llama.h 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #ifdef GGML_USE_CUBLAS
  5. #include "ggml-cuda.h"
  6. #define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
  7. #else
  8. #define LLAMA_MAX_DEVICES 1
  9. #endif // GGML_USE_CUBLAS
  10. #include <stddef.h>
  11. #include <stdint.h>
  12. #include <stdio.h>
  13. #include <stdbool.h>
  14. #ifdef LLAMA_SHARED
  15. # if defined(_WIN32) && !defined(__MINGW32__)
  16. # ifdef LLAMA_BUILD
  17. # define LLAMA_API __declspec(dllexport)
  18. # else
  19. # define LLAMA_API __declspec(dllimport)
  20. # endif
  21. # else
  22. # define LLAMA_API __attribute__ ((visibility ("default")))
  23. # endif
  24. #else
  25. # define LLAMA_API
  26. #endif
  27. #ifdef __GNUC__
  28. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  29. #elif defined(_MSC_VER)
  30. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  31. #else
  32. # define DEPRECATED(func, hint) func
  33. #endif
  34. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  35. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  36. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  37. #define LLAMA_SESSION_VERSION 1
  38. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
  39. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  40. #define LLAMA_SUPPORTS_GPU_OFFLOAD
  41. #endif
  42. #ifdef __cplusplus
  43. extern "C" {
  44. #endif
  45. //
  46. // C interface
  47. //
  48. // TODO: show sample usage
  49. //
  50. struct llama_model;
  51. struct llama_context;
  52. typedef int llama_token;
  53. enum llama_log_level {
  54. LLAMA_LOG_LEVEL_ERROR = 2,
  55. LLAMA_LOG_LEVEL_WARN = 3,
  56. LLAMA_LOG_LEVEL_INFO = 4
  57. };
  58. enum llama_vocab_type {
  59. LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
  60. LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
  61. };
  62. enum llama_token_type {
  63. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  64. LLAMA_TOKEN_TYPE_NORMAL = 1,
  65. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  66. LLAMA_TOKEN_TYPE_CONTROL = 3,
  67. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  68. LLAMA_TOKEN_TYPE_UNUSED = 5,
  69. LLAMA_TOKEN_TYPE_BYTE = 6,
  70. };
  71. // model file types
  72. enum llama_ftype {
  73. LLAMA_FTYPE_ALL_F32 = 0,
  74. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  75. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  76. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  77. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  78. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  79. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  80. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  81. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  82. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  83. LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
  84. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
  85. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
  86. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
  87. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
  88. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
  89. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
  90. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
  91. LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
  92. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  93. };
  94. typedef struct llama_token_data {
  95. llama_token id; // token id
  96. float logit; // log-odds of the token
  97. float p; // probability of the token
  98. } llama_token_data;
  99. typedef struct llama_token_data_array {
  100. llama_token_data * data;
  101. size_t size;
  102. bool sorted;
  103. } llama_token_data_array;
  104. typedef void (*llama_progress_callback)(float progress, void *ctx);
  105. struct llama_context_params {
  106. uint32_t seed; // RNG seed, -1 for random
  107. int32_t n_ctx; // text context
  108. int32_t n_batch; // prompt processing batch size
  109. int32_t n_gpu_layers; // number of layers to store in VRAM
  110. int32_t main_gpu; // the GPU that is used for scratch and small tensors
  111. const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
  112. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  113. float rope_freq_base; // RoPE base frequency
  114. float rope_freq_scale; // RoPE frequency scaling factor
  115. // called with a progress value between 0 and 1, pass NULL to disable
  116. llama_progress_callback progress_callback;
  117. // context pointer passed to the progress callback
  118. void * progress_callback_user_data;
  119. // Keep the booleans together to avoid misalignment during copy-by-value.
  120. bool low_vram; // if true, reduce VRAM usage at the cost of performance
  121. bool mul_mat_q; // if true, use experimental mul_mat_q kernels
  122. bool f16_kv; // use fp16 for KV cache
  123. bool logits_all; // the llama_eval() call computes all logits, not just the last one
  124. bool vocab_only; // only load the vocabulary, no weights
  125. bool use_mmap; // use mmap if possible
  126. bool use_mlock; // force system to keep model in RAM
  127. bool embedding; // embedding mode only
  128. };
  129. // Signature for logging events
  130. // Note that text includes the new line character at the end for most events.
  131. // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
  132. // if it exists.
  133. // It might not exist for progress report where '.' is output repeatedly.
