12546. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12547. if (node->src[k]) {
  12548. ++count_children;
  12549. }
  12550. }
  12551. if (count_children == 0) {
  12552. return node;
  12553. }
  12554. size_t i = ggml_hash_find(replacements->set, node);
  12555. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12556. if (replacements->set.keys[i] == node) {
  12557. return replacements->vals[i];
  12558. }
  12559. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12560. // insert clone into replacements
  12561. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12562. replacements->set.keys[i] = node;
  12563. replacements->vals[i] = clone;
  12564. clone->op = node->op;
  12565. clone->grad = node->grad;
  12566. clone->is_param = node->is_param;
  12567. clone->extra = node->extra;
  12568. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12569. clone->nb[k] = node->nb[k];
  12570. }
  12571. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12572. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12573. }
  12574. if (node->view_src != NULL) {
  12575. clone->data = (node->view_src->data == NULL)
  12576. ? NULL // view_src not yet allocated
  12577. : (char *) node->view_src->data // view_src already allocated
  12578. + node->view_offs;
  12579. clone->view_src = node->view_src;
  12580. clone->view_offs = node->view_offs;
  12581. }
  12582. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12583. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12584. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12585. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12586. return clone;
  12587. }
  12588. void ggml_build_backward_gradient_checkpointing(
  12589. struct ggml_context * ctx,
  12590. struct ggml_cgraph * gf,
  12591. struct ggml_cgraph * gb,
  12592. struct ggml_cgraph * gb_tmp,
  12593. struct ggml_tensor * * checkpoints,
  12594. int n_checkpoints) {
  12595. ggml_graph_cpy(gf, gb_tmp);
  12596. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12597. if (n_checkpoints <= 0) {
  12598. ggml_graph_cpy(gb_tmp, gb);
  12599. return;
  12600. }
  12601. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12602. // insert checkpoints in replacements
  12603. for (int i = 0; i < n_checkpoints; ++i) {
  12604. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12605. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12606. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12607. replacements->set.keys[k] = checkpoints[i];
  12608. replacements->vals[k] = checkpoints[i];
  12609. }
  12610. ggml_graph_cpy(gf, gb);
  12611. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12612. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12613. // by recomputing them from checkpoints
  12614. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12615. struct ggml_tensor * node = gb_tmp->nodes[i];
  12616. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12617. // insert new tensors recomputing src, reusing already made replacements,
  12618. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12619. // recurse for input tensors,
  12620. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12621. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12622. }
  12623. // insert rewritten backward node with replacements made into resulting backward graph gb
  12624. ggml_build_forward_expand(gb, node);
  12625. }
  12626. ggml_hash_map_free(replacements);
  12627. }
  12628. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12629. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12630. if (ggml_hash_contains(zero_table, a)) {
  12631. return b;
  12632. } else {
  12633. return ggml_add_impl(ctx, a, b, false);
  12634. }
  12635. }
  12636. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12637. if (ggml_hash_contains(zero_table, a)) {
  12638. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12639. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12640. } else {
  12641. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12642. }
  12643. }
  12644. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12645. if (ggml_hash_contains(zero_table, a)) {
  12646. return ggml_repeat(ctx, b, a);
  12647. } else {
  12648. return ggml_add1_impl(ctx, a, b, false);
  12649. }
  12650. }
  12651. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12652. if (ggml_hash_contains(zero_table, a)) {
  12653. return ggml_neg(ctx, b);
  12654. } else {
  12655. return ggml_sub_impl(ctx, a, b, false);
  12656. }
  12657. }
  12658. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12659. struct ggml_tensor * src0 = tensor->src[0];
  12660. struct ggml_tensor * src1 = tensor->src[1];
  12661. switch (tensor->op) {
  12662. case GGML_OP_DUP:
  12663. {
  12664. if (src0->grad) {
  12665. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12666. }
  12667. } break;
  12668. case GGML_OP_ADD:
  12669. {
  12670. if (src0->grad) {
  12671. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12672. }
  12673. if (src1->grad) {
  12674. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12675. }
  12676. } break;
  12677. case GGML_OP_ADD1:
  12678. {
  12679. if (src0->grad) {
  12680. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12681. }
  12682. if (src1->grad) {
  12683. src1->grad = ggml_add_or_set(ctx,
  12684. src1->grad,
  12685. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12686. zero_table);
  12687. }
  12688. } break;
  12689. case GGML_OP_ACC:
  12690. {
  12691. if (src0->grad) {
  12692. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12693. }
  12694. if (src1->grad) {
  12695. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12696. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12697. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12698. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12699. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12700. tensor->grad,
  12701. src1->grad->ne[0],
  12702. src1->grad->ne[1],
  12703. src1->grad->ne[2],
  12704. src1->grad->ne[3],
  12705. nb1, nb2, nb3, offset);
  12706. src1->grad =
  12707. ggml_add_or_set(ctx,
  12708. src1->grad,
  12709. ggml_reshape(ctx,
  12710. ggml_cont(ctx, tensor_grad_view),
  12711. src1->grad),
  12712. zero_table);
  12713. }
  12714. } break;
  12715. case GGML_OP_SUB:
  12716. {
  12717. if (src0->grad) {
  12718. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12719. }
  12720. if (src1->grad) {
  12721. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12722. }
  12723. } break;
  12724. case GGML_OP_MUL:
  12725. {
  12726. if (src0->grad) {
  12727. src0->grad =
  12728. ggml_add_or_set(ctx,
  12729. src0->grad,
  12730. ggml_mul(ctx, src1, tensor->grad),
  12731. zero_table);
  12732. }
  12733. if (src1->grad) {
  12734. src1->grad =
  12735. ggml_add_or_set(ctx,
  12736. src1->grad,
  12737. ggml_mul(ctx, src0, tensor->grad),
  12738. zero_table);
  12739. }
  12740. } break;
  12741. case GGML_OP_DIV:
  12742. {
  12743. if (src0->grad) {
  12744. src0->grad =
  12745. ggml_add_or_set(ctx,
  12746. src0->grad,
  12747. ggml_div(ctx, tensor->grad, src1),
  12748. zero_table);
  12749. }
  12750. if (src1->grad) {
  12751. src1->grad =
  12752. ggml_sub_or_set(ctx,
  12753. src1->grad,
  12754. ggml_mul(ctx,
  12755. tensor->grad,
  12756. ggml_div(ctx, tensor, src1)),
  12757. zero_table);
  12758. }
  12759. } break;
  12760. case GGML_OP_SQR:
  12761. {
  12762. if (src0->grad) {
  12763. src0->grad =
  12764. ggml_add_or_set(ctx,
  12765. src0->grad,
  12766. ggml_scale(ctx,
  12767. ggml_mul(ctx, src0, tensor->grad),
  12768. 2.0f),
  12769. zero_table);
  12770. }
  12771. } break;
  12772. case GGML_OP_SQRT:
  12773. {
  12774. if (src0->grad) {
  12775. src0->grad =
  12776. ggml_add_or_set(ctx,
  12777. src0->grad,
  12778. ggml_scale(ctx,
  12779. ggml_div(ctx,
  12780. tensor->grad,
  12781. tensor),
  12782. 0.5f),
  12783. zero_table);
  12784. }
  12785. } break;
  12786. case GGML_OP_LOG:
  12787. {
  12788. if (src0->grad) {
  12789. src0->grad =
  12790. ggml_add_or_set(ctx,
  12791. src0->grad,
  12792. ggml_div(ctx,
  12793. tensor->grad,
  12794. src0),
  12795. zero_table);
  12796. }
  12797. } break;
  12798. case GGML_OP_SUM:
  12799. {
  12800. if (src0->grad) {
  12801. src0->grad =
  12802. ggml_add1_or_set(ctx,
  12803. src0->grad,
  12804. tensor->grad,
  12805. zero_table);
  12806. }
  12807. } break;
  12808. case GGML_OP_SUM_ROWS:
  12809. {
  12810. if (src0->grad) {
  12811. src0->grad =
  12812. ggml_add_or_set(ctx,
  12813. src0->grad,
  12814. ggml_repeat(ctx,
  12815. tensor->grad,
  12816. src0->grad),
  12817. zero_table);
  12818. }
  12819. } break;
  12820. case GGML_OP_MEAN:
  12821. case GGML_OP_ARGMAX:
  12822. {
  12823. GGML_ASSERT(false); // TODO: implement
  12824. } break;
  12825. case GGML_OP_REPEAT:
  12826. {
  12827. // necessary for llama
  12828. if (src0->grad) {
  12829. src0->grad = ggml_add_or_set(ctx,
  12830. src0->grad,
  12831. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12832. zero_table);
  12833. }
  12834. } break;
  12835. case GGML_OP_REPEAT_BACK:
  12836. {
  12837. if (src0->grad) {
  12838. // TODO: test this
  12839. src0->grad = ggml_add_or_set(ctx,
  12840. src0->grad,
  12841. ggml_repeat(ctx, tensor->grad, src0->grad),
  12842. zero_table);
  12843. }
  12844. } break;
  12845. case GGML_OP_CONCAT:
  12846. {
  12847. GGML_ASSERT(false); // TODO: implement
  12848. } break;
  12849. case GGML_OP_SILU_BACK:
  12850. {
  12851. GGML_ASSERT(false); // TODO: not implemented
  12852. } break;
  12853. case GGML_OP_NORM:
  12854. {
  12855. GGML_ASSERT(false); // TODO: not implemented
  12856. } break;
  12857. case GGML_OP_RMS_NORM:
  12858. {
  12859. // necessary for llama
  12860. if (src0->grad) {
  12861. float eps;
  12862. memcpy(&eps, tensor->op_params, sizeof(float));
  12863. src0->grad = ggml_add_or_set(ctx,
  12864. src0->grad,
  12865. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12866. zero_table);
  12867. }
  12868. } break;
  12869. case GGML_OP_RMS_NORM_BACK:
  12870. {
  12871. GGML_ASSERT(false); // TODO: not implemented
  12872. } break;
  12873. case GGML_OP_GROUP_NORM:
  12874. {
  12875. GGML_ASSERT(false); // TODO: not implemented
  12876. } break;
  12877. case GGML_OP_MUL_MAT:
  12878. {
  12879. // https://cs231n.github.io/optimization-2/#staged
  12880. // # forward pass
  12881. // s0 = np.random.randn(5, 10)
  12882. // s1 = np.random.randn(10, 3)
  12883. // t = s0.dot(s1)
  12884. // # now suppose we had the gradient on t from above in the circuit
  12885. // dt = np.random.randn(*t.shape) # same shape as t
  12886. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12887. // ds1 = t.T.dot(dt)
  12888. // tensor.shape [m,p,qq,rr]
  12889. // src0.shape [n,m,q1,r1]
  12890. // src1.shape [n,p,qq,rr]
  12891. // necessary for llama
  12892. if (src0->grad) {
  12893. struct ggml_tensor * s1_tg =
  12894. ggml_out_prod(ctx, // [n,m,qq,rr]
  12895. src1, // [n,p,qq,rr]
  12896. tensor->grad); // [m,p,qq,rr]
  12897. const int64_t qq = s1_tg->ne[2];
  12898. const int64_t rr = s1_tg->ne[3];
  12899. const int64_t q1 = src0->ne[2];
  12900. const int64_t r1 = src0->ne[3];
  12901. const bool ne2_broadcasted = qq > q1;
  12902. const bool ne3_broadcasted = rr > r1;
  12903. if (ne2_broadcasted || ne3_broadcasted) {
  12904. // sum broadcast repetitions of s1_tg into shape of src0
  12905. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12906. }
  12907. src0->grad =
  12908. ggml_add_or_set(ctx,
  12909. src0->grad, // [n,m,q1,r1]
  12910. s1_tg, // [n,m,q1,r1]
  12911. zero_table);
  12912. }
  12913. if (src1->grad) {
  12914. src1->grad =
  12915. ggml_add_or_set(ctx,
  12916. src1->grad, // [n,p,qq,rr]
  12917. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12918. // ggml_cont(ctx, // [m,n,q1,r1]
  12919. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12920. // tensor->grad), // [m,p,qq,rr]
  12921. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12922. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12923. // // and then use ggml_out_prod
  12924. ggml_out_prod(ctx, // [n,p,qq,rr]
  12925. src0, // [n,m,q1,r1]
  12926. ggml_transpose(ctx, // [p,m,qq,rr]
  12927. tensor->grad)), // [m,p,qq,rr]
  12928. zero_table);
  12929. }
  12930. } break;
  12931. case GGML_OP_MUL_MAT_ID:
  12932. {
  12933. GGML_ASSERT(false); // TODO: not implemented
  12934. } break;
  12935. case GGML_OP_OUT_PROD:
  12936. {
  12937. GGML_ASSERT(false); // TODO: not implemented
  12938. } break;
  12939. case GGML_OP_SCALE:
  12940. {
  12941. // necessary for llama
  12942. if (src0->grad) {
  12943. float s;
  12944. memcpy(&s, tensor->op_params, sizeof(float));
  12945. src0->grad =
  12946. ggml_add_or_set(ctx,
  12947. src0->grad,
  12948. ggml_scale_impl(ctx, tensor->grad, s, false),
  12949. zero_table);
  12950. }
  12951. } break;
  12952. case GGML_OP_SET:
  12953. {
  12954. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12955. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12956. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12957. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12958. struct ggml_tensor * tensor_grad_view = NULL;
  12959. if (src0->grad || src1->grad) {
  12960. GGML_ASSERT(src0->type == tensor->type);
  12961. GGML_ASSERT(tensor->grad->type == tensor->type);
  12962. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12963. tensor_grad_view = ggml_view_4d(ctx,
  12964. tensor->grad,
  12965. src1->grad->ne[0],
  12966. src1->grad->ne[1],
  12967. src1->grad->ne[2],
  12968. src1->grad->ne[3],
  12969. nb1, nb2, nb3, offset);
  12970. }
  12971. if (src0->grad) {
  12972. src0->grad = ggml_add_or_set(ctx,
  12973. src0->grad,
  12974. ggml_acc_impl(ctx,
  12975. tensor->grad,
  12976. ggml_neg(ctx, tensor_grad_view),
  12977. nb1, nb2, nb3, offset, false),
  12978. zero_table);
  12979. }
  12980. if (src1->grad) {
  12981. src1->grad =
  12982. ggml_add_or_set(ctx,
  12983. src1->grad,
  12984. ggml_reshape(ctx,
  12985. ggml_cont(ctx, tensor_grad_view),
  12986. src1->grad),
  12987. zero_table);
  12988. }
  12989. } break;
  12990. case GGML_OP_CPY:
  12991. {
  12992. // necessary for llama
  12993. // cpy overwrites value of src1 by src0 and returns view(src1)
  12994. // the overwriting is mathematically equivalent to:
  12995. // tensor = src0 * 1 + src1 * 0
  12996. if (src0->grad) {
  12997. // dsrc0 = dtensor * 1
  12998. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12999. }
  13000. if (src1->grad) {
  13001. // dsrc1 = dtensor * 0 -> noop
  13002. }
  13003. } break;
  13004. case GGML_OP_CONT:
  13005. {
  13006. // same as cpy
  13007. if (src0->grad) {
  13008. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13009. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13010. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13011. }
  13012. } break;
  13013. case GGML_OP_RESHAPE:
  13014. {
  13015. // necessary for llama
  13016. if (src0->grad) {
  13017. src0->grad =
  13018. ggml_add_or_set(ctx, src0->grad,
  13019. ggml_reshape(ctx,
  13020. ggml_is_contiguous(tensor->grad)
  13021. ? tensor->grad
  13022. : ggml_cont(ctx, tensor->grad),
  13023. src0->grad),
  13024. zero_table);
  13025. }
  13026. } break;
  13027. case GGML_OP_VIEW:
  13028. {
  13029. // necessary for llama
  13030. if (src0->grad) {
  13031. size_t offset;
  13032. memcpy(&offset, tensor->op_params, sizeof(offset));
  13033. size_t nb1 = tensor->nb[1];
  13034. size_t nb2 = tensor->nb[2];
  13035. size_t nb3 = tensor->nb[3];
  13036. if (src0->type != src0->grad->type) {
  13037. // gradient is typically F32, but src0 could be other type
  13038. size_t ng = ggml_element_size(src0->grad);
  13039. size_t n0 = ggml_element_size(src0);
  13040. GGML_ASSERT(offset % n0 == 0);
  13041. GGML_ASSERT(nb1 % n0 == 0);
  13042. GGML_ASSERT(nb2 % n0 == 0);
  13043. GGML_ASSERT(nb3 % n0 == 0);
  13044. offset = (offset / n0) * ng;
  13045. nb1 = (nb1 / n0) * ng;
  13046. nb2 = (nb2 / n0) * ng;
  13047. nb3 = (nb3 / n0) * ng;
  13048. }
  13049. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13050. }
  13051. } break;
  13052. case GGML_OP_PERMUTE:
  13053. {
  13054. // necessary for llama
  13055. if (src0->grad) {
  13056. int32_t * axes = (int32_t *) tensor->op_params;
  13057. int axis0 = axes[0] & 0x3;
  13058. int axis1 = axes[1] & 0x3;
  13059. int axis2 = axes[2] & 0x3;
  13060. int axis3 = axes[3] & 0x3;
  13061. int axes_backward[4] = {0,0,0,0};
  13062. axes_backward[axis0] = 0;
  13063. axes_backward[axis1] = 1;
  13064. axes_backward[axis2] = 2;
  13065. axes_backward[axis3] = 3;
  13066. src0->grad =
  13067. ggml_add_or_set(ctx, src0->grad,
  13068. ggml_permute(ctx,
  13069. tensor->grad,
  13070. axes_backward[0],
  13071. axes_backward[1],
  13072. axes_backward[2],
  13073. axes_backward[3]),
  13074. zero_table);
  13075. }
  13076. } break;
  13077. case GGML_OP_TRANSPOSE:
  13078. {
  13079. // necessary for llama
  13080. if (src0->grad) {
  13081. src0->grad =
  13082. ggml_add_or_set(ctx, src0->grad,
  13083. ggml_transpose(ctx, tensor->grad),
  13084. zero_table);
  13085. }
  13086. } break;
  13087. case GGML_OP_GET_ROWS:
  13088. {
  13089. // necessary for llama (only for tokenizer)
  13090. if (src0->grad) {
  13091. src0->grad =
  13092. ggml_add_or_set(ctx, src0->grad,
  13093. // last ggml_get_rows_back argument src0->grad is only
  13094. // necessary to setup correct output shape
  13095. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13096. zero_table);
  13097. }
  13098. if (src1->grad) {
  13099. // noop
  13100. }
  13101. } break;
  13102. case GGML_OP_GET_ROWS_BACK:
  13103. {
  13104. GGML_ASSERT(false); // TODO: not implemented
  13105. } break;
  13106. case GGML_OP_DIAG:
  13107. {
  13108. GGML_ASSERT(false); // TODO: not implemented
  13109. } break;
  13110. case GGML_OP_DIAG_MASK_INF:
  13111. {
  13112. // necessary for llama
  13113. if (src0->grad) {
  13114. const int n_past = ((int32_t *) tensor->op_params)[0];
  13115. src0->grad =
  13116. ggml_add_or_set(ctx, src0->grad,
  13117. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13118. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13119. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13120. zero_table);
  13121. }
  13122. } break;
  13123. case GGML_OP_DIAG_MASK_ZERO:
  13124. {
  13125. // necessary for llama
  13126. if (src0->grad) {
  13127. const int n_past = ((int32_t *) tensor->op_params)[0];
  13128. src0->grad =
  13129. ggml_add_or_set(ctx, src0->grad,
  13130. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13131. zero_table);
  13132. }
  13133. } break;
  13134. case GGML_OP_SOFT_MAX:
  13135. {
  13136. // necessary for llama
  13137. if (src0->grad) {
  13138. src0->grad =
  13139. ggml_add_or_set(ctx, src0->grad,
  13140. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13141. zero_table);
  13142. }
  13143. } break;
  13144. case GGML_OP_SOFT_MAX_BACK:
  13145. {
  13146. GGML_ASSERT(false); // TODO: not implemented
  13147. } break;
  13148. case GGML_OP_ROPE:
  13149. {
  13150. // necessary for llama
  13151. if (src0->grad) {
  13152. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13153. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13154. const int mode = ((int32_t *) tensor->op_params)[2];
