1
0

ggml.h 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport) extern
  178. # else
  179. # define GGML_API __declspec(dllimport) extern
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default"))) extern
  183. # endif
  184. #else
  185. # define GGML_API extern
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__) && !defined(__clang__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #include <stdbool.h>
  203. #include <stddef.h>
  204. #include <stdint.h>
  205. #include <stdio.h>
  206. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  207. #define GGML_FILE_VERSION 2
  208. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  209. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  210. #define GGML_MAX_DIMS 4
  211. #define GGML_MAX_PARAMS 2048
  212. #define GGML_MAX_SRC 10
  213. #define GGML_MAX_N_THREADS 512
  214. #define GGML_MAX_OP_PARAMS 64
  215. #ifndef GGML_MAX_NAME
  216. # define GGML_MAX_NAME 64
  217. #endif
  218. #define GGML_DEFAULT_N_THREADS 4
  219. #define GGML_DEFAULT_GRAPH_SIZE 2048
  220. #if UINTPTR_MAX == 0xFFFFFFFF
  221. #define GGML_MEM_ALIGN 4
  222. #else
  223. #define GGML_MEM_ALIGN 16
  224. #endif
  225. #define GGML_EXIT_SUCCESS 0
  226. #define GGML_EXIT_ABORTED 1
  227. #define GGML_ROPE_TYPE_NEOX 2
  228. #define GGML_ROPE_TYPE_MROPE 8
  229. #define GGML_ROPE_TYPE_VISION 24
  230. #define GGML_UNUSED(x) (void)(x)
  231. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  232. #ifndef NDEBUG
  233. # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  234. #elif defined(__GNUC__)
  235. # define GGML_UNREACHABLE() __builtin_unreachable()
  236. #elif defined(_MSC_VER)
  237. # define GGML_UNREACHABLE() __assume(0)
  238. #else
  239. # define GGML_UNREACHABLE() ((void) 0)
  240. #endif
  241. #ifdef __cplusplus
  242. # define GGML_NORETURN [[noreturn]]
  243. #elif defined(_MSC_VER)
  244. # define GGML_NORETURN __declspec(noreturn)
  245. #else
  246. # define GGML_NORETURN _Noreturn
  247. #endif
  248. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  249. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  250. // used to copy the number of elements and stride in bytes of tensors into local variables.
  251. // main purpose is to reduce code duplication and improve readability.
  252. //
  253. // example:
  254. //
  255. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  256. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  257. //
  258. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  259. const type prefix##0 = (pointer)->array[0]; \
  260. GGML_UNUSED(prefix##0);
  261. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  262. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  263. const type prefix##1 = (pointer)->array[1]; \
  264. GGML_UNUSED(prefix##1);
  265. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  266. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  267. const type prefix##2 = (pointer)->array[2]; \
  268. GGML_UNUSED(prefix##2);
  269. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  270. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  271. const type prefix##3 = (pointer)->array[3]; \
  272. GGML_UNUSED(prefix##3);
  273. #define GGML_TENSOR_UNARY_OP_LOCALS \
  274. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  275. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  276. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  277. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  278. #define GGML_TENSOR_BINARY_OP_LOCALS \
  279. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  280. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  281. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  282. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  283. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  284. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  285. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  286. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  287. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  288. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  289. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  290. #ifdef __cplusplus
  291. extern "C" {
  292. #endif
  293. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  294. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  295. enum ggml_status {
  296. GGML_STATUS_ALLOC_FAILED = -2,
  297. GGML_STATUS_FAILED = -1,
  298. GGML_STATUS_SUCCESS = 0,
  299. GGML_STATUS_ABORTED = 1,
  300. };
  301. // get ggml_status name string
  302. GGML_API const char * ggml_status_to_string(enum ggml_status status);
  303. // ieee 754-2008 half-precision float16
  304. // todo: make this not an integral type
  305. typedef uint16_t ggml_fp16_t;
  306. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  307. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  308. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  309. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  310. // google brain half-precision bfloat16
  311. typedef struct { uint16_t bits; } ggml_bf16_t;
  312. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  313. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  314. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  315. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  316. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  317. struct ggml_object;
  318. struct ggml_context;
  319. struct ggml_cgraph;
  320. // NOTE: always add types at the end of the enum to keep backward compatibility
  321. enum ggml_type {
  322. GGML_TYPE_F32 = 0,
  323. GGML_TYPE_F16 = 1,
  324. GGML_TYPE_Q4_0 = 2,
  325. GGML_TYPE_Q4_1 = 3,
  326. // GGML_TYPE_Q4_2 = 4, support has been removed
  327. // GGML_TYPE_Q4_3 = 5, support has been removed
  328. GGML_TYPE_Q5_0 = 6,
  329. GGML_TYPE_Q5_1 = 7,
  330. GGML_TYPE_Q8_0 = 8,
  331. GGML_TYPE_Q8_1 = 9,
  332. GGML_TYPE_Q2_K = 10,
  333. GGML_TYPE_Q3_K = 11,
  334. GGML_TYPE_Q4_K = 12,
  335. GGML_TYPE_Q5_K = 13,
  336. GGML_TYPE_Q6_K = 14,
  337. GGML_TYPE_Q8_K = 15,
  338. GGML_TYPE_IQ2_XXS = 16,
  339. GGML_TYPE_IQ2_XS = 17,
  340. GGML_TYPE_IQ3_XXS = 18,
  341. GGML_TYPE_IQ1_S = 19,
  342. GGML_TYPE_IQ4_NL = 20,
  343. GGML_TYPE_IQ3_S = 21,
  344. GGML_TYPE_IQ2_S = 22,
  345. GGML_TYPE_IQ4_XS = 23,
  346. GGML_TYPE_I8 = 24,
  347. GGML_TYPE_I16 = 25,
  348. GGML_TYPE_I32 = 26,
  349. GGML_TYPE_I64 = 27,
  350. GGML_TYPE_F64 = 28,
  351. GGML_TYPE_IQ1_M = 29,
  352. GGML_TYPE_BF16 = 30,
  353. // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
  354. // GGML_TYPE_Q4_0_4_8 = 32,
  355. // GGML_TYPE_Q4_0_8_8 = 33,
  356. GGML_TYPE_TQ1_0 = 34,
  357. GGML_TYPE_TQ2_0 = 35,
  358. // GGML_TYPE_IQ4_NL_4_4 = 36,
  359. // GGML_TYPE_IQ4_NL_4_8 = 37,
  360. // GGML_TYPE_IQ4_NL_8_8 = 38,
  361. GGML_TYPE_COUNT = 39,
  362. };
  363. // precision
  364. enum ggml_prec {
  365. GGML_PREC_DEFAULT = 0, // stored as ggml_tensor.op_params, 0 by default
  366. GGML_PREC_F32 = 10,
  367. };
  368. // model file types
  369. enum ggml_ftype {
  370. GGML_FTYPE_UNKNOWN = -1,
  371. GGML_FTYPE_ALL_F32 = 0,
  372. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  373. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  374. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  375. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  376. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  377. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  378. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  379. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  380. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  381. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  382. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  383. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  384. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  385. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  386. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  387. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  388. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  389. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  390. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  391. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  392. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  393. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  394. };
