llama-bench.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <cstring>
  7. #include <ctime>
  8. #include <iterator>
  9. #include <map>
  10. #include <numeric>
  11. #include <regex>
  12. #include <sstream>
  13. #include <stdio.h>
  14. #include <string>
  15. #include <vector>
  16. #include "ggml.h"
  17. #include "llama.h"
  18. #include "common.h"
  19. #include "build-info.h"
  20. #ifdef GGML_USE_CUBLAS
  21. #include "ggml-cuda.h"
  22. #endif
  23. // utils
  24. static uint64_t get_time_ns() {
  25. using clock = std::chrono::high_resolution_clock;
  26. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  27. }
  28. template<class T>
  29. static std::string join(const std::vector<T> & values, const std::string & delim) {
  30. std::ostringstream str;
  31. for (size_t i = 0; i < values.size(); i++) {
  32. str << values[i];
  33. if (i < values.size() - 1) {
  34. str << delim;
  35. }
  36. }
  37. return str.str();
  38. }
  39. template<class T>
  40. static std::vector<T> split(const std::string & str, char delim) {
  41. std::vector<T> values;
  42. std::istringstream str_stream(str);
  43. std::string token;
  44. while (std::getline(str_stream, token, delim)) {
  45. T value;
  46. std::istringstream token_stream(token);
  47. token_stream >> value;
  48. values.push_back(value);
  49. }
  50. return values;
  51. }
  52. template<typename T>
  53. static T avg(const std::vector<T> & v) {
  54. if (v.empty()) {
  55. return 0;
  56. }
  57. T sum = std::accumulate(v.begin(), v.end(), T(0));
  58. return sum / (T)v.size();
  59. }
  60. template<typename T>
  61. static T stdev(const std::vector<T> & v) {
  62. if (v.size() <= 1) {
  63. return 0;
  64. }
  65. T mean = avg(v);
  66. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  67. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  68. return stdev;
  69. }
  70. static bool ggml_cpu_has_metal() {
  71. #if defined(GGML_USE_METAL)
  72. return true;
  73. #else
  74. return false;
  75. #endif
  76. }
  77. static std::string get_cpu_info() {
  78. std::string id;
  79. #ifdef __linux__
  80. FILE * f = fopen("/proc/cpuinfo", "r");
  81. if (f) {
  82. char buf[1024];
  83. while (fgets(buf, sizeof(buf), f)) {
  84. if (strncmp(buf, "model name", 10) == 0) {
  85. char * p = strchr(buf, ':');
  86. if (p) {
  87. p++;
  88. while (std::isspace(*p)) {
  89. p++;
  90. }
  91. while (std::isspace(p[strlen(p) - 1])) {
  92. p[strlen(p) - 1] = '\0';
  93. }
  94. id = p;
  95. break;
  96. }
  97. }
  98. }
  99. }
  100. #endif
  101. // TODO: other platforms
  102. return id;
  103. }
  104. static std::string get_gpu_info() {
  105. std::string id;
  106. #ifdef GGML_USE_CUBLAS
  107. int count = ggml_cuda_get_device_count();
  108. for (int i = 0; i < count; i++) {
  109. char buf[128];
  110. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  111. id += buf;
  112. if (i < count - 1) {
  113. id += "/";
  114. }
  115. }
  116. #endif
  117. // TODO: other backends
  118. return id;
  119. }
  120. // command line params
  121. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  122. struct cmd_params {
  123. std::vector<std::string> model;
  124. std::vector<int> n_prompt;
  125. std::vector<int> n_gen;
  126. std::vector<int> n_batch;
  127. std::vector<bool> f32_kv;
  128. std::vector<int> n_threads;
  129. std::vector<int> n_gpu_layers;
  130. std::vector<int> main_gpu;
  131. std::vector<bool> mul_mat_q;
  132. std::vector<bool> low_vram;
  133. std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
  134. int reps;
  135. bool verbose;
  136. output_formats output_format;
  137. };
  138. static const cmd_params cmd_params_defaults = {
  139. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  140. /* n_prompt */ {512},
  141. /* n_gen */ {128},
  142. /* n_batch */ {512},
  143. /* f32_kv */ {false},
  144. /* n_threads */ {get_num_physical_cores()},
  145. /* n_gpu_layers */ {99},
  146. /* main_gpu */ {0},
  147. /* mul_mat_q */ {true},
  148. /* low_vram */ {false},
  149. /* tensor_split */ {{}},
  150. /* reps */ 5,
  151. /* verbose */ false,
  152. /* output_format */ MARKDOWN
  153. };
  154. static void print_usage(int /* argc */, char ** argv) {
