llama.cpp 764 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_VULKAN)
  13. # include "ggml-vulkan.h"
  14. #elif defined(GGML_USE_SYCL)
  15. # include "ggml-sycl.h"
  16. #elif defined(GGML_USE_KOMPUTE)
  17. # include "ggml-kompute.h"
  18. #endif
  19. #ifdef GGML_USE_BLAS
  20. # include "ggml-blas.h"
  21. #endif
  22. #ifdef GGML_USE_METAL
  23. # include "ggml-metal.h"
  24. #endif
  25. // TODO: replace with ggml API call
  26. #define QK_K 256
  27. #ifdef __has_include
  28. #if __has_include(<unistd.h>)
  29. #include <unistd.h>
  30. #if defined(_POSIX_MAPPED_FILES)
  31. #include <sys/mman.h>
  32. #include <fcntl.h>
  33. #endif
  34. #if defined(_POSIX_MEMLOCK_RANGE)
  35. #include <sys/resource.h>
  36. #endif
  37. #endif
  38. #endif
  39. #if defined(_WIN32)
  40. #define WIN32_LEAN_AND_MEAN
  41. #ifndef NOMINMAX
  42. #define NOMINMAX
  43. #endif
  44. #include <windows.h>
  45. #ifndef PATH_MAX
  46. #define PATH_MAX MAX_PATH
  47. #endif
  48. #include <io.h>
  49. #endif
  50. #include <algorithm>
  51. #include <array>
  52. #include <cassert>
  53. #include <cctype>
  54. #include <cfloat>
  55. #include <cinttypes>
  56. #include <climits>
  57. #include <cmath>
  58. #include <cstdarg>
  59. #include <cstddef>
  60. #include <cstdint>
  61. #include <cstdio>
  62. #include <cstring>
  63. #include <ctime>
  64. #include <forward_list>
  65. #include <fstream>
  66. #include <functional>
  67. #include <future>
  68. #include <initializer_list>
  69. #include <locale>
  70. #include <map>
  71. #include <memory>
  72. #include <mutex>
  73. #include <numeric>
  74. #include <queue>
  75. #include <random>
  76. #include <regex>
  77. #include <set>
  78. #include <sstream>
  79. #include <thread>
  80. #include <type_traits>
  81. #include <unordered_map>
  82. #if defined(_MSC_VER)
  83. #pragma warning(disable: 4244 4267) // possible loss of data
  84. #endif
  85. #ifdef __GNUC__
  86. #ifdef __MINGW32__
  87. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  88. #else
  89. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  90. #endif
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...)
  93. #endif
  94. #define LLAMA_MAX_NODES 8192
  95. #define LLAMA_MAX_EXPERTS 160
  96. //
  97. // logging
  98. //
  99. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  100. static void llama_log_internal (ggml_log_level level, const char * format, ...);
  101. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  102. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  103. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  104. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  105. //
  106. // helpers
  107. //
  108. static size_t utf8_len(char src) {
  109. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  110. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  111. return lookup[highbits];
  112. }
  113. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  114. std::string result;
  115. for (size_t pos = 0; ; pos += search.length()) {
  116. auto new_pos = s.find(search, pos);
  117. if (new_pos == std::string::npos) {
  118. result += s.substr(pos, s.size() - pos);
  119. break;
  120. }
  121. result += s.substr(pos, new_pos - pos) + replace;
  122. pos = new_pos;
  123. }
  124. s = std::move(result);
  125. }
  126. static bool is_float_close(float a, float b, float abs_tol) {
  127. // Check for non-negative tolerance
  128. if (abs_tol < 0.0) {
  129. throw std::invalid_argument("Tolerance must be non-negative");
  130. }
  131. // Exact equality check
  132. if (a == b) {
  133. return true;
  134. }
  135. // Check for infinities
  136. if (std::isinf(a) || std::isinf(b)) {
  137. return false;
  138. }
  139. // Regular comparison using the provided absolute tolerance
  140. return std::fabs(b - a) <= abs_tol;
  141. }
  142. static void zeros(std::ofstream & file, size_t n) {
  143. char zero = 0;
  144. for (size_t i = 0; i < n; ++i) {
  145. file.write(&zero, 1);
  146. }
  147. }
  148. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  149. static std::string format(const char * fmt, ...) {
  150. va_list ap;
  151. va_list ap2;
  152. va_start(ap, fmt);
  153. va_copy(ap2, ap);
  154. int size = vsnprintf(NULL, 0, fmt, ap);
  155. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  156. std::vector<char> buf(size + 1);
  157. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  158. GGML_ASSERT(size2 == size);
  159. va_end(ap2);
  160. va_end(ap);
  161. return std::string(buf.data(), size);
  162. }
  163. //
  164. // gguf constants (sync with gguf.py)
  165. //
  166. enum llm_arch {
  167. LLM_ARCH_LLAMA,
  168. LLM_ARCH_FALCON,
  169. LLM_ARCH_BAICHUAN,
  170. LLM_ARCH_GROK,
  171. LLM_ARCH_GPT2,
  172. LLM_ARCH_GPTJ,
  173. LLM_ARCH_GPTNEOX,
  174. LLM_ARCH_MPT,
  175. LLM_ARCH_STARCODER,
  176. LLM_ARCH_REFACT,
  177. LLM_ARCH_BERT,
  178. LLM_ARCH_NOMIC_BERT,
  179. LLM_ARCH_JINA_BERT_V2,
  180. LLM_ARCH_BLOOM,
  181. LLM_ARCH_STABLELM,
  182. LLM_ARCH_QWEN,
  183. LLM_ARCH_QWEN2,
  184. LLM_ARCH_QWEN2MOE,
  185. LLM_ARCH_PHI2,
  186. LLM_ARCH_PHI3,
  187. LLM_ARCH_PLAMO,
  188. LLM_ARCH_CODESHELL,
  189. LLM_ARCH_ORION,
  190. LLM_ARCH_INTERNLM2,
  191. LLM_ARCH_MINICPM,
  192. LLM_ARCH_GEMMA,
  193. LLM_ARCH_STARCODER2,
  194. LLM_ARCH_MAMBA,
  195. LLM_ARCH_XVERSE,
  196. LLM_ARCH_COMMAND_R,
  197. LLM_ARCH_DBRX,
  198. LLM_ARCH_OLMO,
  199. LLM_ARCH_ARCTIC,
  200. LLM_ARCH_DEEPSEEK2,
  201. LLM_ARCH_UNKNOWN,
  202. };
  203. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  204. { LLM_ARCH_LLAMA, "llama" },
  205. { LLM_ARCH_FALCON, "falcon" },
  206. { LLM_ARCH_GROK, "grok" },
  207. { LLM_ARCH_GPT2, "gpt2" },
  208. { LLM_ARCH_GPTJ, "gptj" },
  209. { LLM_ARCH_GPTNEOX, "gptneox" },
  210. { LLM_ARCH_MPT, "mpt" },
  211. { LLM_ARCH_BAICHUAN, "baichuan" },
  212. { LLM_ARCH_STARCODER, "starcoder" },
  213. { LLM_ARCH_REFACT, "refact" },
  214. { LLM_ARCH_BERT, "bert" },
  215. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  216. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  217. { LLM_ARCH_BLOOM, "bloom" },
  218. { LLM_ARCH_STABLELM, "stablelm" },
  219. { LLM_ARCH_QWEN, "qwen" },
  220. { LLM_ARCH_QWEN2, "qwen2" },
  221. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  222. { LLM_ARCH_PHI2, "phi2" },
  223. { LLM_ARCH_PHI3, "phi3" },
  224. { LLM_ARCH_PLAMO, "plamo" },
  225. { LLM_ARCH_CODESHELL, "codeshell" },
  226. { LLM_ARCH_ORION, "orion" },
  227. { LLM_ARCH_INTERNLM2, "internlm2" },
  228. { LLM_ARCH_MINICPM, "minicpm" },
  229. { LLM_ARCH_GEMMA, "gemma" },
  230. { LLM_ARCH_STARCODER2, "starcoder2" },
  231. { LLM_ARCH_MAMBA, "mamba" },
  232. { LLM_ARCH_XVERSE, "xverse" },
  233. { LLM_ARCH_COMMAND_R, "command-r" },
  234. { LLM_ARCH_DBRX, "dbrx" },
  235. { LLM_ARCH_OLMO, "olmo" },
  236. { LLM_ARCH_ARCTIC, "arctic" },
  237. { LLM_ARCH_DEEPSEEK2, "deepseek2" },
  238. { LLM_ARCH_UNKNOWN, "(unknown)" },
  239. };
  240. enum llm_kv {
  241. LLM_KV_GENERAL_ARCHITECTURE,
  242. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  243. LLM_KV_GENERAL_ALIGNMENT,
  244. LLM_KV_GENERAL_NAME,
  245. LLM_KV_GENERAL_AUTHOR,
  246. LLM_KV_GENERAL_VERSION,
  247. LLM_KV_GENERAL_URL,
  248. LLM_KV_GENERAL_DESCRIPTION,
  249. LLM_KV_GENERAL_LICENSE,
  250. LLM_KV_GENERAL_SOURCE_URL,
  251. LLM_KV_GENERAL_SOURCE_HF_REPO,
  252. LLM_KV_VOCAB_SIZE,
  253. LLM_KV_CONTEXT_LENGTH,
  254. LLM_KV_EMBEDDING_LENGTH,
  255. LLM_KV_BLOCK_COUNT,
  256. LLM_KV_LEADING_DENSE_BLOCK_COUNT,
  257. LLM_KV_FEED_FORWARD_LENGTH,
  258. LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
  259. LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
  260. LLM_KV_USE_PARALLEL_RESIDUAL,
  261. LLM_KV_TENSOR_DATA_LAYOUT,
  262. LLM_KV_EXPERT_COUNT,
  263. LLM_KV_EXPERT_USED_COUNT,
  264. LLM_KV_EXPERT_SHARED_COUNT,
  265. LLM_KV_EXPERT_WEIGHTS_SCALE,
  266. LLM_KV_POOLING_TYPE,
  267. LLM_KV_LOGIT_SCALE,
  268. LLM_KV_ATTENTION_HEAD_COUNT,
  269. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  270. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  271. LLM_KV_ATTENTION_CLAMP_KQV,
  272. LLM_KV_ATTENTION_KEY_LENGTH,
  273. LLM_KV_ATTENTION_VALUE_LENGTH,
  274. LLM_KV_ATTENTION_LAYERNORM_EPS,
  275. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  276. LLM_KV_ATTENTION_CAUSAL,
  277. LLM_KV_ATTENTION_Q_LORA_RANK,
  278. LLM_KV_ATTENTION_KV_LORA_RANK,
  279. LLM_KV_ROPE_DIMENSION_COUNT,
  280. LLM_KV_ROPE_FREQ_BASE,
  281. LLM_KV_ROPE_SCALE_LINEAR,
  282. LLM_KV_ROPE_SCALING_TYPE,
  283. LLM_KV_ROPE_SCALING_FACTOR,
  284. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  285. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  286. LLM_KV_ROPE_SCALING_FINETUNED,
  287. LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
  288. LLM_KV_SPLIT_NO,
  289. LLM_KV_SPLIT_COUNT,
  290. LLM_KV_SPLIT_TENSORS_COUNT,
  291. LLM_KV_SSM_INNER_SIZE,
  292. LLM_KV_SSM_CONV_KERNEL,
  293. LLM_KV_SSM_STATE_SIZE,
  294. LLM_KV_SSM_TIME_STEP_RANK,
  295. LLM_KV_TOKENIZER_MODEL,
  296. LLM_KV_TOKENIZER_PRE,
  297. LLM_KV_TOKENIZER_LIST,
  298. LLM_KV_TOKENIZER_TOKEN_TYPE,
  299. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  300. LLM_KV_TOKENIZER_SCORES,
  301. LLM_KV_TOKENIZER_MERGES,
  302. LLM_KV_TOKENIZER_BOS_ID,
  303. LLM_KV_TOKENIZER_EOS_ID,
  304. LLM_KV_TOKENIZER_UNK_ID,
  305. LLM_KV_TOKENIZER_SEP_ID,
  306. LLM_KV_TOKENIZER_PAD_ID,
  307. LLM_KV_TOKENIZER_CLS_ID,
  308. LLM_KV_TOKENIZER_MASK_ID,
  309. LLM_KV_TOKENIZER_ADD_BOS,
  310. LLM_KV_TOKENIZER_ADD_EOS,
  311. LLM_KV_TOKENIZER_ADD_PREFIX,
  312. LLM_KV_TOKENIZER_HF_JSON,
  313. LLM_KV_TOKENIZER_RWKV,
  314. LLM_KV_TOKENIZER_PREFIX_ID,
  315. LLM_KV_TOKENIZER_SUFFIX_ID,
  316. LLM_KV_TOKENIZER_MIDDLE_ID,
  317. LLM_KV_TOKENIZER_EOT_ID,
  318. };
  319. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  320. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  321. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  322. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  323. { LLM_KV_GENERAL_NAME, "general.name" },
  324. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  325. { LLM_KV_GENERAL_VERSION, "general.version" },
  326. { LLM_KV_GENERAL_URL, "general.url" },
  327. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  328. { LLM_KV_GENERAL_LICENSE, "general.license" },
  329. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  330. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  331. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  332. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  333. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  334. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  335. { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
  336. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  337. { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
  338. { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
  339. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  340. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  341. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  342. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  343. { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
  344. { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
  345. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  346. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  347. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  348. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  349. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  350. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  351. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  352. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  353. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  354. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  355. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  356. { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
  357. { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
  358. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  359. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  360. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  361. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  362. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  363. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  364. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  365. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  366. { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
  367. { LLM_KV_SPLIT_NO, "split.no" },
  368. { LLM_KV_SPLIT_COUNT, "split.count" },
  369. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  370. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  371. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  372. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  373. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  374. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  375. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  376. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  377. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  378. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  379. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  380. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  381. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  382. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  383. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  384. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  385. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  386. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  387. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  388. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  389. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  390. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  391. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  392. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  393. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  394. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  395. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  396. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  397. };
  398. struct LLM_KV {
  399. LLM_KV(llm_arch arch) : arch(arch) {}
  400. llm_arch arch;
  401. std::string operator()(llm_kv kv) const {
  402. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  403. }
  404. };
  405. enum llm_tensor {
  406. LLM_TENSOR_TOKEN_EMBD,
  407. LLM_TENSOR_TOKEN_EMBD_NORM,
  408. LLM_TENSOR_TOKEN_TYPES,
  409. LLM_TENSOR_POS_EMBD,
  410. LLM_TENSOR_OUTPUT,
  411. LLM_TENSOR_OUTPUT_NORM,
  412. LLM_TENSOR_ROPE_FREQS,
  413. LLM_TENSOR_ROPE_FACTORS_LONG,
  414. LLM_TENSOR_ROPE_FACTORS_SHORT,
  415. LLM_TENSOR_ATTN_Q,
  416. LLM_TENSOR_ATTN_K,
  417. LLM_TENSOR_ATTN_V,
  418. LLM_TENSOR_ATTN_QKV,
  419. LLM_TENSOR_ATTN_OUT,
  420. LLM_TENSOR_ATTN_NORM,
  421. LLM_TENSOR_ATTN_NORM_2,
  422. LLM_TENSOR_ATTN_OUT_NORM,
  423. LLM_TENSOR_ATTN_ROT_EMBD,
  424. LLM_TENSOR_FFN_GATE_INP,
  425. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  426. LLM_TENSOR_FFN_NORM,
  427. LLM_TENSOR_FFN_GATE,
  428. LLM_TENSOR_FFN_DOWN,
  429. LLM_TENSOR_FFN_UP,
  430. LLM_TENSOR_FFN_ACT,
  431. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  432. LLM_TENSOR_FFN_GATE_EXP,
  433. LLM_TENSOR_FFN_UP_EXP,
  434. LLM_TENSOR_FFN_NORM_EXPS,
  435. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  436. LLM_TENSOR_FFN_GATE_EXPS,
  437. LLM_TENSOR_FFN_UP_EXPS,
  438. LLM_TENSOR_FFN_DOWN_SHEXP,
  439. LLM_TENSOR_FFN_GATE_SHEXP,
  440. LLM_TENSOR_FFN_UP_SHEXP,
  441. LLM_TENSOR_ATTN_Q_NORM,
  442. LLM_TENSOR_ATTN_K_NORM,
  443. LLM_TENSOR_LAYER_OUT_NORM,
  444. LLM_TENSOR_SSM_IN,
  445. LLM_TENSOR_SSM_CONV1D,
  446. LLM_TENSOR_SSM_X,
  447. LLM_TENSOR_SSM_DT,
  448. LLM_TENSOR_SSM_A,
  449. LLM_TENSOR_SSM_D,
  450. LLM_TENSOR_SSM_OUT,
  451. LLM_TENSOR_ATTN_Q_A,
  452. LLM_TENSOR_ATTN_Q_B,
  453. LLM_TENSOR_ATTN_KV_A_MQA,
  454. LLM_TENSOR_ATTN_KV_B,
  455. LLM_TENSOR_ATTN_Q_A_NORM,
  456. LLM_TENSOR_ATTN_KV_A_NORM,
  457. };
  458. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  459. {
  460. LLM_ARCH_LLAMA,
  461. {
  462. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  463. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  464. { LLM_TENSOR_OUTPUT, "output" },
  465. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  466. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  467. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  468. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  469. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  470. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  471. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  472. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  473. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  474. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  475. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  476. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  477. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  478. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  479. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  480. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  481. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  482. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  483. },
  484. },
  485. {
  486. LLM_ARCH_BAICHUAN,
  487. {
  488. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  489. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  490. { LLM_TENSOR_OUTPUT, "output" },
  491. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  492. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  493. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  494. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  495. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  496. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  497. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  498. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  499. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  500. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  501. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  502. },
  503. },
  504. {
  505. LLM_ARCH_FALCON,
  506. {
  507. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  508. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  509. { LLM_TENSOR_OUTPUT, "output" },
  510. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  511. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  512. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  513. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  514. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  515. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  516. },
  517. },
  518. {
  519. LLM_ARCH_GROK,
  520. {
  521. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  522. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  523. { LLM_TENSOR_OUTPUT, "output" },
  524. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  525. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  526. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  527. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  528. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  529. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  530. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  531. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  532. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  533. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  534. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  535. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  536. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  537. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  538. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  539. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  540. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  541. },
  542. },
  543. {
  544. LLM_ARCH_GPT2,
  545. {
  546. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  547. { LLM_TENSOR_POS_EMBD, "position_embd" },
  548. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  549. { LLM_TENSOR_OUTPUT, "output" },
  550. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  551. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  552. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  553. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  554. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  555. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  556. },
  557. },
  558. {
  559. LLM_ARCH_GPTJ,
  560. {
  561. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  562. },
  563. },
  564. {
  565. LLM_ARCH_GPTNEOX,
  566. {
  567. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  568. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  569. { LLM_TENSOR_OUTPUT, "output" },
  570. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  571. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  572. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  573. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  574. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  575. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  576. },
  577. },
  578. {
  579. LLM_ARCH_MPT,
  580. {
  581. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  582. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  583. { LLM_TENSOR_OUTPUT, "output"},
  584. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  585. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  586. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  587. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  588. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  589. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  590. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  591. { LLM_TENSOR_POS_EMBD, "position_embd" },
  592. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  593. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  594. },
  595. },
  596. {
  597. LLM_ARCH_STARCODER,
  598. {
  599. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  600. { LLM_TENSOR_POS_EMBD, "position_embd" },
  601. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  602. { LLM_TENSOR_OUTPUT, "output" },
  603. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  604. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  605. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  606. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  607. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  608. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  609. },
  610. },
  611. {
  612. LLM_ARCH_REFACT,
  613. {
  614. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  615. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  616. { LLM_TENSOR_OUTPUT, "output" },
  617. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  618. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  619. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  620. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  621. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  622. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  623. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  624. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  625. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  626. },
  627. },
  628. {
  629. LLM_ARCH_BERT,
  630. {
  631. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  632. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  633. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  634. { LLM_TENSOR_POS_EMBD, "position_embd" },
  635. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  636. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  637. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  638. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  639. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  640. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  641. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  642. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  643. },
  644. },
  645. {
  646. LLM_ARCH_NOMIC_BERT,
  647. {
  648. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  649. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  650. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  651. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  652. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  653. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  654. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  655. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  656. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  657. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  658. },
  659. },
  660. {
  661. LLM_ARCH_JINA_BERT_V2,
  662. {
  663. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  664. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  665. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  666. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  667. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  668. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  669. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  670. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  671. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  672. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  673. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  674. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  675. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  676. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  677. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  678. },
  679. },
  680. {
  681. LLM_ARCH_BLOOM,
  682. {
  683. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  684. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  685. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  686. { LLM_TENSOR_OUTPUT, "output" },
  687. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  688. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  689. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  690. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  691. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  692. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  693. },
  694. },
  695. {
  696. LLM_ARCH_STABLELM,
  697. {
  698. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  699. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  700. { LLM_TENSOR_OUTPUT, "output" },
  701. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  702. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  703. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  704. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  705. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  706. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  707. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  708. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  709. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  710. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  711. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  712. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  713. },
  714. },
  715. {
  716. LLM_ARCH_QWEN,
  717. {
  718. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  719. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  720. { LLM_TENSOR_OUTPUT, "output" },
  721. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  722. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  723. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  724. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  725. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  726. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  727. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  728. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  729. },
  730. },
  731. {
  732. LLM_ARCH_QWEN2,
  733. {
  734. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  735. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  736. { LLM_TENSOR_OUTPUT, "output" },
  737. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  738. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  739. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  740. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  741. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  742. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  743. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  744. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  745. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  746. },
  747. },
  748. {
  749. LLM_ARCH_QWEN2MOE,
  750. {
  751. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  752. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  753. { LLM_TENSOR_OUTPUT, "output" },
  754. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  755. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  756. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  757. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  758. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  759. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  760. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  761. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  762. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  763. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  764. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  765. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  766. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  767. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  768. },
  769. },
  770. {
  771. LLM_ARCH_PHI2,
  772. {
  773. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  774. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  775. { LLM_TENSOR_OUTPUT, "output" },
  776. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  777. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  778. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  779. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  780. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  781. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  782. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  783. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  784. },
  785. },
  786. {
  787. LLM_ARCH_PHI3,
  788. {
  789. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  790. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  791. { LLM_TENSOR_OUTPUT, "output" },
  792. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  793. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  794. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  795. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  796. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  797. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  798. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  799. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  800. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  801. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  802. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  803. },
  804. },
  805. {
  806. LLM_ARCH_PLAMO,
  807. {
  808. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  809. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  810. { LLM_TENSOR_OUTPUT, "output" },
  811. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  812. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  813. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  814. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  815. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  816. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  817. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  818. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  819. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  820. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  821. },
  822. },
  823. {
  824. LLM_ARCH_CODESHELL,
  825. {
  826. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  827. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  828. { LLM_TENSOR_OUTPUT, "output" },
  829. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  830. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  831. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  832. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  833. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  834. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  835. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  836. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  837. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  838. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  839. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  840. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  841. },
  842. },
  843. {
  844. LLM_ARCH_ORION,
  845. {
  846. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  847. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  848. { LLM_TENSOR_OUTPUT, "output" },
  849. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  850. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  851. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  852. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  853. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  854. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  855. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  856. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  857. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  858. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  859. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  860. },
  861. },
  862. {
  863. LLM_ARCH_INTERNLM2,
  864. {
  865. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  866. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  867. { LLM_TENSOR_OUTPUT, "output" },
  868. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  869. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  870. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  871. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  872. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  873. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  874. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  875. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  876. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  877. },
  878. },
  879. {
  880. LLM_ARCH_MINICPM,
  881. {
  882. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  883. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  884. { LLM_TENSOR_OUTPUT, "output" },
  885. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  886. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  887. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  888. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  889. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  890. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  891. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  892. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  893. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  894. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  895. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  896. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  897. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  898. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  899. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  900. },
  901. },
  902. {
  903. LLM_ARCH_GEMMA,
  904. {
  905. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  906. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  907. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  908. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  909. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  910. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  911. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  912. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  913. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  914. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  915. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  916. },
  917. },
  918. {
  919. LLM_ARCH_STARCODER2,
  920. {
  921. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  922. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  923. { LLM_TENSOR_OUTPUT, "output" },
  924. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  925. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  926. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  927. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  928. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  929. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  930. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  931. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  932. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  933. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  934. },
  935. },
  936. {
  937. LLM_ARCH_MAMBA,
  938. {
  939. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  940. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  941. { LLM_TENSOR_OUTPUT, "output" },
  942. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  943. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  944. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  945. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  946. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  947. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  948. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  949. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  950. },
  951. },
  952. {
  953. LLM_ARCH_XVERSE,
  954. {
  955. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  956. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  957. { LLM_TENSOR_OUTPUT, "output" },
  958. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  959. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  960. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  961. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  962. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  963. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  964. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  965. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  966. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  967. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  968. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  969. },
  970. },
  971. {
  972. LLM_ARCH_COMMAND_R,
  973. {
  974. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  975. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  976. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  977. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  978. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  979. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  980. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  981. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  982. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  983. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  984. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  985. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  986. },
  987. },
  988. {
  989. LLM_ARCH_DBRX,
  990. {
  991. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  992. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  993. { LLM_TENSOR_OUTPUT, "output" },
  994. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  995. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  996. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  997. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  998. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  999. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1000. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1001. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1002. },
  1003. },
  1004. {
  1005. LLM_ARCH_OLMO,
  1006. {
  1007. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1008. { LLM_TENSOR_OUTPUT, "output" },
  1009. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1010. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1011. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1012. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1013. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1014. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1015. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1016. },
  1017. },
  1018. {
  1019. LLM_ARCH_ARCTIC,
  1020. {
  1021. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1022. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1023. { LLM_TENSOR_OUTPUT, "output" },
  1024. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1025. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1026. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1027. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1028. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1029. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1030. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1031. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1032. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1033. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1034. { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
  1035. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1036. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1037. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1038. },
  1039. },
  1040. {
  1041. LLM_ARCH_DEEPSEEK2,
  1042. {
  1043. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1044. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1045. { LLM_TENSOR_OUTPUT, "output" },
  1046. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1047. { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
  1048. { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
  1049. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1050. { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
  1051. { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
  1052. { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
  1053. { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
  1054. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1055. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1056. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1057. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1058. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1059. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1060. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1061. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1062. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1063. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  1064. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  1065. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  1066. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  1067. },
  1068. },
  1069. {
  1070. LLM_ARCH_UNKNOWN,
  1071. {
  1072. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1073. },
  1074. },
  1075. };
  1076. static llm_arch llm_arch_from_string(const std::string & name) {
  1077. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1078. if (kv.second == name) {
  1079. return kv.first;
  1080. }
  1081. }
  1082. return LLM_ARCH_UNKNOWN;
  1083. }
  1084. // helper to handle gguf constants
  1085. // usage:
  1086. //
  1087. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1088. //
  1089. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1090. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1091. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1092. //
  1093. struct LLM_TN {
  1094. LLM_TN(llm_arch arch) : arch(arch) {}
  1095. llm_arch arch;
  1096. std::string operator()(llm_tensor tensor) const {
  1097. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1098. return "__missing__";
  1099. }
  1100. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1101. }
  1102. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1103. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1104. return "__missing__";
  1105. }
  1106. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1107. }
  1108. std::string operator()(llm_tensor tensor, int bid) const {
  1109. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1110. return "__missing__";
  1111. }
  1112. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1113. }
  1114. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1115. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1116. return "__missing__";
  1117. }
  1118. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1119. }
  1120. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1121. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1122. return "__missing__";
  1123. }
  1124. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1125. }
  1126. };
  1127. //
  1128. // gguf helpers
  1129. //
  1130. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1131. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1132. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1133. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1134. };
  1135. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1136. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1137. if (kv.second == name) {
  1138. return (llama_rope_scaling_type) kv.first;
  1139. }
  1140. }
  1141. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1142. }
  1143. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1144. switch (type) {
  1145. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1146. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1147. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1148. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1149. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1150. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1151. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1152. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1153. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1154. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1155. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1156. default: return format("unknown type %d", type);
  1157. }
  1158. }
  1159. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1160. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1161. switch (type) {
  1162. case GGUF_TYPE_STRING:
  1163. return gguf_get_val_str(ctx_gguf, i);
  1164. case GGUF_TYPE_ARRAY:
  1165. {
  1166. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1167. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1168. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1169. std::stringstream ss;
  1170. ss << "[";
  1171. for (int j = 0; j < arr_n; j++) {
  1172. if (arr_type == GGUF_TYPE_STRING) {
  1173. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1174. // escape quotes
  1175. replace_all(val, "\\", "\\\\");
  1176. replace_all(val, "\"", "\\\"");
  1177. ss << '"' << val << '"';
  1178. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1179. ss << "???";
  1180. } else {
  1181. ss << gguf_data_to_str(arr_type, data, j);
  1182. }
  1183. if (j < arr_n - 1) {
  1184. ss << ", ";
  1185. }
  1186. }
  1187. ss << "]";
  1188. return ss.str();
  1189. }
  1190. default:
  1191. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1192. }
  1193. }
  1194. //
  1195. // llama helpers
  1196. //
  1197. #if defined(_WIN32)
  1198. static std::string llama_format_win_err(DWORD err) {
  1199. LPSTR buf;
  1200. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1201. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1202. if (!size) {
  1203. return "FormatMessageA failed";
  1204. }
  1205. std::string ret(buf, size);
  1206. LocalFree(buf);
  1207. return ret;
  1208. }
  1209. #endif
  1210. template <typename T>
  1211. struct no_init {
  1212. T value;
  1213. no_init() { /* do nothing */ }
  1214. };
  1215. struct llama_file {
  1216. #if defined(_WIN32)
  1217. // use FILE * so we don't have to re-open the file to mmap
  1218. FILE * fp;
  1219. HANDLE fp_win32;
  1220. size_t size;
  1221. private:
  1222. std::string GetErrorMessageWin32(DWORD error_code) const {
  1223. std::string ret;
  1224. LPSTR lpMsgBuf = NULL;
  1225. DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1226. NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
  1227. if (!bufLen) {
  1228. ret = format("Win32 error code: %s", error_code);
  1229. } else {
  1230. ret = lpMsgBuf;
  1231. LocalFree(lpMsgBuf);
  1232. }
  1233. return ret;
  1234. }
  1235. public:
  1236. llama_file(const char * fname, const char * mode) {
  1237. fp = ggml_fopen(fname, mode);
  1238. if (fp == NULL) {
  1239. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1240. }
  1241. fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
  1242. seek(0, SEEK_END);
  1243. size = tell();
  1244. seek(0, SEEK_SET);
  1245. }
  1246. size_t tell() const {
  1247. // SetFilePointerEx returns the current position when seeking relative 0 bytes
  1248. LARGE_INTEGER li;
  1249. li.QuadPart = 0;
  1250. BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
  1251. if (!ret) {
  1252. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1253. }
  1254. return li.QuadPart;
  1255. }
  1256. void seek(size_t offset, int whence) const {
  1257. // no need to convert SEEK_* to FILE_*. The enums are the same.
  1258. // Still, keep static asserts to avoid failures in the future.
  1259. static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
  1260. static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
  1261. static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
  1262. LARGE_INTEGER li;
  1263. li.QuadPart = offset;
  1264. BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
  1265. if (!ret) {
  1266. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1267. }
  1268. }
  1269. void read_raw(void * ptr, size_t len) const {
  1270. // On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
  1271. // use the Win32 API to do file io instead of the C/C++ library functions.
  1272. // There are conditions under which ReadFile cannot read chunks >64MB.
  1273. // Thus split the operation into smaller chunks if len exceeds this limit.
  1274. size_t bytes_read = 0;
  1275. while (bytes_read < len) {
  1276. size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
  1277. DWORD chunk_read = 0;
  1278. BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
  1279. if (!result) {
  1280. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1281. }
  1282. if (chunk_read < chunk_size || chunk_read == 0) {
  1283. throw std::runtime_error("unexpectedly reached end of file");
  1284. }
  1285. bytes_read += chunk_read;
  1286. } ;
  1287. }
  1288. uint32_t read_u32() const {
  1289. uint32_t val;
  1290. read_raw(&val, sizeof(val));
  1291. return val;
  1292. }
  1293. void write_raw(const void * ptr, size_t len) const {
  1294. // There are conditions under which WriteFile cannot write chunks >64MB.
  1295. // Thus split the operation into smaller chunks if len exceeds this limit.
  1296. size_t bytes_written = 0;
  1297. while (bytes_written < len) {
  1298. size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
  1299. DWORD chunk_written = 0;
  1300. BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
  1301. if (!result) {
  1302. throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1303. }
  1304. if (chunk_written < chunk_size || chunk_written == 0) {
  1305. throw std::runtime_error("unexpectedly failed to write bytes");
  1306. }
  1307. bytes_written += chunk_written;
  1308. }
  1309. }
  1310. void write_u32(std::uint32_t val) const {
  1311. write_raw(&val, sizeof(val));
  1312. }
  1313. ~llama_file() {
  1314. if (fp) {
  1315. std::fclose(fp);
  1316. }
  1317. }
  1318. #else
  1319. // use FILE * so we don't have to re-open the file to mmap
  1320. FILE * fp;
  1321. size_t size;
  1322. llama_file(const char * fname, const char * mode) {
  1323. fp = ggml_fopen(fname, mode);
  1324. if (fp == NULL) {
  1325. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1326. }
  1327. seek(0, SEEK_END);
  1328. size = tell();
  1329. seek(0, SEEK_SET);
  1330. }
  1331. size_t tell() const {
  1332. #ifdef _WIN32
  1333. __int64 ret = _ftelli64(fp);
  1334. #else
  1335. long ret = std::ftell(fp);
  1336. #endif
  1337. if (ret == -1) {
  1338. throw std::runtime_error(format("ftell error: %s", strerror(errno)));
  1339. }
  1340. return (size_t) ret;
  1341. }
  1342. void seek(size_t offset, int whence) const {
  1343. #ifdef _WIN32
  1344. int ret = _fseeki64(fp, (__int64) offset, whence);
  1345. #else
  1346. int ret = std::fseek(fp, (long) offset, whence);
  1347. #endif
  1348. if (ret != 0) {
  1349. throw std::runtime_error(format("seek error: %s", strerror(errno)));
  1350. }
  1351. }
  1352. void read_raw(void * ptr, size_t len) const {
  1353. if (len == 0) {
  1354. return;
  1355. }
  1356. errno = 0;
  1357. std::size_t ret = std::fread(ptr, len, 1, fp);
  1358. if (ferror(fp)) {
  1359. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1360. }
  1361. if (ret != 1) {
  1362. throw std::runtime_error("unexpectedly reached end of file");
  1363. }
  1364. }
  1365. uint32_t read_u32() const {
  1366. uint32_t ret;
  1367. read_raw(&ret, sizeof(ret));
  1368. return ret;
  1369. }
  1370. void write_raw(const void * ptr, size_t len) const {
  1371. if (len == 0) {
  1372. return;
  1373. }
  1374. errno = 0;
  1375. size_t ret = std::fwrite(ptr, len, 1, fp);
  1376. if (ret != 1) {
  1377. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1378. }
  1379. }
  1380. void write_u32(std::uint32_t val) const {
  1381. write_raw(&val, sizeof(val));
  1382. }
  1383. ~llama_file() {
  1384. if (fp) {
  1385. std::fclose(fp);
  1386. }
  1387. }
  1388. #endif
  1389. };
  1390. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1391. struct llama_mmap {
  1392. void * addr;
  1393. size_t size;
  1394. llama_mmap(const llama_mmap &) = delete;
  1395. #ifdef _POSIX_MAPPED_FILES
  1396. static constexpr bool SUPPORTED = true;
  1397. // list of mapped fragments (first_offset, last_offset)
  1398. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1399. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1400. size = file->size;
  1401. int fd = fileno(file->fp);
  1402. int flags = MAP_SHARED;
  1403. // prefetch/readahead impairs performance on NUMA systems
  1404. if (numa) { prefetch = 0; }
  1405. #ifdef __linux__
  1406. // advise the kernel to read the file sequentially (increases readahead)
  1407. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1408. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1409. strerror(errno));
  1410. }
  1411. if (prefetch) { flags |= MAP_POPULATE; }
  1412. #endif
  1413. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1414. if (addr == MAP_FAILED) { // NOLINT
  1415. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1416. }
  1417. if (prefetch > 0) {
  1418. // advise the kernel to preload the mapped memory
  1419. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1420. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1421. strerror(errno));
  1422. }
  1423. }
  1424. if (numa) {
  1425. // advise the kernel not to use readahead
  1426. // (because the next page might not belong on the same node)
  1427. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1428. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1429. strerror(errno));
  1430. }
  1431. }
  1432. // initialize list of mapped_fragments
  1433. mapped_fragments.emplace_back(0, file->size);
  1434. }
  1435. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1436. // align first to the next page
  1437. size_t offset_in_page = *first & (page_size - 1);
  1438. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1439. *first += offset_to_page;
  1440. // align last to the previous page
  1441. *last = *last & ~(page_size - 1);
  1442. if (*last <= *first) {
  1443. *last = *first;
  1444. }
  1445. }
  1446. // partially unmap the file in the range [first, last)
  1447. void unmap_fragment(size_t first, size_t last) {
  1448. // note: this function must not be called multiple times with overlapping ranges
  1449. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1450. int page_size = sysconf(_SC_PAGESIZE);
  1451. align_range(&first, &last, page_size);
  1452. size_t len = last - first;
  1453. if (len == 0) {
  1454. return;
  1455. }
  1456. GGML_ASSERT(first % page_size == 0);
  1457. GGML_ASSERT(last % page_size == 0);
  1458. GGML_ASSERT(last > first);
  1459. void * next_page_start = (uint8_t *) addr + first;
  1460. // unmap the range
  1461. if (munmap(next_page_start, len)) {
  1462. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1463. }
  1464. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1465. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1466. for (const auto & frag : mapped_fragments) {
  1467. if (frag.first < first && frag.second > last) {
  1468. // the range is in the middle of the fragment, split it
  1469. new_mapped_fragments.emplace_back(frag.first, first);
  1470. new_mapped_fragments.emplace_back(last, frag.second);
  1471. } else if (frag.first < first && frag.second > first) {
  1472. // the range starts in the middle of the fragment
  1473. new_mapped_fragments.emplace_back(frag.first, first);
  1474. } else if (frag.first < last && frag.second > last) {
  1475. // the range ends in the middle of the fragment
  1476. new_mapped_fragments.emplace_back(last, frag.second);
  1477. } else if (frag.first >= first && frag.second <= last) {
  1478. // the range covers the entire fragment
  1479. } else {
  1480. // the range is outside the fragment
  1481. new_mapped_fragments.push_back(frag);
  1482. }
  1483. }
  1484. mapped_fragments = std::move(new_mapped_fragments);
  1485. }
  1486. ~llama_mmap() {
  1487. for (const auto & frag : mapped_fragments) {
  1488. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1489. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1490. }
  1491. }
  1492. }
  1493. #elif defined(_WIN32)
  1494. static constexpr bool SUPPORTED = true;
  1495. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1496. GGML_UNUSED(numa);
  1497. size = file->size;
  1498. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1499. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1500. if (hMapping == NULL) {
  1501. DWORD error = GetLastError();
  1502. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1503. }
  1504. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1505. DWORD error = GetLastError();
  1506. CloseHandle(hMapping);
  1507. if (addr == NULL) {
  1508. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1509. }
  1510. if (prefetch > 0) {
  1511. #if _WIN32_WINNT >= 0x602
  1512. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1513. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1514. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1515. // may fail on pre-Windows 8 systems
  1516. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1517. if (pPrefetchVirtualMemory) {
  1518. // advise the kernel to preload the mapped memory
  1519. WIN32_MEMORY_RANGE_ENTRY range;
  1520. range.VirtualAddress = addr;
  1521. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1522. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1523. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1524. llama_format_win_err(GetLastError()).c_str());
  1525. }
  1526. }
  1527. #else
  1528. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1529. #endif
  1530. }
  1531. }
  1532. void unmap_fragment(size_t first, size_t last) {
  1533. // not supported
  1534. GGML_UNUSED(first);
  1535. GGML_UNUSED(last);
  1536. }
  1537. ~llama_mmap() {
  1538. if (!UnmapViewOfFile(addr)) {
  1539. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1540. llama_format_win_err(GetLastError()).c_str());
  1541. }
  1542. }
  1543. #else
  1544. static constexpr bool SUPPORTED = false;
  1545. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1546. GGML_UNUSED(file);
  1547. GGML_UNUSED(prefetch);
  1548. GGML_UNUSED(numa);
  1549. throw std::runtime_error("mmap not supported");
  1550. }
  1551. void unmap_fragment(size_t first, size_t last) {
  1552. GGML_UNUSED(first);
  1553. GGML_UNUSED(last);
  1554. throw std::runtime_error("mmap not supported");
  1555. }
  1556. #endif
  1557. };
  1558. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1559. // Represents some region of memory being locked using mlock or VirtualLock;
  1560. // will automatically unlock on destruction.
  1561. struct llama_mlock {
  1562. void * addr = NULL;
  1563. size_t size = 0;
  1564. bool failed_already = false;
  1565. llama_mlock() {}
  1566. llama_mlock(const llama_mlock &) = delete;
  1567. ~llama_mlock() {
  1568. if (size) {
  1569. raw_unlock(addr, size);
  1570. }
  1571. }
  1572. void init(void * ptr) {
  1573. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1574. addr = ptr;
  1575. }
  1576. void grow_to(size_t target_size) {
  1577. GGML_ASSERT(addr);
  1578. if (failed_already) {
  1579. return;
  1580. }
  1581. size_t granularity = lock_granularity();
  1582. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1583. if (target_size > size) {
  1584. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1585. size = target_size;
  1586. } else {
  1587. failed_already = true;
  1588. }
  1589. }
  1590. }
  1591. #ifdef _POSIX_MEMLOCK_RANGE
  1592. static constexpr bool SUPPORTED = true;
  1593. static size_t lock_granularity() {
  1594. return (size_t) sysconf(_SC_PAGESIZE);
  1595. }
  1596. #ifdef __APPLE__
  1597. #define MLOCK_SUGGESTION \
  1598. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1599. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1600. #else
  1601. #define MLOCK_SUGGESTION \
  1602. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1603. #endif
  1604. bool raw_lock(const void * addr, size_t size) const {
  1605. if (!mlock(addr, size)) {
  1606. return true;
  1607. }
  1608. char* errmsg = std::strerror(errno);
  1609. bool suggest = (errno == ENOMEM);
  1610. // Check if the resource limit is fine after all
  1611. struct rlimit lock_limit;
  1612. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1613. suggest = false;
  1614. }
  1615. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1616. suggest = false;
  1617. }
  1618. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1619. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1620. return false;
  1621. }
  1622. #undef MLOCK_SUGGESTION
  1623. static void raw_unlock(void * addr, size_t size) {
  1624. if (munlock(addr, size)) {
  1625. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1626. }
  1627. }
  1628. #elif defined(_WIN32)
  1629. static constexpr bool SUPPORTED = true;
  1630. static size_t lock_granularity() {
  1631. SYSTEM_INFO si;
  1632. GetSystemInfo(&si);
  1633. return (size_t) si.dwPageSize;
  1634. }
  1635. bool raw_lock(void * ptr, size_t len) const {
  1636. for (int tries = 1; ; tries++) {
  1637. if (VirtualLock(ptr, len)) {
  1638. return true;
  1639. }
  1640. if (tries == 2) {
  1641. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1642. len, size, llama_format_win_err(GetLastError()).c_str());
  1643. return false;
  1644. }
  1645. // It failed but this was only the first try; increase the working
  1646. // set size and try again.
  1647. SIZE_T min_ws_size, max_ws_size;
  1648. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1649. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1650. llama_format_win_err(GetLastError()).c_str());
  1651. return false;
  1652. }
  1653. // Per MSDN: "The maximum number of pages that a process can lock
  1654. // is equal to the number of pages in its minimum working set minus
  1655. // a small overhead."
  1656. // Hopefully a megabyte is enough overhead:
  1657. size_t increment = len + 1048576;
  1658. // The minimum must be <= the maximum, so we need to increase both:
  1659. min_ws_size += increment;
  1660. max_ws_size += increment;
  1661. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1662. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1663. llama_format_win_err(GetLastError()).c_str());
  1664. return false;
  1665. }
  1666. }
  1667. }
  1668. static void raw_unlock(void * ptr, size_t len) {
  1669. if (!VirtualUnlock(ptr, len)) {
  1670. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1671. llama_format_win_err(GetLastError()).c_str());
  1672. }
  1673. }
  1674. #else
  1675. static constexpr bool SUPPORTED = false;
  1676. static size_t lock_granularity() {
  1677. return (size_t) 65536;
  1678. }
  1679. bool raw_lock(const void * addr, size_t len) const {
  1680. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1681. return false;
  1682. }
  1683. static void raw_unlock(const void * addr, size_t len) {}
  1684. #endif
  1685. };
  1686. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1687. // NOTE: avoid ever using this except for building the token_to_piece caches
  1688. static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
  1689. std::vector<char> result(8, 0);
  1690. const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1691. if (n_tokens < 0) {
  1692. result.resize(-n_tokens);
  1693. int check = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1694. GGML_ASSERT(check == -n_tokens);
  1695. }
  1696. else {
  1697. result.resize(n_tokens);
  1698. }
  1699. return std::string(result.data(), result.size());
  1700. }
  1701. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1702. ggml_backend_buffer_type_t buft = nullptr;
  1703. #if defined(GGML_USE_CUDA)
  1704. // host buffers should only be used when data is expected to be copied to/from the GPU
  1705. if (host_buffer) {
  1706. buft = ggml_backend_cuda_host_buffer_type();
  1707. }
  1708. #elif defined(GGML_USE_SYCL)
  1709. if (host_buffer) {
  1710. buft = ggml_backend_sycl_host_buffer_type();
  1711. }
  1712. #elif defined(GGML_USE_CPU_HBM)
  1713. buft = ggml_backend_cpu_hbm_buffer_type();
  1714. #elif defined(GGML_USE_VULKAN)
  1715. if (host_buffer) {
  1716. buft = ggml_backend_vk_host_buffer_type();
  1717. }
  1718. #endif
  1719. if (buft == nullptr) {
  1720. buft = ggml_backend_cpu_buffer_type();
  1721. }
  1722. return buft;
  1723. GGML_UNUSED(host_buffer);
  1724. }
  1725. //
  1726. // globals
  1727. //
  1728. struct llama_state {
  1729. llama_state() {
  1730. #ifdef GGML_USE_METAL
  1731. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1732. #elif defined(GGML_USE_CUDA)
  1733. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1734. #endif
  1735. }
  1736. // We save the log callback globally
  1737. ggml_log_callback log_callback = llama_log_callback_default;
  1738. void * log_callback_user_data = nullptr;
  1739. };
  1740. static llama_state g_state;
  1741. // available llama models
  1742. enum e_model {
  1743. MODEL_UNKNOWN,
  1744. MODEL_14M,
  1745. MODEL_17M,
  1746. MODEL_22M,
  1747. MODEL_33M,
  1748. MODEL_70M,
  1749. MODEL_109M,
  1750. MODEL_137M,
  1751. MODEL_160M,
  1752. MODEL_335M,
  1753. MODEL_410M,
  1754. MODEL_0_5B,
  1755. MODEL_1B,
  1756. MODEL_1_4B,
  1757. MODEL_2B,
  1758. MODEL_2_8B,
  1759. MODEL_3B,
  1760. MODEL_4B,
  1761. MODEL_6_9B,
  1762. MODEL_7B,
  1763. MODEL_8B,
  1764. MODEL_12B,
  1765. MODEL_13B,
  1766. MODEL_14B,
  1767. MODEL_15B,
  1768. MODEL_16B,
  1769. MODEL_20B,
  1770. MODEL_30B,
  1771. MODEL_34B,
  1772. MODEL_35B,
  1773. MODEL_40B,
  1774. MODEL_65B,
  1775. MODEL_70B,
  1776. MODEL_236B,
  1777. MODEL_314B,
  1778. MODEL_SMALL,
  1779. MODEL_MEDIUM,
  1780. MODEL_LARGE,
  1781. MODEL_XL,
  1782. MODEL_A2_7B,
  1783. MODEL_8x7B,
  1784. MODEL_8x22B,
  1785. MODEL_16x12B,
  1786. MODEL_10B_128x3_66B,
  1787. };
  1788. static const size_t kiB = 1024;
  1789. static const size_t MiB = 1024*kiB;
  1790. static const size_t GiB = 1024*MiB;
  1791. struct llama_hparams {
  1792. bool vocab_only;
  1793. bool rope_finetuned;
  1794. bool use_par_res;
  1795. uint32_t n_vocab;
  1796. uint32_t n_ctx_train; // context size the model was trained on
  1797. uint32_t n_embd;
  1798. uint32_t n_head;
  1799. uint32_t n_head_kv;
  1800. uint32_t n_layer;
  1801. uint32_t n_rot;
  1802. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1803. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1804. uint32_t n_ff;
  1805. uint32_t n_expert = 0;
  1806. uint32_t n_expert_used = 0;
  1807. uint32_t n_vocab_type = 0; // for BERT-style token types
  1808. uint32_t n_layer_dense_lead = 0;
  1809. uint32_t n_lora_q = 0;
  1810. uint32_t n_lora_kv = 0;
  1811. uint32_t n_ff_exp = 0;
  1812. uint32_t n_ff_shexp = 0;
  1813. uint32_t n_expert_shared = 0;
  1814. float expert_weights_scale = 0.0;
  1815. float f_norm_eps;
  1816. float f_norm_rms_eps;
  1817. float rope_attn_factor = 1.0f;
  1818. float rope_freq_base_train;
  1819. float rope_freq_scale_train;
  1820. uint32_t n_ctx_orig_yarn;
  1821. float rope_yarn_log_mul;
  1822. // for State Space Models
  1823. uint32_t ssm_d_conv = 0;
  1824. uint32_t ssm_d_inner = 0;
  1825. uint32_t ssm_d_state = 0;
  1826. uint32_t ssm_dt_rank = 0;
  1827. float f_clamp_kqv = 0.0f;
  1828. float f_max_alibi_bias = 0.0f;
  1829. float f_logit_scale = 0.0f;
  1830. bool causal_attn = true;
  1831. bool use_alibi = false;
  1832. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1833. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1834. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1835. bool operator!=(const llama_hparams & other) const {
  1836. if (this->vocab_only != other.vocab_only) return true;
  1837. if (this->n_vocab != other.n_vocab) return true;
  1838. if (this->n_ctx_train != other.n_ctx_train) return true;
  1839. if (this->n_embd != other.n_embd) return true;
  1840. if (this->n_head != other.n_head) return true;
  1841. if (this->n_head_kv != other.n_head_kv) return true;
  1842. if (this->n_layer != other.n_layer) return true;
  1843. if (this->n_rot != other.n_rot) return true;
  1844. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1845. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1846. if (this->n_ff != other.n_ff) return true;
  1847. if (this->n_expert != other.n_expert) return true;
  1848. if (this->n_expert_used != other.n_expert_used) return true;
  1849. if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
  1850. if (this->n_lora_q != other.n_lora_q) return true;
  1851. if (this->n_lora_kv != other.n_lora_kv) return true;
  1852. if (this->n_ff_exp != other.n_ff_exp) return true;
  1853. if (this->n_ff_shexp != other.n_ff_shexp) return true;
  1854. if (this->n_expert_shared != other.n_expert_shared) return true;
  1855. if (this->rope_finetuned != other.rope_finetuned) return true;
  1856. if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
  1857. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1858. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1859. if (this->ssm_d_state != other.ssm_d_state) return true;
  1860. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1861. const float EPSILON = 1e-9f;
  1862. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1863. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1864. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1865. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1866. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1867. if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
  1868. if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
  1869. return false;
  1870. }
  1871. uint32_t n_gqa() const {
  1872. if (n_head_kv == 0) {
  1873. return 0;
  1874. }
  1875. return n_head/n_head_kv;
  1876. }
  1877. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1878. return n_embd_head_k * n_head_kv;
  1879. }
  1880. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1881. return n_embd_head_v * n_head_kv;
  1882. }
  1883. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1884. // corresponds to Mamba's conv_states size
  1885. // TODO: maybe support other convolution strides than 1
  1886. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1887. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1888. }
  1889. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1890. // corresponds to Mamba's ssm_states size
  1891. return ssm_d_state * ssm_d_inner;
  1892. }
  1893. };
  1894. struct llama_cparams {
  1895. uint32_t n_ctx; // context size used during inference
  1896. uint32_t n_batch;
  1897. uint32_t n_ubatch;
  1898. uint32_t n_seq_max;
  1899. uint32_t n_threads; // number of threads to use for generation
  1900. uint32_t n_threads_batch; // number of threads to use for batch processing
  1901. float rope_freq_base;
  1902. float rope_freq_scale;
  1903. uint32_t n_ctx_orig_yarn;
  1904. // These hyperparameters are not exposed in GGUF, because all
  1905. // existing YaRN models use the same values for them.
  1906. float yarn_ext_factor;
  1907. float yarn_attn_factor;
  1908. float yarn_beta_fast;
  1909. float yarn_beta_slow;
  1910. float defrag_thold;
  1911. bool embeddings;
  1912. bool causal_attn;
  1913. bool offload_kqv;
  1914. bool flash_attn;
  1915. enum llama_pooling_type pooling_type;
  1916. ggml_backend_sched_eval_callback cb_eval;
  1917. void * cb_eval_user_data;
  1918. };
  1919. struct llama_layer {
  1920. // normalization
  1921. struct ggml_tensor * attn_norm;
  1922. struct ggml_tensor * attn_norm_b;
  1923. struct ggml_tensor * attn_norm_2;
  1924. struct ggml_tensor * attn_norm_2_b;
  1925. struct ggml_tensor * attn_q_norm;
  1926. struct ggml_tensor * attn_q_norm_b;
  1927. struct ggml_tensor * attn_k_norm;
  1928. struct ggml_tensor * attn_k_norm_b;
  1929. struct ggml_tensor * attn_out_norm;
  1930. struct ggml_tensor * attn_out_norm_b;
  1931. struct ggml_tensor * attn_q_a_norm;
  1932. struct ggml_tensor * attn_kv_a_norm;
  1933. // attention
  1934. struct ggml_tensor * wq;
  1935. struct ggml_tensor * wk;
  1936. struct ggml_tensor * wv;
  1937. struct ggml_tensor * wo;
  1938. struct ggml_tensor * wqkv;
  1939. struct ggml_tensor * wq_a;
  1940. struct ggml_tensor * wq_b;
  1941. struct ggml_tensor * wkv_a_mqa;
  1942. struct ggml_tensor * wkv_b;
  1943. // attention bias
  1944. struct ggml_tensor * bq;
  1945. struct ggml_tensor * bk;
  1946. struct ggml_tensor * bv;
  1947. struct ggml_tensor * bo;
  1948. struct ggml_tensor * bqkv;
  1949. // normalization
  1950. struct ggml_tensor * ffn_norm;
  1951. struct ggml_tensor * ffn_norm_b;
  1952. struct ggml_tensor * layer_out_norm;
  1953. struct ggml_tensor * layer_out_norm_b;
  1954. struct ggml_tensor * ffn_norm_exps;
  1955. // ff
  1956. struct ggml_tensor * ffn_gate; // w1
  1957. struct ggml_tensor * ffn_down; // w2
  1958. struct ggml_tensor * ffn_up; // w3
  1959. // ff MoE
  1960. struct ggml_tensor * ffn_gate_inp;
  1961. struct ggml_tensor * ffn_gate_exps;
  1962. struct ggml_tensor * ffn_down_exps;
  1963. struct ggml_tensor * ffn_up_exps ;
  1964. // ff shared expert (shexp)
  1965. struct ggml_tensor * ffn_gate_inp_shexp;
  1966. struct ggml_tensor * ffn_gate_shexp;
  1967. struct ggml_tensor * ffn_down_shexp;
  1968. struct ggml_tensor * ffn_up_shexp;
  1969. // ff bias
  1970. struct ggml_tensor * ffn_gate_b = nullptr;
  1971. struct ggml_tensor * ffn_down_b = nullptr; // b2
  1972. struct ggml_tensor * ffn_up_b = nullptr; // b3
  1973. struct ggml_tensor * ffn_act;
  1974. // mamba proj
  1975. struct ggml_tensor * ssm_in;
  1976. struct ggml_tensor * ssm_x;
  1977. struct ggml_tensor * ssm_dt;
  1978. struct ggml_tensor * ssm_out;
  1979. // mamba
  1980. struct ggml_tensor * ssm_conv1d;
  1981. struct ggml_tensor * ssm_a;
  1982. struct ggml_tensor * ssm_d;
  1983. // mamba bias
  1984. struct ggml_tensor * ssm_conv1d_b;
  1985. struct ggml_tensor * ssm_dt_b;
  1986. // long rope factors
  1987. struct ggml_tensor * rope_long = nullptr;
  1988. struct ggml_tensor * rope_short = nullptr;
  1989. };
  1990. struct llama_kv_cell {
  1991. llama_pos pos = -1;
  1992. llama_pos delta = 0;
  1993. int32_t src = 0; // used by recurrent state models to copy states
  1994. std::set<llama_seq_id> seq_id;
  1995. bool has_seq_id(const llama_seq_id & id) const {
  1996. return seq_id.find(id) != seq_id.end();
  1997. }
  1998. bool is_empty() const {
  1999. return seq_id.empty();
  2000. }
  2001. bool is_same_seq(const llama_kv_cell & other) const {
  2002. return seq_id == other.seq_id;
  2003. }
  2004. };
  2005. // ring-buffer of cached KV data
  2006. struct llama_kv_cache {
  2007. bool has_shift = false;
  2008. bool do_defrag = false;
  2009. bool do_copy = false;
  2010. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  2011. bool v_trans = true; // the value tensor is transposed
  2012. // Note: The value of head isn't only used to optimize searching
  2013. // for a free KV slot. llama_decode_internal also uses it, so it
  2014. // cannot be freely changed after a slot has been allocated.