  395. // available tensor operations:
  396. enum ggml_op {
  397. GGML_OP_NONE = 0,
  398. GGML_OP_DUP,
  399. GGML_OP_ADD,
  400. GGML_OP_ADD1,
  401. GGML_OP_ACC,
  402. GGML_OP_SUB,
  403. GGML_OP_MUL,
  404. GGML_OP_DIV,
  405. GGML_OP_SQR,
  406. GGML_OP_SQRT,
  407. GGML_OP_LOG,
  408. GGML_OP_SIN,
  409. GGML_OP_COS,
  410. GGML_OP_SUM,
  411. GGML_OP_SUM_ROWS,
  412. GGML_OP_MEAN,
  413. GGML_OP_ARGMAX,
  414. GGML_OP_COUNT_EQUAL,
  415. GGML_OP_REPEAT,
  416. GGML_OP_REPEAT_BACK,
  417. GGML_OP_CONCAT,
  418. GGML_OP_SILU_BACK,
  419. GGML_OP_NORM, // normalize
  420. GGML_OP_RMS_NORM,
  421. GGML_OP_RMS_NORM_BACK,
  422. GGML_OP_GROUP_NORM,
  423. GGML_OP_L2_NORM,
  424. GGML_OP_MUL_MAT,
  425. GGML_OP_MUL_MAT_ID,
  426. GGML_OP_OUT_PROD,
  427. GGML_OP_SCALE,
  428. GGML_OP_SET,
  429. GGML_OP_CPY,
  430. GGML_OP_CONT,
  431. GGML_OP_RESHAPE,
  432. GGML_OP_VIEW,
  433. GGML_OP_PERMUTE,
  434. GGML_OP_TRANSPOSE,
  435. GGML_OP_GET_ROWS,
  436. GGML_OP_GET_ROWS_BACK,
  437. GGML_OP_DIAG,
  438. GGML_OP_DIAG_MASK_INF,
  439. GGML_OP_DIAG_MASK_ZERO,
  440. GGML_OP_SOFT_MAX,
  441. GGML_OP_SOFT_MAX_BACK,
  442. GGML_OP_ROPE,
  443. GGML_OP_ROPE_BACK,
  444. GGML_OP_CLAMP,
  445. GGML_OP_CONV_TRANSPOSE_1D,
  446. GGML_OP_IM2COL,
  447. GGML_OP_IM2COL_BACK,
  448. GGML_OP_CONV_2D_DW,
  449. GGML_OP_CONV_TRANSPOSE_2D,
  450. GGML_OP_POOL_1D,
  451. GGML_OP_POOL_2D,
  452. GGML_OP_POOL_2D_BACK,
  453. GGML_OP_UPSCALE, // nearest interpolate
  454. GGML_OP_PAD,
  455. GGML_OP_PAD_REFLECT_1D,
  456. GGML_OP_ROLL,
  457. GGML_OP_ARANGE,
  458. GGML_OP_TIMESTEP_EMBEDDING,
  459. GGML_OP_ARGSORT,
  460. GGML_OP_LEAKY_RELU,
  461. GGML_OP_FLASH_ATTN_EXT,
  462. GGML_OP_FLASH_ATTN_BACK,
  463. GGML_OP_SSM_CONV,
  464. GGML_OP_SSM_SCAN,
  465. GGML_OP_WIN_PART,
  466. GGML_OP_WIN_UNPART,
  467. GGML_OP_GET_REL_POS,
  468. GGML_OP_ADD_REL_POS,
  469. GGML_OP_RWKV_WKV6,
  470. GGML_OP_GATED_LINEAR_ATTN,
  471. GGML_OP_RWKV_WKV7,
  472. GGML_OP_UNARY,
  473. GGML_OP_MAP_CUSTOM1,
  474. GGML_OP_MAP_CUSTOM2,
  475. GGML_OP_MAP_CUSTOM3,
  476. GGML_OP_CUSTOM,
  477. GGML_OP_CROSS_ENTROPY_LOSS,
  478. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  479. GGML_OP_OPT_STEP_ADAMW,
  480. GGML_OP_COUNT,
  481. };
  482. enum ggml_unary_op {
  483. GGML_UNARY_OP_ABS,
  484. GGML_UNARY_OP_SGN,
  485. GGML_UNARY_OP_NEG,
  486. GGML_UNARY_OP_STEP,
  487. GGML_UNARY_OP_TANH,
  488. GGML_UNARY_OP_ELU,
  489. GGML_UNARY_OP_RELU,
  490. GGML_UNARY_OP_SIGMOID,
  491. GGML_UNARY_OP_GELU,
  492. GGML_UNARY_OP_GELU_QUICK,
  493. GGML_UNARY_OP_SILU,
  494. GGML_UNARY_OP_HARDSWISH,
  495. GGML_UNARY_OP_HARDSIGMOID,
  496. GGML_UNARY_OP_EXP,
  497. GGML_UNARY_OP_GELU_ERF,
  498. GGML_UNARY_OP_COUNT,
  499. };
  500. enum ggml_object_type {
  501. GGML_OBJECT_TYPE_TENSOR,
  502. GGML_OBJECT_TYPE_GRAPH,
  503. GGML_OBJECT_TYPE_WORK_BUFFER
  504. };
  505. enum ggml_log_level {
  506. GGML_LOG_LEVEL_NONE = 0,
  507. GGML_LOG_LEVEL_DEBUG = 1,
  508. GGML_LOG_LEVEL_INFO = 2,
  509. GGML_LOG_LEVEL_WARN = 3,
  510. GGML_LOG_LEVEL_ERROR = 4,
  511. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  512. };
  513. // this tensor...
  514. enum ggml_tensor_flag {
  515. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  516. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  517. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  518. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  519. };
  520. struct ggml_init_params {
  521. // memory pool
  522. size_t mem_size; // bytes
  523. void * mem_buffer; // if NULL, memory will be allocated internally
  524. bool no_alloc; // don't allocate memory for the tensor data
  525. };
  526. // n-dimensional tensor
  527. struct ggml_tensor {
  528. enum ggml_type type;
  529. struct ggml_backend_buffer * buffer;
  530. int64_t ne[GGML_MAX_DIMS]; // number of elements
  531. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  532. // nb[0] = ggml_type_size(type)
  533. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  534. // nb[i] = nb[i-1] * ne[i-1]
  535. // compute data
  536. enum ggml_op op;
  537. // op params - allocated as int32_t for alignment
  538. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  539. int32_t flags;
  540. struct ggml_tensor * src[GGML_MAX_SRC];
  541. // source tensor and offset for views
  542. struct ggml_tensor * view_src;
  543. size_t view_offs;
  544. void * data;
  545. char name[GGML_MAX_NAME];
  546. void * extra; // extra things e.g. for ggml-cuda.cu
  547. char padding[8];
  548. };
  549. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  550. // Abort callback
  551. // If not NULL, called before ggml computation
  552. // If it returns true, the computation is aborted
  553. typedef bool (*ggml_abort_callback)(void * data);
  554. //
  555. // GUID
  556. //
  557. // GUID types
  558. typedef uint8_t ggml_guid[16];
  559. typedef ggml_guid * ggml_guid_t;
  560. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  561. // misc
  562. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  563. GGML_API int64_t ggml_time_ms(void);
  564. GGML_API int64_t ggml_time_us(void);
  565. GGML_API int64_t ggml_cycles(void);
  566. GGML_API int64_t ggml_cycles_per_ms(void);
  567. // accepts a UTF-8 path, even on Windows
  568. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  569. GGML_API void ggml_print_object (const struct ggml_object * obj);
  570. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  571. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  572. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  573. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  574. GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  575. GGML_API int64_t ggml_blck_size(enum ggml_type type);
  576. GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  577. GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  578. GGML_DEPRECATED(
  579. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  580. "use ggml_row_size() instead");
  581. GGML_API const char * ggml_type_name(enum ggml_type type);
  582. GGML_API const char * ggml_op_name (enum ggml_op op);
  583. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  584. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  585. GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  586. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  587. GGML_API bool ggml_is_quantized(enum ggml_type type);
  588. // TODO: temporary until model loading of ggml examples is refactored
  589. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  590. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  591. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  592. GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
  593. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  594. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  595. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  596. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  597. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  598. // returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
  599. GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  600. GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  601. GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  602. GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  603. // returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
  604. GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
  605. // true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
