convert_hf_to_gguf.py 284 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. VISION = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.VISION: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is VisionModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  260. )
  261. )
  262. or not new_name.endswith(".weight")
  263. ):
  264. data_qtype = gguf.GGMLQuantizationType.F32
  265. if data_qtype is False and any(
  266. self.match_model_tensor_name(new_name, key, bid)
  267. for key in (
  268. gguf.MODEL_TENSOR.TOKEN_EMBD,
  269. gguf.MODEL_TENSOR.OUTPUT,
  270. )
  271. ):
  272. if self.ftype in (
  273. gguf.LlamaFileType.MOSTLY_TQ1_0,
  274. gguf.LlamaFileType.MOSTLY_TQ2_0,
  275. ):
  276. # TODO: use Q4_K and Q6_K
  277. data_qtype = gguf.GGMLQuantizationType.F16
  278. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  279. if isinstance(data_qtype, bool):
  280. if self.ftype == gguf.LlamaFileType.ALL_F32:
  281. data_qtype = gguf.GGMLQuantizationType.F32
  282. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  283. data_qtype = gguf.GGMLQuantizationType.F16
  284. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  285. data_qtype = gguf.GGMLQuantizationType.BF16
  286. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  287. data_qtype = gguf.GGMLQuantizationType.Q8_0
  288. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  289. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  291. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  292. else:
  293. raise ValueError(f"Unknown file type: {self.ftype.name}")
  294. try:
  295. data = gguf.quants.quantize(data, data_qtype)
  296. except gguf.QuantError as e:
  297. logger.warning("%s, %s", e, "falling back to F16")
  298. data_qtype = gguf.GGMLQuantizationType.F16
  299. data = gguf.quants.quantize(data, data_qtype)
  300. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  301. # reverse shape to make it similar to the internal ggml dimension order
  302. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  303. # n_dims is implicit in the shape
  304. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  305. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  306. def set_type(self):
  307. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  308. def prepare_metadata(self, vocab_only: bool):
  309. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  310. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  311. # If we are using HF model id, set the metadata name to the model id
  312. if self.remote_hf_model_id:
  313. self.metadata.name = self.remote_hf_model_id
  314. # Fallback to model directory name if metadata name is still missing
  315. if self.metadata.name is None:
  316. self.metadata.name = self.dir_model.name
  317. # Generate parameter weight class (useful for leader boards) if not yet determined
  318. if self.metadata.size_label is None and total_params > 0:
  319. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  320. self.set_type()
  321. logger.info("Set meta model")
  322. self.metadata.set_gguf_meta_model(self.gguf_writer)
  323. logger.info("Set model parameters")
  324. self.set_gguf_parameters()
  325. logger.info("Set model quantization version")
  326. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  327. def write_vocab(self):
  328. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  329. def write(self):
  330. self.prepare_tensors()
  331. self.prepare_metadata(vocab_only=False)
  332. self.gguf_writer.write_header_to_file(path=self.fname_out)
  333. self.gguf_writer.write_kv_data_to_file()
  334. self.gguf_writer.write_tensors_to_file(progress=True)
  335. self.gguf_writer.close()
  336. @staticmethod
  337. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  338. part_names: list[str] = []
  339. for filename in os.listdir(dir_model):
  340. if filename.startswith(prefix) and filename.endswith(suffix):
  341. part_names.append(filename)
  342. part_names.sort()
  343. return part_names
  344. @staticmethod
  345. def load_hparams(dir_model: Path):
  346. try:
  347. # for security reason, we don't allow loading remote code by default
  348. # if a model need remote code, we will fallback to config.json
  349. return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  350. except Exception as e:
  351. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  352. logger.warning("Trying to load config.json instead")
  353. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  354. config = json.load(f)
  355. if "llm_config" in config:
  356. # rename for InternVL
  357. config["text_config"] = config["llm_config"]
  358. return config
  359. @classmethod
  360. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  361. assert names
  362. def func(modelcls: AnyModel) -> AnyModel:
  363. model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
  364. for name in names:
  365. cls._model_classes[model_type][name] = modelcls
  366. return modelcls
  367. return func
  368. @classmethod
  369. def print_registered_models(cls):
  370. for model_type, model_classes in cls._model_classes.items():
  371. logger.error(f"{model_type.name} models:")
  372. for name in sorted(model_classes.keys()):
  373. logger.error(f" - {name}")
  374. @classmethod
  375. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  376. try:
  377. return cls._model_classes[model_type][arch]
  378. except KeyError:
  379. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  380. class TextModel(ModelBase):
  381. model_type = ModelType.TEXT
  382. hf_arch: str
  383. def __init__(self, *args, **kwargs):
  384. super().__init__(*args, **kwargs)
  385. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  386. if "text_config" in self.hparams:
  387. # move the text_config to the root level
  388. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  389. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  390. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  391. @classmethod
  392. def __init_subclass__(cls):
  393. # can't use an abstract property, because overriding it without type errors
  394. # would require using decorated functions instead of simply defining the property
  395. if "model_arch" not in cls.__dict__:
  396. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  397. def set_vocab(self):
  398. self._set_vocab_gpt2()
  399. def prepare_metadata(self, vocab_only: bool):
  400. super().prepare_metadata(vocab_only=vocab_only)
  401. total_params = self.gguf_writer.get_total_parameter_count()[0]
  402. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  403. output_type: str = self.ftype.name.partition("_")[2]
  404. # Filename Output
  405. if self.fname_out.is_dir():
  406. # Generate default filename based on model specification and available metadata
  407. if not vocab_only:
  408. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  409. else:
  410. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  411. # Use the default filename
  412. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  413. else:
  414. # Output path is a custom defined templated filename
  415. # Note: `not is_dir()` is used because `.is_file()` will not detect
  416. # file template strings as it doesn't actually exist as a file
  417. # Process templated file name with the output ftype, useful with the "auto" ftype
  418. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  419. logger.info("Set model tokenizer")
  420. self.set_vocab()
  421. def set_gguf_parameters(self):
  422. self.gguf_writer.add_block_count(self.block_count)
  423. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
  424. self.gguf_writer.add_context_length(n_ctx)
  425. logger.info(f"gguf: context length = {n_ctx}")
  426. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  427. self.gguf_writer.add_embedding_length(n_embd)
  428. logger.info(f"gguf: embedding length = {n_embd}")
  429. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  430. self.gguf_writer.add_feed_forward_length(n_ff)
  431. logger.info(f"gguf: feed forward length = {n_ff}")
  432. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  433. self.gguf_writer.add_head_count(n_head)
  434. logger.info(f"gguf: head count = {n_head}")
  435. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  436. self.gguf_writer.add_head_count_kv(n_head_kv)
  437. logger.info(f"gguf: key-value head count = {n_head_kv}")
  438. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  439. self.gguf_writer.add_rope_freq_base(rope_theta)
  440. logger.info(f"gguf: rope theta = {rope_theta}")
  441. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  442. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  443. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  444. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  445. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  446. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  447. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  448. self.gguf_writer.add_expert_count(n_experts)
  449. logger.info(f"gguf: expert count = {n_experts}")
  450. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  451. self.gguf_writer.add_expert_used_count(n_experts_used)
  452. logger.info(f"gguf: experts used count = {n_experts_used}")
  453. if (head_dim := self.hparams.get("head_dim")) is not None:
  454. self.gguf_writer.add_key_length(head_dim)
  455. self.gguf_writer.add_value_length(head_dim)
  456. self.gguf_writer.add_file_type(self.ftype)
  457. logger.info(f"gguf: file type = {self.ftype}")
  458. def write_vocab(self):
  459. if len(self.gguf_writer.tensors) != 1:
  460. raise ValueError('Splitting the vocabulary is not supported')
  461. self.prepare_metadata(vocab_only=True)
  462. self.gguf_writer.write_header_to_file(path=self.fname_out)
  463. self.gguf_writer.write_kv_data_to_file()
  464. self.gguf_writer.close()
  465. def does_token_look_special(self, token: str | bytes) -> bool:
  466. if isinstance(token, (bytes, bytearray)):
  467. token_text = token.decode(encoding="utf-8")
  468. elif isinstance(token, memoryview):
  469. token_text = token.tobytes().decode(encoding="utf-8")
  470. else:
  471. token_text = token
  472. # Some models mark some added tokens which ought to be control tokens as not special.
  473. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  474. seems_special = token_text in (
  475. "<pad>", # deepseek-coder
  476. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  477. )
  478. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  479. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  480. # TODO: should these be marked as UNUSED instead? (maybe not)
  481. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  482. return seems_special
  483. # used for GPT-2 BPE and WordPiece vocabs
  484. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  485. tokens: list[str] = []
  486. toktypes: list[int] = []
  487. from transformers import AutoTokenizer
  488. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  489. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  490. assert max(tokenizer.vocab.values()) < vocab_size
  491. tokpre = self.get_vocab_base_pre(tokenizer)
  492. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  493. added_vocab = tokenizer.get_added_vocab()
  494. added_tokens_decoder = tokenizer.added_tokens_decoder
  495. for i in range(vocab_size):
  496. if i not in reverse_vocab:
  497. tokens.append(f"[PAD{i}]")
  498. toktypes.append(gguf.TokenType.UNUSED)
  499. else:
  500. token: str = reverse_vocab[i]
  501. if token in added_vocab:
  502. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  503. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  504. if not added_tokens_decoder[i].normalized:
  505. previous_token = token
  506. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  507. if previous_token != token:
  508. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  509. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  510. toktypes.append(gguf.TokenType.CONTROL)
  511. else:
  512. # NOTE: this was added for Gemma.