  13155. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13156. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13157. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13158. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13159. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13160. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13161. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13162. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13163. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13164. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13165. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13166. src0->grad = ggml_add_or_set(ctx,
  13167. src0->grad,
  13168. ggml_rope_back(ctx,
  13169. tensor->grad,
  13170. src1,
  13171. n_dims,
  13172. mode,
  13173. n_ctx,
  13174. n_orig_ctx,
  13175. freq_base,
  13176. freq_scale,
  13177. ext_factor,
  13178. attn_factor,
  13179. beta_fast,
  13180. beta_slow,
  13181. xpos_base,
  13182. xpos_down),
  13183. zero_table);
  13184. }
  13185. } break;
  13186. case GGML_OP_ROPE_BACK:
  13187. {
  13188. if (src0->grad) {
  13189. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13190. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13191. const int mode = ((int32_t *) tensor->op_params)[2];
  13192. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13193. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13194. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13195. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13196. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13197. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13198. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13199. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13200. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13201. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13202. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13203. src0->grad = ggml_add_or_set(ctx,
  13204. src0->grad,
  13205. ggml_rope_impl(ctx,
  13206. tensor->grad,
  13207. src1,
  13208. n_dims,
  13209. mode,
  13210. n_ctx,
  13211. n_orig_ctx,
  13212. freq_base,
  13213. freq_scale,
  13214. ext_factor,
  13215. attn_factor,
  13216. beta_fast,
  13217. beta_slow,
  13218. xpos_base,
  13219. xpos_down,
  13220. false),
  13221. zero_table);
  13222. }
  13223. } break;
  13224. case GGML_OP_ALIBI:
  13225. {
  13226. GGML_ASSERT(false); // TODO: not implemented
  13227. } break;
  13228. case GGML_OP_CLAMP:
  13229. {
  13230. GGML_ASSERT(false); // TODO: not implemented
  13231. } break;
  13232. case GGML_OP_CONV_TRANSPOSE_1D:
  13233. {
  13234. GGML_ASSERT(false); // TODO: not implemented
  13235. } break;
  13236. case GGML_OP_IM2COL:
  13237. {
  13238. GGML_ASSERT(false); // TODO: not implemented
  13239. } break;
  13240. case GGML_OP_CONV_TRANSPOSE_2D:
  13241. {
  13242. GGML_ASSERT(false); // TODO: not implemented
  13243. } break;
  13244. case GGML_OP_POOL_1D:
  13245. {
  13246. GGML_ASSERT(false); // TODO: not implemented
  13247. } break;
  13248. case GGML_OP_POOL_2D:
  13249. {
  13250. GGML_ASSERT(false); // TODO: not implemented
  13251. } break;
  13252. case GGML_OP_UPSCALE:
  13253. {
  13254. GGML_ASSERT(false); // TODO: not implemented
  13255. } break;
  13256. case GGML_OP_PAD:
  13257. {
  13258. GGML_ASSERT(false); // TODO: not implemented
  13259. } break;
  13260. case GGML_OP_ARGSORT:
  13261. {
  13262. GGML_ASSERT(false); // TODO: not implemented
  13263. } break;
  13264. case GGML_OP_LEAKY_RELU:
  13265. {
  13266. GGML_ASSERT(false); // TODO: not implemented
  13267. } break;
  13268. case GGML_OP_FLASH_ATTN:
  13269. {
  13270. struct ggml_tensor * flash_grad = NULL;
  13271. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13272. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13273. GGML_ASSERT(t == 0 || t == 1);
  13274. bool masked = t != 0;
  13275. flash_grad =
  13276. ggml_flash_attn_back(ctx,
  13277. src0,
  13278. src1,
  13279. tensor->src[2],
  13280. tensor->grad,
  13281. masked);
  13282. }
  13283. struct ggml_tensor * src2 = tensor->src[2];
  13284. const int64_t elem_q = ggml_nelements(src0);
  13285. const int64_t elem_k = ggml_nelements(src1);
  13286. const int64_t elem_v = ggml_nelements(src2);
  13287. enum ggml_type result_type = flash_grad->type;
  13288. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13289. const size_t tsize = ggml_type_size(result_type);
  13290. const size_t offs_q = 0;
  13291. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13292. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13293. if (src0->grad) {
  13294. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13295. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13296. src0->grad = ggml_add_or_set(ctx,
  13297. src0->grad,
  13298. grad_q,
  13299. zero_table);
  13300. }
  13301. if (src1->grad) {
  13302. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13303. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13304. src1->grad = ggml_add_or_set(ctx,
  13305. src1->grad,
  13306. grad_k,
  13307. zero_table);
  13308. }
  13309. if (src2->grad) {
  13310. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13311. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13312. src2->grad = ggml_add_or_set(ctx,
  13313. src2->grad,
  13314. grad_v,
  13315. zero_table);
  13316. }
  13317. } break;
  13318. case GGML_OP_FLASH_FF:
  13319. {
  13320. GGML_ASSERT(false); // not supported
  13321. } break;
  13322. case GGML_OP_FLASH_ATTN_BACK:
  13323. {
  13324. GGML_ASSERT(false); // not supported
  13325. } break;
  13326. case GGML_OP_WIN_PART:
  13327. case GGML_OP_WIN_UNPART:
  13328. case GGML_OP_UNARY:
  13329. {
  13330. switch (ggml_get_unary_op(tensor)) {
  13331. case GGML_UNARY_OP_ABS:
  13332. {
  13333. if (src0->grad) {
  13334. src0->grad =
  13335. ggml_add_or_set(ctx,
  13336. src0->grad,
  13337. ggml_mul(ctx,
  13338. ggml_sgn(ctx, src0),
  13339. tensor->grad),
  13340. zero_table);
  13341. }
  13342. } break;
  13343. case GGML_UNARY_OP_SGN:
  13344. {
  13345. if (src0->grad) {
  13346. // noop
  13347. }
  13348. } break;
  13349. case GGML_UNARY_OP_NEG:
  13350. {
  13351. if (src0->grad) {
  13352. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13353. }
  13354. } break;
  13355. case GGML_UNARY_OP_STEP:
  13356. {
  13357. if (src0->grad) {
  13358. // noop
  13359. }
  13360. } break;
  13361. case GGML_UNARY_OP_TANH:
  13362. {
  13363. GGML_ASSERT(false); // TODO: not implemented
  13364. } break;
  13365. case GGML_UNARY_OP_ELU:
  13366. {
  13367. GGML_ASSERT(false); // TODO: not implemented
  13368. } break;
  13369. case GGML_UNARY_OP_RELU:
  13370. {
  13371. if (src0->grad) {
  13372. src0->grad = ggml_add_or_set(ctx,
  13373. src0->grad,
  13374. ggml_mul(ctx,
  13375. ggml_step(ctx, src0),
  13376. tensor->grad),
  13377. zero_table);
  13378. }
  13379. } break;
  13380. case GGML_UNARY_OP_GELU:
  13381. {
  13382. GGML_ASSERT(false); // TODO: not implemented
  13383. } break;
  13384. case GGML_UNARY_OP_GELU_QUICK:
  13385. {
  13386. GGML_ASSERT(false); // TODO: not implemented
  13387. } break;
  13388. case GGML_UNARY_OP_SILU:
  13389. {
  13390. // necessary for llama
  13391. if (src0->grad) {
  13392. src0->grad = ggml_add_or_set(ctx,
  13393. src0->grad,
  13394. ggml_silu_back(ctx, src0, tensor->grad),
  13395. zero_table);
  13396. }
  13397. } break;
  13398. default:
  13399. GGML_ASSERT(false);
  13400. }
  13401. } break;
  13402. case GGML_OP_GET_REL_POS:
  13403. case GGML_OP_ADD_REL_POS:
  13404. case GGML_OP_MAP_UNARY:
  13405. case GGML_OP_MAP_BINARY:
  13406. case GGML_OP_MAP_CUSTOM1_F32:
  13407. case GGML_OP_MAP_CUSTOM2_F32:
  13408. case GGML_OP_MAP_CUSTOM3_F32:
  13409. case GGML_OP_MAP_CUSTOM1:
  13410. case GGML_OP_MAP_CUSTOM2:
  13411. case GGML_OP_MAP_CUSTOM3:
  13412. {
  13413. GGML_ASSERT(false); // not supported
  13414. } break;
  13415. case GGML_OP_CROSS_ENTROPY_LOSS:
  13416. {
  13417. if (src0->grad) {
  13418. src0->grad = ggml_add_or_set(ctx,
  13419. src0->grad,
  13420. ggml_cross_entropy_loss_back(ctx,
  13421. src0,
  13422. src1,
  13423. tensor->grad),
  13424. zero_table);
  13425. }
  13426. } break;
  13427. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13428. {
  13429. GGML_ASSERT(false); // not supported
  13430. } break;
  13431. case GGML_OP_NONE:
  13432. {
  13433. // nop
  13434. } break;
  13435. case GGML_OP_COUNT:
  13436. {
  13437. GGML_ASSERT(false);
  13438. } break;
  13439. }
  13440. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13441. if (tensor->src[i] && tensor->src[i]->grad) {
  13442. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13443. }
  13444. }
  13445. }
  13446. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13447. if (node->grad == NULL) {
  13448. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13449. // it can also happen during forward pass, if the user performs computations with constants
  13450. if (node->op != GGML_OP_NONE) {
  13451. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13452. }
  13453. }
  13454. // check if already visited
  13455. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13456. return;
  13457. }
  13458. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13459. const int k =
  13460. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13461. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13462. /* unknown order, just fall back to using i*/ i;
  13463. if (node->src[k]) {
  13464. ggml_visit_parents(cgraph, node->src[k]);
  13465. }
  13466. }
  13467. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13468. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13469. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13470. if (strlen(node->name) == 0) {
  13471. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13472. }
  13473. cgraph->leafs[cgraph->n_leafs] = node;
  13474. cgraph->n_leafs++;
  13475. } else {
  13476. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13477. if (strlen(node->name) == 0) {
  13478. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13479. }
  13480. cgraph->nodes[cgraph->n_nodes] = node;
  13481. if (cgraph->grads) {
  13482. cgraph->grads[cgraph->n_nodes] = node->grad;
  13483. }
  13484. cgraph->n_nodes++;
  13485. }
  13486. }
  13487. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13488. if (!expand) {
  13489. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13490. ggml_graph_clear(cgraph);
  13491. }
  13492. const int n0 = cgraph->n_nodes;
  13493. UNUSED(n0);
  13494. ggml_visit_parents(cgraph, tensor);
  13495. const int n_new = cgraph->n_nodes - n0;
  13496. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13497. if (n_new > 0) {
  13498. // the last added node should always be starting point
  13499. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13500. }
  13501. }
  13502. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13503. ggml_build_forward_impl(cgraph, tensor, true);
  13504. }
  13505. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13506. GGML_ASSERT(gf->n_nodes > 0);
  13507. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13508. if (keep) {
  13509. for (int i = 0; i < gf->n_nodes; i++) {
  13510. struct ggml_tensor * node = gf->nodes[i];
  13511. if (node->grad) {
  13512. node->grad = ggml_dup_tensor(ctx, node);
  13513. gf->grads[i] = node->grad;
  13514. }
  13515. }
  13516. }
  13517. // remember original gradients which start with zero values
  13518. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13519. for (int i = 0; i < gf->n_nodes; i++) {
  13520. if (gf->grads[i]) {
  13521. ggml_hash_insert(zero_table, gf->grads[i]);
  13522. }
  13523. }
  13524. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13525. struct ggml_tensor * node = gf->nodes[i];
  13526. // inplace operations to add gradients are not created by ggml_compute_backward
  13527. // use allocator to automatically make inplace operations
  13528. if (node->grad) {
  13529. ggml_compute_backward(ctx, node, zero_table);
  13530. }
  13531. }
  13532. for (int i = 0; i < gf->n_nodes; i++) {
  13533. struct ggml_tensor * node = gf->nodes[i];
  13534. if (node->is_param) {
  13535. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13536. ggml_build_forward_expand(gb, node->grad);
  13537. }
  13538. }
  13539. ggml_hash_set_free(zero_table);
  13540. }
  13541. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13542. size_t nbytes = sizeof(struct ggml_cgraph);
  13543. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13544. if (grads) {
  13545. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13546. }
  13547. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13548. return nbytes;
  13549. }
  13550. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13551. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13552. }
  13553. size_t ggml_graph_overhead(void) {
  13554. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13555. }
  13556. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13557. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13558. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13559. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13560. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13561. size_t hash_size = ggml_hash_size(size * 2);
  13562. struct ggml_tensor ** nodes_ptr = data_start;
  13563. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13564. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13565. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13566. // check that we allocated the correct amount of memory
  13567. assert(obj_size == (size_t) (
  13568. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13569. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13570. *cgraph = (struct ggml_cgraph) {
  13571. /*.size =*/ size,
  13572. /*.n_nodes =*/ 0,
  13573. /*.n_leafs =*/ 0,
  13574. /*.nodes =*/ nodes_ptr,
  13575. /*.grads =*/ grads_ptr,
  13576. /*.leafs =*/ leafs_ptr,
  13577. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13578. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13579. /*.perf_runs =*/ 0,
  13580. /*.perf_cycles =*/ 0,
  13581. /*.perf_time_us =*/ 0,
  13582. };
  13583. return cgraph;
  13584. }
  13585. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13586. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13587. }
  13588. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13589. struct ggml_cgraph cgraph = {
  13590. /*.size =*/ 0,
  13591. /*.n_nodes =*/ i1 - i0,
  13592. /*.n_leafs =*/ 0,
  13593. /*.nodes =*/ cgraph0->nodes + i0,
  13594. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13595. /*.leafs =*/ NULL,
  13596. /*.hash_table =*/ { 0, NULL },
  13597. /*.order =*/ cgraph0->order,
  13598. /*.perf_runs =*/ 0,
  13599. /*.perf_cycles =*/ 0,
  13600. /*.perf_time_us =*/ 0,
  13601. };
  13602. return cgraph;
  13603. }
  13604. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13605. GGML_ASSERT(dst->size >= src->n_leafs);
  13606. GGML_ASSERT(dst->size >= src->n_nodes);
  13607. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13608. dst->n_leafs = src->n_leafs;
  13609. dst->n_nodes = src->n_nodes;
  13610. dst->order = src->order;
  13611. for (int i = 0; i < src->n_leafs; ++i) {
  13612. dst->leafs[i] = src->leafs[i];
  13613. }
  13614. for (int i = 0; i < src->n_nodes; ++i) {
  13615. dst->nodes[i] = src->nodes[i];
  13616. }
  13617. if (src->grads) {
  13618. GGML_ASSERT(dst->grads != NULL);
  13619. for (int i = 0; i < src->n_nodes; ++i) {
  13620. dst->grads[i] = src->grads[i];
  13621. }
  13622. }
  13623. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13624. if (src->visited_hash_table.keys[i]) {
  13625. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13626. }
  13627. }
  13628. }
  13629. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13630. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13631. ggml_graph_cpy(cgraph, result);
  13632. return result;
  13633. }
  13634. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13635. GGML_ASSERT(cgraph->grads != NULL);
  13636. for (int i = 0; i < cgraph->n_nodes; i++) {
  13637. struct ggml_tensor * grad = cgraph->grads[i];
  13638. if (grad) {
  13639. ggml_set_zero(grad);
  13640. }
  13641. }
  13642. }
  13643. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13644. cgraph->n_leafs = 0;
  13645. cgraph->n_nodes = 0;
  13646. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13647. }
  13648. //
  13649. // thread data
  13650. //
  13651. // synchronization is done via busy loops
  13652. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13653. //
  13654. #ifdef __APPLE__
  13655. //#include <os/lock.h>
  13656. //
  13657. //typedef os_unfair_lock ggml_lock_t;
  13658. //
  13659. //#define ggml_lock_init(x) UNUSED(x)
  13660. //#define ggml_lock_destroy(x) UNUSED(x)
  13661. //#define ggml_lock_lock os_unfair_lock_lock
  13662. //#define ggml_lock_unlock os_unfair_lock_unlock
  13663. //
  13664. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13665. typedef int ggml_lock_t;
  13666. #define ggml_lock_init(x) UNUSED(x)
  13667. #define ggml_lock_destroy(x) UNUSED(x)
  13668. #define ggml_lock_lock(x) UNUSED(x)
  13669. #define ggml_lock_unlock(x) UNUSED(x)
  13670. #define GGML_LOCK_INITIALIZER 0
  13671. typedef pthread_t ggml_thread_t;
  13672. #define ggml_thread_create pthread_create
  13673. #define ggml_thread_join pthread_join
  13674. #else
  13675. //typedef pthread_spinlock_t ggml_lock_t;
  13676. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13677. //#define ggml_lock_destroy pthread_spin_destroy
  13678. //#define ggml_lock_lock pthread_spin_lock
  13679. //#define ggml_lock_unlock pthread_spin_unlock
  13680. typedef int ggml_lock_t;
  13681. #define ggml_lock_init(x) UNUSED(x)
  13682. #define ggml_lock_destroy(x) UNUSED(x)
  13683. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13684. #define ggml_lock_lock(x) _mm_pause()
  13685. #else
  13686. #define ggml_lock_lock(x) UNUSED(x)
  13687. #endif
  13688. #define ggml_lock_unlock(x) UNUSED(x)
  13689. #define GGML_LOCK_INITIALIZER 0
  13690. typedef pthread_t ggml_thread_t;
  13691. #define ggml_thread_create pthread_create
  13692. #define ggml_thread_join pthread_join
  13693. #endif
  13694. // Android's libc implementation "bionic" does not support setting affinity
  13695. #if defined(__linux__) && !defined(__BIONIC__)
  13696. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13697. if (!ggml_is_numa()) {
  13698. return;
  13699. }
  13700. // run thread on node_num thread_n / (threads per node)
  13701. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13702. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13703. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13704. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13705. CPU_ZERO_S(setsize, cpus);
  13706. for (size_t i = 0; i < node->n_cpus; ++i) {
  13707. CPU_SET_S(node->cpus[i], setsize, cpus);
  13708. }
  13709. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13710. if (rv) {
  13711. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13712. strerror(rv));
  13713. }
  13714. CPU_FREE(cpus);
  13715. }
  13716. static void clear_numa_thread_affinity(void) {
  13717. if (!ggml_is_numa()) {
  13718. return;
  13719. }
  13720. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13721. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13722. CPU_ZERO_S(setsize, cpus);
  13723. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13724. CPU_SET_S(i, setsize, cpus);
  13725. }
  13726. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13727. if (rv) {
  13728. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13729. strerror(rv));
  13730. }
  13731. CPU_FREE(cpus);
  13732. }
  13733. #else
  13734. // TODO: Windows etc.