  606. GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
  607. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  608. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  609. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  610. // use this to compute the memory overhead of a tensor
  611. GGML_API size_t ggml_tensor_overhead(void);
  612. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  613. // main
  614. GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
  615. GGML_API void ggml_reset(struct ggml_context * ctx);
  616. GGML_API void ggml_free (struct ggml_context * ctx);
  617. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  618. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  619. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  620. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  621. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  622. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  623. GGML_API struct ggml_tensor * ggml_new_tensor(
  624. struct ggml_context * ctx,
  625. enum ggml_type type,
  626. int n_dims,
  627. const int64_t *ne);
  628. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  629. struct ggml_context * ctx,
  630. enum ggml_type type,
  631. int64_t ne0);
  632. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  633. struct ggml_context * ctx,
  634. enum ggml_type type,
  635. int64_t ne0,
  636. int64_t ne1);
  637. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  638. struct ggml_context * ctx,
  639. enum ggml_type type,
  640. int64_t ne0,
  641. int64_t ne1,
  642. int64_t ne2);
  643. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  644. struct ggml_context * ctx,
  645. enum ggml_type type,
  646. int64_t ne0,
  647. int64_t ne1,
  648. int64_t ne2,
  649. int64_t ne3);
  650. GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
  651. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  652. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  653. // Context tensor enumeration and lookup
  654. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  655. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  656. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  657. // Converts a flat index into coordinates
  658. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  659. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  660. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  661. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  662. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  663. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  664. GGML_ATTRIBUTE_FORMAT(2, 3)
  665. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  666. // Tensor flags
  667. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  668. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  669. GGML_API void ggml_set_param(struct ggml_tensor * tensor);
  670. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  671. //
  672. // operations on tensors with backpropagation
  673. //
  674. GGML_API struct ggml_tensor * ggml_dup(
  675. struct ggml_context * ctx,
  676. struct ggml_tensor * a);
  677. // in-place, returns view(a)
  678. GGML_API struct ggml_tensor * ggml_dup_inplace(
  679. struct ggml_context * ctx,
  680. struct ggml_tensor * a);
  681. GGML_API struct ggml_tensor * ggml_add(
  682. struct ggml_context * ctx,
  683. struct ggml_tensor * a,
  684. struct ggml_tensor * b);
  685. GGML_API struct ggml_tensor * ggml_add_inplace(
  686. struct ggml_context * ctx,
  687. struct ggml_tensor * a,
  688. struct ggml_tensor * b);
  689. GGML_API struct ggml_tensor * ggml_add_cast(
  690. struct ggml_context * ctx,
  691. struct ggml_tensor * a,
  692. struct ggml_tensor * b,
  693. enum ggml_type type);
  694. GGML_API struct ggml_tensor * ggml_add1(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a,
  697. struct ggml_tensor * b);
  698. GGML_API struct ggml_tensor * ggml_add1_inplace(
  699. struct ggml_context * ctx,
  700. struct ggml_tensor * a,
  701. struct ggml_tensor * b);
  702. // dst = a
  703. // view(dst, nb1, nb2, nb3, offset) += b
  704. // return dst
  705. GGML_API struct ggml_tensor * ggml_acc(
  706. struct ggml_context * ctx,
  707. struct ggml_tensor * a,
  708. struct ggml_tensor * b,
  709. size_t nb1,
  710. size_t nb2,
  711. size_t nb3,
  712. size_t offset);
  713. GGML_API struct ggml_tensor * ggml_acc_inplace(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a,
  716. struct ggml_tensor * b,
  717. size_t nb1,
  718. size_t nb2,
  719. size_t nb3,
  720. size_t offset);
  721. GGML_API struct ggml_tensor * ggml_sub(
  722. struct ggml_context * ctx,
  723. struct ggml_tensor * a,
  724. struct ggml_tensor * b);
  725. GGML_API struct ggml_tensor * ggml_sub_inplace(
  726. struct ggml_context * ctx,
  727. struct ggml_tensor * a,
  728. struct ggml_tensor * b);
  729. GGML_API struct ggml_tensor * ggml_mul(
  730. struct ggml_context * ctx,
  731. struct ggml_tensor * a,
  732. struct ggml_tensor * b);
  733. GGML_API struct ggml_tensor * ggml_mul_inplace(
  734. struct ggml_context * ctx,
  735. struct ggml_tensor * a,
  736. struct ggml_tensor * b);
  737. GGML_API struct ggml_tensor * ggml_div(
  738. struct ggml_context * ctx,
  739. struct ggml_tensor * a,
  740. struct ggml_tensor * b);
  741. GGML_API struct ggml_tensor * ggml_div_inplace(
  742. struct ggml_context * ctx,
  743. struct ggml_tensor * a,
  744. struct ggml_tensor * b);
  745. GGML_API struct ggml_tensor * ggml_sqr(
  746. struct ggml_context * ctx,
  747. struct ggml_tensor * a);
  748. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  749. struct ggml_context * ctx,
  750. struct ggml_tensor * a);
  751. GGML_API struct ggml_tensor * ggml_sqrt(
  752. struct ggml_context * ctx,
  753. struct ggml_tensor * a);
  754. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  755. struct ggml_context * ctx,
  756. struct ggml_tensor * a);
  757. GGML_API struct ggml_tensor * ggml_log(
  758. struct ggml_context * ctx,
  759. struct ggml_tensor * a);
  760. GGML_API struct ggml_tensor * ggml_log_inplace(
  761. struct ggml_context * ctx,
  762. struct ggml_tensor * a);
  763. GGML_API struct ggml_tensor * ggml_sin(
  764. struct ggml_context * ctx,
  765. struct ggml_tensor * a);
  766. GGML_API struct ggml_tensor * ggml_sin_inplace(
  767. struct ggml_context * ctx,
  768. struct ggml_tensor * a);
  769. GGML_API struct ggml_tensor * ggml_cos(
  770. struct ggml_context * ctx,
  771. struct ggml_tensor * a);
  772. GGML_API struct ggml_tensor * ggml_cos_inplace(
  773. struct ggml_context * ctx,
  774. struct ggml_tensor * a);
  775. // return scalar
  776. GGML_API struct ggml_tensor * ggml_sum(
  777. struct ggml_context * ctx,
  778. struct ggml_tensor * a);
  779. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  780. GGML_API struct ggml_tensor * ggml_sum_rows(
  781. struct ggml_context * ctx,
  782. struct ggml_tensor * a);
  783. // mean along rows
  784. GGML_API struct ggml_tensor * ggml_mean(
  785. struct ggml_context * ctx,
  786. struct ggml_tensor * a);
  787. // argmax along rows
  788. GGML_API struct ggml_tensor * ggml_argmax(
  789. struct ggml_context * ctx,
  790. struct ggml_tensor * a);
  791. // count number of equal elements in a and b
  792. GGML_API struct ggml_tensor * ggml_count_equal(
  793. struct ggml_context * ctx,
  794. struct ggml_tensor * a,
  795. struct ggml_tensor * b);
  796. // if a is the same shape as b, and a is not parameter, return a
  797. // otherwise, return a new tensor: repeat(a) to fit in b
  798. GGML_API struct ggml_tensor * ggml_repeat(
  799. struct ggml_context * ctx,
  800. struct ggml_tensor * a,
  801. struct ggml_tensor * b);
  802. // repeat a to the specified shape
  803. GGML_API struct ggml_tensor * ggml_repeat_4d(
  804. struct ggml_context * ctx,
  805. struct ggml_tensor * a,
  806. int64_t ne0,
  807. int64_t ne1,
  808. int64_t ne2,
  809. int64_t ne3);
