| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033 |
- #include "arg.h"
- #include "common.h"
- #include "log.h"
- #include "llama.h"
- #include "gguf.h"
- #include <algorithm>
- #include <chrono>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <thread>
- #include <mutex>
- #include <vector>
- #include <fstream>
- #include <unordered_map>
- #include <map>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- static void print_usage(int, char ** argv) {
- LOG("\nexample usage:\n");
- LOG("\n %s \\\n"
- " -m model.gguf -f some-text.txt [-o imatrix.gguf] [--process-output] \\\n"
- " [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n"
- " [--in-file imatrix-prev-0.gguf --in-file imatrix-prev-1.gguf ...] \\\n"
- " [--parse-special]\n" , argv[0]);
- LOG("\n");
- }
- static const char * const LLM_KV_IMATRIX_DATASETS = "imatrix.datasets";
- static const char * const LLM_KV_IMATRIX_CHUNK_COUNT = "imatrix.chunk_count";
- static const char * const LLM_KV_IMATRIX_CHUNK_SIZE = "imatrix.chunk_size";
- struct Stats {
- std::vector<float> values;
- std::vector<int64_t> counts;
- };
- class IMatrixCollector {
- public:
- IMatrixCollector() = default;
- void set_params(common_params params) { m_params = std::move(params); }
- bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
- void save_imatrix_legacy(int32_t ncall = -1) const;
- void save_imatrix(int32_t n_chunk = -1) const;
- bool load_imatrix_legacy(const char * fname);
- bool load_imatrix(const char * file_name);
- private:
- std::unordered_map<std::string, Stats> m_stats;
- common_params m_params;
- std::mutex m_mutex;
- std::vector<std::string> m_datasets;
- int32_t m_last_chunk = 0;
- std::vector<char> m_src1_data;
- std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
- };
- // remove any prefix and suffixes from the name
- // CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
- static std::string filter_tensor_name(const char * name) {
- std::string wname;
- const char * p = strchr(name, '#');
- if (p != NULL) {
- p = p + 1;
- const char * q = strchr(p, '#');
- if (q != NULL) {
- wname = std::string(p, q - p);
- } else {
- wname = p;
- }
- } else {
- wname = name;
- }
- return wname;
- }
- bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
- GGML_UNUSED(user_data);
- const struct ggml_tensor * src0 = t->src[0];
- const struct ggml_tensor * src1 = t->src[1];
- std::string wname = filter_tensor_name(src0->name);
- const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
- // when ask is true, the scheduler wants to know if we are interested in data from this tensor
- // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
- if (ask) {
- if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
- if (t->op != GGML_OP_MUL_MAT) return false;
- // why are small batches ignored (<16 tokens)?
- if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
- if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false;
- return true;
- }
- std::lock_guard<std::mutex> lock(m_mutex);
- // copy the data from the GPU memory if needed
- const bool is_host = ggml_backend_buffer_is_host(src1->buffer);
- if (!is_host) {
- const size_t src1_nbytes = ggml_nbytes(src1);
- m_src1_data.resize(src1_nbytes);
- ggml_backend_tensor_get(src1, m_src1_data.data(), 0, src1_nbytes);
- }
- const char * data = is_host ? (const char *) src1->data : m_src1_data.data();
- GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
- // TODO: 4d? (is that even used in practice?)
- // the extra dimension would need to be stored somewhere to be reflected in the imatrix file
- if (ggml_nrows(src1) != src1->ne[1] * src1->ne[2]) {
- LOG_ERR("%s: tensor has more than 3 dimensions: %s", __func__, wname.c_str());
- GGML_ASSERT(false);
- }
- // this has been adapted to the new format of storing merged experts in a single 3d tensor
- // ref: https://github.com/ggml-org/llama.cpp/pull/6387
- if (t->op == GGML_OP_MUL_MAT_ID) {
- // ids -> [n_experts_used, n_tokens]
- // src1 -> [cols, n_expert_used, n_tokens]
- const ggml_tensor * ids = t->src[2];
- const int64_t n_as = src0->ne[2];
- const int64_t n_ids = ids->ne[0];
- // the top-k selected expert ids are stored in the ids tensor
- // for simplicity, always copy ids to host, because it is small
- // take into account that ids is not contiguous!