  13735. // (the linux implementation may also work on BSD, someone should test)
  13736. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13737. static void clear_numa_thread_affinity(void) {}
  13738. #endif
  13739. struct ggml_compute_state_shared {
  13740. const struct ggml_cgraph * cgraph;
  13741. const struct ggml_cplan * cplan;
  13742. int64_t perf_node_start_cycles;
  13743. int64_t perf_node_start_time_us;
  13744. const int n_threads;
  13745. // synchronization primitives
  13746. atomic_int n_active; // num active threads
  13747. atomic_int node_n; // active graph node
  13748. atomic_int node_task; // active graph node task phase
  13749. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13750. void * abort_callback_data;
  13751. };
  13752. struct ggml_compute_state {
  13753. ggml_thread_t thrd;
  13754. int ith;
  13755. struct ggml_compute_state_shared * shared;
  13756. };
  13757. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13758. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13759. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13760. node->perf_runs++;
  13761. node->perf_cycles += cycles_cur;
  13762. node->perf_time_us += time_us_cur;
  13763. }
  13764. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13765. int n_tasks = 0;
  13766. switch (node->op) {
  13767. case GGML_OP_CPY:
  13768. case GGML_OP_DUP:
  13769. case GGML_OP_ADD:
  13770. case GGML_OP_ADD1:
  13771. case GGML_OP_ACC:
  13772. {
  13773. n_tasks = n_threads;
  13774. } break;
  13775. case GGML_OP_SUB:
  13776. case GGML_OP_SQR:
  13777. case GGML_OP_SQRT:
  13778. case GGML_OP_LOG:
  13779. case GGML_OP_SUM:
  13780. case GGML_OP_SUM_ROWS:
  13781. case GGML_OP_MEAN:
  13782. case GGML_OP_ARGMAX:
  13783. case GGML_OP_REPEAT:
  13784. case GGML_OP_REPEAT_BACK:
  13785. case GGML_OP_LEAKY_RELU:
  13786. {
  13787. n_tasks = 1;
  13788. } break;
  13789. case GGML_OP_UNARY:
  13790. switch (ggml_get_unary_op(node)) {
  13791. case GGML_UNARY_OP_ABS:
  13792. case GGML_UNARY_OP_SGN:
  13793. case GGML_UNARY_OP_NEG:
  13794. case GGML_UNARY_OP_STEP:
  13795. case GGML_UNARY_OP_TANH:
  13796. case GGML_UNARY_OP_ELU:
  13797. case GGML_UNARY_OP_RELU:
  13798. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  13799. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  13800. {
  13801. n_tasks = 1;
  13802. } break;
  13803. case GGML_UNARY_OP_GELU:
  13804. case GGML_UNARY_OP_GELU_QUICK:
  13805. case GGML_UNARY_OP_SILU:
  13806. {
  13807. n_tasks = n_threads;
  13808. } break;
  13809. default:
  13810. GGML_ASSERT(false);
  13811. }
  13812. break;
  13813. case GGML_OP_SILU_BACK:
  13814. case GGML_OP_MUL:
  13815. case GGML_OP_DIV:
  13816. case GGML_OP_NORM:
  13817. case GGML_OP_RMS_NORM:
  13818. case GGML_OP_RMS_NORM_BACK:
  13819. case GGML_OP_GROUP_NORM:
  13820. case GGML_OP_CONCAT:
  13821. {
  13822. n_tasks = n_threads;
  13823. } break;
  13824. case GGML_OP_MUL_MAT:
  13825. {
  13826. n_tasks = n_threads;
  13827. // TODO: use different scheduling for different matrix sizes
  13828. //const int nr0 = ggml_nrows(node->src[0]);
  13829. //const int nr1 = ggml_nrows(node->src[1]);
  13830. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13831. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13832. } break;
  13833. case GGML_OP_MUL_MAT_ID:
  13834. {
  13835. n_tasks = n_threads;
  13836. } break;
  13837. case GGML_OP_OUT_PROD:
  13838. {
  13839. n_tasks = n_threads;
  13840. } break;
  13841. case GGML_OP_SCALE:
  13842. case GGML_OP_SET:
  13843. case GGML_OP_CONT:
  13844. case GGML_OP_RESHAPE:
  13845. case GGML_OP_VIEW:
  13846. case GGML_OP_PERMUTE:
  13847. case GGML_OP_TRANSPOSE:
  13848. case GGML_OP_GET_ROWS:
  13849. case GGML_OP_GET_ROWS_BACK:
  13850. case GGML_OP_DIAG:
  13851. {
  13852. n_tasks = 1;
  13853. } break;
  13854. case GGML_OP_DIAG_MASK_ZERO:
  13855. case GGML_OP_DIAG_MASK_INF:
  13856. case GGML_OP_SOFT_MAX_BACK:
  13857. case GGML_OP_ROPE:
  13858. case GGML_OP_ROPE_BACK:
  13859. case GGML_OP_ADD_REL_POS:
  13860. {
  13861. n_tasks = n_threads;
  13862. } break;
  13863. case GGML_OP_ALIBI:
  13864. {
  13865. n_tasks = 1; //TODO
  13866. } break;
  13867. case GGML_OP_CLAMP:
  13868. {
  13869. n_tasks = 1; //TODO
  13870. } break;
  13871. case GGML_OP_SOFT_MAX:
  13872. {
  13873. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  13874. } break;
  13875. case GGML_OP_CONV_TRANSPOSE_1D:
  13876. {
  13877. n_tasks = n_threads;
  13878. } break;
  13879. case GGML_OP_IM2COL:
  13880. {
  13881. n_tasks = n_threads;
  13882. } break;
  13883. case GGML_OP_CONV_TRANSPOSE_2D:
  13884. {
  13885. n_tasks = n_threads;
  13886. } break;
  13887. case GGML_OP_POOL_1D:
  13888. case GGML_OP_POOL_2D:
  13889. {
  13890. n_tasks = 1;
  13891. } break;
  13892. case GGML_OP_UPSCALE:
  13893. {
  13894. n_tasks = n_threads;
  13895. } break;
  13896. case GGML_OP_PAD:
  13897. {
  13898. n_tasks = n_threads;
  13899. } break;
  13900. case GGML_OP_ARGSORT:
  13901. {
  13902. n_tasks = n_threads;
  13903. } break;
  13904. case GGML_OP_FLASH_ATTN:
  13905. {
  13906. n_tasks = n_threads;
  13907. } break;
  13908. case GGML_OP_FLASH_FF:
  13909. {
  13910. n_tasks = n_threads;
  13911. } break;
  13912. case GGML_OP_FLASH_ATTN_BACK:
  13913. {
  13914. n_tasks = n_threads;
  13915. } break;
  13916. case GGML_OP_WIN_PART:
  13917. case GGML_OP_WIN_UNPART:
  13918. case GGML_OP_GET_REL_POS:
  13919. case GGML_OP_MAP_UNARY:
  13920. case GGML_OP_MAP_BINARY:
  13921. case GGML_OP_MAP_CUSTOM1_F32:
  13922. case GGML_OP_MAP_CUSTOM2_F32:
  13923. case GGML_OP_MAP_CUSTOM3_F32:
  13924. {
  13925. n_tasks = 1;
  13926. } break;
  13927. case GGML_OP_MAP_CUSTOM1:
  13928. {
  13929. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13930. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13931. n_tasks = n_threads;
  13932. } else {
  13933. n_tasks = MIN(p->n_tasks, n_threads);
  13934. }
  13935. } break;
  13936. case GGML_OP_MAP_CUSTOM2:
  13937. {
  13938. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13939. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13940. n_tasks = n_threads;
  13941. } else {
  13942. n_tasks = MIN(p->n_tasks, n_threads);
  13943. }
  13944. } break;
  13945. case GGML_OP_MAP_CUSTOM3:
  13946. {
  13947. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13948. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13949. n_tasks = n_threads;
  13950. } else {
  13951. n_tasks = MIN(p->n_tasks, n_threads);
  13952. }
  13953. } break;
  13954. case GGML_OP_CROSS_ENTROPY_LOSS:
  13955. {
  13956. n_tasks = n_threads;
  13957. } break;
  13958. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13959. {
  13960. n_tasks = n_threads;
  13961. } break;
  13962. case GGML_OP_NONE:
  13963. {
  13964. n_tasks = 1;
  13965. } break;
  13966. case GGML_OP_COUNT:
  13967. {
  13968. GGML_ASSERT(false);
  13969. } break;
  13970. default:
  13971. {
  13972. fprintf(stderr, "%s: op not implemented: ", __func__);
  13973. if (node->op < GGML_OP_COUNT) {
  13974. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13975. } else {
  13976. fprintf(stderr, "%d\n", node->op);
  13977. }
  13978. GGML_ASSERT(false);
  13979. } break;
  13980. }
  13981. assert(n_tasks > 0);
  13982. return n_tasks;
  13983. }
  13984. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  13985. // wait for other threads to finish
  13986. const int last_node_n = * node_n;
  13987. while (true) {
  13988. if (do_yield) {
  13989. sched_yield();
  13990. }
  13991. * node_n = atomic_load(&state->shared->node_n);
  13992. if (* node_n != last_node_n) break;
  13993. }
  13994. }
  13995. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  13996. // wait for other threads to finish
  13997. const int last_task_phase = * task_phase;
  13998. while (true) {
  13999. if (do_yield) {
  14000. sched_yield();
  14001. }
  14002. * task_phase = atomic_load(&state->shared->node_task);
  14003. if (* task_phase != last_task_phase) break;
  14004. }
  14005. }
  14006. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14007. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14008. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14009. const struct ggml_cplan * cplan = state->shared->cplan;
  14010. const int n_threads = state->shared->n_threads;
  14011. set_numa_thread_affinity(state->ith, n_threads);
  14012. int node_n = -1;
  14013. int task_phase = GGML_TASK_FINALIZE;
  14014. while (true) {
  14015. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14016. state->shared->node_n += 1;
  14017. return (thread_ret_t) GGML_EXIT_ABORTED;
  14018. }
  14019. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14020. // all other threads are finished and spinning
  14021. // do finalize and init here so we don't have synchronize again
  14022. struct ggml_compute_params params = {
  14023. /*.type =*/ GGML_TASK_FINALIZE,
  14024. /*.ith =*/ 0,
  14025. /*.nth =*/ 0,
  14026. /*.wsize =*/ cplan->work_size,
  14027. /*.wdata =*/ cplan->work_data,
  14028. };
  14029. if (node_n != -1) {
  14030. /* FINALIZE */
  14031. struct ggml_tensor * node = cgraph->nodes[node_n];
  14032. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14033. params.nth = ggml_get_n_tasks(node, n_threads);
  14034. ggml_compute_forward(&params, node);
  14035. }
  14036. ggml_graph_compute_perf_stats_node(node, state->shared);
  14037. }
  14038. // distribute new work or execute it direct if 1T
  14039. while (++node_n < cgraph->n_nodes) {
  14040. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14041. struct ggml_tensor * node = cgraph->nodes[node_n];
  14042. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14043. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14044. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14045. params.nth = n_tasks;
  14046. if (n_tasks == 1) {
  14047. /* INIT */
  14048. if (GGML_OP_HAS_INIT[node->op]) {
  14049. params.type = GGML_TASK_INIT;
  14050. ggml_compute_forward(&params, node);
  14051. }
  14052. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14053. // they do something more efficient than spinning (?)
  14054. params.type = GGML_TASK_COMPUTE;
  14055. ggml_compute_forward(&params, node);
  14056. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14057. params.type = GGML_TASK_FINALIZE;
  14058. ggml_compute_forward(&params, node);
  14059. }
  14060. ggml_graph_compute_perf_stats_node(node, state->shared);
  14061. } else {
  14062. break;
  14063. }
  14064. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14065. break;
  14066. }
  14067. }
  14068. task_phase = GGML_TASK_INIT;
  14069. atomic_store(&state->shared->n_active, n_threads);
  14070. atomic_store(&state->shared->node_n, node_n);
  14071. atomic_store(&state->shared->node_task, task_phase);
  14072. } else {
  14073. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14074. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14075. }
  14076. // check if we should stop
  14077. if (node_n >= cgraph->n_nodes) break;
  14078. /* INIT & COMPUTE */
  14079. struct ggml_tensor * node = cgraph->nodes[node_n];
  14080. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14081. struct ggml_compute_params params = {
  14082. /*.type =*/ GGML_TASK_INIT,
  14083. /*.ith =*/ state->ith,
  14084. /*.nth =*/ n_tasks,
  14085. /*.wsize =*/ cplan->work_size,
  14086. /*.wdata =*/ cplan->work_data,
  14087. };
  14088. if (state->ith < n_tasks) {
  14089. if (GGML_OP_HAS_INIT[node->op]) {
  14090. ggml_compute_forward(&params, node);
  14091. }
  14092. }
  14093. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14094. task_phase = GGML_TASK_COMPUTE;
  14095. atomic_store(&state->shared->n_active, n_threads);
  14096. atomic_store(&state->shared->node_task, task_phase);
  14097. }
  14098. else {
  14099. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14100. // depending on the workload and the operating system.