  810. // sums repetitions in a into shape of b
  811. GGML_API struct ggml_tensor * ggml_repeat_back(
  812. struct ggml_context * ctx,
  813. struct ggml_tensor * a,
  814. struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
  815. // concat a and b along dim
  816. // used in stable-diffusion
  817. GGML_API struct ggml_tensor * ggml_concat(
  818. struct ggml_context * ctx,
  819. struct ggml_tensor * a,
  820. struct ggml_tensor * b,
  821. int dim);
  822. GGML_API struct ggml_tensor * ggml_abs(
  823. struct ggml_context * ctx,
  824. struct ggml_tensor * a);
  825. GGML_API struct ggml_tensor * ggml_abs_inplace(
  826. struct ggml_context * ctx,
  827. struct ggml_tensor * a);
  828. GGML_API struct ggml_tensor * ggml_sgn(
  829. struct ggml_context * ctx,
  830. struct ggml_tensor * a);
  831. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  832. struct ggml_context * ctx,
  833. struct ggml_tensor * a);
  834. GGML_API struct ggml_tensor * ggml_neg(
  835. struct ggml_context * ctx,
  836. struct ggml_tensor * a);
  837. GGML_API struct ggml_tensor * ggml_neg_inplace(
  838. struct ggml_context * ctx,
  839. struct ggml_tensor * a);
  840. GGML_API struct ggml_tensor * ggml_step(
  841. struct ggml_context * ctx,
  842. struct ggml_tensor * a);
  843. GGML_API struct ggml_tensor * ggml_step_inplace(
  844. struct ggml_context * ctx,
  845. struct ggml_tensor * a);
  846. GGML_API struct ggml_tensor * ggml_tanh(
  847. struct ggml_context * ctx,
  848. struct ggml_tensor * a);
  849. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  850. struct ggml_context * ctx,
  851. struct ggml_tensor * a);
  852. GGML_API struct ggml_tensor * ggml_elu(
  853. struct ggml_context * ctx,
  854. struct ggml_tensor * a);
  855. GGML_API struct ggml_tensor * ggml_elu_inplace(
  856. struct ggml_context * ctx,
  857. struct ggml_tensor * a);
  858. GGML_API struct ggml_tensor * ggml_relu(
  859. struct ggml_context * ctx,
  860. struct ggml_tensor * a);
  861. GGML_API struct ggml_tensor * ggml_leaky_relu(
  862. struct ggml_context * ctx,
  863. struct ggml_tensor * a, float negative_slope, bool inplace);
  864. GGML_API struct ggml_tensor * ggml_relu_inplace(
  865. struct ggml_context * ctx,
  866. struct ggml_tensor * a);
  867. GGML_API struct ggml_tensor * ggml_sigmoid(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * a);
  870. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  871. struct ggml_context * ctx,
  872. struct ggml_tensor * a);
  873. GGML_API struct ggml_tensor * ggml_gelu(
  874. struct ggml_context * ctx,
  875. struct ggml_tensor * a);
  876. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  877. struct ggml_context * ctx,
  878. struct ggml_tensor * a);
  879. // GELU using erf (error function) when possible
  880. // some backends may fallback to approximation based on Abramowitz and Stegun formula
  881. GGML_API struct ggml_tensor * ggml_gelu_erf(
  882. struct ggml_context * ctx,
  883. struct ggml_tensor * a);
  884. GGML_API struct ggml_tensor * ggml_gelu_erf_inplace(
  885. struct ggml_context * ctx,
  886. struct ggml_tensor * a);
  887. GGML_API struct ggml_tensor * ggml_gelu_quick(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a);
  890. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  891. struct ggml_context * ctx,
  892. struct ggml_tensor * a);
  893. GGML_API struct ggml_tensor * ggml_silu(
  894. struct ggml_context * ctx,
  895. struct ggml_tensor * a);
  896. GGML_API struct ggml_tensor * ggml_silu_inplace(
  897. struct ggml_context * ctx,
  898. struct ggml_tensor * a);
  899. // a - x
  900. // b - dy
  901. GGML_API struct ggml_tensor * ggml_silu_back(
  902. struct ggml_context * ctx,
  903. struct ggml_tensor * a,
  904. struct ggml_tensor * b);
  905. // hardswish(x) = x * relu6(x + 3) / 6
  906. GGML_API struct ggml_tensor * ggml_hardswish(
  907. struct ggml_context * ctx,
  908. struct ggml_tensor * a);
  909. // hardsigmoid(x) = relu6(x + 3) / 6
  910. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  911. struct ggml_context * ctx,
  912. struct ggml_tensor * a);
  913. GGML_API struct ggml_tensor * ggml_exp(
  914. struct ggml_context * ctx,
  915. struct ggml_tensor * a);
  916. GGML_API struct ggml_tensor * ggml_exp_inplace(
  917. struct ggml_context * ctx,
  918. struct ggml_tensor * a);
  919. // normalize along rows
  920. GGML_API struct ggml_tensor * ggml_norm(
  921. struct ggml_context * ctx,
  922. struct ggml_tensor * a,
  923. float eps);
  924. GGML_API struct ggml_tensor * ggml_norm_inplace(
  925. struct ggml_context * ctx,
  926. struct ggml_tensor * a,
  927. float eps);
  928. GGML_API struct ggml_tensor * ggml_rms_norm(
  929. struct ggml_context * ctx,
  930. struct ggml_tensor * a,
  931. float eps);
  932. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  933. struct ggml_context * ctx,
  934. struct ggml_tensor * a,
  935. float eps);
  936. // group normalize along ne0*ne1*n_groups
  937. // used in stable-diffusion
  938. GGML_API struct ggml_tensor * ggml_group_norm(
  939. struct ggml_context * ctx,
  940. struct ggml_tensor * a,
  941. int n_groups,
  942. float eps);
  943. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  944. struct ggml_context * ctx,
  945. struct ggml_tensor * a,
  946. int n_groups,
  947. float eps);
  948. // l2 normalize along rows
  949. // used in rwkv v7
  950. GGML_API struct ggml_tensor * ggml_l2_norm(
  951. struct ggml_context * ctx,
  952. struct ggml_tensor * a,
  953. float eps);
  954. GGML_API struct ggml_tensor * ggml_l2_norm_inplace(
  955. struct ggml_context * ctx,
  956. struct ggml_tensor * a,
  957. float eps);
  958. // a - x
  959. // b - dy
  960. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  961. struct ggml_context * ctx,
  962. struct ggml_tensor * a,
  963. struct ggml_tensor * b,
  964. float eps);
  965. // A: k columns, n rows => [ne03, ne02, n, k]
  966. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  967. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  968. GGML_API struct ggml_tensor * ggml_mul_mat(
  969. struct ggml_context * ctx,
  970. struct ggml_tensor * a,
  971. struct ggml_tensor * b);
  972. // change the precision of a matrix multiplication
  973. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  974. GGML_API void ggml_mul_mat_set_prec(
  975. struct ggml_tensor * a,
  976. enum ggml_prec prec);
  977. // indirect matrix multiplication
  978. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  979. struct ggml_context * ctx,
  980. struct ggml_tensor * as,
  981. struct ggml_tensor * b,
  982. struct ggml_tensor * ids);
  983. // A: m columns, n rows,
  984. // B: p columns, n rows,
  985. // result is m columns, p rows
  986. GGML_API struct ggml_tensor * ggml_out_prod(
  987. struct ggml_context * ctx,
  988. struct ggml_tensor * a,
  989. struct ggml_tensor * b);
  990. //
  991. // operations on tensors without backpropagation
  992. //
  993. GGML_API struct ggml_tensor * ggml_scale(
  994. struct ggml_context * ctx,
  995. struct ggml_tensor * a,
  996. float s);
  997. // in-place, returns view(a)
  998. GGML_API struct ggml_tensor * ggml_scale_inplace(
  999. struct ggml_context * ctx,
  1000. struct ggml_tensor * a,
  1001. float s);
  1002. // b -> view(a,offset,nb1,nb2,3), return modified a
  1003. GGML_API struct ggml_tensor * ggml_set(
  1004. struct ggml_context * ctx,
  1005. struct ggml_tensor * a,
  1006. struct ggml_tensor * b,
  1007. size_t nb1,
  1008. size_t nb2,
  1009. size_t nb3,
  1010. size_t offset); // in bytes
  1011. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1012. GGML_API struct ggml_tensor * ggml_set_inplace(
  1013. struct ggml_context * ctx,
  1014. struct ggml_tensor * a,
  1015. struct ggml_tensor * b,
  1016. size_t nb1,
  1017. size_t nb2,
  1018. size_t nb3,
  1019. size_t offset); // in bytes
  1020. GGML_API struct ggml_tensor * ggml_set_1d(
  1021. struct ggml_context * ctx,
  1022. struct ggml_tensor * a,