  513. # Encoding and decoding the tokens above isn't sufficient for this case.
  514. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  515. toktypes.append(gguf.TokenType.USER_DEFINED)
  516. else:
  517. toktypes.append(gguf.TokenType.NORMAL)
  518. tokens.append(token)
  519. return tokens, toktypes, tokpre
  520. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  521. # do not modify it manually!
  522. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  523. # Marker: Start get_vocab_base_pre
  524. def get_vocab_base_pre(self, tokenizer) -> str:
  525. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  526. # is specific for the BPE pre-tokenizer used by the model
  527. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  528. # use in llama.cpp to implement the same pre-tokenizer
  529. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  530. chktok = tokenizer.encode(chktxt)
  531. chkhsh = sha256(str(chktok).encode()).hexdigest()
  532. logger.debug(f"chktok: {chktok}")
  533. logger.debug(f"chkhsh: {chkhsh}")
  534. res = None
  535. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  536. # or pull the latest version of the model from Huggingface
  537. # don't edit the hashes manually!
  538. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  539. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  540. res = "llama-bpe"
  541. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  542. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  543. res = "deepseek-llm"
  544. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  545. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  546. res = "deepseek-coder"
  547. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  548. # ref: https://huggingface.co/tiiuae/falcon-7b
  549. res = "falcon"
  550. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  551. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  552. res = "falcon3"
  553. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  554. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  555. res = "bert-bge"
  556. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  557. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  558. res = "bert-bge-large"
  559. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  560. # ref: https://huggingface.co/mosaicml/mpt-7b
  561. res = "mpt"
  562. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  563. # ref: https://huggingface.co/bigcode/starcoder2-3b
  564. res = "starcoder"
  565. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  566. # ref: https://huggingface.co/openai-community/gpt2
  567. res = "gpt-2"
  568. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  569. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  570. res = "stablelm2"
  571. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  572. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  573. res = "refact"
  574. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  575. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  576. res = "command-r"
  577. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  578. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  579. res = "qwen2"
  580. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  581. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  582. res = "olmo"
  583. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  584. # ref: https://huggingface.co/databricks/dbrx-base
  585. res = "dbrx"
  586. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  587. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  588. res = "jina-v1-en"
  589. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  590. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  591. res = "jina-v2-en"
  592. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  593. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  594. res = "jina-v2-es"
  595. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  596. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  597. res = "jina-v2-de"
  598. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  599. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  600. res = "smaug-bpe"
  601. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  602. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  603. res = "poro-chat"
  604. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  605. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  606. res = "jina-v2-code"
  607. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  608. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  609. res = "chatglm-bpe"
  610. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  611. # ref: https://huggingface.co/LumiOpen/Viking-7B
  612. res = "viking"
  613. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  614. # ref: https://huggingface.co/core42/jais-13b
  615. res = "jais"
  616. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  617. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  618. res = "codeshell"
  619. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  620. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  621. res = "tekken"
  622. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  623. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  624. res = "smollm"
  625. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  626. # ref: https://huggingface.co/bigscience/bloom
  627. res = "bloom"
  628. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  629. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  630. res = "gpt3-finnish"
  631. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  632. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  633. res = "exaone"
  634. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  635. # ref: https://huggingface.co/microsoft/phi-2
  636. res = "phi-2"
  637. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  638. # ref: https://huggingface.co/facebook/chameleon-7b
  639. res = "chameleon"
  640. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  641. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  642. res = "minerva-7b"
  643. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  644. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  645. res = "roberta-bpe"
  646. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  647. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  648. res = "gigachat"
  649. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  650. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  651. res = "megrez"
  652. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  653. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  654. res = "deepseek-v3"
  655. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  656. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  657. res = "deepseek-r1-qwen"
  658. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  659. # ref: https://huggingface.co/Xenova/gpt-4o
  660. res = "gpt-4o"
  661. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  662. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  663. res = "superbpe"
  664. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  665. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  666. res = "trillion"
  667. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  668. # ref: https://huggingface.co/inclusionAI/Ling-lite
  669. res = "bailingmoe"
  670. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  671. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  672. res = "llama4"
  673. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  674. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  675. res = "glm4"
  676. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  677. # ref: https://huggingface.co/mistral-community/pixtral-12b
  678. res = "pixtral"
  679. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  680. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  681. res = "seed-coder"
  682. if res is None:
  683. logger.warning("\n")
  684. logger.warning("**************************************************************************************")
  685. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  686. logger.warning("** There are 2 possible reasons for this:")
  687. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  688. logger.warning("** - the pre-tokenization config has changed upstream")
  689. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  690. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  691. logger.warning("**")
  692. logger.warning(f"** chkhsh: {chkhsh}")
  693. logger.warning("**************************************************************************************")
  694. logger.warning("\n")
  695. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  696. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  697. logger.debug(f"chkhsh: {chkhsh}")
  698. return res
  699. # Marker: End get_vocab_base_pre
  700. def _set_vocab_none(self) -> None:
  701. self.gguf_writer.add_tokenizer_model("none")
  702. def _set_vocab_gpt2(self) -> None:
  703. tokens, toktypes, tokpre = self.get_vocab_base()
  704. self.gguf_writer.add_tokenizer_model("gpt2")
  705. self.gguf_writer.add_tokenizer_pre(tokpre)
  706. self.gguf_writer.add_token_list(tokens)
  707. self.gguf_writer.add_token_types(toktypes)
  708. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  709. special_vocab.add_to_gguf(self.gguf_writer)
  710. def _set_vocab_qwen(self):
  711. dir_model = self.dir_model
  712. hparams = self.hparams
  713. tokens: list[str] = []
  714. toktypes: list[int] = []
  715. from transformers import AutoTokenizer
  716. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  717. vocab_size = hparams["vocab_size"]
  718. assert max(tokenizer.get_vocab().values()) < vocab_size
  719. tokpre = self.get_vocab_base_pre(tokenizer)
  720. merges = []
  721. vocab = {}
  722. mergeable_ranks = tokenizer.mergeable_ranks
  723. for token, rank in mergeable_ranks.items():
  724. vocab[QwenModel.token_bytes_to_string(token)] = rank
  725. if len(token) == 1:
  726. continue
  727. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  728. assert len(merged) == 2
  729. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  730. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  731. added_vocab = tokenizer.special_tokens
  732. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  733. for i in range(vocab_size):
  734. if i not in reverse_vocab:
  735. tokens.append(f"[PAD{i}]")
  736. toktypes.append(gguf.TokenType.UNUSED)
  737. elif reverse_vocab[i] in added_vocab:
  738. tokens.append(reverse_vocab[i])
  739. toktypes.append(gguf.TokenType.CONTROL)
  740. else:
  741. tokens.append(reverse_vocab[i])
  742. toktypes.append(gguf.TokenType.NORMAL)
  743. self.gguf_writer.add_tokenizer_model("gpt2")
  744. self.gguf_writer.add_tokenizer_pre(tokpre)
  745. self.gguf_writer.add_token_list(tokens)
  746. self.gguf_writer.add_token_types(toktypes)
  747. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  748. special_vocab.merges = merges
  749. # only add special tokens when they were not already loaded from config.json
  750. if len(special_vocab.special_token_ids) == 0:
  751. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  752. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  753. # this one is usually not in config.json anyway
  754. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  755. special_vocab.add_to_gguf(self.gguf_writer)
  756. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  757. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  758. self.gguf_writer.add_tokenizer_model("llama")
  759. self.gguf_writer.add_tokenizer_pre("default")
  760. self.gguf_writer.add_token_list(tokens)
  761. self.gguf_writer.add_token_scores(scores)
  762. self.gguf_writer.add_token_types(toktypes)
  763. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  764. special_vocab.add_to_gguf(self.gguf_writer)
  765. def _create_vocab_sentencepiece(self):
  766. from sentencepiece import SentencePieceProcessor
  767. tokenizer_path = self.dir_model / 'tokenizer.model'
  768. if not tokenizer_path.is_file():
  769. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  770. tokenizer = SentencePieceProcessor()
  771. tokenizer.LoadFromFile(str(tokenizer_path))
  772. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  773. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  774. scores: list[float] = [-10000.0] * vocab_size
  775. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  776. for token_id in range(tokenizer.vocab_size()):
  777. piece = tokenizer.IdToPiece(token_id)
  778. text = piece.encode("utf-8")
  779. score = tokenizer.GetScore(token_id)
  780. toktype = SentencePieceTokenTypes.NORMAL
  781. if tokenizer.IsUnknown(token_id):
  782. toktype = SentencePieceTokenTypes.UNKNOWN
  783. elif tokenizer.IsControl(token_id):
  784. toktype = SentencePieceTokenTypes.CONTROL
  785. elif tokenizer.IsUnused(token_id):
  786. toktype = SentencePieceTokenTypes.UNUSED
  787. elif tokenizer.IsByte(token_id):
  788. toktype = SentencePieceTokenTypes.BYTE
  789. tokens[token_id] = text
  790. scores[token_id] = score
  791. toktypes[token_id] = toktype
  792. added_tokens_file = self.dir_model / 'added_tokens.json'
  793. if added_tokens_file.is_file():
  794. with open(added_tokens_file, "r", encoding="utf-8") as f:
  795. added_tokens_json = json.load(f)
  796. for key in added_tokens_json:
  797. token_id = added_tokens_json[key]
  798. if token_id >= vocab_size:
  799. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  800. continue
  801. tokens[token_id] = key.encode("utf-8")
  802. scores[token_id] = -1000.0
  803. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  804. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  805. if tokenizer_config_file.is_file():
  806. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  807. tokenizer_config_json = json.load(f)
  808. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  809. for token_id, token_data in added_tokens_decoder.items():
  810. token_id = int(token_id)
  811. token: str = token_data["content"]
  812. if token_id >= vocab_size:
  813. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  814. continue
  815. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  816. if tokens[token_id] != token.encode("utf-8"):
  817. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  818. if token_data.get("special") or self.does_token_look_special(token):