  2015. uint32_t head = 0;
  2016. uint32_t size = 0;
  2017. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  2018. // computed before each graph build
  2019. uint32_t n = 0;
  2020. ggml_type type_k = GGML_TYPE_F16;
  2021. ggml_type type_v = GGML_TYPE_F16;
  2022. std::vector<llama_kv_cell> cells;
  2023. std::vector<struct ggml_tensor *> k_l; // per layer
  2024. std::vector<struct ggml_tensor *> v_l;
  2025. std::vector<struct ggml_context *> ctxs;
  2026. std::vector<ggml_backend_buffer_t> bufs;
  2027. size_t total_size() const {
  2028. size_t size = 0;
  2029. for (ggml_backend_buffer_t buf : bufs) {
  2030. size += ggml_backend_buffer_get_size(buf);
  2031. }
  2032. return size;
  2033. }
  2034. ~llama_kv_cache() {
  2035. for (struct ggml_context * ctx : ctxs) {
  2036. ggml_free(ctx);
  2037. }
  2038. for (ggml_backend_buffer_t buf : bufs) {
  2039. ggml_backend_buffer_free(buf);
  2040. }
  2041. }
  2042. };
  2043. struct llama_control_vector {
  2044. std::vector<struct ggml_tensor *> tensors; // per layer
  2045. std::vector<struct ggml_context *> ctxs;
  2046. std::vector<ggml_backend_buffer_t> bufs;
  2047. int32_t layer_start = -1;
  2048. int32_t layer_end = -1;
  2049. ggml_tensor * tensor_for(int il) const {
  2050. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  2051. return nullptr;
  2052. }
  2053. return tensors[il];
  2054. }
  2055. ~llama_control_vector() {
  2056. for (struct ggml_context * ctx : ctxs) {
  2057. ggml_free(ctx);
  2058. }
  2059. for (ggml_backend_buffer_t buf : bufs) {
  2060. ggml_backend_buffer_free(buf);
  2061. }
  2062. }
  2063. };
  2064. struct llama_vocab {
  2065. using id = int32_t;
  2066. using token = std::string;
  2067. using tattr = llama_token_attr;
  2068. struct token_data {
  2069. token text;
  2070. float score;
  2071. tattr attr;
  2072. };
  2073. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  2074. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  2075. std::unordered_map<token, id> token_to_id;
  2076. std::vector<token_data> id_to_token;
  2077. std::vector<id> cache_special_tokens;
  2078. std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
  2079. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  2080. // default LLaMA special tokens
  2081. id special_bos_id = 1;
  2082. id special_eos_id = 2;
  2083. id special_unk_id = 0;
  2084. id special_sep_id = -1;
  2085. id special_pad_id = -1;
  2086. id special_cls_id = -1;
  2087. id special_mask_id = -1;
  2088. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  2089. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  2090. id linefeed_id = 13;
  2091. id special_prefix_id = -1;
  2092. id special_suffix_id = -1;
  2093. id special_middle_id = -1;
  2094. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  2095. bool add_space_prefix = true;
  2096. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  2097. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  2098. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  2099. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  2100. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  2101. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  2102. if (it == bpe_ranks.end()) {
  2103. return -1;
  2104. }
  2105. return it->second;
  2106. }
  2107. };
  2108. struct llama_model {
  2109. e_model type = MODEL_UNKNOWN;
  2110. llm_arch arch = LLM_ARCH_UNKNOWN;
  2111. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  2112. std::string name = "n/a";
  2113. llama_hparams hparams = {};
  2114. llama_vocab vocab;
  2115. struct ggml_tensor * tok_embd;
  2116. struct ggml_tensor * type_embd;
  2117. struct ggml_tensor * pos_embd;
  2118. struct ggml_tensor * tok_norm;
  2119. struct ggml_tensor * tok_norm_b;
  2120. struct ggml_tensor * output_norm;
  2121. struct ggml_tensor * output_norm_b;
  2122. struct ggml_tensor * output;
  2123. struct ggml_tensor * output_b;
  2124. std::vector<llama_layer> layers;
  2125. llama_split_mode split_mode;
  2126. int main_gpu;
  2127. int n_gpu_layers;
  2128. std::vector<std::string> rpc_servers;
  2129. // gguf metadata
  2130. std::unordered_map<std::string, std::string> gguf_kv;
  2131. // layer -> buffer type mapping
  2132. struct layer_buft {
  2133. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  2134. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  2135. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  2136. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  2137. ggml_backend_buffer_type_t buft; // everything else
  2138. };
  2139. layer_buft buft_input;
  2140. layer_buft buft_output;
  2141. std::vector<layer_buft> buft_layer;
  2142. // contexts where the model tensors metadata is stored
  2143. std::vector<struct ggml_context *> ctxs;
  2144. // the model memory buffers for the tensor data
  2145. std::vector<ggml_backend_buffer_t> bufs;
  2146. // model memory mapped files
  2147. llama_mmaps mappings;
  2148. // objects representing data potentially being locked in memory
  2149. llama_mlocks mlock_bufs;
  2150. llama_mlocks mlock_mmaps;
  2151. // for quantize-stats only
  2152. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  2153. int64_t t_load_us = 0;
  2154. int64_t t_start_us = 0;
  2155. ~llama_model() {
  2156. for (struct ggml_context * ctx : ctxs) {
  2157. ggml_free(ctx);
  2158. }
  2159. for (ggml_backend_buffer_t buf : bufs) {
  2160. #ifdef GGML_USE_CUDA
  2161. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  2162. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2163. }
  2164. #endif
  2165. ggml_backend_buffer_free(buf);
  2166. }
  2167. }
  2168. };
  2169. struct llama_context {
  2170. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2171. ~llama_context() {
  2172. ggml_backend_sched_free(sched);
  2173. for (ggml_backend_t backend : backends) {
  2174. ggml_backend_free(backend);
  2175. }
  2176. ggml_backend_buffer_free(buf_output);
  2177. }
  2178. llama_cparams cparams;
  2179. std::vector<ggml_backend_t> backends;
  2180. #ifdef GGML_USE_METAL
  2181. ggml_backend_t backend_metal = nullptr;
  2182. #endif
  2183. #ifdef GGML_USE_BLAS
  2184. ggml_backend_t backend_blas = nullptr;
  2185. #endif
  2186. ggml_backend_t backend_cpu = nullptr;
  2187. const llama_model & model;
  2188. // key + value cache for the self attention
  2189. struct llama_kv_cache kv_self;
  2190. std::mt19937 rng;
  2191. bool has_evaluated_once = false;
  2192. int64_t t_start_us;
  2193. int64_t t_load_us;
  2194. int64_t t_sample_us = 0;
  2195. int64_t t_p_eval_us = 0;
  2196. int64_t t_eval_us = 0;
  2197. int64_t t_compute_start_us = 0;
  2198. int64_t n_queued_tokens = 0;
  2199. int32_t n_sample = 0; // number of tokens sampled
  2200. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2201. int32_t n_eval = 0; // number of eval calls
  2202. // host buffer for the model output (logits and embeddings)
  2203. ggml_backend_buffer_t buf_output = nullptr;
  2204. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2205. size_t logits_size = 0; // capacity (of floats) for logits
  2206. float * logits = nullptr;
  2207. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2208. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2209. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2210. bool logits_all = false;
  2211. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2212. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2213. size_t embd_size = 0; // capacity (of floats) for embeddings
  2214. float * embd = nullptr;
  2215. // sequence embeddings output (map of [n_embd] vectors)
  2216. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2217. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2218. // memory buffers used to evaluate the model
  2219. std::vector<uint8_t> buf_compute_meta;
  2220. ggml_backend_sched_t sched = nullptr;
  2221. ggml_abort_callback abort_callback = nullptr;
  2222. void * abort_callback_data = nullptr;
  2223. // input tensors
  2224. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2225. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2226. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2227. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2228. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2229. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2230. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2231. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2232. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2233. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2234. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2235. // control vectors
  2236. struct llama_control_vector cvec;
  2237. };
  2238. static size_t llama_get_device_count(const llama_model & model) {
  2239. size_t count = 1;
  2240. #if defined(GGML_USE_CUDA)
  2241. count = ggml_backend_cuda_get_device_count();
  2242. #elif defined(GGML_USE_SYCL)
  2243. count = ggml_backend_sycl_get_device_count();
  2244. #elif defined(GGML_USE_VULKAN)
  2245. count = ggml_backend_vk_get_device_count();
  2246. #endif
  2247. #if defined(GGML_USE_RPC)
  2248. count += model.rpc_servers.size();
  2249. #endif
  2250. return count;
  2251. GGML_UNUSED(model);
  2252. }
  2253. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2254. ggml_backend_buffer_type_t buft = nullptr;
  2255. #if defined(GGML_USE_RPC)
  2256. int dev_count = (int)llama_get_device_count(model);
  2257. int rpc_count = (int)model.rpc_servers.size();
  2258. if (gpu >= dev_count - rpc_count) {
  2259. const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str();
  2260. return ggml_backend_rpc_buffer_type(endpoint);
  2261. }
  2262. #endif
  2263. #if defined(GGML_USE_METAL)
  2264. buft = ggml_backend_metal_buffer_type();
  2265. #elif defined(GGML_USE_CUDA)
  2266. buft = ggml_backend_cuda_buffer_type(gpu);
  2267. #elif defined(GGML_USE_VULKAN)
  2268. buft = ggml_backend_vk_buffer_type(gpu);
  2269. #elif defined(GGML_USE_SYCL)
  2270. buft = ggml_backend_sycl_buffer_type(gpu);
  2271. #elif defined(GGML_USE_KOMPUTE)
  2272. buft = ggml_backend_kompute_buffer_type(gpu);
  2273. if (buft == nullptr) {
  2274. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2275. }
  2276. #endif
  2277. if (buft == nullptr) {
  2278. buft = llama_default_buffer_type_cpu(true);
  2279. }
  2280. return buft;
  2281. GGML_UNUSED(model);
  2282. GGML_UNUSED(gpu);
  2283. }
  2284. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2285. ggml_backend_buffer_type_t buft = nullptr;
  2286. #ifdef GGML_USE_CUDA
  2287. if (ggml_backend_cuda_get_device_count() > 1) {
  2288. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2289. }
  2290. #endif
  2291. #ifdef GGML_USE_SYCL
  2292. if (ggml_backend_sycl_get_device_count() > 1) {
  2293. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2294. }
  2295. #endif
  2296. if (buft == nullptr) {
  2297. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2298. }
  2299. return buft;
  2300. GGML_UNUSED(tensor_split);
  2301. }
  2302. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2303. #if defined(GGML_USE_RPC)
  2304. int dev_count = (int)llama_get_device_count(model);
  2305. int rpc_count = (int)model.rpc_servers.size();
  2306. if (device >= dev_count - rpc_count) {
  2307. size_t total;
  2308. size_t free;
  2309. const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str();
  2310. ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
  2311. return free;
  2312. }
  2313. #endif
  2314. #if defined(GGML_USE_CUDA)
  2315. size_t total;
  2316. size_t free;
  2317. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2318. return free;
  2319. #elif defined(GGML_USE_SYCL)
  2320. size_t total;
  2321. size_t free;
  2322. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2323. return free;
  2324. #elif defined(GGML_USE_VULKAN)
  2325. size_t total;
  2326. size_t free;
  2327. ggml_backend_vk_get_device_memory(device, &free, &total);
  2328. return free;
  2329. #else
  2330. return 1;
  2331. #endif
  2332. GGML_UNUSED(model);
  2333. GGML_UNUSED(device);
  2334. }
  2335. //
  2336. // kv cache helpers
  2337. //
  2338. static bool llama_kv_cache_init(
  2339. struct llama_kv_cache & cache,
  2340. const llama_context * ctx,
  2341. ggml_type type_k,
  2342. ggml_type type_v,
  2343. uint32_t kv_size,
  2344. bool offload) {
  2345. const llama_model & model = ctx->model;
  2346. const llama_cparams & cparams = ctx->cparams;
  2347. const struct llama_hparams & hparams = model.hparams;
  2348. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2349. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2350. const int64_t n_layer = hparams.n_layer;
  2351. cache.has_shift = false;
  2352. // TODO: find a nicer way to add other recurrent model architectures
  2353. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2354. cache.v_trans = !cparams.flash_attn;
  2355. // TODO: support mixed recurrent Transformer architectures
  2356. // NOTE: (!a || b) is a logical implication (a -> b)
  2357. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2358. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2359. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2360. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2361. cache.head = 0;
  2362. cache.size = kv_size;
  2363. cache.used = 0;
  2364. cache.type_k = type_k;
  2365. cache.type_v = type_v;
  2366. cache.cells.clear();
  2367. cache.cells.resize(kv_size);
  2368. if (cache.recurrent) {
  2369. // init state copy sources
  2370. for (uint32_t i = 0; i < cache.size; ++i) {
  2371. cache.cells[i].src = i;
  2372. }
  2373. }
  2374. // count used buffer types
  2375. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2376. if (offload) {
  2377. for (int64_t i = 0; i < n_layer; ++i) {
  2378. buft_layer_count[model.buft_layer[i].buft]++;
  2379. }
  2380. } else {
  2381. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2382. }
  2383. // create a context for each buffer type
  2384. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2385. for (auto & it : buft_layer_count) {
  2386. int n_layers = it.second;
  2387. struct ggml_init_params params = {
  2388. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2389. /*.mem_buffer =*/ NULL,
  2390. /*.no_alloc =*/ true,
  2391. };
  2392. ggml_context * ctx = ggml_init(params);
  2393. if (!ctx) {
  2394. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2395. return false;
  2396. }
  2397. ctx_map[it.first] = ctx;
  2398. cache.ctxs.push_back(ctx);
  2399. }
  2400. cache.k_l.reserve(n_layer);
  2401. cache.v_l.reserve(n_layer);
  2402. for (int i = 0; i < (int) n_layer; i++) {
  2403. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2404. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2405. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2406. ggml_format_name(k, "cache_k_l%d", i);
  2407. ggml_format_name(v, "cache_v_l%d", i);
  2408. cache.k_l.push_back(k);
  2409. cache.v_l.push_back(v);
  2410. }
  2411. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2412. for (auto it : ctx_map) {
  2413. ggml_backend_buffer_type_t buft = it.first;
  2414. ggml_context * ctx = it.second;
  2415. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2416. if (!buf) {
  2417. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2418. return false;
  2419. }
  2420. ggml_backend_buffer_clear(buf, 0);
  2421. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2422. cache.bufs.push_back(buf);
  2423. }
  2424. return true;
  2425. }
  2426. // find an empty slot of size "n_tokens" in the cache
  2427. // updates the cache head
  2428. // Note: On success, it's important that cache.head points
  2429. // to the first cell of the slot.
  2430. static bool llama_kv_cache_find_slot(
  2431. struct llama_kv_cache & cache,
  2432. const struct llama_batch & batch) {
  2433. const uint32_t n_tokens = batch.n_tokens;
  2434. if (cache.recurrent) {
  2435. // For recurrent state architectures (like Mamba),
  2436. // each KV cache cell can store the state for a whole sequence.
  2437. llama_seq_id min = cache.size - 1;
  2438. llama_seq_id max = 0;
  2439. for (uint32_t i = 0; i < n_tokens; ++i) {
  2440. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2441. llama_seq_id seq_id = batch.seq_id[i][j];
  2442. // make sure it's a valid seq_id
  2443. if ((uint32_t) seq_id < cache.size) {
  2444. if (seq_id > max) {
  2445. max = seq_id;
  2446. }
  2447. if (seq_id < min) {
  2448. min = seq_id;
  2449. }
  2450. // Assuming the tokens are in-order
  2451. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2452. // What should happen when the pos backtracks or skips a value?
  2453. // Clearing the state mid-batch would require special-casing which isn't done.
  2454. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2455. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2456. }
  2457. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2458. cache.used += 1;
  2459. }
  2460. cache.cells[seq_id].pos = batch.pos[i];
  2461. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2462. } else {
  2463. // too big seq_id
  2464. // TODO: would it be possible to resize the KV cache size instead?
  2465. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2466. return false;
  2467. }
  2468. }
  2469. }
  2470. // allow getting the range of used cells, from head to head + n
  2471. cache.head = min;
  2472. cache.n = max - min + 1;
  2473. // sanity check
  2474. return max >= min;
  2475. }
  2476. // otherwise, one cell per token.
  2477. if (n_tokens > cache.size) {
  2478. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  2479. return false;
  2480. }
  2481. uint32_t n_tested = 0;
  2482. while (true) {
  2483. if (cache.head + n_tokens > cache.size) {
  2484. n_tested += cache.size - cache.head;
  2485. cache.head = 0;
  2486. continue;
  2487. }
  2488. bool found = true;
  2489. for (uint32_t i = 0; i < n_tokens; i++) {
  2490. if (cache.cells[cache.head + i].pos >= 0) {
  2491. found = false;
  2492. cache.head += i + 1;
  2493. n_tested += i + 1;
  2494. break;
  2495. }
  2496. }
  2497. if (found) {
  2498. break;
  2499. }
  2500. if (n_tested >= cache.size) {
  2501. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2502. return false;
  2503. }
  2504. }
  2505. for (uint32_t i = 0; i < n_tokens; i++) {
  2506. cache.cells[cache.head + i].pos = batch.pos[i];
  2507. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2508. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2509. }
  2510. }
  2511. cache.used += n_tokens;
  2512. return true;
  2513. }
  2514. // find how many cells are currently in use
  2515. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2516. for (uint32_t i = cache.size; i > 0; --i) {
  2517. const llama_kv_cell & cell = cache.cells[i - 1];
  2518. if (cell.pos >= 0 && !cell.is_empty()) {
  2519. return i;
  2520. }
  2521. }
  2522. return 0;
  2523. }
  2524. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2525. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2526. cache.cells[i].pos = -1;
  2527. cache.cells[i].seq_id.clear();
  2528. }
  2529. cache.head = 0;
  2530. cache.used = 0;
  2531. for (auto & buf : cache.bufs) {
  2532. ggml_backend_buffer_clear(buf, 0);
  2533. }
  2534. }
  2535. static bool llama_kv_cache_seq_rm(
  2536. struct llama_kv_cache & cache,
  2537. llama_seq_id seq_id,
  2538. llama_pos p0,
  2539. llama_pos p1) {
  2540. uint32_t new_head = cache.size;
  2541. if (p0 < 0) p0 = 0;
  2542. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2543. // models like Mamba can't have a state partially erased
  2544. if (cache.recurrent) {
  2545. if (seq_id >= (int64_t) cache.size) {
  2546. // could be fatal
  2547. return false;
  2548. }
  2549. if (0 <= seq_id) {
  2550. // partial intersection is invalid
  2551. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2552. return false;
  2553. }
  2554. } else {
  2555. // seq_id is negative, then the range should include everything or nothing
  2556. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2557. return false;
  2558. }
  2559. }
  2560. }
  2561. for (uint32_t i = 0; i < cache.size; ++i) {
  2562. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2563. if (seq_id < 0) {
  2564. cache.cells[i].seq_id.clear();
  2565. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2566. cache.cells[i].seq_id.erase(seq_id);
  2567. } else {
  2568. continue;
  2569. }
  2570. if (cache.cells[i].is_empty()) {
  2571. // keep count of the number of used cells
  2572. if (cache.cells[i].pos >= 0) cache.used--;
  2573. cache.cells[i].pos = -1;
  2574. if (new_head == cache.size) new_head = i;
  2575. }
  2576. }
  2577. }
  2578. // If we freed up a slot, set head to it so searching can start there.
  2579. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2580. return true;
  2581. }
  2582. static void llama_kv_cache_seq_cp(
  2583. struct llama_kv_cache & cache,
  2584. llama_seq_id seq_id_src,
  2585. llama_seq_id seq_id_dst,
  2586. llama_pos p0,
  2587. llama_pos p1) {
  2588. if (p0 < 0) p0 = 0;
  2589. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2590. if (cache.recurrent) {
  2591. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2592. seq_id_src = cache.cells[seq_id_src].src;
  2593. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2594. // intent to "copy from"
  2595. // supports copy chains thanks to taking the source of the source
  2596. cache.cells[seq_id_dst].src = seq_id_src;
  2597. // preserve the "keep or clear" status of the copied sequence
  2598. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2599. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2600. } else {
  2601. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2602. }
  2603. cache.do_copy = true;
  2604. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2605. }
  2606. return;
  2607. }
  2608. // otherwise, this is the KV cache of a Transformer-like model
  2609. cache.head = 0;
  2610. for (uint32_t i = 0; i < cache.size; ++i) {
  2611. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2612. cache.cells[i].seq_id.insert(seq_id_dst);
  2613. }
  2614. }
  2615. }
  2616. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2617. uint32_t new_head = cache.size;
  2618. for (uint32_t i = 0; i < cache.size; ++i) {
  2619. if (!cache.cells[i].has_seq_id(seq_id)) {
  2620. if (cache.cells[i].pos >= 0) cache.used--;
  2621. cache.cells[i].pos = -1;
  2622. cache.cells[i].seq_id.clear();
  2623. if (new_head == cache.size) new_head = i;
  2624. } else {
  2625. cache.cells[i].seq_id.clear();
  2626. cache.cells[i].seq_id.insert(seq_id);
  2627. }
  2628. }
  2629. // If we freed up a slot, set head to it so searching can start there.
  2630. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2631. }
  2632. static void llama_kv_cache_seq_add(
  2633. struct llama_kv_cache & cache,
  2634. llama_seq_id seq_id,
  2635. llama_pos p0,
  2636. llama_pos p1,
  2637. llama_pos delta) {
  2638. uint32_t new_head = cache.size;
  2639. if (p0 < 0) p0 = 0;
  2640. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2641. if (cache.recurrent) {
  2642. // for Mamba-like models, only the pos needs to be shifted
  2643. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2644. llama_kv_cell & cell = cache.cells[seq_id];
  2645. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2646. cell.pos += delta;
  2647. }
  2648. }
  2649. return;
  2650. }
  2651. for (uint32_t i = 0; i < cache.size; ++i) {
  2652. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2653. cache.has_shift = true;
  2654. cache.cells[i].pos += delta;
  2655. cache.cells[i].delta += delta;
  2656. if (cache.cells[i].pos < 0) {
  2657. if (!cache.cells[i].is_empty()) {
  2658. cache.used--;
  2659. }
  2660. cache.cells[i].pos = -1;
  2661. cache.cells[i].seq_id.clear();
  2662. if (new_head == cache.size) {
  2663. new_head = i;
  2664. }
  2665. }
  2666. }
  2667. }
  2668. // If we freed up a slot, set head to it so searching can start there.
  2669. // Otherwise we just start the next search from the beginning.
  2670. cache.head = new_head != cache.size ? new_head : 0;
  2671. }
  2672. static void llama_kv_cache_seq_div(
  2673. struct llama_kv_cache & cache,
  2674. llama_seq_id seq_id,
  2675. llama_pos p0,
  2676. llama_pos p1,
  2677. int d) {
  2678. if (p0 < 0) p0 = 0;
  2679. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2680. if (cache.recurrent) {
  2681. // for Mamba-like models, only the pos needs to be changed
  2682. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2683. llama_kv_cell & cell = cache.cells[seq_id];
  2684. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2685. cell.pos /= d;
  2686. }
  2687. }
  2688. return;
  2689. }
  2690. for (uint32_t i = 0; i < cache.size; ++i) {
  2691. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2692. cache.has_shift = true;
  2693. {
  2694. llama_pos p_old = cache.cells[i].pos;
  2695. cache.cells[i].pos /= d;
  2696. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2697. }
  2698. }
  2699. }
  2700. }
  2701. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2702. llama_pos result = 0;
  2703. for (uint32_t i = 0; i < cache.size; ++i) {
  2704. if (cache.cells[i].has_seq_id(seq_id)) {
  2705. result = std::max(result, cache.cells[i].pos);
  2706. }
  2707. }
  2708. return result;
  2709. }
  2710. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2711. cache.do_defrag = true;
  2712. }
  2713. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2714. // the FA kernels require padding to avoid extra runtime boundary checks
  2715. return cparams.flash_attn ? 256u : 32u;
  2716. }
  2717. //
  2718. // model loading and saving
  2719. //
  2720. enum llama_fver {
  2721. GGUF_FILE_VERSION_V1 = 1,
  2722. GGUF_FILE_VERSION_V2 = 2,
  2723. GGUF_FILE_VERSION_V3 = 3,
  2724. };
  2725. static const char * llama_file_version_name(llama_fver version) {
  2726. switch (version) {
  2727. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2728. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2729. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2730. }
  2731. return "unknown";
  2732. }
  2733. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2734. char buf[256];
  2735. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2736. for (size_t i = 1; i < ne.size(); i++) {
  2737. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2738. }
  2739. return buf;
  2740. }
  2741. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2742. char buf[256];
  2743. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2744. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2745. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2746. }
  2747. return buf;
  2748. }
  2749. namespace GGUFMeta {
  2750. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2751. struct GKV_Base_Type {
  2752. static constexpr gguf_type gt = gt_;
  2753. static T getter(const gguf_context * ctx, const int kid) {
  2754. return gfun(ctx, kid);
  2755. }
  2756. };
  2757. template<typename T> struct GKV_Base;
  2758. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2759. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2760. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2761. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2762. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2763. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2764. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2765. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2766. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2767. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2768. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2769. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2770. template<> struct GKV_Base<std::string> {
  2771. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2772. static std::string getter(const gguf_context * ctx, const int kid) {
  2773. return gguf_get_val_str(ctx, kid);
  2774. }
  2775. };
  2776. struct ArrayInfo {
  2777. const gguf_type gt;
  2778. const size_t length;
  2779. const void * data;
  2780. };
  2781. template<> struct GKV_Base<ArrayInfo> {
  2782. public:
  2783. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2784. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2785. return ArrayInfo {
  2786. gguf_get_arr_type(ctx, k),
  2787. size_t(gguf_get_arr_n(ctx, k)),
  2788. gguf_get_arr_data(ctx, k),
  2789. };
  2790. }
  2791. };
  2792. template<typename T>
  2793. class GKV : public GKV_Base<T> {
  2794. GKV() = delete;
  2795. public:
  2796. static T get_kv(const gguf_context * ctx, const int k) {
  2797. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2798. if (kt != GKV::gt) {
  2799. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2800. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2801. }
  2802. return GKV::getter(ctx, k);
  2803. }
  2804. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2805. switch (ty) {
  2806. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2807. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2808. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2809. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2810. }
  2811. return "unknown";
  2812. }
  2813. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2814. if (!ovrd) { return false; }
  2815. if (ovrd->tag == expected_type) {
  2816. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2817. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2818. switch (ovrd->tag) {
  2819. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2820. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2821. } break;
  2822. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2823. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2824. } break;
  2825. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2826. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2827. } break;
  2828. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2829. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2830. } break;
  2831. default:
  2832. // Shouldn't be possible to end up here, but just in case...
  2833. throw std::runtime_error(
  2834. format("Unsupported attempt to override %s type for metadata key %s\n",
  2835. override_type_to_str(ovrd->tag), ovrd->key));
  2836. }
  2837. return true;
  2838. }
  2839. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2840. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2841. return false;
  2842. }
  2843. template<typename OT>
  2844. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2845. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2846. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2847. target = ovrd->val_bool;
  2848. return true;
  2849. }
  2850. return false;
  2851. }
  2852. template<typename OT>
  2853. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2854. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2855. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2856. target = ovrd->val_i64;
  2857. return true;
  2858. }
  2859. return false;
  2860. }
  2861. template<typename OT>
  2862. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2863. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2864. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2865. target = ovrd->val_f64;
  2866. return true;
  2867. }
  2868. return false;
  2869. }
  2870. template<typename OT>
  2871. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2872. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2873. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2874. target = ovrd->val_str;
  2875. return true;
  2876. }
  2877. return false;
  2878. }
  2879. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2880. if (try_override<T>(target, ovrd)) {
  2881. return true;
  2882. }
  2883. if (k < 0) { return false; }
  2884. target = get_kv(ctx, k);
  2885. return true;
  2886. }
  2887. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2888. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2889. }
  2890. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2891. return set(ctx, key.c_str(), target, ovrd);
  2892. }
  2893. };
  2894. }
  2895. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2896. struct llama_model_loader {
  2897. int n_kv = 0;
  2898. int n_tensors = 0;
  2899. int n_created = 0;
  2900. int64_t n_elements = 0;
  2901. size_t n_bytes = 0;
  2902. bool use_mmap = false;
  2903. bool check_tensors;
  2904. llama_files files;
  2905. llama_ftype ftype;
  2906. llama_fver fver;
  2907. llama_mmaps mappings;
  2908. // Holds information on a model weight
  2909. struct llama_tensor_weight {
  2910. uint16_t idx; // source file index
  2911. size_t offs; // tensor data offset in the original file
  2912. ggml_tensor * tensor;
  2913. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2914. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2915. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2916. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2917. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2918. }
  2919. }
  2920. };
  2921. std::vector<llama_tensor_weight> weights;
  2922. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2923. struct gguf_context * meta = NULL;
  2924. std::vector<ggml_context *> contexts;
  2925. std::string arch_name;
  2926. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2927. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2928. int trace = 0;
  2929. if (getenv("LLAMA_TRACE")) {
  2930. trace = atoi(getenv("LLAMA_TRACE"));
  2931. }
  2932. if (param_overrides_p != nullptr) {
  2933. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2934. kv_overrides.insert({std::string(p->key), *p});
  2935. }
  2936. }
  2937. struct ggml_context * ctx = NULL;
  2938. struct gguf_init_params params = {
  2939. /*.no_alloc = */ true,
  2940. /*.ctx = */ &ctx,
  2941. };
  2942. meta = gguf_init_from_file(fname.c_str(), params);
  2943. if (!meta) {
  2944. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2945. }
  2946. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2947. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2948. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2949. contexts.emplace_back(ctx);
  2950. // Save tensors data offset of the main file.
  2951. // For subsidiary files, `meta` tensor data offset must not be used,
  2952. // so we build a unified tensors index for weights.
  2953. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2954. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2955. }
  2956. uint16_t n_split = 0;
  2957. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2958. // Load additional GGML contexts
  2959. if (n_split > 1) {
  2960. uint16_t idx = 0;
  2961. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2962. if (idx != 0) {
  2963. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2964. }
  2965. char split_prefix[PATH_MAX] = {0};
  2966. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2967. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2968. }
  2969. if (trace > 0) {
  2970. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2971. }
  2972. char split_path[PATH_MAX] = {0};
  2973. for (idx = 1; idx < n_split; idx++) {
  2974. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2975. struct gguf_init_params split_params = {
  2976. /*.no_alloc = */ true,
  2977. /*.ctx = */ &ctx,
  2978. };
  2979. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2980. if (!ctx_gguf) {
  2981. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2982. }
  2983. files.emplace_back(new llama_file(split_path, "rb"));
  2984. contexts.emplace_back(ctx);
  2985. // Save tensors data offset info of the shard.
  2986. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2987. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2988. }
  2989. gguf_free(ctx_gguf);
  2990. }
  2991. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2992. // sanity check
  2993. {
  2994. const int n_tensors_loaded = (int) weights.size();
  2995. if (n_tensors != n_tensors_loaded) {
  2996. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2997. }
  2998. }
  2999. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  3000. }
  3001. n_kv = gguf_get_n_kv(meta);
  3002. n_tensors = weights.size();
  3003. fver = (enum llama_fver) gguf_get_version(meta);
  3004. std::set<std::string> tensor_names;
  3005. for (auto & w : weights) {
  3006. n_elements += ggml_nelements(w.tensor);
  3007. n_bytes += ggml_nbytes(w.tensor);
  3008. // make sure there is no duplicated tensor names
  3009. const std::string name(w.tensor->name);
  3010. auto found = tensor_names.find(name);
  3011. if (found != tensor_names.end()) {
  3012. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  3013. }
  3014. tensor_names.insert(name);
  3015. }
  3016. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  3017. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  3018. // determine file type based on the number of tensors for each quantization and print meta data
  3019. // TODO: make optional
  3020. {
  3021. std::map<enum ggml_type, uint32_t> n_type;
  3022. uint32_t n_type_max = 0;
  3023. enum ggml_type type_max = GGML_TYPE_F32;
  3024. for (int i = 0; i < n_tensors; i++) {
  3025. const ggml_tensor * tensor = weights.at(i).tensor;
  3026. enum ggml_type type = tensor->type;
  3027. n_type[type]++;
  3028. if (n_type_max < n_type[type]) {
  3029. n_type_max = n_type[type];
  3030. type_max = type;
  3031. }
  3032. if (trace > 0) {
  3033. const uint16_t sid = weights.at(i).idx;
  3034. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  3035. }
  3036. }
  3037. switch (type_max) {
  3038. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  3039. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  3040. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  3041. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  3042. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  3043. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  3044. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  3045. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  3046. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  3047. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  3048. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  3049. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  3050. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  3051. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  3052. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  3053. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  3054. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  3055. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  3056. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  3057. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  3058. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  3059. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  3060. default:
  3061. {
  3062. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  3063. ftype = LLAMA_FTYPE_ALL_F32;
  3064. } break;
  3065. }
  3066. // this is a way to mark that we have "guessed" the file type
  3067. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  3068. {
  3069. const int kid = gguf_find_key(meta, "general.file_type");
  3070. if (kid >= 0) {
  3071. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  3072. }
  3073. }
  3074. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  3075. for (int i = 0; i < n_kv; i++) {
  3076. const char * name = gguf_get_key(meta, i);
  3077. const enum gguf_type type = gguf_get_kv_type(meta, i);
  3078. const std::string type_name =
  3079. type == GGUF_TYPE_ARRAY
  3080. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  3081. : gguf_type_name(type);
  3082. std::string value = gguf_kv_to_str(meta, i);
  3083. const size_t MAX_VALUE_LEN = 40;
  3084. if (value.size() > MAX_VALUE_LEN) {
  3085. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  3086. }
  3087. replace_all(value, "\n", "\\n");
  3088. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  3089. }
  3090. // print type counts
  3091. for (auto & kv : n_type) {
  3092. if (kv.second == 0) {
  3093. continue;
  3094. }
  3095. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  3096. }
  3097. }
  3098. if (!llama_mmap::SUPPORTED) {
  3099. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  3100. use_mmap = false;
  3101. }
  3102. this->use_mmap = use_mmap;
  3103. this->check_tensors = check_tensors;
  3104. }
  3105. ~llama_model_loader() {
  3106. if (meta) {
  3107. gguf_free(meta);
  3108. }
  3109. for (auto * ctx : contexts) {
  3110. ggml_free(ctx);
  3111. }
  3112. }
  3113. template<typename T>
  3114. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3115. get_arr_n(const std::string & key, T & result, const bool required = true) {
  3116. const int kid = gguf_find_key(meta, key.c_str());
  3117. if (kid < 0) {
  3118. if (required) {
  3119. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3120. }
  3121. return false;
  3122. }
  3123. struct GGUFMeta::ArrayInfo arr_info =
  3124. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3125. result = arr_info.length;
  3126. return true;
  3127. }
  3128. template<typename T>
  3129. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3130. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  3131. return get_arr_n(llm_kv(kid), result, required);
  3132. }
  3133. template<typename T>
  3134. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  3135. const int kid = gguf_find_key(meta, key.c_str());
  3136. if (kid < 0) {
  3137. if (required) {
  3138. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3139. }
  3140. return false;
  3141. }
  3142. struct GGUFMeta::ArrayInfo arr_info =
  3143. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3144. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  3145. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  3146. }
  3147. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  3148. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  3149. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  3150. result.resize(arr_info.length);
  3151. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  3152. return true;
  3153. }
  3154. template<typename T>
  3155. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  3156. return get_arr(llm_kv(kid), result, required);
  3157. }
  3158. template<typename T>
  3159. bool get_key(const std::string & key, T & result, const bool required = true) {
  3160. auto it = kv_overrides.find(key);
  3161. const struct llama_model_kv_override * override =
  3162. it != kv_overrides.end() ? &it->second : nullptr;
  3163. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  3164. if (required && !found) {
  3165. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3166. }
  3167. return found;
  3168. }
  3169. template<typename T>
  3170. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  3171. return get_key(llm_kv(kid), result, required);
  3172. }
  3173. std::string get_arch_name() const {
  3174. return arch_name;
  3175. }
  3176. enum llm_arch get_arch() const {
  3177. return llm_kv.arch;
  3178. }
  3179. const char * get_tensor_name(int i) const {
  3180. return weights.at(i).tensor->name;
  3181. }
  3182. const llama_tensor_weight * get_weight(const char * name) const {
  3183. for (const auto & weight : weights) {
  3184. if (strcmp(name, weight.tensor->name) == 0) {
  3185. return &weight;
  3186. }
  3187. }
  3188. return nullptr;
  3189. }
  3190. const llama_tensor_weight * get_weight(int i) const {
  3191. return get_weight(get_tensor_name(i));
  3192. }
  3193. const llama_tensor_weight & require_weight(const char * name) const {
  3194. const llama_tensor_weight * weight = get_weight(name);
  3195. if (!weight) {
  3196. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3197. }
  3198. return *weight;
  3199. }
  3200. struct ggml_tensor * get_tensor_meta(const char * name) const {
  3201. const auto * weight = get_weight(name);
  3202. if (!weight) {
  3203. return nullptr;
  3204. }
  3205. return weight->tensor;
  3206. }
  3207. struct ggml_tensor * require_tensor_meta(const char * name) const {
  3208. struct ggml_tensor * tensor = get_tensor_meta(name);
  3209. if (!tensor) {
  3210. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3211. }
  3212. return tensor;
  3213. }
  3214. struct ggml_tensor * get_tensor_meta(int i) const {
  3215. return get_tensor_meta(get_tensor_name(i));
  3216. }
  3217. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  3218. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  3219. ggml_set_name(tensor, ggml_get_name(cur));
  3220. if (duplicated) {
  3221. size_data += ggml_nbytes(cur);
  3222. } else {
  3223. n_created++;
  3224. }
  3225. return tensor;
  3226. }
  3227. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3228. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3229. if (cur == NULL) {
  3230. if (!required) {
  3231. return NULL;
  3232. }
  3233. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3234. }
  3235. {
  3236. bool is_ok = true;
  3237. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3238. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3239. is_ok = false;
  3240. break;
  3241. }
  3242. }
  3243. if (!is_ok) {
  3244. throw std::runtime_error(
  3245. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3246. __func__, name.c_str(),
  3247. llama_format_tensor_shape(ne).c_str(),
  3248. llama_format_tensor_shape(cur).c_str()));
  3249. }
  3250. }
  3251. return cur;
  3252. }
  3253. static const int TENSOR_NOT_REQUIRED = 1;
  3254. static const int TENSOR_DUPLICATED = 2;
  3255. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3256. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3257. if (cur == NULL) {
  3258. return NULL;
  3259. }
  3260. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3261. }
  3262. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3263. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3264. if (cur == NULL) {
  3265. return NULL;
  3266. }
  3267. if (cur->type != base->type) {
  3268. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3269. }
  3270. std::array<int64_t, GGML_MAX_DIMS> dims;
  3271. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3272. dims[i] = i < ne.size() ? ne[i] : 1;
  3273. }
  3274. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3275. dims[0], dims[1], dims[2], dims[3],
  3276. cur->nb[1], cur->nb[2], cur->nb[3],
  3277. offset);
  3278. ggml_set_name(tensor, name.c_str());
  3279. n_created++;
  3280. return tensor;
  3281. }
  3282. void done_getting_tensors() const {
  3283. if (n_created != n_tensors) {
  3284. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3285. }
  3286. }
  3287. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3288. if (use_mmap) {
  3289. mappings.reserve(files.size());
  3290. mmaps_used.reserve(files.size());
  3291. for (const auto & file : files) {
  3292. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3293. mmaps_used.emplace_back(mapping->size, 0);
  3294. if (mlock_mmaps) {
  3295. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3296. mlock_mmap->init(mapping->addr);
  3297. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3298. }
  3299. mappings.emplace_back(std::move(mapping));
  3300. }
  3301. }
  3302. // compute the total size of all tensors for progress reporting
  3303. for (auto & w : weights) {
  3304. size_data += ggml_nbytes(w.tensor);
  3305. }
  3306. }
  3307. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3308. GGML_ASSERT(!mappings.empty());
  3309. const auto & mapping = mappings.at(idx);
  3310. *first = mapping->size;
  3311. *last = 0;
  3312. *addr = mapping->addr;
  3313. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3314. try {
  3315. const auto * weight = get_weight(ggml_get_name(tensor));
  3316. if (!weight) {
  3317. continue;
  3318. }
  3319. if (weight->idx != idx) {
  3320. continue;
  3321. }
  3322. *first = std::min(*first, weight->offs);
  3323. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3324. } catch(...) {
  3325. // the tensor is not in the model
  3326. }
  3327. }
  3328. }
  3329. // for backwards compatibility, does not support ggml-backend
  3330. void load_data_for(struct ggml_tensor * cur) const {
  3331. const auto & w = require_weight(ggml_get_name(cur));
  3332. if (use_mmap) {
  3333. const auto & mapping = mappings.at(w.idx);
  3334. if (cur->data == nullptr) {
  3335. cur->data = (uint8_t *)mapping->addr + w.offs;
  3336. } else {
  3337. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3338. }
  3339. } else {
  3340. GGML_ASSERT(cur->data != nullptr);
  3341. GGML_ASSERT(w.idx < files.size());
  3342. const auto & file = files.at(w.idx);
  3343. file->seek(w.offs, SEEK_SET);
  3344. file->read_raw(cur->data, ggml_nbytes(cur));
  3345. }
  3346. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3347. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3348. }
  3349. }
  3350. size_t size_done = 0;
  3351. size_t size_data = 0;
  3352. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3353. // Returns false if cancelled by progress_callback
  3354. bool load_all_data(
  3355. struct ggml_context * ctx,
  3356. llama_buf_map & bufs_mmap,
  3357. llama_mlocks * lmlocks,
  3358. llama_progress_callback progress_callback,
  3359. void * progress_callback_user_data) {
  3360. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3361. std::vector<no_init<uint8_t>> read_buf;
  3362. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3363. #if defined(GGML_USE_CUDA)
  3364. // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
  3365. // NVMe raid configurations might require more / larger buffers.
  3366. constexpr size_t num_buffers = 4;
  3367. constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
  3368. std::vector<ggml_backend_buffer_t> host_buffers;
  3369. std::vector<void*> host_ptrs;
  3370. std::vector<ggml_backend_event_t> events;
  3371. size_t buffer_idx = 0; // buffer to use for async loads
  3372. ggml_backend_t cuda_backend = nullptr;
  3373. if (!use_mmap && !check_tensors) {
  3374. // When not using mmaped io use async uploads from pinned memory to GPU memory.
  3375. // First determine if the CUDA backend is active, and if so, determine the device ID.
  3376. ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
  3377. if (buf) {
  3378. ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
  3379. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  3380. auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
  3381. if (buffer_type == cuda_buffer_type) {
  3382. cuda_backend = ggml_backend_cuda_init(i);
  3383. break;
  3384. }
  3385. }
  3386. }
  3387. // If the cuda backend is active create pinned memory buffers and events for synchronisation.
  3388. if (cuda_backend) {
  3389. for (size_t idx = 0; idx < num_buffers; ++idx) {
  3390. host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
  3391. host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
  3392. events.emplace_back(ggml_backend_event_new(cuda_backend));
  3393. }
  3394. }
  3395. }
  3396. #endif
  3397. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3398. const auto * weight = get_weight(ggml_get_name(cur));
  3399. if (weight == nullptr) {
  3400. // this can happen with split experts models
  3401. continue;
  3402. }
  3403. if (progress_callback) {
  3404. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3405. return false;
  3406. }
  3407. }
  3408. size_t n_size = ggml_nbytes(cur);
  3409. if (use_mmap) {
  3410. const auto & mapping = mappings.at(weight->idx);
  3411. ggml_backend_buffer_t buf_mmap = nullptr;
  3412. if (bufs_mmap.count(weight->idx)) {
  3413. buf_mmap = bufs_mmap.at(weight->idx);
  3414. }
  3415. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3416. if (check_tensors) {
  3417. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3418. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3419. }));
  3420. }
  3421. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3422. if (buf_mmap && cur->data == nullptr) {
  3423. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3424. if (lmlocks) {
  3425. const auto & lmlock = lmlocks->at(weight->idx);
  3426. lmlock->grow_to(weight->offs + n_size);
  3427. }
  3428. auto & mmap_used = mmaps_used[weight->idx];
  3429. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3430. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3431. } else {
  3432. ggml_backend_tensor_set(cur, data, 0, n_size);
  3433. }
  3434. } else {
  3435. GGML_ASSERT(weight->idx < files.size());
  3436. const auto & file = files.at(weight->idx);
  3437. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3438. file->seek(weight->offs, SEEK_SET);
  3439. file->read_raw(cur->data, n_size);
  3440. if (check_tensors) {
  3441. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3442. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3443. }));
  3444. }
  3445. } else {
  3446. #if defined(GGML_USE_CUDA)
  3447. // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
  3448. if (cuda_backend) {
  3449. file->seek(weight->offs, SEEK_SET);
  3450. size_t bytes_read = 0;
  3451. while (bytes_read < n_size) {
  3452. size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
  3453. ggml_backend_event_synchronize(events[buffer_idx]);
  3454. file->read_raw(host_ptrs[buffer_idx], read_iteration);
  3455. ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
  3456. ggml_backend_event_record(events[buffer_idx]);
  3457. bytes_read += read_iteration;
  3458. ++buffer_idx;
  3459. buffer_idx %= num_buffers;
  3460. }
  3461. }
  3462. else
  3463. #endif
  3464. {
  3465. read_buf.resize(n_size);
  3466. file->seek(weight->offs, SEEK_SET);
  3467. file->read_raw(read_buf.data(), n_size);
  3468. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3469. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3470. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3471. }
  3472. }
  3473. }
  3474. }
  3475. size_done += n_size;
  3476. }
  3477. #if defined(GGML_USE_CUDA)
  3478. // free temporary resources used for async cuda uploads
  3479. if (cuda_backend) {
  3480. for (size_t idx = 0; idx < num_buffers;++idx) {
  3481. ggml_backend_event_synchronize(events[idx]);
  3482. ggml_backend_event_free(events[idx]);
  3483. ggml_backend_buffer_free(host_buffers[idx]);
  3484. }
  3485. ggml_backend_free(cuda_backend);
  3486. }
  3487. #endif
  3488. // check validation results
  3489. bool validation_failed = false;
  3490. for (auto & future : validation_result) {
  3491. auto result = future.get();
  3492. if (!result.second) {
  3493. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3494. validation_failed = true;
  3495. }
  3496. }
  3497. if (validation_failed) {
  3498. throw std::runtime_error("found tensors with invalid data");
  3499. }
  3500. // check if this is the last call and do final cleanup
  3501. if (size_done >= size_data) {
  3502. // unmap offloaded tensors and metadata
  3503. if (use_mmap) {
  3504. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3505. const auto & mmap_used = mmaps_used.at(idx);
  3506. auto & mapping = mappings.at(idx);
  3507. mapping->unmap_fragment(0, mmap_used.first);
  3508. if (mmap_used.second != 0) {
  3509. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3510. }
  3511. }
  3512. }
  3513. if (progress_callback) {
  3514. // Even though the model is done loading, we still honor
  3515. // cancellation since we need to free allocations.
  3516. return progress_callback(1.0f, progress_callback_user_data);
  3517. }
  3518. }
  3519. return true;
  3520. }
  3521. };
  3522. template<>
  3523. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3524. uint32_t tmp;
  3525. const bool found = get_key(kid, tmp, required);
  3526. if (found) {
  3527. result = (enum llama_pooling_type) tmp;
  3528. } else {
  3529. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3530. }
  3531. return found;
  3532. }
  3533. //
  3534. // load LLaMA models
  3535. //
  3536. static const char * llama_model_arch_name(llm_arch arch) {
  3537. auto it = LLM_ARCH_NAMES.find(arch);
  3538. if (it == LLM_ARCH_NAMES.end()) {
  3539. return "unknown";
  3540. }
  3541. return it->second;
  3542. }
  3543. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3544. if (ftype & LLAMA_FTYPE_GUESSED) {
  3545. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3546. }
  3547. switch (ftype) {
  3548. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3549. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3550. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3551. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3552. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3553. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3554. return "Q4_1, some F16";
  3555. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3556. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3557. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3558. // K-quants
  3559. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3560. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3561. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3562. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3563. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3564. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3565. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3566. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3567. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3568. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3569. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3570. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3571. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3572. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3573. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3574. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3575. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3576. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3577. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3578. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3579. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3580. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3581. default: return "unknown, may not work";
  3582. }
  3583. }
  3584. static const char * llama_model_type_name(e_model type) {
  3585. switch (type) {
  3586. case MODEL_14M: return "14M";
  3587. case MODEL_17M: return "17M";
  3588. case MODEL_22M: return "22M";
  3589. case MODEL_33M: return "33M";
  3590. case MODEL_70M: return "70M";
  3591. case MODEL_109M: return "109M";
  3592. case MODEL_137M: return "137M";
  3593. case MODEL_160M: return "160M";
  3594. case MODEL_335M: return "335M";
  3595. case MODEL_410M: return "410M";
  3596. case MODEL_0_5B: return "0.5B";
  3597. case MODEL_1B: return "1B";
  3598. case MODEL_1_4B: return "1.4B";
  3599. case MODEL_2B: return "2B";
  3600. case MODEL_2_8B: return "2.8B";
  3601. case MODEL_3B: return "3B";
  3602. case MODEL_4B: return "4B";
  3603. case MODEL_6_9B: return "6.9B";
  3604. case MODEL_7B: return "7B";
  3605. case MODEL_8B: return "8B";
  3606. case MODEL_12B: return "12B";
  3607. case MODEL_13B: return "13B";
  3608. case MODEL_14B: return "14B";
  3609. case MODEL_15B: return "15B";
  3610. case MODEL_16B: return "16B";
  3611. case MODEL_20B: return "20B";
  3612. case MODEL_30B: return "30B";
  3613. case MODEL_34B: return "34B";
  3614. case MODEL_35B: return "35B";
  3615. case MODEL_40B: return "40B";
  3616. case MODEL_65B: return "65B";
  3617. case MODEL_70B: return "70B";
  3618. case MODEL_236B: return "236B";
  3619. case MODEL_314B: return "314B";
  3620. case MODEL_SMALL: return "0.1B";
  3621. case MODEL_MEDIUM: return "0.4B";
  3622. case MODEL_LARGE: return "0.8B";
  3623. case MODEL_XL: return "1.5B";
  3624. case MODEL_A2_7B: return "A2.7B";
  3625. case MODEL_8x7B: return "8x7B";
  3626. case MODEL_8x22B: return "8x22B";
  3627. case MODEL_16x12B: return "16x12B";
  3628. case MODEL_10B_128x3_66B: return "10B+128x3.66B";
  3629. default: return "?B";
  3630. }
  3631. }
  3632. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3633. switch (type) {
  3634. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3635. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3636. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3637. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3638. default: return "unknown";
  3639. }
  3640. }
  3641. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3642. model.arch = ml.get_arch();
  3643. if (model.arch == LLM_ARCH_UNKNOWN) {
  3644. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3645. }
  3646. }
  3647. static void llm_load_hparams(
  3648. llama_model_loader & ml,
  3649. llama_model & model) {
  3650. auto & hparams = model.hparams;
  3651. const gguf_context * ctx = ml.meta;
  3652. // get metadata as string
  3653. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3654. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3655. if (type == GGUF_TYPE_ARRAY) {
  3656. continue;
  3657. }
  3658. const char * name = gguf_get_key(ctx, i);
  3659. const std::string value = gguf_kv_to_str(ctx, i);
  3660. model.gguf_kv.emplace(name, value);
  3661. }
  3662. // get general kv
  3663. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3664. // get hparams kv
  3665. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3666. // everything past this point is not vocab-related
  3667. if (hparams.vocab_only) {
  3668. return;
  3669. }
  3670. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3671. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3672. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3673. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3674. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3675. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3676. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3677. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3678. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3679. if (hparams.n_expert > 0) {
  3680. GGML_ASSERT(hparams.n_expert_used > 0);
  3681. } else {
  3682. GGML_ASSERT(hparams.n_expert_used == 0);
  3683. }
  3684. // n_head_kv is optional, default to n_head
  3685. hparams.n_head_kv = hparams.n_head;
  3686. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3687. bool rope_finetuned = false;
  3688. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3689. hparams.rope_finetuned = rope_finetuned;
  3690. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  3691. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  3692. // rope_freq_base (optional)
  3693. hparams.rope_freq_base_train = 10000.0f;
  3694. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3695. std::string rope_scaling("linear");
  3696. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3697. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3698. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3699. // rope_freq_scale (inverse of the kv) is optional
  3700. float ropescale = 0.0f;
  3701. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3702. // try the old key name
  3703. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3704. }
  3705. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3706. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3707. // sanity check for n_rot (optional)
  3708. {
  3709. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3710. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3711. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3712. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3713. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3714. }
  3715. }
  3716. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3717. // gpt-j n_rot = rotary_dim
  3718. }
  3719. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3720. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3721. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3722. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3723. // arch-specific KVs
  3724. switch (model.arch) {
  3725. case LLM_ARCH_LLAMA:
  3726. {
  3727. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3728. if (hparams.n_expert == 8) {
  3729. switch (hparams.n_layer) {
  3730. case 32: model.type = e_model::MODEL_8x7B; break;
  3731. case 56: model.type = e_model::MODEL_8x22B; break;
  3732. default: model.type = e_model::MODEL_UNKNOWN;
  3733. }
  3734. } else {
  3735. switch (hparams.n_layer) {
  3736. case 22: model.type = e_model::MODEL_1B; break;
  3737. case 26: model.type = e_model::MODEL_3B; break;
  3738. // granite uses a vocab with len 49152
  3739. case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
  3740. case 36: model.type = e_model::MODEL_8B; break; // granite
  3741. case 40: model.type = e_model::MODEL_13B; break;
  3742. case 48: model.type = e_model::MODEL_34B; break;
  3743. case 60: model.type = e_model::MODEL_30B; break;
  3744. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3745. default: model.type = e_model::MODEL_UNKNOWN;
  3746. }
  3747. }
  3748. } break;
  3749. case LLM_ARCH_MINICPM:
  3750. {
  3751. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3752. switch (hparams.n_layer) {
  3753. case 40: model.type = e_model::MODEL_2B; break;
  3754. default: model.type = e_model::MODEL_UNKNOWN;
  3755. }
  3756. } break;
  3757. case LLM_ARCH_GROK:
  3758. {
  3759. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3760. switch (hparams.n_layer) {
  3761. case 64: model.type = e_model::MODEL_314B; break;
  3762. default: model.type = e_model::MODEL_UNKNOWN;
  3763. }
  3764. } break;
  3765. case LLM_ARCH_FALCON:
  3766. {
  3767. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3768. switch (hparams.n_layer) {
  3769. case 32: model.type = e_model::MODEL_7B; break;
  3770. case 60: model.type = e_model::MODEL_40B; break;
  3771. default: model.type = e_model::MODEL_UNKNOWN;
  3772. }
  3773. } break;
  3774. case LLM_ARCH_BAICHUAN:
  3775. {
  3776. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3777. switch (hparams.n_layer) {
  3778. case 32: model.type = e_model::MODEL_7B; break;
  3779. case 40: model.type = e_model::MODEL_13B; break;
  3780. default: model.type = e_model::MODEL_UNKNOWN;
  3781. }
  3782. if (model.type == e_model::MODEL_13B) {
  3783. // TODO: become GGUF KV parameter
  3784. hparams.f_max_alibi_bias = 8.0f;
  3785. }
  3786. } break;
  3787. case LLM_ARCH_STARCODER:
  3788. {
  3789. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3790. switch (hparams.n_layer) {
  3791. case 24: model.type = e_model::MODEL_1B; break;
  3792. case 36: model.type = e_model::MODEL_3B; break;
  3793. case 42: model.type = e_model::MODEL_7B; break;
  3794. case 40: model.type = e_model::MODEL_15B; break;
  3795. default: model.type = e_model::MODEL_UNKNOWN;
  3796. }
  3797. } break;
  3798. case LLM_ARCH_REFACT:
  3799. {
  3800. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3801. switch (hparams.n_layer) {
  3802. case 32: model.type = e_model::MODEL_1B; break;
  3803. default: model.type = e_model::MODEL_UNKNOWN;
  3804. }
  3805. // TODO: become GGUF KV parameter
  3806. hparams.f_max_alibi_bias = 8.0f;
  3807. } break;
  3808. case LLM_ARCH_BERT:
  3809. {
  3810. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3811. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3812. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3813. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3814. switch (hparams.n_layer) {
  3815. case 3:
  3816. model.type = e_model::MODEL_17M; break; // bge-micro
  3817. case 6:
  3818. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3819. case 12:
  3820. switch (hparams.n_embd) {
  3821. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3822. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3823. } break;
  3824. case 24:
  3825. model.type = e_model::MODEL_335M; break; // bge-large
  3826. }
  3827. } break;
  3828. case LLM_ARCH_JINA_BERT_V2:
  3829. {
  3830. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3831. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3832. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3833. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3834. hparams.f_max_alibi_bias = 8.0f;
  3835. switch (hparams.n_layer) {
  3836. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3837. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3838. }
  3839. } break;
  3840. case LLM_ARCH_NOMIC_BERT:
  3841. {
  3842. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3843. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3844. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3845. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3846. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3847. model.type = e_model::MODEL_137M;
  3848. }
  3849. } break;
  3850. case LLM_ARCH_BLOOM:
  3851. {
  3852. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3853. switch (hparams.n_layer) {
  3854. case 24: model.type = e_model::MODEL_1B; break;
  3855. case 30:
  3856. switch (hparams.n_embd) {
  3857. case 2560: model.type = e_model::MODEL_3B; break;
  3858. case 4096: model.type = e_model::MODEL_7B; break;
  3859. } break;
  3860. }
  3861. // TODO: become GGUF KV parameter
  3862. hparams.f_max_alibi_bias = 8.0f;
  3863. } break;
  3864. case LLM_ARCH_MPT:
  3865. {
  3866. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3867. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3868. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3869. switch (hparams.n_layer) {
  3870. case 32: model.type = e_model::MODEL_7B; break;
  3871. case 48: model.type = e_model::MODEL_30B; break;
  3872. default: model.type = e_model::MODEL_UNKNOWN;
  3873. }
  3874. } break;
  3875. case LLM_ARCH_STABLELM:
  3876. {
  3877. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3878. switch (hparams.n_layer) {
  3879. case 24: model.type = e_model::MODEL_1B; break;
  3880. case 32: model.type = e_model::MODEL_3B; break;
  3881. case 40: model.type = e_model::MODEL_12B; break;
  3882. default: model.type = e_model::MODEL_UNKNOWN;
  3883. }
  3884. } break;
  3885. case LLM_ARCH_QWEN:
  3886. {
  3887. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3888. switch (hparams.n_layer) {
  3889. case 32: model.type = e_model::MODEL_7B; break;
  3890. case 40: model.type = e_model::MODEL_13B; break;
  3891. default: model.type = e_model::MODEL_UNKNOWN;
  3892. }
  3893. } break;
  3894. case LLM_ARCH_QWEN2:
  3895. {
  3896. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3897. switch (hparams.n_layer) {
  3898. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3899. case 32: model.type = e_model::MODEL_7B; break;
  3900. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3901. case 80: model.type = e_model::MODEL_70B; break;
  3902. default: model.type = e_model::MODEL_UNKNOWN;
  3903. }
  3904. } break;
  3905. case LLM_ARCH_QWEN2MOE:
  3906. {
  3907. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  3908. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  3909. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3910. switch (hparams.n_layer) {
  3911. case 24: model.type = e_model::MODEL_A2_7B; break;
  3912. default: model.type = e_model::MODEL_UNKNOWN;
  3913. }
  3914. } break;
  3915. case LLM_ARCH_PHI2:
  3916. {
  3917. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3918. switch (hparams.n_layer) {
  3919. case 24: model.type = e_model::MODEL_1B; break;
  3920. case 32: model.type = e_model::MODEL_3B; break;
  3921. default: model.type = e_model::MODEL_UNKNOWN;
  3922. }
  3923. } break;
  3924. case LLM_ARCH_PHI3:
  3925. {
  3926. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3927. switch (hparams.n_layer) {
  3928. case 24: model.type = e_model::MODEL_1B; break;
  3929. case 32: model.type = e_model::MODEL_3B; break;
  3930. case 40: model.type = e_model::MODEL_14B; break;
  3931. default: model.type = e_model::MODEL_UNKNOWN;
  3932. }
  3933. } break;
  3934. case LLM_ARCH_PLAMO:
  3935. {
  3936. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3937. switch (hparams.n_layer) {
  3938. case 40: model.type = e_model::MODEL_13B; break;
  3939. default: model.type = e_model::MODEL_UNKNOWN;
  3940. }
  3941. } break;
  3942. case LLM_ARCH_GPT2:
  3943. {
  3944. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3945. switch (hparams.n_layer) {
  3946. case 12: model.type = e_model::MODEL_SMALL; break;
  3947. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3948. case 36: model.type = e_model::MODEL_LARGE; break;
  3949. case 48: model.type = e_model::MODEL_XL; break;
  3950. default: model.type = e_model::MODEL_UNKNOWN;
  3951. }
  3952. } break;
  3953. case LLM_ARCH_CODESHELL:
  3954. {
  3955. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3956. switch (hparams.n_layer) {
  3957. case 42: model.type = e_model::MODEL_SMALL; break;
  3958. default: model.type = e_model::MODEL_UNKNOWN;
  3959. }
  3960. } break;
  3961. case LLM_ARCH_ORION:
  3962. {
  3963. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3964. switch (hparams.n_layer) {
  3965. case 40: model.type = e_model::MODEL_14B; break;
  3966. default: model.type = e_model::MODEL_UNKNOWN;
  3967. }
  3968. } break;
  3969. case LLM_ARCH_INTERNLM2:
  3970. {
  3971. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3972. switch (hparams.n_layer) {
  3973. case 32: model.type = e_model::MODEL_7B; break;
  3974. case 48: model.type = e_model::MODEL_20B; break;
  3975. default: model.type = e_model::MODEL_UNKNOWN;
  3976. }
  3977. } break;
  3978. case LLM_ARCH_GEMMA:
  3979. {
  3980. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3981. switch (hparams.n_layer) {
  3982. case 18: model.type = e_model::MODEL_2B; break;
  3983. case 28: model.type = e_model::MODEL_7B; break;
  3984. default: model.type = e_model::MODEL_UNKNOWN;
  3985. }
  3986. } break;
  3987. case LLM_ARCH_STARCODER2:
  3988. {
  3989. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3990. switch (hparams.n_layer) {
  3991. case 30: model.type = e_model::MODEL_3B; break;
  3992. case 32: model.type = e_model::MODEL_7B; break;
  3993. case 40: model.type = e_model::MODEL_15B; break;
  3994. case 52: model.type = e_model::MODEL_20B; break; // granite
  3995. case 88: model.type = e_model::MODEL_34B; break; // granite
  3996. default: model.type = e_model::MODEL_UNKNOWN;
  3997. }
  3998. } break;
  3999. case LLM_ARCH_MAMBA:
  4000. {
  4001. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  4002. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  4003. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  4004. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  4005. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4006. switch (hparams.n_layer) {
  4007. case 24:
  4008. switch (hparams.n_embd) {
  4009. case 768: model.type = e_model::MODEL_SMALL; break;
  4010. default: model.type = e_model::MODEL_UNKNOWN;
  4011. } break;
  4012. case 48:
  4013. switch (hparams.n_embd) {
  4014. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  4015. case 1536: model.type = e_model::MODEL_LARGE; break;
  4016. case 2048: model.type = e_model::MODEL_XL; break;
  4017. default: model.type = e_model::MODEL_UNKNOWN;
  4018. } break;
  4019. case 64:
  4020. switch (hparams.n_embd) {
  4021. case 2560: model.type = e_model::MODEL_3B; break;
  4022. default: model.type = e_model::MODEL_UNKNOWN;
  4023. } break;
  4024. default: model.type = e_model::MODEL_UNKNOWN;
  4025. }
  4026. } break;
  4027. case LLM_ARCH_XVERSE:
  4028. {
  4029. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4030. switch (hparams.n_layer) {
  4031. case 32: model.type = e_model::MODEL_7B; break;
  4032. case 40: model.type = e_model::MODEL_13B; break;
  4033. case 80: model.type = e_model::MODEL_65B; break;
  4034. default: model.type = e_model::MODEL_UNKNOWN;
  4035. }
  4036. } break;
  4037. case LLM_ARCH_COMMAND_R:
  4038. {
  4039. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  4040. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4041. switch (hparams.n_layer) {
  4042. case 40: model.type = e_model::MODEL_35B; break;
  4043. default: model.type = e_model::MODEL_UNKNOWN;
  4044. }
  4045. } break;
  4046. case LLM_ARCH_DBRX:
  4047. {
  4048. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4049. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  4050. switch (hparams.n_layer) {
  4051. case 40: model.type = e_model::MODEL_16x12B; break;
  4052. default: model.type = e_model::MODEL_UNKNOWN;
  4053. }
  4054. } break;
  4055. case LLM_ARCH_OLMO:
  4056. {
  4057. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4058. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  4059. switch (hparams.n_layer) {
  4060. case 22: model.type = e_model::MODEL_1B; break;
  4061. case 32: model.type = e_model::MODEL_7B; break;
  4062. case 80: model.type = e_model::MODEL_70B; break;
  4063. default: model.type = e_model::MODEL_UNKNOWN;
  4064. }
  4065. } break;
  4066. case LLM_ARCH_GPTNEOX:
  4067. {
  4068. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4069. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  4070. switch (hparams.n_layer) {
  4071. case 6:
  4072. switch (hparams.n_ff) {
  4073. case 512: model.type = e_model::MODEL_14M; break;
  4074. case 2048: model.type = e_model::MODEL_70M; break;
  4075. default: model.type = e_model::MODEL_UNKNOWN;
  4076. } break;
  4077. case 12:
  4078. switch (hparams.n_ff) {
  4079. case 3072: model.type = e_model::MODEL_160M; break;
  4080. default: model.type = e_model::MODEL_UNKNOWN;
  4081. } break;
  4082. case 16:
  4083. switch (hparams.n_ff) {
  4084. case 8192: model.type = e_model::MODEL_1B; break;
  4085. default: model.type = e_model::MODEL_UNKNOWN;
  4086. } break;
  4087. case 24:
  4088. switch (hparams.n_ff) {
  4089. case 4096: model.type = e_model::MODEL_410M; break;
  4090. case 8192: model.type = e_model::MODEL_1_4B; break;
  4091. default: model.type = e_model::MODEL_UNKNOWN;
  4092. } break;
  4093. case 32:
  4094. switch (hparams.n_ff) {
  4095. case 10240: model.type = e_model::MODEL_2_8B; break;
  4096. case 16384: model.type = e_model::MODEL_6_9B; break;
  4097. default: model.type = e_model::MODEL_UNKNOWN;
  4098. } break;
  4099. case 36:
  4100. switch (hparams.n_ff) {
  4101. case 20480: model.type = e_model::MODEL_12B; break;
  4102. default: model.type = e_model::MODEL_UNKNOWN;
  4103. } break;
  4104. case 44:
  4105. switch (hparams.n_ff) {
  4106. case 24576: model.type = e_model::MODEL_20B; break;
  4107. default: model.type = e_model::MODEL_UNKNOWN;
  4108. } break;
  4109. default: model.type = e_model::MODEL_UNKNOWN;
  4110. }
  4111. } break;
  4112. case LLM_ARCH_ARCTIC:
  4113. {
  4114. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4115. if (hparams.n_expert == 128) {
  4116. switch (hparams.n_layer) {
  4117. case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
  4118. default: model.type = e_model::MODEL_UNKNOWN;
  4119. }
  4120. } else {
  4121. model.type = e_model::MODEL_UNKNOWN;
  4122. }
  4123. } break;
  4124. case LLM_ARCH_DEEPSEEK2:
  4125. {
  4126. bool is_lite = (hparams.n_layer == 27);
  4127. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4128. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  4129. if (!is_lite) {
  4130. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  4131. }
  4132. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  4133. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  4134. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  4135. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  4136. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  4137. switch (hparams.n_layer) {
  4138. case 27: model.type = e_model::MODEL_16B; break;
  4139. case 60: model.type = e_model::MODEL_236B; break;
  4140. default: model.type = e_model::MODEL_UNKNOWN;
  4141. }
  4142. } break;
  4143. default: (void)0;
  4144. }
  4145. model.ftype = ml.ftype;
  4146. if (hparams.f_max_alibi_bias > 0.0f) {
  4147. hparams.use_alibi = true;
  4148. }
  4149. hparams.rope_type = llama_rope_type(&model);
  4150. }
  4151. // TODO: This should probably be in llama.h
  4152. static std::vector<llama_vocab::id> llama_tokenize_internal(
  4153. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  4154. );
  4155. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  4156. static void llm_load_vocab(
  4157. llama_model_loader & ml,
  4158. llama_model & model) {
  4159. auto & vocab = model.vocab;
  4160. struct gguf_context * ctx = ml.meta;
  4161. const auto kv = LLM_KV(model.arch);
  4162. // determine vocab type
  4163. {
  4164. std::string tokenizer_model;
  4165. std::string tokenizer_pre;
  4166. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  4167. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4168. if (tokenizer_model == "no_vocab") {
  4169. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  4170. // default special tokens
  4171. vocab.special_bos_id = -1;
  4172. vocab.special_eos_id = -1;
  4173. vocab.special_unk_id = -1;
  4174. vocab.special_sep_id = -1;
  4175. vocab.special_pad_id = -1;
  4176. vocab.special_cls_id = -1;
  4177. vocab.special_mask_id = -1;
  4178. vocab.linefeed_id = -1;
  4179. return;
  4180. } else if (tokenizer_model == "llama") {
  4181. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  4182. // default special tokens
  4183. vocab.special_bos_id = 1;
  4184. vocab.special_eos_id = 2;
  4185. vocab.special_unk_id = 0;
  4186. vocab.special_sep_id = -1;
  4187. vocab.special_pad_id = -1;
  4188. vocab.special_cls_id = -1;
  4189. vocab.special_mask_id = -1;
  4190. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4191. if (add_space_prefix_keyidx != -1) {
  4192. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4193. } // The default value of add_space_prefix is true.