  1023. struct ggml_tensor * b,
  1024. size_t offset); // in bytes
  1025. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1026. struct ggml_context * ctx,
  1027. struct ggml_tensor * a,
  1028. struct ggml_tensor * b,
  1029. size_t offset); // in bytes
  1030. // b -> view(a,offset,nb1,nb2,3), return modified a
  1031. GGML_API struct ggml_tensor * ggml_set_2d(
  1032. struct ggml_context * ctx,
  1033. struct ggml_tensor * a,
  1034. struct ggml_tensor * b,
  1035. size_t nb1,
  1036. size_t offset); // in bytes
  1037. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1038. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1039. struct ggml_context * ctx,
  1040. struct ggml_tensor * a,
  1041. struct ggml_tensor * b,
  1042. size_t nb1,
  1043. size_t offset); // in bytes
  1044. // a -> b, return view(b)
  1045. GGML_API struct ggml_tensor * ggml_cpy(
  1046. struct ggml_context * ctx,
  1047. struct ggml_tensor * a,
  1048. struct ggml_tensor * b);
  1049. GGML_API struct ggml_tensor * ggml_cast(
  1050. struct ggml_context * ctx,
  1051. struct ggml_tensor * a,
  1052. enum ggml_type type);
  1053. // make contiguous
  1054. GGML_API struct ggml_tensor * ggml_cont(
  1055. struct ggml_context * ctx,
  1056. struct ggml_tensor * a);
  1057. // make contiguous, with new shape
  1058. GGML_API struct ggml_tensor * ggml_cont_1d(
  1059. struct ggml_context * ctx,
  1060. struct ggml_tensor * a,
  1061. int64_t ne0);
  1062. GGML_API struct ggml_tensor * ggml_cont_2d(
  1063. struct ggml_context * ctx,
  1064. struct ggml_tensor * a,
  1065. int64_t ne0,
  1066. int64_t ne1);
  1067. GGML_API struct ggml_tensor * ggml_cont_3d(
  1068. struct ggml_context * ctx,
  1069. struct ggml_tensor * a,
  1070. int64_t ne0,
  1071. int64_t ne1,
  1072. int64_t ne2);
  1073. GGML_API struct ggml_tensor * ggml_cont_4d(
  1074. struct ggml_context * ctx,
  1075. struct ggml_tensor * a,
  1076. int64_t ne0,
  1077. int64_t ne1,
  1078. int64_t ne2,
  1079. int64_t ne3);
  1080. // return view(a), b specifies the new shape
  1081. // TODO: when we start computing gradient, make a copy instead of view
  1082. GGML_API struct ggml_tensor * ggml_reshape(
  1083. struct ggml_context * ctx,
  1084. struct ggml_tensor * a,
  1085. struct ggml_tensor * b);
  1086. // return view(a)
  1087. // TODO: when we start computing gradient, make a copy instead of view
  1088. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1089. struct ggml_context * ctx,
  1090. struct ggml_tensor * a,
  1091. int64_t ne0);
  1092. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1093. struct ggml_context * ctx,
  1094. struct ggml_tensor * a,
  1095. int64_t ne0,
  1096. int64_t ne1);
  1097. // return view(a)
  1098. // TODO: when we start computing gradient, make a copy instead of view
  1099. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1100. struct ggml_context * ctx,
  1101. struct ggml_tensor * a,
  1102. int64_t ne0,
  1103. int64_t ne1,
  1104. int64_t ne2);
  1105. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1106. struct ggml_context * ctx,
  1107. struct ggml_tensor * a,
  1108. int64_t ne0,
  1109. int64_t ne1,
  1110. int64_t ne2,
  1111. int64_t ne3);
  1112. // offset in bytes
  1113. GGML_API struct ggml_tensor * ggml_view_1d(
  1114. struct ggml_context * ctx,
  1115. struct ggml_tensor * a,
  1116. int64_t ne0,
  1117. size_t offset);
  1118. GGML_API struct ggml_tensor * ggml_view_2d(
  1119. struct ggml_context * ctx,
  1120. struct ggml_tensor * a,
  1121. int64_t ne0,
  1122. int64_t ne1,
  1123. size_t nb1, // row stride in bytes
  1124. size_t offset);
  1125. GGML_API struct ggml_tensor * ggml_view_3d(
  1126. struct ggml_context * ctx,
  1127. struct ggml_tensor * a,
  1128. int64_t ne0,
  1129. int64_t ne1,
  1130. int64_t ne2,
  1131. size_t nb1, // row stride in bytes
  1132. size_t nb2, // slice stride in bytes
  1133. size_t offset);
  1134. GGML_API struct ggml_tensor * ggml_view_4d(
  1135. struct ggml_context * ctx,
  1136. struct ggml_tensor * a,
  1137. int64_t ne0,
  1138. int64_t ne1,
  1139. int64_t ne2,
  1140. int64_t ne3,
  1141. size_t nb1, // row stride in bytes
  1142. size_t nb2, // slice stride in bytes
  1143. size_t nb3,
  1144. size_t offset);
  1145. GGML_API struct ggml_tensor * ggml_permute(
  1146. struct ggml_context * ctx,
  1147. struct ggml_tensor * a,
  1148. int axis0,
  1149. int axis1,
  1150. int axis2,
  1151. int axis3);
  1152. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1153. GGML_API struct ggml_tensor * ggml_transpose(
  1154. struct ggml_context * ctx,
  1155. struct ggml_tensor * a);
  1156. // supports 3D: a->ne[2] == b->ne[1]
  1157. GGML_API struct ggml_tensor * ggml_get_rows(
  1158. struct ggml_context * ctx,
  1159. struct ggml_tensor * a, // data
  1160. struct ggml_tensor * b); // row indices
  1161. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1162. struct ggml_context * ctx,
  1163. struct ggml_tensor * a, // gradients of ggml_get_rows result
  1164. struct ggml_tensor * b, // row indices
  1165. struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
  1166. GGML_API struct ggml_tensor * ggml_diag(
  1167. struct ggml_context * ctx,
  1168. struct ggml_tensor * a);
  1169. // set elements above the diagonal to -INF
  1170. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1171. struct ggml_context * ctx,
  1172. struct ggml_tensor * a,
  1173. int n_past);
  1174. // in-place, returns view(a)
  1175. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1176. struct ggml_context * ctx,
  1177. struct ggml_tensor * a,
  1178. int n_past);
  1179. // set elements above the diagonal to 0
  1180. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1181. struct ggml_context * ctx,
  1182. struct ggml_tensor * a,
  1183. int n_past);
  1184. // in-place, returns view(a)
  1185. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1186. struct ggml_context * ctx,
  1187. struct ggml_tensor * a,
  1188. int n_past);
  1189. GGML_API struct ggml_tensor * ggml_soft_max(
  1190. struct ggml_context * ctx,
  1191. struct ggml_tensor * a);
  1192. // in-place, returns view(a)
  1193. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1194. struct ggml_context * ctx,
  1195. struct ggml_tensor * a);
  1196. // fused soft_max(a*scale + mask*(ALiBi slope))
  1197. // mask is optional
  1198. // max_bias = 0.0f for no ALiBi
  1199. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1200. struct ggml_context * ctx,
  1201. struct ggml_tensor * a,
  1202. struct ggml_tensor * mask,
  1203. float scale,
  1204. float max_bias);
  1205. GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
  1206. struct ggml_context * ctx,
  1207. struct ggml_tensor * a,
  1208. struct ggml_tensor * b,
  1209. float scale,
  1210. float max_bias);
  1211. // in-place, returns view(a)
  1212. GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
  1213. struct ggml_context * ctx,
  1214. struct ggml_tensor * a,
  1215. struct ggml_tensor * b,
  1216. float scale,
  1217. float max_bias);
  1218. // rotary position embedding
  1219. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1220. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1221. //
  1222. // b is an int32 vector with size a->ne[2], it contains the positions
  1223. GGML_API struct ggml_tensor * ggml_rope(
  1224. struct ggml_context * ctx,
  1225. struct ggml_tensor * a,
  1226. struct ggml_tensor * b,
  1227. int n_dims,
  1228. int mode);
  1229. // in-place, returns view(a)
  1230. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1231. struct ggml_context * ctx,
  1232. struct ggml_tensor * a,
  1233. struct ggml_tensor * b,
  1234. int n_dims,
  1235. int mode);
  1236. // custom RoPE
  1237. // c is freq factors (e.g. phi3-128k), (optional)
  1238. GGML_API struct ggml_tensor * ggml_rope_ext(
  1239. struct ggml_context * ctx,
  1240. struct ggml_tensor * a,
  1241. struct ggml_tensor * b,
  1242. struct ggml_tensor * c,