  14101. // since it is not clear what is the best approach, it should potentially become user-configurable
  14102. // ref: https://github.com/ggerganov/ggml/issues/291
  14103. // UPD: adding the do_yield flag seems to resolve the issue universally
  14104. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14105. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14106. }
  14107. if (state->ith < n_tasks) {
  14108. params.type = GGML_TASK_COMPUTE;
  14109. ggml_compute_forward(&params, node);
  14110. }
  14111. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14112. task_phase = GGML_TASK_FINALIZE;
  14113. atomic_store(&state->shared->n_active, n_threads);
  14114. atomic_store(&state->shared->node_task, task_phase);
  14115. }
  14116. else {
  14117. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14118. }
  14119. }
  14120. return GGML_EXIT_SUCCESS;
  14121. }
  14122. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14123. if (n_threads <= 0) {
  14124. n_threads = GGML_DEFAULT_N_THREADS;
  14125. }
  14126. size_t work_size = 0;
  14127. struct ggml_cplan cplan;
  14128. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14129. // thread scheduling for the different operations + work buffer size estimation
  14130. for (int i = 0; i < cgraph->n_nodes; i++) {
  14131. struct ggml_tensor * node = cgraph->nodes[i];
  14132. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14133. size_t cur = 0;
  14134. switch (node->op) {
  14135. case GGML_OP_CPY:
  14136. case GGML_OP_DUP:
  14137. {
  14138. if (ggml_is_quantized(node->type)) {
  14139. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14140. }
  14141. } break;
  14142. case GGML_OP_ADD:
  14143. case GGML_OP_ADD1:
  14144. {
  14145. if (ggml_is_quantized(node->src[0]->type)) {
  14146. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14147. }
  14148. } break;
  14149. case GGML_OP_ACC:
  14150. {
  14151. if (ggml_is_quantized(node->src[0]->type)) {
  14152. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14153. }
  14154. } break;
  14155. case GGML_OP_MUL_MAT:
  14156. {
  14157. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14158. #if defined(GGML_USE_CLBLAST)
  14159. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14160. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14161. } else
  14162. #endif
  14163. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14164. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14165. if (node->src[0]->type != GGML_TYPE_F32) {
  14166. // here we need memory for fully dequantized matrix from src0
  14167. // take into account that src0 can be broadcasted into src1[2,3]
  14168. cur = ggml_type_size(GGML_TYPE_F32)
  14169. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14170. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14171. }
  14172. } else
  14173. #endif
  14174. if (node->src[1]->type != vec_dot_type) {
  14175. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14176. }
  14177. } break;
  14178. case GGML_OP_MUL_MAT_ID:
  14179. {
  14180. cur = 0;
  14181. const struct ggml_tensor * src0 = node->src[2];
  14182. const struct ggml_tensor * src1 = node->src[1];
  14183. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14184. if (src1->type != vec_dot_type) {
  14185. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14186. }
  14187. const int n_as = ggml_get_op_params_i32(node, 1);
  14188. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14189. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14190. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14191. } break;
  14192. case GGML_OP_OUT_PROD:
  14193. {
  14194. if (ggml_is_quantized(node->src[0]->type)) {
  14195. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14196. }
  14197. } break;
  14198. case GGML_OP_SOFT_MAX:
  14199. case GGML_OP_ROPE:
  14200. {
  14201. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14202. } break;
  14203. case GGML_OP_CONV_TRANSPOSE_1D:
  14204. {
  14205. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14206. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14207. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14208. const int64_t ne00 = node->src[0]->ne[0]; // K
  14209. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14210. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14211. const int64_t ne10 = node->src[1]->ne[0]; // L
  14212. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14213. if (node->src[0]->type == GGML_TYPE_F16 &&
  14214. node->src[1]->type == GGML_TYPE_F32) {
  14215. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14216. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14217. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14218. node->src[1]->type == GGML_TYPE_F32) {
  14219. cur += sizeof(float)*ne00*ne01*ne02;
  14220. cur += sizeof(float)*ne10*ne11;
  14221. } else {
  14222. GGML_ASSERT(false);
  14223. }
  14224. } break;
  14225. case GGML_OP_CONV_TRANSPOSE_2D:
  14226. {
  14227. const int64_t ne00 = node->src[0]->ne[0]; // W
  14228. const int64_t ne01 = node->src[0]->ne[1]; // H
  14229. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14230. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14231. const int64_t ne10 = node->src[1]->ne[0]; // W
  14232. const int64_t ne11 = node->src[1]->ne[1]; // H
  14233. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14234. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14235. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14236. } break;
  14237. case GGML_OP_FLASH_ATTN:
  14238. {
  14239. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14240. if (node->src[1]->type == GGML_TYPE_F32) {
  14241. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14242. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14243. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14244. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14245. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14246. }
  14247. } break;
  14248. case GGML_OP_FLASH_FF:
  14249. {
  14250. if (node->src[1]->type == GGML_TYPE_F32) {
  14251. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14252. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14253. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14254. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14255. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14256. }
  14257. } break;
  14258. case GGML_OP_FLASH_ATTN_BACK:
  14259. {
  14260. const int64_t D = node->src[0]->ne[0];
  14261. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14262. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14263. if (node->src[1]->type == GGML_TYPE_F32) {
  14264. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14265. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14266. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14267. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14268. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14269. }
  14270. } break;
  14271. case GGML_OP_CROSS_ENTROPY_LOSS:
  14272. {
  14273. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14274. } break;
  14275. case GGML_OP_COUNT:
  14276. {
  14277. GGML_ASSERT(false);
  14278. } break;
  14279. default:
  14280. break;
  14281. }
  14282. work_size = MAX(work_size, cur);
  14283. }
  14284. if (work_size > 0) {
  14285. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14286. }
  14287. cplan.n_threads = n_threads;
  14288. cplan.work_size = work_size;
  14289. cplan.work_data = NULL;
  14290. return cplan;
  14291. }
  14292. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14293. {
  14294. GGML_ASSERT(cplan);
  14295. GGML_ASSERT(cplan->n_threads > 0);
  14296. if (cplan->work_size > 0) {
  14297. GGML_ASSERT(cplan->work_data);
  14298. }
  14299. }
  14300. #ifdef GGML_USE_VULKAN
  14301. for (int i = 0; i < cgraph->n_nodes; i++) {
  14302. ggml_vk_preallocate_buffers_graph(cgraph->nodes[i]);
  14303. }
  14304. ggml_vk_preallocate_buffers();
  14305. for (int i = 0; i < cgraph->n_nodes; i++) {
  14306. ggml_vk_build_graph(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14307. }
  14308. #endif
  14309. const int n_threads = cplan->n_threads;
  14310. struct ggml_compute_state_shared state_shared = {
  14311. /*.cgraph =*/ cgraph,
  14312. /*.cgraph_plan =*/ cplan,
  14313. /*.perf_node_start_cycles =*/ 0,
  14314. /*.perf_node_start_time_us =*/ 0,
  14315. /*.n_threads =*/ n_threads,
  14316. /*.n_active =*/ n_threads,
  14317. /*.node_n =*/ -1,
  14318. /*.node_task =*/ GGML_TASK_FINALIZE,
  14319. /*.abort_callback =*/ NULL,
  14320. /*.abort_callback_data =*/ NULL,
  14321. };
  14322. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14323. // create thread pool
  14324. if (n_threads > 1) {
  14325. for (int j = 1; j < n_threads; ++j) {
  14326. workers[j] = (struct ggml_compute_state) {
  14327. .thrd = 0,
  14328. .ith = j,
  14329. .shared = &state_shared,
  14330. };
  14331. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14332. GGML_ASSERT(rc == 0);
  14333. UNUSED(rc);
  14334. }
  14335. }
  14336. workers[0].ith = 0;
  14337. workers[0].shared = &state_shared;
  14338. const int64_t perf_start_cycles = ggml_perf_cycles();
  14339. const int64_t perf_start_time_us = ggml_perf_time_us();
  14340. // this is a work thread too
  14341. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14342. // don't leave affinity set on the main thread
  14343. clear_numa_thread_affinity();
  14344. // join or kill thread pool
  14345. if (n_threads > 1) {
  14346. for (int j = 1; j < n_threads; j++) {
  14347. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14348. GGML_ASSERT(rc == 0);
  14349. }
  14350. }
  14351. #ifdef GGML_USE_VULKAN
  14352. ggml_vk_graph_cleanup();
  14353. #endif
  14354. // performance stats (graph)
  14355. {
  14356. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14357. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14358. cgraph->perf_runs++;
  14359. cgraph->perf_cycles += perf_cycles_cur;
  14360. cgraph->perf_time_us += perf_time_us_cur;
  14361. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14362. __func__, cgraph->perf_runs,
  14363. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14364. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14365. (double) perf_time_us_cur / 1000.0,
  14366. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14367. }
  14368. return compute_status;
  14369. }
  14370. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14371. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14372. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14373. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14374. ggml_graph_compute(cgraph, &cplan);
  14375. }
  14376. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14377. for (int i = 0; i < cgraph->n_leafs; i++) {
  14378. struct ggml_tensor * leaf = cgraph->leafs[i];
  14379. if (strcmp(leaf->name, name) == 0) {
  14380. return leaf;
  14381. }
  14382. }
  14383. for (int i = 0; i < cgraph->n_nodes; i++) {
  14384. struct ggml_tensor * node = cgraph->nodes[i];
  14385. if (strcmp(node->name, name) == 0) {
  14386. return node;
  14387. }
  14388. }
  14389. return NULL;
  14390. }
  14391. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14392. const int64_t * ne = tensor->ne;
  14393. const size_t * nb = tensor->nb;
  14394. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14395. ggml_type_name(tensor->type),
  14396. ggml_op_name (tensor->op),
  14397. ggml_n_dims(tensor),
  14398. ne[0], ne[1], ne[2], ne[3],
  14399. nb[0], nb[1], nb[2], nb[3],
  14400. tensor->data,
  14401. tensor->name);
  14402. }
  14403. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14404. const int64_t * ne = tensor->ne;
  14405. const size_t * nb = tensor->nb;
  14406. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14407. arg,
  14408. ggml_type_name(tensor->type),
  14409. ggml_op_name (tensor->op),
  14410. ggml_n_dims(tensor),
  14411. ne[0], ne[1], ne[2], ne[3],
  14412. nb[0], nb[1], nb[2], nb[3],
  14413. tensor->data,
  14414. tensor->name);
  14415. }
  14416. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14417. uint64_t size_eval = 0;
  14418. // compute size of intermediate results
  14419. // TODO: does not take into account scratch buffers !!!!
  14420. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14421. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14422. }
  14423. // print
  14424. {
  14425. FILE * fout = stdout;
  14426. fprintf(fout, "\n");
  14427. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14428. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14429. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14430. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14431. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14432. // header
  14433. fprintf(fout, "\n");
  14434. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14435. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14436. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14437. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14438. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14439. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14440. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14441. }
  14442. // header
  14443. fprintf(fout, "\n");
  14444. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14445. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14446. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14447. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14448. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14449. if (cgraph->nodes[i]->src[j]) {
  14450. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14451. }
  14452. }
  14453. fprintf(fout, "\n");
  14454. }
  14455. fprintf(fout, "\n");
  14456. }
  14457. // write binary data
  14458. {
  14459. FILE * fout = fopen(fname, "wb");
  14460. if (!fout) {
  14461. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14462. return;
  14463. }
  14464. // header
  14465. {
  14466. const uint32_t magic = GGML_FILE_MAGIC;
  14467. const uint32_t version = GGML_FILE_VERSION;
  14468. const uint32_t n_leafs = cgraph->n_leafs;
  14469. const uint32_t n_nodes = cgraph->n_nodes;
  14470. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14471. fwrite(&version, sizeof(uint32_t), 1, fout);
  14472. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14473. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14474. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14475. }
  14476. // leafs
  14477. {
  14478. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14479. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14480. const uint32_t type = tensor->type;
  14481. const uint32_t op = tensor->op;
  14482. fwrite(&type, sizeof(uint32_t), 1, fout);
  14483. fwrite(&op, sizeof(uint32_t), 1, fout);
  14484. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14485. const uint64_t ne = tensor->ne[j];
  14486. const uint64_t nb = tensor->nb[j];
  14487. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14488. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14489. }
  14490. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14491. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14492. // dump the data
  14493. // TODO: pad this to 32 byte boundary
  14494. {
  14495. const size_t size = ggml_nbytes(tensor);
  14496. fwrite(tensor->data, sizeof(char), size, fout);
  14497. }
  14498. }
  14499. }
  14500. // nodes
  14501. {
  14502. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14503. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14504. const uint32_t type = tensor->type;
  14505. const uint32_t op = tensor->op;
  14506. fwrite(&type, sizeof(uint32_t), 1, fout);
  14507. fwrite(&op, sizeof(uint32_t), 1, fout);
  14508. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14509. const uint64_t ne = tensor->ne[j];
  14510. const uint64_t nb = tensor->nb[j];
  14511. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14512. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14513. }
  14514. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14515. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14516. // output the op arguments
  14517. {
  14518. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14519. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14520. args[j] = tensor->src[j];
  14521. }
  14522. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14523. if (args[j]) {
  14524. int32_t idx = -1;
  14525. // check if leaf
  14526. {
  14527. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14528. if (args[j] == cgraph->leafs[k]) {
  14529. idx = k;
  14530. break;
  14531. }
  14532. }
  14533. }
  14534. // check if node
  14535. if (idx == -1) {
  14536. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14537. if (args[j] == cgraph->nodes[k]) {
  14538. idx = cgraph->n_leafs + k;
  14539. break;
  14540. }
  14541. }
  14542. }
  14543. if (idx == -1) {
  14544. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14545. fclose(fout);
  14546. return;
  14547. }
  14548. fwrite(&idx, sizeof(int32_t), 1, fout);
  14549. } else {
  14550. const int32_t nul = -1;
  14551. fwrite(&nul, sizeof(int32_t), 1, fout);
  14552. }
  14553. }
  14554. }
  14555. }
  14556. }
  14557. fclose(fout);
  14558. }
  14559. }
  14560. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14561. assert(*ctx_data == NULL);
  14562. assert(*ctx_eval == NULL);
  14563. struct ggml_cgraph * result = NULL;
  14564. struct ggml_tensor * data = NULL;
  14565. // read file into data
  14566. {
  14567. FILE * fin = fopen(fname, "rb");
  14568. if (!fin) {
  14569. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14570. return result;
  14571. }
  14572. size_t fsize = 0;
  14573. fseek(fin, 0, SEEK_END);
  14574. fsize = ftell(fin);
  14575. fseek(fin, 0, SEEK_SET);
  14576. // create the data context
  14577. {
  14578. const size_t overhead = 1*ggml_tensor_overhead();
  14579. struct ggml_init_params params = {
  14580. .mem_size = fsize + overhead,
  14581. .mem_buffer = NULL,
  14582. .no_alloc = false,
  14583. };
  14584. *ctx_data = ggml_init(params);
  14585. if (!*ctx_data) {
  14586. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14587. fclose(fin);
  14588. return result;
  14589. }
  14590. }
  14591. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14592. {
  14593. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14594. if (ret != fsize) {
  14595. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14596. fclose(fin);
  14597. return result;
  14598. }
  14599. }
  14600. fclose(fin);
  14601. }
  14602. // populate result
  14603. {
  14604. char * ptr = (char *) data->data;
  14605. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14606. if (magic != GGML_FILE_MAGIC) {
  14607. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14608. return result;
  14609. }
  14610. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14611. if (version != GGML_FILE_VERSION) {
  14612. fprintf(stderr, "%s: invalid version number\n", __func__);
  14613. return result;
  14614. }
  14615. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14616. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14617. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14618. const int graph_size = MAX(n_leafs, n_nodes);
  14619. // create the data context
  14620. {
  14621. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14622. struct ggml_init_params params = {
  14623. .mem_size = size_eval + overhead,
  14624. .mem_buffer = NULL,
  14625. .no_alloc = true,
  14626. };
  14627. *ctx_eval = ggml_init(params);
  14628. if (!*ctx_eval) {
  14629. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14630. return result;
  14631. }
  14632. }