  4194. } else if (tokenizer_model == "bert") {
  4195. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  4196. // default special tokens
  4197. vocab.special_bos_id = -1;
  4198. vocab.special_eos_id = -1;
  4199. vocab.special_unk_id = 100;
  4200. vocab.special_sep_id = 102;
  4201. vocab.special_pad_id = 0;
  4202. vocab.special_cls_id = 101;
  4203. vocab.special_mask_id = 103;
  4204. vocab.add_space_prefix = false;
  4205. } else if (tokenizer_model == "gpt2") {
  4206. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  4207. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4208. if (add_space_prefix_keyidx != -1) {
  4209. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4210. }
  4211. // read bpe merges and populate bpe ranks
  4212. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  4213. if (merges_keyidx == -1) {
  4214. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  4215. }
  4216. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  4217. for (int i = 0; i < n_merges; i++) {
  4218. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  4219. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4220. std::string first;
  4221. std::string second;
  4222. const size_t pos = word.find(' ', 1);
  4223. if (pos != std::string::npos) {
  4224. first = word.substr(0, pos);
  4225. second = word.substr(pos + 1);
  4226. }
  4227. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  4228. }
  4229. // default special tokens
  4230. vocab.special_bos_id = 11;
  4231. vocab.special_eos_id = 11;
  4232. vocab.special_unk_id = -1;
  4233. vocab.special_sep_id = -1;
  4234. vocab.special_pad_id = -1;
  4235. vocab.special_cls_id = -1;
  4236. vocab.special_mask_id = -1;
  4237. } else {
  4238. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  4239. }
  4240. // for now, only BPE models have pre-tokenizers
  4241. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  4242. if (tokenizer_pre.empty()) {
  4243. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  4244. LLAMA_LOG_WARN("%s: \n", __func__);
  4245. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4246. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  4247. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  4248. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4249. LLAMA_LOG_WARN("%s: \n", __func__);
  4250. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4251. } else if (tokenizer_pre == "default") {
  4252. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4253. } else if (
  4254. tokenizer_pre == "llama3" ||
  4255. tokenizer_pre == "llama-v3" ||
  4256. tokenizer_pre == "llama-bpe") {
  4257. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  4258. } else if (
  4259. tokenizer_pre == "deepseek-llm") {
  4260. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  4261. } else if (
  4262. tokenizer_pre == "deepseek-coder") {
  4263. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  4264. } else if (
  4265. tokenizer_pre == "falcon") {
  4266. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  4267. } else if (
  4268. tokenizer_pre == "mpt") {
  4269. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  4270. } else if (
  4271. tokenizer_pre == "starcoder") {
  4272. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  4273. } else if (
  4274. tokenizer_pre == "gpt-2" ||
  4275. tokenizer_pre == "jina-es" ||
  4276. tokenizer_pre == "jina-de" ||
  4277. tokenizer_pre == "jina-v2-es" ||
  4278. tokenizer_pre == "jina-v2-de" ||
  4279. tokenizer_pre == "jina-v2-code") {
  4280. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  4281. } else if (
  4282. tokenizer_pre == "refact") {
  4283. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  4284. } else if (
  4285. tokenizer_pre == "command-r") {
  4286. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  4287. } else if (
  4288. tokenizer_pre == "qwen2") {
  4289. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  4290. } else if (
  4291. tokenizer_pre == "stablelm2") {
  4292. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  4293. } else if (
  4294. tokenizer_pre == "olmo") {
  4295. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  4296. } else if (
  4297. tokenizer_pre == "dbrx") {
  4298. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  4299. } else if (
  4300. tokenizer_pre == "smaug-bpe") {
  4301. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  4302. } else if (
  4303. tokenizer_pre == "poro-chat") {
  4304. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
  4305. } else {
  4306. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  4307. }
  4308. } else {
  4309. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4310. }
  4311. }
  4312. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  4313. if (token_idx == -1) {
  4314. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  4315. }
  4316. const float * scores = nullptr;
  4317. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  4318. if (score_idx != -1) {
  4319. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  4320. }
  4321. const int * toktypes = nullptr;
  4322. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  4323. if (toktype_idx != -1) {
  4324. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  4325. }
  4326. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  4327. vocab.id_to_token.resize(n_vocab);
  4328. for (uint32_t i = 0; i < n_vocab; i++) {
  4329. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  4330. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4331. vocab.token_to_id[word] = i;
  4332. auto & token_data = vocab.id_to_token[i];
  4333. token_data.text = std::move(word);
  4334. token_data.score = scores ? scores[i] : 0.0f;
  4335. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  4336. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  4337. switch(toktypes[i]) {
  4338. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  4339. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  4340. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  4341. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  4342. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  4343. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  4344. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4345. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4346. }
  4347. }
  4348. }
  4349. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  4350. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  4351. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4352. // For Fill-In-the-Middle (FIM)/infill models which where converted
  4353. // prior to support of FIM special tokens in GGUF, the following
  4354. // will allow those models to continue to work. The general names
  4355. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  4356. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  4357. // new versions of these models have been published.
  4358. std::string gen_name;
  4359. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  4360. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  4361. [](unsigned char c){ return std::tolower(c); });
  4362. if (gen_name.find("code") != std::string::npos) {
  4363. if (model.arch == LLM_ARCH_LLAMA
  4364. && 32010 < vocab.id_to_token.size()
  4365. && vocab.id_to_token[32007].text == "<PRE>"
  4366. && vocab.id_to_token[32008].text == "<SUF>"
  4367. && vocab.id_to_token[32009].text == "<MID>"
  4368. && vocab.id_to_token[32010].text == "<EOT>") {
  4369. vocab.special_prefix_id = 32007;
  4370. vocab.special_suffix_id = 32008;
  4371. vocab.special_middle_id = 32009;
  4372. vocab.special_eot_id = 32010;
  4373. } else if (model.arch == LLM_ARCH_GEMMA
  4374. && 107 < vocab.id_to_token.size()
  4375. && vocab.id_to_token[67].text == "<|fim_prefix|>"
  4376. && vocab.id_to_token[69].text == "<|fim_suffix|>"
  4377. && vocab.id_to_token[68].text == "<|fim_middle|>"
  4378. && vocab.id_to_token[107].text == "<end_of_turn>") {
  4379. vocab.special_prefix_id = 67;
  4380. vocab.special_suffix_id = 69;
  4381. vocab.special_middle_id = 68;
  4382. // TODO: this is not EOT, it is "file separator" token, needs fix
  4383. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  4384. //vocab.special_eot_id = 70;
  4385. vocab.special_eot_id = 107;
  4386. }
  4387. }
  4388. try {
  4389. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  4390. } catch (const std::exception & e) {
  4391. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  4392. vocab.linefeed_id = vocab.special_pad_id;
  4393. }
  4394. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4395. vocab.linefeed_id = vocab.special_pad_id;
  4396. } else {
  4397. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  4398. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  4399. vocab.linefeed_id = ids[0];
  4400. }
  4401. // special tokens
  4402. {
  4403. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  4404. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  4405. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  4406. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4407. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4408. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4409. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4410. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4411. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4412. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4413. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4414. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4415. };
  4416. for (const auto & it : special_token_types) {
  4417. const std::string & key = kv(std::get<0>(it));
  4418. int32_t & id = std::get<1>(it);
  4419. uint32_t new_id;
  4420. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4421. continue;
  4422. }
  4423. if (new_id >= vocab.id_to_token.size()) {
  4424. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4425. __func__, key.c_str(), new_id, id);
  4426. } else {
  4427. id = new_id;
  4428. }
  4429. }
  4430. // Handle add_bos_token and add_eos_token
  4431. {
  4432. bool temp = true;
  4433. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4434. vocab.special_add_bos = int(temp);
  4435. }
  4436. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4437. vocab.special_add_eos = int(temp);
  4438. }
  4439. }
  4440. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4441. //
  4442. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4443. // for now, we apply this workaround to find the EOT token based on its text
  4444. if (vocab.special_eot_id == -1) {
  4445. for (const auto & t : vocab.token_to_id) {
  4446. if (
  4447. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4448. // need to fix convert script
  4449. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4450. (t.first == "<|eot_id|>" ||
  4451. t.first == "<|im_end|>" ||
  4452. t.first == "<|end|>" ||
  4453. t.first == "<end_of_turn>" ||
  4454. t.first == "<|endoftext|>"
  4455. )
  4456. ) {
  4457. vocab.special_eot_id = t.second;
  4458. break;
  4459. }
  4460. }
  4461. }
  4462. }
  4463. // build special tokens cache
  4464. {
  4465. for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
  4466. if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
  4467. vocab.cache_special_tokens.push_back(id);
  4468. }
  4469. }
  4470. std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
  4471. [&] (const llama_vocab::id a, const llama_vocab::id b) {
  4472. return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
  4473. }
  4474. );
  4475. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
  4476. }
  4477. // build token to piece cache
  4478. {
  4479. size_t size_cache = 0;
  4480. std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
  4481. for (uint32_t id = 0; id < n_vocab; ++id) {
  4482. cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
  4483. size_cache += cache_token_to_piece[id].size();
  4484. }
  4485. std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
  4486. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  4487. }
  4488. // Handle per token attributes
  4489. //NOTE: Each model customizes per token attributes.
  4490. //NOTE: Per token attributes are missing from the GGUF file.
  4491. //TODO: Extract attributes from GGUF file.
  4492. {
  4493. auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
  4494. for (auto substr : substrs) {
  4495. if (str.find(substr) < std::string::npos) {
  4496. return true;
  4497. }
  4498. }
  4499. return false;
  4500. };
  4501. auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
  4502. uint32_t current = vocab.id_to_token.at(id).attr;
  4503. current = value ? (current | attr) : (current & ~attr);
  4504. vocab.id_to_token[id].attr = (llama_token_attr) current;
  4505. };
  4506. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  4507. _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
  4508. };
  4509. std::string model_name;
  4510. std::string tokenizer_pre;
  4511. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  4512. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4513. // model name to lowercase
  4514. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  4515. [] (const std::string::value_type x) {
  4516. return std::tolower(x);
  4517. }
  4518. );
  4519. // set attributes by model/tokenizer name
  4520. if (_contains_any(tokenizer_pre, {"jina-v2-es", "jina-v2-de"})) {
  4521. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  4522. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  4523. for (auto id : vocab.cache_special_tokens) {
  4524. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4525. }
  4526. for (auto token : {"</s>"}) {
  4527. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4528. }
  4529. for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
  4530. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  4531. }
  4532. }
  4533. }
  4534. }
  4535. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4536. const auto & hparams = model.hparams;
  4537. const auto & vocab = model.vocab;
  4538. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4539. // hparams
  4540. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4541. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4542. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4543. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4544. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4545. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4546. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4547. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4548. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4549. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4550. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4551. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4552. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4553. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4554. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4555. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4556. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4557. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4558. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4559. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4560. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4561. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4562. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4563. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4564. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4565. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4566. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4567. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4568. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4569. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4570. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  4571. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4572. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4573. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4574. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4575. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4576. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4577. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4578. if (ml.n_elements >= 1e12) {
  4579. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4580. } else if (ml.n_elements >= 1e9) {
  4581. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4582. } else if (ml.n_elements >= 1e6) {
  4583. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4584. } else {
  4585. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4586. }
  4587. if (ml.n_bytes < GiB) {
  4588. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4589. } else {
  4590. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4591. }
  4592. // general kv
  4593. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4594. // special tokens
  4595. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4596. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4597. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4598. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4599. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4600. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4601. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4602. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4603. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4604. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4605. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4606. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4607. if (model.arch == LLM_ARCH_DEEPSEEK2) {
  4608. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  4609. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  4610. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  4611. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4612. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  4613. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  4614. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  4615. }
  4616. if (model.arch == LLM_ARCH_QWEN2MOE) {
  4617. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4618. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  4619. }
  4620. }
  4621. // Returns false if cancelled by progress_callback
  4622. static bool llm_load_tensors(
  4623. llama_model_loader & ml,
  4624. llama_model & model,
  4625. int n_gpu_layers,
  4626. enum llama_split_mode split_mode,
  4627. int main_gpu,
  4628. const float * tensor_split,
  4629. bool use_mlock,
  4630. llama_progress_callback progress_callback,
  4631. void * progress_callback_user_data) {
  4632. model.t_start_us = ggml_time_us();
  4633. auto & hparams = model.hparams;
  4634. #ifdef GGML_USE_SYCL
  4635. // disable MoE with SYCL until mul_mat_id is updated
  4636. if (hparams.n_expert > 0) {
  4637. n_gpu_layers = 0;
  4638. }
  4639. #endif
  4640. model.split_mode = split_mode;
  4641. model.main_gpu = main_gpu;
  4642. model.n_gpu_layers = n_gpu_layers;
  4643. const int64_t n_layer = hparams.n_layer;
  4644. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4645. bool use_mmap_buffer = true;
  4646. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4647. model.buft_input = llama_default_buffer_type_cpu(true);
  4648. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4649. model.buft_layer.resize(n_layer);
  4650. // assign cpu layers
  4651. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4652. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4653. }
  4654. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4655. // calculate the split points
  4656. int device_count = llama_get_device_count(model);
  4657. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4658. std::vector<float> splits(device_count);
  4659. if (all_zero) {
  4660. // default split, by free memory
  4661. for (int i = 0; i < device_count; ++i) {
  4662. splits[i] = llama_get_device_memory(model, i);
  4663. }
  4664. } else {
  4665. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4666. }
  4667. // sum and normalize the splits to get the split points
  4668. float split_sum = 0.0f;
  4669. for (int i = 0; i < device_count; ++i) {
  4670. split_sum += splits[i];
  4671. splits[i] = split_sum;
  4672. }
  4673. for (int i = 0; i < device_count; ++i) {
  4674. splits[i] /= split_sum;
  4675. }
  4676. // assign the repeating layers to the devices according to the splits
  4677. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4678. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4679. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4680. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4681. }
  4682. // assign the output layer
  4683. if (n_gpu_layers > n_layer) {
  4684. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4685. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4686. } else {
  4687. model.buft_output = llama_default_buffer_type_cpu(true);
  4688. }
  4689. } else {
  4690. ggml_backend_buffer_type_t split_buft;
  4691. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4692. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4693. } else {
  4694. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4695. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4696. }
  4697. // assign the repeating layers
  4698. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4699. model.buft_layer[i] = {
  4700. split_buft,
  4701. llama_default_buffer_type_offload(model, main_gpu)
  4702. };
  4703. }
  4704. // assign the output layer
  4705. if (n_gpu_layers > n_layer) {
  4706. model.buft_output = {
  4707. split_buft,
  4708. llama_default_buffer_type_offload(model, main_gpu)
  4709. };
  4710. } else {
  4711. model.buft_output = llama_default_buffer_type_cpu(true);
  4712. }
  4713. }
  4714. // count used buffer types
  4715. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4716. buft_layer_count[model.buft_input.buft]++;
  4717. buft_layer_count[model.buft_input.buft_matrix]++;
  4718. buft_layer_count[model.buft_output.buft]++;
  4719. buft_layer_count[model.buft_output.buft_matrix]++;
  4720. for (int64_t i = 0; i < n_layer; ++i) {
  4721. buft_layer_count[model.buft_layer[i].buft]++;
  4722. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4723. }
  4724. // create one context per buffer type
  4725. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4726. // for moe merged tensors
  4727. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4728. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4729. for (auto & it : buft_layer_count) {
  4730. struct ggml_init_params params = {
  4731. /*.mem_size =*/ ctx_size,
  4732. /*.mem_buffer =*/ NULL,
  4733. /*.no_alloc =*/ true,
  4734. };
  4735. ggml_context * ctx = ggml_init(params);
  4736. if (!ctx) {
  4737. throw std::runtime_error(format("failed to create context"));
  4738. }
  4739. ctx_map[it.first] = ctx;
  4740. model.ctxs.push_back(ctx);
  4741. }
  4742. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4743. // create tensors for the weights
  4744. {
  4745. const int64_t n_embd = hparams.n_embd;
  4746. const int64_t n_embd_head = (hparams.n_head == 0) ? 0 : n_embd / hparams.n_head;
  4747. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4748. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4749. const int64_t n_embd_gqa = n_embd_v_gqa;
  4750. const int64_t n_vocab = hparams.n_vocab;
  4751. const int64_t n_vocab_type = hparams.n_vocab_type;
  4752. const int64_t n_ff = hparams.n_ff;
  4753. const int64_t n_expert = hparams.n_expert;
  4754. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4755. throw std::runtime_error("model has expert layers but no expert layers are used");
  4756. }
  4757. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4758. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4759. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4760. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4761. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4762. model.layers.resize(n_layer);
  4763. const auto tn = LLM_TN(model.arch);
  4764. switch (model.arch) {
  4765. case LLM_ARCH_LLAMA:
  4766. case LLM_ARCH_REFACT:
  4767. case LLM_ARCH_MINICPM:
  4768. {
  4769. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4770. // output
  4771. {
  4772. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4773. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4774. // if output is NULL, init from the input tok embed
  4775. if (model.output == NULL) {
  4776. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4777. }
  4778. }
  4779. for (int i = 0; i < n_layer; ++i) {
  4780. ggml_context * ctx_layer = ctx_for_layer(i);
  4781. ggml_context * ctx_split = ctx_for_layer_split(i);
  4782. auto & layer = model.layers[i];
  4783. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4784. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4785. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4786. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4787. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4788. // optional bias tensors
  4789. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4790. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4791. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4792. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4793. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4794. if (n_expert == 0) {
  4795. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4796. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4797. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4798. // optional MLP bias
  4799. layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4800. layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4801. layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4802. } else {
  4803. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4804. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4805. if (layer.ffn_gate_exps) {
  4806. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4807. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4808. } else {
  4809. // merge split expert into a single tensor for compatibility with older models
  4810. // requires disabling mmap
  4811. use_mmap_buffer = false;
  4812. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4813. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4814. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4815. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4816. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4817. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4818. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4819. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4820. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4821. for (uint32_t x = 0; x < n_expert; ++x) {
  4822. // the individual experts are loaded into a view of the merged tensor
  4823. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4824. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4825. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4826. }
  4827. }
  4828. }
  4829. }
  4830. } break;
  4831. case LLM_ARCH_GROK:
  4832. {
  4833. if (n_expert == 0) {
  4834. throw std::runtime_error("Grok model cannot have zero experts");
  4835. }
  4836. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4837. // output
  4838. {
  4839. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4840. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4841. // if output is NULL, init from the input tok embed
  4842. if (model.output == NULL) {
  4843. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4844. }
  4845. }
  4846. for (int i = 0; i < n_layer; ++i) {
  4847. ggml_context * ctx_layer = ctx_for_layer(i);
  4848. ggml_context * ctx_split = ctx_for_layer_split(i);
  4849. auto & layer = model.layers[i];
  4850. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4851. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4852. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4853. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4854. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4855. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4856. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4857. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4858. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4859. if (layer.ffn_gate_exps) {
  4860. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4861. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4862. } else {
  4863. // merge split expert into a single tensor for compatibility with older models
  4864. // requires disabling mmap
  4865. use_mmap_buffer = false;
  4866. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4867. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4868. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4869. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4870. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4871. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4872. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4873. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4874. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4875. for (uint32_t x = 0; x < n_expert; ++x) {
  4876. // the individual experts are loaded into a view of the merged tensor
  4877. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4878. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4879. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4880. }
  4881. }
  4882. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4883. }
  4884. } break;
  4885. case LLM_ARCH_DBRX:
  4886. {
  4887. if (n_expert == 0) {
  4888. throw std::runtime_error("DBRX model cannot have zero experts");
  4889. }
  4890. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4891. // output
  4892. {
  4893. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4894. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4895. }
  4896. for (int i = 0; i < n_layer; ++i) {
  4897. ggml_context * ctx_layer = ctx_for_layer(i);
  4898. ggml_context * ctx_split = ctx_for_layer_split(i);
  4899. auto & layer = model.layers[i];
  4900. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4901. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4902. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4903. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4904. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4905. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4906. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4907. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4908. }
  4909. } break;
  4910. case LLM_ARCH_BAICHUAN:
  4911. {
  4912. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4913. {
  4914. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4915. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4916. }
  4917. for (int i = 0; i < n_layer; ++i) {
  4918. ggml_context * ctx_layer = ctx_for_layer(i);
  4919. ggml_context * ctx_split = ctx_for_layer_split(i);
  4920. auto & layer = model.layers[i];
  4921. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4922. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4923. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4924. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4925. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4926. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4927. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4928. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4929. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4930. }
  4931. } break;
  4932. case LLM_ARCH_FALCON:
  4933. {
  4934. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4935. // output
  4936. {
  4937. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4938. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4939. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4940. if (!model.output) {
  4941. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4942. }
  4943. }
  4944. for (int i = 0; i < n_layer; ++i) {
  4945. ggml_context * ctx_layer = ctx_for_layer(i);
  4946. ggml_context * ctx_split = ctx_for_layer_split(i);
  4947. auto & layer = model.layers[i];
  4948. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4949. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4950. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4951. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4952. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4953. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4954. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4955. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4956. }
  4957. } break;
  4958. case LLM_ARCH_STARCODER:
  4959. {
  4960. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4961. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4962. // output
  4963. {
  4964. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4965. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4966. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4967. if (!model.output) {
  4968. // needs to be on GPU
  4969. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4970. }
  4971. }
  4972. for (int i = 0; i < n_layer; ++i) {
  4973. ggml_context * ctx_layer = ctx_for_layer(i);
  4974. ggml_context * ctx_split = ctx_for_layer_split(i);
  4975. auto & layer = model.layers[i];
  4976. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4977. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4978. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4979. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4980. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4981. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4982. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4983. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4984. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4985. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4986. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4987. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4988. }
  4989. } break;
  4990. case LLM_ARCH_BERT:
  4991. case LLM_ARCH_NOMIC_BERT:
  4992. {
  4993. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4994. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4995. if (model.arch == LLM_ARCH_BERT) {
  4996. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4997. }
  4998. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4999. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  5000. for (int i = 0; i < n_layer; ++i) {
  5001. ggml_context * ctx_layer = ctx_for_layer(i);
  5002. ggml_context * ctx_split = ctx_for_layer_split(i);
  5003. auto & layer = model.layers[i];
  5004. if (model.arch == LLM_ARCH_BERT) {
  5005. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5006. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5007. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5008. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5009. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5010. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5011. } else {
  5012. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5013. }
  5014. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5015. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  5016. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  5017. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5018. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5019. if (model.arch == LLM_ARCH_BERT) {
  5020. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5021. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5022. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5023. } else {
  5024. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5025. }
  5026. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  5027. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  5028. }
  5029. } break;
  5030. case LLM_ARCH_JINA_BERT_V2:
  5031. {
  5032. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  5033. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  5034. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  5035. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  5036. for (int i = 0; i < n_layer; ++i) {
  5037. ggml_context * ctx_layer = ctx_for_layer(i);
  5038. ggml_context * ctx_split = ctx_for_layer_split(i);
  5039. auto & layer = model.layers[i]; // JinaBertLayer
  5040. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5041. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5042. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5043. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5044. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5045. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5046. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5047. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5048. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5049. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5050. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  5051. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  5052. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  5053. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  5054. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5055. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5056. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5057. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5058. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5059. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5060. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  5061. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  5062. }
  5063. } break;
  5064. case LLM_ARCH_BLOOM:
  5065. {
  5066. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5067. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  5068. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  5069. // output
  5070. {
  5071. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5072. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5073. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5074. }
  5075. for (int i = 0; i < n_layer; ++i) {
  5076. ggml_context * ctx_layer = ctx_for_layer(i);
  5077. ggml_context * ctx_split = ctx_for_layer_split(i);
  5078. auto & layer = model.layers[i];
  5079. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5080. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5081. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5082. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5083. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5084. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5085. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5086. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5087. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5088. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5089. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5090. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5091. }
  5092. } break;
  5093. case LLM_ARCH_MPT:
  5094. {
  5095. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5096. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5097. // output
  5098. {
  5099. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5100. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5101. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5102. if (!model.output) {
  5103. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  5104. }
  5105. }
  5106. for (int i = 0; i < n_layer; ++i) {
  5107. ggml_context * ctx_layer = ctx_for_layer(i);
  5108. ggml_context * ctx_split = ctx_for_layer_split(i);
  5109. auto & layer = model.layers[i];
  5110. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5111. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5112. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5113. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5114. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5115. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5116. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5117. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5118. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5119. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5120. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5121. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5122. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5123. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5124. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5125. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5126. // AWQ ScaleActivation layer
  5127. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5128. }
  5129. } break;
  5130. case LLM_ARCH_STABLELM:
  5131. {
  5132. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5133. // output
  5134. {
  5135. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5136. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5137. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5138. }
  5139. for (int i = 0; i < n_layer; ++i) {
  5140. ggml_context * ctx_layer = ctx_for_layer(i);
  5141. ggml_context * ctx_split = ctx_for_layer_split(i);
  5142. auto & layer = model.layers[i];
  5143. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5144. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5145. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5146. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5147. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5148. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5149. // optional bias tensors, present in Stable LM 2 1.6B
  5150. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5151. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5152. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5153. // optional q and k layernorms, present in StableLM 2 12B
  5154. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5155. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5156. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  5157. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5158. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5159. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5160. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5161. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5162. }
  5163. } break;
  5164. case LLM_ARCH_QWEN:
  5165. {
  5166. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5167. // output
  5168. {
  5169. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5170. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5171. }
  5172. for (int i = 0; i < n_layer; ++i) {
  5173. ggml_context * ctx_layer = ctx_for_layer(i);
  5174. ggml_context * ctx_split = ctx_for_layer_split(i);
  5175. auto & layer = model.layers[i];
  5176. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5177. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  5178. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  5179. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5180. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5181. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  5182. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  5183. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  5184. }
  5185. } break;
  5186. case LLM_ARCH_QWEN2:
  5187. {
  5188. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5189. // output
  5190. {
  5191. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5192. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5193. // if output is NULL, init from the input tok embed
  5194. if (model.output == NULL) {
  5195. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5196. }
  5197. }
  5198. for (int i = 0; i < n_layer; ++i) {
  5199. ggml_context * ctx_layer = ctx_for_layer(i);
  5200. ggml_context * ctx_split = ctx_for_layer_split(i);
  5201. auto & layer = model.layers[i];
  5202. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5203. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5204. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5205. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5206. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5207. // optional bias tensors
  5208. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5209. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5210. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5211. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5212. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5213. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5214. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5215. }
  5216. } break;
  5217. case LLM_ARCH_QWEN2MOE:
  5218. {
  5219. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5220. // output
  5221. {
  5222. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5223. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5224. }
  5225. for (int i = 0; i < n_layer; ++i) {
  5226. ggml_context * ctx_layer = ctx_for_layer(i);
  5227. ggml_context * ctx_split = ctx_for_layer_split(i);
  5228. auto & layer = model.layers[i];
  5229. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5230. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5231. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5232. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5233. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5234. // optional bias tensors
  5235. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5236. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5237. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5238. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5239. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5240. GGML_ASSERT(hparams.n_expert > 0);
  5241. GGML_ASSERT(hparams.n_expert_used > 0);
  5242. // MoE branch
  5243. auto n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / hparams.n_expert_used;
  5244. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5245. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5246. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5247. // Shared expert branch
  5248. auto n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  5249. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  5250. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp});
  5251. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd});
  5252. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp});
  5253. }
  5254. } break;
  5255. case LLM_ARCH_PHI2:
  5256. {
  5257. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5258. // output
  5259. {
  5260. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5261. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5262. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5263. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  5264. }
  5265. for (int i = 0; i < n_layer; ++i) {
  5266. ggml_context * ctx_layer = ctx_for_layer(i);
  5267. ggml_context * ctx_split = ctx_for_layer_split(i);
  5268. auto & layer = model.layers[i];
  5269. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5270. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5271. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5272. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5273. if (layer.wqkv == nullptr) {
  5274. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5275. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5276. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5277. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5278. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5279. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5280. }
  5281. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5282. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5283. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5284. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5285. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5286. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5287. }
  5288. } break;
  5289. case LLM_ARCH_PHI3:
  5290. {
  5291. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  5292. // output
  5293. {
  5294. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  5295. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  5296. }
  5297. for (int i = 0; i < n_layer; ++i) {
  5298. ggml_context* ctx_layer = ctx_for_layer(i);
  5299. ggml_context* ctx_split = ctx_for_layer_split(i);
  5300. auto & layer = model.layers[i];
  5301. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  5302. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  5303. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  5304. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  5305. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  5306. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  5307. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5308. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5309. }
  5310. } break;
  5311. case LLM_ARCH_PLAMO:
  5312. {
  5313. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5314. // output
  5315. {
  5316. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5317. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5318. }
  5319. for (int i = 0; i < n_layer; ++i) {
  5320. ggml_context * ctx_layer = ctx_for_layer(i);
  5321. ggml_context * ctx_split = ctx_for_layer_split(i);
  5322. auto & layer = model.layers[i];
  5323. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5324. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5325. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5326. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5327. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5328. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5329. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5330. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5331. }
  5332. } break;
  5333. case LLM_ARCH_GPT2:
  5334. {
  5335. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5336. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5337. // output
  5338. {
  5339. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5340. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5341. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5342. }
  5343. for (int i = 0; i < n_layer; ++i) {
  5344. ggml_context * ctx_layer = ctx_for_layer(i);
  5345. ggml_context * ctx_split = ctx_for_layer_split(i);
  5346. auto & layer = model.layers[i];
  5347. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5348. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5349. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5350. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5351. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5352. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5353. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5354. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5355. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5356. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5357. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5358. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5359. }
  5360. } break;
  5361. case LLM_ARCH_CODESHELL:
  5362. {
  5363. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5364. // output
  5365. {
  5366. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5367. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5368. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5369. }
  5370. for (int i = 0; i < n_layer; ++i) {
  5371. ggml_context * ctx_layer = ctx_for_layer(i);
  5372. ggml_context * ctx_split = ctx_for_layer_split(i);
  5373. auto & layer = model.layers[i];
  5374. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5375. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5376. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5377. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5378. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5379. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5380. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5381. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5382. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5383. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5384. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5385. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5386. }
  5387. } break;
  5388. case LLM_ARCH_ORION:
  5389. {
  5390. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5391. {
  5392. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5393. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5394. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5395. }
  5396. for (int i = 0; i < n_layer; ++i) {
  5397. ggml_context * ctx_layer = ctx_for_layer(i);
  5398. ggml_context * ctx_split = ctx_for_layer_split(i);
  5399. auto & layer = model.layers[i];
  5400. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5401. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5402. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5403. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5404. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5405. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5406. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5407. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5408. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5409. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5410. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5411. }
  5412. } break;
  5413. case LLM_ARCH_INTERNLM2:
  5414. {
  5415. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5416. // output
  5417. {
  5418. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5419. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5420. }
  5421. for (int i = 0; i < n_layer; ++i) {
  5422. ggml_context * ctx_layer = ctx_for_layer(i);
  5423. ggml_context * ctx_split = ctx_for_layer_split(i);
  5424. auto & layer = model.layers[i];
  5425. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5426. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5427. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5428. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5429. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5430. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5431. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5432. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5433. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5434. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5435. }
  5436. } break;
  5437. case LLM_ARCH_GEMMA:
  5438. {
  5439. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5440. // output
  5441. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5442. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  5443. const int64_t n_ff = hparams.n_ff;
  5444. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5445. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5446. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5447. for (uint32_t i = 0; i < n_layer; ++i) {
  5448. ggml_context * ctx_layer = ctx_for_layer(i);
  5449. ggml_context * ctx_split = ctx_for_layer_split(i);
  5450. auto & layer = model.layers[i];
  5451. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5452. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5453. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5454. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5455. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5456. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5457. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5458. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5459. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5460. }
  5461. } break;
  5462. case LLM_ARCH_STARCODER2:
  5463. {
  5464. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5465. // output
  5466. {
  5467. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5468. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5469. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5470. // if output is NULL, init from the input tok embed
  5471. if (model.output == NULL) {
  5472. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5473. }
  5474. }
  5475. for (int i = 0; i < n_layer; ++i) {
  5476. ggml_context * ctx_layer = ctx_for_layer(i);
  5477. ggml_context * ctx_split = ctx_for_layer_split(i);
  5478. auto & layer = model.layers[i];
  5479. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5480. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5481. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5482. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5483. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5484. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5485. // optional bias tensors
  5486. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5487. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5488. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5489. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5490. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5491. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5492. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5493. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5494. // optional bias tensors
  5495. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5496. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5497. }
  5498. } break;
  5499. case LLM_ARCH_MAMBA:
  5500. {
  5501. const int64_t d_conv = hparams.ssm_d_conv;
  5502. const int64_t d_inner = hparams.ssm_d_inner;
  5503. const int64_t d_state = hparams.ssm_d_state;
  5504. const int64_t dt_rank = hparams.ssm_dt_rank;
  5505. // only an expansion factor of 2 is supported for now
  5506. GGML_ASSERT(2 * n_embd == d_inner);
  5507. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5508. // output
  5509. {
  5510. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5511. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5512. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5513. if (model.output == NULL) {
  5514. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5515. }
  5516. }
  5517. for (int i = 0; i < n_layer; ++i) {
  5518. ggml_context * ctx_layer = ctx_for_layer(i);
  5519. ggml_context * ctx_split = ctx_for_layer_split(i);
  5520. auto & layer = model.layers[i];
  5521. // norm
  5522. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5523. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5524. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5525. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5526. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5527. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5528. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5529. // no "weight" suffix for these
  5530. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5531. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5532. // out_proj
  5533. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5534. }
  5535. } break;
  5536. case LLM_ARCH_XVERSE:
  5537. {
  5538. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5539. {
  5540. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5541. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5542. }
  5543. for (int i = 0; i < n_layer; ++i) {
  5544. ggml_context * ctx_layer = ctx_for_layer(i);
  5545. ggml_context * ctx_split = ctx_for_layer_split(i);
  5546. auto & layer = model.layers[i];
  5547. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5548. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5549. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5550. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5551. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5552. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5553. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5554. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5555. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5556. }
  5557. } break;
  5558. case LLM_ARCH_COMMAND_R:
  5559. {
  5560. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5561. // output
  5562. {
  5563. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5564. // init output from the input tok embed
  5565. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5566. }
  5567. for (int i = 0; i < n_layer; ++i) {
  5568. ggml_context * ctx_layer = ctx_for_layer(i);
  5569. ggml_context * ctx_split = ctx_for_layer_split(i);
  5570. auto & layer = model.layers[i];
  5571. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5572. if (n_layer >= 64){
  5573. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5574. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5575. }
  5576. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5577. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5578. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5579. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5580. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5581. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5582. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5583. }
  5584. } break;
  5585. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5586. {
  5587. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5588. // output
  5589. {
  5590. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5591. // if output is NULL, init from the input tok embed
  5592. if (model.output == NULL) {
  5593. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5594. }
  5595. }
  5596. for (int i = 0; i < n_layer; ++i) {
  5597. ggml_context * ctx_split = ctx_for_layer_split(i);
  5598. auto & layer = model.layers[i];
  5599. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5600. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5601. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5602. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5603. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5604. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5605. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5606. }
  5607. } break;
  5608. case LLM_ARCH_GPTNEOX:
  5609. {
  5610. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5611. // output
  5612. {
  5613. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5614. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5615. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5616. }
  5617. for (int i = 0; i < n_layer; ++i) {
  5618. ggml_context * ctx_layer = ctx_for_layer(i);
  5619. ggml_context * ctx_split = ctx_for_layer_split(i);
  5620. auto & layer = model.layers[i];
  5621. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5622. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5623. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5624. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5625. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5626. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5627. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5628. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5629. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5630. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5631. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5632. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5633. }
  5634. } break;
  5635. case LLM_ARCH_ARCTIC:
  5636. {
  5637. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5638. // output
  5639. {
  5640. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5641. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5642. // if output is NULL, init from the input tok embed
  5643. if (model.output == NULL) {
  5644. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5645. }
  5646. }
  5647. for (int i = 0; i < n_layer; ++i) {
  5648. ggml_context * ctx_layer = ctx_for_layer(i);
  5649. ggml_context * ctx_split = ctx_for_layer_split(i);
  5650. auto & layer = model.layers[i];
  5651. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5652. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5653. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5654. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5655. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5656. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5657. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
  5658. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
  5659. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
  5660. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5661. layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
  5662. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  5663. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  5664. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5665. }
  5666. } break;
  5667. case LLM_ARCH_DEEPSEEK2:
  5668. {
  5669. bool is_lite = (hparams.n_layer == 27);
  5670. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  5671. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  5672. const uint32_t q_lora_rank = hparams.n_lora_q;
  5673. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  5674. const uint32_t n_ff_exp = hparams.n_ff_exp;
  5675. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5676. // output
  5677. {
  5678. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5679. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5680. }
  5681. for (int i = 0; i < n_layer; ++i) {
  5682. ggml_context * ctx_layer = ctx_for_layer(i);
  5683. ggml_context * ctx_split = ctx_for_layer_split(i);
  5684. auto & layer = model.layers[i];
  5685. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5686. if (!is_lite) {
  5687. layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
  5688. }
  5689. layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
  5690. if (!is_lite) {
  5691. layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
  5692. layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.n_head * hparams.n_embd_head_k});
  5693. } else {
  5694. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  5695. }
  5696. layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope});
  5697. layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, hparams.n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)});
  5698. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {hparams.n_head * hparams.n_embd_head_v, n_embd});
  5699. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5700. if ((uint32_t) i < hparams.n_layer_dense_lead) {
  5701. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5702. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5703. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5704. } else {
  5705. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5706. GGML_ASSERT(hparams.n_expert > 0);
  5707. GGML_ASSERT(hparams.n_expert_used > 0);
  5708. // MoE branch
  5709. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5710. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5711. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5712. // Shared expert branch
  5713. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5714. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * hparams.n_expert_shared, n_embd});
  5715. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5716. }
  5717. }
  5718. } break;
  5719. default:
  5720. throw std::runtime_error("unknown architecture");
  5721. }
  5722. }
  5723. ml.done_getting_tensors();
  5724. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5725. model.mappings.reserve(ml.mappings.size());
  5726. // create the backend buffers
  5727. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5728. ctx_bufs.reserve(ctx_map.size());
  5729. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5730. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5731. model.bufs.reserve(n_max_backend_buffer);
  5732. for (auto & it : ctx_map) {
  5733. ggml_backend_buffer_type_t buft = it.first;
  5734. ggml_context * ctx = it.second;
  5735. llama_buf_map bufs;
  5736. bufs.reserve(n_max_backend_buffer);
  5737. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5738. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5739. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5740. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5741. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5742. void * addr = nullptr;
  5743. size_t first, last;
  5744. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5745. if (first >= last) {
  5746. continue;
  5747. }
  5748. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5749. if (buf == nullptr) {
  5750. throw std::runtime_error("unable to allocate backend CPU buffer");
  5751. }
  5752. model.bufs.push_back(buf);
  5753. bufs.emplace(idx, buf);
  5754. #ifdef GGML_USE_CUDA
  5755. if (n_layer >= n_gpu_layers) {
  5756. ggml_backend_cuda_register_host_buffer(
  5757. ggml_backend_buffer_get_base(buf),
  5758. ggml_backend_buffer_get_size(buf));
  5759. }
  5760. #endif
  5761. }
  5762. }
  5763. #ifdef GGML_USE_METAL
  5764. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5765. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5766. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5767. void * addr = nullptr;
  5768. size_t first, last;
  5769. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5770. if (first >= last) {
  5771. continue;
  5772. }
  5773. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5774. if (buf == nullptr) {
  5775. throw std::runtime_error("unable to allocate backend metal buffer");
  5776. }
  5777. model.bufs.push_back(buf);
  5778. bufs.emplace(idx, buf);
  5779. }
  5780. }
  5781. #endif
  5782. else {
  5783. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5784. if (buf == nullptr) {
  5785. throw std::runtime_error("unable to allocate backend buffer");
  5786. }
  5787. model.bufs.push_back(buf);
  5788. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5789. model.mlock_bufs.emplace_back(new llama_mlock);
  5790. auto & mlock_buf = model.mlock_bufs.back();
  5791. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5792. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5793. }
  5794. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5795. bufs.emplace(idx, buf);
  5796. }
  5797. }
  5798. if (bufs.empty()) {
  5799. throw std::runtime_error("failed to allocate buffer");
  5800. }
  5801. for (auto & buf : bufs) {
  5802. // indicate that this buffer contains weights
  5803. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5804. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5805. }
  5806. ctx_bufs.emplace_back(ctx, bufs);
  5807. }
  5808. if (llama_supports_gpu_offload()) {
  5809. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5810. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5811. if (n_gpu_layers > (int) hparams.n_layer) {
  5812. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5813. }
  5814. const int max_backend_supported_layers = hparams.n_layer + 1;
  5815. const int max_offloadable_layers = hparams.n_layer + 1;
  5816. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5817. }
  5818. // print memory requirements
  5819. for (ggml_backend_buffer_t buf : model.bufs) {
  5820. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5821. }
  5822. // populate tensors_by_name
  5823. for (ggml_context * ctx : model.ctxs) {
  5824. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5825. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5826. }
  5827. }
  5828. // load tensor data
  5829. for (auto & it : ctx_bufs) {
  5830. ggml_context * ctx = it.first;
  5831. auto & bufs = it.second;
  5832. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5833. return false;
  5834. }
  5835. }
  5836. if (use_mmap_buffer) {
  5837. for (auto & mapping : ml.mappings) {
  5838. model.mappings.emplace_back(std::move(mapping));
  5839. }
  5840. }
  5841. // loading time will be recalculate after the first eval, so
  5842. // we take page faults deferred by mmap() into consideration
  5843. model.t_load_us = ggml_time_us() - model.t_start_us;
  5844. return true;
  5845. }
  5846. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5847. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5848. try {
  5849. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5850. model.hparams.vocab_only = params.vocab_only;
  5851. try {
  5852. llm_load_arch(ml, model);
  5853. } catch(const std::exception & e) {
  5854. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5855. }
  5856. try {
  5857. llm_load_hparams(ml, model);
  5858. } catch(const std::exception & e) {
  5859. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5860. }
  5861. try {
  5862. llm_load_vocab(ml, model);
  5863. } catch(const std::exception & e) {
  5864. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5865. }
  5866. llm_load_print_meta(ml, model);
  5867. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5868. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5869. throw std::runtime_error("vocab size mismatch");
  5870. }
  5871. if (params.vocab_only) {
  5872. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5873. return 0;
  5874. }
  5875. #ifdef GGML_USE_KOMPUTE
  5876. if (params.n_gpu_layers > 0 && (
  5877. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5878. || !(
  5879. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5880. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5881. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5882. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5883. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5884. )
  5885. )) {
  5886. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5887. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5888. params.n_gpu_layers = 0;
  5889. }
  5890. #endif
  5891. if (!llm_load_tensors(
  5892. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5893. params.progress_callback, params.progress_callback_user_data
  5894. )) {
  5895. return -2;
  5896. }
  5897. } catch (const std::exception & err) {
  5898. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5899. return -1;
  5900. }
  5901. return 0;
  5902. }
  5903. //
  5904. // llm_build
  5905. //
  5906. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5907. enum llm_ffn_op_type {
  5908. LLM_FFN_SILU,
  5909. LLM_FFN_GELU,
  5910. LLM_FFN_RELU,
  5911. LLM_FFN_RELU_SQR,
  5912. };
  5913. enum llm_ffn_gate_type {
  5914. LLM_FFN_SEQ,
  5915. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5916. };
  5917. enum llm_norm_type {
  5918. LLM_NORM,
  5919. LLM_NORM_RMS,
  5920. };
  5921. static struct ggml_tensor * llm_build_inp_embd(
  5922. struct ggml_context * ctx,
  5923. struct llama_context & lctx,
  5924. const llama_hparams & hparams,
  5925. const llama_batch & batch,
  5926. struct ggml_tensor * tok_embd,
  5927. const llm_build_cb & cb) {
  5928. const int64_t n_embd = hparams.n_embd;
  5929. struct ggml_tensor * inpL;
  5930. if (batch.token) {
  5931. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5932. cb(lctx.inp_tokens, "inp_tokens", -1);
  5933. ggml_set_input(lctx.inp_tokens);
  5934. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5935. } else {
  5936. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5937. inpL = lctx.inp_embd;
  5938. ggml_set_input(lctx.inp_embd);
  5939. }
  5940. cb(inpL, "inp_embd", -1);
  5941. return inpL;
  5942. }
  5943. static void llm_build_kv_store(
  5944. struct ggml_context * ctx,
  5945. const llama_hparams & hparams,
  5946. const llama_cparams & cparams,
  5947. const llama_kv_cache & kv,
  5948. struct ggml_cgraph * graph,
  5949. struct ggml_tensor * k_cur,
  5950. struct ggml_tensor * v_cur,
  5951. int32_t n_tokens,
  5952. int32_t kv_head,
  5953. const llm_build_cb & cb,
  5954. int64_t il) {
  5955. const int64_t n_ctx = cparams.n_ctx;
  5956. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5957. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5958. GGML_ASSERT(kv.size == n_ctx);
  5959. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5960. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5961. cb(k_cache_view, "k_cache_view", il);
  5962. // note: storing RoPE-ed version of K in the KV cache
  5963. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5964. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5965. struct ggml_tensor * v_cache_view = nullptr;
  5966. if (cparams.flash_attn) {
  5967. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5968. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5969. } else {
  5970. // note: the V cache is transposed when not using flash attention
  5971. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5972. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5973. (kv_head)*ggml_element_size(kv.v_l[il]));
  5974. v_cur = ggml_transpose(ctx, v_cur);
  5975. }
  5976. cb(v_cache_view, "v_cache_view", il);