- GGML_ASSERT(ids->ne[1] == src1->ne[2]);
- m_ids.resize(ggml_nbytes(ids));
- ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
- auto & e = m_stats[wname];
- if (e.counts.size() == 1 && n_as > 1) {
- // broadcast, when loading an old imatrix
- e.counts.resize(n_as, e.counts[0]);
- }
- if (e.values.empty()) {
- e.values.resize(src1->ne[0]*n_as, 0);
- e.counts.resize(n_as, 0);
- }
- else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
- LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0]*n_as));
- exit(1); //GGML_ABORT("fatal error");
- }
- else if (e.counts.size() != (size_t)n_as) {
- LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_as);
- exit(1); //GGML_ABORT("fatal error");
- }
- LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
- // loop over all possible experts, regardless if they are used or not in the batch
- for (int64_t ex = 0; ex < n_as; ++ex) {
- size_t e_start = ex*src1->ne[0];
- for (int64_t idx = 0; idx < n_ids; ++idx) {
- for (int64_t row = 0; row < src1->ne[2]; ++row) {
- const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);
- GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
- if (excur != ex) continue;
- const int64_t i11 = idx % src1->ne[1];
- const int64_t i12 = row;
- const float * x = (const float *)(data + i11*src1->nb[1] + i12*src1->nb[2]);
- e.counts[ex]++;
- for (int64_t j = 0; j < src1->ne[0]; ++j) {
- e.values[e_start + j] += x[j] * x[j];
- if (!std::isfinite((float)e.values[e_start + j])) {
- LOG_ERR("%f detected in %s\n", (float)e.values[e_start + j], wname.c_str());
- exit(1);
- }
- }
- }
- }
- const int32_t n_chunk = e.counts[ex] / chunk_size;
- if (n_chunk > m_last_chunk) {
- const int32_t chunk_step = n_chunk - m_last_chunk;
- m_last_chunk = n_chunk;
- if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
- save_imatrix();
- }
- if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
- save_imatrix(m_last_chunk);
- }
- }
- }
- } else {
- auto & e = m_stats[wname];
- const int64_t n_mat = src1->ne[2] * src1->ne[3];
- if (e.values.empty()) {
- e.values.resize(src1->ne[0] * n_mat, 0);
- e.counts.resize(n_mat, 0);
- }
- else if (e.values.size() != (size_t)(src1->ne[0] * n_mat)) {
- LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0] * n_mat));
- exit(1); //GGML_ABORT("fatal error");
- }
- else if (e.counts.size() != (size_t)n_mat) {
- LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_mat);
- exit(1); //GGML_ABORT("fatal error");
- }
- LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->ne[2], (int)src1->type);
- for (int64_t i3 = 0; i3 < src1->ne[3]; ++i3) {
- for (int64_t i2 = 0; i2 < src1->ne[2]; ++i2) {
- const int64_t mat_id = i3 * src1->ne[2] + i2;
- const int64_t mat_start = mat_id * src1->ne[0];
- for (int64_t row = 0; row < src1->ne[1]; ++row) {
- const float * x = (const float *) (data + row * src1->nb[1] + i2 * src1->nb[2] + i3 * src1->ne[3]);
- e.counts[mat_id]++;
- for (int64_t j = 0; j < src1->ne[0]; ++j) {
- e.values[mat_start + j] += x[j] * x[j];
- if (!std::isfinite((float)e.values[j])) {
- LOG_ERR("%f detected in %s\n", (float)e.values[j], wname.c_str());
- exit(1);
- }
- }
- }
- const int32_t n_chunk = e.counts[mat_id] / chunk_size;
- if (n_chunk > m_last_chunk) {
- const int32_t chunk_step = n_chunk - m_last_chunk;
- m_last_chunk = n_chunk;
- if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
- save_imatrix();
- }
- if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
- save_imatrix(m_last_chunk);
- }
- }
- }
- }
- }
- return true;
- }
- void IMatrixCollector::save_imatrix_legacy(int32_t ncall) const {
- auto fname = m_params.out_file;
- if (ncall > 0) {
- fname += ".at_";
- fname += std::to_string(ncall);
- }
- // warn when writing imatrix entries that do not have full data
- // this can happen with MoE models where some of the experts end up not being exercised by the provided training data