  14633. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14634. result->n_leafs = n_leafs;
  14635. result->n_nodes = n_nodes;
  14636. // leafs
  14637. {
  14638. uint32_t type;
  14639. uint32_t op;
  14640. for (uint32_t i = 0; i < n_leafs; ++i) {
  14641. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14642. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14643. int64_t ne[GGML_MAX_DIMS];
  14644. size_t nb[GGML_MAX_DIMS];
  14645. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14646. uint64_t ne_cur;
  14647. uint64_t nb_cur;
  14648. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14649. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14650. ne[j] = ne_cur;
  14651. nb[j] = nb_cur;
  14652. }
  14653. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14654. tensor->op = (enum ggml_op) op;
  14655. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14656. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14657. tensor->data = (void *) ptr;
  14658. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14659. tensor->nb[j] = nb[j];
  14660. }
  14661. result->leafs[i] = tensor;
  14662. ptr += ggml_nbytes(tensor);
  14663. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14664. }
  14665. }
  14666. ggml_set_no_alloc(*ctx_eval, false);
  14667. // nodes
  14668. {
  14669. uint32_t type;
  14670. uint32_t op;
  14671. for (uint32_t i = 0; i < n_nodes; ++i) {
  14672. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14673. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14674. enum ggml_op eop = (enum ggml_op) op;
  14675. int64_t ne[GGML_MAX_DIMS];
  14676. size_t nb[GGML_MAX_DIMS];
  14677. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14678. uint64_t ne_cur;
  14679. uint64_t nb_cur;
  14680. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14681. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14682. ne[j] = ne_cur;
  14683. nb[j] = nb_cur;
  14684. }
  14685. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14686. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14687. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14688. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14689. // parse args
  14690. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14691. const int32_t arg_idx = ptr_arg_idx[j];
  14692. if (arg_idx == -1) {
  14693. continue;
  14694. }
  14695. if (arg_idx < result->n_leafs) {
  14696. args[j] = result->leafs[arg_idx];
  14697. } else {
  14698. args[j] = result->nodes[arg_idx - result->n_leafs];
  14699. }
  14700. }
  14701. // create the tensor
  14702. // "view" operations are handled differently
  14703. // TODO: handle inplace ops - currently a copy is always made
  14704. struct ggml_tensor * tensor = NULL;
  14705. switch (eop) {
  14706. // TODO: implement other view ops
  14707. case GGML_OP_RESHAPE:
  14708. {
  14709. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14710. } break;
  14711. case GGML_OP_VIEW:
  14712. {
  14713. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14714. size_t offs;
  14715. memcpy(&offs, ptr_op_params, sizeof(offs));
  14716. tensor->data = ((char *) tensor->data) + offs;
  14717. } break;
  14718. case GGML_OP_TRANSPOSE:
  14719. {
  14720. tensor = ggml_transpose(*ctx_eval, args[0]);
  14721. } break;
  14722. case GGML_OP_PERMUTE:
  14723. {
  14724. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14725. } break;
  14726. default:
  14727. {
  14728. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14729. tensor->op = eop;
  14730. } break;
  14731. }
  14732. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14733. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14734. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14735. tensor->nb[j] = nb[j];
  14736. }
  14737. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14738. tensor->src[j] = args[j];
  14739. }
  14740. result->nodes[i] = tensor;
  14741. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14742. }
  14743. }
  14744. }
  14745. return result;
  14746. }
  14747. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14748. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14749. GGML_PRINT("=== GRAPH ===\n");
  14750. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14751. for (int i = 0; i < cgraph->n_nodes; i++) {
  14752. struct ggml_tensor * node = cgraph->nodes[i];
  14753. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14754. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14755. i,
  14756. node->ne[0], node->ne[1], node->ne[2],
  14757. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14758. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14759. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14760. (double) node->perf_time_us / 1000.0,
  14761. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14762. }
  14763. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14764. for (int i = 0; i < cgraph->n_leafs; i++) {
  14765. struct ggml_tensor * node = cgraph->leafs[i];
  14766. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14767. i,
  14768. node->ne[0], node->ne[1],
  14769. ggml_op_name(node->op),
  14770. ggml_get_name(node));
  14771. }
  14772. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14773. if (perf_total_per_op_us[i] == 0) {
  14774. continue;
  14775. }
  14776. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14777. }
  14778. GGML_PRINT("========================================\n");
  14779. }
  14780. // check if node is part of the graph
  14781. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14782. if (cgraph == NULL) {
  14783. return true;
  14784. }
  14785. for (int i = 0; i < cgraph->n_nodes; i++) {
  14786. if (cgraph->nodes[i] == node) {
  14787. return true;
  14788. }
  14789. }
  14790. return false;
  14791. }
  14792. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14793. for (int i = 0; i < cgraph->n_nodes; i++) {
  14794. struct ggml_tensor * parent = cgraph->nodes[i];
  14795. if (parent->grad == node) {
  14796. return parent;
  14797. }
  14798. }
  14799. return NULL;
  14800. }
  14801. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14802. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14803. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14804. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14805. gparent0 ? (void *) gparent0 : (void *) parent,
  14806. gparent0 ? "g" : "x",
  14807. gparent ? (void *) gparent : (void *) node,
  14808. gparent ? "g" : "x",
  14809. gparent ? "empty" : "vee",
  14810. gparent ? "dashed" : "solid",
  14811. label);
  14812. }
  14813. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14814. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14815. (void *) parent, "x",
  14816. (void *) node, "x",
  14817. label);
  14818. }
  14819. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14820. char color[16];
  14821. FILE * fp = fopen(filename, "w");
  14822. GGML_ASSERT(fp);
  14823. fprintf(fp, "digraph G {\n");
  14824. fprintf(fp, " newrank = true;\n");
  14825. fprintf(fp, " rankdir = LR;\n");
  14826. for (int i = 0; i < gb->n_nodes; i++) {
  14827. struct ggml_tensor * node = gb->nodes[i];
  14828. if (ggml_graph_get_parent(gb, node) != NULL) {
  14829. continue;
  14830. }
  14831. if (node->is_param) {
  14832. snprintf(color, sizeof(color), "yellow");
  14833. } else if (node->grad) {
  14834. if (ggml_graph_find(gf, node)) {
  14835. snprintf(color, sizeof(color), "green");
  14836. } else {
  14837. snprintf(color, sizeof(color), "lightblue");
  14838. }
  14839. } else {
  14840. snprintf(color, sizeof(color), "white");
  14841. }
  14842. fprintf(fp, " \"%p\" [ "
  14843. "style = filled; fillcolor = %s; shape = record; "
  14844. "label=\"",
  14845. (void *) node, color);
  14846. if (strlen(node->name) > 0) {
  14847. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14848. } else {
  14849. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14850. }
  14851. if (ggml_is_matrix(node)) {
  14852. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14853. } else {
  14854. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14855. }
  14856. if (node->grad) {
  14857. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14858. } else {
  14859. fprintf(fp, "\"; ]\n");
  14860. }
  14861. }
  14862. for (int i = 0; i < gb->n_leafs; i++) {
  14863. struct ggml_tensor * node = gb->leafs[i];
  14864. snprintf(color, sizeof(color), "pink");
  14865. fprintf(fp, " \"%p\" [ "
  14866. "style = filled; fillcolor = %s; shape = record; "
  14867. "label=\"<x>",
  14868. (void *) node, color);
  14869. if (strlen(node->name) > 0) {
  14870. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14871. } else {
  14872. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14873. }
  14874. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14875. if (ggml_nelements(node) < 5) {
  14876. fprintf(fp, " | (");
  14877. for (int j = 0; j < ggml_nelements(node); j++) {
  14878. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14879. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14880. }
  14881. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14882. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14883. }
  14884. else {
  14885. fprintf(fp, "#");
  14886. }
  14887. if (j < ggml_nelements(node) - 1) {
  14888. fprintf(fp, ", ");
  14889. }
  14890. }
  14891. fprintf(fp, ")");
  14892. }
  14893. fprintf(fp, "\"; ]\n");
  14894. }
  14895. for (int i = 0; i < gb->n_nodes; i++) {
  14896. struct ggml_tensor * node = gb->nodes[i];
  14897. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14898. if (node->src[j]) {
  14899. char label[16];
  14900. snprintf(label, sizeof(label), "src %d", j);
  14901. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14902. }
  14903. }
  14904. }
  14905. for (int i = 0; i < gb->n_leafs; i++) {
  14906. struct ggml_tensor * node = gb->leafs[i];
  14907. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14908. if (node->src[j]) {
  14909. char label[16];
  14910. snprintf(label, sizeof(label), "src %d", j);
  14911. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14912. }
  14913. }
  14914. }
  14915. fprintf(fp, "}\n");
  14916. fclose(fp);
  14917. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14918. }
  14919. ////////////////////////////////////////////////////////////////////////////////
  14920. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14921. int i = 0;
  14922. for (int p = 0; p < np; ++p) {
  14923. const int64_t ne = ggml_nelements(ps[p]) ;
  14924. // TODO: add function to set tensor from array
  14925. for (int64_t j = 0; j < ne; ++j) {
  14926. ggml_set_f32_1d(ps[p], j, x[i++]);
  14927. }
  14928. }
  14929. }
  14930. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14931. int i = 0;
  14932. for (int p = 0; p < np; ++p) {
  14933. const int64_t ne = ggml_nelements(ps[p]) ;
  14934. // TODO: add function to get all elements at once
  14935. for (int64_t j = 0; j < ne; ++j) {
  14936. x[i++] = ggml_get_f32_1d(ps[p], j);
  14937. }
  14938. }
  14939. }
  14940. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14941. int64_t i = 0;
  14942. for (int p = 0; p < np; ++p) {
  14943. const int64_t ne = ggml_nelements(ps[p]) ;
  14944. // TODO: add function to get all elements at once
  14945. for (int64_t j = 0; j < ne; ++j) {
  14946. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14947. }
  14948. }
  14949. }
  14950. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14951. int64_t i = 0;
  14952. for (int p = 0; p < np; ++p) {
  14953. const int64_t ne = ggml_nelements(ps[p]) ;
  14954. // TODO: add function to get all elements at once
  14955. for (int64_t j = 0; j < ne; ++j) {
  14956. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14957. }
  14958. }
  14959. }
  14960. //
  14961. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14962. //
  14963. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14964. //
  14965. static enum ggml_opt_result ggml_opt_adam(
  14966. struct ggml_context * ctx,
  14967. struct ggml_opt_context * opt,
  14968. struct ggml_opt_params params,
  14969. struct ggml_tensor * f,
  14970. struct ggml_cgraph * gf,
  14971. struct ggml_cgraph * gb,
  14972. ggml_opt_callback callback,
  14973. void * callback_data) {
  14974. GGML_ASSERT(ggml_is_scalar(f));
  14975. // these will store the parameters we want to optimize
  14976. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14977. int np = 0;
  14978. int64_t nx = 0;
  14979. for (int i = 0; i < gf->n_nodes; ++i) {
  14980. if (gf->nodes[i]->is_param) {
  14981. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14982. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14983. ps[np++] = gf->nodes[i];
  14984. nx += ggml_nelements(gf->nodes[i]);
  14985. }
  14986. }
  14987. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14988. int iter = opt->iter;
  14989. ggml_opt_init(opt->ctx, opt, params, nx);
  14990. opt->iter = iter;
  14991. }
  14992. // constants
  14993. float sched = params.adam.sched;
  14994. const float alpha = params.adam.alpha;
  14995. const float decay = params.adam.decay * alpha;
  14996. const float beta1 = params.adam.beta1;
  14997. const float beta2 = params.adam.beta2;
  14998. const float eps = params.adam.eps;
  14999. const float gclip = params.adam.gclip;
  15000. const int decay_min_ndim = params.adam.decay_min_ndim;
  15001. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15002. const float accum_norm = 1.0f / (float) n_accum;
  15003. float * g = opt->adam.g->data; // gradients
  15004. float * m = opt->adam.m->data; // first moment
  15005. float * v = opt->adam.v->data; // second moment
  15006. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15007. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15008. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15009. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15010. bool cancel = false;
  15011. // compute the function value
  15012. float fx = 0;
  15013. ggml_set_zero(opt->adam.g);
  15014. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15015. if (callback) {
  15016. callback(callback_data, accum_step, &sched, &cancel);
  15017. if (cancel) {
  15018. return GGML_OPT_CANCEL;
  15019. }
  15020. }
  15021. // ggml_graph_reset (gf);
  15022. ggml_set_f32 (f->grad, 1.0f);
  15023. ggml_graph_compute(gb, &cplan);
  15024. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15025. fx += ggml_get_f32_1d(f, 0);
  15026. }
  15027. fx *= accum_norm;
  15028. opt->adam.fx_prev = fx;
  15029. opt->adam.fx_best = opt->adam.fx_prev;
  15030. if (pf) {
  15031. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15032. }
  15033. opt->loss_before = opt->adam.fx_prev;
  15034. opt->loss_after = opt->adam.fx_prev;
  15035. // initialize
  15036. if (opt->just_initialized) {
  15037. opt->adam.n_no_improvement = 0;
  15038. opt->just_initialized = false;
  15039. }
  15040. float * fx_best = &opt->adam.fx_best;
  15041. float * fx_prev = &opt->adam.fx_prev;
  15042. int * n_no_improvement = &opt->adam.n_no_improvement;
  15043. int iter0 = opt->iter;
  15044. // run the optimizer
  15045. for (int t = 0; t < params.adam.n_iter; ++t) {
  15046. opt->iter = iter0 + t + 1;
  15047. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15048. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15049. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15050. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15051. for (int i = 0; i < np; ++i) {
  15052. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15053. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15054. }
  15055. const int64_t t_start_wall = ggml_time_us();
  15056. const int64_t t_start_cpu = ggml_cycles();
  15057. UNUSED(t_start_wall);
  15058. UNUSED(t_start_cpu);
  15059. {
  15060. float gnorm = 1.0f;
  15061. if (gclip > 0.0f) {
  15062. // gradient clipping
  15063. ggml_float sum = 0.0;
  15064. for (int64_t i = 0; i < nx; ++i) {
  15065. sum += (ggml_float)(g[i]*g[i]);
  15066. }
  15067. ggml_float norm = sqrt(sum);
  15068. if (norm > (ggml_float) gclip) {
  15069. gnorm = (float) ((ggml_float) gclip / norm);
  15070. }
  15071. }
  15072. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15073. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15074. int64_t i = 0;
  15075. for (int p = 0; p < np; ++p) {
  15076. const int64_t ne = ggml_nelements(ps[p]);
  15077. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15078. for (int64_t j = 0; j < ne; ++j) {
  15079. float x = ggml_get_f32_1d(ps[p], j);
  15080. float g_ = g[i]*gnorm;
  15081. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15082. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15083. float mh = m[i]*beta1h;
  15084. float vh = v[i]*beta2h;
  15085. vh = sqrtf(vh) + eps;
  15086. x = x*(1.0f - p_decay) - mh/vh;
  15087. ggml_set_f32_1d(ps[p], j, x);
  15088. ++i;
  15089. }
  15090. }
  15091. }
  15092. fx = 0;
  15093. ggml_set_zero(opt->adam.g);
  15094. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15095. if (callback) {
  15096. callback(callback_data, accum_step, &sched, &cancel);
  15097. if (cancel) {
  15098. return GGML_OPT_CANCEL;;
  15099. }
  15100. }
  15101. // ggml_graph_reset (gf);
  15102. ggml_set_f32 (f->grad, 1.0f);
  15103. ggml_graph_compute(gb, &cplan);
  15104. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15105. fx += ggml_get_f32_1d(f, 0);
  15106. }
  15107. fx *= accum_norm;
  15108. opt->loss_after = fx;
  15109. // check convergence
  15110. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15111. GGML_PRINT_DEBUG("converged\n");
  15112. return GGML_OPT_OK;
  15113. }
  15114. // delta-based convergence test
  15115. if (pf != NULL) {
  15116. // need at least params.past iterations to start checking for convergence
  15117. if (params.past <= iter0 + t) {
  15118. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15119. if (fabsf(rate) < params.delta) {
  15120. return GGML_OPT_OK;
  15121. }
  15122. }
  15123. pf[(iter0 + t)%params.past] = fx;
  15124. }
  15125. // check for improvement
  15126. if (params.max_no_improvement > 0) {
  15127. if (fx_best[0] > fx) {
  15128. fx_best[0] = fx;
  15129. n_no_improvement[0] = 0;
  15130. } else {
  15131. ++n_no_improvement[0];
  15132. if (n_no_improvement[0] >= params.max_no_improvement) {
  15133. return GGML_OPT_OK;
  15134. }
  15135. }
  15136. }
  15137. fx_prev[0] = fx;
  15138. {
  15139. const int64_t t_end_cpu = ggml_cycles();
  15140. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15141. UNUSED(t_end_cpu);
  15142. const int64_t t_end_wall = ggml_time_us();
  15143. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15144. UNUSED(t_end_wall);
  15145. }
  15146. }
  15147. return GGML_OPT_DID_NOT_CONVERGE;
  15148. }
  15149. //
  15150. // L-BFGS
  15151. //
  15152. // the L-BFGS implementation below is based on the following implementation:
  15153. //
  15154. // https://github.com/chokkan/liblbfgs
  15155. //
  15156. struct ggml_lbfgs_iteration_data {
  15157. float alpha;
  15158. float ys;
  15159. float * s;
  15160. float * y;
  15161. };
  15162. static enum ggml_opt_result linesearch_backtracking(
  15163. const struct ggml_opt_params * params,
  15164. int nx,
  15165. float * x,
  15166. float * fx,
  15167. float * g,
  15168. float * d,
  15169. float * step,
  15170. const float * xp,
  15171. struct ggml_tensor * f,
  15172. struct ggml_cgraph * gb,
  15173. struct ggml_cplan * cplan,
  15174. const int np,
  15175. struct ggml_tensor * ps[],
  15176. bool * cancel,
  15177. ggml_opt_callback callback,
  15178. void * callback_data) {
  15179. int count = 0;
  15180. float width = 0.0f;
  15181. float dg = 0.0f;
  15182. float finit = 0.0f;
  15183. float dginit = 0.0f;
  15184. float dgtest = 0.0f;
  15185. const float dec = 0.5f;