  5977. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5978. }
  5979. static struct ggml_tensor * llm_build_norm(
  5980. struct ggml_context * ctx,
  5981. struct ggml_tensor * cur,
  5982. const llama_hparams & hparams,
  5983. struct ggml_tensor * mw,
  5984. struct ggml_tensor * mb,
  5985. llm_norm_type type,
  5986. const llm_build_cb & cb,
  5987. int il) {
  5988. switch (type) {
  5989. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5990. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5991. }
  5992. if (mw || mb) {
  5993. cb(cur, "norm", il);
  5994. }
  5995. if (mw) {
  5996. cur = ggml_mul(ctx, cur, mw);
  5997. if (mb) {
  5998. cb(cur, "norm_w", il);
  5999. }
  6000. }
  6001. if (mb) {
  6002. cur = ggml_add(ctx, cur, mb);
  6003. }
  6004. return cur;
  6005. }
  6006. static struct ggml_tensor * llm_build_ffn(
  6007. struct ggml_context * ctx,
  6008. struct ggml_tensor * cur,
  6009. struct ggml_tensor * up,
  6010. struct ggml_tensor * up_b,
  6011. struct ggml_tensor * gate,
  6012. struct ggml_tensor * gate_b,
  6013. struct ggml_tensor * down,
  6014. struct ggml_tensor * down_b,
  6015. struct ggml_tensor * act_scales,
  6016. llm_ffn_op_type type_op,
  6017. llm_ffn_gate_type type_gate,
  6018. const llm_build_cb & cb,
  6019. int il) {
  6020. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  6021. cb(tmp, "ffn_up", il);
  6022. if (up_b) {
  6023. tmp = ggml_add(ctx, tmp, up_b);
  6024. cb(tmp, "ffn_up_b", il);
  6025. }
  6026. if (gate) {
  6027. switch (type_gate) {
  6028. case LLM_FFN_SEQ:
  6029. {
  6030. cur = ggml_mul_mat(ctx, gate, tmp);
  6031. cb(cur, "ffn_gate", il);
  6032. } break;
  6033. case LLM_FFN_PAR:
  6034. {
  6035. cur = ggml_mul_mat(ctx, gate, cur);
  6036. cb(cur, "ffn_gate", il);
  6037. } break;
  6038. }
  6039. if (gate_b) {
  6040. cur = ggml_add(ctx, cur, gate_b);
  6041. cb(cur, "ffn_gate_b", il);
  6042. }
  6043. } else {
  6044. cur = tmp;
  6045. }
  6046. switch (type_op) {
  6047. case LLM_FFN_SILU:
  6048. {
  6049. cur = ggml_silu(ctx, cur);
  6050. cb(cur, "ffn_silu", il);
  6051. } break;
  6052. case LLM_FFN_GELU:
  6053. {
  6054. cur = ggml_gelu(ctx, cur);
  6055. cb(cur, "ffn_gelu", il);
  6056. if (act_scales != NULL) {
  6057. cur = ggml_div(ctx, cur, act_scales);
  6058. cb(cur, "ffn_act", il);
  6059. }
  6060. } break;
  6061. case LLM_FFN_RELU:
  6062. {
  6063. cur = ggml_relu(ctx, cur);
  6064. cb(cur, "ffn_relu", il);
  6065. } break;
  6066. case LLM_FFN_RELU_SQR:
  6067. {
  6068. cur = ggml_relu(ctx, cur);
  6069. cb(cur, "ffn_relu", il);
  6070. cur = ggml_sqr(ctx, cur);
  6071. cb(cur, "ffn_sqr(relu)", il);
  6072. } break;
  6073. }
  6074. if (type_gate == LLM_FFN_PAR) {
  6075. cur = ggml_mul(ctx, cur, tmp);
  6076. cb(cur, "ffn_gate_par", il);
  6077. }
  6078. cur = ggml_mul_mat(ctx, down, cur);
  6079. if (down_b) {
  6080. cb(cur, "ffn_down", il);
  6081. }
  6082. if (down_b) {
  6083. cur = ggml_add(ctx, cur, down_b);
  6084. }
  6085. return cur;
  6086. }
  6087. static struct ggml_tensor * llm_build_moe_ffn(
  6088. struct ggml_context * ctx,
  6089. struct ggml_tensor * cur,
  6090. struct ggml_tensor * gate_inp,
  6091. struct ggml_tensor * up_exps,
  6092. struct ggml_tensor * gate_exps,
  6093. struct ggml_tensor * down_exps,
  6094. int64_t n_expert,
  6095. int64_t n_expert_used,
  6096. llm_ffn_op_type type_op,
  6097. bool norm_w,
  6098. bool scale_w,
  6099. float w_scale,
  6100. const llm_build_cb & cb,
  6101. int il) {
  6102. int64_t n_embd = cur->ne[0];
  6103. int64_t n_tokens = cur->ne[1];
  6104. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  6105. cb(logits, "ffn_moe_logits", il);
  6106. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  6107. cb(probs, "ffn_moe_probs", il);
  6108. // select experts
  6109. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  6110. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  6111. cb(selected_experts, "ffn_moe_topk", il);
  6112. ggml_tensor * weights = ggml_get_rows(ctx,
  6113. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  6114. cb(weights, "ffn_moe_weights", il);
  6115. if (norm_w) {
  6116. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  6117. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  6118. cb(weights_sum, "ffn_moe_weights_sum", il);
  6119. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  6120. cb(weights, "ffn_moe_weights_norm", il);
  6121. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  6122. }
  6123. if (scale_w) {
  6124. weights = ggml_scale(ctx, weights, w_scale);
  6125. cb(weights, "ffn_moe_weights_scaled", il);
  6126. }
  6127. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  6128. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  6129. cb(up, "ffn_moe_up", il);
  6130. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  6131. cb(gate, "ffn_moe_gate", il);
  6132. switch (type_op) {
  6133. case LLM_FFN_SILU:
  6134. {
  6135. gate = ggml_silu(ctx, gate);
  6136. cb(gate, "ffn_moe_silu", il);
  6137. } break;
  6138. case LLM_FFN_GELU:
  6139. {
  6140. gate = ggml_gelu(ctx, gate);
  6141. cb(gate, "ffn_moe_gelu", il);
  6142. } break;
  6143. default:
  6144. GGML_ASSERT(false);
  6145. }
  6146. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  6147. cb(par, "ffn_moe_gate_par", il);
  6148. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  6149. cb(experts, "ffn_moe_down", il);
  6150. experts = ggml_mul(ctx, experts, weights);
  6151. // aggregate experts
  6152. ggml_tensor * moe_out = nullptr;
  6153. for (int i = 0; i < n_expert_used; ++i) {
  6154. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  6155. experts->nb[2], i*experts->nb[1]);
  6156. if (i == 0) {
  6157. moe_out = cur_expert;
  6158. } else {
  6159. moe_out = ggml_add(ctx, moe_out, cur_expert);
  6160. }
  6161. }
  6162. if (n_expert_used == 1) {
  6163. // avoid returning a non-contiguous tensor
  6164. moe_out = ggml_cont(ctx, moe_out);
  6165. }
  6166. return moe_out;
  6167. }
  6168. static struct ggml_tensor * llm_build_kqv(
  6169. struct ggml_context * ctx,
  6170. const llama_model & model,
  6171. const llama_hparams & hparams,
  6172. const llama_cparams & cparams,
  6173. const llama_kv_cache & kv,
  6174. struct ggml_cgraph * graph,
  6175. struct ggml_tensor * wo,
  6176. struct ggml_tensor * wo_b,
  6177. struct ggml_tensor * q_cur,
  6178. struct ggml_tensor * kq_mask,
  6179. int32_t n_tokens,
  6180. int32_t n_kv,
  6181. float kq_scale,
  6182. const llm_build_cb & cb,
  6183. int il) {
  6184. const int64_t n_ctx = cparams.n_ctx;
  6185. const int64_t n_head = hparams.n_head;
  6186. const int64_t n_head_kv = hparams.n_head_kv;
  6187. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  6188. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  6189. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  6190. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  6191. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  6192. cb(q, "q", il);
  6193. struct ggml_tensor * k =
  6194. ggml_view_3d(ctx, kv.k_l[il],
  6195. n_embd_head_k, n_kv, n_head_kv,
  6196. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  6197. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  6198. 0);
  6199. cb(k, "k", il);
  6200. struct ggml_tensor * cur;
  6201. if (cparams.flash_attn) {
  6202. GGML_UNUSED(model);
  6203. GGML_UNUSED(n_ctx);
  6204. // split cached v into n_head heads (not transposed)
  6205. struct ggml_tensor * v =
  6206. ggml_view_3d(ctx, kv.v_l[il],
  6207. n_embd_head_v, n_kv, n_head_kv,
  6208. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  6209. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  6210. 0);
  6211. cb(v, "v", il);
  6212. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6213. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6214. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  6215. }
  6216. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  6217. } else {
  6218. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  6219. cb(kq, "kq", il);
  6220. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6221. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  6222. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  6223. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6224. }
  6225. if (model.arch == LLM_ARCH_GROK) {
  6226. // need to do the following:
  6227. // multiply by attn_output_multiplyer of 0.08838834764831845
  6228. // and then :
  6229. // kq = 30 * tanh(kq / 30)
  6230. // before the softmax below
  6231. //try from phi2
  6232. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6233. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  6234. kq = ggml_scale(ctx, kq, 30);
  6235. }
  6236. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6237. cb(kq, "kq_soft_max_ext", il);
  6238. GGML_ASSERT(kv.size == n_ctx);
  6239. // split cached v into n_head heads
  6240. struct ggml_tensor * v =
  6241. ggml_view_3d(ctx, kv.v_l[il],
  6242. n_kv, n_embd_head_v, n_head_kv,
  6243. ggml_element_size(kv.v_l[il])*n_ctx,
  6244. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  6245. 0);
  6246. cb(v, "v", il);
  6247. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  6248. cb(kqv, "kqv", il);
  6249. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  6250. cb(kqv_merged, "kqv_merged", il);
  6251. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  6252. cb(cur, "kqv_merged_cont", il);
  6253. }
  6254. ggml_build_forward_expand(graph, cur);
  6255. cur = ggml_mul_mat(ctx, wo, cur);
  6256. if (wo_b) {
  6257. cb(cur, "kqv_wo", il);
  6258. }
  6259. if (wo_b) {
  6260. cur = ggml_add(ctx, cur, wo_b);
  6261. }
  6262. return cur;
  6263. }
  6264. static struct ggml_tensor * llm_build_kv(
  6265. struct ggml_context * ctx,
  6266. const llama_model & model,
  6267. const llama_hparams & hparams,
  6268. const llama_cparams & cparams,
  6269. const llama_kv_cache & kv,
  6270. struct ggml_cgraph * graph,
  6271. struct ggml_tensor * wo,
  6272. struct ggml_tensor * wo_b,
  6273. struct ggml_tensor * k_cur,
  6274. struct ggml_tensor * v_cur,
  6275. struct ggml_tensor * q_cur,
  6276. struct ggml_tensor * kq_mask,
  6277. int32_t n_tokens,
  6278. int32_t kv_head,
  6279. int32_t n_kv,
  6280. float kq_scale,
  6281. const llm_build_cb & cb,
  6282. int il) {
  6283. // these nodes are added to the graph together so that they are not reordered
  6284. // by doing so, the number of splits in the graph is reduced
  6285. ggml_build_forward_expand(graph, q_cur);
  6286. ggml_build_forward_expand(graph, k_cur);
  6287. ggml_build_forward_expand(graph, v_cur);
  6288. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  6289. struct ggml_tensor * cur;
  6290. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  6291. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  6292. cb(cur, "kqv_out", il);
  6293. return cur;
  6294. }
  6295. struct llm_build_context {
  6296. const llama_model & model;
  6297. llama_context & lctx;
  6298. const llama_hparams & hparams;
  6299. const llama_cparams & cparams;
  6300. const llama_batch & batch;
  6301. const llama_kv_cache & kv_self;
  6302. const int64_t n_embd;
  6303. const int64_t n_layer;
  6304. const int64_t n_rot;
  6305. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  6306. const int64_t n_head;
  6307. const int64_t n_head_kv;
  6308. const int64_t n_embd_head_k;
  6309. const int64_t n_embd_k_gqa;
  6310. const int64_t n_embd_head_v;
  6311. const int64_t n_embd_v_gqa;
  6312. const int64_t n_expert;
  6313. const int64_t n_expert_used;
  6314. const float freq_base;
  6315. const float freq_scale;
  6316. const float ext_factor;
  6317. const float attn_factor;
  6318. const float beta_fast;
  6319. const float beta_slow;
  6320. const float norm_eps;
  6321. const float norm_rms_eps;
  6322. const int32_t n_tokens;
  6323. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  6324. const int32_t n_outputs;
  6325. const int32_t kv_head; // index of where we store new KV data in the cache
  6326. const int32_t n_ctx_orig;
  6327. const bool flash_attn;
  6328. const enum llama_pooling_type pooling_type;
  6329. const enum llama_rope_type rope_type;
  6330. const llm_build_cb & cb;
  6331. std::vector<uint8_t> & buf_compute_meta;
  6332. struct ggml_context * ctx0 = nullptr;
  6333. // TODO: consider making the entire interface noexcept
  6334. llm_build_context(
  6335. llama_context & lctx,
  6336. const llama_batch & batch,
  6337. const llm_build_cb & cb,
  6338. bool worst_case) :
  6339. model (lctx.model),
  6340. lctx (lctx),
  6341. hparams (model.hparams),
  6342. cparams (lctx.cparams),
  6343. batch (batch),
  6344. kv_self (lctx.kv_self),
  6345. n_embd (hparams.n_embd),
  6346. n_layer (hparams.n_layer),
  6347. n_rot (hparams.n_rot),
  6348. n_ctx (cparams.n_ctx),
  6349. n_head (hparams.n_head),
  6350. n_head_kv (hparams.n_head_kv),
  6351. n_embd_head_k (hparams.n_embd_head_k),
  6352. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  6353. n_embd_head_v (hparams.n_embd_head_v),
  6354. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  6355. n_expert (hparams.n_expert),
  6356. n_expert_used (hparams.n_expert_used),
  6357. freq_base (cparams.rope_freq_base),
  6358. freq_scale (cparams.rope_freq_scale),
  6359. ext_factor (cparams.yarn_ext_factor),
  6360. attn_factor (cparams.yarn_attn_factor),
  6361. beta_fast (cparams.yarn_beta_fast),
  6362. beta_slow (cparams.yarn_beta_slow),
  6363. norm_eps (hparams.f_norm_eps),
  6364. norm_rms_eps (hparams.f_norm_rms_eps),
  6365. n_tokens (batch.n_tokens),
  6366. n_kv (worst_case ? kv_self.size : kv_self.n),
  6367. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  6368. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  6369. n_ctx_orig (cparams.n_ctx_orig_yarn),
  6370. flash_attn (cparams.flash_attn),
  6371. pooling_type (cparams.pooling_type),
  6372. rope_type (hparams.rope_type),
  6373. cb (cb),
  6374. buf_compute_meta (lctx.buf_compute_meta) {
  6375. // all initializations should be done in init()
  6376. }
  6377. void init() {
  6378. struct ggml_init_params params = {
  6379. /*.mem_size =*/ buf_compute_meta.size(),
  6380. /*.mem_buffer =*/ buf_compute_meta.data(),
  6381. /*.no_alloc =*/ true,
  6382. };
  6383. ctx0 = ggml_init(params);
  6384. lctx.inp_tokens = nullptr;
  6385. lctx.inp_embd = nullptr;
  6386. lctx.inp_pos = nullptr;
  6387. lctx.inp_out_ids = nullptr;
  6388. lctx.inp_KQ_mask = nullptr;
  6389. lctx.inp_K_shift = nullptr;
  6390. lctx.inp_mean = nullptr;
  6391. lctx.inp_cls = nullptr;
  6392. lctx.inp_s_copy = nullptr;
  6393. lctx.inp_s_mask = nullptr;
  6394. lctx.inp_s_seq = nullptr;
  6395. }
  6396. void free() {
  6397. if (ctx0) {
  6398. ggml_free(ctx0);
  6399. ctx0 = nullptr;
  6400. }
  6401. }
  6402. struct ggml_cgraph * build_k_shift() {
  6403. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6404. GGML_ASSERT(kv_self.size == n_ctx);
  6405. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  6406. cb(lctx.inp_K_shift, "K_shift", -1);
  6407. ggml_set_input(lctx.inp_K_shift);
  6408. for (int il = 0; il < n_layer; ++il) {
  6409. struct ggml_tensor * rope_factors = build_rope_factors(il);
  6410. struct ggml_tensor * tmp =
  6411. // we rotate only the first n_rot dimensions
  6412. ggml_rope_ext_inplace(ctx0,
  6413. ggml_view_3d(ctx0, kv_self.k_l[il],
  6414. n_embd_head_k, n_head_kv, n_ctx,
  6415. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  6416. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6417. 0),
  6418. lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6419. ext_factor, attn_factor, beta_fast, beta_slow);
  6420. cb(tmp, "K_shifted", il);
  6421. ggml_build_forward_expand(gf, tmp);
  6422. }
  6423. return gf;
  6424. }
  6425. struct ggml_cgraph * build_s_copy() {
  6426. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6427. GGML_ASSERT(kv_self.recurrent);
  6428. struct ggml_tensor * state_copy = build_inp_s_copy();
  6429. for (int il = 0; il < n_layer; ++il) {
  6430. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  6431. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  6432. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  6433. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  6434. // TODO: name the intermediate tensors with cb()
  6435. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  6436. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  6437. }
  6438. return gf;
  6439. }
  6440. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  6441. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6442. for (uint32_t i = 0; i < ids.size(); ++i) {
  6443. const uint32_t id = ids[i];
  6444. if (i == id || id == ids.size()) {
  6445. continue;
  6446. }
  6447. uint32_t nm = 1;
  6448. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  6449. nm++;
  6450. }
  6451. for (int il = 0; il < n_layer; ++il) {
  6452. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  6453. n_embd_k_gqa, nm,
  6454. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6455. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  6456. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  6457. n_embd_k_gqa, nm,
  6458. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6459. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  6460. ggml_tensor * view_v_src;
  6461. ggml_tensor * view_v_dst;
  6462. if (flash_attn) {
  6463. // NOTE: the V cache is not transposed when using flash attention
  6464. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6465. n_embd_v_gqa, nm,
  6466. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6467. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  6468. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6469. n_embd_v_gqa, nm,
  6470. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6471. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  6472. } else {
  6473. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6474. nm, n_embd_v_gqa,
  6475. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6476. ggml_row_size(kv_self.v_l[il]->type, i));
  6477. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6478. nm, n_embd_v_gqa,
  6479. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6480. ggml_row_size(kv_self.v_l[il]->type, id));
  6481. }
  6482. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  6483. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  6484. }
  6485. i += nm - 1;
  6486. }
  6487. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  6488. return gf;
  6489. }
  6490. struct ggml_tensor * build_inp_pos() {
  6491. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6492. cb(lctx.inp_pos, "inp_pos", -1);
  6493. ggml_set_input(lctx.inp_pos);
  6494. return lctx.inp_pos;
  6495. }
  6496. struct ggml_tensor * build_rope_factors(int il) {
  6497. // choose long/short freq factors based on the context size
  6498. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  6499. if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
  6500. return model.layers[il].rope_long;
  6501. }
  6502. return model.layers[il].rope_short;
  6503. }
  6504. struct ggml_tensor * build_inp_out_ids() {
  6505. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6506. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6507. ggml_set_input(lctx.inp_out_ids);
  6508. return lctx.inp_out_ids;
  6509. }
  6510. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6511. if (causal) {
  6512. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6513. } else {
  6514. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6515. }
  6516. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6517. ggml_set_input(lctx.inp_KQ_mask);
  6518. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6519. }
  6520. struct ggml_tensor * build_inp_mean() {
  6521. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6522. cb(lctx.inp_mean, "inp_mean", -1);
  6523. ggml_set_input(lctx.inp_mean);
  6524. return lctx.inp_mean;
  6525. }
  6526. struct ggml_tensor * build_inp_cls() {
  6527. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6528. cb(lctx.inp_cls, "inp_cls", -1);
  6529. ggml_set_input(lctx.inp_cls);
  6530. return lctx.inp_cls;
  6531. }
  6532. struct ggml_tensor * build_inp_s_copy() {
  6533. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6534. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6535. ggml_set_input(lctx.inp_s_copy);
  6536. return lctx.inp_s_copy;
  6537. }
  6538. struct ggml_tensor * build_inp_s_mask() {
  6539. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6540. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6541. ggml_set_input(lctx.inp_s_mask);
  6542. return lctx.inp_s_mask;
  6543. }
  6544. struct ggml_tensor * build_inp_s_seq() {
  6545. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6546. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6547. ggml_set_input(lctx.inp_s_seq);
  6548. return lctx.inp_s_seq;
  6549. }
  6550. struct ggml_cgraph * build_llama() {
  6551. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6552. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6553. int32_t n_tokens = this->n_tokens;
  6554. const int64_t n_embd_head = hparams.n_embd_head_v;
  6555. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6556. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6557. struct ggml_tensor * cur;
  6558. struct ggml_tensor * inpL;
  6559. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6560. // inp_pos - contains the positions
  6561. struct ggml_tensor * inp_pos = build_inp_pos();
  6562. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6563. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6564. for (int il = 0; il < n_layer; ++il) {
  6565. struct ggml_tensor * inpSA = inpL;
  6566. // norm
  6567. cur = llm_build_norm(ctx0, inpL, hparams,
  6568. model.layers[il].attn_norm, NULL,
  6569. LLM_NORM_RMS, cb, il);
  6570. cb(cur, "attn_norm", il);
  6571. // self-attention
  6572. {
  6573. // compute Q and K and RoPE them
  6574. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6575. cb(Qcur, "Qcur", il);
  6576. if (model.layers[il].bq) {
  6577. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6578. cb(Qcur, "Qcur", il);
  6579. }
  6580. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6581. cb(Kcur, "Kcur", il);
  6582. if (model.layers[il].bk) {
  6583. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6584. cb(Kcur, "Kcur", il);
  6585. }
  6586. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6587. cb(Vcur, "Vcur", il);
  6588. if (model.layers[il].bv) {
  6589. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6590. cb(Vcur, "Vcur", il);
  6591. }
  6592. Qcur = ggml_rope_ext(
  6593. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6594. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6595. ext_factor, attn_factor, beta_fast, beta_slow
  6596. );
  6597. cb(Qcur, "Qcur", il);
  6598. Kcur = ggml_rope_ext(
  6599. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6600. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6601. ext_factor, attn_factor, beta_fast, beta_slow
  6602. );
  6603. cb(Kcur, "Kcur", il);
  6604. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6605. model.layers[il].wo, model.layers[il].bo,
  6606. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6607. }
  6608. if (il == n_layer - 1) {
  6609. // skip computing output for unused tokens
  6610. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6611. n_tokens = n_outputs;
  6612. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6613. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6614. }
  6615. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6616. cb(ffn_inp, "ffn_inp", il);
  6617. // feed-forward network
  6618. if (model.layers[il].ffn_gate_inp == nullptr) {
  6619. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6620. model.layers[il].ffn_norm, NULL,
  6621. LLM_NORM_RMS, cb, il);
  6622. cb(cur, "ffn_norm", il);
  6623. cur = llm_build_ffn(ctx0, cur,
  6624. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6625. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b,
  6626. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6627. NULL,
  6628. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6629. cb(cur, "ffn_out", il);
  6630. } else {
  6631. // MoE branch
  6632. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6633. model.layers[il].ffn_norm, NULL,
  6634. LLM_NORM_RMS, cb, il);
  6635. cb(cur, "ffn_norm", il);
  6636. cur = llm_build_moe_ffn(ctx0, cur,
  6637. model.layers[il].ffn_gate_inp,
  6638. model.layers[il].ffn_up_exps,
  6639. model.layers[il].ffn_gate_exps,
  6640. model.layers[il].ffn_down_exps,
  6641. n_expert, n_expert_used,
  6642. LLM_FFN_SILU, true,
  6643. false, 0.0,
  6644. cb, il);
  6645. cb(cur, "ffn_moe_out", il);
  6646. }
  6647. cur = ggml_add(ctx0, cur, ffn_inp);
  6648. cb(cur, "ffn_out", il);
  6649. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6650. if (layer_dir != nullptr) {
  6651. cur = ggml_add(ctx0, cur, layer_dir);
  6652. }
  6653. cb(cur, "l_out", il);
  6654. // input for next layer
  6655. inpL = cur;
  6656. }
  6657. cur = inpL;
  6658. cur = llm_build_norm(ctx0, cur, hparams,
  6659. model.output_norm, NULL,
  6660. LLM_NORM_RMS, cb, -1);
  6661. cb(cur, "result_norm", -1);
  6662. // lm_head
  6663. cur = ggml_mul_mat(ctx0, model.output, cur);
  6664. cb(cur, "result_output", -1);
  6665. ggml_build_forward_expand(gf, cur);
  6666. return gf;
  6667. }
  6668. struct ggml_cgraph * build_baichuan() {
  6669. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6670. const int64_t n_embd_head = hparams.n_embd_head_v;
  6671. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6672. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6673. struct ggml_tensor * cur;
  6674. struct ggml_tensor * inpL;
  6675. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6676. // inp_pos - contains the positions
  6677. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6678. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6679. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6680. for (int il = 0; il < n_layer; ++il) {
  6681. struct ggml_tensor * inpSA = inpL;
  6682. cur = llm_build_norm(ctx0, inpL, hparams,
  6683. model.layers[il].attn_norm, NULL,
  6684. LLM_NORM_RMS, cb, il);
  6685. cb(cur, "attn_norm", il);
  6686. // self-attention
  6687. {
  6688. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6689. cb(Qcur, "Qcur", il);
  6690. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6691. cb(Kcur, "Kcur", il);
  6692. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6693. cb(Vcur, "Vcur", il);
  6694. switch (model.type) {
  6695. case MODEL_7B:
  6696. Qcur = ggml_rope_ext(
  6697. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6698. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6699. ext_factor, attn_factor, beta_fast, beta_slow
  6700. );
  6701. Kcur = ggml_rope_ext(
  6702. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6703. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6704. ext_factor, attn_factor, beta_fast, beta_slow
  6705. );
  6706. break;
  6707. case MODEL_13B:
  6708. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6709. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6710. break;
  6711. default:
  6712. GGML_ASSERT(false);
  6713. }
  6714. cb(Qcur, "Qcur", il);
  6715. cb(Kcur, "Kcur", il);
  6716. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6717. model.layers[il].wo, NULL,
  6718. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6719. }
  6720. if (il == n_layer - 1) {
  6721. // skip computing output for unused tokens
  6722. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6723. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6724. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6725. }
  6726. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6727. cb(ffn_inp, "ffn_inp", il);
  6728. // feed-forward network
  6729. {
  6730. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6731. model.layers[il].ffn_norm, NULL,
  6732. LLM_NORM_RMS, cb, il);
  6733. cb(cur, "ffn_norm", il);
  6734. cur = llm_build_ffn(ctx0, cur,
  6735. model.layers[il].ffn_up, NULL,
  6736. model.layers[il].ffn_gate, NULL,
  6737. model.layers[il].ffn_down, NULL,
  6738. NULL,
  6739. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6740. cb(cur, "ffn_out", il);
  6741. }
  6742. cur = ggml_add(ctx0, cur, ffn_inp);
  6743. cb(cur, "l_out", il);
  6744. // input for next layer
  6745. inpL = cur;
  6746. }
  6747. cur = inpL;
  6748. cur = llm_build_norm(ctx0, cur, hparams,
  6749. model.output_norm, NULL,
  6750. LLM_NORM_RMS, cb, -1);
  6751. cb(cur, "result_norm", -1);
  6752. // lm_head
  6753. cur = ggml_mul_mat(ctx0, model.output, cur);
  6754. cb(cur, "result_output", -1);
  6755. ggml_build_forward_expand(gf, cur);
  6756. return gf;
  6757. }
  6758. struct ggml_cgraph * build_xverse() {
  6759. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6760. const int64_t n_embd_head = hparams.n_embd_head_v;
  6761. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6762. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6763. struct ggml_tensor * cur;
  6764. struct ggml_tensor * inpL;
  6765. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6766. // inp_pos - contains the positions
  6767. struct ggml_tensor * inp_pos = build_inp_pos();
  6768. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6769. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6770. for (int il = 0; il < n_layer; ++il) {
  6771. struct ggml_tensor * inpSA = inpL;
  6772. cur = llm_build_norm(ctx0, inpL, hparams,
  6773. model.layers[il].attn_norm, NULL,
  6774. LLM_NORM_RMS, cb, il);
  6775. cb(cur, "attn_norm", il);
  6776. // self-attention
  6777. {
  6778. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6779. cb(Qcur, "Qcur", il);
  6780. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6781. cb(Kcur, "Kcur", il);
  6782. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6783. cb(Vcur, "Vcur", il);
  6784. Qcur = ggml_rope_ext(
  6785. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6786. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6787. ext_factor, attn_factor, beta_fast, beta_slow
  6788. );
  6789. cb(Qcur, "Qcur", il);
  6790. Kcur = ggml_rope_ext(
  6791. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6792. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6793. ext_factor, attn_factor, beta_fast, beta_slow
  6794. );
  6795. cb(Kcur, "Kcur", il);
  6796. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6797. model.layers[il].wo, NULL,
  6798. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6799. }
  6800. if (il == n_layer - 1) {
  6801. // skip computing output for unused tokens
  6802. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6803. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6804. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6805. }
  6806. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6807. cb(ffn_inp, "ffn_inp", il);
  6808. // feed-forward network
  6809. {
  6810. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6811. model.layers[il].ffn_norm, NULL,
  6812. LLM_NORM_RMS, cb, il);
  6813. cb(cur, "ffn_norm", il);
  6814. cur = llm_build_ffn(ctx0, cur,
  6815. model.layers[il].ffn_up, NULL,
  6816. model.layers[il].ffn_gate, NULL,
  6817. model.layers[il].ffn_down, NULL,
  6818. NULL,
  6819. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6820. cb(cur, "ffn_out", il);
  6821. }
  6822. cur = ggml_add(ctx0, cur, ffn_inp);
  6823. cb(cur, "l_out", il);
  6824. // input for next layer
  6825. inpL = cur;
  6826. }
  6827. cur = inpL;
  6828. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6829. cb(cur, "result_norm", -1);
  6830. // lm_head
  6831. cur = ggml_mul_mat(ctx0, model.output, cur);
  6832. cb(cur, "result_output", -1);
  6833. ggml_build_forward_expand(gf, cur);
  6834. return gf;
  6835. }
  6836. struct ggml_cgraph * build_falcon() {
  6837. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6838. const int64_t n_embd_head = hparams.n_embd_head_v;
  6839. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6840. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6841. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6842. struct ggml_tensor * cur;
  6843. struct ggml_tensor * inpL;
  6844. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6845. // inp_pos - contains the positions
  6846. struct ggml_tensor * inp_pos = build_inp_pos();
  6847. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6848. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6849. for (int il = 0; il < n_layer; ++il) {
  6850. struct ggml_tensor * attn_norm;
  6851. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6852. model.layers[il].attn_norm,
  6853. model.layers[il].attn_norm_b,
  6854. LLM_NORM, cb, il);
  6855. cb(attn_norm, "attn_norm", il);
  6856. // self-attention
  6857. {
  6858. if (model.layers[il].attn_norm_2) {
  6859. // Falcon-40B
  6860. cur = llm_build_norm(ctx0, inpL, hparams,
  6861. model.layers[il].attn_norm_2,
  6862. model.layers[il].attn_norm_2_b,
  6863. LLM_NORM, cb, il);
  6864. cb(cur, "attn_norm_2", il);
  6865. } else {
  6866. cur = attn_norm;
  6867. }
  6868. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6869. cb(cur, "wqkv", il);
  6870. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6871. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6872. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6873. cb(Qcur, "Qcur", il);
  6874. cb(Kcur, "Kcur", il);
  6875. cb(Vcur, "Vcur", il);
  6876. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6877. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6878. // using mode = 2 for neox mode
  6879. Qcur = ggml_rope_ext(
  6880. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  6881. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6882. );
  6883. cb(Qcur, "Qcur", il);
  6884. Kcur = ggml_rope_ext(
  6885. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  6886. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6887. );
  6888. cb(Kcur, "Kcur", il);
  6889. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6890. model.layers[il].wo, NULL,
  6891. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6892. }
  6893. if (il == n_layer - 1) {
  6894. // skip computing output for unused tokens
  6895. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6896. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6897. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6898. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6899. }
  6900. struct ggml_tensor * ffn_inp = cur;
  6901. // feed forward
  6902. {
  6903. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6904. model.layers[il].ffn_up, NULL,
  6905. NULL, NULL,
  6906. model.layers[il].ffn_down, NULL,
  6907. NULL,
  6908. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6909. cb(cur, "ffn_out", il);
  6910. }
  6911. cur = ggml_add(ctx0, cur, ffn_inp);
  6912. cb(cur, "l_out", il);
  6913. cur = ggml_add(ctx0, cur, inpL);
  6914. cb(cur, "l_out", il);
  6915. // input for next layer
  6916. inpL = cur;
  6917. }
  6918. cur = inpL;
  6919. // norm
  6920. cur = llm_build_norm(ctx0, cur, hparams,
  6921. model.output_norm,
  6922. model.output_norm_b,
  6923. LLM_NORM, cb, -1);
  6924. cb(cur, "result_norm", -1);
  6925. cur = ggml_mul_mat(ctx0, model.output, cur);
  6926. cb(cur, "result_output", -1);
  6927. ggml_build_forward_expand(gf, cur);
  6928. return gf;
  6929. }
  6930. struct ggml_cgraph * build_grok() {
  6931. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6932. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6933. int32_t n_tokens = this->n_tokens;
  6934. const int64_t n_embd_head = hparams.n_embd_head_v;
  6935. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6936. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6937. struct ggml_tensor * cur;
  6938. struct ggml_tensor * inpL;
  6939. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6940. // multiply by embedding_multiplier_scale of 78.38367176906169
  6941. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6942. // inp_pos - contains the positions
  6943. struct ggml_tensor * inp_pos = build_inp_pos();
  6944. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6945. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6946. for (int il = 0; il < n_layer; ++il) {
  6947. struct ggml_tensor * inpSA = inpL;
  6948. // norm
  6949. cur = llm_build_norm(ctx0, inpL, hparams,
  6950. model.layers[il].attn_norm, NULL,
  6951. LLM_NORM_RMS, cb, il);
  6952. cb(cur, "attn_norm", il);
  6953. // self-attention
  6954. {
  6955. // compute Q and K and RoPE them
  6956. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6957. cb(Qcur, "Qcur", il);
  6958. if (model.layers[il].bq) {
  6959. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6960. cb(Qcur, "Qcur", il);
  6961. }
  6962. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6963. cb(Kcur, "Kcur", il);
  6964. if (model.layers[il].bk) {
  6965. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6966. cb(Kcur, "Kcur", il);
  6967. }
  6968. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6969. cb(Vcur, "Vcur", il);
  6970. if (model.layers[il].bv) {
  6971. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6972. cb(Vcur, "Vcur", il);
  6973. }
  6974. Qcur = ggml_rope_ext(
  6975. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6976. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6977. ext_factor, attn_factor, beta_fast, beta_slow
  6978. );
  6979. cb(Qcur, "Qcur", il);
  6980. Kcur = ggml_rope_ext(
  6981. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6982. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6983. ext_factor, attn_factor, beta_fast, beta_slow
  6984. );
  6985. cb(Kcur, "Kcur", il);
  6986. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6987. model.layers[il].wo, model.layers[il].bo,
  6988. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6989. }
  6990. if (il == n_layer - 1) {
  6991. // skip computing output for unused tokens
  6992. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6993. n_tokens = n_outputs;
  6994. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6995. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6996. }
  6997. // Grok
  6998. // if attn_out_norm is present then apply it before adding the input
  6999. if (model.layers[il].attn_out_norm) {
  7000. cur = llm_build_norm(ctx0, cur, hparams,
  7001. model.layers[il].attn_out_norm, NULL,
  7002. LLM_NORM_RMS, cb, il);
  7003. cb(cur, "attn_out_norm", il);
  7004. }
  7005. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7006. cb(ffn_inp, "ffn_inp", il);
  7007. // feed-forward network
  7008. // MoE branch
  7009. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7010. model.layers[il].ffn_norm, NULL,
  7011. LLM_NORM_RMS, cb, il);
  7012. cb(cur, "ffn_norm", il);
  7013. cur = llm_build_moe_ffn(ctx0, cur,
  7014. model.layers[il].ffn_gate_inp,
  7015. model.layers[il].ffn_up_exps,
  7016. model.layers[il].ffn_gate_exps,
  7017. model.layers[il].ffn_down_exps,
  7018. n_expert, n_expert_used,
  7019. LLM_FFN_GELU, true,
  7020. false, 0.0,
  7021. cb, il);
  7022. cb(cur, "ffn_moe_out", il);
  7023. // Grok
  7024. // if layer_out_norm is present then apply it before adding the input
  7025. // Idea: maybe ffn_out_norm is a better name
  7026. if (model.layers[il].layer_out_norm) {
  7027. cur = llm_build_norm(ctx0, cur, hparams,
  7028. model.layers[il].layer_out_norm, NULL,
  7029. LLM_NORM_RMS, cb, il);
  7030. cb(cur, "layer_out_norm", il);
  7031. }
  7032. cur = ggml_add(ctx0, cur, ffn_inp);
  7033. cb(cur, "ffn_out", il);
  7034. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  7035. if (layer_dir != nullptr) {
  7036. cur = ggml_add(ctx0, cur, layer_dir);
  7037. }
  7038. cb(cur, "l_out", il);
  7039. // input for next layer
  7040. inpL = cur;
  7041. }
  7042. cur = inpL;
  7043. cur = llm_build_norm(ctx0, cur, hparams,
  7044. model.output_norm, NULL,
  7045. LLM_NORM_RMS, cb, -1);
  7046. cb(cur, "result_norm", -1);
  7047. // lm_head
  7048. cur = ggml_mul_mat(ctx0, model.output, cur);
  7049. // Grok
  7050. // multiply logits by output_multiplier_scale of 0.5773502691896257
  7051. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  7052. cb(cur, "result_output", -1);
  7053. ggml_build_forward_expand(gf, cur);
  7054. return gf;
  7055. }
  7056. struct ggml_cgraph * build_dbrx() {
  7057. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7058. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7059. int32_t n_tokens = this->n_tokens;
  7060. const int64_t n_embd_head = hparams.n_embd_head_v;
  7061. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7062. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7063. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7064. struct ggml_tensor * cur;
  7065. struct ggml_tensor * inpL;
  7066. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7067. // inp_pos - contains the positions
  7068. struct ggml_tensor * inp_pos = build_inp_pos();
  7069. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7070. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7071. for (int il = 0; il < n_layer; ++il) {
  7072. struct ggml_tensor * inpSA = inpL;
  7073. // norm
  7074. cur = llm_build_norm(ctx0, inpL, hparams,
  7075. model.layers[il].attn_norm, NULL,
  7076. LLM_NORM, cb, il);
  7077. cb(cur, "attn_norm", il);
  7078. // self-attention
  7079. {
  7080. struct ggml_tensor * Qcur = nullptr;
  7081. struct ggml_tensor * Kcur = nullptr;
  7082. struct ggml_tensor * Vcur = nullptr;
  7083. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7084. cb(cur, "wqkv", il);
  7085. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7086. cb(cur, "wqkv_clamped", il);
  7087. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7088. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7089. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7090. cb(Qcur, "Qcur", il);
  7091. cb(Kcur, "Kcur", il);
  7092. cb(Vcur, "Vcur", il);
  7093. Qcur = ggml_rope_ext(
  7094. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7095. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7096. ext_factor, attn_factor, beta_fast, beta_slow
  7097. );
  7098. cb(Qcur, "Qcur", il);
  7099. Kcur = ggml_rope_ext(
  7100. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7101. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7102. ext_factor, attn_factor, beta_fast, beta_slow
  7103. );
  7104. cb(Kcur, "Kcur", il);
  7105. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7106. model.layers[il].wo, NULL,
  7107. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7108. }
  7109. if (il == n_layer - 1) {
  7110. // skip computing output for unused tokens
  7111. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7112. n_tokens = n_outputs;
  7113. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7114. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7115. }
  7116. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7117. cb(ffn_inp, "ffn_inp", il);
  7118. // feed-forward network
  7119. // MoE branch
  7120. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7121. model.layers[il].attn_out_norm, NULL,
  7122. LLM_NORM, cb, il);
  7123. cb(cur, "attn_out_norm", il);
  7124. cur = llm_build_moe_ffn(ctx0, cur,
  7125. model.layers[il].ffn_gate_inp,
  7126. model.layers[il].ffn_up_exps,
  7127. model.layers[il].ffn_gate_exps,
  7128. model.layers[il].ffn_down_exps,
  7129. n_expert, n_expert_used,
  7130. LLM_FFN_SILU, true,
  7131. false, 0.0,
  7132. cb, il);
  7133. cb(cur, "ffn_moe_out", il);
  7134. cur = ggml_add(ctx0, cur, ffn_inp);
  7135. cb(cur, "ffn_out", il);
  7136. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  7137. if (layer_dir != nullptr) {
  7138. cur = ggml_add(ctx0, cur, layer_dir);
  7139. }
  7140. cb(cur, "l_out", il);
  7141. // input for next layer
  7142. inpL = cur;
  7143. }
  7144. cur = inpL;
  7145. cur = llm_build_norm(ctx0, cur, hparams,
  7146. model.output_norm, NULL,
  7147. LLM_NORM, cb, -1);
  7148. cb(cur, "result_norm", -1);
  7149. // lm_head
  7150. cur = ggml_mul_mat(ctx0, model.output, cur);
  7151. cb(cur, "result_output", -1);
  7152. ggml_build_forward_expand(gf, cur);
  7153. return gf;
  7154. }
  7155. struct ggml_cgraph * build_starcoder() {
  7156. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7157. const int64_t n_embd_head = hparams.n_embd_head_v;
  7158. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7159. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7160. struct ggml_tensor * cur;
  7161. struct ggml_tensor * inpL;
  7162. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7163. // inp_pos - contains the positions
  7164. struct ggml_tensor * inp_pos = build_inp_pos();
  7165. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7166. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7167. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7168. cb(pos, "pos_embd", -1);
  7169. inpL = ggml_add(ctx0, inpL, pos);
  7170. cb(inpL, "inpL", -1);
  7171. for (int il = 0; il < n_layer; ++il) {
  7172. cur = llm_build_norm(ctx0, inpL, hparams,
  7173. model.layers[il].attn_norm,
  7174. model.layers[il].attn_norm_b,
  7175. LLM_NORM, cb, il);
  7176. cb(cur, "attn_norm", il);
  7177. // self-attention
  7178. {
  7179. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7180. cb(cur, "wqkv", il);
  7181. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7182. cb(cur, "bqkv", il);
  7183. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7184. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7185. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7186. cb(Qcur, "Qcur", il);
  7187. cb(Kcur, "Kcur", il);
  7188. cb(Vcur, "Vcur", il);
  7189. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7190. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7191. model.layers[il].wo, model.layers[il].bo,
  7192. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7193. }
  7194. if (il == n_layer - 1) {
  7195. // skip computing output for unused tokens
  7196. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7197. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7198. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7199. }
  7200. // add the input
  7201. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7202. cb(ffn_inp, "ffn_inp", il);
  7203. // FF
  7204. {
  7205. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7206. model.layers[il].ffn_norm,
  7207. model.layers[il].ffn_norm_b,
  7208. LLM_NORM, cb, il);
  7209. cb(cur, "ffn_norm", il);
  7210. cur = llm_build_ffn(ctx0, cur,
  7211. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7212. NULL, NULL,
  7213. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7214. NULL,
  7215. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7216. cb(cur, "ffn_out", il);
  7217. }
  7218. inpL = ggml_add(ctx0, cur, ffn_inp);
  7219. cb(inpL, "l_out", il);
  7220. }
  7221. cur = llm_build_norm(ctx0, inpL, hparams,
  7222. model.output_norm,
  7223. model.output_norm_b,
  7224. LLM_NORM, cb, -1);
  7225. cb(cur, "result_norm", -1);
  7226. cur = ggml_mul_mat(ctx0, model.output, cur);
  7227. cb(cur, "result_output", -1);
  7228. ggml_build_forward_expand(gf, cur);
  7229. return gf;
  7230. }
  7231. struct ggml_cgraph * build_refact() {
  7232. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7233. const int64_t n_embd_head = hparams.n_embd_head_v;
  7234. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7235. struct ggml_tensor * cur;
  7236. struct ggml_tensor * inpL;
  7237. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7238. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7239. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7240. for (int il = 0; il < n_layer; ++il) {
  7241. struct ggml_tensor * inpSA = inpL;
  7242. cur = llm_build_norm(ctx0, inpL, hparams,
  7243. model.layers[il].attn_norm, NULL,
  7244. LLM_NORM_RMS, cb, il);
  7245. cb(cur, "attn_norm", il);
  7246. // self-attention
  7247. {
  7248. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7249. cb(Qcur, "Qcur", il);
  7250. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7251. cb(Kcur, "Kcur", il);
  7252. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7253. cb(Vcur, "Vcur", il);
  7254. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7255. cb(Kcur, "Kcur", il);
  7256. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7257. cb(Qcur, "Qcur", il);
  7258. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7259. model.layers[il].wo, NULL,
  7260. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7261. }
  7262. if (il == n_layer - 1) {
  7263. // skip computing output for unused tokens
  7264. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7265. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7266. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7267. }
  7268. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7269. cb(ffn_inp, "ffn_inp", il);
  7270. // feed-forward network
  7271. {
  7272. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7273. model.layers[il].ffn_norm, NULL,
  7274. LLM_NORM_RMS, cb, il);
  7275. cb(cur, "ffn_norm", il);
  7276. cur = llm_build_ffn(ctx0, cur,
  7277. model.layers[il].ffn_up, NULL,
  7278. model.layers[il].ffn_gate, NULL,
  7279. model.layers[il].ffn_down, NULL,
  7280. NULL,
  7281. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7282. cb(cur, "ffn_out", il);
  7283. }
  7284. cur = ggml_add(ctx0, cur, ffn_inp);
  7285. cb(cur, "l_out", il);
  7286. // input for next layer
  7287. inpL = cur;
  7288. }
  7289. cur = inpL;
  7290. cur = llm_build_norm(ctx0, cur, hparams,
  7291. model.output_norm, NULL,
  7292. LLM_NORM_RMS, cb, -1);
  7293. cb(cur, "result_norm", -1);
  7294. // lm_head
  7295. cur = ggml_mul_mat(ctx0, model.output, cur);
  7296. cb(cur, "result_output", -1);
  7297. ggml_build_forward_expand(gf, cur);
  7298. return gf;
  7299. }
  7300. struct ggml_cgraph * build_bert() {
  7301. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7302. const int64_t n_embd_head = hparams.n_embd_head_v;
  7303. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7304. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7305. struct ggml_tensor * cur;
  7306. struct ggml_tensor * inpL;
  7307. struct ggml_tensor * inp_pos = nullptr;
  7308. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  7309. inp_pos = build_inp_pos();
  7310. }
  7311. struct ggml_tensor * inp_mean = build_inp_mean();
  7312. struct ggml_tensor * inp_cls = build_inp_cls();
  7313. // construct input embeddings (token, type, position)
  7314. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7315. // token types are hardcoded to zero ("Sentence A")
  7316. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  7317. inpL = ggml_add(ctx0, inpL, type_row0);
  7318. if (model.arch == LLM_ARCH_BERT) {
  7319. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  7320. }
  7321. cb(inpL, "inp_embd", -1);
  7322. // embed layer norm
  7323. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  7324. cb(inpL, "inp_norm", -1);
  7325. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7326. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  7327. // iterate layers
  7328. for (int il = 0; il < n_layer; ++il) {
  7329. struct ggml_tensor * cur = inpL;
  7330. struct ggml_tensor * Qcur;
  7331. struct ggml_tensor * Kcur;
  7332. struct ggml_tensor * Vcur;
  7333. // self-attention
  7334. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  7335. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  7336. cb(Qcur, "Qcur", il);
  7337. if (model.layers[il].attn_q_norm) {
  7338. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7339. model.layers[il].attn_q_norm,
  7340. model.layers[il].attn_q_norm_b,
  7341. LLM_NORM, cb, il);
  7342. }
  7343. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  7344. cb(Kcur, "Kcur", il);
  7345. if (model.layers[il].attn_k_norm) {
  7346. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7347. model.layers[il].attn_k_norm,
  7348. model.layers[il].attn_k_norm_b,
  7349. LLM_NORM, cb, il);
  7350. }
  7351. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  7352. cb(Vcur, "Vcur", il);
  7353. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7354. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7355. } else {
  7356. // compute Q and K and RoPE them
  7357. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7358. cb(cur, "wqkv", il);
  7359. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7360. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7361. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7362. cb(Qcur, "Qcur", il);
  7363. cb(Kcur, "Kcur", il);
  7364. cb(Vcur, "Vcur", il);
  7365. Qcur = ggml_rope_ext(
  7366. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7367. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7368. ext_factor, attn_factor, beta_fast, beta_slow
  7369. );
  7370. cb(Qcur, "Qcur", il);
  7371. Kcur = ggml_rope_ext(
  7372. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7373. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7374. ext_factor, attn_factor, beta_fast, beta_slow
  7375. );
  7376. cb(Kcur, "Kcur", il);
  7377. }
  7378. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7379. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7380. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7381. cb(kq, "kq", il);
  7382. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7383. cb(kq, "kq_soft_max_ext", il);
  7384. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7385. cb(v, "v", il);
  7386. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7387. cb(kqv, "kqv", il);
  7388. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7389. cb(kqv_merged, "kqv_merged", il);
  7390. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7391. cb(cur, "kqv_merged_cont", il);
  7392. ggml_build_forward_expand(gf, cur);
  7393. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7394. if (model.layers[il].bo) {
  7395. cb(cur, "kqv_wo", il);
  7396. }
  7397. if (model.layers[il].bo) {
  7398. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7399. }
  7400. cb(cur, "kqv_out", il);
  7401. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7402. // skip computing output for unused tokens
  7403. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7404. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7405. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7406. }
  7407. // re-add the layer input
  7408. cur = ggml_add(ctx0, cur, inpL);
  7409. // attention layer norm
  7410. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7411. if (model.layers[il].attn_norm_2 != nullptr) {
  7412. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  7413. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
  7414. }
  7415. struct ggml_tensor * ffn_inp = cur;
  7416. cb(ffn_inp, "ffn_inp", il);
  7417. // feed-forward network
  7418. if (model.arch == LLM_ARCH_BERT) {
  7419. cur = llm_build_ffn(ctx0, cur,
  7420. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7421. NULL, NULL,
  7422. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7423. NULL,
  7424. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7425. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7426. cur = llm_build_ffn(ctx0, cur,
  7427. model.layers[il].ffn_up, NULL,
  7428. model.layers[il].ffn_gate, NULL,
  7429. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7430. NULL,
  7431. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7432. } else {
  7433. cur = llm_build_ffn(ctx0, cur,
  7434. model.layers[il].ffn_up, NULL,
  7435. model.layers[il].ffn_gate, NULL,
  7436. model.layers[il].ffn_down, NULL,
  7437. NULL,
  7438. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7439. }
  7440. cb(cur, "ffn_out", il);
  7441. // attentions bypass the intermediate layer
  7442. cur = ggml_add(ctx0, cur, ffn_inp);
  7443. // output layer norm
  7444. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7445. // input for next layer
  7446. inpL = cur;
  7447. }
  7448. // final output
  7449. cur = inpL;
  7450. cb(cur, "result_embd", -1);
  7451. // pooling layer
  7452. switch (pooling_type) {
  7453. case LLAMA_POOLING_TYPE_NONE:
  7454. {
  7455. // nop
  7456. } break;
  7457. case LLAMA_POOLING_TYPE_MEAN:
  7458. {
  7459. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7460. cb(cur, "result_embd_pooled", -1);
  7461. } break;
  7462. case LLAMA_POOLING_TYPE_CLS:
  7463. {
  7464. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7465. cb(cur, "result_embd_pooled", -1);
  7466. } break;
  7467. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7468. {
  7469. GGML_ASSERT(false && "Invalid pooling type");
  7470. } break;
  7471. }
  7472. ggml_build_forward_expand(gf, cur);
  7473. return gf;
  7474. }
  7475. struct ggml_cgraph * build_bloom() {
  7476. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7477. const int64_t n_embd_head = hparams.n_embd_head_v;
  7478. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7479. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7480. struct ggml_tensor * cur;
  7481. struct ggml_tensor * inpL;
  7482. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7483. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7484. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7485. inpL = llm_build_norm(ctx0, inpL, hparams,
  7486. model.tok_norm,
  7487. model.tok_norm_b,
  7488. LLM_NORM, cb, -1);
  7489. cb(inpL, "inp_norm", -1);
  7490. for (int il = 0; il < n_layer; ++il) {
  7491. cur = llm_build_norm(ctx0, inpL, hparams,
  7492. model.layers[il].attn_norm,
  7493. model.layers[il].attn_norm_b,
  7494. LLM_NORM, cb, il);
  7495. cb(cur, "attn_norm", il);
  7496. // self-attention
  7497. {
  7498. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7499. cb(cur, "wqkv", il);
  7500. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7501. cb(cur, "bqkv", il);
  7502. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7503. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7504. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7505. cb(Qcur, "Qcur", il);
  7506. cb(Kcur, "Kcur", il);
  7507. cb(Vcur, "Vcur", il);
  7508. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7509. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7510. model.layers[il].wo, model.layers[il].bo,
  7511. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7512. }
  7513. if (il == n_layer - 1) {
  7514. // skip computing output for unused tokens
  7515. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7516. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7517. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7518. }
  7519. // Add the input
  7520. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7521. cb(ffn_inp, "ffn_inp", il);
  7522. // FF
  7523. {
  7524. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7525. model.layers[il].ffn_norm,
  7526. model.layers[il].ffn_norm_b,
  7527. LLM_NORM, cb, il);
  7528. cb(cur, "ffn_norm", il);
  7529. cur = llm_build_ffn(ctx0, cur,
  7530. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7531. NULL, NULL,
  7532. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7533. NULL,
  7534. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7535. cb(cur, "ffn_out", il);
  7536. }
  7537. inpL = ggml_add(ctx0, cur, ffn_inp);
  7538. cb(inpL, "l_out", il);
  7539. }
  7540. cur = llm_build_norm(ctx0, inpL, hparams,
  7541. model.output_norm,
  7542. model.output_norm_b,
  7543. LLM_NORM, cb, -1);
  7544. cb(cur, "result_norm", -1);
  7545. cur = ggml_mul_mat(ctx0, model.output, cur);
  7546. cb(cur, "result_output", -1);
  7547. ggml_build_forward_expand(gf, cur);
  7548. return gf;
  7549. }
  7550. struct ggml_cgraph * build_mpt() {
  7551. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7552. const int64_t n_embd_head = hparams.n_embd_head_v;
  7553. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7554. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7555. struct ggml_tensor * cur;
  7556. struct ggml_tensor * pos;
  7557. struct ggml_tensor * inpL;
  7558. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7559. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7560. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7561. if (model.pos_embd) {
  7562. // inp_pos - contains the positions
  7563. struct ggml_tensor * inp_pos = build_inp_pos();
  7564. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7565. cb(pos, "pos_embd", -1);
  7566. inpL = ggml_add(ctx0, inpL, pos);
  7567. cb(inpL, "inpL", -1);
  7568. }
  7569. for (int il = 0; il < n_layer; ++il) {
  7570. struct ggml_tensor * attn_norm;
  7571. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7572. model.layers[il].attn_norm,
  7573. model.layers[il].attn_norm_b,
  7574. LLM_NORM, cb, il);
  7575. cb(attn_norm, "attn_norm", il);
  7576. // self-attention
  7577. {
  7578. cur = attn_norm;
  7579. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7580. cb(cur, "wqkv", il);
  7581. if (model.layers[il].bqkv){
  7582. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7583. cb(cur, "bqkv", il);
  7584. }
  7585. if (hparams.f_clamp_kqv > 0.0f) {
  7586. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7587. cb(cur, "wqkv_clamped", il);
  7588. }
  7589. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7590. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7591. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7592. cb(Qcur, "Qcur", il);
  7593. cb(Kcur, "Kcur", il);
  7594. cb(Vcur, "Vcur", il);
  7595. // Q/K Layernorm
  7596. if (model.layers[il].attn_q_norm) {
  7597. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7598. model.layers[il].attn_q_norm,
  7599. model.layers[il].attn_q_norm_b,
  7600. LLM_NORM, cb, il);
  7601. cb(Qcur, "Qcur", il);
  7602. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7603. model.layers[il].attn_k_norm,
  7604. model.layers[il].attn_k_norm_b,
  7605. LLM_NORM, cb, il);
  7606. cb(Kcur, "Kcur", il);
  7607. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7608. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7609. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7610. model.layers[il].wo, model.layers[il].bo,
  7611. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7612. } else {
  7613. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7614. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7615. model.layers[il].wo, model.layers[il].bo,
  7616. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7617. }
  7618. }
  7619. if (il == n_layer - 1) {
  7620. // skip computing output for unused tokens
  7621. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7622. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7623. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7624. }
  7625. // Add the input
  7626. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7627. cb(ffn_inp, "ffn_inp", il);
  7628. // feed forward
  7629. {
  7630. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7631. model.layers[il].ffn_norm,
  7632. model.layers[il].ffn_norm_b,
  7633. LLM_NORM, cb, il);
  7634. cb(cur, "ffn_norm", il);
  7635. cur = llm_build_ffn(ctx0, cur,
  7636. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7637. NULL, NULL,
  7638. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7639. model.layers[il].ffn_act,
  7640. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7641. cb(cur, "ffn_out", il);
  7642. }
  7643. cur = ggml_add(ctx0, cur, ffn_inp);
  7644. cb(cur, "l_out", il);
  7645. // input for next layer
  7646. inpL = cur;
  7647. }
  7648. cur = inpL;
  7649. cur = llm_build_norm(ctx0, cur, hparams,
  7650. model.output_norm,
  7651. model.output_norm_b,
  7652. LLM_NORM, cb, -1);
  7653. cb(cur, "result_norm", -1);
  7654. cur = ggml_mul_mat(ctx0, model.output, cur);
  7655. cb(cur, "result_output", -1);
  7656. ggml_build_forward_expand(gf, cur);
  7657. return gf;
  7658. }
  7659. struct ggml_cgraph * build_stablelm() {
  7660. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7661. const int64_t n_embd_head = hparams.n_embd_head_v;
  7662. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7663. struct ggml_tensor * cur;
  7664. struct ggml_tensor * inpL;
  7665. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7666. // inp_pos - contains the positions
  7667. struct ggml_tensor * inp_pos = build_inp_pos();
  7668. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7669. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7670. for (int il = 0; il < n_layer; ++il) {
  7671. // norm
  7672. cur = llm_build_norm(ctx0, inpL, hparams,
  7673. model.layers[il].attn_norm,
  7674. model.layers[il].attn_norm_b,
  7675. LLM_NORM, cb, il);
  7676. cb(cur, "attn_norm", il);
  7677. struct ggml_tensor * inpSA = cur;
  7678. // self-attention
  7679. {
  7680. // compute Q and K and RoPE them
  7681. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7682. cb(Qcur, "Qcur", il);
  7683. if (model.layers[il].bq) {
  7684. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7685. cb(Qcur, "Qcur", il);
  7686. }
  7687. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7688. cb(Kcur, "Kcur", il);
  7689. if (model.layers[il].bk) {
  7690. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7691. cb(Kcur, "Kcur", il);
  7692. }
  7693. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7694. cb(Vcur, "Vcur", il);
  7695. if (model.layers[il].bv) {
  7696. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7697. cb(Vcur, "Vcur", il);
  7698. }
  7699. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7700. cb(Qcur, "Qcur", il);
  7701. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7702. cb(Kcur, "Kcur", il);
  7703. if (model.layers[il].attn_q_norm) {
  7704. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7705. model.layers[il].attn_q_norm,
  7706. NULL,
  7707. LLM_NORM, cb, il);
  7708. cb(Qcur, "Qcur", il);
  7709. }
  7710. if (model.layers[il].attn_k_norm) {
  7711. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7712. model.layers[il].attn_k_norm,
  7713. NULL,
  7714. LLM_NORM, cb, il);
  7715. cb(Kcur, "Kcur", il);
  7716. }
  7717. Qcur = ggml_rope_ext(
  7718. ctx0, Qcur, inp_pos, nullptr,
  7719. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7720. ext_factor, attn_factor, beta_fast, beta_slow
  7721. );
  7722. cb(Qcur, "Qcur", il);
  7723. Kcur = ggml_rope_ext(
  7724. ctx0, Kcur, inp_pos, nullptr,
  7725. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7726. ext_factor, attn_factor, beta_fast, beta_slow
  7727. );
  7728. cb(Kcur, "Kcur", il);
  7729. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7730. model.layers[il].wo, NULL,
  7731. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7732. }
  7733. if (il == n_layer - 1) {
  7734. // skip computing output for unused tokens
  7735. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7736. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7737. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7738. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7739. }
  7740. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7741. cb(ffn_inp, "ffn_inp", il);
  7742. // feed-forward network
  7743. {
  7744. if (model.layers[il].ffn_norm) {
  7745. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7746. model.layers[il].ffn_norm,
  7747. model.layers[il].ffn_norm_b,
  7748. LLM_NORM, cb, il);
  7749. cb(cur, "ffn_norm", il);
  7750. } else {
  7751. // parallel residual
  7752. cur = inpSA;
  7753. }
  7754. cur = llm_build_ffn(ctx0, cur,
  7755. model.layers[il].ffn_up, NULL,
  7756. model.layers[il].ffn_gate, NULL,
  7757. model.layers[il].ffn_down, NULL,
  7758. NULL,
  7759. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7760. cb(cur, "ffn_out", il);
  7761. }
  7762. cur = ggml_add(ctx0, cur, ffn_inp);
  7763. cb(cur, "l_out", il);
  7764. // input for next layer
  7765. inpL = cur;
  7766. }
  7767. cur = inpL;
  7768. cur = llm_build_norm(ctx0, cur, hparams,
  7769. model.output_norm,
  7770. model.output_norm_b,
  7771. LLM_NORM, cb, -1);
  7772. cb(cur, "result_norm", -1);
  7773. // lm_head
  7774. cur = ggml_mul_mat(ctx0, model.output, cur);
  7775. cb(cur, "result_output", -1);
  7776. ggml_build_forward_expand(gf, cur);
  7777. return gf;
  7778. }
  7779. struct ggml_cgraph * build_qwen() {
  7780. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7781. const int64_t n_embd_head = hparams.n_embd_head_v;
  7782. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7783. struct ggml_tensor * cur;
  7784. struct ggml_tensor * inpL;
  7785. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7786. // inp_pos - contains the positions
  7787. struct ggml_tensor * inp_pos = build_inp_pos();
  7788. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7789. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7790. for (int il = 0; il < n_layer; ++il) {
  7791. struct ggml_tensor * inpSA = inpL;
  7792. cur = llm_build_norm(ctx0, inpL, hparams,
  7793. model.layers[il].attn_norm, NULL,
  7794. LLM_NORM_RMS, cb, il);
  7795. cb(cur, "attn_norm", il);
  7796. // self-attention
  7797. {
  7798. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7799. cb(cur, "wqkv", il);
  7800. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7801. cb(cur, "bqkv", il);
  7802. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7803. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7804. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7805. cb(Qcur, "Qcur", il);
  7806. cb(Kcur, "Kcur", il);
  7807. cb(Vcur, "Vcur", il);
  7808. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7809. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7810. // using mode = 2 for neox mode
  7811. Qcur = ggml_rope_ext(
  7812. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7813. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7814. );
  7815. cb(Qcur, "Qcur", il);
  7816. Kcur = ggml_rope_ext(
  7817. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7818. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7819. );
  7820. cb(Kcur, "Kcur", il);
  7821. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7822. model.layers[il].wo, NULL,
  7823. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7824. }
  7825. if (il == n_layer - 1) {
  7826. // skip computing output for unused tokens
  7827. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7828. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7829. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7830. }
  7831. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7832. cb(ffn_inp, "ffn_inp", il);
  7833. // feed-forward forward
  7834. {
  7835. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7836. model.layers[il].ffn_norm, NULL,
  7837. LLM_NORM_RMS, cb, il);
  7838. cb(cur, "ffn_norm", il);
  7839. cur = llm_build_ffn(ctx0, cur,
  7840. model.layers[il].ffn_up, NULL,
  7841. model.layers[il].ffn_gate, NULL,
  7842. model.layers[il].ffn_down, NULL,
  7843. NULL,
  7844. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7845. cb(cur, "ffn_out", il);
  7846. }
  7847. cur = ggml_add(ctx0, cur, ffn_inp);
  7848. cb(cur, "l_out", il);
  7849. // input for next layer
  7850. inpL = cur;
  7851. }
  7852. cur = inpL;
  7853. cur = llm_build_norm(ctx0, cur, hparams,
  7854. model.output_norm, NULL,
  7855. LLM_NORM_RMS, cb, -1);
  7856. cb(cur, "result_norm", -1);
  7857. // lm_head
  7858. cur = ggml_mul_mat(ctx0, model.output, cur);
  7859. cb(cur, "result_output", -1);
  7860. ggml_build_forward_expand(gf, cur);
  7861. return gf;
  7862. }
  7863. struct ggml_cgraph * build_qwen2() {
  7864. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7865. const int64_t n_embd_head = hparams.n_embd_head_v;
  7866. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7867. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7868. struct ggml_tensor * cur;
  7869. struct ggml_tensor * inpL;
  7870. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7871. // inp_pos - contains the positions
  7872. struct ggml_tensor * inp_pos = build_inp_pos();
  7873. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7874. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7875. for (int il = 0; il < n_layer; ++il) {
  7876. struct ggml_tensor * inpSA = inpL;
  7877. // norm
  7878. cur = llm_build_norm(ctx0, inpL, hparams,
  7879. model.layers[il].attn_norm, NULL,
  7880. LLM_NORM_RMS, cb, il);
  7881. cb(cur, "attn_norm", il);
  7882. // self-attention
  7883. {
  7884. // compute Q and K and RoPE them
  7885. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7886. cb(Qcur, "Qcur", il);
  7887. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7888. cb(Qcur, "Qcur", il);
  7889. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7890. cb(Kcur, "Kcur", il);
  7891. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7892. cb(Kcur, "Kcur", il);
  7893. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7894. cb(Vcur, "Vcur", il);
  7895. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7896. cb(Vcur, "Vcur", il);
  7897. Qcur = ggml_rope_ext(
  7898. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7899. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7900. ext_factor, attn_factor, beta_fast, beta_slow
  7901. );
  7902. cb(Qcur, "Qcur", il);
  7903. Kcur = ggml_rope_ext(
  7904. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7905. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7906. ext_factor, attn_factor, beta_fast, beta_slow
  7907. );
  7908. cb(Kcur, "Kcur", il);
  7909. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7910. model.layers[il].wo, model.layers[il].bo,
  7911. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7912. }
  7913. if (il == n_layer - 1) {
  7914. // skip computing output for unused tokens
  7915. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7916. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7917. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7918. }
  7919. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7920. cb(ffn_inp, "ffn_inp", il);
  7921. // feed-forward network
  7922. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7923. model.layers[il].ffn_norm, NULL,
  7924. LLM_NORM_RMS, cb, il);
  7925. cb(cur, "ffn_norm", il);
  7926. cur = llm_build_ffn(ctx0, cur,
  7927. model.layers[il].ffn_up, NULL,
  7928. model.layers[il].ffn_gate, NULL,
  7929. model.layers[il].ffn_down, NULL,
  7930. NULL,
  7931. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7932. cb(cur, "ffn_out", il);
  7933. cur = ggml_add(ctx0, cur, ffn_inp);
  7934. cb(cur, "l_out", il);
  7935. // input for next layer
  7936. inpL = cur;
  7937. }
  7938. cur = inpL;
  7939. cur = llm_build_norm(ctx0, cur, hparams,
  7940. model.output_norm, NULL,
  7941. LLM_NORM_RMS, cb, -1);
  7942. cb(cur, "result_norm", -1);
  7943. // lm_head
  7944. cur = ggml_mul_mat(ctx0, model.output, cur);
  7945. cb(cur, "result_output", -1);
  7946. ggml_build_forward_expand(gf, cur);
  7947. return gf;
  7948. }
  7949. struct ggml_cgraph * build_qwen2moe() {
  7950. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7951. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7952. int32_t n_tokens = this->n_tokens;
  7953. const int64_t n_embd_head = hparams.n_embd_head_v;
  7954. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7955. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7956. struct ggml_tensor * cur;
  7957. struct ggml_tensor * inpL;
  7958. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7959. // inp_pos - contains the positions
  7960. struct ggml_tensor * inp_pos = build_inp_pos();
  7961. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7962. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7963. for (int il = 0; il < n_layer; ++il) {
  7964. struct ggml_tensor * inpSA = inpL;
  7965. // norm
  7966. cur = llm_build_norm(ctx0, inpL, hparams,
  7967. model.layers[il].attn_norm, NULL,
  7968. LLM_NORM_RMS, cb, il);
  7969. cb(cur, "attn_norm", il);
  7970. // self_attention
  7971. {
  7972. // compute Q and K and RoPE them
  7973. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7974. cb(Qcur, "Qcur", il);
  7975. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7976. cb(Qcur, "Qcur", il);
  7977. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7978. cb(Kcur, "Kcur", il);
  7979. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7980. cb(Kcur, "Kcur", il);
  7981. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7982. cb(Vcur, "Vcur", il);
  7983. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7984. cb(Vcur, "Vcur", il);
  7985. Qcur = ggml_rope_ext(
  7986. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7987. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7988. ext_factor, attn_factor, beta_fast, beta_slow
  7989. );
  7990. cb(Qcur, "Qcur", il);
  7991. Kcur = ggml_rope_ext(
  7992. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7993. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7994. ext_factor, attn_factor, beta_fast, beta_slow
  7995. );
  7996. cb(Kcur, "Kcur", il);