  819. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  820. else:
  821. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  822. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  823. scores[token_id] = -1000.0
  824. tokens[token_id] = token.encode("utf-8")
  825. if vocab_size > len(tokens):
  826. pad_count = vocab_size - len(tokens)
  827. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  828. for i in range(1, pad_count + 1):
  829. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  830. scores.append(-1000.0)
  831. toktypes.append(SentencePieceTokenTypes.UNUSED)
  832. return tokens, scores, toktypes
  833. def _set_vocab_llama_hf(self):
  834. vocab = gguf.LlamaHfVocab(self.dir_model)
  835. tokens = []
  836. scores = []
  837. toktypes = []
  838. for text, score, toktype in vocab.all_tokens():
  839. tokens.append(text)
  840. scores.append(score)
  841. toktypes.append(toktype)
  842. assert len(tokens) == vocab.vocab_size
  843. self.gguf_writer.add_tokenizer_model("llama")
  844. self.gguf_writer.add_tokenizer_pre("default")
  845. self.gguf_writer.add_token_list(tokens)
  846. self.gguf_writer.add_token_scores(scores)
  847. self.gguf_writer.add_token_types(toktypes)
  848. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  849. special_vocab.add_to_gguf(self.gguf_writer)
  850. def _set_vocab_rwkv_world(self):
  851. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  852. vocab_size = self.hparams.get("vocab_size", 65536)
  853. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  854. toktypes: list[int] = [gguf.TokenType.CONTROL]
  855. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  856. lines = f.readlines()
  857. for line in lines:
  858. parts = line.split(' ')
  859. assert len(parts) >= 3
  860. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  861. token = token.encode("utf-8") if isinstance(token, str) else token
  862. assert isinstance(token, bytes)
  863. assert len(token) == token_len
  864. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  865. tokens.append(token_text.encode("utf-8"))
  866. toktypes.append(gguf.TokenType.NORMAL)
  867. remainder = vocab_size - len(tokens)
  868. assert remainder >= 0
  869. for i in range(len(tokens), vocab_size):
  870. tokens.append(f"[PAD{i}]".encode("utf-8"))
  871. toktypes.append(gguf.TokenType.UNUSED)
  872. self.gguf_writer.add_tokenizer_model("rwkv")
  873. self.gguf_writer.add_token_list(tokens)
  874. self.gguf_writer.add_token_types(toktypes)
  875. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  876. special_vocab.chat_template = "rwkv-world"
  877. # hack: Add '\n\n' as the EOT token to make it chat normally
  878. special_vocab._set_special_token("eot", 261)
  879. special_vocab.add_to_gguf(self.gguf_writer)
  880. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  881. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  882. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  883. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  884. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  885. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  886. assert field # tokenizer model
  887. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  888. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  889. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  890. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  891. assert field # token list
  892. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  893. if model_name == "llama-spm":
  894. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  895. assert field # token scores
  896. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  897. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  898. assert field # token types
  899. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  900. if model_name != "llama-spm":
  901. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  902. assert field # token merges
  903. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  904. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  905. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  906. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  907. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  908. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  909. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  910. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  911. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  912. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  913. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  914. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  915. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  916. def _try_set_pooling_type(self) -> None:
  917. # get pooling path
  918. pooling_path = None
  919. module_path = self.dir_model / "modules.json"
  920. if module_path.is_file():
  921. with open(module_path, encoding="utf-8") as f:
  922. modules = json.load(f)
  923. for mod in modules:
  924. if mod["type"] == "sentence_transformers.models.Pooling":
  925. pooling_path = mod["path"]
  926. break
  927. # get pooling type
  928. if pooling_path is not None:
  929. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  930. pooling = json.load(f)
  931. if pooling["pooling_mode_mean_tokens"]:
  932. pooling_type = gguf.PoolingType.MEAN
  933. elif pooling["pooling_mode_cls_token"]:
  934. pooling_type = gguf.PoolingType.CLS
  935. elif pooling["pooling_mode_lasttoken"]:
  936. pooling_type = gguf.PoolingType.LAST
  937. else:
  938. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  939. self.gguf_writer.add_pooling_type(pooling_type)
  940. class VisionModel(ModelBase):
  941. model_type = ModelType.VISION
  942. model_arch = gguf.MODEL_ARCH.CLIP_VISION
  943. preprocessor_config: dict[str, Any]
  944. global_config: dict[str, Any]
  945. def __init__(self, *args, **kwargs):
  946. super().__init__(*args, **kwargs)
  947. if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
  948. raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
  949. # get n_embd of the text model
  950. if "text_config" not in self.hparams:
  951. self.hparams["text_config"] = {}
  952. text_config = {**self.hparams, **self.hparams["text_config"]}
  953. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  954. assert self.n_embd_text > 0, "n_embd not found in hparams"
  955. if "vision_config" not in self.hparams:
  956. raise ValueError("vision_config not found in hparams")
  957. # move vision config to the top level, while preserving the original hparams in global_config
  958. self.global_config = self.hparams
  959. self.hparams = self.hparams["vision_config"]
  960. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
  961. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, self.block_count)
  962. # load preprocessor config
  963. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  964. self.preprocessor_config = json.load(f)
  965. def set_type(self):
  966. self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
  967. def set_gguf_parameters(self):
  968. self.gguf_writer.add_file_type(self.ftype)
  969. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  970. self.gguf_writer.add_vision_has_vision_encoder(True)
  971. # vision config
  972. self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
  973. self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
  974. self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
  975. self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
  976. self.gguf_writer.add_vision_block_count(self.block_count)
  977. self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
  978. # preprocessor config
  979. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  980. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  981. def write_vocab(self):
  982. raise ValueError("VisionModel does not support vocab writing")
  983. @ModelBase.register("GPTNeoXForCausalLM")
  984. class GPTNeoXModel(TextModel):
  985. model_arch = gguf.MODEL_ARCH.GPTNEOX
  986. def set_gguf_parameters(self):
  987. block_count = self.hparams["num_hidden_layers"]
  988. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  989. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  990. self.gguf_writer.add_block_count(block_count)
  991. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  992. self.gguf_writer.add_rope_dimension_count(
  993. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  994. )
  995. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  996. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  997. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  998. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  999. del bid # unused
  1000. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1001. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1002. tensors: list[tuple[str, Tensor]] = []
  1003. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1004. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1005. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1006. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1007. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1008. data_torch = torch.cat(
  1009. (
  1010. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1011. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1012. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1013. ),
  1014. dim=0,
  1015. )
  1016. logger.info("re-format attention.linear_qkv.weight")
  1017. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1018. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1019. data_torch = torch.cat(
  1020. (
  1021. qkv_bias[:, 0, :].reshape((n_embed,)),
  1022. qkv_bias[:, 1, :].reshape((n_embed,)),
  1023. qkv_bias[:, 2, :].reshape((n_embed,)),
  1024. ),
  1025. dim=0,
  1026. )
  1027. logger.info("re-format attention.linear_qkv.bias")
  1028. tensors.append((self.map_tensor_name(name), data_torch))
  1029. return tensors
  1030. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1031. class BloomModel(TextModel):
  1032. model_arch = gguf.MODEL_ARCH.BLOOM
  1033. def set_gguf_parameters(self):
  1034. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1035. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1036. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1037. self.gguf_writer.add_embedding_length(n_embed)
  1038. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1039. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1040. self.gguf_writer.add_head_count(n_head)
  1041. self.gguf_writer.add_head_count_kv(n_head)
  1042. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1043. self.gguf_writer.add_file_type(self.ftype)
  1044. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1045. del bid # unused
  1046. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1047. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1048. name = re.sub(r'transformer\.', '', name)
  1049. tensors: list[tuple[str, Tensor]] = []
  1050. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1051. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1052. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1053. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1054. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1055. data_torch = torch.cat(
  1056. (
  1057. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1058. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1059. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1060. ),
  1061. dim=0,
  1062. )
  1063. logger.info("re-format attention.linear_qkv.weight")
  1064. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1065. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1066. data_torch = torch.cat(
  1067. (
  1068. qkv_bias[:, 0, :].reshape((n_embed,)),
  1069. qkv_bias[:, 1, :].reshape((n_embed,)),
  1070. qkv_bias[:, 2, :].reshape((n_embed,)),
  1071. ),
  1072. dim=0,
  1073. )
  1074. logger.info("re-format attention.linear_qkv.bias")
  1075. tensors.append((self.map_tensor_name(name), data_torch))
  1076. return tensors
  1077. @ModelBase.register("MPTForCausalLM")
  1078. class MPTModel(TextModel):
  1079. model_arch = gguf.MODEL_ARCH.MPT
  1080. def set_vocab(self):
  1081. try:
  1082. self._set_vocab_gpt2()
  1083. except Exception:
  1084. # Fallback for SEA-LION model
  1085. self._set_vocab_sentencepiece()
  1086. self.gguf_writer.add_add_bos_token(False)
  1087. self.gguf_writer.add_pad_token_id(3)
  1088. self.gguf_writer.add_eos_token_id(1)
  1089. self.gguf_writer.add_unk_token_id(0)
  1090. def set_gguf_parameters(self):
  1091. block_count = self.hparams["n_layers"]
  1092. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1093. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1094. self.gguf_writer.add_block_count(block_count)
  1095. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1096. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1097. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1098. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1099. self.gguf_writer.add_layer_norm_eps(1e-5)
  1100. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1101. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1102. if self.hparams["attn_config"]["alibi"]:
  1103. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1104. else:
  1105. self.gguf_writer.add_max_alibi_bias(0.0)
  1106. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1107. del bid # unused
  1108. if "scales" in name:
  1109. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1110. new_name = new_name.replace("scales", "act.scales")
  1111. else:
  1112. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1113. return [(new_name, data_torch)]
  1114. @ModelBase.register("OrionForCausalLM")
  1115. class OrionModel(TextModel):
  1116. model_arch = gguf.MODEL_ARCH.ORION
  1117. def set_vocab(self):
  1118. self._set_vocab_sentencepiece()
  1119. def set_gguf_parameters(self):
  1120. block_count = self.hparams["num_hidden_layers"]
  1121. head_count = self.hparams["num_attention_heads"]
  1122. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1123. ctx_length = 0
  1124. if "max_sequence_length" in self.hparams:
  1125. ctx_length = self.hparams["max_sequence_length"]
  1126. elif "max_position_embeddings" in self.hparams:
  1127. ctx_length = self.hparams["max_position_embeddings"]
  1128. elif "model_max_length" in self.hparams:
  1129. ctx_length = self.hparams["model_max_length"]
  1130. else:
  1131. raise ValueError("gguf: can not find ctx length parameter.")