  155. fprintf(stdout, "usage: %s [options]\n", argv[0]);
  156. fprintf(stdout, "\n");
  157. fprintf(stdout, "options:\n");
  158. fprintf(stdout, " -h, --help\n");
  159. fprintf(stdout, " -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  160. fprintf(stdout, " -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  161. fprintf(stdout, " -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  162. fprintf(stdout, " -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  163. fprintf(stdout, " --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
  164. fprintf(stdout, " -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  165. fprintf(stdout, " -ngl N, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  166. fprintf(stdout, " -mg i, --main-gpu <n> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  167. fprintf(stdout, " -lv, --low-vram <0|1> (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str());
  168. fprintf(stdout, " -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
  169. fprintf(stdout, " -ts, --tensor_split <ts0/ts1/..> \n");
  170. fprintf(stdout, " -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  171. fprintf(stdout, " -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
  172. fprintf(stdout, " -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  173. fprintf(stdout, "\n");
  174. fprintf(stdout, "Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  175. }
  176. static cmd_params parse_cmd_params(int argc, char ** argv) {
  177. cmd_params params;
  178. std::string arg;
  179. bool invalid_param = false;
  180. const std::string arg_prefix = "--";
  181. const char split_delim = ',';
  182. params.verbose = cmd_params_defaults.verbose;
  183. params.output_format = cmd_params_defaults.output_format;
  184. params.reps = cmd_params_defaults.reps;
  185. for (int i = 1; i < argc; i++) {
  186. arg = argv[i];
  187. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  188. std::replace(arg.begin(), arg.end(), '_', '-');
  189. }
  190. if (arg == "-h" || arg == "--help") {
  191. print_usage(argc, argv);
  192. exit(0);
  193. } else if (arg == "-m" || arg == "--model") {
  194. if (++i >= argc) {
  195. invalid_param = true;
  196. break;
  197. }
  198. auto p = split<std::string>(argv[i], split_delim);
  199. params.model.insert(params.model.end(), p.begin(), p.end());
  200. } else if (arg == "-p" || arg == "--n-prompt") {
  201. if (++i >= argc) {
  202. invalid_param = true;
  203. break;
  204. }
  205. auto p = split<int>(argv[i], split_delim);
  206. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  207. } else if (arg == "-n" || arg == "--n-gen") {
  208. if (++i >= argc) {
  209. invalid_param = true;
  210. break;
  211. }
  212. auto p = split<int>(argv[i], split_delim);
  213. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  214. } else if (arg == "-b" || arg == "--batch-size") {
  215. if (++i >= argc) {
  216. invalid_param = true;
  217. break;
  218. }
  219. auto p = split<int>(argv[i], split_delim);
  220. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  221. } else if (arg == "--memory-f32") {
  222. if (++i >= argc) {
  223. invalid_param = true;
  224. break;
  225. }
  226. auto p = split<int>(argv[i], split_delim);
  227. params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
  228. } else if (arg == "-t" || arg == "--threads") {
  229. if (++i >= argc) {
  230. invalid_param = true;
  231. break;
  232. }
  233. auto p = split<int>(argv[i], split_delim);
  234. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  235. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  236. if (++i >= argc) {
  237. invalid_param = true;
  238. break;
  239. }
  240. auto p = split<int>(argv[i], split_delim);
  241. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  242. } else if (arg == "-mg" || arg == "--main-gpu") {
  243. if (++i >= argc) {
  244. invalid_param = true;
  245. break;
  246. }
  247. params.main_gpu = split<int>(argv[i], split_delim);
  248. } else if (arg == "-lv" || arg == "--low-vram") {
  249. if (++i >= argc) {
  250. invalid_param = true;
  251. break;
  252. }
  253. auto p = split<bool>(argv[i], split_delim);