  15186. const float inc = 2.1f;
  15187. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15188. const float accum_norm = 1.0f / (float) n_accum;
  15189. if (*step <= 0.f) {
  15190. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15191. }
  15192. // compute the initial gradient in the search direction
  15193. ggml_vec_dot_f32(nx, &dginit, g, d);
  15194. // make sure that d points to a descent direction
  15195. if (0 < dginit) {
  15196. return GGML_LINESEARCH_FAIL;
  15197. }
  15198. // initialize local variables
  15199. finit = *fx;
  15200. dgtest = params->lbfgs.ftol*dginit;
  15201. while (true) {
  15202. ggml_vec_cpy_f32(nx, x, xp);
  15203. ggml_vec_mad_f32(nx, x, d, *step);
  15204. // evaluate the function and gradient values
  15205. {
  15206. ggml_opt_set_params(np, ps, x);
  15207. *fx = 0;
  15208. memset(g, 0, sizeof(float)*nx);
  15209. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15210. if (callback) {
  15211. // LBFG-S does not support learning rate -> ignore learning schedule
  15212. float sched = 0;
  15213. callback(callback_data, accum_step, &sched, cancel);
  15214. if (*cancel) {
  15215. return GGML_OPT_CANCEL;
  15216. }
  15217. }
  15218. // ggml_graph_reset (gf);
  15219. ggml_set_f32 (f->grad, 1.0f);
  15220. ggml_graph_compute(gb, cplan);
  15221. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15222. *fx += ggml_get_f32_1d(f, 0);
  15223. }
  15224. *fx *= accum_norm;
  15225. }
  15226. ++count;
  15227. if (*fx > finit + (*step)*dgtest) {
  15228. width = dec;
  15229. } else {
  15230. // Armijo condition is satisfied
  15231. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15232. return count;
  15233. }
  15234. ggml_vec_dot_f32(nx, &dg, g, d);
  15235. // check the Wolfe condition
  15236. if (dg < params->lbfgs.wolfe * dginit) {
  15237. width = inc;
  15238. } else {
  15239. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15240. // regular Wolfe conditions
  15241. return count;
  15242. }
  15243. if(dg > -params->lbfgs.wolfe*dginit) {
  15244. width = dec;
  15245. } else {
  15246. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15247. return count;
  15248. }
  15249. }
  15250. }
  15251. if (*step < params->lbfgs.min_step) {
  15252. return GGML_LINESEARCH_MINIMUM_STEP;
  15253. }
  15254. if (*step > params->lbfgs.max_step) {
  15255. return GGML_LINESEARCH_MAXIMUM_STEP;
  15256. }
  15257. if (params->lbfgs.max_linesearch <= count) {
  15258. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15259. }
  15260. (*step) *= width;
  15261. }
  15262. GGML_UNREACHABLE();
  15263. }
  15264. static enum ggml_opt_result ggml_opt_lbfgs(
  15265. struct ggml_context * ctx,
  15266. struct ggml_opt_context * opt,
  15267. struct ggml_opt_params params,
  15268. struct ggml_tensor * f,
  15269. struct ggml_cgraph * gf,
  15270. struct ggml_cgraph * gb,
  15271. ggml_opt_callback callback,
  15272. void * callback_data) {
  15273. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15274. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15275. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15276. return GGML_OPT_INVALID_WOLFE;
  15277. }
  15278. }
  15279. const int m = params.lbfgs.m;
  15280. // these will store the parameters we want to optimize
  15281. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15282. int np = 0;
  15283. int nx = 0;
  15284. for (int i = 0; i < gf->n_nodes; ++i) {
  15285. if (gf->nodes[i]->is_param) {
  15286. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15287. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15288. ps[np++] = gf->nodes[i];
  15289. nx += ggml_nelements(gf->nodes[i]);
  15290. }
  15291. }
  15292. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15293. int iter = opt->iter;
  15294. ggml_opt_init(ctx, opt, params, nx);
  15295. opt->iter = iter;
  15296. }
  15297. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15298. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15299. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15300. float * x = opt->lbfgs.x->data; // current parameters
  15301. float * xp = opt->lbfgs.xp->data; // previous parameters
  15302. float * g = opt->lbfgs.g->data; // current gradient
  15303. float * gp = opt->lbfgs.gp->data; // previous gradient
  15304. float * d = opt->lbfgs.d->data; // search direction
  15305. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15306. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15307. const float accum_norm = 1.0f / (float) n_accum;
  15308. float fx = 0.0f; // cost function value
  15309. float xnorm = 0.0f; // ||x||
  15310. float gnorm = 0.0f; // ||g||
  15311. // initialize x from the graph nodes
  15312. ggml_opt_get_params(np, ps, x);
  15313. // the L-BFGS memory
  15314. float * lm_alpha = opt->lbfgs.lmal->data;
  15315. float * lm_ys = opt->lbfgs.lmys->data;
  15316. float * lm_s = opt->lbfgs.lms->data;
  15317. float * lm_y = opt->lbfgs.lmy->data;
  15318. bool cancel = false;
  15319. // evaluate the function value and its gradient
  15320. {
  15321. ggml_opt_set_params(np, ps, x);
  15322. fx = 0;
  15323. memset(g, 0, sizeof(float)*nx);
  15324. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15325. if (callback) {
  15326. // LBFG-S does not support learning rate -> ignore learning schedule
  15327. float sched = 0;
  15328. callback(callback_data, accum_step, &sched, &cancel);
  15329. if (cancel) {
  15330. return GGML_OPT_CANCEL;
  15331. }
  15332. }
  15333. // ggml_graph_reset (gf);
  15334. ggml_set_f32 (f->grad, 1.0f);
  15335. ggml_graph_compute(gb, &cplan);
  15336. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15337. fx += ggml_get_f32_1d(f, 0);
  15338. }
  15339. fx *= accum_norm;
  15340. opt->loss_before = fx;
  15341. opt->loss_after = fx;
  15342. }
  15343. // search direction = -gradient
  15344. ggml_vec_neg_f32(nx, d, g);
  15345. // ||x||, ||g||
  15346. ggml_vec_norm_f32(nx, &xnorm, x);
  15347. ggml_vec_norm_f32(nx, &gnorm, g);
  15348. if (xnorm < 1.0f) {
  15349. xnorm = 1.0f;
  15350. }
  15351. // already optimized
  15352. if (gnorm/xnorm <= params.lbfgs.eps) {
  15353. return GGML_OPT_OK;
  15354. }
  15355. if (opt->just_initialized) {
  15356. if (pf) {
  15357. pf[0] = fx;
  15358. }
  15359. opt->lbfgs.fx_best = fx;
  15360. // initial step
  15361. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15362. opt->lbfgs.j = 0;
  15363. opt->lbfgs.k = 1;
  15364. opt->lbfgs.end = 0;
  15365. opt->lbfgs.n_no_improvement = 0;
  15366. opt->just_initialized = false;
  15367. }
  15368. float * fx_best = &opt->lbfgs.fx_best;
  15369. float * step = &opt->lbfgs.step;
  15370. int * j = &opt->lbfgs.j;
  15371. int * k = &opt->lbfgs.k;
  15372. int * end = &opt->lbfgs.end;
  15373. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15374. int ls = 0;
  15375. int bound = 0;
  15376. float ys = 0.0f;
  15377. float yy = 0.0f;
  15378. float beta = 0.0f;
  15379. int it = 0;
  15380. while (true) {
  15381. // store the current position and gradient vectors
  15382. ggml_vec_cpy_f32(nx, xp, x);
  15383. ggml_vec_cpy_f32(nx, gp, g);
  15384. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15385. // to determine if the optimization should be cancelled
  15386. // this is a simple change, but not doing this atm, since I don't have a nice
  15387. // way to test and don't want to break something with so many changes lined up
  15388. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15389. if (cancel) {
  15390. return GGML_OPT_CANCEL;
  15391. }
  15392. if (ls < 0) {
  15393. // linesearch failed - go back to the previous point and return
  15394. ggml_vec_cpy_f32(nx, x, xp);
  15395. ggml_vec_cpy_f32(nx, g, gp);
  15396. return ls;
  15397. }
  15398. opt->loss_after = fx;
  15399. ggml_vec_norm_f32(nx, &xnorm, x);
  15400. ggml_vec_norm_f32(nx, &gnorm, g);
  15401. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15402. if (xnorm < 1.0f) {
  15403. xnorm = 1.0f;
  15404. }
  15405. if (gnorm/xnorm <= params.lbfgs.eps) {
  15406. // converged
  15407. return GGML_OPT_OK;
  15408. }
  15409. // delta-based convergence test
  15410. if (pf != NULL) {
  15411. // need at least params.past iterations to start checking for convergence
  15412. if (params.past <= k[0]) {
  15413. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15414. if (fabsf(rate) < params.delta) {
  15415. return GGML_OPT_OK;
  15416. }
  15417. }
  15418. pf[k[0]%params.past] = fx;
  15419. }
  15420. // check for improvement
  15421. if (params.max_no_improvement > 0) {
  15422. if (fx < fx_best[0]) {
  15423. fx_best[0] = fx;
  15424. n_no_improvement[0] = 0;
  15425. } else {
  15426. n_no_improvement[0]++;
  15427. if (n_no_improvement[0] >= params.max_no_improvement) {
  15428. return GGML_OPT_OK;
  15429. }
  15430. }
  15431. }
  15432. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15433. // reached the maximum number of iterations
  15434. return GGML_OPT_DID_NOT_CONVERGE;
  15435. }
  15436. // update vectors s and y:
  15437. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15438. // y_{k+1} = g_{k+1} - g_{k}.
  15439. //
  15440. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15441. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15442. // compute scalars ys and yy:
  15443. // ys = y^t \cdot s -> 1 / \rho.
  15444. // yy = y^t \cdot y.
  15445. //
  15446. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15447. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15448. lm_ys[end[0]] = ys;
  15449. // find new search direction
  15450. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15451. bound = (m <= k[0]) ? m : k[0];
  15452. k[0]++;
  15453. it++;
  15454. end[0] = (end[0] + 1)%m;
  15455. // initialize search direction with -g
  15456. ggml_vec_neg_f32(nx, d, g);
  15457. j[0] = end[0];
  15458. for (int i = 0; i < bound; ++i) {
  15459. j[0] = (j[0] + m - 1) % m;
  15460. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15461. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15462. lm_alpha[j[0]] /= lm_ys[j[0]];
  15463. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15464. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15465. }
  15466. ggml_vec_scale_f32(nx, d, ys/yy);
  15467. for (int i = 0; i < bound; ++i) {
  15468. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15469. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15470. beta /= lm_ys[j[0]];
  15471. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15472. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15473. j[0] = (j[0] + 1)%m;
  15474. }
  15475. step[0] = 1.0;
  15476. }
  15477. GGML_UNREACHABLE();
  15478. }
  15479. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15480. struct ggml_opt_params result;
  15481. switch (type) {
  15482. case GGML_OPT_ADAM:
  15483. {
  15484. result = (struct ggml_opt_params) {
  15485. .type = GGML_OPT_ADAM,
  15486. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15487. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15488. .past = 0,
  15489. .delta = 1e-5f,
  15490. .max_no_improvement = 100,
  15491. .print_forward_graph = true,
  15492. .print_backward_graph = true,
  15493. .n_gradient_accumulation = 1,
  15494. .adam = {
  15495. .n_iter = 10000,
  15496. .sched = 1.000f,
  15497. .decay = 0.0f,
  15498. .decay_min_ndim = 2,
  15499. .alpha = 0.001f,
  15500. .beta1 = 0.9f,
  15501. .beta2 = 0.999f,
  15502. .eps = 1e-8f,
  15503. .eps_f = 1e-5f,
  15504. .eps_g = 1e-3f,
  15505. .gclip = 0.0f,
  15506. },
  15507. };
  15508. } break;
  15509. case GGML_OPT_LBFGS:
  15510. {
  15511. result = (struct ggml_opt_params) {
  15512. .type = GGML_OPT_LBFGS,
  15513. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15514. .n_threads = 1,
  15515. .past = 0,
  15516. .delta = 1e-5f,
  15517. .max_no_improvement = 0,
  15518. .print_forward_graph = true,
  15519. .print_backward_graph = true,
  15520. .n_gradient_accumulation = 1,
  15521. .lbfgs = {
  15522. .m = 6,
  15523. .n_iter = 100,
  15524. .max_linesearch = 20,
  15525. .eps = 1e-5f,
  15526. .ftol = 1e-4f,
  15527. .wolfe = 0.9f,
  15528. .min_step = 1e-20f,
  15529. .max_step = 1e+20f,
  15530. .linesearch = GGML_LINESEARCH_DEFAULT,
  15531. },
  15532. };
  15533. } break;
  15534. }
  15535. return result;
  15536. }
  15537. GGML_API void ggml_opt_init(
  15538. struct ggml_context * ctx,
  15539. struct ggml_opt_context * opt,
  15540. struct ggml_opt_params params,
  15541. int64_t nx) {
  15542. opt->ctx = ctx;
  15543. opt->params = params;
  15544. opt->iter = 0;
  15545. opt->nx = nx;
  15546. opt->just_initialized = true;
  15547. if (opt->ctx == NULL) {
  15548. struct ggml_init_params ctx_opt_params;
  15549. if (opt->params.type == GGML_OPT_ADAM) {
  15550. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15551. if (opt->params.past > 0) {
  15552. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15553. }
  15554. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15555. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15556. if (opt->params.past > 0) {
  15557. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15558. }
  15559. }
  15560. ctx_opt_params.mem_buffer = NULL;
  15561. ctx_opt_params.no_alloc = false;
  15562. opt->ctx = ggml_init(ctx_opt_params);
  15563. }
  15564. switch (opt->params.type) {
  15565. case GGML_OPT_ADAM:
  15566. {
  15567. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15568. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15569. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15570. opt->adam.pf = params.past > 0
  15571. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15572. : NULL;
  15573. ggml_set_zero(opt->adam.m);
  15574. ggml_set_zero(opt->adam.v);
  15575. if (opt->adam.pf) {
  15576. ggml_set_zero(opt->adam.pf);
  15577. }
  15578. } break;
  15579. case GGML_OPT_LBFGS:
  15580. {
  15581. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15582. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15583. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15584. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15585. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15586. opt->lbfgs.pf = params.past > 0
  15587. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15588. : NULL;
  15589. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15590. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15591. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15592. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15593. ggml_set_zero(opt->lbfgs.x);
  15594. ggml_set_zero(opt->lbfgs.xp);
  15595. ggml_set_zero(opt->lbfgs.g);
  15596. ggml_set_zero(opt->lbfgs.gp);
  15597. ggml_set_zero(opt->lbfgs.d);
  15598. if (opt->lbfgs.pf) {
  15599. ggml_set_zero(opt->lbfgs.pf);
  15600. }
  15601. ggml_set_zero(opt->lbfgs.lmal);
  15602. ggml_set_zero(opt->lbfgs.lmys);
  15603. ggml_set_zero(opt->lbfgs.lms);
  15604. ggml_set_zero(opt->lbfgs.lmy);
  15605. } break;
  15606. }
  15607. }
  15608. enum ggml_opt_result ggml_opt(
  15609. struct ggml_context * ctx,
  15610. struct ggml_opt_params params,
  15611. struct ggml_tensor * f) {
  15612. bool free_ctx = false;
  15613. if (ctx == NULL) {
  15614. struct ggml_init_params params_ctx = {
  15615. .mem_size = 16*1024*1024,
  15616. .mem_buffer = NULL,
  15617. .no_alloc = false,
  15618. };
  15619. ctx = ggml_init(params_ctx);
  15620. if (ctx == NULL) {
  15621. return GGML_OPT_NO_CONTEXT;
  15622. }
  15623. free_ctx = true;
  15624. }
  15625. enum ggml_opt_result result = GGML_OPT_OK;
  15626. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15627. ggml_opt_init(ctx, opt, params, 0);
  15628. result = ggml_opt_resume(ctx, opt, f);
  15629. if (free_ctx) {
  15630. ggml_free(ctx);
  15631. }
  15632. return result;
  15633. }
  15634. enum ggml_opt_result ggml_opt_resume(
  15635. struct ggml_context * ctx,
  15636. struct ggml_opt_context * opt,
  15637. struct ggml_tensor * f) {
  15638. // build forward + backward compute graphs
  15639. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15640. ggml_build_forward_expand(gf, f);
  15641. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15642. ggml_build_backward_expand(ctx, gf, gb, true);
  15643. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15644. }
  15645. enum ggml_opt_result ggml_opt_resume_g(
  15646. struct ggml_context * ctx,
  15647. struct ggml_opt_context * opt,
  15648. struct ggml_tensor * f,
  15649. struct ggml_cgraph * gf,
  15650. struct ggml_cgraph * gb,
  15651. ggml_opt_callback callback,
  15652. void * callback_data) {
  15653. // build forward + backward compute graphs
  15654. enum ggml_opt_result result = GGML_OPT_OK;
  15655. switch (opt->params.type) {
  15656. case GGML_OPT_ADAM:
  15657. {
  15658. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15659. } break;
  15660. case GGML_OPT_LBFGS:
  15661. {
  15662. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15663. } break;
  15664. }
  15665. if (opt->params.print_forward_graph) {
  15666. ggml_graph_print (gf);
  15667. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15668. }
  15669. if (opt->params.print_backward_graph) {
  15670. ggml_graph_print (gb);
  15671. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15672. }
  15673. return result;
  15674. }
  15675. ////////////////////////////////////////////////////////////////////////////////
  15676. void ggml_quantize_init(enum ggml_type type) {
  15677. ggml_critical_section_start();
  15678. switch (type) {
  15679. case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
  15680. case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
  15681. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  15682. default: // nothing
  15683. break;
  15684. }
  15685. ggml_critical_section_end();
  15686. }
  15687. void ggml_quantize_free(void) {
  15688. ggml_critical_section_start();
  15689. iq2xs_free_impl(256);
  15690. iq2xs_free_impl(512);
  15691. ggml_critical_section_end();
  15692. }
  15693. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15694. assert(k % QK4_0 == 0);
  15695. const int nb = k / QK4_0;
  15696. for (int b = 0; b < n; b += k) {
  15697. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15698. quantize_row_q4_0_reference(src + b, y, k);
  15699. for (int i = 0; i < nb; i++) {
  15700. for (int j = 0; j < QK4_0; j += 2) {
  15701. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15702. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15703. hist[vi0]++;
  15704. hist[vi1]++;
  15705. }
  15706. }
  15707. }
  15708. return (n/QK4_0*sizeof(block_q4_0));
  15709. }
  15710. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15711. assert(k % QK4_1 == 0);
  15712. const int nb = k / QK4_1;
  15713. for (int b = 0; b < n; b += k) {
  15714. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15715. quantize_row_q4_1_reference(src + b, y, k);
  15716. for (int i = 0; i < nb; i++) {
  15717. for (int j = 0; j < QK4_1; j += 2) {
  15718. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15719. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15720. hist[vi0]++;
  15721. hist[vi1]++;
  15722. }
  15723. }
  15724. }
  15725. return (n/QK4_1*sizeof(block_q4_1));
  15726. }
  15727. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15728. assert(k % QK5_0 == 0);
  15729. const int nb = k / QK5_0;
  15730. for (int b = 0; b < n; b += k) {
  15731. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15732. quantize_row_q5_0_reference(src + b, y, k);
  15733. for (int i = 0; i < nb; i++) {
  15734. uint32_t qh;
  15735. memcpy(&qh, &y[i].qh, sizeof(qh));
  15736. for (int j = 0; j < QK5_0; j += 2) {
  15737. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15738. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15739. // cast to 16 bins