- int n_entries = 0;
- std::vector<std::string> to_store;
- bool is_first = true; // for printing
- for (const auto & kv : m_stats) {
- const int n_all = kv.second.counts.size();
- if (n_all == 0) {
- continue;
- }
- int n_zeros = 0;
- for (const int c : kv.second.counts) {
- if (c == 0) {
- n_zeros++;
- }
- }
- if (n_zeros != 0 && is_first) {
- LOG_INF("\n");
- is_first = false;
- }
- if (n_zeros == n_all) {
- LOG_WRN("%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str());
- continue;
- }
- if (n_zeros > 0) {
- LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
- }
- n_entries++;
- to_store.push_back(kv.first);
- }
- if (to_store.size() < m_stats.size()) {
- LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
- }
- // deterministic tensor name order
- std::sort(to_store.begin(), to_store.end());
- const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
- std::ofstream out(fname, std::ios::binary);
- out.write((const char *) &n_entries, sizeof(n_entries));
- for (const auto & name : to_store) {
- const auto & stat = m_stats.at(name);
- const int32_t len = name.size();
- out.write((const char *) &len, sizeof(len));
- out.write(name.c_str(), len);
- // ceiling division to avoid accidental zeros
- const int32_t ncall = (*std::max_element(stat.counts.begin(), stat.counts.end()) + (chunk_size - 1)) / chunk_size;
- out.write((const char *) &ncall, sizeof(ncall));
- const int32_t nval = stat.values.size();
- const int32_t nmat = stat.counts.size();
- out.write((const char *) &nval, sizeof(nval));
- if (nval > 0 && nmat > 0) {
- std::vector<float> tmp(nval);
- for (int32_t i = 0; i < nval; i++) {
- float count = static_cast<float>(stat.counts[i / (nval / nmat)]);
- float value = stat.values[i];
- if (count == 0.0f) {
- // store 1 for partial data
- value = 1.0f;
- count = 1.0f;
- }
- tmp[i] = (value / count) * static_cast<float>(ncall);
- }
- out.write((const char *) tmp.data(), nval * sizeof(float));
- }
- }
- // Write the number of call the matrix was computed with
- out.write((const char *) &m_last_chunk, sizeof(m_last_chunk));
- // Write the input filename at the end of the file to later on specify it in quantize
- {
- const char * dataset_file = m_params.prompt_file.c_str();
- int32_t len = m_params.prompt_file.size();
- // When there is no prompt but there were other imatrix files loaded, use the last dataset
- if (m_params.prompt_file.empty() && !m_datasets.empty()) {
- const std::string & dataset_str = m_datasets[m_datasets.size() - 1];
- dataset_file = dataset_str.c_str();
- len = dataset_str.size();
- }
- out.write((const char *) &len, sizeof(len));
- out.write(dataset_file, len);
- }
- LOGV(1, "\n");
- LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str());
- }
- void IMatrixCollector::save_imatrix(int32_t n_chunk) const {
- auto fname = m_params.out_file;
- // TODO: use the new format in more cases
- if (!string_ends_with(fname, ".gguf")) {
- LOG_WRN("\n%s: saving to legacy imatrix format because output suffix is not .gguf\n", __func__);
- this->save_imatrix_legacy(n_chunk);
- return;
- }
- if (n_chunk > 0) {
- fname += ".at_";
- fname += std::to_string(n_chunk);
- }
- // write imatrix entries even if they don't have full data. (can be corrected when reading)
- // this can happen with MoE models where some of the experts end up not being exercised by the provided training data
- std::vector<std::string> to_store;
- size_t data_size = 0;
- bool is_first = true; // for printing
- for (const auto & kv : m_stats) {
- const int n_all = kv.second.counts.size();
- int n_zeros = 0;
- for (const auto c : kv.second.counts) {
- if (c == 0) {
- n_zeros++;
- }
- }
- if (n_zeros != 0 && is_first) {
- LOG_INF("\n");
- is_first = false;
- }
- if (n_zeros > 0) {
- LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
- }
- to_store.push_back(kv.first);
- data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.values.size(), GGML_MEM_ALIGN);
- data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.counts.size(), GGML_MEM_ALIGN);
- }
- // deterministic tensor name order
- std::sort(to_store.begin(), to_store.end());
- struct ggml_init_params params = {
- /* .mem_size = */ data_size,
- /* .mem_buffer = */ NULL,
- /* .no_alloc = */ false,
- };
- struct ggml_context * ctx = ggml_init(params);
- struct gguf_context * ctx_gguf = gguf_init_empty();
- {
- std::vector<const char *> datasets;
- datasets.reserve(m_datasets.size() + 1);
- for (size_t i = 0; i < m_datasets.size(); ++i) {
- datasets.push_back(m_datasets[i].c_str());
- }
- if (!m_params.prompt_file.empty()) {
- datasets.push_back(m_params.prompt_file.c_str());
- }
- gguf_set_val_str(ctx_gguf, "general.type", "imatrix");
- // Write the dataset paths
- gguf_set_arr_str(ctx_gguf, LLM_KV_IMATRIX_DATASETS, datasets.data(), datasets.size());
- // Write the number of chunks the matrix was computed with
- gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_COUNT, m_last_chunk);
- gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_SIZE, m_params.n_ctx / m_params.n_parallel);
- }
- for (const auto & name : to_store) {
- const auto & stat = m_stats.at(name);
- const int32_t nval = (int32_t) stat.values.size();
- const int32_t nmat = (int32_t) stat.counts.size();
- if (nval > 0 && nmat > 0) {
- struct ggml_tensor * in_sum2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nval / nmat, nmat);
- struct ggml_tensor * counts = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, nmat);
- ggml_format_name(in_sum2, "%s.in_sum2", name.c_str());
- ggml_format_name(counts, "%s.counts", name.c_str());
- for (int32_t j = 0; j < nval; ++j) {
- ((float *) in_sum2->data)[j] = (float) stat.values[j];
- }
- for (int32_t j = 0; j < nmat; ++j) {
- ((float *) counts->data)[j] = (float) stat.counts[j];
- }
- gguf_add_tensor(ctx_gguf, in_sum2);
- gguf_add_tensor(ctx_gguf, counts);
- }
- }
- gguf_write_to_file(ctx_gguf, fname.c_str(), false);
- LOGV(1, "\n");
- LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str());
- gguf_free(ctx_gguf);
- ggml_free(ctx);
- }
- bool IMatrixCollector::load_imatrix_legacy(const char * fname) {
- std::ifstream in(fname, std::ios::binary);
- if (!in) {
- LOG_ERR("%s: failed to open %s\n", __func__, fname);
- return false;
- }
- int n_entries;
- in.read((char *) &n_entries, sizeof(n_entries));
- if (in.fail() || n_entries < 1) {
- LOG_ERR("%s: no data in file %s\n", __func__, fname);
- return false;
- }
- // Guess the chunk size because it's not stored in the file
- const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
- for (int i = 0; i < n_entries; ++i) {
- int32_t len = 0;
- in.read((char *) &len, sizeof(len));
- std::vector<char> name_as_vec(len + 1);
- in.read((char *) name_as_vec.data(), len);
- if (in.fail()) {
- LOG_ERR("%s: failed reading name for entry %d from %s\n", __func__, i + 1, fname);
- return false;
- }
- name_as_vec[len] = 0;
- std::string name{ name_as_vec.data() };
- auto & e = m_stats[std::move(name)];
- int32_t ncall = 0;
- in.read((char *) &ncall, sizeof(ncall));
- int32_t nval = 0;
- in.read((char *) &nval, sizeof(nval));
- if (in.fail() || nval < 1) {
- LOG_ERR("%s: failed reading number of values for entry %d\n", __func__, i);
- m_stats = {};
- return false;
- }
- if (e.values.empty()) {
- e.values.resize(nval, 0.0f);
- e.counts.resize(1, 0);
- }
- std::vector<float> tmp(nval);
- in.read((char *) tmp.data(), nval * sizeof(float));
- if (in.fail()) {
- LOG_ERR("%s: failed reading data for entry %d\n", __func__, i);
- m_stats = {};
- return false;
- }
- // Recreate the state as expected by save_imatrix(), and correct for weighted sum.