  254. params.low_vram.insert(params.low_vram.end(), p.begin(), p.end());
  255. } else if (arg == "-mmq" || arg == "--mul-mat-q") {
  256. if (++i >= argc) {
  257. invalid_param = true;
  258. break;
  259. }
  260. auto p = split<bool>(argv[i], split_delim);
  261. params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
  262. } else if (arg == "-ts" || arg == "--tensor-split") {
  263. if (++i >= argc) {
  264. invalid_param = true;
  265. break;
  266. }
  267. for (auto ts : split<std::string>(argv[i], split_delim)) {
  268. // split string by ; and /
  269. const std::regex regex{R"([;/]+)"};
  270. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  271. std::vector<std::string> split_arg{it, {}};
  272. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  273. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  274. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  275. if (i < split_arg.size()) {
  276. tensor_split[i] = std::stof(split_arg[i]);
  277. } else {
  278. tensor_split[i] = 0.0f;
  279. }
  280. }
  281. params.tensor_split.push_back(tensor_split);
  282. }
  283. } else if (arg == "-r" || arg == "--repetitions") {
  284. if (++i >= argc) {
  285. invalid_param = true;
  286. break;
  287. }
  288. params.reps = std::stoi(argv[i]);
  289. } else if (arg == "-o" || arg == "--output") {
  290. if (++i >= argc) {
  291. invalid_param = true;
  292. break;
  293. }
  294. if (argv[i] == std::string("csv")) {
  295. params.output_format = CSV;
  296. } else if (argv[i] == std::string("json")) {
  297. params.output_format = JSON;
  298. } else if (argv[i] == std::string("md")) {
  299. params.output_format = MARKDOWN;
  300. } else if (argv[i] == std::string("sql")) {
  301. params.output_format = SQL;
  302. } else {
  303. invalid_param = true;
  304. break;
  305. }
  306. } else if (arg == "-v" || arg == "--verbose") {
  307. params.verbose = true;
  308. } else {
  309. invalid_param = true;
  310. break;
  311. }
  312. }
  313. if (invalid_param) {
  314. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  315. print_usage(argc, argv);
  316. exit(1);
  317. }
  318. // set defaults
  319. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  320. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  321. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  322. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  323. if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
  324. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  325. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  326. if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
  327. if (params.low_vram.empty()) { params.low_vram = cmd_params_defaults.low_vram; }
  328. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  329. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  330. return params;
  331. }
  332. struct cmd_params_instance {
  333. std::string model;
  334. int n_prompt;
  335. int n_gen;
  336. int n_batch;
  337. bool f32_kv;
  338. int n_threads;
  339. int n_gpu_layers;
  340. int main_gpu;
  341. bool mul_mat_q;
  342. bool low_vram;
  343. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  344. llama_context_params to_llama_params() const {
  345. llama_context_params lparams = llama_context_default_params();
  346. lparams.n_ctx = n_prompt + n_gen;
  347. lparams.n_batch = n_batch;
  348. lparams.f16_kv = !f32_kv;
  349. lparams.n_gpu_layers = n_gpu_layers;
  350. lparams.main_gpu = main_gpu;
  351. lparams.mul_mat_q = mul_mat_q;
  352. lparams.low_vram = low_vram;
  353. lparams.tensor_split = tensor_split.data();
  354. return lparams;
  355. }
  356. };
  357. static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
  358. std::vector<cmd_params_instance> instances;
  359. for (const auto & m : params.model)
  360. for (const auto & nb : params.n_batch)
  361. for (const auto & fk : params.f32_kv)
  362. for (const auto & nl : params.n_gpu_layers)
  363. for (const auto & mg : params.main_gpu)
  364. for (const auto & mmq : params.mul_mat_q)
  365. for (const auto & lv : params.low_vram)
  366. for (const auto & ts : params.tensor_split)
  367. for (const auto & nt : params.n_threads) {