  1132. self.gguf_writer.add_file_type(self.ftype)
  1133. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1134. self.gguf_writer.add_context_length(ctx_length)
  1135. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1136. self.gguf_writer.add_block_count(block_count)
  1137. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1138. self.gguf_writer.add_head_count(head_count)
  1139. self.gguf_writer.add_head_count_kv(head_count_kv)
  1140. # note: config provides rms norm but it is actually layer norm
  1141. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1142. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1143. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1144. class BaichuanModel(TextModel):
  1145. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1146. def set_vocab(self):
  1147. self._set_vocab_sentencepiece()
  1148. def set_gguf_parameters(self):
  1149. block_count = self.hparams["num_hidden_layers"]
  1150. head_count = self.hparams["num_attention_heads"]
  1151. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1152. ctx_length = 0
  1153. if "max_sequence_length" in self.hparams:
  1154. ctx_length = self.hparams["max_sequence_length"]
  1155. elif "max_position_embeddings" in self.hparams:
  1156. ctx_length = self.hparams["max_position_embeddings"]
  1157. elif "model_max_length" in self.hparams:
  1158. ctx_length = self.hparams["model_max_length"]
  1159. else:
  1160. raise ValueError("gguf: can not find ctx length parameter.")
  1161. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1162. self.gguf_writer.add_context_length(ctx_length)
  1163. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1164. self.gguf_writer.add_block_count(block_count)
  1165. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1166. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1167. self.gguf_writer.add_head_count(head_count)
  1168. self.gguf_writer.add_head_count_kv(head_count_kv)
  1169. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1170. self.gguf_writer.add_file_type(self.ftype)
  1171. rope_scaling = self.hparams.get("rope_scaling") or {}
  1172. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1173. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1174. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1175. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1176. head_count = self.hparams["num_attention_heads"]
  1177. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1178. tensors: list[tuple[str, Tensor]] = []
  1179. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1180. logger.info(f"Unpacking and permuting layer {bid}")
  1181. tensors = [
  1182. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1183. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1184. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1185. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1186. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1187. self._reverse_hf_part(data_torch, 2)),
  1188. ]
  1189. else:
  1190. tensors = [(self.map_tensor_name(name), data_torch)]
  1191. return tensors
  1192. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1193. if n_kv_head is not None and n_head != n_kv_head:
  1194. n_head //= n_kv_head
  1195. return (
  1196. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1197. .swapaxes(1, 2)
  1198. .reshape(weights.shape)
  1199. )
  1200. def _reverse_hf_permute_part(
  1201. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1202. ) -> Tensor:
  1203. r = weights.shape[0] // 3
  1204. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1205. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1206. r = weights.shape[0] // 3
  1207. return weights[r * n_part:r * n_part + r, ...]
  1208. @ModelBase.register("XverseForCausalLM")
  1209. class XverseModel(TextModel):
  1210. model_arch = gguf.MODEL_ARCH.XVERSE
  1211. def set_vocab(self):
  1212. assert (self.dir_model / "tokenizer.json").is_file()
  1213. dir_model = self.dir_model
  1214. hparams = self.hparams
  1215. tokens: list[bytes] = []
  1216. toktypes: list[int] = []
  1217. from transformers import AutoTokenizer
  1218. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1219. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1220. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1221. # because vocab_size is the count of items, and indexes start at 0.
  1222. max_vocab_index = max(tokenizer.get_vocab().values())
  1223. if max_vocab_index >= vocab_size:
  1224. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1225. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1226. added_vocab = tokenizer.get_added_vocab()
  1227. for token_id in range(vocab_size):
  1228. token_text = reverse_vocab[token_id].encode('utf-8')
  1229. # replace "\x00" to string with length > 0
  1230. if token_text == b"\x00":
  1231. toktype = gguf.TokenType.BYTE # special
  1232. token_text = f"<{token_text}>".encode('utf-8')
  1233. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1234. toktype = gguf.TokenType.BYTE # special
  1235. elif reverse_vocab[token_id] in added_vocab:
  1236. if tokenizer.added_tokens_decoder[token_id].special:
  1237. toktype = gguf.TokenType.CONTROL
  1238. else:
  1239. toktype = gguf.TokenType.USER_DEFINED
  1240. else:
  1241. toktype = gguf.TokenType.NORMAL
  1242. tokens.append(token_text)
  1243. toktypes.append(toktype)
  1244. self.gguf_writer.add_tokenizer_model("llama")
  1245. self.gguf_writer.add_tokenizer_pre("default")
  1246. self.gguf_writer.add_token_list(tokens)
  1247. self.gguf_writer.add_token_types(toktypes)
  1248. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1249. special_vocab.add_to_gguf(self.gguf_writer)
  1250. def set_gguf_parameters(self):
  1251. block_count = self.hparams["num_hidden_layers"]
  1252. head_count = self.hparams["num_attention_heads"]
  1253. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1254. ctx_length = 0
  1255. if "max_sequence_length" in self.hparams:
  1256. ctx_length = self.hparams["max_sequence_length"]
  1257. elif "max_position_embeddings" in self.hparams:
  1258. ctx_length = self.hparams["max_position_embeddings"]
  1259. elif "model_max_length" in self.hparams:
  1260. ctx_length = self.hparams["model_max_length"]
  1261. else:
  1262. raise ValueError("gguf: can not find ctx length parameter.")
  1263. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1264. self.gguf_writer.add_context_length(ctx_length)
  1265. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1266. self.gguf_writer.add_block_count(block_count)
  1267. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1268. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1269. self.gguf_writer.add_head_count(head_count)
  1270. self.gguf_writer.add_head_count_kv(head_count_kv)
  1271. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1272. self.gguf_writer.add_file_type(self.ftype)
  1273. rope_scaling = self.hparams.get("rope_scaling") or {}
  1274. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1275. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1276. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1277. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1278. del bid # unused
  1279. head_count = self.hparams["num_attention_heads"]
  1280. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1281. # HF models permute some of the tensors, so we need to undo that
  1282. if name.endswith("q_proj.weight"):
  1283. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1284. if name.endswith("k_proj.weight"):
  1285. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1286. return [(self.map_tensor_name(name), data_torch)]
  1287. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1288. if n_kv_head is not None and n_head != n_kv_head:
  1289. n_head //= n_kv_head
  1290. return (
  1291. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1292. .swapaxes(1, 2)
  1293. .reshape(weights.shape)
  1294. )
  1295. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1296. class FalconModel(TextModel):
  1297. model_arch = gguf.MODEL_ARCH.FALCON
  1298. def set_gguf_parameters(self):
  1299. block_count = self.hparams.get("num_hidden_layers")
  1300. if block_count is None:
  1301. block_count = self.hparams["n_layer"] # old name
  1302. n_head = self.hparams.get("num_attention_heads")
  1303. if n_head is None:
  1304. n_head = self.hparams["n_head"] # old name
  1305. n_head_kv = self.hparams.get("num_kv_heads")
  1306. if n_head_kv is None:
  1307. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1308. self.gguf_writer.add_context_length(2048) # not in config.json
  1309. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1310. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1311. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1312. self.gguf_writer.add_block_count(block_count)
  1313. self.gguf_writer.add_head_count(n_head)
  1314. self.gguf_writer.add_head_count_kv(n_head_kv)
  1315. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1316. self.gguf_writer.add_file_type(self.ftype)
  1317. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1318. del bid # unused
  1319. # QKV tensor transform
  1320. # The original query_key_value tensor contains n_head_kv "kv groups",
  1321. # each consisting of n_head/n_head_kv query weights followed by one key
  1322. # and one value weight (shared by all query heads in the kv group).
  1323. # This layout makes it a big pain to work with in GGML.
  1324. # So we rearrange them here,, so that we have n_head query weights
  1325. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1326. # in contiguous fashion.