- for (int i = 0; i < nval; i++) {
- e.values[i] += tmp[i] * chunk_size;
- }
- // The legacy format doesn't distinguish the counts for different experts
- for (size_t j = 0; j < e.counts.size(); ++j) {
- e.counts[j] += ncall * chunk_size;
- }
- }
- {
- // TODO: extract into its own method; this is also used by the GGUF-based format
- // Calculate the last chunk count
- int64_t max_count = 0;
- for (const auto & stats : m_stats) {
- for (int64_t count : stats.second.counts) {
- if (count > max_count) {
- max_count = count;
- }
- }
- }
- m_last_chunk = max_count / (chunk_size);
- }
- {
- // Read the number of calls the matrix was computed with
- int32_t n_calls;
- in.read((char *) &n_calls, sizeof(n_calls));
- // ignore it because it's not important
- }
- // Read the dataset path to include it when writing to GGUF
- if (!in.fail()){
- int32_t len = 0;
- in.read((char *) &len, sizeof(len));
- if (!in.fail()) {
- std::vector<char> dataset;
- dataset.resize(len + 1, 0);
- in.read(dataset.data(), len);
- if (!in.fail()) {
- m_datasets.push_back(dataset.data());
- }
- }
- }
- return true;
- }
- // Using GGUF as the file format, for greater extensibility
- bool IMatrixCollector::load_imatrix(const char * file_name) {
- struct ggml_context * ctx = nullptr;
- struct gguf_init_params meta_gguf_params = {
- /* .no_alloc = */ false, // the data is needed
- /* .ctx = */ &ctx,
- };
- struct gguf_context * ctx_gguf = gguf_init_from_file(file_name, meta_gguf_params);
- if (!ctx_gguf) {
- return this->load_imatrix_legacy(file_name);
- }
- const int32_t n_entries = gguf_get_n_tensors(ctx_gguf);
- if (n_entries < 1) {
- LOG_ERR("%s: no data in file %s\n", __func__, file_name);
- gguf_free(ctx_gguf);
- ggml_free(ctx);
- return false;
- }
- const int64_t datasets_key = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_DATASETS);
- if (datasets_key != -1 && gguf_get_arr_type(ctx_gguf, datasets_key) == GGUF_TYPE_STRING) {
- const int64_t n = gguf_get_arr_n(ctx_gguf, datasets_key);
- m_datasets.reserve(m_datasets.size() + n);
- for (int64_t i = 0; i < n; ++i) {
- m_datasets.push_back(gguf_get_arr_str(ctx_gguf, datasets_key, i));
- }
- }
- const std::string in_sum2_suffix{ ".in_sum2" };
- const std::string counts_suffix{ ".counts" };
- // Could re-use m_stats instead, but this allows
- // checking for completeness of *each* loaded imatrix file
- // and also makes it easier to re-use a similar implementation in quantize.cpp
- // Using an ordered map to get a deterministic iteration order.