  134. typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
  135. // model quantization parameters
  136. typedef struct llama_model_quantize_params {
  137. int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  138. enum llama_ftype ftype; // quantize to this llama_ftype
  139. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  140. bool quantize_output_tensor; // quantize output.weight
  141. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  142. } llama_model_quantize_params;
  143. // grammar types
  144. struct llama_grammar;
  145. // grammar element type
  146. enum llama_gretype {
  147. // end of rule definition
  148. LLAMA_GRETYPE_END = 0,
  149. // start of alternate definition for rule
  150. LLAMA_GRETYPE_ALT = 1,
  151. // non-terminal element: reference to rule
  152. LLAMA_GRETYPE_RULE_REF = 2,
  153. // terminal element: character (code point)
  154. LLAMA_GRETYPE_CHAR = 3,
  155. // inverse char(s) ([^a], [^a-b] [^abc])
  156. LLAMA_GRETYPE_CHAR_NOT = 4,
  157. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  158. // be an inclusive range ([a-z])
  159. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  160. // modifies a preceding LLAMA_GRETYPE_CHAR or
  161. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  162. LLAMA_GRETYPE_CHAR_ALT = 6,
  163. };
  164. typedef struct llama_grammar_element {
  165. enum llama_gretype type;
  166. uint32_t value; // Unicode code point or rule ID
  167. } llama_grammar_element;
  168. // performance timing information
  169. struct llama_timings {
  170. double t_start_ms;
  171. double t_end_ms;
  172. double t_load_ms;
  173. double t_sample_ms;
  174. double t_p_eval_ms;
  175. double t_eval_ms;
  176. int32_t n_sample;
  177. int32_t n_p_eval;
  178. int32_t n_eval;
  179. };
  180. LLAMA_API struct llama_context_params llama_context_default_params(void);
  181. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  182. // Initialize the llama + ggml backend
  183. // If numa is true, use NUMA optimizations
  184. // Call once at the start of the program
  185. LLAMA_API void llama_backend_init(bool numa);
  186. // Call once at the end of the program - currently only used for MPI
  187. LLAMA_API void llama_backend_free(void);
  188. LLAMA_API struct llama_model * llama_load_model_from_file(
  189. const char * path_model,
  190. struct llama_context_params params);
  191. LLAMA_API void llama_free_model(struct llama_model * model);
  192. LLAMA_API struct llama_context * llama_new_context_with_model(
  193. struct llama_model * model,
  194. struct llama_context_params params);
  195. // Frees all allocated memory
  196. LLAMA_API void llama_free(struct llama_context * ctx);
  197. LLAMA_API int64_t llama_time_us(void);
  198. LLAMA_API int llama_max_devices (void);
  199. LLAMA_API bool llama_mmap_supported (void);
  200. LLAMA_API bool llama_mlock_supported(void);
  201. LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
  202. LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
  203. LLAMA_API int llama_n_embd (const struct llama_context * ctx);
  204. LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx);
  205. LLAMA_API int llama_model_n_vocab(const struct llama_model * model);
  206. LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
  207. LLAMA_API int llama_model_n_embd (const struct llama_model * model);
  208. // Get a string describing the model type
  209. LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  210. // Returns the total size of all the tensors in the model in bytes
  211. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  212. // Returns the total number of parameters in the model
  213. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  214. // Returns 0 on success
  215. LLAMA_API int llama_model_quantize(
  216. const char * fname_inp,
  217. const char * fname_out,
  218. const llama_model_quantize_params * params);
  219. // Apply a LoRA adapter to a loaded model
  220. // path_base_model is the path to a higher quality model to use as a base for
  221. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  222. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  223. // will be applied on top of the previous one
  224. // Returns 0 on success
  225. LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
  226. struct llama_context * ctx,
  227. const char * path_lora,
  228. const char * path_base_model,
  229. int n_threads),
  230. "please use llama_model_apply_lora_from_file instead");
  231. LLAMA_API int llama_model_apply_lora_from_file(
  232. const struct llama_model * model,
  233. const char * path_lora,
  234. const char * path_base_model,
  235. int n_threads);
  236. // Returns the number of tokens in the KV cache
  237. LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
  238. // Sets the current rng seed.
  239. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  240. // Returns the maximum size in bytes of the state (rng, logits, embedding
  241. // and kv_cache) - will often be smaller after compacting tokens
  242. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  243. // Copies the state to the specified destination address.
  244. // Destination needs to have allocated enough memory.
  245. // Returns the number of bytes copied
  246. LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
  247. // Set the state reading from the specified address
  248. // Returns the number of bytes read
  249. LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
  250. // Save/load session file
  251. LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
  252. LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
  253. // Run the llama inference to obtain the logits and probabilities for the next token.
  254. // tokens + n_tokens is the provided batch of new tokens to process
  255. // n_past is the number of tokens to use from previous eval calls
  256. // Returns 0 on success
  257. LLAMA_API int llama_eval(
  258. struct llama_context * ctx,
  259. const llama_token * tokens,
  260. int n_tokens,
  261. int n_past,
  262. int n_threads);
  263. // Same as llama_eval, but use float matrix input directly.
  264. LLAMA_API int llama_eval_embd(
  265. struct llama_context * ctx,
  266. const float * embd,
  267. int n_tokens,
  268. int n_past,
  269. int n_threads);
  270. // Export a static computation graph for context of 511 and batch size of 1
  271. // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
  272. // parameters here to keep things simple
  273. // IMPORTANT: do not use for anything else other than debugging and testing!
