| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- #include "ssm-conv.cuh"
- template <size_t split_d_inner, size_t d_conv>
- static __global__ void ssm_conv_f32(const float * __restrict__ src0, const float * __restrict__ src1,
- const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1,
- float * __restrict__ dst, const int dst_nb0, const int dst_nb1, const int dst_nb2,
- const int64_t n_t) {
- GGML_UNUSED(src0_nb0);
- const int tid = threadIdx.x;
- const int bidx = blockIdx.x;
- const int bidy = blockIdx.y;
- const float * x_block = (const float *) ((const char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1);
- const float * w_block = (const float *) ((const char *) src1 + bidy * split_d_inner * src1_nb1);
- float * y_block = (float *) ((char *) dst + bidx * dst_nb2 + bidy * split_d_inner * dst_nb0);
- const int stride_x = src0_nb1 / sizeof(float);
- const int stride_w = src1_nb1 / sizeof(float);
- const int stride_y = dst_nb1 / sizeof(float);
- float x[d_conv] = { 0.0f };
- float w[d_conv] = { 0.0f };
- #pragma unroll
- for (size_t j = 0; j < d_conv; j++) {
- w[j] = w_block[tid * stride_w + j];
- }
- for (int64_t i = 0; i < n_t; i++) {
- float sumf = 0.0f;
- if (i == 0) {
- for (size_t j = 0; j < d_conv; j++) {
- x[j] = x_block[tid * stride_x + j];
- }
- } else {
- x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1];
- }
- #pragma unroll
- for (size_t j = 0; j < d_conv; j++) {
- sumf += x[(i + j) % d_conv] * w[j];
- }
- y_block[i * stride_y + tid] = sumf;
- }
- }
- template <size_t split_d_inner, size_t d_conv, int64_t split_n_t>
- static __global__ void ssm_conv_long_token_f32(const float * __restrict__ src0, const float * __restrict__ src1,
- const int src0_nb0, const int src0_nb1, const int src0_nb2,
- const int src1_nb1, float * __restrict__ dst, const int dst_nb0,
- const int dst_nb1, const int dst_nb2, const int64_t n_t) {
- const int tid = threadIdx.x;
- const int bidx = blockIdx.x;
- const int bidy = blockIdx.y;
- const int bidz = blockIdx.z;
- const float * x_block = (const float *) ((const char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1 +
- bidz * split_n_t * src0_nb0);
- const float * w_block = (const float *) ((const char *) src1 + bidy * split_d_inner * src1_nb1);
- float * y_block =
- (float *) ((char *) dst + bidx * dst_nb2 + bidz * split_n_t * dst_nb1 + bidy * split_d_inner * dst_nb0);
- const int stride_x = src0_nb1 / sizeof(float);
- const int stride_w = src1_nb1 / sizeof(float);
- const int stride_y = dst_nb1 / sizeof(float);
- float x[d_conv] = { 0.0f };
- float w[d_conv] = { 0.0f };
- #pragma unroll
- for (size_t j = 0; j < d_conv; j++) {
- w[j] = w_block[tid * stride_w + j];
- }
- #pragma unroll
- for (int64_t i = 0; i < split_n_t; i++) {
- if (bidz * split_n_t + i < n_t) {
- float sumf = 0.0f;
- if (i == 0) {
- for (size_t j = 0; j < d_conv; j++) {
- x[j] = x_block[tid * stride_x + j];
- }
- } else {
- x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1];
- }
- #pragma unroll
- for (size_t j = 0; j < d_conv; j++) {
- sumf += x[(i + j) % d_conv] * w[j];
- }
- y_block[i * stride_y + tid] = sumf;
- }
- }
- }
- static void ssm_conv_f32_cuda(const float * src0, const float * src1, const int src0_nb0, const int src0_nb1,
- const int src0_nb2, const int src1_nb1, float * dst, const int dst_nb0, const int dst_nb1,
- const int dst_nb2, const int64_t nc, const int64_t nr, const int64_t n_t,
- const int64_t n_s, cudaStream_t stream) {
- const int threads = 128;
- GGML_ASSERT(nr % threads == 0);
- auto launch_kernel = [&](auto NC) {
- constexpr int kNC = decltype(NC)::value;
- if (n_t <= 32) {
- const dim3 blocks(n_s, (nr + threads - 1) / threads, 1);
- ssm_conv_f32<threads, kNC><<<blocks, threads, 0, stream>>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1,
- dst, dst_nb0, dst_nb1, dst_nb2, n_t);
- } else {
- const int64_t split_n_t = 32;
- dim3 blocks(n_s, (nr + threads - 1) / threads, (n_t + split_n_t - 1) / split_n_t);
- ssm_conv_long_token_f32<threads, kNC, split_n_t><<<blocks, threads, 0, stream>>>(
- src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0, dst_nb1, dst_nb2, n_t);
- }
- };
- switch (nc) {
- case 3: launch_kernel(std::integral_constant<int, 3>{}); break;
- case 4: launch_kernel(std::integral_constant<int, 4>{}); break;
- case 9: launch_kernel(std::integral_constant<int, 9>{}); break;
- default: GGML_ABORT("Only support kernel sizes 3, 4, 9 right now.");
- }
- }
- void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0]; // conv_x
- const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
- const int64_t nc = src1->ne[0]; // d_conv
- const int64_t nr = src0->ne[1]; // d_inner
- const int64_t n_t = dst->ne[1]; // tokens per sequence
- const int64_t n_s = dst->ne[2]; // number of sequences in the batch
- GGML_ASSERT(dst->ne[0] == nr);
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(src1->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float));
- const float * src0_d = (const float *) src0->data;
- const float * src1_d = (const float *) src1->data;
- float * dst_d = (float *) dst->data;
- cudaStream_t stream = ctx.stream();
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- ssm_conv_f32_cuda(src0_d, src1_d, src0->nb[0], src0->nb[1], src0->nb[2], src1->nb[1], dst_d, dst->nb[0], dst->nb[1],
- dst->nb[2], nc, nr, n_t, n_s, stream);
- }
|