- std::map<std::string, std::pair<struct ggml_tensor *, struct ggml_tensor *>> sums_counts_for;
- for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
- std::string name = cur->name;
- if (name.empty()) { continue; }
- if (string_remove_suffix(name, in_sum2_suffix)) {
- // in_sum2
- sums_counts_for[std::move(name)].first = cur;
- } else if (string_remove_suffix(name, counts_suffix)) {
- // counts
- sums_counts_for[std::move(name)].second = cur;
- } else {
- // ignore other tensors
- }
- }
- for (const auto & sc : sums_counts_for) {
- const std::string & name = sc.first;
- const struct ggml_tensor * in_sum2 = sc.second.first;
- const struct ggml_tensor * counts = sc.second.second;
- if (!in_sum2 || !counts) {
- LOG_ERR("%s: mismatched sums and counts for %s\n", __func__, name.c_str());
- gguf_free(ctx_gguf);
- ggml_free(ctx);
- return false;
- }
- auto & e = m_stats[name];
- int64_t nval = ggml_nelements(in_sum2);
- if (e.values.empty()) {
- e.values.resize(nval, 0.0f);
- } else if ((size_t) nval != e.values.size()) {
- LOG_ERR("%s: mismatched sums size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) nval, e.values.size());
- gguf_free(ctx_gguf);
- ggml_free(ctx);
- return false;
- }
- int64_t ncounts = ggml_nelements(counts);
- if (e.counts.empty()) {
- e.counts.resize(ncounts, 0);
- } else if (e.counts.size() == 1 && ncounts > 1) {
- // broadcast, when loading an old imatrix
- e.counts.resize(ncounts, e.counts[0]);
- } else if ((size_t) ncounts != e.counts.size()) {
- LOG_ERR("%s: mismatched counts size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) ncounts, e.counts.size());
- gguf_free(ctx_gguf);
- ggml_free(ctx);
- return false;
- }
- // Recreate the state as expected by save_imatrix()
- for (int64_t j = 0; j < nval; j++) {
- e.values[j] += ((const float *) in_sum2->data)[j];
- }
- for (int64_t j = 0; j < ncounts; j++) {
- e.counts[j] += std::lround(((const float *) counts->data)[j]);
- }
- }
- // TODO: extract into its own method; this is also used by the legacy format
- // Calculate the last chunk count
- int64_t max_count = 0;
- for (const auto & stats : m_stats) {
- for (int64_t count : stats.second.counts) {
- if (count > max_count) {
- max_count = count;
- }
- }
- }
- m_last_chunk = max_count / (m_params.n_ctx / m_params.n_parallel);
- gguf_free(ctx_gguf);
- ggml_free(ctx);
- return true;
- }
- static IMatrixCollector g_collector;
- static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
- return g_collector.collect_imatrix(t, ask, user_data);
- }
- struct results_log_softmax {
- double log_softmax;
- float logit;
- float prob;
- };
- static std::vector<float> softmax(const std::vector<float> & logits) {
- std::vector<float> probs(logits.size());
- float max_logit = logits[0];
- for (float v : logits) {
- max_logit = std::max(max_logit, v);
- }
- double sum_exp = 0.0;
- for (size_t i = 0; i < logits.size(); i++) {
- // Subtract the maximum logit value from the current logit value for numerical stability
- const float logit = logits[i] - max_logit;
- const float exp_logit = expf(logit);
- sum_exp += exp_logit;
- probs[i] = exp_logit;
- }
- for (size_t i = 0; i < probs.size(); i++) {
- probs[i] /= sum_exp;
- }
- return probs;
- }
- static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
- float max_logit = logits[0];
- for (int i = 1; i < n_vocab; ++i) {
- max_logit = std::max(max_logit, logits[i]);
- }
- double sum_exp = 0.0;
- for (int i = 0; i < n_vocab; ++i) {
- sum_exp += expf(logits[i] - max_logit);
- }
- return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
- }
- static void process_logits(
- int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
- double & nll, double & nll2, float * logit_history, float * prob_history) {