  1327. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1328. if "query_key_value" in name:
  1329. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1330. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1331. head_dim = self.hparams["hidden_size"] // n_head
  1332. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1333. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1334. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1335. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1336. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1337. return [(self.map_tensor_name(name), data_torch)]
  1338. @ModelBase.register("GPTBigCodeForCausalLM")
  1339. class StarCoderModel(TextModel):
  1340. model_arch = gguf.MODEL_ARCH.STARCODER
  1341. def set_gguf_parameters(self):
  1342. block_count = self.hparams["n_layer"]
  1343. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1344. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1345. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1346. self.gguf_writer.add_block_count(block_count)
  1347. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1348. self.gguf_writer.add_head_count_kv(1)
  1349. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1350. self.gguf_writer.add_file_type(self.ftype)
  1351. @ModelBase.register("GPTRefactForCausalLM")
  1352. class RefactModel(TextModel):
  1353. model_arch = gguf.MODEL_ARCH.REFACT
  1354. def set_vocab(self):
  1355. super().set_vocab()
  1356. # TODO: how to determine special FIM tokens automatically?
  1357. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1358. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1359. special_vocab._set_special_token("prefix", 1)
  1360. special_vocab._set_special_token("suffix", 3)
  1361. special_vocab._set_special_token("middle", 2)
  1362. special_vocab.chat_template = None # do not add it twice
  1363. special_vocab.add_to_gguf(self.gguf_writer)
  1364. def set_gguf_parameters(self):
  1365. hidden_dim = self.hparams["n_embd"]
  1366. inner_dim = 4 * hidden_dim
  1367. hidden_dim = int(2 * inner_dim / 3)
  1368. multiple_of = 256
  1369. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1370. block_count = self.hparams["n_layer"]
  1371. # refact uses Alibi. So this is from config.json which might be used by training.
  1372. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1373. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1374. self.gguf_writer.add_feed_forward_length(ff_dim)
  1375. self.gguf_writer.add_block_count(block_count)
  1376. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1377. self.gguf_writer.add_head_count_kv(1)
  1378. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1379. self.gguf_writer.add_file_type(self.ftype)
  1380. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1381. hidden_dim = self.hparams["n_embd"]
  1382. inner_dim = 4 * hidden_dim
  1383. hidden_dim = int(2 * inner_dim / 3)
  1384. multiple_of = 256
  1385. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1386. n_head = self.hparams["n_head"]
  1387. n_head_kv = 1
  1388. head_dim = self.hparams["n_embd"] // n_head
  1389. tensors: list[tuple[str, Tensor]] = []
  1390. if bid is not None:
  1391. if name == f"transformer.h.{bid}.attn.kv.weight":
  1392. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1393. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1394. elif name == f"transformer.h.{bid}.attn.q.weight":
  1395. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1396. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1397. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1398. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1399. if len(tensors) == 0:
  1400. tensors.append((self.map_tensor_name(name), data_torch))
  1401. return tensors
  1402. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1403. class StableLMModel(TextModel):
  1404. model_arch = gguf.MODEL_ARCH.STABLELM
  1405. def set_vocab(self):
  1406. if (self.dir_model / "tokenizer.json").is_file():
  1407. self._set_vocab_gpt2()
  1408. else:
  1409. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1410. self._set_vocab_qwen()
  1411. def set_gguf_parameters(self):
  1412. hparams = self.hparams
  1413. block_count = hparams["num_hidden_layers"]
  1414. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1415. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1416. self.gguf_writer.add_block_count(block_count)
  1417. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1418. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1419. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1420. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1421. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1422. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1423. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1424. self.gguf_writer.add_file_type(self.ftype)
  1425. _q_norms: list[dict[str, Tensor]] | None = None
  1426. _k_norms: list[dict[str, Tensor]] | None = None
  1427. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1428. n_head = self.hparams["num_attention_heads"]
  1429. n_kv_head = self.hparams["num_key_value_heads"]
  1430. if name.find("q_layernorm.norms") != -1:
  1431. assert bid is not None
  1432. if self._q_norms is None:
  1433. self._q_norms = [{} for _ in range(self.block_count)]
  1434. self._q_norms[bid][name] = data_torch
  1435. if len(self._q_norms[bid]) >= n_head:
  1436. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1437. else:
  1438. return []
  1439. if name.find("k_layernorm.norms") != -1:
  1440. assert bid is not None
  1441. if self._k_norms is None:
  1442. self._k_norms = [{} for _ in range(self.block_count)]
  1443. self._k_norms[bid][name] = data_torch
  1444. if len(self._k_norms[bid]) >= n_kv_head:
  1445. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1446. else:
  1447. return []
  1448. return [(self.map_tensor_name(name), data_torch)]
  1449. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1450. datas: list[Tensor] = []
  1451. # extract the norms in order
  1452. for xid in range(n_head):
  1453. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1454. datas.append(norms[ename])
  1455. del norms[ename]
  1456. data_torch = torch.stack(datas, dim=0)
  1457. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1458. new_name = self.map_tensor_name(merged_name)
  1459. return [(new_name, data_torch)]
  1460. def prepare_tensors(self):
  1461. super().prepare_tensors()
  1462. if self._q_norms is not None or self._k_norms is not None:
  1463. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1464. norms = (
  1465. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1466. ) + (
  1467. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1468. )
  1469. if len(norms) > 0:
  1470. raise ValueError(f"Unprocessed norms: {norms}")
  1471. @ModelBase.register(
  1472. "LLaMAForCausalLM",
  1473. "LlamaForCausalLM",
  1474. "MistralForCausalLM",
  1475. "MixtralForCausalLM",
  1476. "VLlama3ForCausalLM",
  1477. "LlavaForConditionalGeneration")
  1478. class LlamaModel(TextModel):
  1479. model_arch = gguf.MODEL_ARCH.LLAMA
  1480. undo_permute = True
  1481. def __init__(self, *args, **kwargs):
  1482. super().__init__(*args, **kwargs)
  1483. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1484. if self.hf_arch == "VLlama3ForCausalLM":
  1485. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1486. def set_vocab(self):
  1487. try:
  1488. self._set_vocab_sentencepiece()
  1489. except FileNotFoundError:
  1490. try:
  1491. self._set_vocab_llama_hf()
  1492. except (FileNotFoundError, TypeError):
  1493. # Llama 3
  1494. self._set_vocab_gpt2()
  1495. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1496. if self.hparams.get("vocab_size", 32000) == 32016:
  1497. special_vocab = gguf.SpecialVocab(
  1498. self.dir_model, load_merges=False,
  1499. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1500. )
  1501. special_vocab._set_special_token("prefix", 32007)
  1502. special_vocab._set_special_token("suffix", 32008)
  1503. special_vocab._set_special_token("middle", 32009)
  1504. special_vocab._set_special_token("eot", 32010)
  1505. special_vocab.add_to_gguf(self.gguf_writer)
  1506. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1507. if tokenizer_config_file.is_file():
  1508. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1509. tokenizer_config_json = json.load(f)
  1510. if "add_prefix_space" in tokenizer_config_json:
  1511. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1512. # Apply to granite small models only
  1513. if self.hparams.get("vocab_size", 32000) == 49152:
  1514. self.gguf_writer.add_add_bos_token(False)
  1515. def set_gguf_parameters(self):
  1516. super().set_gguf_parameters()
  1517. hparams = self.hparams
  1518. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1519. if "head_dim" in hparams:
  1520. rope_dim = hparams["head_dim"]
  1521. else:
  1522. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1523. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1524. rope_scaling = self.hparams.get("rope_scaling") or {}
  1525. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1526. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1527. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1528. @staticmethod
  1529. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1530. if n_head_kv is not None and n_head != n_head_kv:
  1531. n_head = n_head_kv
  1532. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1533. .swapaxes(1, 2)
  1534. .reshape(weights.shape))
  1535. _experts: list[dict[str, Tensor]] | None = None
  1536. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1537. n_head = self.hparams["num_attention_heads"]
  1538. n_kv_head = self.hparams.get("num_key_value_heads")
  1539. is_vision_tensor = "vision_tower" in name \
  1540. or "vision_model" in name \
  1541. or "model.connector" in name \
  1542. or "multi_modal_projector" in name
  1543. if is_vision_tensor:
  1544. return [] # skip vision tensors
  1545. elif name.startswith("model.text_model"):
  1546. name = name.replace("text_model.", "") # for SmolVLM
  1547. elif name.startswith("language_model."):
  1548. name = name.replace("language_model.", "") # for the rest
  1549. if self.undo_permute:
  1550. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1551. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1552. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1553. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1554. # process the experts separately
  1555. if name.find("block_sparse_moe.experts") != -1:
  1556. n_experts = self.hparams["num_local_experts"]
  1557. assert bid is not None
  1558. if self._experts is None:
  1559. self._experts = [{} for _ in range(self.block_count)]
  1560. self._experts[bid][name] = data_torch
  1561. if len(self._experts[bid]) >= n_experts * 3:
  1562. tensors: list[tuple[str, Tensor]] = []
  1563. # merge the experts into a single 3d tensor
  1564. for wid in ["w1", "w2", "w3"]:
  1565. datas: list[Tensor] = []
  1566. for xid in range(n_experts):
  1567. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1568. datas.append(self._experts[bid][ename])
  1569. del self._experts[bid][ename]
  1570. data_torch = torch.stack(datas, dim=0)
  1571. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1572. new_name = self.map_tensor_name(merged_name)
  1573. tensors.append((new_name, data_torch))
  1574. return tensors
  1575. else:
  1576. return []
  1577. return [(self.map_tensor_name(name), data_torch)]
  1578. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1579. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1580. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1581. base = self.hparams.get("rope_theta", 10000.0)
  1582. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1583. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1584. factor = rope_scaling.get("factor", 8.0)
  1585. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1586. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1587. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1588. low_freq_wavelen = old_context_len / low_freq_factor
  1589. high_freq_wavelen = old_context_len / high_freq_factor
  1590. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1591. rope_factors = []
  1592. for freq in freqs:
  1593. wavelen = 2 * math.pi / freq
  1594. if wavelen < high_freq_wavelen:
  1595. rope_factors.append(1)