  368. cmd_params_instance instance = {
  369. /* .model = */ m,
  370. /* .n_prompt = */ n_prompt,
  371. /* .n_gen = */ n_gen,
  372. /* .n_batch = */ nb,
  373. /* .f32_kv = */ fk,
  374. /* .n_threads = */ nt,
  375. /* .n_gpu_layers = */ nl,
  376. /* .main_gpu = */ mg,
  377. /* .mul_mat_q = */ mmq,
  378. /* .low_vram = */ lv,
  379. /* .tensor_split = */ ts,
  380. };
  381. instances.push_back(instance);
  382. }
  383. return instances;
  384. }
  385. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  386. std::vector<cmd_params_instance> instances;
  387. for (const auto & n_prompt : params.n_prompt) {
  388. if (n_prompt == 0) {
  389. continue;
  390. }
  391. auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
  392. instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
  393. }
  394. for (const auto & n_gen : params.n_gen) {
  395. if (n_gen == 0) {
  396. continue;
  397. }
  398. auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
  399. instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
  400. }
  401. return instances;
  402. }
  403. struct test {
  404. static const std::string build_commit;
  405. static const int build_number;
  406. static const bool cuda;
  407. static const bool opencl;
  408. static const bool metal;
  409. static const bool gpu_blas;
  410. static const bool blas;
  411. static const std::string cpu_info;
  412. static const std::string gpu_info;
  413. std::string model_filename;
  414. std::string model_type;
  415. int n_batch;
  416. int n_threads;
  417. bool f32_kv;
  418. int n_gpu_layers;
  419. int main_gpu;
  420. bool mul_mat_q;
  421. bool low_vram;
  422. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  423. int n_prompt;
  424. int n_gen;
  425. std::string test_time;
  426. std::vector<uint64_t> samples_ns;
  427. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  428. model_filename = inst.model;
  429. char buf[128];
  430. llama_model_type(lmodel, buf, sizeof(buf));
  431. model_type = buf;
  432. n_batch = inst.n_batch;
  433. n_threads = inst.n_threads;
  434. f32_kv = inst.f32_kv;
  435. n_gpu_layers = inst.n_gpu_layers;
  436. main_gpu = inst.main_gpu;
  437. mul_mat_q = inst.mul_mat_q;
  438. low_vram = inst.low_vram;
  439. tensor_split = inst.tensor_split;
  440. n_prompt = inst.n_prompt;
  441. n_gen = inst.n_gen;
  442. // RFC 3339 date-time format
  443. time_t t = time(NULL);
  444. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  445. test_time = buf;
  446. (void) ctx;
  447. }
  448. uint64_t avg_ns() const {
  449. return ::avg(samples_ns);
  450. }
  451. uint64_t stdev_ns() const {
  452. return ::stdev(samples_ns);
  453. }
  454. std::vector<double> get_ts() const {
  455. int n_tokens = n_prompt + n_gen;
  456. std::vector<double> ts;
  457. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  458. return ts;
  459. }
  460. double avg_ts() const {
  461. return ::avg(get_ts());
  462. }
  463. double stdev_ts() const {
  464. return ::stdev(get_ts());
  465. }
  466. static std::string get_backend() {
  467. if (cuda) {
  468. return "CUDA";
  469. }
  470. if (opencl) {
  471. return "OpenCL";
  472. }
  473. if (metal) {
  474. return "Metal";
  475. }
  476. if (gpu_blas) {
  477. return "GPU BLAS";
  478. }
  479. if (blas) {
  480. return "BLAS";
  481. }
  482. return "CPU";
  483. }
  484. static const std::vector<std::string> & get_fields() {
  485. static const std::vector<std::string> fields = {
  486. "build_commit", "build_number",
  487. "cuda", "opencl", "metal", "gpu_blas", "blas",
  488. "cpu_info", "gpu_info",
  489. "model_filename", "model_type",
  490. "n_batch", "n_threads", "f16_kv",
  491. "n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
  492. "n_prompt", "n_gen", "test_time",
  493. "avg_ns", "stddev_ns",
  494. "avg_ts", "stddev_ts"
  495. };
  496. return fields;
  497. }
  498. enum field_type {STRING, BOOL, INT, FLOAT};
  499. static field_type get_field_type(const std::string & field) {
  500. if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
  501. field == "n_gpu_layers" || field == "main_gpu" ||
  502. field == "n_prompt" || field == "n_gen" ||
  503. field == "avg_ns" || field == "stddev_ns") {