  7997. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7998. model.layers[il].wo, model.layers[il].bo,
  7999. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8000. }
  8001. if (il == n_layer - 1) {
  8002. // skip computing output for unused tokens
  8003. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8004. n_tokens = n_outputs;
  8005. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8006. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8007. }
  8008. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8009. cb(ffn_inp, "ffn_inp", il);
  8010. // MoE branch
  8011. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8012. model.layers[il].ffn_norm, NULL,
  8013. LLM_NORM_RMS, cb, il);
  8014. cb(cur, "ffn_norm", il);
  8015. ggml_tensor * moe_out =
  8016. llm_build_moe_ffn(ctx0, cur,
  8017. model.layers[il].ffn_gate_inp,
  8018. model.layers[il].ffn_up_exps,
  8019. model.layers[il].ffn_gate_exps,
  8020. model.layers[il].ffn_down_exps,
  8021. n_expert, n_expert_used,
  8022. LLM_FFN_SILU, false,
  8023. false, 0.0,
  8024. cb, il);
  8025. cb(cur, "ffn_moe_out", il);
  8026. // FFN shared expert
  8027. {
  8028. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  8029. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  8030. // sigmoid
  8031. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  8032. cb(cur_gate, "ffn_shexp_gate", il);
  8033. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  8034. model.layers[il].ffn_up_shexp, NULL,
  8035. model.layers[il].ffn_gate_shexp, NULL,
  8036. model.layers[il].ffn_down_shexp, NULL,
  8037. NULL,
  8038. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8039. cb(cur_ffn, "ffn_shexp", il);
  8040. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  8041. cb(ffn_shexp_out, "ffn_shexp_out", il);
  8042. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  8043. cb(moe_out, "ffn_out", il);
  8044. cur = moe_out;
  8045. }
  8046. cur = ggml_add(ctx0, cur, ffn_inp);
  8047. cb(cur, "l_out", il);
  8048. // input for next layer
  8049. inpL = cur;
  8050. }
  8051. cur = inpL;
  8052. cur = llm_build_norm(ctx0, cur, hparams,
  8053. model.output_norm, NULL,
  8054. LLM_NORM_RMS, cb, -1);
  8055. cb(cur, "result_norm", -1);
  8056. // lm_head
  8057. cur = ggml_mul_mat(ctx0, model.output, cur);
  8058. cb(cur, "result_output", -1);
  8059. ggml_build_forward_expand(gf, cur);
  8060. return gf;
  8061. }
  8062. struct ggml_cgraph * build_phi2() {
  8063. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8064. const int64_t n_embd_head = hparams.n_embd_head_v;
  8065. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8066. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8067. struct ggml_tensor * cur;
  8068. struct ggml_tensor * attn_norm_output;
  8069. struct ggml_tensor * ffn_output;
  8070. struct ggml_tensor * inpL;
  8071. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8072. // inp_pos - contains the positions
  8073. struct ggml_tensor * inp_pos = build_inp_pos();
  8074. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8075. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8076. for (int il = 0; il < n_layer; ++il) {
  8077. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  8078. model.layers[il].attn_norm,
  8079. model.layers[il].attn_norm_b,
  8080. LLM_NORM, cb, il);
  8081. cb(attn_norm_output, "attn_norm", il);
  8082. // self-attention
  8083. {
  8084. struct ggml_tensor * Qcur = nullptr;
  8085. struct ggml_tensor * Kcur = nullptr;
  8086. struct ggml_tensor * Vcur = nullptr;
  8087. if (model.layers[il].wqkv) {
  8088. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  8089. cb(cur, "wqkv", il);
  8090. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8091. cb(cur, "bqkv", il);
  8092. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8093. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8094. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8095. } else {
  8096. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  8097. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  8098. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  8099. }
  8100. cb(Qcur, "Qcur", il);
  8101. cb(Kcur, "Kcur", il);
  8102. cb(Vcur, "Vcur", il);
  8103. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8104. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8105. Qcur = ggml_rope_ext(
  8106. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8107. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8108. );
  8109. cb(Qcur, "Qcur", il);
  8110. // with phi2, we scale the Q to avoid precision issues
  8111. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  8112. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  8113. cb(Qcur, "Qcur", il);
  8114. Kcur = ggml_rope_ext(
  8115. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8116. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8117. );
  8118. cb(Kcur, "Kcur", il);
  8119. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8120. model.layers[il].wo, model.layers[il].bo,
  8121. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8122. }
  8123. if (il == n_layer - 1) {
  8124. // skip computing output for unused tokens
  8125. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8126. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8127. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8128. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  8129. }
  8130. // FF
  8131. {
  8132. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  8133. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8134. NULL, NULL,
  8135. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8136. NULL,
  8137. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8138. cb(ffn_output, "ffn_out", il);
  8139. }
  8140. cur = ggml_add(ctx0, cur, ffn_output);
  8141. cb(cur, "l_out", il);
  8142. cur = ggml_add(ctx0, cur, inpL);
  8143. cb(cur, "l_out", il);
  8144. inpL = cur;
  8145. }
  8146. cur = llm_build_norm(ctx0, inpL, hparams,
  8147. model.output_norm,
  8148. model.output_norm_b,
  8149. LLM_NORM, cb, -1);
  8150. cb(cur, "result_norm", -1);
  8151. cur = ggml_mul_mat(ctx0, model.output, cur);
  8152. cb(cur, "result_output_no_bias", -1);
  8153. cur = ggml_add(ctx0, cur, model.output_b);
  8154. cb(cur, "result_output", -1);
  8155. ggml_build_forward_expand(gf, cur);
  8156. return gf;
  8157. }
  8158. struct ggml_cgraph * build_phi3() {
  8159. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8160. const int64_t n_embd_head = hparams.n_embd_head_v;
  8161. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8162. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8163. struct ggml_tensor * cur;
  8164. struct ggml_tensor * inpL;
  8165. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8166. // inp_pos - contains the positions
  8167. struct ggml_tensor * inp_pos = build_inp_pos();
  8168. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8169. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8170. for (int il = 0; il < n_layer; ++il) {
  8171. auto residual = inpL;
  8172. // self-attention
  8173. {
  8174. // rope freq factors for 128k context
  8175. struct ggml_tensor * rope_factors = build_rope_factors(il);
  8176. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  8177. model.layers[il].attn_norm,
  8178. NULL,
  8179. LLM_NORM_RMS, cb, il);
  8180. cb(attn_norm_output, "attn_norm", il);
  8181. struct ggml_tensor * Qcur = nullptr;
  8182. struct ggml_tensor * Kcur = nullptr;
  8183. struct ggml_tensor * Vcur = nullptr;
  8184. if (model.layers[il].wqkv) {
  8185. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  8186. cb(cur, "wqkv", il);
  8187. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  8188. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  8189. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  8190. }
  8191. else {
  8192. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  8193. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  8194. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  8195. }
  8196. cb(Qcur, "Qcur", il);
  8197. cb(Kcur, "Kcur", il);
  8198. cb(Vcur, "Vcur", il);
  8199. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8200. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8201. Qcur = ggml_rope_ext(
  8202. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8203. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8204. );
  8205. cb(Qcur, "Qcur", il);
  8206. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  8207. cb(Qcur, "Qcur", il);
  8208. Kcur = ggml_rope_ext(
  8209. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8210. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8211. );
  8212. cb(Kcur, "Kcur", il);
  8213. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8214. model.layers[il].wo, model.layers[il].bo,
  8215. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8216. }
  8217. if (il == n_layer - 1) {
  8218. // skip computing output for unused tokens
  8219. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  8220. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8221. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  8222. }
  8223. cur = ggml_add(ctx0, cur, residual);
  8224. residual = cur;
  8225. cur = llm_build_norm(ctx0, cur, hparams,
  8226. model.layers[il].ffn_norm, NULL,
  8227. LLM_NORM_RMS, cb, il);
  8228. cb(cur, "ffn_norm", il);
  8229. // FF
  8230. // special-case: the up and gate tensors are merged into a single tensor
  8231. // TOOD: support into llm_build_ffn
  8232. {
  8233. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  8234. cb(up, "ffn_up", il);
  8235. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  8236. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  8237. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  8238. cb(y, "ffn_gate", il);
  8239. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  8240. cb(down, "ffn_down", il);
  8241. cur = down;
  8242. cb(cur, "ffn_out", il);
  8243. }
  8244. cur = ggml_add(ctx0, residual, cur);
  8245. cb(cur, "l_out", il);
  8246. inpL = cur;
  8247. }
  8248. cur = llm_build_norm(ctx0, inpL, hparams,
  8249. model.output_norm,
  8250. NULL,
  8251. LLM_NORM_RMS, cb, -1);
  8252. cb(cur, "result_norm", -1);
  8253. cur = ggml_mul_mat(ctx0, model.output, cur);
  8254. cb(cur, "result_output", -1);
  8255. ggml_build_forward_expand(gf, cur);
  8256. return gf;
  8257. }
  8258. struct ggml_cgraph * build_plamo() {
  8259. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  8260. const int64_t n_embd_head = hparams.n_embd_head_v;
  8261. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8262. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8263. struct ggml_tensor * cur;
  8264. struct ggml_tensor * inpL;
  8265. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8266. // inp_pos - contains the positions
  8267. struct ggml_tensor * inp_pos = build_inp_pos();
  8268. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8269. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8270. for (int il = 0; il < n_layer; ++il) {
  8271. // norm
  8272. cur = llm_build_norm(ctx0, inpL, hparams,
  8273. model.layers[il].attn_norm, NULL,
  8274. LLM_NORM_RMS, cb, il);
  8275. cb(cur, "attn_norm", il);
  8276. struct ggml_tensor * attention_norm = cur;
  8277. // self-attention
  8278. {
  8279. // compute Q and K and RoPE them
  8280. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8281. cb(Qcur, "Qcur", il);
  8282. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8283. cb(Kcur, "Kcur", il);
  8284. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8285. cb(Vcur, "Vcur", il);
  8286. Qcur = ggml_rope_ext(
  8287. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  8288. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8289. ext_factor, attn_factor, beta_fast, beta_slow);
  8290. cb(Qcur, "Qcur", il);
  8291. Kcur = ggml_rope_ext(
  8292. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  8293. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8294. ext_factor, attn_factor, beta_fast, beta_slow);
  8295. cb(Kcur, "Kcur", il);
  8296. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8297. model.layers[il].wo, NULL,
  8298. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8299. }
  8300. struct ggml_tensor * sa_out = cur;
  8301. cur = attention_norm;
  8302. if (il == n_layer - 1) {
  8303. // skip computing output for unused tokens
  8304. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8305. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8306. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  8307. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8308. }
  8309. // feed-forward network
  8310. {
  8311. cur = llm_build_ffn(ctx0, cur,
  8312. model.layers[il].ffn_up, NULL,
  8313. model.layers[il].ffn_gate, NULL,
  8314. model.layers[il].ffn_down, NULL,
  8315. NULL,
  8316. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8317. cb(cur, "ffn_out", il);
  8318. }
  8319. cur = ggml_add(ctx0, cur, sa_out);
  8320. cb(cur, "l_out", il);
  8321. cur = ggml_add(ctx0, cur, inpL);
  8322. cb(cur, "l_out", il);
  8323. // input for next layer
  8324. inpL = cur;
  8325. }
  8326. cur = inpL;
  8327. cur = llm_build_norm(ctx0, cur, hparams,
  8328. model.output_norm, NULL,
  8329. LLM_NORM_RMS, cb, -1);
  8330. cb(cur, "result_norm", -1);
  8331. // lm_head
  8332. cur = ggml_mul_mat(ctx0, model.output, cur);
  8333. cb(cur, "result_output", -1);
  8334. ggml_build_forward_expand(gf, cur);
  8335. return gf;
  8336. }
  8337. struct ggml_cgraph * build_gpt2() {
  8338. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8339. const int64_t n_embd_head = hparams.n_embd_head_v;
  8340. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8341. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8342. struct ggml_tensor * cur;
  8343. struct ggml_tensor * pos;
  8344. struct ggml_tensor * inpL;
  8345. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8346. // inp_pos - contains the positions
  8347. struct ggml_tensor * inp_pos = build_inp_pos();
  8348. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8349. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8350. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8351. cb(pos, "pos_embd", -1);
  8352. inpL = ggml_add(ctx0, inpL, pos);
  8353. cb(inpL, "inpL", -1);
  8354. for (int il = 0; il < n_layer; ++il) {
  8355. cur = llm_build_norm(ctx0, inpL, hparams,
  8356. model.layers[il].attn_norm,
  8357. model.layers[il].attn_norm_b,
  8358. LLM_NORM, cb, il);
  8359. cb(cur, "attn_norm", il);
  8360. // self-attention
  8361. {
  8362. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8363. cb(cur, "wqkv", il);
  8364. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8365. cb(cur, "bqkv", il);
  8366. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8367. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8368. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8369. cb(Qcur, "Qcur", il);
  8370. cb(Kcur, "Kcur", il);
  8371. cb(Vcur, "Vcur", il);
  8372. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8373. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8374. model.layers[il].wo, model.layers[il].bo,
  8375. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8376. }
  8377. if (il == n_layer - 1) {
  8378. // skip computing output for unused tokens
  8379. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8380. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8381. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8382. }
  8383. // add the input
  8384. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8385. cb(ffn_inp, "ffn_inp", il);
  8386. // FF
  8387. {
  8388. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8389. model.layers[il].ffn_norm,
  8390. model.layers[il].ffn_norm_b,
  8391. LLM_NORM, cb, il);
  8392. cb(cur, "ffn_norm", il);
  8393. cur = llm_build_ffn(ctx0, cur,
  8394. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8395. NULL, NULL,
  8396. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8397. NULL,
  8398. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8399. cb(cur, "ffn_out", il);
  8400. }
  8401. inpL = ggml_add(ctx0, cur, ffn_inp);
  8402. cb(inpL, "l_out", il);
  8403. }
  8404. cur = llm_build_norm(ctx0, inpL, hparams,
  8405. model.output_norm,
  8406. model.output_norm_b,
  8407. LLM_NORM, cb, -1);
  8408. cb(cur, "result_norm", -1);
  8409. cur = ggml_mul_mat(ctx0, model.output, cur);
  8410. cb(cur, "result_output", -1);
  8411. ggml_build_forward_expand(gf, cur);
  8412. return gf;
  8413. }
  8414. struct ggml_cgraph * build_codeshell() {
  8415. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8416. const int64_t n_embd_head = hparams.n_embd_head_v;
  8417. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8418. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8419. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8420. struct ggml_tensor * cur;
  8421. struct ggml_tensor * inpL;
  8422. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8423. // inp_pos - contains the positions
  8424. struct ggml_tensor * inp_pos = build_inp_pos();
  8425. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8426. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8427. for (int il = 0; il < n_layer; ++il) {
  8428. cur = llm_build_norm(ctx0, inpL, hparams,
  8429. model.layers[il].attn_norm,
  8430. model.layers[il].attn_norm_b,
  8431. LLM_NORM, cb, il);
  8432. cb(cur, "attn_norm", il);
  8433. // self-attention
  8434. {
  8435. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8436. cb(cur, "wqkv", il);
  8437. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8438. cb(cur, "bqkv", il);
  8439. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8440. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8441. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8442. cb(tmpq, "tmpq", il);
  8443. cb(tmpk, "tmpk", il);
  8444. cb(Vcur, "Vcur", il);
  8445. struct ggml_tensor * Qcur = ggml_rope_ext(
  8446. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8447. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8448. ext_factor, attn_factor, beta_fast, beta_slow
  8449. );
  8450. cb(Qcur, "Qcur", il);
  8451. struct ggml_tensor * Kcur = ggml_rope_ext(
  8452. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8453. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8454. ext_factor, attn_factor, beta_fast, beta_slow
  8455. );
  8456. cb(Kcur, "Kcur", il);
  8457. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8458. model.layers[il].wo, model.layers[il].bo,
  8459. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8460. }
  8461. if (il == n_layer - 1) {
  8462. // skip computing output for unused tokens
  8463. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8464. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8465. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8466. }
  8467. // add the input
  8468. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8469. cb(ffn_inp, "ffn_inp", il);
  8470. // FF
  8471. {
  8472. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8473. model.layers[il].ffn_norm,
  8474. model.layers[il].ffn_norm_b,
  8475. LLM_NORM, cb, il);
  8476. cb(cur, "ffn_norm", il);
  8477. cur = llm_build_ffn(ctx0, cur,
  8478. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8479. NULL, NULL,
  8480. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8481. NULL,
  8482. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8483. cb(cur, "ffn_out", il);
  8484. }
  8485. inpL = ggml_add(ctx0, cur, ffn_inp);
  8486. cb(inpL, "l_out", il);
  8487. }
  8488. cur = llm_build_norm(ctx0, inpL, hparams,
  8489. model.output_norm,
  8490. model.output_norm_b,
  8491. LLM_NORM, cb, -1);
  8492. cb(cur, "result_norm", -1);
  8493. cur = ggml_mul_mat(ctx0, model.output, cur);
  8494. cb(cur, "result_output", -1);
  8495. ggml_build_forward_expand(gf, cur);
  8496. return gf;
  8497. }
  8498. struct ggml_cgraph * build_orion() {
  8499. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8500. const int64_t n_embd_head = hparams.n_embd_head_v;
  8501. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8502. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8503. struct ggml_tensor * cur;
  8504. struct ggml_tensor * inpL;
  8505. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8506. // inp_pos - contains the positions
  8507. struct ggml_tensor * inp_pos = build_inp_pos();
  8508. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8509. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8510. for (int il = 0; il < n_layer; ++il) {
  8511. struct ggml_tensor * inpSA = inpL;
  8512. // norm
  8513. cur = llm_build_norm(ctx0, inpL, hparams,
  8514. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8515. LLM_NORM, cb, il);
  8516. cb(cur, "attn_norm", il);
  8517. // self-attention
  8518. {
  8519. // compute Q and K and RoPE them
  8520. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8521. cb(Qcur, "Qcur", il);
  8522. // if (model.layers[il].bq) {
  8523. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8524. // cb(Qcur, "Qcur", il);
  8525. // }
  8526. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8527. cb(Kcur, "Kcur", il);
  8528. // if (model.layers[il].bk) {
  8529. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8530. // cb(Kcur, "Kcur", il);
  8531. // }
  8532. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8533. cb(Vcur, "Vcur", il);
  8534. // if (model.layers[il].bv) {
  8535. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8536. // cb(Vcur, "Vcur", il);
  8537. // }
  8538. Qcur = ggml_rope_ext(
  8539. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8540. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8541. ext_factor, attn_factor, beta_fast, beta_slow
  8542. );
  8543. cb(Qcur, "Qcur", il);
  8544. Kcur = ggml_rope_ext(
  8545. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8546. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8547. ext_factor, attn_factor, beta_fast, beta_slow
  8548. );
  8549. cb(Kcur, "Kcur", il);
  8550. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8551. model.layers[il].wo, NULL,
  8552. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8553. }
  8554. if (il == n_layer - 1) {
  8555. // skip computing output for unused tokens
  8556. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8557. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8558. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8559. }
  8560. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8561. cb(ffn_inp, "ffn_inp", il);
  8562. // feed-forward network
  8563. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8564. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8565. LLM_NORM, cb, il);
  8566. cb(cur, "ffn_norm", il);
  8567. cur = llm_build_ffn(ctx0, cur,
  8568. model.layers[il].ffn_up, NULL,
  8569. model.layers[il].ffn_gate, NULL,
  8570. model.layers[il].ffn_down, NULL,
  8571. NULL,
  8572. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8573. cb(cur, "ffn_out", il);
  8574. cur = ggml_add(ctx0, cur, ffn_inp);
  8575. cb(cur, "l_out", il);
  8576. // input for next layer
  8577. inpL = cur;
  8578. }
  8579. cur = inpL;
  8580. cur = llm_build_norm(ctx0, cur, hparams,
  8581. model.output_norm, model.output_norm_b,
  8582. LLM_NORM, cb, -1);
  8583. cb(cur, "result_norm", -1);
  8584. // lm_head
  8585. cur = ggml_mul_mat(ctx0, model.output, cur);
  8586. cb(cur, "result_output", -1);
  8587. ggml_build_forward_expand(gf, cur);
  8588. return gf;
  8589. }
  8590. struct ggml_cgraph * build_internlm2() {
  8591. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8592. const int64_t n_embd_head = hparams.n_embd_head_v;
  8593. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8594. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8595. struct ggml_tensor * cur;
  8596. struct ggml_tensor * inpL;
  8597. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8598. // inp_pos - contains the positions
  8599. struct ggml_tensor * inp_pos = build_inp_pos();
  8600. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8601. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8602. for (int il = 0; il < n_layer; ++il) {
  8603. struct ggml_tensor * inpSA = inpL;
  8604. // norm
  8605. cur = llm_build_norm(ctx0, inpL, hparams,
  8606. model.layers[il].attn_norm, NULL,
  8607. LLM_NORM_RMS, cb, il);
  8608. cb(cur, "attn_norm", il);
  8609. // self-attention
  8610. {
  8611. // compute Q and K and RoPE them
  8612. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8613. cb(Qcur, "Qcur", il);
  8614. if (model.layers[il].bq) {
  8615. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8616. cb(Qcur, "Qcur", il);
  8617. }
  8618. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8619. cb(Kcur, "Kcur", il);
  8620. if (model.layers[il].bk) {
  8621. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8622. cb(Kcur, "Kcur", il);
  8623. }
  8624. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8625. cb(Vcur, "Vcur", il);
  8626. if (model.layers[il].bv) {
  8627. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8628. cb(Vcur, "Vcur", il);
  8629. }
  8630. Qcur = ggml_rope_ext(
  8631. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8632. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8633. ext_factor, attn_factor, beta_fast, beta_slow
  8634. );
  8635. cb(Qcur, "Qcur", il);
  8636. Kcur = ggml_rope_ext(
  8637. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8638. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8639. ext_factor, attn_factor, beta_fast, beta_slow
  8640. );
  8641. cb(Kcur, "Kcur", il);
  8642. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8643. model.layers[il].wo, model.layers[il].bo,
  8644. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8645. }
  8646. if (il == n_layer - 1) {
  8647. // skip computing output for unused tokens
  8648. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8649. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8650. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8651. }
  8652. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8653. cb(ffn_inp, "ffn_inp", il);
  8654. // feed-forward network
  8655. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8656. model.layers[il].ffn_norm, NULL,
  8657. LLM_NORM_RMS, cb, il);
  8658. cb(cur, "ffn_norm", il);
  8659. cur = llm_build_ffn(ctx0, cur,
  8660. model.layers[il].ffn_up, NULL,
  8661. model.layers[il].ffn_gate, NULL,
  8662. model.layers[il].ffn_down, NULL,
  8663. NULL,
  8664. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8665. cb(cur, "ffn_out", il);
  8666. cur = ggml_add(ctx0, cur, ffn_inp);
  8667. cb(cur, "l_out", il);
  8668. // input for next layer
  8669. inpL = cur;
  8670. }
  8671. cur = inpL;
  8672. cur = llm_build_norm(ctx0, cur, hparams,
  8673. model.output_norm, NULL,
  8674. LLM_NORM_RMS, cb, -1);
  8675. cb(cur, "result_norm", -1);
  8676. // lm_head
  8677. cur = ggml_mul_mat(ctx0, model.output, cur);
  8678. cb(cur, "result_output", -1);
  8679. ggml_build_forward_expand(gf, cur);
  8680. return gf;
  8681. }
  8682. // ref: https://arxiv.org/abs/2203.03466
  8683. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8684. // based on the original build_llama() function
  8685. struct ggml_cgraph * build_minicpm() {
  8686. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8687. const int64_t n_embd_head = hparams.n_embd_head_v;
  8688. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8689. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8690. const int64_t n_embd = hparams.n_embd;
  8691. //TODO: if the model varies, these parameters need to be read from the model
  8692. const int64_t n_embd_base = 256;
  8693. const float scale_embd = 12.0f;
  8694. const float scale_depth = 1.4f;
  8695. struct ggml_tensor * cur;
  8696. struct ggml_tensor * inpL;
  8697. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8698. // scale the input embeddings
  8699. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8700. cb(inpL, "inp_scaled", -1);
  8701. // inp_pos - contains the positions
  8702. struct ggml_tensor * inp_pos = build_inp_pos();
  8703. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8704. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8705. for (int il = 0; il < n_layer; ++il) {
  8706. struct ggml_tensor * inpSA = inpL;
  8707. // norm
  8708. cur = llm_build_norm(ctx0, inpL, hparams,
  8709. model.layers[il].attn_norm, NULL,
  8710. LLM_NORM_RMS, cb, il);
  8711. cb(cur, "attn_norm", il);
  8712. // self-attention
  8713. {
  8714. // compute Q and K and RoPE them
  8715. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8716. cb(Qcur, "Qcur", il);
  8717. if (model.layers[il].bq) {
  8718. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8719. cb(Qcur, "Qcur", il);
  8720. }
  8721. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8722. cb(Kcur, "Kcur", il);
  8723. if (model.layers[il].bk) {
  8724. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8725. cb(Kcur, "Kcur", il);
  8726. }
  8727. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8728. cb(Vcur, "Vcur", il);
  8729. if (model.layers[il].bv) {
  8730. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8731. cb(Vcur, "Vcur", il);
  8732. }
  8733. Qcur = ggml_rope_ext(
  8734. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8735. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8736. ext_factor, attn_factor, beta_fast, beta_slow
  8737. );
  8738. cb(Qcur, "Qcur", il);
  8739. Kcur = ggml_rope_ext(
  8740. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8741. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8742. ext_factor, attn_factor, beta_fast, beta_slow
  8743. );
  8744. cb(Kcur, "Kcur", il);
  8745. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8746. model.layers[il].wo, model.layers[il].bo,
  8747. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8748. }
  8749. if (il == n_layer - 1) {
  8750. // skip computing output for unused tokens
  8751. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8752. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8753. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8754. }
  8755. // scale_res - scale the hidden states for residual connection
  8756. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8757. cur = ggml_scale(ctx0, cur, scale_res);
  8758. cb(cur, "hidden_scaled", -1);
  8759. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8760. cb(ffn_inp, "ffn_inp", il);
  8761. // feed-forward network
  8762. {
  8763. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8764. model.layers[il].ffn_norm, NULL,
  8765. LLM_NORM_RMS, cb, il);
  8766. cb(cur, "ffn_norm", il);
  8767. cur = llm_build_ffn(ctx0, cur,
  8768. model.layers[il].ffn_up, NULL,
  8769. model.layers[il].ffn_gate, NULL,
  8770. model.layers[il].ffn_down, NULL,
  8771. NULL,
  8772. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8773. cb(cur, "ffn_out", il);
  8774. }
  8775. // scale the hidden states for residual connection
  8776. cur = ggml_scale(ctx0, cur, scale_res);
  8777. cb(cur, "hidden_scaled_ffn", -1);
  8778. cur = ggml_add(ctx0, cur, ffn_inp);
  8779. cb(cur, "l_out", il);
  8780. // input for next layer
  8781. inpL = cur;
  8782. }
  8783. cur = inpL;
  8784. cur = llm_build_norm(ctx0, cur, hparams,
  8785. model.output_norm, NULL,
  8786. LLM_NORM_RMS, cb, -1);
  8787. cb(cur, "result_norm", -1);
  8788. // lm_head scaling
  8789. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8790. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8791. cb(cur, "lmhead_scaling", -1);
  8792. // lm_head
  8793. cur = ggml_mul_mat(ctx0, model.output, cur);
  8794. cb(cur, "result_output", -1);
  8795. ggml_build_forward_expand(gf, cur);
  8796. return gf;
  8797. }
  8798. struct ggml_cgraph * build_gemma() {
  8799. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8800. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8801. struct ggml_tensor * cur;
  8802. struct ggml_tensor * inpL;
  8803. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8804. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8805. cb(inpL, "inp_scaled", -1);
  8806. // inp_pos - contains the positions
  8807. struct ggml_tensor * inp_pos = build_inp_pos();
  8808. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8809. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8810. for (int il = 0; il < n_layer; ++il) {
  8811. // norm
  8812. cur = llm_build_norm(ctx0, inpL, hparams,
  8813. model.layers[il].attn_norm, NULL,
  8814. LLM_NORM_RMS, cb, il);
  8815. cb(cur, "attn_norm", il);
  8816. // self-attention
  8817. {
  8818. // compute Q and K and RoPE them
  8819. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8820. cb(Qcur, "Qcur", il);
  8821. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8822. cb(Kcur, "Kcur", il);
  8823. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8824. cb(Vcur, "Vcur", il);
  8825. Qcur = ggml_rope_ext(
  8826. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8827. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8828. ext_factor, attn_factor, beta_fast, beta_slow);
  8829. cb(Qcur, "Qcur", il);
  8830. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8831. cb(Qcur, "Qcur_scaled", il);
  8832. Kcur = ggml_rope_ext(
  8833. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8834. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8835. ext_factor, attn_factor, beta_fast, beta_slow);
  8836. cb(Kcur, "Kcur", il);
  8837. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8838. model.layers[il].wo, NULL,
  8839. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8840. }
  8841. if (il == n_layer - 1) {
  8842. // skip computing output for unused tokens
  8843. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8844. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8845. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8846. }
  8847. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8848. cb(sa_out, "sa_out", il);
  8849. cur = llm_build_norm(ctx0, sa_out, hparams,
  8850. model.layers[il].ffn_norm, NULL,
  8851. LLM_NORM_RMS, cb, il);
  8852. cb(cur, "ffn_norm", il);
  8853. // feed-forward network
  8854. {
  8855. cur = llm_build_ffn(ctx0, cur,
  8856. model.layers[il].ffn_up, NULL,
  8857. model.layers[il].ffn_gate, NULL,
  8858. model.layers[il].ffn_down, NULL,
  8859. NULL,
  8860. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8861. cb(cur, "ffn_out", il);
  8862. }
  8863. cur = ggml_add(ctx0, cur, sa_out);
  8864. cb(cur, "l_out", il);
  8865. // input for next layer
  8866. inpL = cur;
  8867. }
  8868. cur = inpL;
  8869. cur = llm_build_norm(ctx0, cur, hparams,
  8870. model.output_norm, NULL,
  8871. LLM_NORM_RMS, cb, -1);
  8872. cb(cur, "result_norm", -1);
  8873. // lm_head
  8874. cur = ggml_mul_mat(ctx0, model.output, cur);
  8875. cb(cur, "result_output", -1);
  8876. ggml_build_forward_expand(gf, cur);
  8877. return gf;
  8878. }
  8879. struct ggml_cgraph * build_starcoder2() {
  8880. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8881. const int64_t n_embd_head = hparams.n_embd_head_v;
  8882. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8883. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8884. struct ggml_tensor * cur;
  8885. struct ggml_tensor * inpL;
  8886. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8887. // inp_pos - contains the positions
  8888. struct ggml_tensor * inp_pos = build_inp_pos();
  8889. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8890. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8891. for (int il = 0; il < n_layer; ++il) {
  8892. struct ggml_tensor * inpSA = inpL;
  8893. // norm
  8894. cur = llm_build_norm(ctx0, inpL, hparams,
  8895. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8896. LLM_NORM, cb, il);
  8897. cb(cur, "attn_norm", il);
  8898. // self-attention
  8899. {
  8900. // compute Q and K and RoPE them
  8901. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8902. cb(Qcur, "Qcur", il);
  8903. if (model.layers[il].bq) {
  8904. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8905. cb(Qcur, "Qcur", il);
  8906. }
  8907. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8908. cb(Kcur, "Kcur", il);
  8909. if (model.layers[il].bk) {
  8910. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8911. cb(Kcur, "Kcur", il);
  8912. }
  8913. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8914. cb(Vcur, "Vcur", il);
  8915. if (model.layers[il].bv) {
  8916. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8917. cb(Vcur, "Vcur", il);
  8918. }
  8919. Qcur = ggml_rope_ext(
  8920. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8921. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8922. ext_factor, attn_factor, beta_fast, beta_slow
  8923. );
  8924. cb(Qcur, "Qcur", il);
  8925. Kcur = ggml_rope_ext(
  8926. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8927. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8928. ext_factor, attn_factor, beta_fast, beta_slow
  8929. );
  8930. cb(Kcur, "Kcur", il);
  8931. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8932. model.layers[il].wo, model.layers[il].bo,
  8933. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8934. }
  8935. if (il == n_layer - 1) {
  8936. // skip computing output for unused tokens
  8937. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8938. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8939. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8940. }
  8941. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8942. cb(ffn_inp, "ffn_inp", il);
  8943. // feed-forward network
  8944. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8945. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8946. LLM_NORM, cb, il);
  8947. cb(cur, "ffn_norm", il);
  8948. cur = llm_build_ffn(ctx0, cur,
  8949. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8950. NULL, NULL,
  8951. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8952. NULL,
  8953. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8954. cb(cur, "ffn_out", il);
  8955. cur = ggml_add(ctx0, cur, ffn_inp);
  8956. cb(cur, "l_out", il);
  8957. // input for next layer
  8958. inpL = cur;
  8959. }
  8960. cur = inpL;
  8961. cur = llm_build_norm(ctx0, cur, hparams,
  8962. model.output_norm, model.output_norm_b,
  8963. LLM_NORM, cb, -1);
  8964. cb(cur, "result_norm", -1);
  8965. // lm_head
  8966. cur = ggml_mul_mat(ctx0, model.output, cur);
  8967. cb(cur, "result_output", -1);
  8968. ggml_build_forward_expand(gf, cur);
  8969. return gf;
  8970. }
  8971. struct ggml_cgraph * build_mamba() {
  8972. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8973. const int64_t d_model = n_embd;
  8974. const int64_t d_conv = hparams.ssm_d_conv;
  8975. const int64_t d_inner = hparams.ssm_d_inner;
  8976. GGML_ASSERT(2 * d_model == d_inner);
  8977. const int64_t d_state = hparams.ssm_d_state;
  8978. const int64_t dt_rank = hparams.ssm_dt_rank;
  8979. struct ggml_tensor * cur;
  8980. struct ggml_tensor * inpL;
  8981. // {n_embd, n_tokens}
  8982. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8983. struct ggml_tensor * state_mask = build_inp_s_mask();
  8984. struct ggml_tensor * state_seq = build_inp_s_seq();
  8985. for (int il = 0; il < n_layer; ++il) {
  8986. // (ab)using the KV cache to store the states
  8987. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8988. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8989. // clear states of sequences which are starting at the beginning of this batch
  8990. {
  8991. conv_states = ggml_mul(ctx0,
  8992. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8993. state_mask);
  8994. ssm_states = ggml_mul(ctx0,
  8995. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8996. state_mask);
  8997. }
  8998. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8999. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  9000. // norm
  9001. cur = llm_build_norm(ctx0, inpL, hparams,
  9002. model.layers[il].attn_norm, NULL,
  9003. LLM_NORM_RMS, cb, il);
  9004. cb(cur, "attn_norm", il);
  9005. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  9006. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  9007. // split the above in two
  9008. // => {d_inner, n_tokens}
  9009. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  9010. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  9011. // conv
  9012. {
  9013. // Custom operator which is needed only to ease simultaneous sequence processing.
  9014. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  9015. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  9016. // then element-wise multiply that with the conv1d weigth,
  9017. // then sum the elements of each row,
  9018. // (the last two steps are a dot product over rows (also doable with mul_mat))
  9019. // then permute away the ne[0] dimension,
  9020. // and then you're left with the resulting x tensor.
  9021. // The new conv_states is the last (d_conv - 1) columns
  9022. // of the last 3rd dimensional "layer" of the self-overlapping view.
  9023. // For simultaneous sequences, it's more complicated.
  9024. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  9025. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  9026. ggml_build_forward_expand(gf,
  9027. ggml_cpy(ctx0,
  9028. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  9029. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  9030. // extract x from x_conv
  9031. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  9032. // bias
  9033. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  9034. x = ggml_silu(ctx0, x);
  9035. }
  9036. // ssm
  9037. {
  9038. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  9039. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  9040. // split
  9041. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  9042. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  9043. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  9044. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  9045. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  9046. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  9047. // Custom operator to optimize the parallel associative scan
  9048. // as described in the Annex D of the Mamba paper.
  9049. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  9050. // because only a single tensor can be returned.
  9051. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  9052. // store last states (the second part of y_ssm_states)
  9053. ggml_build_forward_expand(gf,
  9054. ggml_cpy(ctx0,
  9055. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  9056. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  9057. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  9058. if (il == n_layer - 1) {
  9059. // skip computing output for unused tokens
  9060. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9061. x = ggml_get_rows(ctx0, x, inp_out_ids);
  9062. y = ggml_get_rows(ctx0, y, inp_out_ids);
  9063. z = ggml_get_rows(ctx0, z, inp_out_ids);
  9064. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9065. }
  9066. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  9067. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  9068. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  9069. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  9070. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  9071. }
  9072. // residual
  9073. cur = ggml_add(ctx0, cur, inpL);
  9074. cb(cur, "l_out", il);
  9075. // input for next layer
  9076. inpL = cur;
  9077. }
  9078. // final rmsnorm
  9079. cur = llm_build_norm(ctx0, inpL, hparams,
  9080. model.output_norm, NULL,
  9081. LLM_NORM_RMS, cb, -1);
  9082. cb(cur, "result_norm", -1);
  9083. // lm_head
  9084. cur = ggml_mul_mat(ctx0, model.output, cur);
  9085. cb(cur, "result_output", -1);
  9086. ggml_build_forward_expand(gf, cur);
  9087. return gf;
  9088. }
  9089. struct ggml_cgraph * build_command_r() {
  9090. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9091. const int64_t n_embd_head = hparams.n_embd_head_v;
  9092. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9093. const float f_logit_scale = hparams.f_logit_scale;
  9094. struct ggml_tensor * cur;
  9095. struct ggml_tensor * inpL;
  9096. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9097. // inp_pos - contains the positions
  9098. struct ggml_tensor * inp_pos = build_inp_pos();
  9099. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9100. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9101. for (int il = 0; il < n_layer; ++il) {
  9102. // norm
  9103. cur = llm_build_norm(ctx0, inpL, hparams,
  9104. model.layers[il].attn_norm, NULL,
  9105. LLM_NORM, cb, il);
  9106. cb(cur, "attn_norm", il);
  9107. struct ggml_tensor * ffn_inp = cur;
  9108. // self-attention
  9109. {
  9110. // compute Q and K and RoPE them
  9111. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9112. cb(Qcur, "Qcur", il);
  9113. if (model.layers[il].bq) {
  9114. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9115. cb(Qcur, "Qcur", il);
  9116. }
  9117. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9118. cb(Kcur, "Kcur", il);
  9119. if (model.layers[il].bk) {
  9120. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9121. cb(Kcur, "Kcur", il);
  9122. }
  9123. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9124. cb(Vcur, "Vcur", il);
  9125. if (model.layers[il].bv) {
  9126. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9127. cb(Vcur, "Vcur", il);
  9128. }
  9129. if (model.layers[il].attn_q_norm) {
  9130. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9131. ggml_element_size(Qcur) * n_embd_head,
  9132. ggml_element_size(Qcur) * n_embd_head * n_head,
  9133. 0);
  9134. cb(Qcur, "Qcur", il);
  9135. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9136. ggml_element_size(Kcur) * n_embd_head,
  9137. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9138. 0);
  9139. cb(Kcur, "Kcur", il);
  9140. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  9141. model.layers[il].attn_q_norm,
  9142. NULL,
  9143. LLM_NORM, cb, il);
  9144. cb(Qcur, "Qcur", il);
  9145. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  9146. model.layers[il].attn_k_norm,
  9147. NULL,
  9148. LLM_NORM, cb, il);
  9149. cb(Kcur, "Kcur", il);
  9150. }
  9151. Qcur = ggml_rope_ext(
  9152. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9153. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9154. ext_factor, attn_factor, beta_fast, beta_slow
  9155. );
  9156. cb(Qcur, "Qcur", il);
  9157. Kcur = ggml_rope_ext(
  9158. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9159. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9160. ext_factor, attn_factor, beta_fast, beta_slow
  9161. );
  9162. cb(Kcur, "Kcur", il);
  9163. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9164. model.layers[il].wo, model.layers[il].bo,
  9165. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9166. }
  9167. if (il == n_layer - 1) {
  9168. // skip computing output for unused tokens
  9169. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9170. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9171. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9172. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  9173. }
  9174. struct ggml_tensor * attn_out = cur;
  9175. // feed-forward network
  9176. {
  9177. cur = llm_build_ffn(ctx0, ffn_inp,
  9178. model.layers[il].ffn_up, NULL,
  9179. model.layers[il].ffn_gate, NULL,
  9180. model.layers[il].ffn_down, NULL,
  9181. NULL,
  9182. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9183. cb(cur, "ffn_out", il);
  9184. }
  9185. // add together residual + FFN + self-attention
  9186. cur = ggml_add(ctx0, cur, inpL);
  9187. cur = ggml_add(ctx0, cur, attn_out);
  9188. cb(cur, "l_out", il);
  9189. // input for next layer
  9190. inpL = cur;
  9191. }
  9192. cur = inpL;
  9193. cur = llm_build_norm(ctx0, cur, hparams,
  9194. model.output_norm, NULL,
  9195. LLM_NORM, cb, -1);
  9196. cb(cur, "result_norm", -1);
  9197. // lm_head
  9198. cur = ggml_mul_mat(ctx0, model.output, cur);
  9199. if (f_logit_scale) {
  9200. cur = ggml_scale(ctx0, cur, f_logit_scale);
  9201. }
  9202. cb(cur, "result_output", -1);
  9203. ggml_build_forward_expand(gf, cur);
  9204. return gf;
  9205. }
  9206. // ref: https://allenai.org/olmo
  9207. // based on the original build_llama() function, changes:
  9208. // * non-parametric layer norm
  9209. // * clamp qkv
  9210. // * removed bias
  9211. // * removed MoE
  9212. struct ggml_cgraph * build_olmo() {
  9213. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9214. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9215. int32_t n_tokens = this->n_tokens;
  9216. const int64_t n_embd_head = hparams.n_embd_head_v;
  9217. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9218. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9219. struct ggml_tensor * cur;
  9220. struct ggml_tensor * inpL;
  9221. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9222. // inp_pos - contains the positions
  9223. struct ggml_tensor * inp_pos = build_inp_pos();
  9224. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9225. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9226. for (int il = 0; il < n_layer; ++il) {
  9227. struct ggml_tensor * inpSA = inpL;
  9228. // norm
  9229. cur = llm_build_norm(ctx0, inpL, hparams,
  9230. NULL, NULL,
  9231. LLM_NORM, cb, il);
  9232. cb(cur, "attn_norm", il);
  9233. // self-attention
  9234. {
  9235. // compute Q and K and RoPE them
  9236. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9237. cb(Qcur, "Qcur", il);
  9238. if (hparams.f_clamp_kqv > 0.0f) {
  9239. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9240. cb(Qcur, "Qcur", il);
  9241. }
  9242. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9243. cb(Kcur, "Kcur", il);
  9244. if (hparams.f_clamp_kqv > 0.0f) {
  9245. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9246. cb(Kcur, "Kcur", il);
  9247. }
  9248. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9249. cb(Vcur, "Vcur", il);
  9250. if (hparams.f_clamp_kqv > 0.0f) {
  9251. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9252. cb(Vcur, "Vcur", il);
  9253. }
  9254. Qcur = ggml_rope_ext(
  9255. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9256. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9257. ext_factor, attn_factor, beta_fast, beta_slow
  9258. );
  9259. cb(Qcur, "Qcur", il);
  9260. Kcur = ggml_rope_ext(
  9261. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9262. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9263. ext_factor, attn_factor, beta_fast, beta_slow
  9264. );
  9265. cb(Kcur, "Kcur", il);
  9266. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9267. model.layers[il].wo, nullptr,
  9268. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9269. }
  9270. if (il == n_layer - 1) {
  9271. // skip computing output for unused tokens
  9272. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9273. n_tokens = n_outputs;
  9274. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9275. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9276. }
  9277. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9278. cb(ffn_inp, "ffn_inp", il);
  9279. // feed-forward network
  9280. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9281. NULL, NULL,
  9282. LLM_NORM, cb, il);
  9283. cb(cur, "ffn_norm", il);
  9284. cur = llm_build_ffn(ctx0, cur,
  9285. model.layers[il].ffn_up, NULL,
  9286. model.layers[il].ffn_gate, NULL,
  9287. model.layers[il].ffn_down, NULL,
  9288. NULL,
  9289. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9290. cb(cur, "ffn_out", il);
  9291. cur = ggml_add(ctx0, cur, ffn_inp);
  9292. cb(cur, "ffn_out", il);
  9293. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9294. if (layer_dir != nullptr) {
  9295. cur = ggml_add(ctx0, cur, layer_dir);
  9296. }
  9297. cb(cur, "l_out", il);
  9298. // input for next layer
  9299. inpL = cur;
  9300. }
  9301. cur = inpL;
  9302. cur = llm_build_norm(ctx0, cur, hparams,
  9303. NULL, NULL,
  9304. LLM_NORM, cb, -1);
  9305. cb(cur, "result_norm", -1);
  9306. // lm_head
  9307. cur = ggml_mul_mat(ctx0, model.output, cur);
  9308. cb(cur, "result_output", -1);
  9309. ggml_build_forward_expand(gf, cur);
  9310. return gf;
  9311. }
  9312. struct ggml_cgraph * build_gptneox() {
  9313. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9314. const int64_t n_embd_head = hparams.n_embd_head_v;
  9315. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9316. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9317. struct ggml_tensor * cur;
  9318. struct ggml_tensor * inpL;
  9319. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9320. // inp_pos - contains the positions
  9321. struct ggml_tensor * inp_pos = build_inp_pos();
  9322. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9323. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9324. for (int il = 0; il < n_layer; ++il) {
  9325. cur = llm_build_norm(ctx0, inpL, hparams,
  9326. model.layers[il].attn_norm,
  9327. model.layers[il].attn_norm_b,
  9328. LLM_NORM, cb, il);
  9329. cb(cur, "attn_norm", il);
  9330. // self-attention
  9331. {
  9332. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  9333. cb(cur, "wqkv", il);
  9334. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9335. cb(cur, "bqkv", il);
  9336. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9337. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9338. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9339. cb(Qcur, "Qcur", il);
  9340. cb(Kcur, "Kcur", il);
  9341. cb(Vcur, "Vcur", il);
  9342. Qcur = ggml_rope_ext(
  9343. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9344. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9345. ext_factor, attn_factor, beta_fast, beta_slow
  9346. );
  9347. cb(Qcur, "Qcur", il);
  9348. Kcur = ggml_rope_ext(
  9349. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9350. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9351. ext_factor, attn_factor, beta_fast, beta_slow
  9352. );
  9353. cb(Kcur, "Kcur", il);
  9354. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9355. model.layers[il].wo, model.layers[il].bo,
  9356. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9357. }
  9358. if (il == n_layer - 1) {
  9359. // skip computing output for unused tokens
  9360. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9361. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9362. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9363. }
  9364. // ffn
  9365. if (hparams.use_par_res) {
  9366. // attention and ffn are computed in parallel
  9367. // x = x + attn(ln1(x)) + ffn(ln2(x))
  9368. struct ggml_tensor * attn_out = cur;
  9369. cur = llm_build_norm(ctx0, inpL, hparams,
  9370. model.layers[il].ffn_norm,
  9371. model.layers[il].ffn_norm_b,
  9372. LLM_NORM, cb, il);
  9373. cb(cur, "ffn_norm", il);
  9374. cur = llm_build_ffn(ctx0, cur,
  9375. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9376. NULL, NULL,
  9377. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9378. NULL,
  9379. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9380. cb(cur, "ffn_out", il);
  9381. cur = ggml_add(ctx0, cur, inpL);
  9382. cb(cur, "ffn_out", il);
  9383. inpL = ggml_add(ctx0, cur, attn_out);
  9384. cb(inpL, "l_out", il);
  9385. } else {
  9386. // attention and ffn are computed sequentially
  9387. // x = x + attn(ln1(x))
  9388. // x = x + ffn(ln2(x))
  9389. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9390. cb(ffn_inp, "ffn_inp", il);
  9391. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9392. model.layers[il].ffn_norm,
  9393. model.layers[il].ffn_norm_b,
  9394. LLM_NORM, cb, il);
  9395. cb(cur, "ffn_norm", il);
  9396. cur = llm_build_ffn(ctx0, cur,
  9397. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9398. NULL, NULL,
  9399. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9400. NULL,
  9401. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9402. cb(cur, "ffn_out", il);
  9403. inpL = ggml_add(ctx0, cur, ffn_inp);
  9404. cb(inpL, "l_out", il);
  9405. }
  9406. }
  9407. cur = llm_build_norm(ctx0, inpL, hparams,
  9408. model.output_norm,
  9409. model.output_norm_b,
  9410. LLM_NORM, cb, -1);
  9411. cb(cur, "result_norm", -1);
  9412. cur = ggml_mul_mat(ctx0, model.output, cur);
  9413. cb(cur, "result_output", -1);
  9414. ggml_build_forward_expand(gf, cur);
  9415. return gf;
  9416. }
  9417. struct ggml_cgraph * build_arctic() {
  9418. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9419. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9420. int32_t n_tokens = this->n_tokens;
  9421. const int64_t n_embd_head = hparams.n_embd_head_v;
  9422. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9423. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9424. struct ggml_tensor * cur;
  9425. struct ggml_tensor * inpL;
  9426. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9427. // inp_pos - contains the positions
  9428. struct ggml_tensor * inp_pos = build_inp_pos();
  9429. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9430. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9431. for (int il = 0; il < n_layer; ++il) {
  9432. struct ggml_tensor * inpSA = inpL;
  9433. // norm
  9434. cur = llm_build_norm(ctx0, inpL, hparams,
  9435. model.layers[il].attn_norm, NULL,
  9436. LLM_NORM_RMS, cb, il);
  9437. cb(cur, "attn_norm", il);
  9438. // self-attention
  9439. {
  9440. // compute Q and K and RoPE them
  9441. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9442. cb(Qcur, "Qcur", il);
  9443. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9444. cb(Kcur, "Kcur", il);
  9445. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9446. cb(Vcur, "Vcur", il);
  9447. Qcur = ggml_rope_ext(
  9448. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9449. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9450. ext_factor, attn_factor, beta_fast, beta_slow
  9451. );
  9452. cb(Qcur, "Qcur", il);
  9453. Kcur = ggml_rope_ext(
  9454. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9455. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9456. ext_factor, attn_factor, beta_fast, beta_slow
  9457. );
  9458. cb(Kcur, "Kcur", il);
  9459. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9460. model.layers[il].wo, NULL,
  9461. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9462. }
  9463. if (il == n_layer - 1) {
  9464. // skip computing output for unused tokens
  9465. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9466. n_tokens = n_outputs;
  9467. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9468. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9469. }
  9470. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9471. cb(ffn_inp, "ffn_inp", il);
  9472. // feed-forward network
  9473. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9474. model.layers[il].ffn_norm, NULL,
  9475. LLM_NORM_RMS, cb, il);
  9476. cb(cur, "ffn_norm", il);
  9477. cur = llm_build_ffn(ctx0, cur,
  9478. model.layers[il].ffn_up, NULL,
  9479. model.layers[il].ffn_gate, NULL,
  9480. model.layers[il].ffn_down, NULL,
  9481. NULL,
  9482. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9483. cb(cur, "ffn_out", il);
  9484. struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  9485. cb(ffn_out, "ffn_out", il);
  9486. // MoE
  9487. cur = llm_build_norm(ctx0, inpSA, hparams,
  9488. model.layers[il].ffn_norm_exps, NULL,
  9489. LLM_NORM_RMS, cb, il);
  9490. cb(cur, "ffn_norm_exps", il);
  9491. cur = llm_build_moe_ffn(ctx0, cur,
  9492. model.layers[il].ffn_gate_inp,
  9493. model.layers[il].ffn_up_exps,
  9494. model.layers[il].ffn_gate_exps,
  9495. model.layers[il].ffn_down_exps,
  9496. n_expert, n_expert_used,
  9497. LLM_FFN_SILU, true,
  9498. false, 0.0,
  9499. cb, il);
  9500. cb(cur, "ffn_moe_out", il);
  9501. cur = ggml_add(ctx0, cur, ffn_out);
  9502. cb(cur, "ffn_out", il);
  9503. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9504. if (layer_dir != nullptr) {
  9505. cur = ggml_add(ctx0, cur, layer_dir);
  9506. }
  9507. cb(cur, "l_out", il);
  9508. // input for next layer
  9509. inpL = cur;
  9510. }
  9511. cur = inpL;
  9512. cur = llm_build_norm(ctx0, cur, hparams,
  9513. model.output_norm, NULL,
  9514. LLM_NORM_RMS, cb, -1);
  9515. cb(cur, "result_norm", -1);
  9516. // lm_head
  9517. cur = ggml_mul_mat(ctx0, model.output, cur);
  9518. cb(cur, "result_output", -1);
  9519. ggml_build_forward_expand(gf, cur);
  9520. return gf;
  9521. }
  9522. struct ggml_cgraph * build_deepseek2() {
  9523. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9524. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9525. int32_t n_tokens = this->n_tokens;
  9526. bool is_lite = (hparams.n_layer == 27);
  9527. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  9528. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  9529. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  9530. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  9531. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  9532. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9533. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9534. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9535. struct ggml_tensor * cur;
  9536. struct ggml_tensor * inpL;
  9537. // {n_embd, n_tokens}
  9538. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9539. // inp_pos - contains the positions
  9540. struct ggml_tensor * inp_pos = build_inp_pos();
  9541. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9542. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9543. for (int il = 0; il < n_layer; ++il) {
  9544. struct ggml_tensor * inpSA = inpL;
  9545. // norm
  9546. cur = llm_build_norm(ctx0, inpL, hparams,
  9547. model.layers[il].attn_norm, NULL,
  9548. LLM_NORM_RMS, cb, il);
  9549. cb(cur, "attn_norm", il);
  9550. // self_attention
  9551. {
  9552. struct ggml_tensor * q = NULL;
  9553. if (!is_lite) {
  9554. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  9555. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  9556. cb(q, "q", il);
  9557. q = llm_build_norm(ctx0, q, hparams,
  9558. model.layers[il].attn_q_a_norm, NULL,
  9559. LLM_NORM_RMS, cb, il);
  9560. cb(q, "q", il);
  9561. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  9562. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  9563. cb(q, "q", il);
  9564. } else {
  9565. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9566. cb(q, "q", il);
  9567. }
  9568. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9569. struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9570. ggml_row_size(q->type, hparams.n_embd_head_k),
  9571. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9572. 0);
  9573. cb(q_nope, "q_nope", il);
  9574. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9575. struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9576. ggml_row_size(q->type, hparams.n_embd_head_k),
  9577. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9578. ggml_row_size(q->type, n_embd_head_qk_nope));
  9579. cb(q_pe, "q_pe", il);
  9580. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  9581. struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  9582. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  9583. // split into {kv_lora_rank, n_tokens}
  9584. struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  9585. kv_pe_compresseed->nb[1],
  9586. 0);
  9587. cb(kv_compressed, "kv_compressed", il);
  9588. // and {n_embd_head_qk_rope, n_tokens}
  9589. struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  9590. kv_pe_compresseed->nb[1],
  9591. kv_pe_compresseed->nb[1],
  9592. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  9593. cb(k_pe, "k_pe", il);
  9594. kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
  9595. kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
  9596. model.layers[il].attn_kv_a_norm, NULL,
  9597. LLM_NORM_RMS, cb, il);
  9598. cb(kv_compressed, "kv_compressed", il);
  9599. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  9600. struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  9601. cb(kv, "kv", il);
  9602. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9603. struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  9604. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  9605. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9606. 0);
  9607. cb(k_nope, "k_nope", il);
  9608. // and {n_head * n_embd_head_v, n_tokens}
  9609. struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  9610. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9611. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  9612. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  9613. cb(v_states, "v_states", il);
  9614. v_states = ggml_cont(ctx0, v_states);
  9615. cb(v_states, "v_states", il);
  9616. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  9617. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  9618. 0);
  9619. cb(v_states, "v_states", il);
  9620. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9621. q_pe = ggml_rope_ext(
  9622. ctx0, q_pe, inp_pos, nullptr,
  9623. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9624. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9625. );
  9626. cb(q_pe, "q_pe", il);
  9627. // shared RoPE key
  9628. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9629. k_pe = ggml_rope_ext(
  9630. ctx0, k_pe, inp_pos, nullptr,
  9631. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9632. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9633. );
  9634. cb(k_pe, "k_pe", il);
  9635. struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  9636. cb(q_states, "q_states", il);
  9637. struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  9638. cb(k_states, "k_states", il);
  9639. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9640. model.layers[il].wo, NULL,
  9641. k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
  9642. }
  9643. if (il == n_layer - 1) {
  9644. // skip computing output for unused tokens
  9645. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9646. n_tokens = n_outputs;
  9647. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9648. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9649. }
  9650. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9651. cb(ffn_inp, "ffn_inp", il);
  9652. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  9653. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9654. model.layers[il].ffn_norm, NULL,
  9655. LLM_NORM_RMS, cb, il);
  9656. cb(cur, "ffn_norm", il);
  9657. cur = llm_build_ffn(ctx0, cur,
  9658. model.layers[il].ffn_up, NULL,
  9659. model.layers[il].ffn_gate, NULL,
  9660. model.layers[il].ffn_down, NULL,
  9661. NULL,
  9662. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9663. cb(cur, "ffn_out", il);
  9664. } else {
  9665. // MoE branch
  9666. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9667. model.layers[il].ffn_norm, NULL,
  9668. LLM_NORM_RMS, cb, il);
  9669. cb(cur, "ffn_norm", il);
  9670. ggml_tensor * moe_out =
  9671. llm_build_moe_ffn(ctx0, cur,
  9672. model.layers[il].ffn_gate_inp,
  9673. model.layers[il].ffn_up_exps,
  9674. model.layers[il].ffn_gate_exps,
  9675. model.layers[il].ffn_down_exps,
  9676. n_expert, n_expert_used,
  9677. LLM_FFN_SILU, false,
  9678. true, hparams.expert_weights_scale,
  9679. cb, il);
  9680. cb(moe_out, "ffn_moe_out", il);
  9681. // FFN shared expert
  9682. {
  9683. ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur,
  9684. model.layers[il].ffn_up_shexp, NULL,
  9685. model.layers[il].ffn_gate_shexp, NULL,
  9686. model.layers[il].ffn_down_shexp, NULL,
  9687. NULL,
  9688. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9689. cb(ffn_shexp, "ffn_shexp", il);
  9690. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9691. cb(cur, "ffn_out", il);
  9692. }
  9693. }
  9694. cur = ggml_add(ctx0, cur, ffn_inp);
  9695. cb(cur, "l_out", il);
  9696. // input for next layer
  9697. inpL = cur;
  9698. }
  9699. cur = inpL;
  9700. cur = llm_build_norm(ctx0, cur, hparams,
  9701. model.output_norm, NULL,
  9702. LLM_NORM_RMS, cb, -1);
  9703. cb(cur, "result_norm", -1);
  9704. // lm_head
  9705. cur = ggml_mul_mat(ctx0, model.output, cur);
  9706. cb(cur, "result_output", -1);
  9707. ggml_build_forward_expand(gf, cur);
  9708. return gf;
  9709. }
  9710. };
  9711. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  9712. llama_batch dummy;
  9713. dummy.n_tokens = 0;
  9714. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9715. struct llm_build_context llm(lctx, dummy, cb, false);
  9716. llm.init();
  9717. struct ggml_cgraph * result = llm.build_defrag(ids);
  9718. llm.free();
  9719. return result;
  9720. }
  9721. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  9722. llama_batch dummy;
  9723. dummy.n_tokens = 0;
  9724. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9725. struct llm_build_context llm(lctx, dummy, cb, false);
  9726. llm.init();
  9727. struct ggml_cgraph * result = llm.build_k_shift();
  9728. llm.free();
  9729. return result;
  9730. }
  9731. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  9732. llama_batch dummy;
  9733. dummy.n_tokens = 0;
  9734. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9735. struct llm_build_context llm(lctx, dummy, cb, false);
  9736. llm.init();
  9737. struct ggml_cgraph * result = llm.build_s_copy();
  9738. llm.free();
  9739. return result;
  9740. }
  9741. static struct ggml_cgraph * llama_build_graph(
  9742. llama_context & lctx,
  9743. const llama_batch & batch,
  9744. bool worst_case) {
  9745. const auto & model = lctx.model;
  9746. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  9747. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9748. if (il >= 0) {
  9749. ggml_format_name(cur, "%s-%d", name, il);
  9750. } else {
  9751. ggml_set_name(cur, name);
  9752. }
  9753. if (!lctx.cparams.offload_kqv) {
  9754. if (strcmp(name, "kqv_merged_cont") == 0) {
  9755. // all nodes between the KV store and the attention output are run on the CPU
  9756. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9757. }
  9758. }
  9759. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9760. // FIXME: fix in ggml_backend_sched
  9761. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9762. if (batch.n_tokens < 32 || full_offload) {
  9763. if (il != -1 && strcmp(name, "norm") == 0) {
  9764. for (auto * backend : lctx.backends) {
  9765. if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
  9766. (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
  9767. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9768. break;
  9769. }
  9770. }
  9771. }
  9772. }
  9773. };
  9774. struct ggml_cgraph * result = NULL;
  9775. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9776. llm.init();
  9777. switch (model.arch) {
  9778. case LLM_ARCH_LLAMA:
  9779. {
  9780. result = llm.build_llama();
  9781. } break;
  9782. case LLM_ARCH_BAICHUAN:
  9783. {
  9784. result = llm.build_baichuan();
  9785. } break;
  9786. case LLM_ARCH_FALCON:
  9787. {
  9788. result = llm.build_falcon();
  9789. } break;
  9790. case LLM_ARCH_GROK:
  9791. {
  9792. result = llm.build_grok();
  9793. } break;
  9794. case LLM_ARCH_STARCODER:
  9795. {
  9796. result = llm.build_starcoder();
  9797. } break;
  9798. case LLM_ARCH_REFACT:
  9799. {
  9800. result = llm.build_refact();
  9801. } break;
  9802. case LLM_ARCH_BERT:
  9803. case LLM_ARCH_JINA_BERT_V2:
  9804. case LLM_ARCH_NOMIC_BERT:
  9805. {
  9806. result = llm.build_bert();
  9807. } break;
  9808. case LLM_ARCH_BLOOM:
  9809. {
  9810. result = llm.build_bloom();
  9811. } break;
  9812. case LLM_ARCH_MPT:
  9813. {
  9814. result = llm.build_mpt();
  9815. } break;
  9816. case LLM_ARCH_STABLELM:
  9817. {
  9818. result = llm.build_stablelm();
  9819. } break;
  9820. case LLM_ARCH_QWEN:
  9821. {
  9822. result = llm.build_qwen();
  9823. } break;
  9824. case LLM_ARCH_QWEN2:
  9825. {
  9826. result = llm.build_qwen2();
  9827. } break;
  9828. case LLM_ARCH_QWEN2MOE:
  9829. {
  9830. result = llm.build_qwen2moe();
  9831. } break;
  9832. case LLM_ARCH_PHI2:
  9833. {
  9834. result = llm.build_phi2();
  9835. } break;
  9836. case LLM_ARCH_PHI3:
  9837. {
  9838. result = llm.build_phi3();
  9839. } break;
  9840. case LLM_ARCH_PLAMO:
  9841. {
  9842. result = llm.build_plamo();
  9843. } break;
  9844. case LLM_ARCH_GPT2:
  9845. {
  9846. result = llm.build_gpt2();
  9847. } break;
  9848. case LLM_ARCH_CODESHELL:
  9849. {
  9850. result = llm.build_codeshell();
  9851. } break;
  9852. case LLM_ARCH_ORION:
  9853. {
  9854. result = llm.build_orion();
  9855. } break;
  9856. case LLM_ARCH_INTERNLM2:
  9857. {
  9858. result = llm.build_internlm2();
  9859. } break;
  9860. case LLM_ARCH_MINICPM:
  9861. {
  9862. result = llm.build_minicpm();
  9863. } break;
  9864. case LLM_ARCH_GEMMA:
  9865. {
  9866. result = llm.build_gemma();
  9867. } break;
  9868. case LLM_ARCH_STARCODER2:
  9869. {
  9870. result = llm.build_starcoder2();
  9871. } break;
  9872. case LLM_ARCH_MAMBA:
  9873. {
  9874. result = llm.build_mamba();
  9875. } break;
  9876. case LLM_ARCH_XVERSE:
  9877. {
  9878. result = llm.build_xverse();
  9879. } break;
  9880. case LLM_ARCH_COMMAND_R:
  9881. {
  9882. result = llm.build_command_r();
  9883. } break;
  9884. case LLM_ARCH_DBRX:
  9885. {
  9886. result = llm.build_dbrx();
  9887. } break;
  9888. case LLM_ARCH_OLMO:
  9889. {
  9890. result = llm.build_olmo();
  9891. } break;
  9892. case LLM_ARCH_GPTNEOX:
  9893. {
  9894. result = llm.build_gptneox();
  9895. } break;
  9896. case LLM_ARCH_ARCTIC:
  9897. {
  9898. result = llm.build_arctic();
  9899. } break;
  9900. case LLM_ARCH_DEEPSEEK2:
  9901. {
  9902. result = llm.build_deepseek2();
  9903. } break;
  9904. default:
  9905. GGML_ASSERT(false);
  9906. }
  9907. llm.free();
  9908. return result;
  9909. }
  9910. static void llama_set_k_shift(llama_context & lctx) {
  9911. const int64_t kv_size = lctx.kv_self.size;
  9912. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9913. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9914. for (int i = 0; i < kv_size; ++i) {
  9915. data[i] = lctx.kv_self.cells[i].delta;
  9916. }
  9917. }
  9918. static void llama_set_s_copy(llama_context & lctx) {
  9919. const int64_t kv_size = lctx.kv_self.size;
  9920. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9921. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9922. for (int i = 0; i < kv_size; ++i) {
  9923. data[i] = lctx.kv_self.cells[i].src;
  9924. }
  9925. }
  9926. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9927. //
  9928. // set input data
  9929. //
  9930. const auto & hparams = lctx.model.hparams;
  9931. const auto & cparams = lctx.cparams;
  9932. const auto & kv_self = lctx.kv_self;
  9933. if (batch.token) {
  9934. const int64_t n_tokens = batch.n_tokens;
  9935. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9936. }
  9937. if (batch.embd) {
  9938. const int64_t n_embd = hparams.n_embd;
  9939. const int64_t n_tokens = batch.n_tokens;
  9940. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9941. }
  9942. if (batch.pos && lctx.inp_pos) {
  9943. const int64_t n_tokens = batch.n_tokens;
  9944. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9945. }
  9946. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9947. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9948. const int64_t n_tokens = batch.n_tokens;
  9949. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9950. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9951. if (lctx.n_outputs == n_tokens) {
  9952. for (int i = 0; i < n_tokens; ++i) {
  9953. data[i] = i;
  9954. }
  9955. } else if (batch.logits) {
  9956. int32_t n_outputs = 0;
  9957. for (int i = 0; i < n_tokens; ++i) {
  9958. if (batch.logits[i]) {
  9959. data[n_outputs++] = i;
  9960. }
  9961. }
  9962. // the graph needs to have been passed the correct number of outputs
  9963. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9964. } else if (lctx.n_outputs == 1) {
  9965. // only keep last output
  9966. data[0] = n_tokens - 1;
  9967. } else {
  9968. GGML_ASSERT(lctx.n_outputs == 0);
  9969. }
  9970. }
  9971. GGML_ASSERT(
  9972. // (!a || b) is a logical implication (a -> b)
  9973. // !hparams.causal_attn -> !cparams.causal_attn
  9974. (hparams.causal_attn || !cparams.causal_attn) &&
  9975. "causal attention with embedding models is not supported"
  9976. );
  9977. if (lctx.inp_KQ_mask) {
  9978. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9979. if (cparams.causal_attn) {
  9980. const int64_t n_kv = kv_self.n;
  9981. const int64_t n_tokens = batch.n_tokens;
  9982. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9983. float * data = (float *) lctx.inp_KQ_mask->data;
  9984. // For causal attention, use only the previous KV cells
  9985. // of the correct sequence for each token of the batch.