- std::mutex mutex;
- int counter = 0;
- auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
- double local_nll = 0;
- double local_nll2 = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- int i = counter++;
- if (i >= n_token) {
- nll += local_nll; nll2 += local_nll2;
- break;
- }
- lock.unlock();
- const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
- const double v = -results.log_softmax;
- local_nll += v;
- local_nll2 += v*v;
- logit_history[i] = results.logit;
- prob_history[i] = results.prob;
- }
- };
- for (auto & w : workers) {
- w = std::thread(compute);
- }
- compute();
- for (auto & w : workers) {
- w.join();
- }
- }
- static bool compute_imatrix(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const bool add_bos = llama_vocab_get_add_bos(vocab);
- GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
- auto tim1 = std::chrono::high_resolution_clock::now();
- LOG_INF("%s: tokenizing the input ..\n", __func__);
- std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true, params.parse_special);
- auto tim2 = std::chrono::high_resolution_clock::now();
- LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
- if (params.i_chunk > 0) {
- if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) {
- LOG_ERR("%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk);
- return false;
- }
- LOG_INF("%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx);
- tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx);
- }
- if (int(tokens.size()) < 2*n_ctx) {
- LOG_ERR("%s: you need at least %d tokens for a context of %d tokens\n", __func__, 2*n_ctx, n_ctx);
- LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n", __func__, tokens.size());
- return false;
- }
- std::vector<float> logit_history;
- std::vector<float> prob_history;
- if (params.compute_ppl) {
- logit_history.resize(tokens.size());
- prob_history.resize(tokens.size());
- }
- const int n_chunk_max = tokens.size() / n_ctx;
- const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
- const int n_vocab = llama_vocab_n_tokens(vocab);
- const int n_batch = params.n_batch;
- int count = 0;
- double nll = 0.0;
- double nll2 = 0.0;
- const int num_batches = (n_ctx + n_batch - 1) / n_batch;
- const int n_seq = std::max(1, n_batch / n_ctx);
- GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
- GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
- llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
- std::vector<float> logits;
- if (params.compute_ppl && num_batches > 1) {
- logits.reserve((size_t)n_ctx * n_vocab);
- }
- LOG_INF("%s: computing over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
- std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
- for (int i = 0; i < n_chunk; i += n_seq) {
- const int start = i * n_ctx;
- const int end = start + n_ctx;
- const int n_seq_batch = std::min(n_seq, n_chunk - i);
- const auto t_start = std::chrono::high_resolution_clock::now();
- // clear the KV cache
- llama_memory_clear(llama_get_memory(ctx), true);
- for (int j = 0; j < num_batches; ++j) {
- const int batch_start = start + j * n_batch;
- const int batch_size = std::min(end - batch_start, n_batch);
- // clear the batch
- common_batch_clear(batch);
- for (int seq = 0; seq < n_seq_batch; seq++) {
- int seq_start = batch_start + seq*n_ctx;
- // save original token and restore it after eval
- const auto token_org = tokens[seq_start];
- // add BOS token for the first batch of each chunk
- if (add_bos && j == 0) {
- tokens[seq_start] = llama_vocab_bos(vocab);
- }
- for (int k = 0; k < batch_size; ++k) {
- // NOTE: specifying all logits to get activations for the output.weight tensor
- // and also for the perplexity calculation.