  1596. elif wavelen > low_freq_wavelen:
  1597. rope_factors.append(factor)
  1598. else:
  1599. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1600. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1601. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1602. def prepare_tensors(self):
  1603. super().prepare_tensors()
  1604. if self._experts is not None:
  1605. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1606. experts = [k for d in self._experts for k in d.keys()]
  1607. if len(experts) > 0:
  1608. raise ValueError(f"Unprocessed experts: {experts}")
  1609. @ModelBase.register(
  1610. "LlavaForConditionalGeneration", # pixtral
  1611. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1612. )
  1613. class LlavaVisionModel(VisionModel):
  1614. img_break_tok_id = -1
  1615. def __init__(self, *args, **kwargs):
  1616. super().__init__(*args, **kwargs)
  1617. if self.hparams["model_type"] == "pixtral":
  1618. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1619. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1620. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1621. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1622. else:
  1623. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1624. def get_token_id(self, token: str) -> int:
  1625. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1626. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1627. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1628. for id_, token_data in added_tokens_decoder.items():
  1629. if token_data["content"] == token:
  1630. return int(id_)
  1631. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1632. def set_gguf_parameters(self):
  1633. super().set_gguf_parameters()
  1634. hparams = self.hparams
  1635. if hparams["model_type"] == "pixtral":
  1636. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1637. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1638. # hidden_act
  1639. if hparams["hidden_act"] == "silu":
  1640. self.gguf_writer.add_vision_use_silu(True)
  1641. elif hparams["hidden_act"] == "gelu":
  1642. self.gguf_writer.add_vision_use_gelu(True)
  1643. else:
  1644. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1645. # spatial_merge_size
  1646. if "spatial_merge_size" in self.global_config:
  1647. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1648. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1649. del bid # unused
  1650. n_head = self.hparams["num_attention_heads"]
  1651. n_kv_head = n_head
  1652. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1653. # process vision tensors
  1654. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1655. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1656. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1657. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1658. return [(self.map_tensor_name(name), data_torch)]
  1659. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1660. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1661. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1662. img_break_embd = data_torch[self.img_break_tok_id]
  1663. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1664. return [(self.map_tensor_name(name), img_break_embd)]
  1665. return [] # skip other tensors
  1666. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1667. class SmolVLMModel(VisionModel):
  1668. def __init__(self, *args, **kwargs):
  1669. super().__init__(*args, **kwargs)
  1670. if self.hparams["model_type"] == "smolvlm_vision":
  1671. # fix for SmolVLM2, missing some keys in config.json
  1672. # default values are taken from transformers code
  1673. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1674. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1675. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1676. def set_gguf_parameters(self):
  1677. super().set_gguf_parameters()
  1678. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1679. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1680. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1681. self.gguf_writer.add_vision_use_gelu(True)
  1682. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1683. del bid, new_name, n_dims # unused
  1684. if ".embeddings." in name:
  1685. return gguf.GGMLQuantizationType.F32
  1686. return False
  1687. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1688. del bid # unused
  1689. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1690. if is_vision_tensor:
  1691. return [(self.map_tensor_name(name), data_torch)]
  1692. return [] # skip other tensors
  1693. @ModelBase.register("Llama4ForConditionalGeneration")
  1694. class Llama4Model(LlamaModel):
  1695. model_arch = gguf.MODEL_ARCH.LLAMA4
  1696. undo_permute = False
  1697. def __init__(self, *args, **kwargs):
  1698. super().__init__(*args, **kwargs)
  1699. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1700. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1701. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1702. def set_vocab(self):
  1703. self._set_vocab_gpt2()
  1704. self.gguf_writer.add_add_bos_token(True)
  1705. def set_gguf_parameters(self):
  1706. super().set_gguf_parameters()
  1707. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1708. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1709. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1710. if name.startswith("language_model."):
  1711. name = name.replace("language_model.", "")
  1712. # split the gate_up into gate and up
  1713. if "gate_up_proj" in name:
  1714. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1715. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1716. dim_half = data_torch.shape[-1] // 2
  1717. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1718. return [
  1719. (self.map_tensor_name(name_gate), gate_proj_weight),
  1720. (self.map_tensor_name(name_up), up_proj_weight)
  1721. ]
  1722. if name.endswith("down_proj"):
  1723. name += ".weight"
  1724. data_torch = data_torch.transpose(-1, -2)
  1725. if "multi_modal_projector" in name or "vision_model" in name:
  1726. return []
  1727. return super().modify_tensors(data_torch, name, bid)
  1728. @ModelBase.register("Llama4ForConditionalGeneration")
  1729. class Llama4VisionModel(VisionModel):
  1730. def set_gguf_parameters(self):
  1731. super().set_gguf_parameters()
  1732. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.LLAMA4)
  1733. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1734. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1735. assert self.hparams["hidden_act"] == "gelu"
  1736. self.gguf_writer.add_vision_use_gelu(True)
  1737. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1738. del bid # unused
  1739. if "multi_modal_projector" in name or "vision_model" in name:
  1740. # process vision tensors
  1741. if "positional_embedding_vlm" in name and ".weight" not in name:
  1742. name += ".weight"
  1743. return [(self.map_tensor_name(name), data_torch)]
  1744. return []
  1745. @ModelBase.register("Mistral3ForConditionalGeneration")
  1746. class Mistral3Model(LlamaModel):
  1747. model_arch = gguf.MODEL_ARCH.LLAMA
  1748. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1749. name = name.replace("language_model.", "")
  1750. if "multi_modal_projector" in name or "vision_tower" in name:
  1751. return []
  1752. return super().modify_tensors(data_torch, name, bid)
  1753. @ModelBase.register("DeciLMForCausalLM")
  1754. class DeciModel(TextModel):
  1755. model_arch = gguf.MODEL_ARCH.DECI
  1756. @staticmethod
  1757. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1758. # DeciLM-specific code
  1759. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1760. return DeciModel._find_multiple(intermediate_size, 256)
  1761. @staticmethod
  1762. def _find_multiple(n: int, k: int) -> int:
  1763. # DeciLM-specific code
  1764. if n % k == 0:
  1765. return n
  1766. return n + k - (n % k)
  1767. def __init__(self, *args, **kwargs):
  1768. super().__init__(*args, **kwargs)
  1769. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1770. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1771. assert self.block_count == len(_block_configs)
  1772. self._num_kv_heads = list()
  1773. self._num_heads = list()
  1774. _ffn_multipliers = list()
  1775. # ***linear attention layer***
  1776. # if n_heads_in_group is None and replace_with_linear is True
  1777. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1778. # ***attention-free layer***
  1779. # if n_heads_in_group is None and replace_with_linear is False
  1780. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1781. # ***normal attention-layer***
  1782. # if n_heads_in_group is not None, then
  1783. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1784. # _num_heads[il] is num_attention_head
  1785. # ***dummy layer*** for nemotron 253B
  1786. # if n_heads_in_group is None and ffn_mult is None
  1787. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1788. for il in range(len(_block_configs)):
  1789. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1790. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1791. self._num_kv_heads.append(0)
  1792. self._num_heads.append(self.hparams["num_attention_heads"])
  1793. else:
  1794. self._num_kv_heads.append(0)
  1795. self._num_heads.append(0)
  1796. else:
  1797. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1798. self._num_heads.append(self.hparams["num_attention_heads"])
  1799. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1800. _ffn_multipliers.append(0.0)
  1801. else:
  1802. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1803. assert self.block_count == len(self._num_kv_heads)
  1804. assert self.block_count == len(self._num_heads)
  1805. assert self.block_count == len(_ffn_multipliers)
  1806. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1807. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1808. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1809. self._ffn_dims: list[int] = [
  1810. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1811. for multiplier in _ffn_multipliers
  1812. ]
  1813. def set_vocab(self):
  1814. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1815. # eos_token from '|eot_id|' to '|end_of_text|'
  1816. if self.hparams.get("vocab_size", 128256) == 128256:
  1817. tokens, toktypes, tokpre = self.get_vocab_base()
  1818. self.gguf_writer.add_tokenizer_model("gpt2")
  1819. self.gguf_writer.add_tokenizer_pre(tokpre)
  1820. self.gguf_writer.add_token_list(tokens)
  1821. self.gguf_writer.add_token_types(toktypes)
  1822. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1823. special_vocab.add_to_gguf(self.gguf_writer)
  1824. else:
  1825. # DeciLM-7B
  1826. self._set_vocab_llama_hf()
  1827. def set_gguf_parameters(self):
  1828. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1829. assert self.block_count == len(self._num_kv_heads)
  1830. assert self.block_count == len(self._num_heads)
  1831. assert self.block_count == len(self._ffn_dims)
  1832. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1833. self.gguf_writer.add_rope_freq_base(rope_theta)
  1834. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1835. self.gguf_writer.add_head_count(self._num_heads)
  1836. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1837. self.gguf_writer.add_block_count(self.block_count)
  1838. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1839. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1840. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1841. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1842. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1843. self.gguf_writer.add_file_type(self.ftype)
  1844. else: # DeciLM-7B
  1845. super().set_gguf_parameters()
  1846. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1847. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1848. assert self.block_count == len(self._num_kv_heads)
  1849. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1850. hparams = self.hparams
  1851. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1852. if "head_dim" in hparams:
  1853. rope_dim = hparams["head_dim"]
  1854. else:
  1855. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1856. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1857. rope_scaling = self.hparams.get("rope_scaling") or {}
  1858. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1859. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1860. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1861. @staticmethod