  9986. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9987. for (int h = 0; h < 1; ++h) {
  9988. for (int j = 0; j < n_tokens; ++j) {
  9989. const llama_pos pos = batch.pos[j];
  9990. const llama_seq_id seq_id = batch.seq_id[j][0];
  9991. for (int i = 0; i < n_kv; ++i) {
  9992. float f;
  9993. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9994. f = -INFINITY;
  9995. } else {
  9996. if (hparams.use_alibi) {
  9997. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9998. } else {
  9999. f = 0.0f;
  10000. }
  10001. }
  10002. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  10003. }
  10004. }
  10005. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  10006. for (int j = 0; j < n_kv; ++j) {
  10007. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  10008. }
  10009. }
  10010. }
  10011. } else {
  10012. // when using kv cache, the mask needs to match the kv cache size
  10013. const int64_t n_tokens = batch.n_tokens;
  10014. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  10015. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  10016. float * data = (float *) lctx.inp_KQ_mask->data;
  10017. for (int h = 0; h < 1; ++h) {
  10018. for (int j = 0; j < n_tokens; ++j) {
  10019. const llama_seq_id seq_id = batch.seq_id[j][0];
  10020. for (int i = 0; i < n_tokens; ++i) {
  10021. float f = -INFINITY;
  10022. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  10023. if (batch.seq_id[i][s] == seq_id) {
  10024. if (hparams.use_alibi) {
  10025. f = -fabs(batch.pos[i] - batch.pos[j]);
  10026. } else {
  10027. f = 0.0f;
  10028. }
  10029. break;
  10030. }
  10031. }
  10032. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  10033. }
  10034. for (int i = n_tokens; i < n_stride; ++i) {
  10035. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  10036. }
  10037. }
  10038. }
  10039. }
  10040. }
  10041. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  10042. const int64_t n_tokens = batch.n_tokens;
  10043. GGML_ASSERT(lctx.inp_mean);
  10044. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  10045. float * data = (float *) lctx.inp_mean->data;
  10046. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  10047. std::vector<uint64_t> sum(n_tokens, 0);
  10048. for (int i = 0; i < n_tokens; ++i) {
  10049. const llama_seq_id seq_id = batch.seq_id[i][0];
  10050. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  10051. sum[seq_id] += 1;
  10052. }
  10053. std::vector<float> div(n_tokens, 0.0f);
  10054. for (int i = 0; i < n_tokens; ++i) {
  10055. const uint64_t s = sum[i];
  10056. if (s > 0) {
  10057. div[i] = 1.0f/float(s);
  10058. }
  10059. }
  10060. for (int i = 0; i < n_tokens; ++i) {
  10061. const llama_seq_id seq_id = batch.seq_id[i][0];
  10062. data[seq_id*n_tokens + i] = div[seq_id];
  10063. }
  10064. }
  10065. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  10066. const int64_t n_tokens = batch.n_tokens;
  10067. GGML_ASSERT(lctx.inp_cls);
  10068. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  10069. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  10070. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  10071. for (int i = 0; i < n_tokens; ++i) {
  10072. const llama_seq_id seq_id = batch.seq_id[i][0];
  10073. const llama_pos pos = batch.pos[i];
  10074. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  10075. if (pos == 0) {
  10076. data[seq_id] = i;
  10077. }
  10078. }
  10079. }
  10080. if (kv_self.recurrent) {
  10081. const int64_t n_kv = kv_self.n;
  10082. if (lctx.inp_s_mask) {
  10083. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  10084. float * data = (float *) lctx.inp_s_mask->data;
  10085. // states which are not affected by the current batch are left untouched
  10086. for (int i = 0; i < n_kv; ++i) {
  10087. llama_seq_id seq_id = i + lctx.kv_self.head;
  10088. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  10089. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  10090. data[i] = (float) has_self_seq;
  10091. // ensure current sequences will be kept
  10092. if (!has_self_seq && kv_cell.pos >= 0) {
  10093. kv_cell.seq_id.insert(seq_id);
  10094. }
  10095. }
  10096. }
  10097. // For Mamba (and other recurrent architectures),
  10098. // update the correct state(s)/sequence(s) for each token of the batch.
  10099. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  10100. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  10101. if (lctx.inp_s_seq) {
  10102. const int64_t n_tokens = batch.n_tokens;
  10103. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  10104. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  10105. for (int j = 0; j < n_tokens; ++j) {
  10106. const int32_t n_seq = batch.n_seq_id[j];
  10107. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  10108. for (int i = 0; i < n_kv; ++i) {
  10109. if (i < n_seq) {
  10110. // for this type of model, the head is the minimum seq_id of the batch
  10111. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  10112. } else {
  10113. data[j*n_kv + i] = -1;
  10114. }
  10115. }
  10116. }
  10117. }
  10118. }
  10119. }
  10120. // Make sure enough space is available for outputs.
  10121. // Returns max number of outputs for which space was reserved.
  10122. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  10123. const auto & cparams = lctx.cparams;
  10124. const auto & hparams = lctx.model.hparams;
  10125. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  10126. const auto n_batch = cparams.n_batch;
  10127. const auto n_vocab = hparams.n_vocab;
  10128. const auto n_embd = hparams.n_embd;
  10129. // TODO: use a per-batch flag for logits presence instead
  10130. const bool has_logits = cparams.causal_attn;
  10131. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  10132. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  10133. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  10134. if (lctx.output_ids.empty()) {
  10135. // init, never resized afterwards
  10136. lctx.output_ids.resize(n_batch);
  10137. }
  10138. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  10139. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  10140. // alloc only when more than the current capacity is required
  10141. // TODO: also consider shrinking the buffer
  10142. if (!lctx.buf_output || prev_size < new_size) {
  10143. if (lctx.buf_output) {
  10144. #ifndef NDEBUG
  10145. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  10146. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  10147. #endif
  10148. ggml_backend_buffer_free(lctx.buf_output);
  10149. lctx.buf_output = nullptr;
  10150. lctx.logits = nullptr;
  10151. lctx.embd = nullptr;
  10152. }
  10153. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  10154. if (lctx.buf_output == nullptr) {
  10155. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  10156. return 0;
  10157. }
  10158. }
  10159. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  10160. lctx.logits = has_logits ? output_base : nullptr;
  10161. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  10162. lctx.output_size = n_outputs_max;
  10163. lctx.logits_size = logits_size;
  10164. lctx.embd_size = embd_size;
  10165. // set all ids as invalid (negative)
  10166. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  10167. ggml_backend_buffer_clear(lctx.buf_output, 0);
  10168. lctx.n_outputs = 0;
  10169. return n_outputs_max;
  10170. }
  10171. static void llama_graph_compute(
  10172. llama_context & lctx,
  10173. ggml_cgraph * gf,
  10174. int n_threads) {
  10175. #ifdef GGML_USE_METAL
  10176. if (ggml_backend_is_metal(lctx.backend_metal)) {
  10177. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  10178. }
  10179. #endif
  10180. if (lctx.backend_cpu != nullptr) {
  10181. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  10182. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  10183. }
  10184. #ifdef GGML_USE_BLAS
  10185. if (lctx.backend_blas != nullptr) {
  10186. ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
  10187. }
  10188. #endif
  10189. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  10190. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  10191. }
  10192. // decode a batch of tokens by evaluating the transformer
  10193. //
  10194. // - lctx: llama context
  10195. // - batch: batch to evaluate
  10196. //
  10197. // return 0 on success
  10198. // return positive int on warning
  10199. // return negative int on error
  10200. //
  10201. static int llama_decode_internal(
  10202. llama_context & lctx,
  10203. llama_batch batch_all) { // TODO: rename back to batch
  10204. const uint32_t n_tokens_all = batch_all.n_tokens;
  10205. if (n_tokens_all == 0) {
  10206. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  10207. return -1;
  10208. }
  10209. const auto & model = lctx.model;
  10210. const auto & hparams = model.hparams;
  10211. const auto & cparams = lctx.cparams;
  10212. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  10213. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  10214. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  10215. if (lctx.t_compute_start_us == 0) {
  10216. lctx.t_compute_start_us = ggml_time_us();
  10217. }
  10218. lctx.n_queued_tokens += n_tokens_all;
  10219. auto & kv_self = lctx.kv_self;
  10220. const int64_t n_embd = hparams.n_embd;
  10221. const int64_t n_vocab = hparams.n_vocab;
  10222. uint32_t n_outputs = 0;
  10223. uint32_t n_outputs_prev = 0;
  10224. const auto n_ubatch = cparams.n_ubatch;
  10225. std::vector<llama_pos> pos;
  10226. std::vector<int32_t> n_seq_id;
  10227. std::vector<llama_seq_id *> seq_id_arr;
  10228. std::vector<std::vector<llama_seq_id>> seq_id;
  10229. // count outputs
  10230. if (batch_all.logits) {
  10231. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10232. n_outputs += batch_all.logits[i] != 0;
  10233. }
  10234. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  10235. n_outputs = n_tokens_all;
  10236. } else {
  10237. // keep last output only
  10238. n_outputs = 1;
  10239. }
  10240. // reserve output buffer
  10241. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  10242. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  10243. return -2;
  10244. };
  10245. // set output mappings
  10246. if (batch_all.logits) {
  10247. int32_t i_logits = 0;
  10248. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10249. if (batch_all.logits[i]) {
  10250. lctx.output_ids[i] = i_logits++;
  10251. }
  10252. }
  10253. } else {
  10254. for (uint32_t i = 0; i < n_outputs; ++i) {
  10255. lctx.output_ids[i] = i;
  10256. }
  10257. }
  10258. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  10259. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  10260. llama_batch u_batch = {
  10261. /* .n_tokens = */ (int32_t) n_tokens,
  10262. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  10263. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  10264. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  10265. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  10266. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  10267. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  10268. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  10269. /* .all_pos_1 = */ batch_all.all_pos_1,
  10270. /* .all_seq_id = */ batch_all.all_seq_id,
  10271. };
  10272. // count the outputs in this u_batch
  10273. {
  10274. int32_t n_outputs_new = 0;
  10275. if (u_batch.logits) {
  10276. for (uint32_t i = 0; i < n_tokens; i++) {
  10277. n_outputs_new += u_batch.logits[i] != 0;
  10278. }
  10279. } else if (n_outputs == n_tokens_all) {
  10280. n_outputs_new = n_tokens;
  10281. } else {
  10282. // keep last output only
  10283. if (cur_token + n_tokens >= n_tokens_all) {
  10284. n_outputs_new = 1;
  10285. }
  10286. }
  10287. // needs to happen before the graph is built
  10288. lctx.n_outputs = n_outputs_new;
  10289. }
  10290. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  10291. GGML_ASSERT(n_threads > 0);
  10292. // helpers for smoother batch API transition
  10293. // after deprecating the llama_eval calls, these will be removed
  10294. if (u_batch.pos == nullptr) {
  10295. pos.resize(n_tokens);
  10296. for (uint32_t i = 0; i < n_tokens; i++) {
  10297. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  10298. }
  10299. u_batch.pos = pos.data();
  10300. }
  10301. if (u_batch.seq_id == nullptr) {
  10302. n_seq_id.resize(n_tokens);
  10303. seq_id.resize(n_tokens);
  10304. seq_id_arr.resize(n_tokens);
  10305. for (uint32_t i = 0; i < n_tokens; i++) {
  10306. n_seq_id[i] = 1;
  10307. seq_id[i].resize(1);
  10308. seq_id[i][0] = u_batch.all_seq_id;
  10309. seq_id_arr[i] = seq_id[i].data();
  10310. }
  10311. u_batch.n_seq_id = n_seq_id.data();
  10312. u_batch.seq_id = seq_id_arr.data();
  10313. }
  10314. // non-causal masks do not use the KV cache
  10315. if (hparams.causal_attn) {
  10316. llama_kv_cache_update(&lctx);
  10317. // if we have enough unused cells before the current head ->
  10318. // better to start searching from the beginning of the cache, hoping to fill it
  10319. if (kv_self.head > kv_self.used + 2*n_tokens) {
  10320. kv_self.head = 0;
  10321. }
  10322. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  10323. return 1;
  10324. }
  10325. if (!kv_self.recurrent) {
  10326. // a heuristic, to avoid attending the full cache if it is not yet utilized
  10327. // after enough generations, the benefit from this heuristic disappears
  10328. // if we start defragmenting the cache, the benefit from this will be more important
  10329. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  10330. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  10331. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  10332. }
  10333. }
  10334. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  10335. ggml_backend_sched_reset(lctx.sched);
  10336. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  10337. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  10338. // the output is always the last tensor in the graph
  10339. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  10340. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  10341. if (lctx.n_outputs == 0) {
  10342. // no output
  10343. res = nullptr;
  10344. embd = nullptr;
  10345. } else if (!hparams.causal_attn) {
  10346. res = nullptr; // do not extract logits for embedding models such as BERT
  10347. // token or sequence embeddings
  10348. embd = gf->nodes[gf->n_nodes - 1];
  10349. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  10350. } else if (cparams.embeddings) {
  10351. // the embeddings could be in the second to last tensor, or any of the previous tensors
  10352. int i_embd = gf->n_nodes - 2;
  10353. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  10354. i_embd = gf->n_nodes - i;
  10355. if (i_embd < 0) { break; }
  10356. embd = gf->nodes[i_embd];
  10357. }
  10358. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  10359. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  10360. if (!cparams.causal_attn) {
  10361. res = nullptr; // do not extract logits when not needed
  10362. // skip computing logits
  10363. // TODO: is this safe?
  10364. gf->n_nodes = i_embd + 1;
  10365. }
  10366. } else {
  10367. embd = nullptr; // do not extract embeddings when not needed
  10368. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  10369. }
  10370. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  10371. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10372. llama_set_inputs(lctx, u_batch);
  10373. llama_graph_compute(lctx, gf, n_threads);
  10374. // update the kv ring buffer
  10375. {
  10376. kv_self.head += n_tokens;
  10377. // Ensure kv cache head points to a valid index.
  10378. if (kv_self.head >= kv_self.size) {
  10379. kv_self.head = 0;
  10380. }
  10381. }
  10382. #ifdef GGML_PERF
  10383. // print timing information per ggml operation (for debugging purposes)
  10384. // requires GGML_PERF to be defined
  10385. ggml_graph_print(gf);
  10386. #endif
  10387. // plot the computation graph in dot format (for debugging purposes)
  10388. //if (n_past%100 == 0) {
  10389. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  10390. //}
  10391. // extract logits
  10392. if (res) {
  10393. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  10394. GGML_ASSERT(backend_res != nullptr);
  10395. GGML_ASSERT(lctx.logits != nullptr);
  10396. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  10397. const int32_t n_outputs_new = lctx.n_outputs;
  10398. if (n_outputs_new) {
  10399. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10400. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  10401. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  10402. }
  10403. }
  10404. // extract embeddings
  10405. if (embd) {
  10406. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  10407. GGML_ASSERT(backend_embd != nullptr);
  10408. switch (cparams.pooling_type) {
  10409. case LLAMA_POOLING_TYPE_NONE:
  10410. {
  10411. // extract token embeddings
  10412. GGML_ASSERT(lctx.embd != nullptr);
  10413. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  10414. const int32_t n_outputs_new = lctx.n_outputs;
  10415. if (n_outputs_new) {
  10416. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10417. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  10418. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  10419. }
  10420. } break;
  10421. case LLAMA_POOLING_TYPE_CLS:
  10422. case LLAMA_POOLING_TYPE_MEAN:
  10423. {
  10424. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  10425. // extract sequence embeddings
  10426. auto & embd_seq_out = lctx.embd_seq;
  10427. embd_seq_out.clear();
  10428. for (uint32_t i = 0; i < n_tokens; i++) {
  10429. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  10430. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  10431. continue;
  10432. }
  10433. embd_seq_out[seq_id].resize(n_embd);
  10434. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  10435. }
  10436. } break;
  10437. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  10438. {
  10439. GGML_ASSERT(false && "unknown pooling type");
  10440. } break;
  10441. }
  10442. }
  10443. n_outputs_prev += lctx.n_outputs;
  10444. }
  10445. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  10446. lctx.n_outputs = n_outputs;
  10447. // wait for the computation to finish (automatically done when obtaining the model output)
  10448. //llama_synchronize(&lctx);
  10449. // decide if we need to defrag the kv cache
  10450. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  10451. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  10452. // queue defragmentation for next llama_kv_cache_update
  10453. if (fragmentation > cparams.defrag_thold) {
  10454. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  10455. llama_kv_cache_defrag(kv_self);
  10456. }
  10457. }
  10458. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  10459. // overlap with device computation.
  10460. ggml_backend_sched_reset(lctx.sched);
  10461. return 0;
  10462. }
  10463. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  10464. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  10465. auto & kv_self = lctx.kv_self;
  10466. const auto & hparams = lctx.model.hparams;
  10467. const uint32_t n_layer = hparams.n_layer;
  10468. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  10469. const uint32_t n_used = kv_self.used;
  10470. assert(n_used <= n_kv);
  10471. //const int64_t t_start = ggml_time_us();
  10472. // number of cells moved
  10473. uint32_t n_moves = 0;
  10474. // each move requires 6*n_layer tensors (see build_defrag)
  10475. // - source view, destination view, copy operation
  10476. // - x2 for keys and values
  10477. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  10478. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  10479. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  10480. // determine which KV cells to move where
  10481. //
  10482. // cell i moves to ids[i]
  10483. //
  10484. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  10485. //
  10486. std::vector<uint32_t> ids(n_kv, n_kv);
  10487. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  10488. const auto & cell0 = kv_self.cells[i0];
  10489. if (!cell0.is_empty()) {
  10490. ids[i0] = i0;
  10491. continue;
  10492. }
  10493. // found a hole - fill it with data from the end of the cache
  10494. uint32_t nh = 1;
  10495. // determine the size of the hole
  10496. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  10497. nh++;
  10498. }
  10499. uint32_t nf = 0;
  10500. uint32_t is = n_kv - 1;
  10501. // starting from the end, find nh non-empty cells
  10502. for (; is > i0; --is) {
  10503. const auto & cell1 = kv_self.cells[is];
  10504. if (cell1.is_empty() || ids[is] != n_kv) {
  10505. continue;
  10506. }
  10507. // non-empty cell which is not yet moved
  10508. nf++;
  10509. if (nf == nh) {
  10510. break;
  10511. }
  10512. }
  10513. // this can only happen if `n_used` is not accurate, which would be a bug
  10514. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  10515. nf = 0;
  10516. uint32_t i1 = is;
  10517. // are we moving a continuous block of memory?
  10518. bool cont = false;
  10519. // should we stop searching for the next move?
  10520. bool stop = false;
  10521. // go back and move the nf cells to the hole
  10522. for (; i1 < n_kv; ++i1) {
  10523. auto & cell1 = kv_self.cells[i1];
  10524. if (cell1.is_empty() || ids[i1] != n_kv) {
  10525. if (n_moves == max_moves) {
  10526. stop = true;
  10527. break;
  10528. }
  10529. cont = false;
  10530. continue;
  10531. }
  10532. // this cell goes to (i0 + nf)
  10533. ids[i1] = i0 + nf;
  10534. // move the cell meta data
  10535. kv_self.cells[i0 + nf] = cell1;
  10536. // clear the old cell and move the head there
  10537. cell1 = llama_kv_cell();
  10538. kv_self.head = n_used;
  10539. if (!cont) {
  10540. n_moves++;
  10541. cont = true;
  10542. }
  10543. nf++;
  10544. if (nf == nh) {
  10545. break;
  10546. }
  10547. }
  10548. if (stop || n_moves == max_moves) {
  10549. break;
  10550. }
  10551. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  10552. i0 += nh - 1;
  10553. }
  10554. if (n_moves == 0) {
  10555. return;
  10556. }
  10557. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  10558. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  10559. #if 0
  10560. // CPU defrag
  10561. //
  10562. // TODO: optimizations are possible:
  10563. // - multiple threads
  10564. // - avoid copying to the host memory when already there
  10565. //
  10566. // likely not worth the effort, as we have ggml_graph based defrag
  10567. //
  10568. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  10569. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  10570. const uint32_t kv_size = kv_self.size;
  10571. std::vector<uint8_t> buf_k;
  10572. std::vector<uint8_t> buf_v;
  10573. for (uint32_t il = 0; il < n_layer; ++il) {
  10574. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  10575. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  10576. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  10577. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  10578. buf_k.resize(k_size);
  10579. buf_v.resize(v_size);
  10580. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10581. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10582. // batch move [i, i+nm) to [id, id+nm)
  10583. // note: cells can move only to a lower index
  10584. for (uint32_t i = 0; i < n_kv; ++i) {
  10585. const uint32_t id = ids[i];
  10586. if (i == id || id == n_kv) {
  10587. continue;
  10588. }
  10589. uint32_t nm = 1;
  10590. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  10591. nm++;
  10592. }
  10593. // move keys
  10594. {
  10595. const int64_t os = i*k_size_row;
  10596. const int64_t od = id*k_size_row;
  10597. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  10598. }
  10599. // move values (note: they are transposed)
  10600. {
  10601. const int64_t os = i;
  10602. const int64_t od = id;
  10603. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  10604. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  10605. }
  10606. }
  10607. i += nm - 1;
  10608. }
  10609. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10610. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10611. }
  10612. #else
  10613. // ggml_graph defrag
  10614. ggml_backend_sched_reset(lctx.sched);
  10615. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  10616. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10617. #endif
  10618. //const int64_t t_end = ggml_time_us();
  10619. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  10620. }
  10621. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  10622. bool need_reserve = false;
  10623. // apply K-shift if needed
  10624. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  10625. {
  10626. ggml_backend_sched_reset(lctx.sched);
  10627. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  10628. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10629. llama_set_k_shift(lctx);
  10630. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10631. need_reserve = true;
  10632. }
  10633. {
  10634. auto & kv_self = lctx.kv_self;
  10635. kv_self.has_shift = false;
  10636. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10637. kv_self.cells[i].delta = 0;
  10638. }
  10639. }
  10640. }
  10641. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  10642. {
  10643. ggml_backend_sched_reset(lctx.sched);
  10644. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  10645. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10646. llama_set_s_copy(lctx);
  10647. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10648. need_reserve = true;
  10649. }
  10650. {
  10651. auto & kv_self = lctx.kv_self;
  10652. kv_self.do_copy = false;
  10653. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10654. kv_self.cells[i].src = i;
  10655. }
  10656. }
  10657. }
  10658. // defragment the KV cache if needed
  10659. if (lctx.kv_self.do_defrag) {
  10660. llama_kv_cache_defrag_internal(lctx);
  10661. need_reserve = true;
  10662. lctx.kv_self.do_defrag = false;
  10663. }
  10664. // reserve a worst case graph again
  10665. if (need_reserve) {
  10666. // TODO: extract to a function
  10667. // build worst-case graph
  10668. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  10669. int n_past = lctx.cparams.n_ctx - n_tokens;
  10670. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  10671. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  10672. // initialize scheduler with the worst-case graph
  10673. ggml_backend_sched_reset(lctx.sched);
  10674. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  10675. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  10676. }
  10677. }
  10678. }
  10679. //
  10680. // tokenizer
  10681. //
  10682. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  10683. return vocab.type;
  10684. }
  10685. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  10686. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10687. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  10688. }
  10689. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  10690. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10691. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  10692. }
  10693. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  10694. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10695. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  10696. }
  10697. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  10698. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10699. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  10700. }
  10701. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  10702. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10703. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  10704. }
  10705. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  10706. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10707. GGML_ASSERT(llama_is_byte_token(vocab, id));
  10708. const auto & token_data = vocab.id_to_token.at(id);
  10709. switch (llama_vocab_get_type(vocab)) {
  10710. case LLAMA_VOCAB_TYPE_SPM: {
  10711. auto buf = token_data.text.substr(3, 2);
  10712. return strtol(buf.c_str(), NULL, 16);
  10713. }
  10714. case LLAMA_VOCAB_TYPE_BPE: {
  10715. GGML_ASSERT(false);
  10716. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  10717. }
  10718. case LLAMA_VOCAB_TYPE_WPM: {
  10719. GGML_ASSERT(false);
  10720. }
  10721. default:
  10722. GGML_ASSERT(false);
  10723. }
  10724. }
  10725. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  10726. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10727. static const char * hex = "0123456789ABCDEF";
  10728. switch (llama_vocab_get_type(vocab)) {
  10729. case LLAMA_VOCAB_TYPE_SPM: {
  10730. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  10731. auto token = vocab.token_to_id.find(buf);
  10732. if (token != vocab.token_to_id.end()) {
  10733. return (*token).second;
  10734. }
  10735. // Try to fall back to just the byte as a string
  10736. const char buf2[2] = { (char)ch, 0 };
  10737. return vocab.token_to_id.at(buf2);
  10738. }
  10739. case LLAMA_VOCAB_TYPE_WPM:
  10740. case LLAMA_VOCAB_TYPE_BPE: {
  10741. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  10742. }
  10743. default:
  10744. GGML_ASSERT(false);
  10745. }
  10746. }
  10747. static void llama_escape_whitespace(std::string & text) {
  10748. replace_all(text, " ", "\xe2\x96\x81");
  10749. }
  10750. static void llama_unescape_whitespace(std::string & word) {
  10751. replace_all(word, "\xe2\x96\x81", " ");
  10752. }
  10753. struct llm_symbol {
  10754. using index = int;
  10755. index prev;
  10756. index next;
  10757. const char * text;
  10758. size_t n;
  10759. };
  10760. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10761. // SPM tokenizer
  10762. // original implementation:
  10763. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10764. struct llm_bigram_spm {
  10765. struct comparator {
  10766. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10767. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10768. }
  10769. };
  10770. using queue_storage = std::vector<llm_bigram_spm>;
  10771. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10772. llm_symbol::index left;
  10773. llm_symbol::index right;
  10774. float score;
  10775. size_t size;
  10776. };
  10777. struct llm_tokenizer_spm {
  10778. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10779. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10780. // split string into utf8 chars
  10781. int index = 0;
  10782. size_t offs = 0;
  10783. while (offs < text.size()) {
  10784. llm_symbol sym;
  10785. size_t len = utf8_len(text[offs]);
  10786. sym.text = text.c_str() + offs;
  10787. sym.n = std::min(len, text.size() - offs);
  10788. offs += sym.n;
  10789. sym.prev = index - 1;
  10790. sym.next = offs == text.size() ? -1 : index + 1;
  10791. index++;
  10792. symbols.emplace_back(sym);
  10793. }
  10794. // seed the work queue with all possible 2-character tokens.
  10795. for (size_t i = 1; i < symbols.size(); ++i) {
  10796. try_add_bigram(i - 1, i);
  10797. }
  10798. // keep substituting the highest frequency pairs for as long as we can.
  10799. while (!work_queue.empty()) {
  10800. auto bigram = work_queue.top();
  10801. work_queue.pop();
  10802. auto & left_sym = symbols[bigram.left];
  10803. auto & right_sym = symbols[bigram.right];
  10804. // if one of the symbols already got merged, skip it.
  10805. if (left_sym.n == 0 || right_sym.n == 0 ||
  10806. left_sym.n + right_sym.n != bigram.size) {
  10807. continue;
  10808. }
  10809. // merge the right sym into the left one
  10810. left_sym.n += right_sym.n;
  10811. right_sym.n = 0;
  10812. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10813. // remove the right sym from the chain
  10814. left_sym.next = right_sym.next;
  10815. if (right_sym.next >= 0) {
  10816. symbols[right_sym.next].prev = bigram.left;
  10817. }
  10818. // find more substitutions
  10819. try_add_bigram(left_sym.prev, bigram.left);
  10820. try_add_bigram(bigram.left, left_sym.next);
  10821. }
  10822. for (int i = 0; i != -1; i = symbols[i].next) {
  10823. auto & symbol = symbols[i];
  10824. resegment(symbol, output);
  10825. }
  10826. }
  10827. private:
  10828. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10829. auto text = std::string(symbol.text, symbol.n);
  10830. auto token = vocab.token_to_id.find(text);
  10831. // Do we need to support is_unused?
  10832. if (token != vocab.token_to_id.end()) {
  10833. output.push_back((*token).second);
  10834. return;
  10835. }
  10836. const auto p = rev_merge.find(text);
  10837. if (p == rev_merge.end()) {
  10838. // output any symbols that did not form tokens as bytes.
  10839. output.reserve(output.size() + symbol.n);
  10840. for (int j = 0; j < (int)symbol.n; ++j) {
  10841. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10842. output.push_back(token_id);
  10843. }
  10844. return;
  10845. }
  10846. resegment(symbols[p->second.first], output);
  10847. resegment(symbols[p->second.second], output);
  10848. }
  10849. void try_add_bigram(int left, int right) {
  10850. if (left == -1 || right == -1) {
  10851. return;
  10852. }
  10853. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10854. auto token = vocab.token_to_id.find(text);
  10855. if (token == vocab.token_to_id.end()) {
  10856. return;
  10857. }
  10858. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10859. return;
  10860. }
  10861. const auto & tok_data = vocab.id_to_token[(*token).second];
  10862. llm_bigram_spm bigram;
  10863. bigram.left = left;
  10864. bigram.right = right;
  10865. bigram.score = tok_data.score;
  10866. bigram.size = text.size();
  10867. work_queue.push(bigram);
  10868. // Do we need to support is_unused?
  10869. rev_merge[text] = std::make_pair(left, right);
  10870. }
  10871. const llama_vocab & vocab;
  10872. std::vector<llm_symbol> symbols;
  10873. llm_bigram_spm::queue work_queue;
  10874. std::map<std::string, std::pair<int, int>> rev_merge;
  10875. };
  10876. // BPE tokenizer
  10877. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10878. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10879. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10880. struct llm_bigram_bpe {
  10881. struct comparator {
  10882. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10883. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10884. }
  10885. };
  10886. using queue_storage = std::vector<llm_bigram_bpe>;
  10887. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10888. llm_symbol::index left;
  10889. llm_symbol::index right;
  10890. std::string text;
  10891. int rank;
  10892. size_t size;
  10893. };
  10894. struct llm_tokenizer_bpe {
  10895. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  10896. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10897. int final_prev_index = -1;
  10898. bool ignore_merges = false;
  10899. std::vector<std::string> word_collection;
  10900. switch (vocab.type) {
  10901. case LLAMA_VOCAB_TYPE_BPE:
  10902. switch (vocab.type_pre) {
  10903. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10904. ignore_merges = true;
  10905. word_collection = unicode_regex_split(text, {
  10906. // original regex from tokenizer.json
  10907. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10908. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10909. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10910. });
  10911. break;
  10912. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10913. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  10914. word_collection = unicode_regex_split(text, {
  10915. // same as llama3
  10916. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10917. });
  10918. break;
  10919. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10920. word_collection = unicode_regex_split(text, {
  10921. "[\r\n]",
  10922. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10923. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10924. "\\s+$",
  10925. "[一-龥ࠀ-一가-퟿]+",
  10926. "\\p{N}+",
  10927. });
  10928. break;
  10929. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10930. word_collection = unicode_regex_split(text, {
  10931. "[\r\n]",
  10932. "\\s?\\p{L}+",
  10933. "\\s?\\p{P}+",
  10934. "[一-龥ࠀ-一가-퟿]+",
  10935. "\\p{N}",
  10936. });
  10937. break;
  10938. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10939. word_collection = unicode_regex_split(text, {
  10940. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10941. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10942. "[0-9][0-9][0-9]",
  10943. });
  10944. break;
  10945. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10946. // TODO: MPT pre-tokenization regexes are unknown
  10947. // the following are close, but not exact. run the following:
  10948. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10949. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10950. word_collection = unicode_regex_split(text, {
  10951. "\\s?\\p{L}+",
  10952. "\\s?\\p{P}+",
  10953. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10954. });
  10955. break;
  10956. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10957. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10958. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10959. word_collection = unicode_regex_split(text, {
  10960. "\\p{N}",
  10961. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10962. });
  10963. break;
  10964. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10965. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10966. word_collection = unicode_regex_split(text, {
  10967. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10968. });
  10969. break;
  10970. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  10971. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10972. word_collection = unicode_regex_split(text, {
  10973. // original regex from tokenizer.json
  10974. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10975. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10976. });
  10977. break;
  10978. case LLAMA_VOCAB_PRE_TYPE_PORO:
  10979. word_collection = unicode_regex_split(text, {
  10980. " ?[^(\\s|.,!?…。,、।۔،)]+",
  10981. });
  10982. break;
  10983. default:
  10984. // default regex for BPE tokenization pre-processing
  10985. word_collection = unicode_regex_split(text, {
  10986. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10987. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10988. "\\p{N}+",
  10989. "[0-9][0-9][0-9]",
  10990. });
  10991. break;
  10992. }
  10993. break;
  10994. default:
  10995. GGML_ASSERT(false);
  10996. break;
  10997. }
  10998. symbols_final.clear();
  10999. for (auto & word : word_collection) {
  11000. work_queue = llm_bigram_bpe::queue();
  11001. symbols.clear();
  11002. int index = 0;
  11003. size_t offset = 0;
  11004. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  11005. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  11006. offset = word.size();
  11007. }
  11008. while (offset < word.size()) {
  11009. llm_symbol sym;
  11010. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  11011. sym.text = word.c_str() + offset;
  11012. sym.n = char_len;
  11013. offset += sym.n;
  11014. sym.prev = index - 1;
  11015. sym.next = offset == word.size() ? -1 : index + 1;
  11016. index++;
  11017. symbols.emplace_back(sym);
  11018. }
  11019. for (size_t i = 1; i < symbols.size(); ++i) {
  11020. add_new_bigram(i - 1, i);
  11021. }
  11022. // build token(s)
  11023. while (!work_queue.empty()) {
  11024. auto bigram = work_queue.top();
  11025. work_queue.pop();
  11026. auto & left_symbol = symbols[bigram.left];
  11027. auto & right_symbol = symbols[bigram.right];
  11028. if (left_symbol.n == 0 || right_symbol.n == 0) {
  11029. continue;
  11030. }
  11031. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  11032. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  11033. if (left_token + right_token != bigram.text) {
  11034. continue; // Skip this bigram if it's outdated
  11035. }
  11036. // merge the right sym into the left one
  11037. left_symbol.n += right_symbol.n;
  11038. right_symbol.n = 0;
  11039. // remove the right sym from the chain
  11040. left_symbol.next = right_symbol.next;
  11041. if (right_symbol.next >= 0) {
  11042. symbols[right_symbol.next].prev = bigram.left;
  11043. }
  11044. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  11045. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  11046. }
  11047. // add the finished tokens to the final list keeping correct order for next and prev
  11048. for (auto & sym : symbols) {
  11049. if (sym.n > 0) {
  11050. sym.prev = final_prev_index;
  11051. sym.next = -1;
  11052. if (final_prev_index != -1) {
  11053. symbols_final[final_prev_index].next = symbols_final.size();
  11054. }
  11055. symbols_final.emplace_back(sym);
  11056. final_prev_index = symbols_final.size() - 1;
  11057. }
  11058. }
  11059. }
  11060. symbols = symbols_final;
  11061. if (!symbols.empty()) {
  11062. for (int i = 0; i != -1; i = symbols[i].next) {
  11063. auto & symbol = symbols[i];
  11064. if (symbol.n == 0) {
  11065. continue;
  11066. }
  11067. const std::string str = std::string(symbol.text, symbol.n);
  11068. const auto token = vocab.token_to_id.find(str);
  11069. if (token == vocab.token_to_id.end()) {
  11070. for (auto j = str.begin(); j != str.end(); ++j) {
  11071. std::string byte_str(1, *j);
  11072. auto token_multibyte = vocab.token_to_id.find(byte_str);
  11073. if (token_multibyte == vocab.token_to_id.end()) {
  11074. throw std::runtime_error("ERROR: byte not found in vocab");
  11075. }
  11076. output.push_back((*token_multibyte).second);
  11077. }
  11078. } else {
  11079. output.push_back((*token).second);
  11080. }
  11081. }
  11082. }
  11083. }
  11084. private:
  11085. void add_new_bigram(int left, int right) {
  11086. if (left == -1 || right == -1) {
  11087. return;
  11088. }
  11089. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  11090. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  11091. int rank_found = -1;
  11092. rank_found = vocab.find_bpe_rank(left_token, right_token);
  11093. if (rank_found < 0) {
  11094. return;
  11095. }
  11096. llm_bigram_bpe bigram;
  11097. bigram.left = left;
  11098. bigram.right = right;
  11099. bigram.text = left_token + right_token;
  11100. bigram.size = left_token.size() + right_token.size();
  11101. bigram.rank = rank_found;
  11102. work_queue.push(bigram);
  11103. }
  11104. const llama_vocab & vocab;
  11105. std::vector<llm_symbol> symbols;
  11106. std::vector<llm_symbol> symbols_final;
  11107. llm_bigram_bpe::queue work_queue;
  11108. };
  11109. struct llm_tokenizer_wpm {
  11110. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  11111. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  11112. const auto & token_map = vocab.token_to_id;
  11113. // normalize and split by whitespace
  11114. std::vector<std::string> words = preprocess(text);
  11115. // bos token prepended already
  11116. // find the longest tokens that form the words
  11117. for (const std::string &word : words) {
  11118. // skip empty words
  11119. if (word.size() == 0) {
  11120. continue;
  11121. }
  11122. // prepend phantom space
  11123. const std::string word1 = "\xe2\x96\x81" + word;
  11124. const int n = word1.size();
  11125. const size_t current_tokens = output.size();
  11126. // we're at the start of a new word
  11127. // move through character position in word
  11128. for (int i = 0; i < n; ++i) {
  11129. // loop through possible match length
  11130. bool match = false;
  11131. for (int j = n; j > i; j--) {
  11132. auto it = token_map.find(word1.substr(i, j - i));
  11133. if (it != token_map.end()) {
  11134. output.push_back(it->second);
  11135. match = true;
  11136. i = j - 1;
  11137. break;
  11138. }
  11139. }
  11140. if (!match) { // discard all
  11141. output.resize(current_tokens);
  11142. break; // and discard next tokens
  11143. }
  11144. }
  11145. // we didn't find any matches for this word
  11146. if (current_tokens == output.size()) {
  11147. output.push_back(vocab.special_unk_id);
  11148. }
  11149. }
  11150. }
  11151. std::vector<std::string> preprocess(const std::string & text) {
  11152. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  11153. std::vector<std::string> words(1, "");
  11154. for (const uint32_t cpt : cpts_nfd) {
  11155. const auto flags = unicode_cpt_flags(cpt);
  11156. if (flags.is_whitespace) {
  11157. if (words.back().size()) { // finish previous word if any
  11158. words.emplace_back();
  11159. }
  11160. continue;
  11161. }
  11162. assert (!flags.is_separator);
  11163. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  11164. continue;
  11165. }
  11166. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  11167. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  11168. if (words.back().size()) { // finish previous word if any
  11169. words.emplace_back();
  11170. }
  11171. words.back() = s; // single char word
  11172. words.emplace_back(); // start a new word
  11173. } else {
  11174. words.back() += s; // append char to word
  11175. }
  11176. }
  11177. if (!words.back().size()) {
  11178. words.pop_back();
  11179. }
  11180. return words;
  11181. }
  11182. static bool is_chinese_char(uint32_t cpt) {
  11183. return
  11184. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  11185. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  11186. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  11187. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  11188. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  11189. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  11190. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  11191. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  11192. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  11193. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  11194. }
  11195. const llama_vocab & vocab;
  11196. };
  11197. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  11198. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  11199. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  11200. } FRAGMENT_BUFFER_VARIANT_TYPE;
  11201. struct fragment_buffer_variant {
  11202. fragment_buffer_variant(llama_vocab::id _token)
  11203. :
  11204. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  11205. token(_token),
  11206. raw_text(_dummy),
  11207. offset(0),
  11208. length(0) {}
  11209. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  11210. :
  11211. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  11212. token((llama_vocab::id) - 1),
  11213. raw_text(_raw_text),
  11214. offset(_offset),
  11215. length(_length){
  11216. GGML_ASSERT(_offset >= 0);
  11217. GGML_ASSERT(_length >= 1);
  11218. GGML_ASSERT(offset + length <= raw_text.length());
  11219. }
  11220. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  11221. const llama_vocab::id token;
  11222. const std::string _dummy;
  11223. const std::string & raw_text;
  11224. const uint64_t offset;
  11225. const uint64_t length;
  11226. };
  11227. // #define PRETOKENIZERDEBUG
  11228. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  11229. // for each special token
  11230. for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
  11231. const auto & data = vocab.id_to_token[special_id];
  11232. const auto & special_token = data.text;
  11233. // for each text fragment
  11234. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  11235. while (it != buffer.end()) {
  11236. auto & fragment = (*it);
  11237. // if a fragment is text ( not yet processed )
  11238. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11239. auto & raw_text = fragment.raw_text;
  11240. auto raw_text_base_offset = fragment.offset;
  11241. auto raw_text_base_length = fragment.length;
  11242. // loop over the text
  11243. while (true) {
  11244. // find the first occurrence of a given special token in this fragment
  11245. // passing offset argument only limit the "search area" but match coordinates
  11246. // are still relative to the source full raw_text
  11247. auto match = raw_text.find(special_token, raw_text_base_offset);
  11248. // no occurrences found, stop processing this fragment for a given special token
  11249. if (match == std::string::npos) break;
  11250. // check if match is within bounds of offset <-> length
  11251. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  11252. #ifdef PRETOKENIZERDEBUG
  11253. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11254. #endif
  11255. auto source = std::distance(buffer.begin(), it);
  11256. // if match is further than base offset
  11257. // then we have some text to the left of it
  11258. if (match > raw_text_base_offset) {
  11259. // left
  11260. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  11261. int64_t left_reminder_length = match - raw_text_base_offset;
  11262. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  11263. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  11264. left_reminder_length--;
  11265. }
  11266. }
  11267. if (left_reminder_length > 0) {
  11268. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  11269. it++;
  11270. }
  11271. #ifdef PRETOKENIZERDEBUG
  11272. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  11273. #endif
  11274. }
  11275. // special token
  11276. buffer.emplace_after(it, special_id);
  11277. it++;
  11278. // right
  11279. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  11280. int64_t right_reminder_offset = match + special_token.length();
  11281. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  11282. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  11283. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  11284. right_reminder_offset++;
  11285. right_reminder_length--;
  11286. }
  11287. }
  11288. if (right_reminder_length > 0) {
  11289. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  11290. it++;
  11291. }
  11292. #ifdef PRETOKENIZERDEBUG
  11293. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  11294. #endif
  11295. if (source == 0) {
  11296. buffer.erase_after(buffer.before_begin());
  11297. } else {
  11298. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11299. }
  11300. // repeat for the right side
  11301. raw_text_base_offset = right_reminder_offset;
  11302. raw_text_base_length = right_reminder_length;
  11303. #ifdef PRETOKENIZERDEBUG
  11304. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11305. #endif
  11306. } else {
  11307. if (source == 0) {
  11308. buffer.erase_after(buffer.before_begin());
  11309. } else {
  11310. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11311. }
  11312. break;
  11313. }
  11314. }
  11315. }
  11316. it++;
  11317. }
  11318. }
  11319. }
  11320. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  11321. std::vector<llama_vocab::id> output;
  11322. std::forward_list<fragment_buffer_variant> fragment_buffer;
  11323. if (!raw_text.empty()) {
  11324. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  11325. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  11326. }
  11327. switch (vocab.type) {
  11328. case LLAMA_VOCAB_TYPE_SPM:
  11329. {
  11330. // OG tokenizer behavior:
  11331. //
  11332. // tokenizer.encode('', add_special_tokens=True) returns [1]
  11333. // tokenizer.encode('', add_special_tokens=False) returns []
  11334. bool is_prev_special = false;
  11335. if (add_special && vocab.special_add_bos != 0) {
  11336. GGML_ASSERT(vocab.special_bos_id != -1);
  11337. output.push_back(vocab.special_bos_id);
  11338. is_prev_special = true;
  11339. }
  11340. for (const auto & fragment : fragment_buffer) {
  11341. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11342. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11343. if (vocab.add_space_prefix) {
  11344. if (!output.size() || is_prev_special) { // prefix with space if first token
  11345. raw_text = " " + raw_text;
  11346. }
  11347. }
  11348. #ifdef PRETOKENIZERDEBUG
  11349. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11350. #endif
  11351. llm_tokenizer_spm tokenizer(vocab);
  11352. llama_escape_whitespace(raw_text);
  11353. tokenizer.tokenize(raw_text, output);
  11354. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11355. output.push_back(fragment.token);
  11356. is_prev_special = true;
  11357. }
  11358. }
  11359. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11360. LLAMA_LOG_WARN(
  11361. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11362. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11363. "Are you sure this is what you want?\n", __FUNCTION__);
  11364. }
  11365. if (add_special && vocab.special_add_eos == 1) {
  11366. GGML_ASSERT(vocab.special_eos_id != -1);
  11367. output.push_back(vocab.special_eos_id);
  11368. }
  11369. } break;
  11370. case LLAMA_VOCAB_TYPE_BPE:
  11371. {
  11372. if (add_special && vocab.special_add_bos != 0) {
  11373. GGML_ASSERT(vocab.special_bos_id != -1);
  11374. output.push_back(vocab.special_bos_id);
  11375. }
  11376. for (const auto & fragment : fragment_buffer) {
  11377. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11378. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11379. #ifdef PRETOKENIZERDEBUG
  11380. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11381. #endif
  11382. llm_tokenizer_bpe tokenizer(vocab);
  11383. tokenizer.tokenize(raw_text, output);
  11384. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11385. output.push_back(fragment.token);
  11386. }
  11387. }
  11388. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11389. LLAMA_LOG_WARN(
  11390. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11391. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11392. "Are you sure this is what you want?\n", __FUNCTION__);
  11393. }
  11394. if (add_special && vocab.special_add_eos == 1) {
  11395. GGML_ASSERT(vocab.special_add_eos != -1);
  11396. output.push_back(vocab.special_eos_id);
  11397. }
  11398. } break;
  11399. case LLAMA_VOCAB_TYPE_WPM:
  11400. {
  11401. if (add_special) {
  11402. GGML_ASSERT(vocab.special_cls_id != -1);
  11403. output.push_back(vocab.special_cls_id);
  11404. }
  11405. for (const auto & fragment : fragment_buffer) {
  11406. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11407. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11408. #ifdef PRETOKENIZERDEBUG
  11409. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11410. #endif
  11411. llm_tokenizer_wpm tokenizer(vocab);
  11412. tokenizer.tokenize(raw_text, output);
  11413. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11414. output.push_back(fragment.token);
  11415. }
  11416. }
  11417. if (add_special) {
  11418. GGML_ASSERT(vocab.special_sep_id != -1);
  11419. output.push_back(vocab.special_sep_id);
  11420. }
  11421. } break;
  11422. case LLAMA_VOCAB_TYPE_NONE:
  11423. GGML_ASSERT(false);
  11424. }
  11425. return output;
  11426. }
  11427. //
  11428. // grammar - internal
  11429. //
  11430. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  11431. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  11432. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  11433. const std::string & src,
  11434. llama_partial_utf8 partial_start) {
  11435. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  11436. const char * pos = src.c_str();
  11437. std::vector<uint32_t> code_points;
  11438. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  11439. code_points.reserve(src.size() + 1);
  11440. uint32_t value = partial_start.value;
  11441. int n_remain = partial_start.n_remain;
  11442. // continue previous decode, if applicable
  11443. while (*pos != 0 && n_remain > 0) {
  11444. uint8_t next_byte = static_cast<uint8_t>(*pos);
  11445. if ((next_byte >> 6) != 2) {
  11446. // invalid sequence, abort
  11447. code_points.push_back(0);
  11448. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  11449. }
  11450. value = (value << 6) + (next_byte & 0x3F);
  11451. ++pos;
  11452. --n_remain;
  11453. }
  11454. if (partial_start.n_remain > 0 && n_remain == 0) {
  11455. code_points.push_back(value);
  11456. }
  11457. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  11458. while (*pos != 0) {
  11459. uint8_t first_byte = static_cast<uint8_t>(*pos);
  11460. uint8_t highbits = first_byte >> 4;
  11461. n_remain = lookup[highbits] - 1;
  11462. if (n_remain < 0) {
  11463. // invalid sequence, abort
  11464. code_points.clear();
  11465. code_points.push_back(0);
  11466. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  11467. }
  11468. uint8_t mask = (1 << (7 - n_remain)) - 1;
  11469. value = first_byte & mask;
  11470. ++pos;
  11471. while (*pos != 0 && n_remain > 0) {
  11472. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  11473. ++pos;
  11474. --n_remain;
  11475. }
  11476. if (n_remain == 0) {
  11477. code_points.push_back(value);
  11478. }
  11479. }
  11480. code_points.push_back(0);
  11481. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  11482. }
  11483. // returns true iff pos points to the end of one of the definitions of a rule
  11484. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  11485. switch (pos->type) {
  11486. case LLAMA_GRETYPE_END: return true; // NOLINT
  11487. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  11488. default: return false;
  11489. }
  11490. }
  11491. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  11492. // asserts that pos is pointing to a char range element
  11493. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  11494. const llama_grammar_element * pos,
  11495. const uint32_t chr) {
  11496. bool found = false;
  11497. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  11498. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  11499. do {
  11500. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11501. // inclusive range, e.g. [a-z]
  11502. found = found || (pos->value <= chr && chr <= pos[1].value);
  11503. pos += 2;
  11504. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  11505. // Any character matches "."
  11506. found = true;
  11507. pos += 1;
  11508. } else {
  11509. // exact char match, e.g. [a] or "a"
  11510. found = found || pos->value == chr;
  11511. pos += 1;
  11512. }
  11513. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11514. return std::make_pair(found == is_positive_char, pos);
  11515. }
  11516. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  11517. // range at pos (regular or inverse range)
  11518. // asserts that pos is pointing to a char range element
  11519. static bool llama_grammar_match_partial_char(
  11520. const llama_grammar_element * pos,
  11521. const llama_partial_utf8 partial_utf8) {
  11522. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  11523. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  11524. uint32_t partial_value = partial_utf8.value;
  11525. int n_remain = partial_utf8.n_remain;
  11526. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  11527. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  11528. return false;
  11529. }
  11530. // range of possible code points this partial UTF-8 sequence could complete to
  11531. uint32_t low = partial_value << (n_remain * 6);
  11532. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  11533. if (low == 0) {
  11534. if (n_remain == 2) {
  11535. low = 1 << 11;
  11536. } else if (n_remain == 3) {
  11537. low = 1 << 16;
  11538. }
  11539. }
  11540. do {
  11541. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11542. // inclusive range, e.g. [a-z]
  11543. if (pos->value <= high && low <= pos[1].value) {
  11544. return is_positive_char;
  11545. }
  11546. pos += 2;
  11547. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  11548. // Any character matches "."
  11549. return true;
  11550. } else {
  11551. // exact char match, e.g. [a] or "a"
  11552. if (low <= pos->value && pos->value <= high) {
  11553. return is_positive_char;
  11554. }
  11555. pos += 1;
  11556. }
  11557. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11558. return !is_positive_char;
  11559. }
  11560. // transforms a grammar pushdown stack into N possible stacks, all ending
  11561. // at a character range (terminal element)
  11562. static void llama_grammar_advance_stack(
  11563. const std::vector<std::vector<llama_grammar_element>> & rules,
  11564. const std::vector<const llama_grammar_element *> & stack,
  11565. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11566. if (stack.empty()) {
  11567. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11568. new_stacks.emplace_back(stack);
  11569. }
  11570. return;
  11571. }
  11572. const llama_grammar_element * pos = stack.back();
  11573. switch (pos->type) {
  11574. case LLAMA_GRETYPE_RULE_REF: {
  11575. const size_t rule_id = static_cast<size_t>(pos->value);
  11576. const llama_grammar_element * subpos = rules[rule_id].data();
  11577. do {
  11578. // init new stack without the top (pos)
  11579. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11580. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  11581. // if this rule ref is followed by another element, add that to stack
  11582. new_stack.push_back(pos + 1);
  11583. }
  11584. if (!llama_grammar_is_end_of_sequence(subpos)) {
  11585. // if alternate is nonempty, add to stack
  11586. new_stack.push_back(subpos);
  11587. }
  11588. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11589. while (!llama_grammar_is_end_of_sequence(subpos)) {
  11590. // scan to end of alternate def
  11591. subpos++;
  11592. }
  11593. if (subpos->type == LLAMA_GRETYPE_ALT) {
  11594. // there's another alternate def of this rule to process
  11595. subpos++;
  11596. } else {
  11597. break;
  11598. }
  11599. } while (true);
  11600. break;
  11601. }
  11602. case LLAMA_GRETYPE_CHAR:
  11603. case LLAMA_GRETYPE_CHAR_NOT:
  11604. case LLAMA_GRETYPE_CHAR_ANY:
  11605. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11606. // only add the stack if it's not a duplicate of one we already have
  11607. new_stacks.emplace_back(stack);
  11608. }
  11609. break;
  11610. default:
  11611. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  11612. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  11613. // those
  11614. GGML_ASSERT(false);
  11615. }
  11616. }
  11617. // takes a set of possible pushdown stacks on a grammar, which are required to
  11618. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  11619. // produces the N possible stacks if the given char is accepted at those
  11620. // positions
  11621. void llama_grammar_accept(
  11622. const std::vector<std::vector<llama_grammar_element>> & rules,
  11623. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11624. const uint32_t chr,
  11625. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11626. new_stacks.clear();
  11627. for (const auto & stack : stacks) {
  11628. if (stack.empty()) {
  11629. continue;
  11630. }
  11631. auto match = llama_grammar_match_char(stack.back(), chr);
  11632. if (match.first) {
  11633. const llama_grammar_element * pos = match.second;
  11634. // update top of stack to next element, if any
  11635. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11636. if (!llama_grammar_is_end_of_sequence(pos)) {
  11637. new_stack.push_back(pos);
  11638. }
  11639. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11640. }
  11641. }
  11642. }
  11643. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11644. const std::vector<std::vector<llama_grammar_element>> & rules,
  11645. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11646. const std::vector<llama_grammar_candidate> & candidates);
  11647. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  11648. const std::vector<std::vector<llama_grammar_element>> & rules,
  11649. const std::vector<const llama_grammar_element *> & stack,
  11650. const std::vector<llama_grammar_candidate> & candidates) {
  11651. std::vector<llama_grammar_candidate> rejects;
  11652. rejects.reserve(candidates.size());
  11653. if (stack.empty()) {
  11654. for (const auto & tok : candidates) {
  11655. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  11656. rejects.push_back(tok);
  11657. }
  11658. }
  11659. return rejects;
  11660. }
  11661. const llama_grammar_element * stack_pos = stack.back();
  11662. std::vector<llama_grammar_candidate> next_candidates;
  11663. next_candidates.reserve(candidates.size());
  11664. for (const auto & tok : candidates) {
  11665. if (*tok.code_points == 0) {
  11666. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  11667. // that cannot satisfy this position in grammar
  11668. if (tok.partial_utf8.n_remain != 0 &&
  11669. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  11670. rejects.push_back(tok);
  11671. }
  11672. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  11673. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  11674. } else {
  11675. rejects.push_back(tok);
  11676. }
  11677. }
  11678. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  11679. // update top of stack to next element, if any
  11680. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  11681. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  11682. stack_after.push_back(stack_pos_after);
  11683. }
  11684. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  11685. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  11686. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  11687. for (const auto & tok : next_rejects) {
  11688. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  11689. }
  11690. return rejects;
  11691. }
  11692. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11693. const std::vector<std::vector<llama_grammar_element>> & rules,
  11694. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11695. const std::vector<llama_grammar_candidate> & candidates) {
  11696. GGML_ASSERT(!stacks.empty()); // REVIEW
  11697. if (candidates.empty()) {
  11698. return std::vector<llama_grammar_candidate>();
  11699. }
  11700. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  11701. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  11702. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  11703. }
  11704. return rejects;
  11705. }
  11706. static bool llama_grammar_detect_left_recursion(
  11707. const std::vector<std::vector<llama_grammar_element>> & rules,
  11708. size_t rule_index,
  11709. std::vector<bool> * rules_visited,
  11710. std::vector<bool> * rules_in_progress,
  11711. std::vector<bool> * rules_may_be_empty) {
  11712. if ((*rules_in_progress)[rule_index]) {
  11713. return true;
  11714. }
  11715. (*rules_in_progress)[rule_index] = true;
  11716. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  11717. // First check if the rule might produce the empty string. This could be done combined with the second
  11718. // step but it's more readable as two steps.