  1243. int n_dims,
  1244. int mode,
  1245. int n_ctx_orig,
  1246. float freq_base,
  1247. float freq_scale,
  1248. float ext_factor,
  1249. float attn_factor,
  1250. float beta_fast,
  1251. float beta_slow);
  1252. GGML_API struct ggml_tensor * ggml_rope_multi(
  1253. struct ggml_context * ctx,
  1254. struct ggml_tensor * a,
  1255. struct ggml_tensor * b,
  1256. struct ggml_tensor * c,
  1257. int n_dims,
  1258. int sections[4],
  1259. int mode,
  1260. int n_ctx_orig,
  1261. float freq_base,
  1262. float freq_scale,
  1263. float ext_factor,
  1264. float attn_factor,
  1265. float beta_fast,
  1266. float beta_slow);
  1267. // in-place, returns view(a)
  1268. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1269. struct ggml_context * ctx,
  1270. struct ggml_tensor * a,
  1271. struct ggml_tensor * b,
  1272. struct ggml_tensor * c,
  1273. int n_dims,
  1274. int mode,
  1275. int n_ctx_orig,
  1276. float freq_base,
  1277. float freq_scale,
  1278. float ext_factor,
  1279. float attn_factor,
  1280. float beta_fast,
  1281. float beta_slow);
  1282. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1283. struct ggml_context * ctx,
  1284. struct ggml_tensor * a,
  1285. struct ggml_tensor * b,
  1286. int n_dims,
  1287. int mode,
  1288. int n_ctx_orig,
  1289. float freq_base,
  1290. float freq_scale,
  1291. float ext_factor,
  1292. float attn_factor,
  1293. float beta_fast,
  1294. float beta_slow),
  1295. "use ggml_rope_ext instead");
  1296. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1297. struct ggml_context * ctx,
  1298. struct ggml_tensor * a,
  1299. struct ggml_tensor * b,
  1300. int n_dims,
  1301. int mode,
  1302. int n_ctx_orig,
  1303. float freq_base,
  1304. float freq_scale,
  1305. float ext_factor,
  1306. float attn_factor,
  1307. float beta_fast,
  1308. float beta_slow),
  1309. "use ggml_rope_ext_inplace instead");
  1310. // compute correction dims for YaRN RoPE scaling
  1311. GGML_API void ggml_rope_yarn_corr_dims(
  1312. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1313. // rotary position embedding backward, i.e compute dx from dy
  1314. // a - dy
  1315. GGML_API struct ggml_tensor * ggml_rope_ext_back(
  1316. struct ggml_context * ctx,
  1317. struct ggml_tensor * a, // gradients of ggml_rope result
  1318. struct ggml_tensor * b, // positions
  1319. struct ggml_tensor * c, // freq factors
  1320. int n_dims,
  1321. int mode,
  1322. int n_ctx_orig,
  1323. float freq_base,
  1324. float freq_scale,
  1325. float ext_factor,
  1326. float attn_factor,
  1327. float beta_fast,
  1328. float beta_slow);
  1329. GGML_API struct ggml_tensor * ggml_rope_multi_back(
  1330. struct ggml_context * ctx,
  1331. struct ggml_tensor * a,
  1332. struct ggml_tensor * b,
  1333. struct ggml_tensor * c,
  1334. int n_dims,
  1335. int sections[4],
  1336. int mode,
  1337. int n_ctx_orig,
  1338. float freq_base,
  1339. float freq_scale,
  1340. float ext_factor,
  1341. float attn_factor,
  1342. float beta_fast,
  1343. float beta_slow);
  1344. // clamp
  1345. // in-place, returns view(a)
  1346. GGML_API struct ggml_tensor * ggml_clamp(
  1347. struct ggml_context * ctx,
  1348. struct ggml_tensor * a,
  1349. float min,
  1350. float max);
  1351. // im2col
  1352. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1353. GGML_API struct ggml_tensor * ggml_im2col(
  1354. struct ggml_context * ctx,
  1355. struct ggml_tensor * a, // convolution kernel
  1356. struct ggml_tensor * b, // data
  1357. int s0, // stride dimension 0
  1358. int s1, // stride dimension 1
  1359. int p0, // padding dimension 0
  1360. int p1, // padding dimension 1
  1361. int d0, // dilation dimension 0
  1362. int d1, // dilation dimension 1
  1363. bool is_2D,
  1364. enum ggml_type dst_type);
  1365. GGML_API struct ggml_tensor * ggml_im2col_back(
  1366. struct ggml_context * ctx,
  1367. struct ggml_tensor * a, // convolution kernel
  1368. struct ggml_tensor * b, // gradient of im2col output
  1369. int64_t * ne, // shape of im2col input
  1370. int s0, // stride dimension 0
  1371. int s1, // stride dimension 1
  1372. int p0, // padding dimension 0
  1373. int p1, // padding dimension 1
  1374. int d0, // dilation dimension 0
  1375. int d1, // dilation dimension 1
  1376. bool is_2D);
  1377. GGML_API struct ggml_tensor * ggml_conv_1d(
  1378. struct ggml_context * ctx,
  1379. struct ggml_tensor * a, // convolution kernel
  1380. struct ggml_tensor * b, // data
  1381. int s0, // stride
  1382. int p0, // padding
  1383. int d0); // dilation
  1384. // conv_1d with padding = half
  1385. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1386. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1387. struct ggml_context * ctx,
  1388. struct ggml_tensor * a, // convolution kernel
  1389. struct ggml_tensor * b, // data
  1390. int s, // stride
  1391. int d); // dilation
  1392. // depthwise
  1393. // TODO: this is very likely wrong for some cases! - needs more testing
  1394. GGML_API struct ggml_tensor * ggml_conv_1d_dw(
  1395. struct ggml_context * ctx,
  1396. struct ggml_tensor * a, // convolution kernel
  1397. struct ggml_tensor * b, // data
  1398. int s0, // stride
  1399. int p0, // padding
  1400. int d0); // dilation
  1401. GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph(
  1402. struct ggml_context * ctx,
  1403. struct ggml_tensor * a, // convolution kernel
  1404. struct ggml_tensor * b, // data
  1405. int s0, // stride
  1406. int d0); // dilation
  1407. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1408. struct ggml_context * ctx,
  1409. struct ggml_tensor * a, // convolution kernel
  1410. struct ggml_tensor * b, // data
  1411. int s0, // stride
  1412. int p0, // padding
  1413. int d0); // dilation
  1414. GGML_API struct ggml_tensor * ggml_conv_2d(
  1415. struct ggml_context * ctx,
  1416. struct ggml_tensor * a, // convolution kernel
  1417. struct ggml_tensor * b, // data
  1418. int s0, // stride dimension 0
  1419. int s1, // stride dimension 1
  1420. int p0, // padding dimension 0
  1421. int p1, // padding dimension 1
  1422. int d0, // dilation dimension 0
  1423. int d1); // dilation dimension 1
  1424. // kernel size is a->ne[0] x a->ne[1]
  1425. // stride is equal to kernel size
  1426. // padding is zero
  1427. // example:
  1428. // a: 16 16 3 768
  1429. // b: 1024 1024 3 1
  1430. // res: 64 64 768 1
  1431. // used in sam
  1432. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1433. struct ggml_context * ctx,
  1434. struct ggml_tensor * a,
  1435. struct ggml_tensor * b);
  1436. // kernel size is a->ne[0] x a->ne[1]
  1437. // stride is 1
  1438. // padding is half
  1439. // example:
  1440. // a: 3 3 256 256
  1441. // b: 64 64 256 1
  1442. // res: 64 64 256 1
  1443. // used in sam
  1444. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1445. struct ggml_context * ctx,
  1446. struct ggml_tensor * a,
  1447. struct ggml_tensor * b);
  1448. // depthwise (via im2col and mul_mat)
  1449. GGML_API struct ggml_tensor * ggml_conv_2d_dw(
  1450. struct ggml_context * ctx,
  1451. struct ggml_tensor * a, // convolution kernel
  1452. struct ggml_tensor * b, // data
  1453. int s0, // stride dimension 0
  1454. int s1, // stride dimension 1
  1455. int p0, // padding dimension 0
  1456. int p1, // padding dimension 1
  1457. int d0, // dilation dimension 0
  1458. int d1); // dilation dimension 1
  1459. // Depthwise 2D convolution
  1460. // may be faster than ggml_conv_2d_dw, but not available in all backends
  1461. // a: KW KH 1 C convolution kernel
  1462. // b: W H C N input data
  1463. // res: W_out H_out C N
  1464. GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
  1465. struct ggml_context * ctx,
  1466. struct ggml_tensor * a,
  1467. struct ggml_tensor * b,
  1468. int stride0,
  1469. int stride1,
  1470. int pad0,
  1471. int pad1,
  1472. int dilation0,
  1473. int dilation1);