- // TODO: only get outputs when (params.process_output || params.compute_ppl)
- // (not possible when this skips FFN computation of the last layer)
- common_batch_add(batch, tokens[seq_start + k], j*n_batch + k, { seq }, true);
- }
- // restore the original token in case it was set to BOS
- tokens[seq_start] = token_org;
- }
- if (llama_decode(ctx, batch)) {
- LOG_ERR("%s : failed to eval\n", __func__);
- llama_batch_free(batch);
- return false;
- }
- if (params.compute_ppl && num_batches > 1) {
- const auto * batch_logits = llama_get_logits(ctx);
- logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
- }
- }
- if (i == 0) {
- llama_synchronize(ctx);
- const auto t_end = std::chrono::high_resolution_clock::now();
- const float t_total = std::chrono::duration<float>(t_end - t_start).count();
- LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
- int total_seconds = (int)(t_total * n_chunk / n_seq);
- if (total_seconds >= 60*60) {
- LOG("%d hours ", total_seconds / (60*60));
- total_seconds = total_seconds % (60*60);
- }
- LOG("%.2f minutes\n", total_seconds / 60.0);
- }
- if (params.compute_ppl) {
- const int first = n_ctx/2;
- for (int seq = 0; seq < n_seq_batch; seq++) {
- const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx);
- llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
- process_logits(n_vocab, all_logits + first*n_vocab,
- tokens_data, n_ctx - 1 - first,
- workers, nll, nll2,
- logit_history.data() + start + seq*n_ctx + first,
- prob_history.data() + start + seq*n_ctx + first);
- count += n_ctx - first - 1;
- LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
- }
- fflush(stdout);
- logits.clear();
- }
- }
- LOG("\n");
- if (params.compute_ppl) {
- nll2 /= count;
- nll /= count;
- const double ppl = exp(nll);
- nll2 -= nll * nll;
- if (nll2 > 0) {
- nll2 = sqrt(nll2/(count-1));
- LOG("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
- } else {
- LOG("Unexpected negative standard deviation of log(prob)\n");
- }
- }
- llama_batch_free(batch);
- return true;
- }
- int main(int argc, char ** argv) {
- common_params params;
- params.out_file = "imatrix.gguf";
- params.n_ctx = 512;
- params.escape = false;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
- return 1;
- }
- common_init();
- const int32_t n_ctx = params.n_ctx;
- if (n_ctx <= 0) {
- LOG_ERR("%s: imatrix tool requires '--ctx-size' > 0\n", __func__);
- return 1;
- }
- {
- const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
- const int32_t n_kv = n_seq * n_ctx;
- params.n_parallel = n_seq;
- params.n_ctx = n_kv;
- params.n_batch = std::min(params.n_batch, n_kv);
- }
- g_collector.set_params(params);
- for (const auto & in_file : params.in_files) {
- LOG_INF("%s : loading imatrix from '%s'\n", __func__, in_file.c_str());
- if (!g_collector.load_imatrix(in_file.c_str())) {
- LOG_ERR("%s : failed to load %s\n", __func__, in_file.c_str());
- return 1;
- }
- }
- if (params.prompt.empty()) {
- LOG_INF("No prompt provided; combining precomputed matrices only.\n");
- if (params.in_files.empty()) {
- LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n");
- return 1;
- }
- if (params.in_files.size() == 1) {
- LOG_INF("%s : saving imatrix to '%s'\n", __func__, params.out_file.c_str());
- } else if (params.in_files.size() > 1) {
- LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
- }
- g_collector.save_imatrix();
- return 0;
- }
- llama_backend_init();
- llama_numa_init(params.numa);
- // pass the callback to the backend scheduler
- // it will be executed for each node during the graph computation
- params.cb_eval = ik_collect_imatrix;
- params.cb_eval_user_data = NULL;
- params.warmup = false;
- // init
- common_init_result llama_init = common_init_from_params(params);
- llama_model * model = llama_init.model.get();
- llama_context * ctx = llama_init.context.get();
- if (model == nullptr || ctx == nullptr) {
- LOG_ERR("%s : failed to init\n", __func__);
- return 1;
- }
- const int n_ctx_train = llama_model_n_ctx_train(model);
- if (params.n_ctx > n_ctx_train) {
- LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
- __func__, n_ctx_train, params.n_ctx);
- }
- // print system information
- {
- LOG_INF("\n");
- LOG_INF("%s\n", common_params_get_system_info(params).c_str());
- }
- if (!compute_imatrix(ctx, params, n_ctx)) {
- return 1;
- }
- g_collector.save_imatrix();
- LOG("\n");
- llama_perf_context_print(ctx);
- llama_backend_free();
- return 0;
- }
|