  504. return INT;
  505. }
  506. if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
  507. field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") {
  508. return BOOL;
  509. }
  510. if (field == "avg_ts" || field == "stddev_ts") {
  511. return FLOAT;
  512. }
  513. return STRING;
  514. }
  515. std::vector<std::string> get_values() const {
  516. std::string tensor_split_str;
  517. int max_nonzero = 0;
  518. for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
  519. if (tensor_split[i] > 0) {
  520. max_nonzero = i;
  521. }
  522. }
  523. for (int i = 0; i <= max_nonzero; i++) {
  524. char buf[32];
  525. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  526. tensor_split_str += buf;
  527. if (i < max_nonzero) {
  528. tensor_split_str += "/";
  529. }
  530. }
  531. std::vector<std::string> values = {
  532. build_commit, std::to_string(build_number),
  533. std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
  534. cpu_info, gpu_info,
  535. model_filename, model_type,
  536. std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
  537. std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
  538. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  539. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  540. std::to_string(avg_ts()), std::to_string(stdev_ts())
  541. };
  542. return values;
  543. }
  544. std::map<std::string, std::string> get_map() const {
  545. std::map<std::string, std::string> map;
  546. auto fields = get_fields();
  547. auto values = get_values();
  548. std::transform(fields.begin(), fields.end(), values.begin(),
  549. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  550. return map;
  551. }
  552. };
  553. const std::string test::build_commit = BUILD_COMMIT;
  554. const int test::build_number = BUILD_NUMBER;
  555. const bool test::cuda = !!ggml_cpu_has_cublas();
  556. const bool test::opencl = !!ggml_cpu_has_clblast();
  557. const bool test::metal = !!ggml_cpu_has_metal();
  558. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  559. const bool test::blas = !!ggml_cpu_has_blas();
  560. const std::string test::cpu_info = get_cpu_info();
  561. const std::string test::gpu_info = get_gpu_info();
  562. struct printer {
  563. virtual ~printer() {}
  564. FILE * fout;
  565. virtual void print_header(const cmd_params & params) { (void) params; };
  566. virtual void print_test(const test & t) = 0;
  567. virtual void print_footer() { };
  568. };
  569. struct csv_printer : public printer {
  570. static std::string escape_csv(const std::string & field) {
  571. std::string escaped = "\"";
  572. for (auto c : field) {
  573. if (c == '"') {
  574. escaped += "\"";
  575. }
  576. escaped += c;
  577. }
  578. escaped += "\"";
  579. return escaped;
  580. }
  581. void print_header(const cmd_params & params) override {
  582. std::vector<std::string> fields = test::get_fields();
  583. fprintf(fout, "%s\n", join(fields, ",").c_str());
  584. (void) params;
  585. }
  586. void print_test(const test & t) override {
  587. std::vector<std::string> values = t.get_values();
  588. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  589. fprintf(fout, "%s\n", join(values, ",").c_str());
  590. }
  591. };
  592. struct json_printer : public printer {
  593. bool first = true;
  594. static std::string escape_json(const std::string & value) {
  595. std::string escaped;
  596. for (auto c : value) {
  597. if (c == '"') {
  598. escaped += "\\\"";
  599. } else if (c == '\\') {
  600. escaped += "\\\\";
  601. } else if (c <= 0x1f) {
  602. char buf[8];
  603. snprintf(buf, sizeof(buf), "\\u%04x", c);
  604. escaped += buf;
  605. } else {
  606. escaped += c;
  607. }
  608. }
  609. return escaped;
  610. }
  611. static std::string format_value(const std::string & field, const std::string & value) {
  612. switch (test::get_field_type(field)) {
  613. case test::STRING:
  614. return "\"" + escape_json(value) + "\"";
  615. case test::BOOL:
  616. return value == "0" ? "false" : "true";
  617. default:
  618. return value;
  619. }
  620. }
  621. void print_header(const cmd_params & params) override {
  622. fprintf(fout, "[\n");
  623. (void) params;
  624. }