  1474. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1475. struct ggml_context * ctx,
  1476. struct ggml_tensor * a,
  1477. struct ggml_tensor * b,
  1478. int stride);
  1479. enum ggml_op_pool {
  1480. GGML_OP_POOL_MAX,
  1481. GGML_OP_POOL_AVG,
  1482. GGML_OP_POOL_COUNT,
  1483. };
  1484. GGML_API struct ggml_tensor * ggml_pool_1d(
  1485. struct ggml_context * ctx,
  1486. struct ggml_tensor * a,
  1487. enum ggml_op_pool op,
  1488. int k0, // kernel size
  1489. int s0, // stride
  1490. int p0); // padding
  1491. // the result will have 2*p0 padding for the first dimension
  1492. // and 2*p1 padding for the second dimension
  1493. GGML_API struct ggml_tensor * ggml_pool_2d(
  1494. struct ggml_context * ctx,
  1495. struct ggml_tensor * a,
  1496. enum ggml_op_pool op,
  1497. int k0,
  1498. int k1,
  1499. int s0,
  1500. int s1,
  1501. float p0,
  1502. float p1);
  1503. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1504. struct ggml_context * ctx,
  1505. struct ggml_tensor * a,
  1506. struct ggml_tensor * af, // "a"/input used in forward pass
  1507. enum ggml_op_pool op,
  1508. int k0,
  1509. int k1,
  1510. int s0,
  1511. int s1,
  1512. float p0,
  1513. float p1);
  1514. enum ggml_scale_mode {
  1515. GGML_SCALE_MODE_NEAREST = 0,
  1516. GGML_SCALE_MODE_BILINEAR = 1,
  1517. };
  1518. // interpolate
  1519. // multiplies ne0 and ne1 by scale factor
  1520. GGML_API struct ggml_tensor * ggml_upscale(
  1521. struct ggml_context * ctx,
  1522. struct ggml_tensor * a,
  1523. int scale_factor,
  1524. enum ggml_scale_mode mode);
  1525. // interpolate
  1526. // interpolate scale to specified dimensions
  1527. GGML_API struct ggml_tensor * ggml_upscale_ext(
  1528. struct ggml_context * ctx,
  1529. struct ggml_tensor * a,
  1530. int ne0,
  1531. int ne1,
  1532. int ne2,
  1533. int ne3,
  1534. enum ggml_scale_mode mode);
  1535. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1536. GGML_API struct ggml_tensor * ggml_pad(
  1537. struct ggml_context * ctx,
  1538. struct ggml_tensor * a,
  1539. int p0,
  1540. int p1,
  1541. int p2,
  1542. int p3);
  1543. // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
  1544. GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
  1545. struct ggml_context * ctx,
  1546. struct ggml_tensor * a,
  1547. int p0,
  1548. int p1);
  1549. // Move tensor elements by an offset given for each dimension. Elements that
  1550. // are shifted beyond the last position are wrapped around to the beginning.
  1551. GGML_API struct ggml_tensor * ggml_roll(
  1552. struct ggml_context * ctx,
  1553. struct ggml_tensor * a,
  1554. int shift0,
  1555. int shift1,
  1556. int shift2,
  1557. int shift3);
  1558. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1559. // timesteps: [N,]
  1560. // return: [N, dim]
  1561. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1562. struct ggml_context * ctx,
  1563. struct ggml_tensor * timesteps,
  1564. int dim,
  1565. int max_period);
  1566. // sort rows
  1567. enum ggml_sort_order {
  1568. GGML_SORT_ORDER_ASC,
  1569. GGML_SORT_ORDER_DESC,
  1570. };
  1571. GGML_API struct ggml_tensor * ggml_argsort(
  1572. struct ggml_context * ctx,
  1573. struct ggml_tensor * a,
  1574. enum ggml_sort_order order);
  1575. GGML_API struct ggml_tensor * ggml_arange(
  1576. struct ggml_context * ctx,
  1577. float start,
  1578. float stop,
  1579. float step);
  1580. // top k elements per row
  1581. GGML_API struct ggml_tensor * ggml_top_k(
  1582. struct ggml_context * ctx,
  1583. struct ggml_tensor * a,
  1584. int k);
  1585. #define GGML_KQ_MASK_PAD 64
  1586. // q: [n_embd_k, n_batch, n_head, 1]
  1587. // k: [n_embd_k, n_kv, n_head_kv, 1]
  1588. // v: [n_embd_v, n_kv, n_head_kv, 1] !! not transposed !!
  1589. // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1590. // res: [n_embd_v, n_head, n_batch, 1] !! permuted !!
  1591. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1592. struct ggml_context * ctx,
  1593. struct ggml_tensor * q,
  1594. struct ggml_tensor * k,
  1595. struct ggml_tensor * v,
  1596. struct ggml_tensor * mask,
  1597. float scale,
  1598. float max_bias,
  1599. float logit_softcap);
  1600. GGML_API void ggml_flash_attn_ext_set_prec(
  1601. struct ggml_tensor * a,
  1602. enum ggml_prec prec);
  1603. GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
  1604. const struct ggml_tensor * a);
  1605. // TODO: needs to be adapted to ggml_flash_attn_ext
  1606. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1607. struct ggml_context * ctx,
  1608. struct ggml_tensor * q,
  1609. struct ggml_tensor * k,
  1610. struct ggml_tensor * v,
  1611. struct ggml_tensor * d,
  1612. bool masked);
  1613. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1614. struct ggml_context * ctx,
  1615. struct ggml_tensor * sx,
  1616. struct ggml_tensor * c);
  1617. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1618. struct ggml_context * ctx,
  1619. struct ggml_tensor * s,
  1620. struct ggml_tensor * x,
  1621. struct ggml_tensor * dt,
  1622. struct ggml_tensor * A,
  1623. struct ggml_tensor * B,
  1624. struct ggml_tensor * C);
  1625. // partition into non-overlapping windows with padding if needed
  1626. // example:
  1627. // a: 768 64 64 1
  1628. // w: 14
  1629. // res: 768 14 14 25
  1630. // used in sam
  1631. GGML_API struct ggml_tensor * ggml_win_part(
  1632. struct ggml_context * ctx,
  1633. struct ggml_tensor * a,
  1634. int w);
  1635. // reverse of ggml_win_part
  1636. // used in sam
  1637. GGML_API struct ggml_tensor * ggml_win_unpart(
  1638. struct ggml_context * ctx,
  1639. struct ggml_tensor * a,
  1640. int w0,
  1641. int h0,
  1642. int w);
  1643. GGML_API struct ggml_tensor * ggml_unary(
  1644. struct ggml_context * ctx,
  1645. struct ggml_tensor * a,
  1646. enum ggml_unary_op op);
  1647. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1648. struct ggml_context * ctx,
  1649. struct ggml_tensor * a,
  1650. enum ggml_unary_op op);
  1651. // used in sam
  1652. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1653. struct ggml_context * ctx,
  1654. struct ggml_tensor * a,
  1655. int qh,
  1656. int kh);
  1657. // used in sam
  1658. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1659. struct ggml_context * ctx,
  1660. struct ggml_tensor * a,
  1661. struct ggml_tensor * pw,
  1662. struct ggml_tensor * ph);
  1663. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1664. struct ggml_context * ctx,
  1665. struct ggml_tensor * a,
  1666. struct ggml_tensor * pw,
  1667. struct ggml_tensor * ph);
  1668. GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
  1669. struct ggml_context * ctx,
  1670. struct ggml_tensor * k,
  1671. struct ggml_tensor * v,
  1672. struct ggml_tensor * r,
  1673. struct ggml_tensor * tf,
  1674. struct ggml_tensor * td,
  1675. struct ggml_tensor * state);
  1676. GGML_API struct ggml_tensor * ggml_gated_linear_attn(
  1677. struct ggml_context * ctx,
  1678. struct ggml_tensor * k,
  1679. struct ggml_tensor * v,
  1680. struct ggml_tensor * q,
  1681. struct ggml_tensor * g,
  1682. struct ggml_tensor * state,
  1683. float scale);
  1684. GGML_API struct ggml_tensor * ggml_rwkv_wkv7(
  1685. struct ggml_context * ctx,
  1686. struct ggml_tensor * r,
  1687. struct ggml_tensor * w,
  1688. struct ggml_tensor * k,
  1689. struct ggml_tensor * v,
  1690. struct ggml_tensor * a,
  1691. struct ggml_tensor * b,
  1692. struct ggml_tensor * state);
  1693. // custom operators
  1694. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1695. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1696. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1697. #define GGML_N_TASKS_MAX (-1)
  1698. // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
  1699. GGML_API struct ggml_tensor * ggml_map_custom1(
  1700. struct ggml_context * ctx,
  1701. struct ggml_tensor * a,
  1702. ggml_custom1_op_t fun,
  1703. int n_tasks,
  1704. void * userdata);
