| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- #include "ggml.h"
- #define LLAMA_API_INTERNAL
- #include "llama.h"
- #include <algorithm>
- #include <cassert>
- #include <cinttypes>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <map>
- #include <numeric>
- #include <regex>
- #include <string>
- #include <unordered_map>
- #include <vector>
- static const char * type_strs[] = { "q4_0", "q4_1", "i8", "i16", "i32", "f16", "f32" };
- static_assert(sizeof(type_strs) == GGML_TYPE_COUNT * sizeof(char *), "Incomplete type list");
- struct quantize_stats_params {
- std::string model = "models/7B/ggml-model-f16.bin";
- bool verbose = false;
- bool per_layer_stats = false;
- bool print_histogram = false;
- bool reference = false;
- std::vector<std::string> include_layers;
- std::vector<std::string> exclude_layers;
- std::vector<enum ggml_type> include_types;
- };
- const int64_t SCRATCH_ELEMENTS = 32*32;
- const size_t HISTOGRAM_BUCKETS = 150;
- const double HISTOGRAM_RANGE = 0.03;
- struct error_stats {
- size_t num_samples;
- double total_error;
- double max_error;
- uint64_t error_histogram[HISTOGRAM_BUCKETS];
- };
- void quantize_stats_print_usage(int /*argc*/, char ** argv) {
- quantize_stats_params params;
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -m FNAME, --model FNAME\n");
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
- fprintf(stderr, " -r, --reference\n");
- fprintf(stderr, " use reference implementation (default: false)\n");
- fprintf(stderr, " -v, --verbose\n");
- fprintf(stderr, " verbose output (default: false)\n");
- fprintf(stderr, " -p, --per-layer-stats\n");
- fprintf(stderr, " print stats per layer (default: false)\n");
- fprintf(stderr, " --histogram\n");
- fprintf(stderr, " print error histogram (default: false)\n");
- fprintf(stderr, " -l LAYER, --include-layer LAYER\n");
- fprintf(stderr, " only test layers matching pattern\n");
- fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n");
- fprintf(stderr, " exclude layers matching pattern\n");
- fprintf(stderr, " -t TYPE, --type TYPE\n");
- fprintf(stderr, " only test given type (q4_0, q4_1)\n");
- fprintf(stderr, "\n");
- }
- // Check if a layer is included/excluded by command line
- bool layer_included(const quantize_stats_params params, const std::string & layer) {
- for (const auto& excluded : params.exclude_layers) {
- if (std::regex_search(layer, std::regex(excluded))) {
- return false;
- }
- }
- for (const auto& included : params.include_layers) {
- if (std::regex_search(layer, std::regex(included))) {
- return true;
- }
- }
- return params.include_layers.empty();
- }
- // Update error statistics given vectors with the before/after result of quantization
- void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
- for (int64_t i = 0; i < nelements; i++) {
- double diff = input[i] - output[i];
- stats.total_error += diff * diff;
- stats.max_error = fmax(fabs(diff), stats.max_error);
- stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
- }
- stats.num_samples += nelements;
- }
- double find_quantile(const error_stats & stats, double quantile) {
- double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
- double accum = 0;
- for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
- accum += stats.error_histogram[i];
- if (accum >= sum*quantile) {
- return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
- }
- }
- return INFINITY;
- }
- void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
- double rmse = sqrt(stats.total_error / (double) stats.num_samples);
- double median = find_quantile(stats, .5);
- double pct95 = find_quantile(stats, .95);
- printf("%-50s: rmse %.8f, maxerr %.8f, 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, stats.max_error, pct95, median);
- if (print_histogram) {
- printf("Error distribution:\n");
- for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
- double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
- double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
- if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
- printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
- }
- }
- }
- // copied from ggml.h - verify that we can access this as a flat array
- static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == ggml_type_size(tensor->type) &&
- tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- // Run quantization function for a single layer and update error stats
- void test_roundtrip_on_layer(
- std::string & name,
- bool print_layer_stats,
- const quantize_fns_t & qfns,
- bool use_reference,
- const ggml_tensor * layer,
- float * input_scratch,
- char *quantized_scratch,
- float * output_scratch,
- error_stats & total_error) {
- assert(tensor_is_contiguous(layer));
- error_stats layer_error {};
- int64_t nelements = ggml_nelements(layer);
- for (int64_t offset = 0; offset < nelements; offset += SCRATCH_ELEMENTS) {
- int64_t chunk_size = std::min(SCRATCH_ELEMENTS, nelements - offset);
- if (layer->type == GGML_TYPE_F16) {