  625. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  626. assert(fields.size() == values.size());
  627. for (size_t i = 0; i < fields.size(); i++) {
  628. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  629. }
  630. }
  631. void print_test(const test & t) override {
  632. if (first) {
  633. first = false;
  634. } else {
  635. fprintf(fout, ",\n");
  636. }
  637. fprintf(fout, " {\n");
  638. print_fields(test::get_fields(), t.get_values());
  639. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  640. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  641. fprintf(fout, " }");
  642. fflush(fout);
  643. }
  644. void print_footer() override {
  645. fprintf(fout, "\n]\n");
  646. }
  647. };
  648. struct markdown_printer : public printer {
  649. std::vector<std::string> fields;
  650. static int get_field_width(const std::string & field) {
  651. if (field == "model") {
  652. return -30;
  653. }
  654. if (field == "t/s") {
  655. return 15;
  656. }
  657. int width = std::max((int)field.length(), 10);
  658. if (test::get_field_type(field) == test::STRING) {
  659. return -width;
  660. }
  661. return width;
  662. }
  663. void print_header(const cmd_params & params) override {
  664. // select fields to print
  665. fields = { "model", "backend" };
  666. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  667. if (!is_cpu_backend) {
  668. fields.push_back("n_gpu_layers");
  669. }
  670. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  671. fields.push_back("n_threads");
  672. }
  673. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  674. fields.push_back("n_batch");
  675. }
  676. if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
  677. fields.push_back("f16_kv");
  678. }
  679. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  680. fields.push_back("main_gpu");
  681. }
  682. if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
  683. fields.push_back("mul_mat_q");
  684. }
  685. if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) {
  686. fields.push_back("low_vram");
  687. }
  688. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  689. fields.push_back("tensor_split");
  690. }
  691. fields.push_back("test");
  692. fields.push_back("t/s");
  693. fprintf(fout, "|");
  694. for (const auto & field : fields) {
  695. fprintf(fout, " %*s |", get_field_width(field), field.c_str());
  696. }
  697. fprintf(fout, "\n");
  698. fprintf(fout, "|");
  699. for (const auto & field : fields) {
  700. int width = get_field_width(field);
  701. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  702. }
  703. fprintf(fout, "\n");
  704. }
  705. void print_test(const test & t) override {
  706. std::map<std::string, std::string> vmap = t.get_map();
  707. fprintf(fout, "|");
  708. for (const auto & field : fields) {
  709. std::string value;
  710. if (field == "model") {
  711. value = t.model_type;
  712. } else if (field == "backend") {
  713. value = test::get_backend();
  714. } else if (field == "test") {
  715. char buf[128];
  716. if (t.n_prompt > 0 && t.n_gen == 0) {
  717. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  718. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  719. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  720. } else {
  721. assert(false);
  722. exit(1);
  723. }
  724. value = buf;
  725. } else if (field == "t/s") {
  726. char buf[128];
  727. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  728. value = buf;
  729. } else if (vmap.find(field) != vmap.end()) {
  730. value = vmap.at(field);
  731. } else {
  732. assert(false);
  733. exit(1);
  734. }
  735. int width = get_field_width(field);
  736. if (field == "t/s") {
  737. // HACK: the utf-8 character is 2 bytes
  738. width += 1;
  739. }
  740. fprintf(fout, " %*s |", width, value.c_str());
  741. }
  742. fprintf(fout, "\n");
  743. }
  744. void print_footer() override {
  745. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  746. }
  747. };
  748. struct sql_printer : public printer {
  749. static std::string get_sql_field_type(const std::string & field) {
  750. switch (test::get_field_type(field)) {
  751. case test::STRING:
  752. return "TEXT";