  15740. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15741. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15742. hist[vi0]++;
  15743. hist[vi1]++;
  15744. }
  15745. }
  15746. }
  15747. return (n/QK5_0*sizeof(block_q5_0));
  15748. }
  15749. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15750. assert(k % QK5_1 == 0);
  15751. const int nb = k / QK5_1;
  15752. for (int b = 0; b < n; b += k) {
  15753. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15754. quantize_row_q5_1_reference(src + b, y, k);
  15755. for (int i = 0; i < nb; i++) {
  15756. uint32_t qh;
  15757. memcpy(&qh, &y[i].qh, sizeof(qh));
  15758. for (int j = 0; j < QK5_1; j += 2) {
  15759. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15760. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15761. // cast to 16 bins
  15762. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15763. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15764. hist[vi0]++;
  15765. hist[vi1]++;
  15766. }
  15767. }
  15768. }
  15769. return (n/QK5_1*sizeof(block_q5_1));
  15770. }
  15771. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15772. assert(k % QK8_0 == 0);
  15773. const int nb = k / QK8_0;
  15774. for (int b = 0; b < n; b += k) {
  15775. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15776. quantize_row_q8_0_reference(src + b, y, k);
  15777. for (int i = 0; i < nb; i++) {
  15778. for (int j = 0; j < QK8_0; ++j) {
  15779. const int8_t vi = y[i].qs[j];
  15780. hist[vi/16 + 8]++;
  15781. }
  15782. }
  15783. }
  15784. return (n/QK8_0*sizeof(block_q8_0));
  15785. }
  15786. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  15787. return
  15788. type == GGML_TYPE_IQ2_XXS ||
  15789. type == GGML_TYPE_IQ2_XS;
  15790. }
  15791. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  15792. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  15793. ggml_quantize_init(type); // this is noop if already initialized
  15794. size_t result = 0;
  15795. int n = nrows * n_per_row;
  15796. switch (type) {
  15797. case GGML_TYPE_Q4_0:
  15798. {
  15799. GGML_ASSERT(start % QK4_0 == 0);
  15800. GGML_ASSERT(start % n_per_row == 0);
  15801. size_t start_row = start / n_per_row;
  15802. size_t row_size = ggml_row_size(type, n_per_row);
  15803. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15804. GGML_ASSERT(result == row_size * nrows);
  15805. } break;
  15806. case GGML_TYPE_Q4_1:
  15807. {
  15808. GGML_ASSERT(start % QK4_1 == 0);
  15809. GGML_ASSERT(start % n_per_row == 0);
  15810. size_t start_row = start / n_per_row;
  15811. size_t row_size = ggml_row_size(type, n_per_row);
  15812. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15813. GGML_ASSERT(result == row_size * nrows);
  15814. } break;
  15815. case GGML_TYPE_Q5_0:
  15816. {
  15817. GGML_ASSERT(start % QK5_0 == 0);
  15818. GGML_ASSERT(start % n_per_row == 0);
  15819. size_t start_row = start / n_per_row;
  15820. size_t row_size = ggml_row_size(type, n_per_row);
  15821. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15822. GGML_ASSERT(result == row_size * nrows);
  15823. } break;
  15824. case GGML_TYPE_Q5_1:
  15825. {
  15826. GGML_ASSERT(start % QK5_1 == 0);
  15827. GGML_ASSERT(start % n_per_row == 0);
  15828. size_t start_row = start / n_per_row;
  15829. size_t row_size = ggml_row_size(type, n_per_row);
  15830. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15831. GGML_ASSERT(result == row_size * nrows);
  15832. } break;
  15833. case GGML_TYPE_Q8_0:
  15834. {
  15835. GGML_ASSERT(start % QK8_0 == 0);
  15836. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15837. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15838. } break;
  15839. case GGML_TYPE_Q2_K:
  15840. {
  15841. GGML_ASSERT(start % QK_K == 0);
  15842. GGML_ASSERT(start % n_per_row == 0);
  15843. size_t start_row = start / n_per_row;
  15844. size_t row_size = ggml_row_size(type, n_per_row);
  15845. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15846. GGML_ASSERT(result == row_size * nrows);
  15847. } break;
  15848. case GGML_TYPE_Q3_K:
  15849. {
  15850. GGML_ASSERT(start % QK_K == 0);
  15851. GGML_ASSERT(start % n_per_row == 0);
  15852. size_t start_row = start / n_per_row;
  15853. size_t row_size = ggml_row_size(type, n_per_row);
  15854. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15855. GGML_ASSERT(result == row_size * nrows);
  15856. } break;
  15857. case GGML_TYPE_Q4_K:
  15858. {
  15859. GGML_ASSERT(start % QK_K == 0);
  15860. GGML_ASSERT(start % n_per_row == 0);
  15861. size_t start_row = start / n_per_row;
  15862. size_t row_size = ggml_row_size(type, n_per_row);
  15863. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15864. GGML_ASSERT(result == row_size * nrows);
  15865. } break;
  15866. case GGML_TYPE_Q5_K:
  15867. {
  15868. GGML_ASSERT(start % QK_K == 0);
  15869. GGML_ASSERT(start % n_per_row == 0);
  15870. size_t start_row = start / n_per_row;
  15871. size_t row_size = ggml_row_size(type, n_per_row);
  15872. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15873. GGML_ASSERT(result == row_size * nrows);
  15874. } break;
  15875. case GGML_TYPE_Q6_K:
  15876. {
  15877. GGML_ASSERT(start % QK_K == 0);
  15878. GGML_ASSERT(start % n_per_row == 0);
  15879. size_t start_row = start / n_per_row;
  15880. size_t row_size = ggml_row_size(type, n_per_row);
  15881. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15882. GGML_ASSERT(result == row_size * nrows);
  15883. } break;
  15884. case GGML_TYPE_IQ2_XXS:
  15885. {
  15886. GGML_ASSERT(start % QK_K == 0);
  15887. GGML_ASSERT(start % n_per_row == 0);
  15888. GGML_ASSERT(imatrix);
  15889. size_t start_row = start / n_per_row;
  15890. size_t row_size = ggml_row_size(type, n_per_row);
  15891. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15892. GGML_ASSERT(result == row_size * nrows);
  15893. } break;
  15894. case GGML_TYPE_IQ2_XS:
  15895. {
  15896. GGML_ASSERT(start % QK_K == 0);
  15897. GGML_ASSERT(start % n_per_row == 0);
  15898. GGML_ASSERT(imatrix);
  15899. size_t start_row = start / n_per_row;
  15900. size_t row_size = ggml_row_size(type, n_per_row);
  15901. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15902. GGML_ASSERT(result == row_size * nrows);
  15903. } break;
  15904. case GGML_TYPE_IQ3_XXS:
  15905. {
  15906. GGML_ASSERT(start % QK_K == 0);
  15907. GGML_ASSERT(start % n_per_row == 0);
  15908. size_t start_row = start / n_per_row;
  15909. size_t row_size = ggml_row_size(type, n_per_row);
  15910. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15911. GGML_ASSERT(result == row_size * nrows);
  15912. } break;
  15913. case GGML_TYPE_F16:
  15914. {
  15915. size_t elemsize = sizeof(ggml_fp16_t);
  15916. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15917. result = n * elemsize;
  15918. } break;
  15919. case GGML_TYPE_F32:
  15920. {
  15921. size_t elemsize = sizeof(float);
  15922. result = n * elemsize;
  15923. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15924. } break;
  15925. default:
  15926. assert(false);
  15927. }
  15928. return result;
  15929. }
  15930. ////////////////////////////////////////////////////////////////////////////////
  15931. struct gguf_str {
  15932. uint64_t n; // GGUFv2
  15933. char * data;
  15934. };
  15935. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15936. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15937. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15938. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15939. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15940. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15941. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15942. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15943. [GGUF_TYPE_BOOL] = sizeof(bool),
  15944. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15945. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15946. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15947. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15948. [GGUF_TYPE_ARRAY] = 0, // undefined
  15949. };
  15950. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15951. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15952. [GGUF_TYPE_UINT8] = "u8",
  15953. [GGUF_TYPE_INT8] = "i8",
  15954. [GGUF_TYPE_UINT16] = "u16",
  15955. [GGUF_TYPE_INT16] = "i16",
  15956. [GGUF_TYPE_UINT32] = "u32",
  15957. [GGUF_TYPE_INT32] = "i32",
  15958. [GGUF_TYPE_FLOAT32] = "f32",
  15959. [GGUF_TYPE_BOOL] = "bool",
  15960. [GGUF_TYPE_STRING] = "str",
  15961. [GGUF_TYPE_ARRAY] = "arr",
  15962. [GGUF_TYPE_UINT64] = "u64",
  15963. [GGUF_TYPE_INT64] = "i64",
  15964. [GGUF_TYPE_FLOAT64] = "f64",
  15965. };
  15966. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15967. union gguf_value {
  15968. uint8_t uint8;
  15969. int8_t int8;
  15970. uint16_t uint16;
  15971. int16_t int16;
  15972. uint32_t uint32;
  15973. int32_t int32;
  15974. float float32;
  15975. uint64_t uint64;
  15976. int64_t int64;
  15977. double float64;
  15978. bool bool_;
  15979. struct gguf_str str;
  15980. struct {
  15981. enum gguf_type type;
  15982. uint64_t n; // GGUFv2
  15983. void * data;
  15984. } arr;
  15985. };
  15986. struct gguf_kv {
  15987. struct gguf_str key;
  15988. enum gguf_type type;
  15989. union gguf_value value;
  15990. };
  15991. struct gguf_header {
  15992. char magic[4];
  15993. uint32_t version;
  15994. uint64_t n_tensors; // GGUFv2
  15995. uint64_t n_kv; // GGUFv2
  15996. };
  15997. struct gguf_tensor_info {
  15998. struct gguf_str name;
  15999. uint32_t n_dims;
  16000. uint64_t ne[GGML_MAX_DIMS];
  16001. enum ggml_type type;
  16002. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16003. // for writing API
  16004. const void * data;
  16005. size_t size;
  16006. };
  16007. struct gguf_context {
  16008. struct gguf_header header;
  16009. struct gguf_kv * kv;
  16010. struct gguf_tensor_info * infos;
  16011. size_t alignment;
  16012. size_t offset; // offset of `data` from beginning of file
  16013. size_t size; // size of `data` in bytes
  16014. //uint8_t * padding;
  16015. void * data;
  16016. };
  16017. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16018. const size_t n = fread(dst, 1, size, file);
  16019. *offset += n;
  16020. return n == size;
  16021. }
  16022. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16023. p->n = 0;
  16024. p->data = NULL;
  16025. bool ok = true;
  16026. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16027. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16028. return ok;
  16029. }
  16030. struct gguf_context * gguf_init_empty(void) {
  16031. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16032. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16033. ctx->header.version = GGUF_VERSION;
  16034. ctx->header.n_tensors = 0;
  16035. ctx->header.n_kv = 0;
  16036. ctx->kv = NULL;
  16037. ctx->infos = NULL;
  16038. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16039. ctx->offset = 0;
  16040. ctx->size = 0;
  16041. ctx->data = NULL;
  16042. return ctx;
  16043. }
  16044. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16045. FILE * file = fopen(fname, "rb");
  16046. if (!file) {
  16047. return NULL;
  16048. }
  16049. // offset from start of file
  16050. size_t offset = 0;
  16051. char magic[4];
  16052. // check the magic before making allocations
  16053. {
  16054. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16055. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16056. if (magic[i] != GGUF_MAGIC[i]) {
  16057. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16058. fclose(file);
  16059. return NULL;
  16060. }
  16061. }
  16062. }
  16063. bool ok = true;
  16064. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16065. // read the header
  16066. {
  16067. strncpy(ctx->header.magic, magic, 4);
  16068. ctx->kv = NULL;
  16069. ctx->infos = NULL;
  16070. ctx->data = NULL;
  16071. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16072. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16073. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16074. if (ctx->header.version == 1) {
  16075. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16076. fclose(file);
  16077. gguf_free(ctx);
  16078. return NULL;
  16079. }
  16080. if (!ok) {
  16081. fprintf(stderr, "%s: failed to read header\n", __func__);
  16082. fclose(file);
  16083. gguf_free(ctx);
  16084. return NULL;
  16085. }
  16086. }
  16087. // read the kv pairs
  16088. {
  16089. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16090. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16091. struct gguf_kv * kv = &ctx->kv[i];
  16092. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16093. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16094. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16095. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16096. switch (kv->type) {
  16097. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16098. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16099. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16100. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16101. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16102. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16103. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16104. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16105. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16106. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16107. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16108. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16109. case GGUF_TYPE_ARRAY:
  16110. {
  16111. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16112. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16113. switch (kv->value.arr.type) {
  16114. case GGUF_TYPE_UINT8:
  16115. case GGUF_TYPE_INT8:
  16116. case GGUF_TYPE_UINT16:
  16117. case GGUF_TYPE_INT16:
  16118. case GGUF_TYPE_UINT32:
  16119. case GGUF_TYPE_INT32:
  16120. case GGUF_TYPE_FLOAT32:
  16121. case GGUF_TYPE_UINT64:
  16122. case GGUF_TYPE_INT64:
  16123. case GGUF_TYPE_FLOAT64:
  16124. case GGUF_TYPE_BOOL:
  16125. {
  16126. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16127. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16128. } break;
  16129. case GGUF_TYPE_STRING:
  16130. {
  16131. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16132. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16133. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16134. }
  16135. } break;
  16136. case GGUF_TYPE_ARRAY:
  16137. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16138. }
  16139. } break;
  16140. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16141. }
  16142. if (!ok) {
  16143. break;
  16144. }
  16145. }
  16146. if (!ok) {
  16147. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16148. fclose(file);
  16149. gguf_free(ctx);
  16150. return NULL;
  16151. }
  16152. }
  16153. // read the tensor infos
  16154. {
  16155. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16156. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16157. struct gguf_tensor_info * info = &ctx->infos[i];
  16158. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16159. info->ne[j] = 1;
  16160. }
  16161. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16162. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16163. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16164. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16165. }
  16166. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16167. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16168. if (!ok) {
  16169. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16170. fclose(file);
  16171. gguf_free(ctx);
  16172. return NULL;
  16173. }
  16174. }
  16175. }
  16176. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16177. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16178. if (alignment_idx != -1) {
  16179. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16180. }
  16181. // we require the data section to be aligned, so take into account any padding
  16182. {
  16183. const size_t offset_pad = offset % ctx->alignment;
  16184. if (offset_pad != 0) {
  16185. offset += ctx->alignment - offset_pad;
  16186. fseek(file, offset, SEEK_SET);
  16187. }
  16188. }
  16189. // store the current file offset - this is where the data section starts
  16190. ctx->offset = offset;
  16191. // compute the total size of the data section, taking into account the alignment
  16192. {
  16193. ctx->size = 0;
  16194. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16195. struct gguf_tensor_info * info = &ctx->infos[i];
  16196. const int64_t ne =
  16197. (int64_t) info->ne[0] *
  16198. (int64_t) info->ne[1] *
  16199. (int64_t) info->ne[2] *
  16200. (int64_t) info->ne[3];
  16201. if (ne % ggml_blck_size(info->type) != 0) {
  16202. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16203. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16204. fclose(file);
  16205. gguf_free(ctx);
  16206. return NULL;
  16207. }
  16208. const size_t size_cur = ggml_row_size(info->type, ne);
  16209. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16210. }
  16211. }
  16212. // load the tensor data only if requested
  16213. if (params.ctx != NULL) {
  16214. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16215. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16216. // the ggml_tensor structs to the appropriate locations in the binary blob
  16217. // compute the exact size needed for the new ggml_context
  16218. const size_t mem_size =
  16219. params.no_alloc ?
  16220. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16221. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16222. struct ggml_init_params pdata = {
  16223. .mem_size = mem_size,
  16224. .mem_buffer = NULL,
  16225. .no_alloc = params.no_alloc,
  16226. };
  16227. *params.ctx = ggml_init(pdata);
  16228. struct ggml_context * ctx_data = *params.ctx;
  16229. struct ggml_tensor * data = NULL;
  16230. if (!params.no_alloc) {
  16231. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16232. ok = ok && data != NULL;
  16233. // read the binary blob with the tensor data
  16234. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16235. if (!ok) {
  16236. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16237. fclose(file);
  16238. ggml_free(ctx_data);
  16239. gguf_free(ctx);
  16240. return NULL;
  16241. }
  16242. ctx->data = data->data;
  16243. }
  16244. ggml_set_no_alloc(ctx_data, true);
  16245. // create the tensors
  16246. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16247. const int64_t ne[GGML_MAX_DIMS] = {
  16248. ctx->infos[i].ne[0],
  16249. ctx->infos[i].ne[1],
  16250. ctx->infos[i].ne[2],
  16251. ctx->infos[i].ne[3],
  16252. };
  16253. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16254. ok = ok && cur != NULL;
  16255. ggml_set_name(cur, ctx->infos[i].name.data);
  16256. if (!ok) {
  16257. break;
  16258. }
  16259. // point the data member to the appropriate location in the binary blob using the tensor infos
  16260. if (!params.no_alloc) {
  16261. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16262. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16263. }
  16264. }
  16265. if (!ok) {
  16266. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16267. fclose(file);
  16268. ggml_free(ctx_data);
  16269. gguf_free(ctx);
  16270. return NULL;
  16271. }
  16272. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16273. }
  16274. fclose(file);
  16275. return ctx;
  16276. }
  16277. void gguf_free(struct gguf_context * ctx) {
  16278. if (ctx == NULL) {
  16279. return;
  16280. }
  16281. if (ctx->kv) {
  16282. // free string memory - not great..