  1705. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1706. struct ggml_context * ctx,
  1707. struct ggml_tensor * a,
  1708. ggml_custom1_op_t fun,
  1709. int n_tasks,
  1710. void * userdata);
  1711. GGML_API struct ggml_tensor * ggml_map_custom2(
  1712. struct ggml_context * ctx,
  1713. struct ggml_tensor * a,
  1714. struct ggml_tensor * b,
  1715. ggml_custom2_op_t fun,
  1716. int n_tasks,
  1717. void * userdata);
  1718. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1719. struct ggml_context * ctx,
  1720. struct ggml_tensor * a,
  1721. struct ggml_tensor * b,
  1722. ggml_custom2_op_t fun,
  1723. int n_tasks,
  1724. void * userdata);
  1725. GGML_API struct ggml_tensor * ggml_map_custom3(
  1726. struct ggml_context * ctx,
  1727. struct ggml_tensor * a,
  1728. struct ggml_tensor * b,
  1729. struct ggml_tensor * c,
  1730. ggml_custom3_op_t fun,
  1731. int n_tasks,
  1732. void * userdata);
  1733. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1734. struct ggml_context * ctx,
  1735. struct ggml_tensor * a,
  1736. struct ggml_tensor * b,
  1737. struct ggml_tensor * c,
  1738. ggml_custom3_op_t fun,
  1739. int n_tasks,
  1740. void * userdata);
  1741. typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
  1742. GGML_API struct ggml_tensor * ggml_custom_4d(
  1743. struct ggml_context * ctx,
  1744. enum ggml_type type,
  1745. int64_t ne0,
  1746. int64_t ne1,
  1747. int64_t ne2,
  1748. int64_t ne3,
  1749. struct ggml_tensor ** args,
  1750. int n_args,
  1751. ggml_custom_op_t fun,
  1752. int n_tasks,
  1753. void * userdata);
  1754. GGML_API struct ggml_tensor * ggml_custom_inplace(
  1755. struct ggml_context * ctx,
  1756. struct ggml_tensor * a,
  1757. struct ggml_tensor ** args,
  1758. int n_args,
  1759. ggml_custom_op_t fun,
  1760. int n_tasks,
  1761. void * userdata);
  1762. // loss function
  1763. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1764. struct ggml_context * ctx,
  1765. struct ggml_tensor * a, // logits
  1766. struct ggml_tensor * b); // labels
  1767. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1768. struct ggml_context * ctx,
  1769. struct ggml_tensor * a, // logits
  1770. struct ggml_tensor * b, // labels
  1771. struct ggml_tensor * c); // gradients of cross_entropy_loss result
  1772. // AdamW optimizer step
  1773. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  1774. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  1775. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  1776. struct ggml_context * ctx,
  1777. struct ggml_tensor * a,
  1778. struct ggml_tensor * grad,
  1779. struct ggml_tensor * m,
  1780. struct ggml_tensor * v,
  1781. struct ggml_tensor * adamw_params); // parameters such a the learning rate
  1782. //
  1783. // automatic differentiation
  1784. //
  1785. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1786. GGML_API void ggml_build_backward_expand(
  1787. struct ggml_context * ctx, // context for gradient computation
  1788. struct ggml_cgraph * cgraph,
  1789. struct ggml_tensor ** grad_accs);
  1790. // graph allocation in a context
  1791. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1792. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  1793. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
  1794. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1795. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  1796. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1797. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  1798. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  1799. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  1800. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  1801. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1802. GGML_API size_t ggml_graph_overhead(void);
  1803. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1804. GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
  1805. GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  1806. GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  1807. // print info and performance information for the graph
  1808. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1809. // dump the graph into a file using the dot format
  1810. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1811. // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
  1812. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1813. // Set callback for all future logging events.
  1814. // If this is not called, or NULL is supplied, everything is output on stderr.
  1815. GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
  1816. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  1817. //
  1818. // quantization
  1819. //
  1820. // - ggml_quantize_init can be called multiple times with the same type
  1821. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1822. // automatically called by ggml_quantize_chunk for convenience
  1823. //
  1824. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1825. // call this at the end of the program to avoid memory leaks
  1826. //
  1827. // note: these are thread-safe
  1828. //
  1829. GGML_API void ggml_quantize_init(enum ggml_type type);
  1830. GGML_API void ggml_quantize_free(void);
  1831. // some quantization type cannot be used without an importance matrix
  1832. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1833. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1834. GGML_API size_t ggml_quantize_chunk(
  1835. enum ggml_type type,
  1836. const float * src,
  1837. void * dst,
  1838. int64_t start,
  1839. int64_t nrows,
  1840. int64_t n_per_row,
  1841. const float * imatrix);
  1842. #ifdef __cplusplus
  1843. // restrict not standard in C++
  1844. # if defined(__GNUC__)
  1845. # define GGML_RESTRICT __restrict__
  1846. # elif defined(__clang__)
  1847. # define GGML_RESTRICT __restrict
  1848. # elif defined(_MSC_VER)
  1849. # define GGML_RESTRICT __restrict
  1850. # else
  1851. # define GGML_RESTRICT
  1852. # endif
  1853. #else
  1854. # if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
  1855. # define GGML_RESTRICT __restrict
  1856. # else
  1857. # define GGML_RESTRICT restrict
  1858. # endif
  1859. #endif
  1860. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  1861. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  1862. struct ggml_type_traits {
  1863. const char * type_name;
  1864. int64_t blck_size;
  1865. int64_t blck_size_interleave; // interleave elements in blocks
  1866. size_t type_size;
  1867. bool is_quantized;
  1868. ggml_to_float_t to_float;
  1869. ggml_from_float_t from_float_ref;
  1870. };
  1871. GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
  1872. // ggml threadpool
  1873. // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
  1874. // the goal should be to create an API that other backends can use move everything to the ggml base
  1875. // scheduling priorities
  1876. enum ggml_sched_priority {
  1877. GGML_SCHED_PRIO_LOW = -1,
  1878. GGML_SCHED_PRIO_NORMAL,
  1879. GGML_SCHED_PRIO_MEDIUM,
  1880. GGML_SCHED_PRIO_HIGH,
  1881. GGML_SCHED_PRIO_REALTIME
  1882. };
  1883. // threadpool params
  1884. // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
  1885. struct ggml_threadpool_params {
  1886. bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
  1887. int n_threads; // number of threads
  1888. enum ggml_sched_priority prio; // thread priority
  1889. uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
  1890. bool strict_cpu; // strict cpu placement
  1891. bool paused; // start in paused state
  1892. };
  1893. struct ggml_threadpool; // forward declaration, see ggml.c
  1894. typedef struct ggml_threadpool * ggml_threadpool_t;
  1895. GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
  1896. GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
  1897. GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
  1898. #ifdef __cplusplus
  1899. }
  1900. #endif