  753. case test::BOOL:
  754. case test::INT:
  755. return "INTEGER";
  756. case test::FLOAT:
  757. return "REAL";
  758. default:
  759. assert(false);
  760. exit(1);
  761. }
  762. }
  763. void print_header(const cmd_params & params) override {
  764. std::vector<std::string> fields = test::get_fields();
  765. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  766. for (size_t i = 0; i < fields.size(); i++) {
  767. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  768. }
  769. fprintf(fout, ");\n");
  770. fprintf(fout, "\n");
  771. (void) params;
  772. }
  773. void print_test(const test & t) override {
  774. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  775. fprintf(fout, "VALUES (");
  776. std::vector<std::string> values = t.get_values();
  777. for (size_t i = 0; i < values.size(); i++) {
  778. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  779. }
  780. fprintf(fout, ");\n");
  781. }
  782. };
  783. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  784. std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx));
  785. int n_processed = 0;
  786. while (n_processed < n_prompt) {
  787. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  788. llama_eval(ctx, tokens.data(), n_tokens, n_past + n_processed, n_threads);
  789. n_processed += n_tokens;
  790. }
  791. }
  792. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  793. llama_token token = llama_token_bos(ctx);
  794. for (int i = 0; i < n_gen; i++) {
  795. llama_eval(ctx, &token, 1, n_past + i, n_threads);
  796. }
  797. }
  798. static void llama_null_log_callback(enum llama_log_level level, const char * text, void * user_data) {
  799. (void) level;
  800. (void) text;
  801. (void) user_data;
  802. }
  803. int main(int argc, char ** argv) {
  804. #if !defined(NDEBUG)
  805. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  806. #endif
  807. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  808. fprintf(stderr, "warning: debug build, performance may be affected\n");
  809. #endif
  810. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  811. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  812. #endif
  813. cmd_params params = parse_cmd_params(argc, argv);
  814. // initialize llama.cpp
  815. if (!params.verbose) {
  816. llama_log_set(llama_null_log_callback, NULL);
  817. }
  818. bool numa = false;
  819. llama_backend_init(numa);
  820. // initialize printer
  821. std::unique_ptr<printer> p;
  822. switch (params.output_format) {
  823. case CSV:
  824. p.reset(new csv_printer());
  825. break;
  826. case JSON:
  827. p.reset(new json_printer());
  828. break;
  829. case MARKDOWN:
  830. p.reset(new markdown_printer());
  831. break;
  832. case SQL:
  833. p.reset(new sql_printer());
  834. break;
  835. default:
  836. assert(false);
  837. exit(1);
  838. }
  839. p->fout = stdout;
  840. p->print_header(params);
  841. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  842. for (const auto & inst : params_instances) {
  843. // TODO: keep the model between tests when possible
  844. llama_context_params lparams = inst.to_llama_params();
  845. llama_model * lmodel = llama_load_model_from_file(inst.model.c_str(), lparams);
  846. if (lmodel == NULL) {
  847. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  848. return 1;
  849. }
  850. llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
  851. if (ctx == NULL) {
  852. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  853. llama_free_model(lmodel);
  854. return 1;
  855. }
  856. test t(inst, lmodel, ctx);
  857. // warmup run
  858. test_gen(ctx, 1, 0, t.n_threads);
  859. for (int i = 0; i < params.reps; i++) {
  860. uint64_t t_start = get_time_ns();
  861. if (t.n_prompt > 0) {
  862. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  863. }
  864. if (t.n_gen > 0) {
  865. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  866. }
  867. uint64_t t_ns = get_time_ns() - t_start;
  868. t.samples_ns.push_back(t_ns);
  869. }
  870. p->print_test(t);
  871. llama_print_timings(ctx);
  872. llama_free(ctx);
  873. llama_free_model(lmodel);
  874. }
  875. p->print_footer();
  876. llama_backend_free();
  877. return 0;
  878. }