  11719. bool at_rule_start = true;
  11720. for (size_t i = 0; i < rule.size(); i++) {
  11721. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11722. if (at_rule_start) {
  11723. (*rules_may_be_empty)[rule_index] = true;
  11724. break;
  11725. }
  11726. at_rule_start = true;
  11727. } else {
  11728. at_rule_start = false;
  11729. }
  11730. }
  11731. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  11732. // be empty)
  11733. bool recurse_into_nonterminal = true;
  11734. for (size_t i = 0; i < rule.size(); i++) {
  11735. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  11736. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  11737. return true;
  11738. }
  11739. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  11740. recurse_into_nonterminal = false;
  11741. }
  11742. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11743. recurse_into_nonterminal = true;
  11744. } else {
  11745. recurse_into_nonterminal = false;
  11746. }
  11747. }
  11748. (*rules_in_progress)[rule_index] = false;
  11749. (*rules_visited)[rule_index] = true;
  11750. return false;
  11751. }
  11752. //
  11753. // grammar - external
  11754. //
  11755. struct llama_grammar * llama_grammar_init(
  11756. const llama_grammar_element ** rules,
  11757. size_t n_rules,
  11758. size_t start_rule_index) {
  11759. const llama_grammar_element * pos;
  11760. // copy rule definitions into vectors
  11761. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  11762. for (size_t i = 0; i < n_rules; i++) {
  11763. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  11764. vec_rules[i].push_back(*pos);
  11765. }
  11766. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  11767. }
  11768. // Check for left recursion
  11769. std::vector<bool> rules_visited(n_rules);
  11770. std::vector<bool> rules_in_progress(n_rules);
  11771. std::vector<bool> rules_may_be_empty(n_rules);
  11772. for (size_t i = 0; i < n_rules; i++) {
  11773. if (rules_visited[i]) {
  11774. continue;
  11775. }
  11776. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11777. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11778. }
  11779. }
  11780. // loop over alternates of start rule to build initial stacks
  11781. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11782. pos = vec_rules[start_rule_index].data();
  11783. do {
  11784. std::vector<const llama_grammar_element *> stack;
  11785. if (!llama_grammar_is_end_of_sequence(pos)) {
  11786. // if alternate is nonempty, add to stack
  11787. stack.push_back(pos);
  11788. }
  11789. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11790. while (!llama_grammar_is_end_of_sequence(pos)) {
  11791. // scan to end of alternate def
  11792. pos++;
  11793. }
  11794. if (pos->type == LLAMA_GRETYPE_ALT) {
  11795. // there's another alternate def of this rule to process
  11796. pos++;
  11797. } else {
  11798. break;
  11799. }
  11800. } while (true);
  11801. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11802. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11803. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11804. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11805. }
  11806. void llama_grammar_free(struct llama_grammar * grammar) {
  11807. delete grammar;
  11808. }
  11809. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11810. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11811. // redirect elements in stacks to point to new rules
  11812. for (size_t is = 0; is < result->stacks.size(); is++) {
  11813. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11814. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11815. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11816. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11817. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11818. }
  11819. }
  11820. }
  11821. }
  11822. }
  11823. return result;
  11824. }
  11825. //
  11826. // sampling
  11827. //
  11828. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11829. if (seed == LLAMA_DEFAULT_SEED) {
  11830. seed = time(NULL);
  11831. }
  11832. ctx->rng.seed(seed);
  11833. }
  11834. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11835. GGML_ASSERT(candidates->size > 0);
  11836. const int64_t t_start_sample_us = ggml_time_us();
  11837. // Sort the logits in descending order
  11838. if (!candidates->sorted) {
  11839. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11840. return a.logit > b.logit;
  11841. });
  11842. candidates->sorted = true;
  11843. }
  11844. float max_l = candidates->data[0].logit;
  11845. float cum_sum = 0.0f;
  11846. for (size_t i = 0; i < candidates->size; ++i) {
  11847. float p = expf(candidates->data[i].logit - max_l);
  11848. candidates->data[i].p = p;
  11849. cum_sum += p;
  11850. }
  11851. for (size_t i = 0; i < candidates->size; ++i) {
  11852. candidates->data[i].p /= cum_sum;
  11853. }
  11854. if (ctx) {
  11855. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11856. }
  11857. }
  11858. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11859. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11860. // if (k >= (int32_t)candidates->size) {
  11861. // return;
  11862. // }
  11863. const int64_t t_start_sample_us = ggml_time_us();
  11864. if (k <= 0) {
  11865. k = candidates->size;
  11866. }
  11867. k = std::max(k, (int) min_keep);
  11868. k = std::min(k, (int) candidates->size);
  11869. // Sort scores in descending order
  11870. if (!candidates->sorted) {
  11871. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11872. return a.logit > b.logit;
  11873. };
  11874. if (k <= 128) {
  11875. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11876. } else {
  11877. constexpr int nbuckets = 128;
  11878. constexpr float bucket_low = -10.0f;
  11879. constexpr float bucket_high = 10.0f;
  11880. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11881. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11882. std::vector<int> bucket_idx(candidates->size);
  11883. std::vector<int> histo(nbuckets, 0);
  11884. for (int i = 0; i < (int)candidates->size; ++i) {
  11885. const float val = candidates->data[i].logit;
  11886. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11887. ib = std::max(0, std::min(nbuckets-1, ib));
  11888. bucket_idx[i] = ib;
  11889. ++histo[ib];
  11890. }
  11891. int nhave = 0;
  11892. int ib = nbuckets - 1;
  11893. for ( ; ib >= 0; --ib) {
  11894. nhave += histo[ib];
  11895. if (nhave >= k) break;
  11896. }
  11897. std::vector<llama_token_data> tmp_tokens(nhave);
  11898. auto ptr = tmp_tokens.data();
  11899. std::vector<llama_token_data*> bucket_ptrs;
  11900. bucket_ptrs.reserve(nbuckets - ib);
  11901. for (int j = nbuckets - 1; j >= ib; --j) {
  11902. bucket_ptrs.push_back(ptr);
  11903. ptr += histo[j];
  11904. }
  11905. for (int i = 0; i < (int)candidates->size; ++i) {
  11906. int j = bucket_idx[i];
  11907. if (j >= ib) {
  11908. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11909. }
  11910. }
  11911. ptr = tmp_tokens.data();
  11912. int ndone = 0;
  11913. for (int j = nbuckets-1; j > ib; --j) {
  11914. std::sort(ptr, ptr + histo[j], comp);
  11915. ptr += histo[j];
  11916. ndone += histo[j];
  11917. }
  11918. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11919. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11920. }
  11921. candidates->sorted = true;
  11922. }
  11923. candidates->size = k;
  11924. if (ctx) {
  11925. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11926. }
  11927. }
  11928. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11929. if (p >= 1.0f) {
  11930. return;
  11931. }
  11932. llama_sample_softmax(ctx, candidates);
  11933. const int64_t t_start_sample_us = ggml_time_us();
  11934. // Compute the cumulative probabilities
  11935. float cum_sum = 0.0f;
  11936. size_t last_idx = candidates->size;
  11937. for (size_t i = 0; i < candidates->size; ++i) {
  11938. cum_sum += candidates->data[i].p;
  11939. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11940. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11941. if (cum_sum >= p && i + 1 >= min_keep) {
  11942. last_idx = i + 1;
  11943. break;
  11944. }
  11945. }
  11946. // Resize the output vector to keep only the top-p tokens
  11947. candidates->size = last_idx;
  11948. if (ctx) {
  11949. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11950. }
  11951. }
  11952. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11953. if (p <= 0.0f || !candidates->size) {
  11954. return;
  11955. }
  11956. const int64_t t_start_sample_us = ggml_time_us();
  11957. bool min_p_applied = false;
  11958. // if the candidates aren't sorted, try the unsorted implementation first
  11959. if (!candidates->sorted) {
  11960. std::vector<llama_token_data> filtered_tokens;
  11961. float max_logit = -FLT_MAX;
  11962. for (size_t i = 0; i < candidates->size; ++i) {
  11963. max_logit = std::max(max_logit, candidates->data[i].logit);
  11964. }
  11965. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11966. for (size_t i = 0; i < candidates->size; ++i) {
  11967. if (candidates->data[i].logit >= min_logit) {
  11968. filtered_tokens.push_back(candidates->data[i]);
  11969. }
  11970. }
  11971. // if we have enough values the operation was a success
  11972. if (filtered_tokens.size() >= min_keep) {
  11973. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11974. candidates->size = filtered_tokens.size();
  11975. min_p_applied = true;
  11976. }
  11977. }
  11978. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11979. if (!min_p_applied) {
  11980. // Sort the logits in descending order
  11981. if (!candidates->sorted) {
  11982. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11983. return a.logit > b.logit;
  11984. });
  11985. candidates->sorted = true;
  11986. }
  11987. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11988. size_t i = 1; // first token always matches
  11989. for (; i < candidates->size; ++i) {
  11990. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11991. break; // prob too small
  11992. }
  11993. }
  11994. // Resize the output vector to keep only the matching tokens
  11995. candidates->size = i;
  11996. }
  11997. if (ctx) {
  11998. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11999. }
  12000. }
  12001. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  12002. if (z >= 1.0f || candidates->size <= 2) {
  12003. return;
  12004. }
  12005. llama_sample_softmax(nullptr, candidates);
  12006. const int64_t t_start_sample_us = ggml_time_us();
  12007. // Compute the first and second derivatives
  12008. std::vector<float> first_derivatives(candidates->size - 1);
  12009. std::vector<float> second_derivatives(candidates->size - 2);
  12010. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  12011. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  12012. }
  12013. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12014. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  12015. }
  12016. // Calculate absolute value of second derivatives
  12017. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12018. second_derivatives[i] = std::abs(second_derivatives[i]);
  12019. }
  12020. // Normalize the second derivatives
  12021. {
  12022. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  12023. if (second_derivatives_sum > 1e-6f) {
  12024. for (float & value : second_derivatives) {
  12025. value /= second_derivatives_sum;
  12026. }
  12027. } else {
  12028. for (float & value : second_derivatives) {
  12029. value = 1.0f / second_derivatives.size();
  12030. }
  12031. }
  12032. }
  12033. float cum_sum = 0.0f;
  12034. size_t last_idx = candidates->size;
  12035. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12036. cum_sum += second_derivatives[i];
  12037. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  12038. if (cum_sum > z && i >= min_keep) {
  12039. last_idx = i;
  12040. break;
  12041. }
  12042. }
  12043. // Resize the output vector to keep only the tokens above the tail location
  12044. candidates->size = last_idx;
  12045. if (ctx) {
  12046. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12047. }
  12048. }
  12049. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  12050. // Reference implementation:
  12051. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  12052. if (p >= 1.0f) {
  12053. return;
  12054. }
  12055. // Compute the softmax of logits and calculate entropy
  12056. llama_sample_softmax(nullptr, candidates);
  12057. const int64_t t_start_sample_us = ggml_time_us();
  12058. float entropy = 0.0f;
  12059. for (size_t i = 0; i < candidates->size; ++i) {
  12060. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  12061. }
  12062. // Compute the absolute difference between negative log probability and entropy for each candidate
  12063. std::vector<float> shifted_scores;
  12064. for (size_t i = 0; i < candidates->size; ++i) {
  12065. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  12066. shifted_scores.push_back(shifted_score);
  12067. }
  12068. // Sort tokens based on the shifted_scores and their corresponding indices
  12069. std::vector<size_t> indices(candidates->size);
  12070. std::iota(indices.begin(), indices.end(), 0);
  12071. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  12072. return shifted_scores[a] < shifted_scores[b];
  12073. });
  12074. // Compute the cumulative probabilities
  12075. float cum_sum = 0.0f;
  12076. size_t last_idx = indices.size();
  12077. for (size_t i = 0; i < indices.size(); ++i) {
  12078. size_t idx = indices[i];
  12079. cum_sum += candidates->data[idx].p;
  12080. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  12081. if (cum_sum > p && i >= min_keep - 1) {
  12082. last_idx = i + 1;
  12083. break;
  12084. }
  12085. }
  12086. // Resize the output vector to keep only the locally typical tokens
  12087. std::vector<llama_token_data> new_candidates;
  12088. for (size_t i = 0; i < last_idx; ++i) {
  12089. size_t idx = indices[i];
  12090. new_candidates.push_back(candidates->data[idx]);
  12091. }
  12092. // Replace the data in candidates with the new_candidates data
  12093. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  12094. candidates->size = new_candidates.size();
  12095. candidates->sorted = false;
  12096. if (ctx) {
  12097. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12098. }
  12099. }
  12100. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  12101. const int64_t t_start_sample_us = ggml_time_us();
  12102. // no need to do anything if there is only one (or zero) candidates
  12103. if(candidates_p->size <= 1) {
  12104. return;
  12105. }
  12106. // Calculate maximum possible entropy
  12107. float max_entropy = -logf(1.0f / candidates_p->size);
  12108. llama_sample_softmax(nullptr, candidates_p);
  12109. // Calculate entropy of the softmax probabilities
  12110. float entropy = 0.0f;
  12111. for (size_t i = 0; i < candidates_p->size; ++i) {
  12112. float prob = candidates_p->data[i].p;
  12113. if (prob > 0.0f) { // Ensure no log(0)
  12114. entropy -= prob * logf(prob);
  12115. }
  12116. }
  12117. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  12118. float normalized_entropy = entropy / max_entropy;
  12119. // Map the normalized entropy to the desired temperature range using the power function
  12120. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  12121. #ifdef DEBUG
  12122. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  12123. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  12124. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  12125. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  12126. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  12127. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  12128. #endif
  12129. // Apply the dynamically calculated temperature scaling
  12130. for (size_t i = 0; i < candidates_p->size; ++i) {
  12131. candidates_p->data[i].logit /= dyn_temp;
  12132. }
  12133. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  12134. double max_l_double = candidates_p->data[0].logit;
  12135. double cum_sum_double = 0.0;
  12136. for (size_t i = 0; i < candidates_p->size; ++i) {
  12137. double p = exp(candidates_p->data[i].logit - max_l_double);
  12138. candidates_p->data[i].p = p; // Store the scaled probability
  12139. cum_sum_double += p;
  12140. }
  12141. for (size_t i = 0; i < candidates_p->size; ++i) {
  12142. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  12143. }
  12144. #ifdef DEBUG
  12145. // Print the updated top 25 probabilities after temperature scaling
  12146. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  12147. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  12148. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  12149. }
  12150. #endif
  12151. if (ctx) {
  12152. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12153. }
  12154. }
  12155. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  12156. const int64_t t_start_sample_us = ggml_time_us();
  12157. for (size_t i = 0; i < candidates_p->size; ++i) {
  12158. candidates_p->data[i].logit /= temp;
  12159. }
  12160. if (ctx) {
  12161. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12162. }
  12163. }
  12164. void llama_sample_repetition_penalties(
  12165. struct llama_context * ctx,
  12166. llama_token_data_array * candidates,
  12167. const llama_token * last_tokens,
  12168. size_t penalty_last_n,
  12169. float penalty_repeat,
  12170. float penalty_freq,
  12171. float penalty_present) {
  12172. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  12173. return;
  12174. }
  12175. const int64_t t_start_sample_us = ggml_time_us();
  12176. // Create a frequency map to count occurrences of each token in last_tokens
  12177. std::unordered_map<llama_token, int> token_count;
  12178. for (size_t i = 0; i < penalty_last_n; ++i) {
  12179. token_count[last_tokens[i]]++;
  12180. }
  12181. // Apply frequency and presence penalties to the candidates
  12182. for (size_t i = 0; i < candidates->size; ++i) {
  12183. const auto token_iter = token_count.find(candidates->data[i].id);
  12184. if (token_iter == token_count.end()) {
  12185. continue;
  12186. }
  12187. const int count = token_iter->second;
  12188. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  12189. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  12190. if (candidates->data[i].logit <= 0) {
  12191. candidates->data[i].logit *= penalty_repeat;
  12192. } else {
  12193. candidates->data[i].logit /= penalty_repeat;
  12194. }
  12195. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  12196. }
  12197. candidates->sorted = false;
  12198. if (ctx) {
  12199. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12200. }
  12201. }
  12202. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  12203. GGML_ASSERT(ctx);
  12204. int64_t t_start_sample_us = ggml_time_us();
  12205. bool allow_eog = false;
  12206. for (const auto & stack : grammar->stacks) {
  12207. if (stack.empty()) {
  12208. allow_eog = true;
  12209. break;
  12210. }
  12211. }
  12212. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  12213. candidates_decoded.reserve(candidates->size);
  12214. std::vector<llama_grammar_candidate> candidates_grammar;
  12215. candidates_grammar.reserve(candidates->size);
  12216. for (size_t i = 0; i < candidates->size; ++i) {
  12217. const llama_token id = candidates->data[i].id;
  12218. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);
  12219. if (llama_token_is_eog(&ctx->model, id)) {
  12220. if (!allow_eog) {
  12221. candidates->data[i].logit = -INFINITY;
  12222. }
  12223. } else if (piece.empty() || piece[0] == 0) {
  12224. candidates->data[i].logit = -INFINITY;
  12225. } else {
  12226. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  12227. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  12228. }
  12229. }
  12230. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  12231. for (const auto & reject : rejects) {
  12232. candidates->data[reject.index].logit = -INFINITY;
  12233. }
  12234. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12235. }
  12236. static void llama_log_softmax(float * array, size_t size) {
  12237. float max_l = *std::max_element(array, array + size);
  12238. float sum = 0.f;
  12239. for (size_t i = 0; i < size; ++i) {
  12240. float p = expf(array[i] - max_l);
  12241. sum += p;
  12242. array[i] = p;
  12243. }
  12244. for (size_t i = 0; i < size; ++i) {
  12245. array[i] = logf(array[i] / sum);
  12246. }
  12247. }
  12248. void llama_sample_apply_guidance(
  12249. struct llama_context * ctx,
  12250. float * logits,
  12251. float * logits_guidance,
  12252. float scale) {
  12253. GGML_ASSERT(ctx);
  12254. const auto t_start_sample_us = ggml_time_us();
  12255. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  12256. llama_log_softmax(logits, n_vocab);
  12257. llama_log_softmax(logits_guidance, n_vocab);
  12258. for (int i = 0; i < n_vocab; ++i) {
  12259. auto & l = logits[i];
  12260. const auto & g = logits_guidance[i];
  12261. l = scale * (l - g) + g;
  12262. }
  12263. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12264. }
  12265. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  12266. GGML_ASSERT(ctx);
  12267. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  12268. int64_t t_start_sample_us;
  12269. t_start_sample_us = ggml_time_us();
  12270. llama_sample_softmax(nullptr, candidates);
  12271. // Estimate s_hat using the most probable m tokens
  12272. float s_hat = 0.0;
  12273. float sum_ti_bi = 0.0;
  12274. float sum_ti_sq = 0.0;
  12275. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  12276. float t_i = logf(float(i + 2) / float(i + 1));
  12277. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  12278. sum_ti_bi += t_i * b_i;
  12279. sum_ti_sq += t_i * t_i;
  12280. }
  12281. s_hat = sum_ti_bi / sum_ti_sq;
  12282. // Compute k from the estimated s_hat and target surprise value
  12283. float epsilon_hat = s_hat - 1;
  12284. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  12285. // Sample the next word X using top-k sampling
  12286. llama_sample_top_k(nullptr, candidates, int(k), 1);
  12287. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12288. llama_token X = llama_sample_token(ctx, candidates);
  12289. t_start_sample_us = ggml_time_us();
  12290. // Compute error as the difference between observed surprise and target surprise value
  12291. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12292. return candidate.id == X;
  12293. }));
  12294. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12295. float e = observed_surprise - tau;
  12296. // Update mu using the learning rate and error
  12297. *mu = *mu - eta * e;
  12298. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12299. return X;
  12300. }
  12301. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  12302. int64_t t_start_sample_us;
  12303. t_start_sample_us = ggml_time_us();
  12304. llama_sample_softmax(ctx, candidates);
  12305. // Truncate the words with surprise values greater than mu
  12306. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12307. return -log2f(candidate.p) > *mu;
  12308. }));
  12309. if (candidates->size == 0) {
  12310. candidates->size = 1;
  12311. }
  12312. if (ctx) {
  12313. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12314. }
  12315. // Normalize the probabilities of the remaining words
  12316. llama_sample_softmax(ctx, candidates);
  12317. // Sample the next word X from the remaining words
  12318. llama_token X = llama_sample_token(ctx, candidates);
  12319. t_start_sample_us = ggml_time_us();
  12320. // Compute error as the difference between observed surprise and target surprise value
  12321. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12322. return candidate.id == X;
  12323. }));
  12324. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12325. float e = observed_surprise - tau;
  12326. // Update mu using the learning rate and error
  12327. *mu = *mu - eta * e;
  12328. if (ctx) {
  12329. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12330. }
  12331. return X;
  12332. }
  12333. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  12334. const int64_t t_start_sample_us = ggml_time_us();
  12335. // Find max element
  12336. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12337. return a.logit < b.logit;
  12338. });
  12339. llama_token result = max_iter->id;
  12340. if (ctx) {
  12341. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12342. ctx->n_sample++;
  12343. }
  12344. return result;
  12345. }
  12346. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  12347. GGML_ASSERT(ctx);
  12348. const int64_t t_start_sample_us = ggml_time_us();
  12349. llama_sample_softmax(nullptr, candidates);
  12350. std::vector<float> probs;
  12351. probs.reserve(candidates->size);
  12352. for (size_t i = 0; i < candidates->size; ++i) {
  12353. probs.push_back(candidates->data[i].p);
  12354. }
  12355. std::discrete_distribution<> dist(probs.begin(), probs.end());
  12356. int idx = dist(rng);
  12357. llama_token result = candidates->data[idx].id;
  12358. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12359. ctx->n_sample++;
  12360. return result;
  12361. }
  12362. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  12363. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  12364. }
  12365. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  12366. const int64_t t_start_sample_us = ggml_time_us();
  12367. if (llama_token_is_eog(&ctx->model, token)) {
  12368. for (const auto & stack : grammar->stacks) {
  12369. if (stack.empty()) {
  12370. return;
  12371. }
  12372. }
  12373. GGML_ASSERT(false);
  12374. }
  12375. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);
  12376. // Note terminating 0 in decoded string
  12377. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  12378. const auto & code_points = decoded.first;
  12379. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  12380. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  12381. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  12382. grammar->stacks = tmp_new_stacks;
  12383. }
  12384. grammar->partial_utf8 = decoded.second;
  12385. GGML_ASSERT(!grammar->stacks.empty());
  12386. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12387. }
  12388. //
  12389. // quantization
  12390. //
  12391. struct quantize_state_internal {
  12392. const llama_model & model;
  12393. const llama_model_quantize_params * params;
  12394. int n_attention_wv = 0;
  12395. int n_ffn_down = 0;
  12396. int n_ffn_gate = 0;
  12397. int n_ffn_up = 0;
  12398. int i_attention_wv = 0;
  12399. int i_ffn_down = 0;
  12400. int i_ffn_gate = 0;
  12401. int i_ffn_up = 0;
  12402. int n_k_quantized = 0;
  12403. int n_fallback = 0;
  12404. bool has_imatrix = false;
  12405. // used to figure out if a model shares tok_embd with the output weight
  12406. bool has_output = false;
  12407. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  12408. : model(model)
  12409. , params(params)
  12410. {}
  12411. };
  12412. static void llama_tensor_dequantize_internal(
  12413. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  12414. const size_t nelements, const int nthread
  12415. ) {
  12416. if (output.size() < nelements) {
  12417. output.resize(nelements);
  12418. }
  12419. float * f32_output = (float *) output.data();
  12420. ggml_type_traits_t qtype;
  12421. if (ggml_is_quantized(tensor->type)) {
  12422. qtype = ggml_internal_get_type_traits(tensor->type);
  12423. if (qtype.to_float == NULL) {
  12424. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  12425. }
  12426. } else if (tensor->type != GGML_TYPE_F16 &&
  12427. tensor->type != GGML_TYPE_BF16) {
  12428. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  12429. }
  12430. if (nthread < 2) {
  12431. if (tensor->type == GGML_TYPE_F16) {
  12432. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  12433. } else if (tensor->type == GGML_TYPE_BF16) {
  12434. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  12435. } else if (ggml_is_quantized(tensor->type)) {
  12436. qtype.to_float(tensor->data, f32_output, nelements);
  12437. } else {
  12438. GGML_ASSERT(false); // unreachable
  12439. }
  12440. return;
  12441. }
  12442. size_t block_size;
  12443. if (tensor->type == GGML_TYPE_F16 ||
  12444. tensor->type == GGML_TYPE_BF16) {
  12445. block_size = 1;
  12446. } else {
  12447. block_size = (size_t)ggml_blck_size(tensor->type);
  12448. }
  12449. size_t block_size_bytes = ggml_type_size(tensor->type);
  12450. GGML_ASSERT(nelements % block_size == 0);
  12451. size_t nblocks = nelements / block_size;
  12452. size_t blocks_per_thread = nblocks / nthread;
  12453. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  12454. size_t in_buff_offs = 0;
  12455. size_t out_buff_offs = 0;
  12456. for (int tnum = 0; tnum < nthread; tnum++) {
  12457. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  12458. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  12459. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  12460. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  12461. if (typ == GGML_TYPE_F16) {
  12462. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  12463. } else if (typ == GGML_TYPE_BF16) {
  12464. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  12465. } else {
  12466. qtype.to_float(inbuf, outbuf, nels);
  12467. }
  12468. };
  12469. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  12470. in_buff_offs += thr_block_bytes;
  12471. out_buff_offs += thr_elems;
  12472. }
  12473. for (auto & w : workers) { w.join(); }
  12474. workers.clear();
  12475. }
  12476. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  12477. const std::string name = ggml_get_name(tensor);
  12478. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12479. const llm_arch arch = qs.model.arch;
  12480. const auto tn = LLM_TN(arch);
  12481. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  12482. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  12483. };
  12484. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  12485. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  12486. if (n_expert > 1) {
  12487. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  12488. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  12489. // for getting the current layer as I initially thought, and we need to resort to parsing the
  12490. // tensor name.
  12491. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  12492. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  12493. }
  12494. if (i_layer < 0 || i_layer >= n_layer) {
  12495. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  12496. }
  12497. }
  12498. return std::make_pair(i_layer, n_layer);
  12499. };
  12500. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  12501. // with the quantization of the output tensor
  12502. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  12503. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  12504. new_type = qs.params->output_tensor_type;
  12505. } else {
  12506. int nx = tensor->ne[0];
  12507. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  12508. new_type = GGML_TYPE_Q8_0;
  12509. }
  12510. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12511. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12512. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12513. new_type = GGML_TYPE_Q5_K;
  12514. }
  12515. else if (new_type != GGML_TYPE_Q8_0) {
  12516. new_type = GGML_TYPE_Q6_K;
  12517. }
  12518. }
  12519. } else if (name == "token_embd.weight") {
  12520. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12521. new_type = qs.params->token_embedding_type;
  12522. } else {
  12523. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12524. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12525. new_type = GGML_TYPE_Q2_K;
  12526. }
  12527. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12528. new_type = GGML_TYPE_IQ3_S;
  12529. }
  12530. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12531. new_type = GGML_TYPE_IQ3_S;
  12532. }
  12533. }
  12534. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12535. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12536. if (name.find("attn_v.weight") != std::string::npos) {
  12537. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12538. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12539. ++qs.i_attention_wv;
  12540. }
  12541. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12542. new_type = GGML_TYPE_Q4_K;
  12543. }
  12544. else if (name.find("ffn_down") != std::string::npos) {
  12545. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12546. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12547. }
  12548. ++qs.i_ffn_down;
  12549. }
  12550. else if (name.find("attn_output.weight") != std::string::npos) {
  12551. if (qs.model.hparams.n_expert == 8) {
  12552. new_type = GGML_TYPE_Q5_K;
  12553. } else {
  12554. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12555. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12556. }
  12557. }
  12558. } else if (name.find("attn_v.weight") != std::string::npos) {
  12559. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12560. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12561. }
  12562. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12563. new_type = GGML_TYPE_Q4_K;
  12564. }
  12565. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12566. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12567. }
  12568. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12569. new_type = GGML_TYPE_Q4_K;
  12570. }
  12571. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12572. new_type = GGML_TYPE_Q4_K;
  12573. }
  12574. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12575. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12576. }
  12577. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12578. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12579. new_type = GGML_TYPE_Q5_K;
  12580. }
  12581. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12582. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12583. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12584. if (qs.model.type == MODEL_70B) {
  12585. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12586. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12587. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12588. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12589. }
  12590. if (qs.model.hparams.n_expert == 8) {
  12591. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12592. // TODO: explore better strategies
  12593. new_type = GGML_TYPE_Q8_0;
  12594. }
  12595. ++qs.i_attention_wv;
  12596. } else if (name.find("attn_k.weight") != std::string::npos) {
  12597. if (qs.model.hparams.n_expert == 8) {
  12598. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12599. // TODO: explore better strategies
  12600. new_type = GGML_TYPE_Q8_0;
  12601. }
  12602. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12603. new_type = GGML_TYPE_IQ3_XXS;
  12604. }
  12605. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12606. new_type = GGML_TYPE_IQ2_S;
  12607. }
  12608. } else if (name.find("attn_q.weight") != std::string::npos) {
  12609. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12610. new_type = GGML_TYPE_IQ3_XXS;
  12611. }
  12612. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12613. new_type = GGML_TYPE_IQ2_S;
  12614. }
  12615. } else if (name.find("ffn_down") != std::string::npos) {
  12616. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12617. int i_layer = info.first, n_layer = info.second;
  12618. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12619. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12620. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12621. }
  12622. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12623. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12624. }
  12625. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12626. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12627. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12628. : GGML_TYPE_Q3_K;
  12629. }
  12630. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12631. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12632. new_type = GGML_TYPE_Q4_K;
  12633. }
  12634. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12635. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12636. }
  12637. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12638. if (arch == LLM_ARCH_FALCON) {
  12639. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12640. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12641. } else {
  12642. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12643. }
  12644. }
  12645. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12646. new_type = GGML_TYPE_Q5_K;
  12647. }
  12648. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12649. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12650. new_type = GGML_TYPE_Q5_K;
  12651. }
  12652. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12653. && qs.has_imatrix && i_layer < n_layer/8) {
  12654. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12655. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12656. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12657. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12658. }
  12659. ++qs.i_ffn_down;
  12660. } else if (name.find("attn_output.weight") != std::string::npos) {
  12661. if (arch != LLM_ARCH_FALCON) {
  12662. if (qs.model.hparams.n_expert == 8) {
  12663. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12664. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12665. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12666. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12667. new_type = GGML_TYPE_Q5_K;
  12668. }
  12669. } else {
  12670. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12671. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12672. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12673. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12674. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12675. }
  12676. } else {
  12677. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12678. }
  12679. }
  12680. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12681. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12682. new_type = GGML_TYPE_Q4_K;
  12683. }
  12684. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12685. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12686. }
  12687. else if (name.find("ffn_gate") != std::string::npos) {
  12688. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12689. int i_layer = info.first, n_layer = info.second;
  12690. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12691. new_type = GGML_TYPE_IQ3_XXS;
  12692. }
  12693. ++qs.i_ffn_gate;
  12694. }
  12695. else if (name.find("ffn_up") != std::string::npos) {
  12696. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12697. int i_layer = info.first, n_layer = info.second;
  12698. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12699. new_type = GGML_TYPE_IQ3_XXS;
  12700. }
  12701. ++qs.i_ffn_up;
  12702. }
  12703. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12704. //}
  12705. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12706. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12707. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12708. //}
  12709. // This can be used to reduce the size of the Q5_K_S model.
  12710. // The associated PPL increase is fully in line with the size reduction
  12711. //else {
  12712. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12713. //}
  12714. bool convert_incompatible_tensor = false;
  12715. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12716. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12717. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12718. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12719. new_type == GGML_TYPE_IQ1_M) {
  12720. int nx = tensor->ne[0];
  12721. int ny = tensor->ne[1];
  12722. if (nx % QK_K != 0) {
  12723. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12724. convert_incompatible_tensor = true;
  12725. } else {
  12726. ++qs.n_k_quantized;
  12727. }
  12728. }
  12729. if (convert_incompatible_tensor) {
  12730. switch (new_type) {
  12731. case GGML_TYPE_IQ2_XXS:
  12732. case GGML_TYPE_IQ2_XS:
  12733. case GGML_TYPE_IQ2_S:
  12734. case GGML_TYPE_IQ3_XXS:
  12735. case GGML_TYPE_IQ3_S:
  12736. case GGML_TYPE_IQ1_S:
  12737. case GGML_TYPE_IQ1_M:
  12738. case GGML_TYPE_Q2_K:
  12739. case GGML_TYPE_Q3_K:
  12740. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12741. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12742. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12743. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12744. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12745. }
  12746. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12747. ++qs.n_fallback;
  12748. }
  12749. return new_type;
  12750. }
  12751. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12752. if (nthread < 2) {
  12753. // single-thread
  12754. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12755. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12756. throw std::runtime_error("quantized data validation failed");
  12757. }
  12758. return new_size;
  12759. }
  12760. std::mutex mutex;
  12761. int64_t counter = 0;
  12762. size_t new_size = 0;
  12763. bool valid = true;
  12764. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12765. nrows, n_per_row, imatrix]() {
  12766. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12767. size_t local_size = 0;
  12768. while (true) {
  12769. std::unique_lock<std::mutex> lock(mutex);
  12770. int64_t first_row = counter; counter += nrows_per_chunk;
  12771. if (first_row >= nrows) {
  12772. if (local_size > 0) {
  12773. new_size += local_size;
  12774. }
  12775. break;
  12776. }
  12777. lock.unlock();
  12778. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12779. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12780. local_size += this_size;
  12781. // validate the quantized data
  12782. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12783. void * this_data = (char *) new_data + first_row * row_size;
  12784. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12785. std::unique_lock<std::mutex> lock(mutex);
  12786. valid = false;
  12787. break;
  12788. }
  12789. }
  12790. };
  12791. for (int it = 0; it < nthread - 1; ++it) {
  12792. workers.emplace_back(compute);
  12793. }
  12794. compute();
  12795. for (auto & w : workers) { w.join(); }
  12796. workers.clear();
  12797. if (!valid) {
  12798. throw std::runtime_error("quantized data validation failed");
  12799. }
  12800. return new_size;
  12801. }
  12802. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12803. ggml_type default_type;
  12804. llama_ftype ftype = params->ftype;
  12805. switch (params->ftype) {
  12806. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12807. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12808. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12809. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12810. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12811. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12812. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12813. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12814. // K-quants
  12815. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12816. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12817. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12818. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12819. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12820. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12821. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12822. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12823. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12824. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12825. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12826. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12827. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12828. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12829. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12830. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12831. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12832. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12833. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12834. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12835. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12836. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12837. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12838. }
  12839. int nthread = params->nthread;
  12840. if (nthread <= 0) {
  12841. nthread = std::thread::hardware_concurrency();
  12842. }
  12843. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12844. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12845. #if defined(__linux__) || defined(_WIN32)
  12846. constexpr bool use_mmap = true;
  12847. #else
  12848. constexpr bool use_mmap = false;
  12849. #endif
  12850. llama_model_kv_override * kv_overrides = nullptr;
  12851. if (params->kv_overrides) {
  12852. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12853. kv_overrides = v->data();
  12854. }
  12855. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12856. ml.init_mappings(false); // no prefetching
  12857. llama_model model;
  12858. llm_load_arch(ml, model);
  12859. llm_load_hparams(ml, model);
  12860. struct quantize_state_internal qs(model, params);
  12861. if (params->only_copy) {
  12862. ftype = model.ftype;
  12863. }
  12864. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12865. if (params->imatrix) {
  12866. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12867. if (imatrix_data) {
  12868. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12869. qs.has_imatrix = true;
  12870. // check imatrix for nans or infs
  12871. for (const auto & kv : *imatrix_data) {
  12872. for (float f : kv.second) {
  12873. if (!std::isfinite(f)) {
  12874. throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
  12875. }
  12876. }
  12877. }
  12878. }
  12879. }
  12880. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12881. struct gguf_context * ctx_out = gguf_init_empty();
  12882. // copy the KV pairs from the input file
  12883. gguf_set_kv (ctx_out, ml.meta);
  12884. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12885. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12886. // Remove split metadata
  12887. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12888. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12889. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12890. if (params->kv_overrides) {
  12891. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12892. for (auto & o : overrides) {
  12893. if (o.key[0] == 0) break;
  12894. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12895. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12896. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12897. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12898. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12899. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12900. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12901. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12902. } else {
  12903. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12904. }
  12905. }
  12906. }
  12907. for (int i = 0; i < ml.n_tensors; ++i) {
  12908. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12909. const std::string name = ggml_get_name(meta);
  12910. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12911. if (name.find("attn_v.weight") != std::string::npos ||
  12912. name.find("attn_qkv.weight") != std::string::npos) {
  12913. ++qs.n_attention_wv;
  12914. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12915. qs.has_output = true;
  12916. }
  12917. }
  12918. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12919. // sanity checks
  12920. //
  12921. // - qs.n_attention_wv == 0 for Mamba models
  12922. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12923. //
  12924. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12925. size_t total_size_org = 0;
  12926. size_t total_size_new = 0;
  12927. std::vector<std::thread> workers;
  12928. workers.reserve(nthread);
  12929. int idx = 0;
  12930. std::vector<no_init<uint8_t>> read_data;
  12931. std::vector<no_init<uint8_t>> work;
  12932. std::vector<no_init<float>> f32_conv_buf;
  12933. uint16_t n_split = 1;
  12934. // Assume split index is continuous
  12935. if (params->keep_split) {
  12936. for (int i = 0; i < ml.n_tensors; ++i) {
  12937. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12938. }
  12939. }
  12940. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12941. ctx_outs[0] = ctx_out;
  12942. // populate the original tensors so we get an initial meta data
  12943. for (int i = 0; i < ml.n_tensors; ++i) {
  12944. auto weight = ml.get_weight(i);
  12945. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12946. struct ggml_tensor * tensor = weight->tensor;
  12947. if (ctx_outs[i_split] == NULL) {
  12948. ctx_outs[i_split] = gguf_init_empty();
  12949. }
  12950. gguf_add_tensor(ctx_outs[i_split], tensor);
  12951. }
  12952. // Set split info if needed
  12953. if (n_split > 1) {
  12954. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12955. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12956. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12957. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12958. }
  12959. }
  12960. int cur_split = -1;
  12961. std::ofstream fout;
  12962. auto close_ofstream = [&]() {
  12963. // Write metadata and close file handler
  12964. if (fout.is_open()) {
  12965. fout.seekp(0);
  12966. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12967. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12968. fout.write((const char *) data.data(), data.size());
  12969. fout.close();
  12970. }
  12971. };
  12972. auto new_ofstream = [&](int index) {
  12973. cur_split = index;
  12974. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12975. std::string fname = fname_out;
  12976. if (params->keep_split) {
  12977. char split_path[PATH_MAX] = {0};
  12978. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12979. fname = std::string(split_path);
  12980. }
  12981. fout = std::ofstream(fname, std::ios::binary);
  12982. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12983. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12984. // placeholder for the meta data
  12985. ::zeros(fout, meta_size);
  12986. };
  12987. const auto tn = LLM_TN(model.arch);
  12988. new_ofstream(0);
  12989. for (int i = 0; i < ml.n_tensors; ++i) {
  12990. auto weight = ml.get_weight(i);
  12991. struct ggml_tensor * tensor = weight->tensor;
  12992. if (weight->idx != cur_split && params->keep_split) {
  12993. close_ofstream();
  12994. new_ofstream(weight->idx);
  12995. }
  12996. const std::string name = ggml_get_name(tensor);
  12997. if (!ml.use_mmap) {
  12998. if (read_data.size() < ggml_nbytes(tensor)) {
  12999. read_data.resize(ggml_nbytes(tensor));
  13000. }
  13001. tensor->data = read_data.data();
  13002. }
  13003. ml.load_data_for(tensor);
  13004. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  13005. ++idx, ml.n_tensors,
  13006. ggml_get_name(tensor),
  13007. llama_format_tensor_shape(tensor).c_str(),
  13008. ggml_type_name(tensor->type));
  13009. // This used to be a regex, but <regex> has an extreme cost to compile times.
  13010. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  13011. // quantize only 2D and 3D tensors (experts)
  13012. quantize &= (ggml_n_dims(tensor) >= 2);
  13013. // do not quantize norm tensors
  13014. quantize &= name.find("_norm.weight") == std::string::npos;
  13015. quantize &= params->quantize_output_tensor || name != "output.weight";
  13016. quantize &= !params->only_copy;
  13017. // do not quantize expert gating tensors
  13018. // NOTE: can't use LLM_TN here because the layer number is not known
  13019. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  13020. // do not quantize positional embeddings and token types (BERT)
  13021. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  13022. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  13023. // do not quantize Mamba's small yet 2D weights
  13024. // NOTE: can't use LLM_TN here because the layer number is not known
  13025. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  13026. quantize &= name.find("ssm_x.weight") == std::string::npos;
  13027. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  13028. enum ggml_type new_type;
  13029. void * new_data;
  13030. size_t new_size;
  13031. if (quantize) {
  13032. new_type = default_type;
  13033. // get more optimal quantization type based on the tensor shape, layer, etc.
  13034. if (!params->pure && ggml_is_quantized(default_type)) {
  13035. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  13036. }
  13037. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  13038. new_type = params->token_embedding_type;
  13039. }
  13040. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  13041. new_type = params->output_tensor_type;
  13042. }
  13043. // If we've decided to quantize to the same type the tensor is already
  13044. // in then there's nothing to do.
  13045. quantize = tensor->type != new_type;
  13046. }
  13047. if (!quantize) {
  13048. new_type = tensor->type;
  13049. new_data = tensor->data;
  13050. new_size = ggml_nbytes(tensor);
  13051. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  13052. } else {
  13053. const int64_t nelements = ggml_nelements(tensor);
  13054. const float * imatrix = nullptr;
  13055. if (imatrix_data) {
  13056. auto it = imatrix_data->find(tensor->name);
  13057. if (it == imatrix_data->end()) {
  13058. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  13059. } else {
  13060. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  13061. imatrix = it->second.data();
  13062. } else {
  13063. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  13064. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  13065. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  13066. // this is a significant error and it may be good idea to abort the process if this happens,
  13067. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  13068. // tok_embd should be ignored in this case, since it always causes this warning
  13069. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  13070. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  13071. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  13072. }
  13073. }
  13074. }
  13075. }
  13076. if ((new_type == GGML_TYPE_IQ2_XXS ||
  13077. new_type == GGML_TYPE_IQ2_XS ||
  13078. new_type == GGML_TYPE_IQ2_S ||
  13079. new_type == GGML_TYPE_IQ1_S ||
  13080. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  13081. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  13082. LLAMA_LOG_ERROR("\n\n============================================================\n");
  13083. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  13084. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  13085. LLAMA_LOG_ERROR("============================================================\n\n");
  13086. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  13087. }
  13088. float * f32_data;
  13089. if (tensor->type == GGML_TYPE_F32) {
  13090. f32_data = (float *) tensor->data;
  13091. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  13092. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  13093. } else {
  13094. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  13095. f32_data = (float *) f32_conv_buf.data();
  13096. }
  13097. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  13098. fflush(stdout);
  13099. if (work.size() < (size_t)nelements * 4) {
  13100. work.resize(nelements * 4); // upper bound on size
  13101. }
  13102. new_data = work.data();
  13103. const int64_t n_per_row = tensor->ne[0];
  13104. const int64_t nrows = tensor->ne[1];
  13105. static const int64_t min_chunk_size = 32 * 512;
  13106. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  13107. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  13108. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  13109. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  13110. // quantize each expert separately since they have different importance matrices
  13111. new_size = 0;
  13112. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  13113. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  13114. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  13115. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  13116. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  13117. }
  13118. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  13119. }
  13120. total_size_org += ggml_nbytes(tensor);
  13121. total_size_new += new_size;
  13122. // update the gguf meta data as we go
  13123. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  13124. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  13125. // write tensor data + padding
  13126. fout.write((const char *) new_data, new_size);
  13127. zeros(fout, GGML_PAD(new_size, align) - new_size);
  13128. }
  13129. close_ofstream();
  13130. for (auto & c:ctx_outs) {
  13131. gguf_free(c);
  13132. }
  13133. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  13134. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  13135. if (qs.n_fallback > 0) {
  13136. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  13137. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  13138. }
  13139. }
  13140. static int llama_apply_lora_from_file_internal(
  13141. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  13142. ) {
  13143. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  13144. const int64_t t_start_lora_us = ggml_time_us();
  13145. llama_file fin(path_lora, "rb");
  13146. // verify magic and version
  13147. {
  13148. uint32_t magic = fin.read_u32();
  13149. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  13150. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  13151. return 1;
  13152. }
  13153. uint32_t format_version = fin.read_u32();
  13154. if (format_version != 1) {
  13155. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  13156. return 1;
  13157. }
  13158. }
  13159. int32_t lora_r = fin.read_u32();
  13160. int32_t lora_alpha = fin.read_u32();
  13161. float scaling = scale * (float)lora_alpha / (float)lora_r;
  13162. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  13163. // load base model
  13164. std::unique_ptr<llama_model_loader> ml;
  13165. if (path_base_model) {
  13166. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  13167. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  13168. ml->init_mappings(/*prefetch*/ false); // no prefetching
  13169. }
  13170. struct tensor_meta {
  13171. std::string name;
  13172. ggml_type type;
  13173. int32_t ne[2];
  13174. size_t offset;
  13175. };
  13176. std::map<std::string, tensor_meta> tensor_meta_map;
  13177. // load all tensor meta
  13178. while (true) {
  13179. if (fin.tell() == fin.size) {
  13180. // eof
  13181. break;
  13182. }
  13183. int32_t n_dims;
  13184. int32_t name_len;
  13185. int32_t ftype;
  13186. fin.read_raw(&n_dims, sizeof(n_dims));
  13187. fin.read_raw(&name_len, sizeof(name_len));
  13188. fin.read_raw(&ftype, sizeof(ftype));
  13189. if (n_dims != 1 && n_dims != 2) {
  13190. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  13191. return 1;
  13192. }
  13193. int32_t ne[2] = { 1, 1 };
  13194. for (int i = 0; i < n_dims; ++i) {
  13195. fin.read_raw(&ne[i], sizeof(ne[i]));
  13196. }
  13197. std::string name;
  13198. {
  13199. GGML_ASSERT(name_len < GGML_MAX_NAME);
  13200. char buf[GGML_MAX_NAME];
  13201. fin.read_raw(buf, name_len);
  13202. name = std::string(buf, name_len);
  13203. }
  13204. // check for lora suffix
  13205. std::string lora_suffix;
  13206. if (name.length() > 6) {
  13207. lora_suffix = name.substr(name.length() - 6);
  13208. }
  13209. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  13210. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  13211. return 1;
  13212. }
  13213. // tensor type
  13214. ggml_type wtype;
  13215. switch (ftype) {
  13216. case 0: wtype = GGML_TYPE_F32; break;
  13217. case 1: wtype = GGML_TYPE_F16; break;
  13218. default:
  13219. {
  13220. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  13221. __func__, ftype);
  13222. return 1;
  13223. }
  13224. }
  13225. // data offset
  13226. size_t offset = fin.tell();
  13227. offset = (offset + 31) & -32;
  13228. // skip tensor data
  13229. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  13230. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  13231. }
  13232. bool warned = false;
  13233. int n_tensors = 0;
  13234. // apply
  13235. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  13236. if (backend_cpu == nullptr) {
  13237. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  13238. return 1;
  13239. }
  13240. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  13241. std::vector<no_init<uint8_t>> read_buf;
  13242. for (const auto & it : model.tensors_by_name) {
  13243. const std::string & base_name = it.first;
  13244. ggml_tensor * model_t = it.second;
  13245. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  13246. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  13247. continue;
  13248. }
  13249. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  13250. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  13251. ggml_init_params lora_init_params = {
  13252. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  13253. /* .mem_buffer */ nullptr,
  13254. /* .no_alloc */ true,
  13255. };
  13256. ggml_context * lora_ctx = ggml_init(lora_init_params);
  13257. if (lora_ctx == nullptr) {
  13258. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  13259. ggml_backend_free(backend_cpu);
  13260. return 1;
  13261. }
  13262. // create tensors
  13263. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  13264. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  13265. ggml_set_name(loraA, metaA.name.c_str());
  13266. ggml_set_name(loraB, metaB.name.c_str());
  13267. ggml_tensor * base_t;
  13268. if (ml) {
  13269. if (!ml->get_tensor_meta(base_name.c_str())) {
  13270. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  13271. return 1;
  13272. }
  13273. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  13274. } else {
  13275. base_t = ggml_dup_tensor(lora_ctx, model_t);
  13276. }
  13277. ggml_set_name(base_t, base_name.c_str());
  13278. // allocate in backend buffer
  13279. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13280. if (lora_buf == nullptr) {
  13281. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  13282. return 1;
  13283. }
  13284. // load tensor data
  13285. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  13286. read_buf.resize(ggml_nbytes(tensor));
  13287. fin.seek(tensor_meta.offset, SEEK_SET);
  13288. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  13289. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  13290. };
  13291. load_tensor(metaA, loraA);
  13292. load_tensor(metaB, loraB);
  13293. // load base model tensor data
  13294. if (ml) {
  13295. ml->load_data_for(base_t);
  13296. } else {
  13297. ggml_backend_tensor_copy(model_t, base_t);
  13298. }
  13299. if (ggml_is_quantized(base_t->type) && !warned) {
  13300. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  13301. "use a f16 or f32 base model with --lora-base\n", __func__);
  13302. warned = true;
  13303. }
  13304. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  13305. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  13306. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  13307. ggml_free(lora_ctx);
  13308. ggml_backend_buffer_free(lora_buf);
  13309. ggml_backend_free(backend_cpu);
  13310. return 1;
  13311. }
  13312. auto build_lora_graph = [&]() {
  13313. // w = w + BA*s
  13314. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  13315. ggml_set_name(BA, "BA");
  13316. if (scaling != 1.0f) {
  13317. BA = ggml_scale(lora_ctx, BA, scaling);
  13318. ggml_set_name(BA, "BA_scaled");
  13319. }
  13320. ggml_tensor * r;
  13321. r = ggml_add_inplace(lora_ctx, base_t, BA);
  13322. ggml_set_name(r, "r_add");
  13323. if (base_t->type != model_t->type) {
  13324. // convert the result to the model type
  13325. r = ggml_cast(lora_ctx, r, model_t->type);
  13326. ggml_set_name(r, "r_cast");
  13327. }
  13328. return r;
  13329. };
  13330. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  13331. ggml_tensor * r = build_lora_graph();
  13332. ggml_build_forward_expand(gf, r);
  13333. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13334. if (graph_buf == nullptr) {
  13335. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  13336. ggml_free(lora_ctx);
  13337. ggml_backend_buffer_free(lora_buf);
  13338. ggml_backend_free(backend_cpu);
  13339. return 1;
  13340. }
  13341. ggml_backend_graph_compute(backend_cpu, gf);
  13342. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  13343. #if 0
  13344. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  13345. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  13346. // sched compute
  13347. ggml_build_forward_expand(gf, build_graph());
  13348. ggml_backend_sched_init_measure(sched, gf);
  13349. // create the graph again, since the previous one was destroyed by the measure
  13350. ggml_graph_clear(gf);
  13351. ggml_build_forward_expand(gf, build_graph());
  13352. ggml_backend_sched_graph_compute(sched, gf);
  13353. ggml_backend_sched_free(sched);
  13354. #endif
  13355. ggml_backend_buffer_free(lora_buf);
  13356. ggml_backend_buffer_free(graph_buf);
  13357. ggml_free(lora_ctx);
  13358. n_tensors++;
  13359. if (n_tensors % 4 == 0) {
  13360. LLAMA_LOG_INFO(".");
  13361. }
  13362. }
  13363. ggml_backend_free(backend_cpu);
  13364. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  13365. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  13366. return 0;
  13367. }
  13368. //
  13369. // interface implementation
  13370. //
  13371. struct llama_model_params llama_model_default_params() {
  13372. struct llama_model_params result = {
  13373. /*.n_gpu_layers =*/ 0,
  13374. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  13375. /*.main_gpu =*/ 0,
  13376. /*.tensor_split =*/ nullptr,
  13377. /*.rpc_servers =*/ nullptr,
  13378. /*.progress_callback =*/ nullptr,
  13379. /*.progress_callback_user_data =*/ nullptr,
  13380. /*.kv_overrides =*/ nullptr,
  13381. /*.vocab_only =*/ false,
  13382. /*.use_mmap =*/ true,
  13383. /*.use_mlock =*/ false,
  13384. /*.check_tensors =*/ false,
  13385. };
  13386. #ifdef GGML_USE_METAL
  13387. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  13388. result.n_gpu_layers = 999;
  13389. #endif
  13390. return result;
  13391. }
  13392. struct llama_context_params llama_context_default_params() {
  13393. struct llama_context_params result = {
  13394. /*.seed =*/ LLAMA_DEFAULT_SEED,
  13395. /*.n_ctx =*/ 512,
  13396. /*.n_batch =*/ 2048,
  13397. /*.n_ubatch =*/ 512,
  13398. /*.n_seq_max =*/ 1,
  13399. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  13400. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  13401. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  13402. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  13403. /*.rope_freq_base =*/ 0.0f,
  13404. /*.rope_freq_scale =*/ 0.0f,
  13405. /*.yarn_ext_factor =*/ -1.0f,
  13406. /*.yarn_attn_factor =*/ 1.0f,
  13407. /*.yarn_beta_fast =*/ 32.0f,
  13408. /*.yarn_beta_slow =*/ 1.0f,
  13409. /*.yarn_orig_ctx =*/ 0,
  13410. /*.defrag_thold =*/ -1.0f,
  13411. /*.cb_eval =*/ nullptr,
  13412. /*.cb_eval_user_data =*/ nullptr,
  13413. /*.type_k =*/ GGML_TYPE_F16,
  13414. /*.type_v =*/ GGML_TYPE_F16,
  13415. /*.logits_all =*/ false,
  13416. /*.embeddings =*/ false,
  13417. /*.offload_kqv =*/ true,
  13418. /*.flash_attn =*/ false,
  13419. /*.abort_callback =*/ nullptr,
  13420. /*.abort_callback_data =*/ nullptr,
  13421. };
  13422. return result;
  13423. }
  13424. struct llama_model_quantize_params llama_model_quantize_default_params() {
  13425. struct llama_model_quantize_params result = {
  13426. /*.nthread =*/ 0,
  13427. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  13428. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  13429. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  13430. /*.allow_requantize =*/ false,
  13431. /*.quantize_output_tensor =*/ true,
  13432. /*.only_copy =*/ false,
  13433. /*.pure =*/ false,
  13434. /*.keep_split =*/ false,
  13435. /*.imatrix =*/ nullptr,
  13436. /*.kv_overrides =*/ nullptr,
  13437. };
  13438. return result;
  13439. }
  13440. size_t llama_max_devices(void) {
  13441. #if defined(GGML_USE_RPC)
  13442. return GGML_RPC_MAX_SERVERS;
  13443. #elif defined(GGML_USE_METAL)
  13444. return 1;
  13445. #elif defined(GGML_USE_CUDA)
  13446. return GGML_CUDA_MAX_DEVICES;
  13447. #elif defined(GGML_USE_SYCL)
  13448. return GGML_SYCL_MAX_DEVICES;
  13449. #elif defined(GGML_USE_VULKAN)
  13450. return GGML_VK_MAX_DEVICES;
  13451. #else
  13452. return 1;
  13453. #endif
  13454. }
  13455. bool llama_supports_mmap(void) {
  13456. return llama_mmap::SUPPORTED;
  13457. }
  13458. bool llama_supports_mlock(void) {
  13459. return llama_mlock::SUPPORTED;
  13460. }
  13461. bool llama_supports_gpu_offload(void) {
  13462. #if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  13463. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  13464. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  13465. return true;
  13466. #else
  13467. return false;
  13468. #endif
  13469. }
  13470. void llama_backend_init(void) {
  13471. ggml_time_init();
  13472. // needed to initialize f16 tables
  13473. {
  13474. struct ggml_init_params params = { 0, NULL, false };
  13475. struct ggml_context * ctx = ggml_init(params);
  13476. ggml_free(ctx);
  13477. }
  13478. }
  13479. void llama_numa_init(enum ggml_numa_strategy numa) {
  13480. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  13481. ggml_numa_init(numa);
  13482. }
  13483. }
  13484. void llama_backend_free(void) {
  13485. ggml_quantize_free();
  13486. }
  13487. int64_t llama_time_us(void) {
  13488. return ggml_time_us();
  13489. }
  13490. struct llama_model * llama_load_model_from_file(
  13491. const char * path_model,
  13492. struct llama_model_params params) {
  13493. ggml_time_init();
  13494. llama_model * model = new llama_model;
  13495. unsigned cur_percentage = 0;
  13496. if (params.progress_callback == NULL) {
  13497. params.progress_callback_user_data = &cur_percentage;
  13498. params.progress_callback = [](float progress, void * ctx) {
  13499. unsigned * cur_percentage_p = (unsigned *) ctx;
  13500. unsigned percentage = (unsigned) (100 * progress);
  13501. while (percentage > *cur_percentage_p) {
  13502. *cur_percentage_p = percentage;
  13503. LLAMA_LOG_INFO(".");
  13504. if (percentage >= 100) {
  13505. LLAMA_LOG_INFO("\n");
  13506. }
  13507. }
  13508. return true;
  13509. };
  13510. }
  13511. if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
  13512. // split the servers set them into model->rpc_servers
  13513. std::string servers(params.rpc_servers);
  13514. size_t pos = 0;
  13515. while ((pos = servers.find(",")) != std::string::npos) {
  13516. std::string server = servers.substr(0, pos);
  13517. model->rpc_servers.push_back(server);
  13518. servers.erase(0, pos + 1);
  13519. }
  13520. model->rpc_servers.push_back(servers);
  13521. }
  13522. int status = llama_model_load(path_model, *model, params);
  13523. GGML_ASSERT(status <= 0);
  13524. if (status < 0) {
  13525. if (status == -1) {
  13526. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13527. } else if (status == -2) {
  13528. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13529. }
  13530. delete model;
  13531. return nullptr;
  13532. }
  13533. return model;
  13534. }
  13535. void llama_free_model(struct llama_model * model) {
  13536. delete model;
  13537. }
  13538. struct llama_context * llama_new_context_with_model(
  13539. struct llama_model * model,
  13540. struct llama_context_params params) {
  13541. if (!model) {
  13542. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13543. return nullptr;
  13544. }
  13545. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13546. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13547. return nullptr;
  13548. }
  13549. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13550. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13551. return nullptr;
  13552. }
  13553. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13554. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13555. params.flash_attn = false;
  13556. }
  13557. if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
  13558. LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
  13559. params.flash_attn = false;
  13560. }
  13561. if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
  13562. LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
  13563. return nullptr;
  13564. }
  13565. llama_context * ctx = new llama_context(*model);
  13566. const auto & hparams = model->hparams;
  13567. auto & cparams = ctx->cparams;
  13568. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13569. cparams.n_threads = params.n_threads;
  13570. cparams.n_threads_batch = params.n_threads_batch;
  13571. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13572. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13573. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13574. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13575. cparams.defrag_thold = params.defrag_thold;
  13576. cparams.embeddings = params.embeddings;
  13577. cparams.offload_kqv = params.offload_kqv;
  13578. cparams.flash_attn = params.flash_attn;
  13579. cparams.pooling_type = params.pooling_type;
  13580. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13581. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13582. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13583. // this is necessary due to kv_self.n being padded later during inference
  13584. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13585. // with causal attention, the batch size is limited by the context size
  13586. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13587. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13588. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13589. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13590. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13591. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13592. cparams.n_batch = GGML_KQ_MASK_PAD;
  13593. }
  13594. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13595. cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13596. hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
  13597. hparams.n_ctx_train;
  13598. cparams.cb_eval = params.cb_eval;
  13599. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13600. auto rope_scaling_type = params.rope_scaling_type;
  13601. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13602. rope_scaling_type = hparams.rope_scaling_type_train;
  13603. }
  13604. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13605. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13606. }
  13607. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13608. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13609. }
  13610. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  13611. cparams.causal_attn = hparams.causal_attn;
  13612. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13613. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13614. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13615. } else {
  13616. cparams.pooling_type = hparams.pooling_type;
  13617. }
  13618. }
  13619. if (params.seed == LLAMA_DEFAULT_SEED) {
  13620. params.seed = time(NULL);
  13621. }
  13622. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13623. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13624. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13625. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13626. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13627. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13628. ctx->abort_callback = params.abort_callback;
  13629. ctx->abort_callback_data = params.abort_callback_data;
  13630. ctx->rng = std::mt19937(params.seed);
  13631. ctx->logits_all = params.logits_all;
  13632. uint32_t kv_size = cparams.n_ctx;
  13633. ggml_type type_k = params.type_k;
  13634. ggml_type type_v = params.type_v;
  13635. // Mamba only needs a constant number of KV cache cells per sequence
  13636. if (model->arch == LLM_ARCH_MAMBA) {
  13637. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13638. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13639. // it's probably best to keep as much precision as possible for the states
  13640. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13641. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13642. }
  13643. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13644. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13645. if (!hparams.vocab_only) {
  13646. // initialize backends
  13647. #if defined(GGML_USE_METAL)
  13648. if (model->n_gpu_layers > 0) {
  13649. ctx->backend_metal = ggml_backend_metal_init();
  13650. if (ctx->backend_metal == nullptr) {
  13651. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13652. llama_free(ctx);
  13653. return nullptr;
  13654. }
  13655. ctx->backends.push_back(ctx->backend_metal);
  13656. }
  13657. #elif defined(GGML_USE_CUDA)
  13658. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13659. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13660. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13661. if (backend == nullptr) {
  13662. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13663. llama_free(ctx);
  13664. return nullptr;
  13665. }
  13666. ctx->backends.push_back(backend);
  13667. } else {
  13668. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13669. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13670. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13671. if (backend == nullptr) {
  13672. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13673. llama_free(ctx);
  13674. return nullptr;
  13675. }
  13676. ctx->backends.push_back(backend);
  13677. }
  13678. }
  13679. #elif defined(GGML_USE_VULKAN)
  13680. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13681. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13682. llama_free(ctx);
  13683. return nullptr;
  13684. }
  13685. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13686. ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
  13687. if (backend == nullptr) {
  13688. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13689. llama_free(ctx);
  13690. return nullptr;
  13691. }
  13692. ctx->backends.push_back(backend);
  13693. } else {
  13694. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13695. ggml_backend_t backend = ggml_backend_vk_init(device);
  13696. if (backend == nullptr) {
  13697. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13698. llama_free(ctx);
  13699. return nullptr;
  13700. }
  13701. ctx->backends.push_back(backend);
  13702. }
  13703. }
  13704. #elif defined(GGML_USE_SYCL)
  13705. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13706. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13707. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13708. if (backend == nullptr) {
  13709. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
  13710. llama_free(ctx);
  13711. return nullptr;
  13712. }
  13713. ctx->backends.push_back(backend);
  13714. } else {
  13715. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13716. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13717. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13718. if (backend == nullptr) {
  13719. int id_list[GGML_SYCL_MAX_DEVICES];