  274. LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
  275. // Token logits obtained from the last call to llama_eval()
  276. // The logits for the last token are stored in the last row
  277. // Can be mutated in order to change the probabilities of the next token
  278. // Rows: n_tokens
  279. // Cols: n_vocab
  280. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  281. // Get the embeddings for the input
  282. // shape: [n_embd] (1-dimensional)
  283. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  284. //
  285. // Vocab
  286. //
  287. LLAMA_API const char * llama_token_get_text(const struct llama_context * ctx, llama_token token);
  288. LLAMA_API float llama_token_get_score(const struct llama_context * ctx, llama_token token);
  289. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token);
  290. // Special tokens
  291. LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
  292. LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
  293. LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
  294. //
  295. // Tokenization
  296. //
  297. // Convert the provided text into tokens.
  298. // The tokens pointer must be large enough to hold the resulting tokens.
  299. // Returns the number of tokens on success, no more than n_max_tokens
  300. // Returns a negative number on failure - the number of tokens that would have been returned
  301. LLAMA_API int llama_tokenize(
  302. struct llama_context * ctx,
  303. const char * text,
  304. llama_token * tokens,
  305. int n_max_tokens,
  306. bool add_bos);
  307. LLAMA_API int llama_tokenize_with_model(
  308. const struct llama_model * model,
  309. const char * text,
  310. llama_token * tokens,
  311. int n_max_tokens,
  312. bool add_bos);
  313. // Token Id -> Piece.
  314. // Uses the vocabulary in the provided context.
  315. // Does not write null terminator to the buffer.
  316. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  317. LLAMA_API int llama_token_to_piece(
  318. const struct llama_context * ctx,
  319. llama_token token,
  320. char * buf,
  321. int length);
  322. LLAMA_API int llama_token_to_piece_with_model(
  323. const struct llama_model * model,
  324. llama_token token,
  325. char * buf,
  326. int length);
  327. //
  328. // Grammar
  329. //
  330. LLAMA_API struct llama_grammar * llama_grammar_init(
  331. const llama_grammar_element ** rules,
  332. size_t n_rules,
  333. size_t start_rule_index);
  334. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  335. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  336. //
  337. // Sampling functions
  338. //
  339. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  340. LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
  341. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  342. LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
  343. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  344. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
  345. /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  346. /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  347. LLAMA_API void llama_sample_classifier_free_guidance(
  348. struct llama_context * ctx,
  349. llama_token_data_array * candidates,
  350. struct llama_context * guidance_ctx,
  351. float scale);
  352. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  353. LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
  354. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  355. LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
  356. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  357. LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  358. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  359. LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
  360. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  361. LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  362. LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
  363. /// @details Apply constraints from grammar
  364. LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
  365. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  366. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  367. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  368. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  369. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  370. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  371. LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
  372. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  373. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  374. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  375. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  376. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  377. LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
  378. /// @details Selects the token with the highest probability.
  379. LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
  380. /// @details Randomly selects a token from the candidates based on their probabilities.
  381. LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
  382. /// @details Accepts the sampled token into the grammar
  383. LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
  384. //
  385. // Beam search
  386. //
  387. struct llama_beam_view {
  388. const llama_token * tokens;
  389. size_t n_tokens;
  390. float p; // Cumulative beam probability (renormalized relative to all beams)
  391. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  392. };
  393. // Passed to beam_search_callback function.
  394. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  395. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  396. // These pointers are valid only during the synchronous callback, so should not be saved.
  397. struct llama_beams_state {
  398. struct llama_beam_view * beam_views;
  399. size_t n_beams; // Number of elements in beam_views[].
  400. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  401. bool last_call; // True iff this is the last callback invocation.
  402. };
  403. // Type of pointer to the beam_search_callback function.
  404. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  405. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  406. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  407. /// @details Deterministically returns entire sentence constructed by a beam search.
  408. /// @param ctx Pointer to the llama_context.
  409. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  410. /// @param callback_data A pointer that is simply passed back to callback.
  411. /// @param n_beams Number of beams to use.
  412. /// @param n_past Number of tokens already evaluated.
  413. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  414. /// @param n_threads Number of threads as passed to llama_eval().
  415. LLAMA_API void llama_beam_search(struct llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, size_t n_beams, int n_past, int n_predict, int n_threads);
  416. // Performance information
  417. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  418. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  419. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  420. // Print system information
  421. LLAMA_API const char * llama_print_system_info(void);
  422. // Set callback for all future logging events.
  423. // If this is not called, or NULL is supplied, everything is output on stderr.
  424. LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
  425. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  426. #ifdef __cplusplus
  427. }
  428. #endif
  429. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  430. #ifdef LLAMA_API_INTERNAL
  431. #include <vector>
  432. #include <string>
  433. struct ggml_tensor;
  434. const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
  435. #endif // LLAMA_API_INTERNAL
  436. #endif // LLAMA_H