  1862. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1863. if n_head_kv is not None and n_head != n_head_kv:
  1864. n_head = n_head_kv
  1865. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1866. .swapaxes(1, 2)
  1867. .reshape(weights.shape))
  1868. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1869. n_head = self.hparams["num_attention_heads"]
  1870. if bid is not None:
  1871. if "num_key_value_heads_per_layer" in self.hparams:
  1872. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1873. elif "block_configs" in self.hparams:
  1874. n_kv_head = self._num_kv_heads[bid]
  1875. n_head = self._num_heads[bid]
  1876. else:
  1877. n_kv_head = self.hparams.get("num_key_value_heads")
  1878. else:
  1879. n_kv_head = self.hparams.get("num_key_value_heads")
  1880. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1881. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1882. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1883. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1884. return [(self.map_tensor_name(name), data_torch)]
  1885. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1886. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1887. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1888. base = self.hparams.get("rope_theta", 10000.0)
  1889. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1890. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1891. factor = rope_scaling.get("factor", 8.0)
  1892. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1893. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1894. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1895. low_freq_wavelen = old_context_len / low_freq_factor
  1896. high_freq_wavelen = old_context_len / high_freq_factor
  1897. assert low_freq_wavelen != high_freq_wavelen
  1898. rope_factors = []
  1899. for freq in freqs:
  1900. wavelen = 2 * math.pi / freq
  1901. if wavelen < high_freq_wavelen:
  1902. rope_factors.append(1)
  1903. elif wavelen > low_freq_wavelen:
  1904. rope_factors.append(factor)
  1905. else:
  1906. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1907. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1908. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1909. def prepare_tensors(self):
  1910. super().prepare_tensors()
  1911. @ModelBase.register("BitnetForCausalLM")
  1912. class BitnetModel(TextModel):
  1913. model_arch = gguf.MODEL_ARCH.BITNET
  1914. def set_vocab(self):
  1915. self._set_vocab_sentencepiece()
  1916. def set_gguf_parameters(self):
  1917. super().set_gguf_parameters()
  1918. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1919. self.gguf_writer.add_rope_scaling_factor(1.0)
  1920. def weight_quant(self, weight: Tensor) -> Tensor:
  1921. dtype = weight.dtype
  1922. weight = weight.float()
  1923. scale = weight.abs().mean().clamp(min=1e-5)
  1924. iscale = 1 / scale
  1925. # TODO: multiply by the scale directly instead of inverting it twice
  1926. # (this is also unnecessarily doubly inverted upstream)
  1927. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1928. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1929. return result.type(dtype)
  1930. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1931. new_name = self.map_tensor_name(name)
  1932. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1933. gguf.MODEL_TENSOR.ATTN_Q,
  1934. gguf.MODEL_TENSOR.ATTN_K,
  1935. gguf.MODEL_TENSOR.ATTN_V,
  1936. gguf.MODEL_TENSOR.ATTN_OUT,
  1937. gguf.MODEL_TENSOR.FFN_UP,
  1938. gguf.MODEL_TENSOR.FFN_DOWN,
  1939. gguf.MODEL_TENSOR.FFN_GATE,
  1940. ]):
  1941. # transform weight into 1/0/-1 (in fp32)
  1942. data_torch = self.weight_quant(data_torch)
  1943. yield (new_name, data_torch)
  1944. @ModelBase.register("GrokForCausalLM")
  1945. class GrokModel(TextModel):
  1946. model_arch = gguf.MODEL_ARCH.GROK
  1947. def set_vocab(self):
  1948. self._set_vocab_sentencepiece()
  1949. def __init__(self, *args, **kwargs):
  1950. super().__init__(*args, **kwargs)
  1951. def set_gguf_parameters(self):
  1952. super().set_gguf_parameters()
  1953. _experts: list[dict[str, Tensor]] | None = None
  1954. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1955. # process the experts separately
  1956. if name.find(".moe.") != -1:
  1957. n_experts = self.hparams["num_local_experts"]
  1958. assert bid is not None
  1959. if self._experts is None:
  1960. self._experts = [{} for _ in range(self.block_count)]
  1961. self._experts[bid][name] = data_torch
  1962. if len(self._experts[bid]) >= n_experts * 3:
  1963. tensors: list[tuple[str, Tensor]] = []
  1964. # merge the experts into a single 3d tensor
  1965. for wid in ["linear", "linear_1", "linear_v"]:
  1966. datas: list[Tensor] = []
  1967. for xid in range(n_experts):
  1968. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1969. datas.append(self._experts[bid][ename])
  1970. del self._experts[bid][ename]
  1971. data_torch = torch.stack(datas, dim=0)
  1972. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1973. new_name = self.map_tensor_name(merged_name)
  1974. tensors.append((new_name, data_torch))
  1975. return tensors
  1976. else:
  1977. return []
  1978. return [(self.map_tensor_name(name), data_torch)]
  1979. @ModelBase.register("DbrxForCausalLM")
  1980. class DbrxModel(TextModel):
  1981. model_arch = gguf.MODEL_ARCH.DBRX
  1982. def set_gguf_parameters(self):
  1983. ffn_config = self.hparams["ffn_config"]
  1984. attn_config = self.hparams["attn_config"]
  1985. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1986. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1987. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1988. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1989. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1990. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1991. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1992. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1993. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1994. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1995. self.gguf_writer.add_layer_norm_eps(1e-5)
  1996. self.gguf_writer.add_file_type(self.ftype)
  1997. logger.info(f"gguf: file type = {self.ftype}")
  1998. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1999. del bid # unused
  2000. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2001. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2002. n_embd = self.hparams["d_model"]
  2003. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2004. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2005. # But llama.cpp moe graph works differently
  2006. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2007. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2008. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2009. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2010. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2011. experts = False
  2012. for exp_tensor_name in exp_tensor_names.keys():
  2013. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2014. experts = True
  2015. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2016. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2017. data_torch = data_torch.permute(*permute_tensor)
  2018. break
  2019. # map tensor names
  2020. # In MoE models the ffn tensors are typically most of the model weights,
  2021. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2022. # Every other model has the weight names ending in .weight,
  2023. # let's assume that is the convention which is not the case for dbrx:
  2024. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2025. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2026. return [(new_name, data_torch)]
  2027. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2028. del name, new_name, bid # unused
  2029. return n_dims > 1
  2030. @ModelBase.register("MiniCPMForCausalLM")
  2031. class MiniCPMModel(TextModel):
  2032. model_arch = gguf.MODEL_ARCH.MINICPM
  2033. def set_gguf_parameters(self):
  2034. super().set_gguf_parameters()
  2035. embedding_scale = float(self.hparams["scale_emb"])
  2036. self.gguf_writer.add_embedding_scale(embedding_scale)
  2037. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2038. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2039. self.gguf_writer.add_residual_scale(residual_scale)
  2040. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2041. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2042. self.gguf_writer.add_logit_scale(logit_scale)
  2043. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2044. rope_scaling = self.hparams.get("rope_scaling") or {}
  2045. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2046. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2047. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2048. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2049. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2050. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2051. if rope_scaling is not None:
  2052. long_factors = rope_scaling.get('long_factor', None)
  2053. short_factors = rope_scaling.get('short_factor', None)
  2054. if long_factors is None or short_factors is None:
  2055. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2056. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2057. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2058. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2059. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2060. def set_vocab(self):
  2061. self._set_vocab_sentencepiece()
  2062. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2063. del bid # unused
  2064. n_head = self.hparams["num_attention_heads"]
  2065. n_kv_head = self.hparams.get("num_key_value_heads")
  2066. # HF models permute some of the tensors, so we need to undo that
  2067. if name.endswith(("q_proj.weight")):
  2068. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2069. if name.endswith(("k_proj.weight")):
  2070. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2071. return [(self.map_tensor_name(name), data_torch)]
  2072. @ModelBase.register("MiniCPM3ForCausalLM")
  2073. class MiniCPM3Model(TextModel):
  2074. model_arch = gguf.MODEL_ARCH.MINICPM3
  2075. def set_gguf_parameters(self):
  2076. hparams = self.hparams
  2077. self.gguf_writer.add_file_type(self.ftype)
  2078. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2079. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2080. self.gguf_writer.add_block_count(self.block_count)
  2081. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2082. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2083. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2084. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2085. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2086. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2087. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2088. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2089. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2090. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2091. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2092. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2093. if rope_scaling is not None:
  2094. rope_dims = self.hparams["qk_rope_head_dim"]
  2095. long_factors = rope_scaling.get('long_factor', None)
  2096. short_factors = rope_scaling.get('short_factor', None)
  2097. if long_factors is None or short_factors is None:
  2098. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2099. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2100. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2101. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2102. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2103. def set_vocab(self):
  2104. self._set_vocab_sentencepiece()
  2105. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2106. if n_kv_head is not None and n_head != n_kv_head:
  2107. n_head //= n_kv_head
  2108. return (
  2109. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2110. .swapaxes(1, 2)
  2111. .reshape(weights.shape)
  2112. )
  2113. @ModelBase.register("QWenLMHeadModel")
  2114. class QwenModel(TextModel):
  2115. model_arch = gguf.MODEL_ARCH.QWEN
  2116. @staticmethod
  2117. def token_bytes_to_string(b):