  13720. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13721. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13722. llama_free(ctx);
  13723. return nullptr;
  13724. }
  13725. ctx->backends.push_back(backend);
  13726. }
  13727. }
  13728. #elif defined(GGML_USE_KOMPUTE)
  13729. if (model->n_gpu_layers > 0) {
  13730. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13731. if (backend == nullptr) {
  13732. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13733. llama_free(ctx);
  13734. return nullptr;
  13735. }
  13736. ctx->backends.push_back(backend);
  13737. }
  13738. #endif
  13739. #ifdef GGML_USE_BLAS
  13740. ctx->backend_blas = ggml_backend_blas_init();
  13741. if (ctx->backend_blas == nullptr) {
  13742. LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
  13743. } else {
  13744. ctx->backends.push_back(ctx->backend_blas);
  13745. }
  13746. #endif
  13747. #if defined(GGML_USE_RPC)
  13748. if (model->n_gpu_layers > 0) {
  13749. for (const auto & endpoint : model->rpc_servers) {
  13750. ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
  13751. if (backend == nullptr) {
  13752. LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
  13753. llama_free(ctx);
  13754. return nullptr;
  13755. }
  13756. ctx->backends.push_back(backend);
  13757. }
  13758. }
  13759. #endif
  13760. ctx->backend_cpu = ggml_backend_cpu_init();
  13761. if (ctx->backend_cpu == nullptr) {
  13762. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13763. llama_free(ctx);
  13764. return nullptr;
  13765. }
  13766. ctx->backends.push_back(ctx->backend_cpu);
  13767. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13768. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13769. llama_free(ctx);
  13770. return nullptr;
  13771. }
  13772. {
  13773. size_t memory_size_k = 0;
  13774. size_t memory_size_v = 0;
  13775. for (auto & k : ctx->kv_self.k_l) {
  13776. memory_size_k += ggml_nbytes(k);
  13777. }
  13778. for (auto & v : ctx->kv_self.v_l) {
  13779. memory_size_v += ggml_nbytes(v);
  13780. }
  13781. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13782. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13783. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13784. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13785. }
  13786. // graph outputs buffer
  13787. {
  13788. // resized during inference when a batch uses more outputs
  13789. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13790. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13791. llama_free(ctx);
  13792. return nullptr;
  13793. }
  13794. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13795. ggml_backend_buffer_name(ctx->buf_output),
  13796. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13797. }
  13798. // scheduler and compute buffers
  13799. {
  13800. // buffer types used for the compute buffer of each backend
  13801. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13802. for (auto * backend : ctx->backends) {
  13803. if (ggml_backend_is_cpu(backend)) {
  13804. // use host buffers for the CPU backend compute buffer
  13805. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13806. } else {
  13807. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13808. }
  13809. }
  13810. // buffer used to store the computation graph and the tensor meta data
  13811. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13812. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13813. bool pipeline_parallel =
  13814. llama_get_device_count(*model) > 1 &&
  13815. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13816. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13817. params.offload_kqv;
  13818. #ifndef GGML_USE_CUDA
  13819. // pipeline parallelism requires support for async compute and events
  13820. // currently this is only implemented in the CUDA backend
  13821. pipeline_parallel = false;
  13822. #endif
  13823. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13824. if (pipeline_parallel) {
  13825. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13826. }
  13827. // build worst-case graph
  13828. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13829. int n_past = cparams.n_ctx - n_tokens;
  13830. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13831. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13832. // initialize scheduler with the worst-case graph
  13833. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13834. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13835. llama_free(ctx);
  13836. return nullptr;
  13837. }
  13838. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13839. ggml_backend_t backend = ctx->backends[i];
  13840. ggml_backend_buffer_type_t buft = backend_buft[i];
  13841. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13842. if (size > 1) {
  13843. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13844. ggml_backend_buft_name(buft),
  13845. size / 1024.0 / 1024.0);
  13846. }
  13847. }
  13848. // note: the number of splits during measure is higher than during inference due to the kv shift
  13849. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13850. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13851. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13852. }
  13853. }
  13854. return ctx;
  13855. }
  13856. void llama_free(struct llama_context * ctx) {
  13857. delete ctx;
  13858. }
  13859. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13860. return &ctx->model;
  13861. }
  13862. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13863. return ctx->cparams.n_ctx;
  13864. }
  13865. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13866. return ctx->cparams.n_batch;
  13867. }
  13868. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13869. return ctx->cparams.n_ubatch;
  13870. }
  13871. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13872. return ctx->kv_self.size;
  13873. }
  13874. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13875. return model->vocab.type;
  13876. }
  13877. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13878. switch (model->arch) {
  13879. // these models do not use RoPE
  13880. case LLM_ARCH_GPT2:
  13881. case LLM_ARCH_GPTJ:
  13882. case LLM_ARCH_MPT:
  13883. case LLM_ARCH_REFACT:
  13884. case LLM_ARCH_BLOOM:
  13885. case LLM_ARCH_MAMBA:
  13886. case LLM_ARCH_JINA_BERT_V2:
  13887. return LLAMA_ROPE_TYPE_NONE;
  13888. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13889. case LLM_ARCH_LLAMA:
  13890. case LLM_ARCH_BAICHUAN:
  13891. case LLM_ARCH_STARCODER:
  13892. case LLM_ARCH_PLAMO:
  13893. case LLM_ARCH_CODESHELL:
  13894. case LLM_ARCH_ORION:
  13895. case LLM_ARCH_INTERNLM2:
  13896. case LLM_ARCH_MINICPM:
  13897. case LLM_ARCH_XVERSE:
  13898. case LLM_ARCH_COMMAND_R:
  13899. case LLM_ARCH_OLMO:
  13900. case LLM_ARCH_ARCTIC:
  13901. case LLM_ARCH_DEEPSEEK2:
  13902. return LLAMA_ROPE_TYPE_NORM;
  13903. // the pairs of head values are offset by n_rot/2
  13904. case LLM_ARCH_FALCON:
  13905. case LLM_ARCH_GROK:
  13906. case LLM_ARCH_DBRX:
  13907. case LLM_ARCH_BERT:
  13908. case LLM_ARCH_NOMIC_BERT:
  13909. case LLM_ARCH_STABLELM:
  13910. case LLM_ARCH_QWEN:
  13911. case LLM_ARCH_QWEN2:
  13912. case LLM_ARCH_QWEN2MOE:
  13913. case LLM_ARCH_PHI2:
  13914. case LLM_ARCH_PHI3:
  13915. case LLM_ARCH_GEMMA:
  13916. case LLM_ARCH_STARCODER2:
  13917. case LLM_ARCH_GPTNEOX:
  13918. return LLAMA_ROPE_TYPE_NEOX;
  13919. // all model arches should be listed explicitly here
  13920. case LLM_ARCH_UNKNOWN:
  13921. GGML_ASSERT(false && "unknown architecture");
  13922. break;
  13923. }
  13924. return LLAMA_ROPE_TYPE_NONE;
  13925. }
  13926. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13927. return ctx->cparams.pooling_type;
  13928. }
  13929. int32_t llama_n_vocab(const struct llama_model * model) {
  13930. return model->hparams.n_vocab;
  13931. }
  13932. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13933. return model->hparams.n_ctx_train;
  13934. }
  13935. int32_t llama_n_embd(const struct llama_model * model) {
  13936. return model->hparams.n_embd;
  13937. }
  13938. int32_t llama_n_layer(const struct llama_model * model) {
  13939. return model->hparams.n_layer;
  13940. }
  13941. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13942. return model->hparams.rope_freq_scale_train;
  13943. }
  13944. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13945. const auto & it = model->gguf_kv.find(key);
  13946. if (it == model->gguf_kv.end()) {
  13947. if (buf_size > 0) {
  13948. buf[0] = '\0';
  13949. }
  13950. return -1;
  13951. }
  13952. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13953. }
  13954. int32_t llama_model_meta_count(const struct llama_model * model) {
  13955. return (int)model->gguf_kv.size();
  13956. }
  13957. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13958. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13959. if (buf_size > 0) {
  13960. buf[0] = '\0';
  13961. }
  13962. return -1;
  13963. }
  13964. auto it = model->gguf_kv.begin();
  13965. std::advance(it, i);
  13966. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13967. }
  13968. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13969. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13970. if (buf_size > 0) {
  13971. buf[0] = '\0';
  13972. }
  13973. return -1;
  13974. }
  13975. auto it = model->gguf_kv.begin();
  13976. std::advance(it, i);
  13977. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13978. }
  13979. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13980. return snprintf(buf, buf_size, "%s %s %s",
  13981. llama_model_arch_name(model->arch),
  13982. llama_model_type_name(model->type),
  13983. llama_model_ftype_name(model->ftype).c_str());
  13984. }
  13985. uint64_t llama_model_size(const struct llama_model * model) {
  13986. uint64_t size = 0;
  13987. for (const auto & it : model->tensors_by_name) {
  13988. size += ggml_nbytes(it.second);
  13989. }
  13990. return size;
  13991. }
  13992. uint64_t llama_model_n_params(const struct llama_model * model) {
  13993. uint64_t nparams = 0;
  13994. for (const auto & it : model->tensors_by_name) {
  13995. nparams += ggml_nelements(it.second);
  13996. }
  13997. return nparams;
  13998. }
  13999. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  14000. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  14001. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  14002. return it.first == name;
  14003. });
  14004. if (it == model->tensors_by_name.end()) {
  14005. return nullptr;
  14006. }
  14007. return it->second;
  14008. }
  14009. uint32_t llama_model_quantize(
  14010. const char * fname_inp,
  14011. const char * fname_out,
  14012. const llama_model_quantize_params * params) {
  14013. try {
  14014. llama_model_quantize_internal(fname_inp, fname_out, params);
  14015. return 0;
  14016. } catch (const std::exception & err) {
  14017. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  14018. return 1;
  14019. }
  14020. }
  14021. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  14022. try {
  14023. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  14024. } catch (const std::exception & err) {
  14025. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  14026. return 1;
  14027. }
  14028. }
  14029. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  14030. GGML_ASSERT(cvec.tensors.empty());
  14031. GGML_ASSERT(cvec.ctxs.empty());
  14032. GGML_ASSERT(cvec.bufs.empty());
  14033. // count layer buffer types
  14034. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  14035. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  14036. buft_layer_count[model.buft_layer[i].buft]++;
  14037. }
  14038. // allocate contexts
  14039. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  14040. for (auto & it : buft_layer_count) {
  14041. int n_layers = it.second;
  14042. struct ggml_init_params params = {
  14043. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  14044. /*.mem_buffer =*/ NULL,
  14045. /*.no_alloc =*/ true,
  14046. };
  14047. ggml_context * ctx = ggml_init(params);
  14048. if (!ctx) {
  14049. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  14050. return 1;
  14051. }
  14052. ctx_map[it.first] = ctx;
  14053. }
  14054. // make tensors
  14055. cvec.tensors.reserve(model.hparams.n_layer);
  14056. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  14057. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  14058. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  14059. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  14060. cvec.tensors.push_back(tensor);
  14061. }
  14062. // allocate tensors / buffers and zero
  14063. cvec.ctxs.reserve(ctx_map.size());
  14064. cvec.bufs.reserve(ctx_map.size());
  14065. for (auto it : ctx_map) {
  14066. ggml_backend_buffer_type_t buft = it.first;
  14067. ggml_context * ctx = it.second;
  14068. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  14069. if (!buf) {
  14070. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  14071. return false;
  14072. }
  14073. ggml_backend_buffer_clear(buf, 0);
  14074. cvec.ctxs.push_back(ctx);
  14075. cvec.bufs.push_back(buf);
  14076. }
  14077. return true;
  14078. }
  14079. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  14080. const llama_model & model = lctx->model;
  14081. llama_control_vector & cvec = lctx->cvec;
  14082. if (data == nullptr) {
  14083. // disable the current control vector (but leave allocated for later)
  14084. cvec.layer_start = -1;
  14085. cvec.layer_end = -1;
  14086. return 0;
  14087. }
  14088. if (n_embd != (int) model.hparams.n_embd) {
  14089. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  14090. return 1;
  14091. }
  14092. if (cvec.tensors.empty()) {
  14093. if (!llama_control_vector_init(cvec, model)) {
  14094. return 1;
  14095. }
  14096. }
  14097. cvec.layer_start = il_start;
  14098. cvec.layer_end = il_end;
  14099. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  14100. assert(cvec.tensors[il] != nullptr);
  14101. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  14102. if (off + n_embd <= len) {
  14103. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  14104. }
  14105. }
  14106. return 0;
  14107. }
  14108. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  14109. struct llama_kv_cache_view result = {
  14110. /*.n_cells = */ 0,
  14111. /*.n_seq_max = */ n_seq_max,
  14112. /*.token_count = */ 0,
  14113. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  14114. /*.max_contiguous = */ 0,
  14115. /*.max_contiguous_idx = */ -1,
  14116. /*.cells = */ nullptr,
  14117. /*.cells_sequences = */ nullptr,
  14118. };
  14119. return result;
  14120. }
  14121. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  14122. if (view->cells != nullptr) {
  14123. free(view->cells);
  14124. view->cells = nullptr;
  14125. }
  14126. if (view->cells_sequences != nullptr) {
  14127. free(view->cells_sequences);
  14128. view->cells_sequences = nullptr;
  14129. }
  14130. }
  14131. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  14132. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  14133. view->n_cells = int32_t(ctx->kv_self.size);
  14134. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  14135. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  14136. view->cells = (struct llama_kv_cache_view_cell *)p;
  14137. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  14138. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  14139. view->cells_sequences = (llama_seq_id *)p;
  14140. }
  14141. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  14142. llama_kv_cache_view_cell * c_curr = view->cells;
  14143. llama_seq_id * cs_curr = view->cells_sequences;
  14144. int32_t used_cells = 0;
  14145. int32_t token_count = 0;
  14146. int32_t curr_contig_idx = -1;
  14147. uint32_t max_contig = 0;
  14148. int32_t max_contig_idx = -1;
  14149. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  14150. const size_t curr_size = kv_cells[i].seq_id.size();
  14151. token_count += curr_size;
  14152. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  14153. if (curr_size > 0) {
  14154. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  14155. max_contig = i - curr_contig_idx;
  14156. max_contig_idx = curr_contig_idx;
  14157. }
  14158. curr_contig_idx = -1;
  14159. } else if (curr_contig_idx < 0) {
  14160. curr_contig_idx = i;
  14161. }
  14162. int seq_idx = 0;
  14163. for (const llama_seq_id it : kv_cells[i].seq_id) {
  14164. if (seq_idx >= view->n_seq_max) {
  14165. break;
  14166. }
  14167. cs_curr[seq_idx] = it;
  14168. seq_idx++;
  14169. }
  14170. if (seq_idx != 0) {
  14171. used_cells++;
  14172. }
  14173. for (; seq_idx < view->n_seq_max; seq_idx++) {
  14174. cs_curr[seq_idx] = -1;
  14175. }
  14176. }
  14177. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  14178. max_contig_idx = curr_contig_idx;
  14179. max_contig = kv_cells.size() - curr_contig_idx;
  14180. }
  14181. view->max_contiguous = max_contig;
  14182. view->max_contiguous_idx = max_contig_idx;
  14183. view->token_count = token_count;
  14184. view->used_cells = used_cells;
  14185. if (uint32_t(used_cells) != ctx->kv_self.used) {
  14186. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  14187. __func__, ctx->kv_self.used, used_cells);
  14188. }
  14189. }
  14190. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  14191. int result = 0;
  14192. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  14193. result += ctx->kv_self.cells[i].seq_id.size();
  14194. }
  14195. return result;
  14196. }
  14197. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  14198. return ctx->kv_self.used;
  14199. }
  14200. void llama_kv_cache_clear(struct llama_context * ctx) {
  14201. llama_kv_cache_clear(ctx->kv_self);
  14202. }
  14203. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  14204. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  14205. }
  14206. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  14207. if (seq_id_src == seq_id_dst) {
  14208. return;
  14209. }
  14210. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  14211. }
  14212. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  14213. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  14214. }
  14215. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  14216. if (delta == 0) {
  14217. return;
  14218. }
  14219. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  14220. }
  14221. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  14222. if (d == 1) {
  14223. return;
  14224. }
  14225. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  14226. }
  14227. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  14228. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  14229. }
  14230. void llama_kv_cache_defrag(struct llama_context * ctx) {
  14231. llama_kv_cache_defrag(ctx->kv_self);
  14232. }
  14233. void llama_kv_cache_update(struct llama_context * ctx) {
  14234. llama_kv_cache_update_internal(*ctx);
  14235. }
  14236. // deprecated
  14237. size_t llama_get_state_size(const struct llama_context * ctx) {
  14238. return llama_state_get_size(ctx);
  14239. }
  14240. // deprecated
  14241. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  14242. return llama_state_get_data(ctx, dst);
  14243. }
  14244. // deprecated
  14245. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  14246. return llama_state_set_data(ctx, src);
  14247. }
  14248. // deprecated
  14249. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14250. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14251. }
  14252. // deprecated
  14253. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14254. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  14255. }
  14256. // Returns the *maximum* size of the state
  14257. size_t llama_state_get_size(const struct llama_context * ctx) {
  14258. const auto & cparams = ctx->cparams;
  14259. const auto & hparams = ctx->model.hparams;
  14260. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  14261. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  14262. const size_t s_rng_size = sizeof(size_t);
  14263. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  14264. const size_t s_n_outputs = sizeof(size_t);
  14265. // assume worst case for outputs although only currently set ones are serialized
  14266. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  14267. const size_t s_logits_size = sizeof(size_t);
  14268. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  14269. const size_t s_embedding_size = sizeof(size_t);
  14270. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  14271. const size_t s_kv_buf_size = sizeof(size_t);
  14272. const size_t s_kv_head = sizeof(uint32_t);
  14273. const size_t s_kv_size = sizeof(uint32_t);
  14274. const size_t s_kv_used = sizeof(uint32_t);
  14275. const size_t s_v_trans = sizeof(uint32_t);
  14276. const size_t s_kv = ctx->kv_self.total_size();
  14277. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  14278. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  14279. const size_t s_total = (
  14280. + s_rng_size
  14281. + s_rng
  14282. + s_n_outputs
  14283. + s_output_pos
  14284. + s_logits_size
  14285. + s_logits
  14286. + s_embedding_size
  14287. + s_embedding
  14288. + s_kv_buf_size
  14289. + s_kv_head
  14290. + s_kv_size
  14291. + s_kv_used
  14292. + s_v_trans
  14293. + s_kv
  14294. + s_kv_cells
  14295. );
  14296. // on session change it is very likely that the state size has changed - so we need to update this function
  14297. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  14298. return s_total;
  14299. }
  14300. // llama_context_data
  14301. struct llama_data_context {
  14302. virtual void write(const void * src, size_t size) = 0;
  14303. virtual size_t get_size_written() = 0;
  14304. virtual ~llama_data_context() = default;
  14305. };
  14306. struct llama_data_buffer_context : llama_data_context {
  14307. uint8_t * ptr;
  14308. size_t size_written = 0;
  14309. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  14310. void write(const void * src, size_t size) override {
  14311. memcpy(ptr, src, size);
  14312. ptr += size;
  14313. size_written += size;
  14314. }
  14315. size_t get_size_written() override {
  14316. return size_written;
  14317. }
  14318. };
  14319. struct llama_data_file_context : llama_data_context {
  14320. llama_file * file;
  14321. size_t size_written = 0;
  14322. llama_data_file_context(llama_file * f) : file(f) {}
  14323. void write(const void * src, size_t size) override {
  14324. file->write_raw(src, size);
  14325. size_written += size;
  14326. }
  14327. size_t get_size_written() override {
  14328. return size_written;
  14329. }
  14330. };
  14331. /** copy state data into either a buffer or file depending on the passed in context
  14332. *
  14333. * file context:
  14334. * llama_file file("/path", "wb");
  14335. * llama_data_file_context data_ctx(&file);
  14336. * llama_state_get_data(ctx, &data_ctx);
  14337. *
  14338. * buffer context:
  14339. * std::vector<uint8_t> buf(max_size, 0);
  14340. * llama_data_buffer_context data_ctx(&buf.data());
  14341. * llama_state_get_data(ctx, &data_ctx);
  14342. *
  14343. */
  14344. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  14345. llama_synchronize(ctx);
  14346. // copy rng
  14347. {
  14348. std::ostringstream rng_ss;
  14349. rng_ss << ctx->rng;
  14350. const std::string & rng_str = rng_ss.str();
  14351. const size_t rng_size = rng_str.size();
  14352. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14353. data_ctx->write(&rng_size, sizeof(rng_size));
  14354. data_ctx->write(rng_str.data(), rng_size);
  14355. }
  14356. // copy outputs
  14357. {
  14358. // Can't use ctx->n_outputs because it's not for the
  14359. // entire last batch when n_ubatch is smaller than n_batch
  14360. size_t n_outputs = 0;
  14361. // copy output ids
  14362. {
  14363. std::vector<int32_t> output_pos;
  14364. const size_t n_batch = ctx->cparams.n_batch;
  14365. const auto & output_ids = ctx->output_ids;
  14366. output_pos.resize(ctx->output_size);
  14367. // build a more compact representation of the output ids
  14368. for (size_t i = 0; i < n_batch; ++i) {
  14369. // map an output id to a position in the batch
  14370. int32_t pos = output_ids[i];
  14371. if (pos >= 0) {
  14372. if ((size_t) pos >= n_outputs) {
  14373. n_outputs = pos + 1;
  14374. }
  14375. GGML_ASSERT((size_t) pos < ctx->output_size);
  14376. output_pos[pos] = i;
  14377. }
  14378. }
  14379. data_ctx->write(&n_outputs, sizeof(n_outputs));
  14380. if (n_outputs) {
  14381. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  14382. }
  14383. }
  14384. // copy logits
  14385. {
  14386. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  14387. data_ctx->write(&logits_size, sizeof(logits_size));
  14388. if (logits_size) {
  14389. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  14390. }
  14391. }
  14392. // copy embeddings
  14393. {
  14394. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  14395. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  14396. if (embeddings_size) {
  14397. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  14398. }
  14399. }
  14400. }
  14401. // copy kv cache
  14402. {
  14403. const auto & kv_self = ctx->kv_self;
  14404. const auto & hparams = ctx->model.hparams;
  14405. const uint32_t n_layer = hparams.n_layer;
  14406. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14407. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14408. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  14409. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  14410. const uint32_t kv_size = kv_self.size;
  14411. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  14412. const uint32_t kv_used = kv_self.used;
  14413. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  14414. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  14415. data_ctx->write(&kv_head, sizeof(kv_head));
  14416. data_ctx->write(&kv_size, sizeof(kv_size));
  14417. data_ctx->write(&kv_used, sizeof(kv_used));
  14418. data_ctx->write(&v_trans, sizeof(v_trans));
  14419. if (kv_buf_size) {
  14420. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  14421. std::vector<uint8_t> tmp_buf;
  14422. for (int il = 0; il < (int) n_layer; ++il) {
  14423. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14424. tmp_buf.resize(k_size);
  14425. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14426. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14427. if (kv_self.recurrent || !kv_self.v_trans) {
  14428. // v is contiguous for recurrent models
  14429. // TODO: use other tensors for state models than k and v
  14430. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14431. tmp_buf.resize(v_size);
  14432. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14433. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14434. continue;
  14435. }
  14436. // v is not contiguous, copy row by row
  14437. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14438. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  14439. tmp_buf.resize(v_row_size);
  14440. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14441. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  14442. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14443. }
  14444. }
  14445. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  14446. }
  14447. for (uint32_t i = 0; i < kv_head; ++i) {
  14448. const auto & cell = kv_self.cells[i];
  14449. const llama_pos pos = cell.pos;
  14450. const size_t seq_id_size = cell.seq_id.size();
  14451. data_ctx->write(&pos, sizeof(pos));
  14452. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  14453. for (auto seq_id : cell.seq_id) {
  14454. data_ctx->write(&seq_id, sizeof(seq_id));
  14455. }
  14456. }
  14457. }
  14458. }
  14459. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  14460. llama_data_buffer_context data_ctx(dst);
  14461. llama_state_get_data_internal(ctx, &data_ctx);
  14462. return data_ctx.get_size_written();
  14463. }
  14464. // Sets the state reading from the specified source address
  14465. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  14466. llama_synchronize(ctx);
  14467. const uint8_t * inp = src;
  14468. // set rng
  14469. {
  14470. size_t rng_size;
  14471. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  14472. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14473. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  14474. std::istringstream rng_ss(rng_str);
  14475. rng_ss >> ctx->rng;
  14476. GGML_ASSERT(!rng_ss.fail());
  14477. }
  14478. // set output ids
  14479. {
  14480. size_t n_outputs;
  14481. std::vector<int32_t> output_pos;
  14482. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  14483. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  14484. if (n_outputs) {
  14485. output_pos.resize(n_outputs);
  14486. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  14487. inp += n_outputs * sizeof(int32_t);
  14488. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  14489. int32_t id = output_pos[i];
  14490. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  14491. ctx->output_ids[id] = i;
  14492. }
  14493. ctx->n_outputs = n_outputs;
  14494. }
  14495. }
  14496. // set logits
  14497. {
  14498. size_t logits_size;
  14499. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  14500. GGML_ASSERT(ctx->logits_size >= logits_size);
  14501. if (logits_size) {
  14502. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  14503. inp += logits_size * sizeof(float);
  14504. }
  14505. }
  14506. // set embeddings
  14507. {
  14508. size_t embeddings_size;
  14509. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  14510. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  14511. if (embeddings_size) {
  14512. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  14513. inp += embeddings_size * sizeof(float);
  14514. }
  14515. }
  14516. // set kv cache
  14517. {
  14518. const auto & kv_self = ctx->kv_self;
  14519. const auto & hparams = ctx->model.hparams;
  14520. const uint32_t n_layer = hparams.n_layer;
  14521. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14522. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14523. size_t kv_buf_size;
  14524. uint32_t kv_head;
  14525. uint32_t kv_size;
  14526. uint32_t kv_used;
  14527. uint32_t v_trans;
  14528. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  14529. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  14530. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  14531. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14532. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14533. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14534. if (kv_self.size != kv_size) {
  14535. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14536. GGML_ASSERT(kv_self.size >= kv_head);
  14537. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14538. __func__, kv_head, kv_size, kv_self.size);
  14539. }
  14540. llama_kv_cache_clear(ctx);
  14541. if (kv_buf_size) {
  14542. const size_t pre_kv_buf_size = inp - src;
  14543. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14544. for (int il = 0; il < (int) n_layer; ++il) {
  14545. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14546. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14547. inp += k_size;
  14548. if (kv_self.recurrent || !kv_self.v_trans) {
  14549. // v is contiguous for recurrent models
  14550. // TODO: use other tensors for state models than k and v
  14551. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14552. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14553. inp += v_size;
  14554. continue;
  14555. }
  14556. // v is not contiguous, copy row by row
  14557. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14558. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14559. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14560. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14561. inp += v_row_size;
  14562. }
  14563. }
  14564. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14565. }
  14566. ctx->kv_self.head = kv_head;
  14567. ctx->kv_self.used = kv_used;
  14568. for (uint32_t i = 0; i < kv_head; ++i) {
  14569. llama_pos pos;
  14570. size_t seq_id_size;
  14571. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14572. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14573. ctx->kv_self.cells[i].pos = pos;
  14574. llama_seq_id seq_id;
  14575. for (size_t j = 0; j < seq_id_size; ++j) {
  14576. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14577. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14578. }
  14579. }
  14580. }
  14581. const size_t nread = inp - src;
  14582. const size_t max_size = llama_state_get_size(ctx);
  14583. GGML_ASSERT(nread <= max_size);
  14584. return nread;
  14585. }
  14586. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14587. llama_file file(path_session, "rb");
  14588. // sanity checks
  14589. {
  14590. const uint32_t magic = file.read_u32();
  14591. const uint32_t version = file.read_u32();
  14592. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14593. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14594. return false;
  14595. }
  14596. llama_hparams session_hparams;
  14597. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14598. if (session_hparams != ctx->model.hparams) {
  14599. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14600. return false;
  14601. }
  14602. }
  14603. // load the prompt
  14604. {
  14605. const uint32_t n_token_count = file.read_u32();
  14606. if (n_token_count > n_token_capacity) {
  14607. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14608. return false;
  14609. }
  14610. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14611. *n_token_count_out = n_token_count;
  14612. }
  14613. // restore the context state
  14614. {
  14615. const size_t n_state_size_cur = file.size - file.tell();
  14616. const size_t n_state_size_max = llama_state_get_size(ctx);
  14617. if (n_state_size_cur > n_state_size_max) {
  14618. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14619. return false;
  14620. }
  14621. std::vector<uint8_t> state_data(n_state_size_max);
  14622. file.read_raw(state_data.data(), n_state_size_cur);
  14623. llama_state_set_data(ctx, state_data.data());
  14624. }
  14625. return true;
  14626. }
  14627. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14628. try {
  14629. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14630. } catch (const std::exception & err) {
  14631. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14632. return false;
  14633. }
  14634. }
  14635. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14636. llama_file file(path_session, "wb");
  14637. file.write_u32(LLAMA_SESSION_MAGIC);
  14638. file.write_u32(LLAMA_SESSION_VERSION);
  14639. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14640. // save the prompt
  14641. file.write_u32((uint32_t) n_token_count);
  14642. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14643. // save the context state using stream saving
  14644. llama_data_file_context data_ctx(&file);
  14645. llama_state_get_data_internal(ctx, &data_ctx);
  14646. return true;
  14647. }
  14648. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14649. try {
  14650. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14651. } catch (const std::exception & err) {
  14652. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14653. return false;
  14654. }
  14655. }
  14656. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14657. // save the size of size_t as a uint32_t for safety check
  14658. const size_t size_t_size_size = sizeof(uint32_t);
  14659. // other values
  14660. const size_t s_cell_count_size = sizeof(uint32_t);
  14661. const size_t s_layer_count_size = sizeof(uint32_t);
  14662. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14663. size_t s_cell_count = 0;
  14664. size_t s_cell_data_size = 0;
  14665. const auto & kv_self = ctx->kv_self;
  14666. const auto & hparams = ctx->model.hparams;
  14667. const uint32_t n_layer = hparams.n_layer;
  14668. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14669. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14670. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14671. const auto & cell = kv_self.cells[i];
  14672. if (cell.seq_id.count(seq_id) > 0) {
  14673. ++s_cell_count;
  14674. s_cell_data_size += sizeof(llama_pos);
  14675. }
  14676. }
  14677. for (int il = 0; il < (int)n_layer; ++il) {
  14678. // types of keys and values
  14679. s_cell_data_size += sizeof(int32_t) * 2;
  14680. // k_size_row and v_size_el values of layer
  14681. s_cell_data_size += sizeof(size_t) * 2;
  14682. // keys
  14683. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14684. s_cell_data_size += k_size_row * s_cell_count;
  14685. // values (transposed)
  14686. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14687. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14688. }
  14689. const size_t s_total = (
  14690. size_t_size_size +
  14691. s_cell_count_size +
  14692. s_layer_count_size +
  14693. n_embd_v_gqa_size +
  14694. s_cell_data_size
  14695. );
  14696. return s_total;
  14697. }
  14698. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14699. llama_synchronize(ctx);
  14700. const auto & kv_self = ctx->kv_self;
  14701. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14702. // Save the size of size_t as a uint32_t for safety check
  14703. const uint32_t size_t_size = sizeof(size_t);
  14704. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14705. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14706. uint32_t cell_count = 0;
  14707. // Count the number of cells with the specified seq_id
  14708. // Find all the ranges of cells with this seq id
  14709. {
  14710. uint32_t cell_range_begin = kv_self.size;
  14711. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14712. const auto & cell = kv_self.cells[i];
  14713. if (cell.has_seq_id(seq_id)) {
  14714. ++cell_count;
  14715. if (cell_range_begin == kv_self.size) {
  14716. cell_range_begin = i;
  14717. }
  14718. }
  14719. else {
  14720. if (cell_range_begin != kv_self.size) {
  14721. cell_ranges.emplace_back(cell_range_begin, i);
  14722. cell_range_begin = kv_self.size;
  14723. }
  14724. }
  14725. }
  14726. if (cell_range_begin != kv_self.size) {
  14727. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14728. }
  14729. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14730. uint32_t cell_count_check = 0;
  14731. for (const auto & range : cell_ranges) {
  14732. cell_count_check += range.second - range.first;
  14733. }
  14734. GGML_ASSERT(cell_count == cell_count_check);
  14735. }
  14736. // Write the cell count
  14737. data_ctx.write(&cell_count, sizeof(cell_count));
  14738. const auto & hparams = ctx->model.hparams;
  14739. const uint32_t n_layer = hparams.n_layer;
  14740. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14741. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14742. // Write the layer count
  14743. data_ctx.write(&n_layer, sizeof(n_layer));
  14744. // Write n_embd_v_gqa
  14745. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14746. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14747. for (const auto & range : cell_ranges) {
  14748. for (uint32_t i = range.first; i < range.second; ++i) {
  14749. const auto & cell = kv_self.cells[i];
  14750. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14751. }
  14752. }
  14753. // Iterate and write all the keys first, each row is a cell
  14754. // Get whole range at a time
  14755. std::vector<uint8_t> tmp_buf;
  14756. for (int il = 0; il < (int)n_layer; ++il) {
  14757. // Write key type
  14758. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14759. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14760. // Write row size of key
  14761. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14762. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14763. // Read each range of cells of k_size length each into tmp_buf and write out
  14764. for (const auto & range : cell_ranges) {
  14765. const size_t range_size = range.second - range.first;
  14766. tmp_buf.resize(range_size * k_size_row);
  14767. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14768. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14769. }
  14770. }
  14771. // TODO: simplify, reduce copy-paste
  14772. if (!kv_self.v_trans) {
  14773. for (int il = 0; il < (int)n_layer; ++il) {
  14774. // Write value type
  14775. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14776. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14777. // Write row size of value
  14778. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14779. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14780. // Read each range of cells of v_size length each into tmp_buf and write out
  14781. for (const auto & range : cell_ranges) {
  14782. const size_t range_size = range.second - range.first;
  14783. tmp_buf.resize(range_size * v_size_row);
  14784. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14785. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14786. }
  14787. }
  14788. } else {
  14789. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14790. const uint32_t kv_size = kv_self.size;
  14791. for (int il = 0; il < (int)n_layer; ++il) {
  14792. // Write value type
  14793. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14794. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14795. // Write element size
  14796. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14797. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14798. // For each row, we get the element values of each cell
  14799. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14800. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14801. for (const auto & range : cell_ranges) {
  14802. const size_t range_size = range.second - range.first;
  14803. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14804. tmp_buf.resize(range_size * v_size_el);
  14805. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14806. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14807. }
  14808. }
  14809. }
  14810. }
  14811. return data_ctx.get_size_written();
  14812. }
  14813. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14814. llama_data_buffer_context data_ctx(dst);
  14815. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14816. }
  14817. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14818. llama_synchronize(ctx);
  14819. auto & kv_self = ctx->kv_self;
  14820. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14821. // Wipe the slot
  14822. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14823. const uint8_t * inp = src;
  14824. // Read size of size_t
  14825. uint32_t size_t_size;
  14826. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14827. inp += sizeof(size_t_size);
  14828. if (size_t_size != sizeof(size_t)) {
  14829. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14830. return 0;
  14831. }
  14832. // Read the cell count
  14833. uint32_t cell_count;
  14834. memcpy(&cell_count, inp, sizeof(cell_count));
  14835. inp += sizeof(cell_count);
  14836. // Read the layer count
  14837. uint32_t n_layer_ref;
  14838. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14839. inp += sizeof(n_layer_ref);
  14840. // Read n_embd_v_gqa
  14841. uint32_t n_embd_v_gqa_ref;
  14842. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14843. inp += sizeof(n_embd_v_gqa_ref);
  14844. // Sanity check model compatibility
  14845. const auto & hparams = ctx->model.hparams;
  14846. const uint32_t n_layer = hparams.n_layer;
  14847. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14848. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14849. if (n_layer != n_layer_ref) {
  14850. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14851. return 0;
  14852. }
  14853. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14854. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14855. return 0;
  14856. }
  14857. // Allocate the new cells for the slot
  14858. if (cell_count) {
  14859. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14860. batch.n_tokens = cell_count;
  14861. for (uint32_t i = 0; i < cell_count; ++i) {
  14862. llama_pos pos;
  14863. memcpy(&pos, inp, sizeof(pos));
  14864. inp += sizeof(pos);
  14865. batch.pos[i] = pos;
  14866. batch.n_seq_id[i] = 1;
  14867. batch.seq_id[i][0] = dest_seq_id;
  14868. }
  14869. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14870. llama_batch_free(batch);
  14871. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14872. return 0;
  14873. }
  14874. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14875. // Assume that this is one contiguous block of cells
  14876. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14877. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14878. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14879. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14880. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14881. // Cleanup
  14882. llama_batch_free(batch);
  14883. }
  14884. const uint32_t kv_size = kv_self.size;
  14885. const uint32_t kv_head = kv_self.head;
  14886. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14887. for (int il = 0; il < (int)n_layer; ++il) {
  14888. // Read type of key
  14889. int32_t k_type_i_ref;
  14890. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14891. inp += sizeof(k_type_i_ref);
  14892. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14893. if (k_type_i != k_type_i_ref) {
  14894. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14895. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14896. return 0;
  14897. }
  14898. // Read row size of key
  14899. size_t k_size_row_ref;
  14900. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14901. inp += sizeof(k_size_row_ref);
  14902. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14903. if (k_size_row != k_size_row_ref) {
  14904. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14905. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14906. return 0;
  14907. }
  14908. if (cell_count) {
  14909. // Read and set the keys for the whole cell range
  14910. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14911. inp += cell_count * k_size_row;
  14912. }
  14913. }
  14914. // TODO: simplify, reduce copy-paste
  14915. if (!kv_self.v_trans) {
  14916. for (int il = 0; il < (int)n_layer; ++il) {
  14917. // Read type of value
  14918. int32_t v_type_i_ref;
  14919. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14920. inp += sizeof(v_type_i_ref);
  14921. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14922. if (v_type_i != v_type_i_ref) {
  14923. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14924. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14925. return 0;
  14926. }
  14927. // Read row size of value
  14928. size_t v_size_row_ref;
  14929. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14930. inp += sizeof(v_size_row_ref);
  14931. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14932. if (v_size_row != v_size_row_ref) {
  14933. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14934. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14935. return 0;
  14936. }
  14937. if (cell_count) {
  14938. // Read and set the values for the whole cell range
  14939. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14940. inp += cell_count * v_size_row;
  14941. }
  14942. }
  14943. } else {
  14944. // For each layer, read the values for each cell (transposed)
  14945. for (int il = 0; il < (int)n_layer; ++il) {
  14946. // Read type of value
  14947. int32_t v_type_i_ref;
  14948. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14949. inp += sizeof(v_type_i_ref);
  14950. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14951. if (v_type_i != v_type_i_ref) {
  14952. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14953. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14954. return 0;
  14955. }
  14956. // Read element size of value
  14957. size_t v_size_el_ref;
  14958. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14959. inp += sizeof(v_size_el_ref);
  14960. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14961. if (v_size_el != v_size_el_ref) {
  14962. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14963. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14964. return 0;
  14965. }
  14966. if (cell_count) {
  14967. // For each row in the transposed matrix, read the values for the whole cell range
  14968. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14969. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14970. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14971. inp += cell_count * v_size_el;
  14972. }
  14973. }
  14974. }
  14975. }
  14976. const size_t nread = inp - src;
  14977. return nread;
  14978. }
  14979. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14980. llama_file file(filepath, "wb");
  14981. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14982. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14983. // save the prompt
  14984. file.write_u32((uint32_t)n_token_count);
  14985. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14986. // save the context state using stream saving
  14987. llama_data_file_context data_ctx(&file);
  14988. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14989. const size_t res = file.tell();
  14990. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14991. return res;
  14992. }
  14993. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14994. llama_file file(filepath, "rb");
  14995. // version checks
  14996. {
  14997. const uint32_t magic = file.read_u32();
  14998. const uint32_t version = file.read_u32();
  14999. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  15000. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  15001. return 0;
  15002. }
  15003. }
  15004. // load the prompt
  15005. {
  15006. const uint32_t n_token_count = file.read_u32();
  15007. if (n_token_count > n_token_capacity) {
  15008. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  15009. return 0;
  15010. }
  15011. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  15012. *n_token_count_out = n_token_count;
  15013. }
  15014. // restore the context state
  15015. {
  15016. const size_t state_size = file.size - file.tell();
  15017. std::vector<uint8_t> state_data(state_size);
  15018. file.read_raw(state_data.data(), state_size);
  15019. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  15020. if (!nread) {
  15021. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  15022. return 0;
  15023. }
  15024. GGML_ASSERT(nread <= state_size);
  15025. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  15026. }
  15027. return file.tell();
  15028. }
  15029. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  15030. try {
  15031. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  15032. } catch (const std::exception & err) {
  15033. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  15034. return 0;
  15035. }
  15036. }
  15037. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  15038. try {
  15039. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  15040. } catch (const std::exception & err) {
  15041. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  15042. return 0;
  15043. }
  15044. }
  15045. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  15046. ctx->cparams.n_threads = n_threads;
  15047. ctx->cparams.n_threads_batch = n_threads_batch;
  15048. }
  15049. uint32_t llama_n_threads(struct llama_context * ctx) {
  15050. return ctx->cparams.n_threads;
  15051. }
  15052. uint32_t llama_n_threads_batch(struct llama_context * ctx) {
  15053. return ctx->cparams.n_threads_batch;
  15054. }
  15055. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  15056. ctx->abort_callback = abort_callback;
  15057. ctx->abort_callback_data = abort_callback_data;
  15058. }
  15059. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  15060. ctx->cparams.causal_attn = causal_attn;
  15061. }
  15062. struct llama_batch llama_batch_get_one(
  15063. llama_token * tokens,
  15064. int32_t n_tokens,
  15065. llama_pos pos_0,
  15066. llama_seq_id seq_id) {
  15067. return {
  15068. /*n_tokens =*/ n_tokens,
  15069. /*tokens =*/ tokens,
  15070. /*embd =*/ nullptr,
  15071. /*pos =*/ nullptr,
  15072. /*n_seq_id =*/ nullptr,
  15073. /*seq_id =*/ nullptr,
  15074. /*logits =*/ nullptr,
  15075. /*all_pos_0 =*/ pos_0,
  15076. /*all_pos_1 =*/ 1,
  15077. /*all_seq_id =*/ seq_id,
  15078. };
  15079. }
  15080. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  15081. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  15082. if (embd) {
  15083. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  15084. } else {
  15085. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  15086. }
  15087. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  15088. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  15089. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  15090. for (int i = 0; i < n_tokens_alloc; ++i) {
  15091. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  15092. }
  15093. batch.seq_id[n_tokens_alloc] = nullptr;
  15094. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  15095. return batch;
  15096. }
  15097. void llama_batch_free(struct llama_batch batch) {
  15098. if (batch.token) free(batch.token);
  15099. if (batch.embd) free(batch.embd);
  15100. if (batch.pos) free(batch.pos);
  15101. if (batch.n_seq_id) free(batch.n_seq_id);
  15102. if (batch.seq_id) {
  15103. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  15104. free(batch.seq_id[i]);
  15105. }
  15106. free(batch.seq_id);
  15107. }
  15108. if (batch.logits) free(batch.logits);
  15109. }
  15110. int32_t llama_decode(
  15111. struct llama_context * ctx,
  15112. struct llama_batch batch) {
  15113. const int ret = llama_decode_internal(*ctx, batch);
  15114. if (ret < 0) {
  15115. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  15116. }
  15117. return ret;
  15118. }
  15119. void llama_synchronize(struct llama_context * ctx) {
  15120. ggml_backend_sched_synchronize(ctx->sched);
  15121. // FIXME: if multiple single tokens are evaluated without a synchronization,
  15122. // the stats will be added to the prompt evaluation stats
  15123. // this should only happen when using batch size 1 to evaluate a batch
  15124. // add the evaluation to the stats
  15125. if (ctx->n_queued_tokens == 1) {
  15126. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15127. ctx->n_eval++;
  15128. } else if (ctx->n_queued_tokens > 1) {
  15129. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15130. ctx->n_p_eval += ctx->n_queued_tokens;
  15131. }
  15132. // get a more accurate load time, upon first eval
  15133. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  15134. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  15135. ctx->has_evaluated_once = true;
  15136. }
  15137. ctx->n_queued_tokens = 0;
  15138. ctx->t_compute_start_us = 0;
  15139. }
  15140. float * llama_get_logits(struct llama_context * ctx) {
  15141. llama_synchronize(ctx);
  15142. return ctx->logits;
  15143. }
  15144. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  15145. int32_t j = -1;
  15146. llama_synchronize(ctx);
  15147. try {
  15148. if (ctx->logits == nullptr) {
  15149. throw std::runtime_error("no logits");
  15150. }
  15151. if (i < 0) {
  15152. j = ctx->n_outputs + i;
  15153. if (j < 0) {
  15154. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15155. }
  15156. } else if ((size_t) i >= ctx->output_ids.size()) {
  15157. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15158. } else {
  15159. j = ctx->output_ids[i];
  15160. }
  15161. if (j < 0) {
  15162. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15163. }
  15164. if (j >= ctx->n_outputs) {
  15165. // This should not happen
  15166. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15167. }
  15168. return ctx->logits + j*ctx->model.hparams.n_vocab;
  15169. } catch (const std::exception & err) {
  15170. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  15171. #ifndef NDEBUG
  15172. GGML_ASSERT(false);
  15173. #endif
  15174. return nullptr;
  15175. }
  15176. }
  15177. float * llama_get_embeddings(struct llama_context * ctx) {
  15178. llama_synchronize(ctx);
  15179. return ctx->embd;
  15180. }
  15181. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  15182. int32_t j = -1;
  15183. llama_synchronize(ctx);
  15184. try {
  15185. if (ctx->embd == nullptr) {
  15186. throw std::runtime_error("no embeddings");
  15187. }
  15188. if (i < 0) {
  15189. j = ctx->n_outputs + i;
  15190. if (j < 0) {
  15191. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15192. }
  15193. } else if ((size_t) i >= ctx->output_ids.size()) {
  15194. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15195. } else {
  15196. j = ctx->output_ids[i];
  15197. }
  15198. if (j < 0) {
  15199. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15200. }
  15201. if (j >= ctx->n_outputs) {
  15202. // This should not happen
  15203. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15204. }
  15205. return ctx->embd + j*ctx->model.hparams.n_embd;
  15206. } catch (const std::exception & err) {
  15207. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  15208. #ifndef NDEBUG
  15209. GGML_ASSERT(false);
  15210. #endif
  15211. return nullptr;
  15212. }
  15213. }
  15214. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  15215. llama_synchronize(ctx);
  15216. auto it = ctx->embd_seq.find(seq_id);
  15217. if (it == ctx->embd_seq.end()) {
  15218. return nullptr;
  15219. }
  15220. return it->second.data();
  15221. }
  15222. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  15223. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15224. return model->vocab.id_to_token[token].text.c_str();
  15225. }
  15226. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  15227. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15228. return model->vocab.id_to_token[token].score;
  15229. }
  15230. llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
  15231. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15232. return model->vocab.id_to_token[token].attr;
  15233. }
  15234. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  15235. return token != -1 && (
  15236. token == llama_token_eos(model) ||
  15237. token == llama_token_eot(model)
  15238. );
  15239. }
  15240. bool llama_token_is_control(const struct llama_model * model, llama_token token) {
  15241. return llama_is_control_token(model->vocab, token);
  15242. }
  15243. llama_token llama_token_bos(const struct llama_model * model) {
  15244. return model->vocab.special_bos_id;
  15245. }
  15246. llama_token llama_token_eos(const struct llama_model * model) {
  15247. return model->vocab.special_eos_id;
  15248. }
  15249. llama_token llama_token_cls(const struct llama_model * model) {
  15250. return model->vocab.special_cls_id;
  15251. }
  15252. llama_token llama_token_sep(const struct llama_model * model) {
  15253. return model->vocab.special_sep_id;
  15254. }
  15255. llama_token llama_token_nl(const struct llama_model * model) {
  15256. return model->vocab.linefeed_id;
  15257. }
  15258. int32_t llama_add_bos_token(const struct llama_model * model) {
  15259. return model->vocab.special_add_bos;
  15260. }
  15261. int32_t llama_add_eos_token(const struct llama_model * model) {
  15262. return model->vocab.special_add_eos;
  15263. }
  15264. llama_token llama_token_prefix(const struct llama_model * model) {
  15265. return model->vocab.special_prefix_id;
  15266. }
  15267. llama_token llama_token_middle(const struct llama_model * model) {
  15268. return model->vocab.special_middle_id;
  15269. }
  15270. llama_token llama_token_suffix(const struct llama_model * model) {
  15271. return model->vocab.special_suffix_id;
  15272. }
  15273. llama_token llama_token_eot(const struct llama_model * model) {
  15274. return model->vocab.special_eot_id;
  15275. }
  15276. int32_t llama_tokenize(
  15277. const struct llama_model * model,
  15278. const char * text,
  15279. int32_t text_len,
  15280. llama_token * tokens,
  15281. int32_t n_tokens_max,
  15282. bool add_special,
  15283. bool parse_special) {
  15284. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  15285. if (n_tokens_max < (int) res.size()) {
  15286. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  15287. return -((int) res.size());
  15288. }
  15289. for (size_t i = 0; i < res.size(); i++) {
  15290. tokens[i] = res[i];
  15291. }
  15292. return res.size();
  15293. }
  15294. static std::string llama_decode_text(const std::string & text) {
  15295. std::string decoded_text;
  15296. const auto cpts = unicode_cpts_from_utf8(text);
  15297. for (const auto cpt : cpts) {
  15298. const auto utf8 = unicode_cpt_to_utf8(cpt);
  15299. try {
  15300. decoded_text += unicode_utf8_to_byte(utf8);
  15301. } catch (const std::out_of_range & e) {
  15302. decoded_text += "[UNK_BYTE_0x";
  15303. for (const auto c : utf8) {
  15304. decoded_text += format("%02x", (uint8_t) c);
  15305. }
  15306. decoded_text += text + "]";
  15307. }
  15308. }
  15309. return decoded_text;
  15310. }
  15311. // does not write null-terminator to buf
  15312. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  15313. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  15314. if (!special && llama_is_control_token(model->vocab, token)) {
  15315. return 0;
  15316. }
  15317. // if we have a cache - use it
  15318. {
  15319. const auto & cache = model->vocab.cache_token_to_piece;
  15320. if (!cache.empty()) {
  15321. const auto & res = cache.at(token);
  15322. if (length < (int) res.size()) {
  15323. return -(int) res.size();
  15324. }
  15325. memcpy(buf, res.c_str(), res.size());
  15326. return res.size();
  15327. }
  15328. }
  15329. if (0 <= token && token < llama_n_vocab(model)) {
  15330. switch (llama_vocab_get_type(model->vocab)) {
  15331. case LLAMA_VOCAB_TYPE_WPM:
  15332. case LLAMA_VOCAB_TYPE_SPM: {
  15333. // NOTE: we accept all unsupported token types,
  15334. // suppressing them like CONTROL tokens.
  15335. if (llama_is_normal_token(model->vocab, token)) {
  15336. std::string result = model->vocab.id_to_token[token].text;
  15337. llama_unescape_whitespace(result);
  15338. if (length < (int) result.length()) {
  15339. return -(int) result.length();
  15340. }
  15341. memcpy(buf, result.c_str(), result.length());
  15342. return result.length();
  15343. } else if (
  15344. (llama_is_user_defined_token(model->vocab, token)) ||
  15345. (llama_is_control_token (model->vocab, token) && special)) {
  15346. std::string result = model->vocab.id_to_token[token].text;
  15347. if (length < (int) result.length()) {
  15348. return -(int) result.length();
  15349. }
  15350. memcpy(buf, result.c_str(), result.length());
  15351. return result.length();
  15352. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  15353. if (length < 3) {
  15354. return -3;
  15355. }
  15356. memcpy(buf, "\xe2\x96\x85", 3);
  15357. return 3;
  15358. } else if (llama_is_byte_token(model->vocab, token)) {
  15359. if (length < 1) {
  15360. return -1;
  15361. }
  15362. buf[0] = llama_token_to_byte(model->vocab, token);
  15363. return 1;
  15364. }
  15365. break;
  15366. }
  15367. case LLAMA_VOCAB_TYPE_BPE: {
  15368. // NOTE: we accept all unsupported token types,
  15369. // suppressing them like CONTROL tokens.
  15370. if (llama_is_normal_token(model->vocab, token)) {
  15371. std::string result = model->vocab.id_to_token[token].text;
  15372. result = llama_decode_text(result);
  15373. if (length < (int) result.length()) {
  15374. return -(int) result.length();
  15375. }
  15376. memcpy(buf, result.c_str(), result.length());
  15377. return result.length();
  15378. } else if (
  15379. (llama_is_user_defined_token(model->vocab, token)) ||
  15380. (llama_is_control_token (model->vocab, token) && special)) {
  15381. std::string result = model->vocab.id_to_token[token].text;
  15382. if (length < (int) result.length()) {
  15383. return -(int) result.length();
  15384. }
  15385. memcpy(buf, result.c_str(), result.length());
  15386. return result.length();
  15387. }
  15388. break;
  15389. }
  15390. default:
  15391. GGML_ASSERT(false);
  15392. }
  15393. }
  15394. return 0;
  15395. }
  15396. // trim whitespace from the beginning and end of a string
  15397. static std::string trim(const std::string & str) {
  15398. size_t start = 0;
  15399. size_t end = str.size();
  15400. while (start < end && isspace(str[start])) {
  15401. start += 1;
  15402. }
  15403. while (end > start && isspace(str[end - 1])) {
  15404. end -= 1;
  15405. }
  15406. return str.substr(start, end - start);
  15407. }
  15408. // Simple version of "llama_apply_chat_template" that only works with strings
  15409. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  15410. static int32_t llama_chat_apply_template_internal(
  15411. const std::string & tmpl,
  15412. const std::vector<const llama_chat_message *> & chat,
  15413. std::string & dest, bool add_ass) {
  15414. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  15415. std::stringstream ss;
  15416. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  15417. // chatml template
  15418. for (auto message : chat) {
  15419. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  15420. }
  15421. if (add_ass) {
  15422. ss << "<|im_start|>assistant\n";
  15423. }
  15424. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  15425. // llama2 template and its variants
  15426. // [variant] support system message
  15427. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  15428. // [variant] space before + after response
  15429. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  15430. // [variant] add BOS inside history
  15431. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  15432. // [variant] trim spaces from the input message
  15433. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  15434. // construct the prompt
  15435. bool is_inside_turn = true; // skip BOS at the beginning
  15436. ss << "[INST] ";
  15437. for (auto message : chat) {
  15438. std::string content = strip_message ? trim(message->content) : message->content;
  15439. std::string role(message->role);
  15440. if (!is_inside_turn) {
  15441. is_inside_turn = true;
  15442. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  15443. }
  15444. if (role == "system") {
  15445. if (support_system_message) {
  15446. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  15447. } else {
  15448. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  15449. ss << content << "\n";
  15450. }
  15451. } else if (role == "user") {
  15452. ss << content << " [/INST]";
  15453. } else {
  15454. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  15455. is_inside_turn = false;
  15456. }
  15457. }
  15458. // llama2 templates seem to not care about "add_generation_prompt"
  15459. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) {
  15460. // Phi 3
  15461. for (auto message : chat) {
  15462. std::string role(message->role);
  15463. ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
  15464. }
  15465. if (add_ass) {
  15466. ss << "<|assistant|>\n";
  15467. }
  15468. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  15469. // zephyr template
  15470. for (auto message : chat) {
  15471. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  15472. }
  15473. if (add_ass) {
  15474. ss << "<|assistant|>\n";
  15475. }
  15476. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  15477. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  15478. for (auto message : chat) {
  15479. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  15480. ss << bos << message->role << "\n" << message->content << "</s>\n";
  15481. }
  15482. if (add_ass) {
  15483. ss << "<s>assistant\n";
  15484. }
  15485. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  15486. // google/gemma-7b-it
  15487. std::string system_prompt = "";
  15488. for (auto message : chat) {
  15489. std::string role(message->role);
  15490. if (role == "system") {
  15491. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  15492. system_prompt = trim(message->content);
  15493. continue;
  15494. }
  15495. // in gemma, "assistant" is "model"
  15496. role = role == "assistant" ? "model" : message->role;
  15497. ss << "<start_of_turn>" << role << "\n";
  15498. if (!system_prompt.empty() && role != "model") {
  15499. ss << system_prompt << "\n\n";
  15500. system_prompt = "";
  15501. }
  15502. ss << trim(message->content) << "<end_of_turn>\n";
  15503. }
  15504. if (add_ass) {
  15505. ss << "<start_of_turn>model\n";
  15506. }
  15507. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  15508. // OrionStarAI/Orion-14B-Chat
  15509. std::string system_prompt = "";
  15510. for (auto message : chat) {
  15511. std::string role(message->role);
  15512. if (role == "system") {
  15513. // there is no system message support, we will merge it with user prompt
  15514. system_prompt = message->content;
  15515. continue;
  15516. } else if (role == "user") {
  15517. ss << "Human: ";
  15518. if (!system_prompt.empty()) {
  15519. ss << system_prompt << "\n\n";
  15520. system_prompt = "";
  15521. }
  15522. ss << message->content << "\n\nAssistant: </s>";
  15523. } else {
  15524. ss << message->content << "</s>";
  15525. }
  15526. }
  15527. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  15528. // openchat/openchat-3.5-0106,
  15529. for (auto message : chat) {
  15530. std::string role(message->role);
  15531. if (role == "system") {
  15532. ss << message->content << "<|end_of_turn|>";
  15533. } else {
  15534. role[0] = toupper(role[0]);
  15535. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  15536. }
  15537. }
  15538. if (add_ass) {
  15539. ss << "GPT4 Correct Assistant:";
  15540. }
  15541. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  15542. // eachadea/vicuna-13b-1.1 (and Orca variant)
  15543. for (auto message : chat) {
  15544. std::string role(message->role);
  15545. if (role == "system") {
  15546. // Orca-Vicuna variant uses a system prefix
  15547. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  15548. ss << "SYSTEM: " << message->content << "\n";
  15549. } else {
  15550. ss << message->content << "\n\n";
  15551. }
  15552. } else if (role == "user") {
  15553. ss << "USER: " << message->content << "\n";
  15554. } else if (role == "assistant") {
  15555. ss << "ASSISTANT: " << message->content << "</s>\n";
  15556. }
  15557. }
  15558. if (add_ass) {
  15559. ss << "ASSISTANT:";
  15560. }
  15561. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  15562. // deepseek-ai/deepseek-coder-33b-instruct
  15563. for (auto message : chat) {
  15564. std::string role(message->role);
  15565. if (role == "system") {
  15566. ss << message->content;
  15567. } else if (role == "user") {
  15568. ss << "### Instruction:\n" << message->content << "\n";
  15569. } else if (role == "assistant") {
  15570. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15571. }
  15572. }
  15573. if (add_ass) {
  15574. ss << "### Response:\n";
  15575. }
  15576. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15577. // CohereForAI/c4ai-command-r-plus
  15578. for (auto message : chat) {
  15579. std::string role(message->role);
  15580. if (role == "system") {
  15581. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15582. } else if (role == "user") {
  15583. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15584. } else if (role == "assistant") {
  15585. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15586. }
  15587. }
  15588. if (add_ass) {
  15589. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15590. }
  15591. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15592. // Llama 3
  15593. for (auto message : chat) {
  15594. std::string role(message->role);
  15595. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15596. }
  15597. if (add_ass) {
  15598. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15599. }
  15600. } else {
  15601. // template not supported
  15602. return -1;
  15603. }
  15604. dest = ss.str();
  15605. return dest.size();
  15606. }
  15607. LLAMA_API int32_t llama_chat_apply_template(
  15608. const struct llama_model * model,
  15609. const char * tmpl,
  15610. const struct llama_chat_message * chat,
  15611. size_t n_msg,
  15612. bool add_ass,
  15613. char * buf,
  15614. int32_t length) {
  15615. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15616. if (tmpl == nullptr) {
  15617. GGML_ASSERT(model != nullptr);
  15618. // load template from model
  15619. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15620. std::string template_key = "tokenizer.chat_template";
  15621. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15622. if (res < 0) {
  15623. // worst case: there is no information about template, we will use chatml by default
  15624. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15625. } else {
  15626. curr_tmpl = std::string(model_template.data(), model_template.size());
  15627. }
  15628. }
  15629. // format the chat to string
  15630. std::vector<const llama_chat_message *> chat_vec;
  15631. chat_vec.resize(n_msg);
  15632. for (size_t i = 0; i < n_msg; i++) {
  15633. chat_vec[i] = &chat[i];
  15634. }
  15635. std::string formatted_chat;
  15636. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15637. if (res < 0) {
  15638. return res;
  15639. }
  15640. if (buf && length > 0) {
  15641. strncpy(buf, formatted_chat.c_str(), length);
  15642. }
  15643. return res;
  15644. }
  15645. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15646. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15647. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15648. return strlen(split_path);
  15649. }
  15650. return 0;
  15651. }
  15652. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15653. std::string str_split_path(split_path);
  15654. char postfix[32];
  15655. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15656. std::string str_postfix(postfix);
  15657. // check if dest ends with postfix
  15658. int size_prefix = str_split_path.size() - str_postfix.size();
  15659. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15660. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15661. return size_prefix;
  15662. }
  15663. return 0;
  15664. }
  15665. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15666. struct llama_timings result = {
  15667. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15668. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15669. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15670. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15671. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15672. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15673. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15674. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15675. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15676. };
  15677. return result;
  15678. }
  15679. void llama_print_timings(struct llama_context * ctx) {
  15680. const llama_timings timings = llama_get_timings(ctx);
  15681. LLAMA_LOG_INFO("\n");
  15682. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15683. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15684. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15685. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15686. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15687. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15688. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15689. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15690. }
  15691. void llama_reset_timings(struct llama_context * ctx) {
  15692. ctx->t_start_us = ggml_time_us();
  15693. ctx->t_sample_us = ctx->n_sample = 0;
  15694. ctx->t_eval_us = ctx->n_eval = 0;
  15695. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15696. }
  15697. const char * llama_print_system_info(void) {
  15698. static std::string s;
  15699. s = "";
  15700. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15701. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15702. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15703. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15704. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15705. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15706. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  15707. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15708. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15709. s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
  15710. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15711. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15712. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15713. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15714. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15715. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15716. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15717. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15718. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15719. #ifdef GGML_USE_LLAMAFILE
  15720. s += "LLAMAFILE = 1 | ";
  15721. #else
  15722. s += "LLAMAFILE = 0 | ";
  15723. #endif
  15724. return s.c_str();
  15725. }
  15726. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15727. fprintf(stream, "\n");
  15728. fprintf(stream, "###########\n");
  15729. fprintf(stream, "# Timings #\n");
  15730. fprintf(stream, "###########\n");
  15731. fprintf(stream, "\n");
  15732. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15733. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15734. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15735. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15736. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15737. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15738. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15739. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15740. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15741. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15742. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15743. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15744. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15745. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15746. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15747. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15748. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15749. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15750. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15751. }
  15752. // For internal test use
  15753. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15754. struct llama_context * ctx
  15755. ) {
  15756. return ctx->model.tensors_by_name;
  15757. }
  15758. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15759. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15760. g_state.log_callback_user_data = user_data;
  15761. #ifdef GGML_USE_METAL
  15762. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15763. #elif defined(GGML_USE_CUDA)
  15764. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15765. #endif
  15766. }
  15767. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15768. va_list args_copy;
  15769. va_copy(args_copy, args);
  15770. char buffer[128];
  15771. int len = vsnprintf(buffer, 128, format, args);
  15772. if (len < 128) {
  15773. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15774. } else {
  15775. char* buffer2 = new char[len+1];
  15776. vsnprintf(buffer2, len+1, format, args_copy);
  15777. buffer2[len] = 0;
  15778. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15779. delete[] buffer2;
  15780. }
  15781. va_end(args_copy);
  15782. }
  15783. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15784. va_list args;
  15785. va_start(args, format);
  15786. llama_log_internal_v(level, format, args);
  15787. va_end(args);
  15788. }
  15789. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15790. (void) level;
  15791. (void) user_data;
  15792. fputs(text, stderr);
  15793. fflush(stderr);
  15794. }