- for (int i = 0; i < chunk_size; i++) {
- input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
- }
- } else {
- input_scratch = ggml_get_data_f32(layer) + offset;
- }
- if (use_reference) {
- qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size);
- } else {
- qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size);
- }
- qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size);
- update_error_stats(chunk_size, input_scratch, output_scratch, total_error);
- if (print_layer_stats) {
- update_error_stats(chunk_size, input_scratch, output_scratch, layer_error);
- }
- }
- if (print_layer_stats) {
- print_error_stats(name, layer_error, false);
- }
- }
- int main(int argc, char ** argv) {
- ggml_time_init();
- quantize_stats_params params;
- // read command line
- bool invalid_param = false;
- std::string arg;
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg == "-h" || arg == "--help") {
- quantize_stats_print_usage(argc, argv);
- exit(0);
- } else if (arg == "-r" || arg == "--reference") {
- params.reference = true;
- } else if (arg == "-v") {
- params.verbose = true;
- } else if (arg == "-p" || arg == "--per-layer-stats") {
- params.per_layer_stats = true;
- } else if (arg == "--histogram") {
- params.print_histogram = true;
- } else if (arg == "-m" || arg == "--model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.model = argv[i];
- } else if (arg == "-l" || arg == "--include-layer") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.include_layers.push_back(argv[i]);
- } else if (arg == "-L" || arg == "--exclude-layer") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.exclude_layers.push_back(argv[i]);
- } else if (arg == "-t" || arg == "--type") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- int j;
- for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], type_strs[j]) != 0; j++) {
- // find match
- }
- if (j < GGML_TYPE_COUNT) {
- params.include_types.push_back((ggml_type) j);
- } else {
- fprintf(stderr, "error: %s not in list of types\n", argv[i]);
- invalid_param = true;
- }
- } else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- quantize_stats_print_usage(argc, argv);
- return 1;
- }
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- quantize_stats_print_usage(argc, argv);
- return 1;
- }
- // load the model
- fprintf(stderr, "Loading model\n");
- const int64_t t_main_start_us = ggml_time_us();
- llama_context * ctx;
- {
- auto lparams = llama_context_default_params();
- lparams.n_ctx = 256;
- lparams.n_parts = 1;
- lparams.seed = 1;
- lparams.f16_kv = false;
- lparams.use_mlock = false;
- ctx = llama_init_from_file(params.model.c_str(), lparams);
- if (ctx == NULL) {
- fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
- return 1;
- }
- }
- const auto &tensors = llama_internal_get_tensor_map(ctx);
- // check layer tensors
- int included_layers = 0;
- int64_t max_nelements = 0;
- bool is_f16 = false;
- for (const auto& kv_tensor : tensors) {
- if (!layer_included(params, kv_tensor.first)) {
- continue;
- }
- if (params.verbose) {
- printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), type_strs[kv_tensor.second->type], ggml_nelements(kv_tensor.second));
- }
- if (kv_tensor.second->type == GGML_TYPE_F16) {
- is_f16 = true;
- } else if (kv_tensor.second->type != GGML_TYPE_F32) {
- fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
- "this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
- llama_free(ctx);
- return 1;
- }
- included_layers++;
- max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
- }
- if (is_f16) {
- printf("note: source model is f16\n");
- }
- printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
- // allocate scratch space
- std::vector<float> input_scratch(SCRATCH_ELEMENTS);
- std::vector<char> quantized_scratch(SCRATCH_ELEMENTS*4);
- std::vector<float> output_scratch(SCRATCH_ELEMENTS);
- // loop throught quantization types
- for (int i = 0; i < GGML_TYPE_COUNT; i++) {
- if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
- continue;
- }
- quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
- if (qfns.quantize_row_q && qfns.dequantize_row_q) {
- if (params.verbose) {
- printf("testing %s ...\n", type_strs[i]);
- }
- error_stats global_stats {};
- for (const auto& kv_tensor : tensors) {
- if (!layer_included(params, kv_tensor.first)) {
- continue;
- }
- if (params.verbose) {
- printf(" %s ...\n", kv_tensor.first.c_str());
- }
- std::string layer_name { type_strs[i] };
- layer_name += "::" + kv_tensor.first;
- test_roundtrip_on_layer(
- layer_name,
- params.per_layer_stats,
- qfns,
- params.reference,
- kv_tensor.second,
- input_scratch.data(),
- quantized_scratch.data(),
- output_scratch.data(),
- global_stats
- );
- }
- print_error_stats(type_strs[i], global_stats, params.print_histogram);
- }
- }
- llama_free(ctx);
- // report timing
- {
- const int64_t t_main_end_us = ggml_time_us();
- printf("\n");
- printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
- }
- return 0;
- }
|