  16283. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16284. struct gguf_kv * kv = &ctx->kv[i];
  16285. if (kv->key.data) {
  16286. free(kv->key.data);
  16287. }
  16288. if (kv->type == GGUF_TYPE_STRING) {
  16289. if (kv->value.str.data) {
  16290. free(kv->value.str.data);
  16291. }
  16292. }
  16293. if (kv->type == GGUF_TYPE_ARRAY) {
  16294. if (kv->value.arr.data) {
  16295. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16296. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16297. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16298. if (str->data) {
  16299. free(str->data);
  16300. }
  16301. }
  16302. }
  16303. free(kv->value.arr.data);
  16304. }
  16305. }
  16306. }
  16307. free(ctx->kv);
  16308. }
  16309. if (ctx->infos) {
  16310. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16311. struct gguf_tensor_info * info = &ctx->infos[i];
  16312. if (info->name.data) {
  16313. free(info->name.data);
  16314. }
  16315. }
  16316. free(ctx->infos);
  16317. }
  16318. GGML_ALIGNED_FREE(ctx);
  16319. }
  16320. const char * gguf_type_name(enum gguf_type type) {
  16321. return GGUF_TYPE_NAME[type];
  16322. }
  16323. int gguf_get_version(const struct gguf_context * ctx) {
  16324. return ctx->header.version;
  16325. }
  16326. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16327. return ctx->alignment;
  16328. }
  16329. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16330. return ctx->offset;
  16331. }
  16332. void * gguf_get_data(const struct gguf_context * ctx) {
  16333. return ctx->data;
  16334. }
  16335. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16336. return ctx->header.n_kv;
  16337. }
  16338. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16339. // return -1 if key not found
  16340. int keyfound = -1;
  16341. const int n_kv = gguf_get_n_kv(ctx);
  16342. for (int i = 0; i < n_kv; ++i) {
  16343. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16344. keyfound = i;
  16345. break;
  16346. }
  16347. }
  16348. return keyfound;
  16349. }
  16350. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16351. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16352. return ctx->kv[key_id].key.data;
  16353. }
  16354. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16355. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16356. return ctx->kv[key_id].type;
  16357. }
  16358. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16359. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16360. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16361. return ctx->kv[key_id].value.arr.type;
  16362. }
  16363. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16364. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16365. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16366. return ctx->kv[key_id].value.arr.data;
  16367. }
  16368. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16369. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16370. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16371. struct gguf_kv * kv = &ctx->kv[key_id];
  16372. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16373. return str->data;
  16374. }
  16375. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16376. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16377. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16378. return ctx->kv[key_id].value.arr.n;
  16379. }
  16380. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16381. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16382. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16383. return ctx->kv[key_id].value.uint8;
  16384. }
  16385. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16386. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16387. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16388. return ctx->kv[key_id].value.int8;
  16389. }
  16390. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16391. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16392. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16393. return ctx->kv[key_id].value.uint16;
  16394. }
  16395. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16396. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16397. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16398. return ctx->kv[key_id].value.int16;
  16399. }
  16400. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16401. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16402. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16403. return ctx->kv[key_id].value.uint32;
  16404. }
  16405. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16406. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16407. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16408. return ctx->kv[key_id].value.int32;
  16409. }
  16410. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16411. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16412. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16413. return ctx->kv[key_id].value.float32;
  16414. }
  16415. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16416. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16417. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16418. return ctx->kv[key_id].value.uint64;
  16419. }
  16420. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16421. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16422. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16423. return ctx->kv[key_id].value.int64;
  16424. }
  16425. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16426. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16427. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16428. return ctx->kv[key_id].value.float64;
  16429. }
  16430. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16431. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16432. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16433. return ctx->kv[key_id].value.bool_;
  16434. }
  16435. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16436. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16437. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16438. return ctx->kv[key_id].value.str.data;
  16439. }
  16440. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16441. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16442. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16443. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16444. return &ctx->kv[key_id].value;
  16445. }
  16446. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16447. return ctx->header.n_tensors;
  16448. }
  16449. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16450. // return -1 if tensor not found
  16451. int tensorfound = -1;
  16452. const int n_tensors = gguf_get_n_tensors(ctx);
  16453. for (int i = 0; i < n_tensors; ++i) {
  16454. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16455. tensorfound = i;
  16456. break;
  16457. }
  16458. }
  16459. return tensorfound;
  16460. }
  16461. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16462. return ctx->infos[i].offset;
  16463. }
  16464. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16465. return ctx->infos[i].name.data;
  16466. }
  16467. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16468. return ctx->infos[i].type;
  16469. }
  16470. // returns the index
  16471. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16472. const int idx = gguf_find_key(ctx, key);
  16473. if (idx >= 0) {
  16474. return idx;
  16475. }
  16476. const int n_kv = gguf_get_n_kv(ctx);
  16477. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16478. ctx->kv[n_kv].key.n = strlen(key);
  16479. ctx->kv[n_kv].key.data = strdup(key);
  16480. ctx->header.n_kv++;
  16481. return n_kv;
  16482. }
  16483. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16484. const int idx = gguf_get_or_add_key(ctx, key);
  16485. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16486. ctx->kv[idx].value.uint8 = val;
  16487. }
  16488. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16489. const int idx = gguf_get_or_add_key(ctx, key);
  16490. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16491. ctx->kv[idx].value.int8 = val;
  16492. }
  16493. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16494. const int idx = gguf_get_or_add_key(ctx, key);
  16495. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16496. ctx->kv[idx].value.uint16 = val;
  16497. }
  16498. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16499. const int idx = gguf_get_or_add_key(ctx, key);
  16500. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16501. ctx->kv[idx].value.int16 = val;
  16502. }
  16503. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16504. const int idx = gguf_get_or_add_key(ctx, key);
  16505. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16506. ctx->kv[idx].value.uint32 = val;
  16507. }
  16508. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16509. const int idx = gguf_get_or_add_key(ctx, key);
  16510. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16511. ctx->kv[idx].value.int32 = val;
  16512. }
  16513. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16514. const int idx = gguf_get_or_add_key(ctx, key);
  16515. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16516. ctx->kv[idx].value.float32 = val;
  16517. }
  16518. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16519. const int idx = gguf_get_or_add_key(ctx, key);
  16520. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16521. ctx->kv[idx].value.uint64 = val;
  16522. }
  16523. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16524. const int idx = gguf_get_or_add_key(ctx, key);
  16525. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16526. ctx->kv[idx].value.int64 = val;
  16527. }
  16528. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16529. const int idx = gguf_get_or_add_key(ctx, key);
  16530. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16531. ctx->kv[idx].value.float64 = val;
  16532. }
  16533. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16534. const int idx = gguf_get_or_add_key(ctx, key);
  16535. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16536. ctx->kv[idx].value.bool_ = val;
  16537. }
  16538. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16539. const int idx = gguf_get_or_add_key(ctx, key);
  16540. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16541. ctx->kv[idx].value.str.n = strlen(val);
  16542. ctx->kv[idx].value.str.data = strdup(val);
  16543. }
  16544. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16545. const int idx = gguf_get_or_add_key(ctx, key);
  16546. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16547. ctx->kv[idx].value.arr.type = type;
  16548. ctx->kv[idx].value.arr.n = n;
  16549. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16550. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16551. }
  16552. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16553. const int idx = gguf_get_or_add_key(ctx, key);
  16554. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16555. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16556. ctx->kv[idx].value.arr.n = n;
  16557. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16558. for (int i = 0; i < n; i++) {
  16559. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16560. str->n = strlen(data[i]);
  16561. str->data = strdup(data[i]);
  16562. }
  16563. }
  16564. // set or add KV pairs from another context
  16565. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16566. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16567. switch (src->kv[i].type) {
  16568. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16569. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16570. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16571. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16572. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16573. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16574. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16575. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16576. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16577. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16578. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16579. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16580. case GGUF_TYPE_ARRAY:
  16581. {
  16582. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16583. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16584. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16585. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16586. }
  16587. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16588. free((void *)data);
  16589. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16590. GGML_ASSERT(false && "nested arrays not supported");
  16591. } else {
  16592. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16593. }
  16594. } break;
  16595. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16596. }
  16597. }
  16598. }
  16599. void gguf_add_tensor(
  16600. struct gguf_context * ctx,
  16601. const struct ggml_tensor * tensor) {
  16602. const int idx = ctx->header.n_tensors;
  16603. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16604. ctx->infos[idx].name.n = strlen(tensor->name);
  16605. ctx->infos[idx].name.data = strdup(tensor->name);
  16606. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16607. ctx->infos[idx].ne[i] = 1;
  16608. }
  16609. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16610. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16611. ctx->infos[idx].ne[i] = tensor->ne[i];
  16612. }
  16613. ctx->infos[idx].type = tensor->type;
  16614. ctx->infos[idx].offset = 0;
  16615. ctx->infos[idx].data = tensor->data;
  16616. ctx->infos[idx].size = ggml_nbytes(tensor);
  16617. if (ctx->header.n_tensors > 0) {
  16618. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16619. }
  16620. ctx->header.n_tensors++;
  16621. }
  16622. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16623. const int idx = gguf_find_tensor(ctx, name);
  16624. if (idx < 0) {
  16625. GGML_ASSERT(false && "tensor not found");
  16626. }
  16627. ctx->infos[idx].type = type;
  16628. }
  16629. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16630. const int idx = gguf_find_tensor(ctx, name);
  16631. if (idx < 0) {
  16632. GGML_ASSERT(false && "tensor not found");
  16633. }
  16634. ctx->infos[idx].data = data;
  16635. ctx->infos[idx].size = size;
  16636. // update offsets
  16637. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16638. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16639. }
  16640. }
  16641. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16642. // fwrite(&val->n, sizeof(val->n), 1, file);
  16643. // fwrite(val->data, sizeof(char), val->n, file);
  16644. //}
  16645. //
  16646. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16647. // fwrite(val, sizeof(char), size, file);
  16648. //}
  16649. struct gguf_buf {
  16650. void * data;
  16651. size_t size;
  16652. size_t offset;
  16653. };
  16654. static struct gguf_buf gguf_buf_init(size_t size) {
  16655. struct gguf_buf buf = {
  16656. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16657. /*buf.size =*/ size,
  16658. /*buf.offset =*/ 0,
  16659. };
  16660. return buf;
  16661. }
  16662. static void gguf_buf_free(struct gguf_buf buf) {
  16663. if (buf.data) {
  16664. free(buf.data);
  16665. }
  16666. }
  16667. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16668. if (buf->offset + size > buf->size) {
  16669. buf->size = 1.5*(buf->offset + size);
  16670. if (buf->data) {
  16671. buf->data = realloc(buf->data, buf->size);
  16672. }
  16673. }
  16674. }
  16675. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16676. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16677. if (buf->data) {
  16678. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16679. }
  16680. buf->offset += sizeof(val->n);
  16681. if (buf->data) {
  16682. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16683. }
  16684. buf->offset += val->n;
  16685. }
  16686. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16687. gguf_buf_grow(buf, el_size);
  16688. if (buf->data) {
  16689. memcpy((char *) buf->data + buf->offset, val, el_size);
  16690. }
  16691. buf->offset += el_size;
  16692. }
  16693. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16694. // write header
  16695. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16696. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16697. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16698. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16699. // write key-value pairs
  16700. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16701. struct gguf_kv * kv = &ctx->kv[i];
  16702. gguf_bwrite_str(buf, &kv->key);
  16703. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16704. switch (kv->type) {
  16705. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16706. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16707. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16708. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16709. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16710. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16711. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16712. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16713. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16714. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16715. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16716. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16717. case GGUF_TYPE_ARRAY:
  16718. {
  16719. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16720. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16721. switch (kv->value.arr.type) {
  16722. case GGUF_TYPE_UINT8:
  16723. case GGUF_TYPE_INT8:
  16724. case GGUF_TYPE_UINT16:
  16725. case GGUF_TYPE_INT16:
  16726. case GGUF_TYPE_UINT32:
  16727. case GGUF_TYPE_INT32:
  16728. case GGUF_TYPE_FLOAT32:
  16729. case GGUF_TYPE_UINT64:
  16730. case GGUF_TYPE_INT64:
  16731. case GGUF_TYPE_FLOAT64:
  16732. case GGUF_TYPE_BOOL:
  16733. {
  16734. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16735. } break;
  16736. case GGUF_TYPE_STRING:
  16737. {
  16738. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16739. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16740. }
  16741. } break;
  16742. case GGUF_TYPE_ARRAY:
  16743. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16744. }
  16745. } break;
  16746. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16747. }
  16748. }
  16749. // write tensor infos
  16750. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16751. struct gguf_tensor_info * info = &ctx->infos[i];
  16752. gguf_bwrite_str(buf, &info->name);
  16753. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16754. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16755. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16756. }
  16757. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16758. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16759. }
  16760. // we require the data section to be aligned, so take into account any padding
  16761. {
  16762. const size_t offset = buf->offset;
  16763. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16764. if (offset_pad != offset) {
  16765. uint8_t pad = 0;
  16766. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16767. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16768. }
  16769. }
  16770. }
  16771. if (only_meta) {
  16772. return;
  16773. }
  16774. size_t offset = 0;
  16775. // write tensor data
  16776. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16777. struct gguf_tensor_info * info = &ctx->infos[i];
  16778. const size_t size = info->size;
  16779. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16780. gguf_bwrite_el(buf, info->data, size);
  16781. if (size_pad != size) {
  16782. uint8_t pad = 0;
  16783. for (size_t j = 0; j < size_pad - size; ++j) {
  16784. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16785. }
  16786. }
  16787. GGML_ASSERT(offset == info->offset);
  16788. offset += size_pad;
  16789. }
  16790. }
  16791. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16792. FILE * file = fopen(fname, "wb");
  16793. if (!file) {
  16794. GGML_ASSERT(false && "failed to open file for writing");
  16795. }
  16796. struct gguf_buf buf = gguf_buf_init(16*1024);
  16797. gguf_write_to_buf(ctx, &buf, only_meta);
  16798. fwrite(buf.data, 1, buf.offset, file);
  16799. gguf_buf_free(buf);
  16800. fclose(file);
  16801. }
  16802. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16803. // no allocs - only compute size
  16804. struct gguf_buf buf = gguf_buf_init(0);
  16805. gguf_write_to_buf(ctx, &buf, true);
  16806. return buf.offset;
  16807. }
  16808. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16809. struct gguf_buf buf = gguf_buf_init(16*1024);
  16810. gguf_write_to_buf(ctx, &buf, true);
  16811. memcpy(data, buf.data, buf.offset);
  16812. gguf_buf_free(buf);
  16813. }
  16814. ////////////////////////////////////////////////////////////////////////////////
  16815. int ggml_cpu_has_avx(void) {
  16816. #if defined(__AVX__)
  16817. return 1;
  16818. #else
  16819. return 0;
  16820. #endif
  16821. }
  16822. int ggml_cpu_has_avx_vnni(void) {
  16823. #if defined(__AVXVNNI__)
  16824. return 1;
  16825. #else
  16826. return 0;
  16827. #endif
  16828. }
  16829. int ggml_cpu_has_avx2(void) {
  16830. #if defined(__AVX2__)
  16831. return 1;
  16832. #else
  16833. return 0;
  16834. #endif
  16835. }
  16836. int ggml_cpu_has_avx512(void) {
  16837. #if defined(__AVX512F__)
  16838. return 1;
  16839. #else
  16840. return 0;
  16841. #endif
  16842. }
  16843. int ggml_cpu_has_avx512_vbmi(void) {
  16844. #if defined(__AVX512VBMI__)
  16845. return 1;
  16846. #else
  16847. return 0;
  16848. #endif
  16849. }
  16850. int ggml_cpu_has_avx512_vnni(void) {
  16851. #if defined(__AVX512VNNI__)
  16852. return 1;
  16853. #else
  16854. return 0;
  16855. #endif
  16856. }
  16857. int ggml_cpu_has_fma(void) {
  16858. #if defined(__FMA__)
  16859. return 1;
  16860. #else
  16861. return 0;
  16862. #endif
  16863. }
  16864. int ggml_cpu_has_neon(void) {
  16865. #if defined(__ARM_NEON)
  16866. return 1;
  16867. #else
  16868. return 0;
  16869. #endif
  16870. }
  16871. int ggml_cpu_has_arm_fma(void) {
  16872. #if defined(__ARM_FEATURE_FMA)
  16873. return 1;
  16874. #else
  16875. return 0;
  16876. #endif
  16877. }
  16878. int ggml_cpu_has_metal(void) {
  16879. #if defined(GGML_USE_METAL)
  16880. return 1;
  16881. #else
  16882. return 0;
  16883. #endif
  16884. }
  16885. int ggml_cpu_has_f16c(void) {
  16886. #if defined(__F16C__)
  16887. return 1;
  16888. #else
  16889. return 0;
  16890. #endif
  16891. }
  16892. int ggml_cpu_has_fp16_va(void) {
  16893. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16894. return 1;
  16895. #else
  16896. return 0;
  16897. #endif
  16898. }
  16899. int ggml_cpu_has_wasm_simd(void) {
  16900. #if defined(__wasm_simd128__)
  16901. return 1;
  16902. #else
  16903. return 0;
  16904. #endif
  16905. }
  16906. int ggml_cpu_has_blas(void) {
  16907. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  16908. return 1;
  16909. #else
  16910. return 0;
  16911. #endif
  16912. }
  16913. int ggml_cpu_has_cublas(void) {
  16914. #if defined(GGML_USE_CUBLAS)
  16915. return 1;
  16916. #else
  16917. return 0;
  16918. #endif
  16919. }
  16920. int ggml_cpu_has_clblast(void) {
  16921. #if defined(GGML_USE_CLBLAST)
  16922. return 1;
  16923. #else
  16924. return 0;
  16925. #endif
  16926. }
  16927. int ggml_cpu_has_vulkan(void) {
  16928. #if defined(GGML_USE_VULKAN)
  16929. return 1;
  16930. #else
  16931. return 0;
  16932. #endif
  16933. }
  16934. int ggml_cpu_has_sycl(void) {
  16935. #if defined(GGML_USE_SYCL)
  16936. return 1;
  16937. #else
  16938. return 0;
  16939. #endif
  16940. }
  16941. int ggml_cpu_has_gpublas(void) {
  16942. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_sycl();
  16943. }
  16944. int ggml_cpu_has_sse3(void) {
  16945. #if defined(__SSE3__)
  16946. return 1;
  16947. #else
  16948. return 0;
  16949. #endif
  16950. }
  16951. int ggml_cpu_has_ssse3(void) {
  16952. #if defined(__SSSE3__)
  16953. return 1;
  16954. #else
  16955. return 0;
  16956. #endif
  16957. }
  16958. int ggml_cpu_has_vsx(void) {
  16959. #if defined(__POWER9_VECTOR__)
  16960. return 1;
  16961. #else
  16962. return 0;
  16963. #endif
  16964. }
  16965. ////////////////////////////////////////////////////////////////////////////////