  2118. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2119. byte_encoder = bytes_to_unicode()
  2120. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2121. @staticmethod
  2122. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2123. parts = [bytes([b]) for b in token]
  2124. while True:
  2125. min_idx = None
  2126. min_rank = None
  2127. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2128. rank = mergeable_ranks.get(pair[0] + pair[1])
  2129. if rank is not None and (min_rank is None or rank < min_rank):
  2130. min_idx = i
  2131. min_rank = rank
  2132. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2133. break
  2134. assert min_idx is not None
  2135. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2136. return parts
  2137. def set_vocab(self):
  2138. self._set_vocab_qwen()
  2139. def set_gguf_parameters(self):
  2140. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2141. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2142. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2143. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2144. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2145. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2146. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2147. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2148. self.gguf_writer.add_file_type(self.ftype)
  2149. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
  2150. class Qwen2Model(TextModel):
  2151. model_arch = gguf.MODEL_ARCH.QWEN2
  2152. def set_vocab(self):
  2153. try:
  2154. self._set_vocab_sentencepiece()
  2155. except FileNotFoundError:
  2156. self._set_vocab_gpt2()
  2157. def set_gguf_parameters(self):
  2158. super().set_gguf_parameters()
  2159. self._try_set_pooling_type()
  2160. rope_scaling = self.hparams.get("rope_scaling") or {}
  2161. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2162. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2163. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2164. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2165. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2166. if self.hf_arch == "Qwen2Model":
  2167. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2168. if "language_model." in name:
  2169. name = name.replace("language_model.", "") # for InternVL
  2170. if name.startswith("mlp") or name.startswith("vision_model"):
  2171. # skip visual tensors
  2172. return []
  2173. yield from super().modify_tensors(data_torch, name, bid)
  2174. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2175. class Qwen2VLModel(TextModel):
  2176. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2177. def set_gguf_parameters(self):
  2178. super().set_gguf_parameters()
  2179. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2180. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2181. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2182. def set_vocab(self):
  2183. try:
  2184. self._set_vocab_sentencepiece()
  2185. except FileNotFoundError:
  2186. self._set_vocab_gpt2()
  2187. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2188. del bid # unused
  2189. if name.startswith("visual."):
  2190. # skip visual tensors
  2191. return []
  2192. return [(self.map_tensor_name(name), data_torch)]
  2193. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2194. class Qwen2VLVisionModel(VisionModel):
  2195. def __init__(self, *args, **kwargs):
  2196. super().__init__(*args, **kwargs)
  2197. self.hparams["image_size"] = self.hparams.get("image_size", 560)
  2198. # rename config.json values
  2199. self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
  2200. self.hparams["num_hidden_layers"] = self.hparams.get("depth")
  2201. if "embed_dim" in self.hparams: # qwen2vl
  2202. self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
  2203. self.hparams["hidden_size"] = self.hparams.get("embed_dim")
  2204. def set_gguf_parameters(self):
  2205. super().set_gguf_parameters()
  2206. hparams = self.hparams
  2207. if self.global_config['model_type'] == 'qwen2_vl':
  2208. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2209. elif self.global_config['model_type'] == 'qwen2_5_vl':
  2210. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2211. self.gguf_writer.add_vision_use_silu(True)
  2212. # find n_wa_pattern (window attention pattern)
  2213. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2214. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2215. n_wa_pattern = fullatt_block_indexes[0] + 1
  2216. # validate n_wa_pattern
  2217. for i in range(1, len(fullatt_block_indexes)):
  2218. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2219. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2220. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2221. else:
  2222. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2223. # default values below are taken from HF tranformers code
  2224. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2225. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2226. del bid, name, n_dims # unused
  2227. if ".patch_embd." in new_name:
  2228. return gguf.GGMLQuantizationType.F16
  2229. if ".position_embd." in new_name:
  2230. return gguf.GGMLQuantizationType.F32
  2231. return False
  2232. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2233. del bid # unused
  2234. if name.startswith("visual."):
  2235. # process visual tensors
  2236. # split QKV tensors if needed
  2237. if ".qkv." in name:
  2238. if data_torch.ndim == 2: # weight
  2239. c3, _ = data_torch.shape
  2240. else: # bias
  2241. c3 = data_torch.shape[0]
  2242. assert c3 % 3 == 0
  2243. c = c3 // 3
  2244. wq = data_torch[:c]
  2245. wk = data_torch[c: c * 2]
  2246. wv = data_torch[c * 2:]
  2247. return [
  2248. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2249. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2250. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2251. ]
  2252. elif 'patch_embed.proj.weight' in name:
  2253. # split Conv3D into Conv2Ds
  2254. c1, c2, kt, kh, kw = data_torch.shape
  2255. del c1, c2, kh, kw # unused
  2256. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2257. return [
  2258. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2259. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2260. ]
  2261. else:
  2262. return [(self.map_tensor_name(name), data_torch)]
  2263. return [] # skip other tensors
  2264. @ModelBase.register("InternVisionModel")
  2265. class InternVisionModel(VisionModel):
  2266. def set_gguf_parameters(self):
  2267. super().set_gguf_parameters()
  2268. hparams = self.hparams
  2269. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.INTERNVL)
  2270. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2271. # hidden_act
  2272. if hparams["hidden_act"] == "silu":
  2273. self.gguf_writer.add_vision_use_silu(True)
  2274. elif hparams["hidden_act"] == "gelu":
  2275. self.gguf_writer.add_vision_use_gelu(True)
  2276. else:
  2277. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2278. # downsample_ratio
  2279. downsample_ratio = self.global_config.get("downsample_ratio")
  2280. assert downsample_ratio is not None
  2281. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2282. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2283. del bid, name, n_dims # unused
  2284. if ".patch_embd." in new_name:
  2285. return gguf.GGMLQuantizationType.F16
  2286. if ".position_embd." in new_name:
  2287. return gguf.GGMLQuantizationType.F32
  2288. return False
  2289. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2290. del bid # unused
  2291. if name.startswith("vision_model") or name.startswith("mlp"):
  2292. # process visual tensors
  2293. # correct name
  2294. if name.startswith("vision_model"):
  2295. name = "vision_tower." + name
  2296. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2297. name += ".weight"
  2298. # split QKV tensors if needed
  2299. if ".qkv." in name:
  2300. if data_torch.ndim == 2: # weight
  2301. c3, _ = data_torch.shape
  2302. else: # bias
  2303. c3 = data_torch.shape[0]
  2304. assert c3 % 3 == 0
  2305. c = c3 // 3
  2306. wq = data_torch[:c]
  2307. wk = data_torch[c: c * 2]
  2308. wv = data_torch[c * 2:]
  2309. return [
  2310. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2311. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2312. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2313. ]
  2314. return [(self.map_tensor_name(name), data_torch)]
  2315. return [] # skip other tensors
  2316. @ModelBase.register("WavTokenizerDec")
  2317. class WavTokenizerDecModel(TextModel):
  2318. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2319. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2320. del bid # unused
  2321. if \
  2322. name.endswith("codebook.cluster_size") or \
  2323. name.endswith("codebook.embed_avg") or \
  2324. name.endswith("codebook.inited"):
  2325. logger.debug(f"Skipping {name!r}")
  2326. return []
  2327. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2328. return [(self.map_tensor_name(name), data_torch)]
  2329. def set_vocab(self):
  2330. self._set_vocab_none()
  2331. def set_gguf_parameters(self):
  2332. super().set_gguf_parameters()
  2333. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2334. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2335. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2336. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2337. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2338. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2339. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2340. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2341. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2342. self.gguf_writer.add_causal_attention(False)
  2343. @ModelBase.register("Qwen2MoeForCausalLM")
  2344. class Qwen2MoeModel(TextModel):
  2345. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2346. def set_gguf_parameters(self):
  2347. super().set_gguf_parameters()
  2348. if (n_experts := self.hparams.get("num_experts")) is not None:
  2349. self.gguf_writer.add_expert_count(n_experts)
  2350. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2351. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2352. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2353. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2354. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2355. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2356. # YaRN is not enabled by default
  2357. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2358. rope_scaling = self.hparams.get("rope_scaling") or {}
  2359. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2360. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2361. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2362. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2363. _experts: list[dict[str, Tensor]] | None = None
  2364. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2365. # process the experts separately
  2366. if name.find("experts") != -1:
  2367. n_experts = self.hparams["num_experts"]
  2368. assert bid is not None
  2369. if self._experts is None:
  2370. self._experts = [{} for _ in range(self.block_count)]
  2371. self._experts[bid][name] = data_torch
  2372. if len(self._experts[bid]) >= n_experts * 3:
  2373. tensors: list[tuple[str, Tensor]] = []
  2374. # merge the experts into a single 3d tensor
  2375. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2376. datas: list[Tensor] = []
  2377. for xid in range(n_experts):
  2378. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2379. datas.append(self._experts[bid][ename])
  2380. del self._experts[bid][ename]
  2381. data_torch = torch.stack(datas, dim=0)
  2382. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2383. new_name = self.map_tensor_name(merged_name)
  2384. tensors.append((new_name, data_torch))
  2385. return tensors
  2386. else:
  2387. return []
  2388. return [(self.map_tensor_name(name), data_torch)]
  2389. def prepare_tensors(self):
  2390. super().prepare_tensors()
  2391. if self._experts is not None:
  2392. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2393. experts = [k for d in self._experts for k in d.keys()]
  2394. if len(experts) > 0:
  2395. raise ValueError(f"Unprocessed experts: {experts}")
  2396. @ModelBase.register("Qwen3ForCausalLM")
  2397. class Qwen3Model(Qwen2Model):
  2398. model_arch = gguf.MODEL_ARCH.QWEN3
  2399. @ModelBase.register("Qwen3MoeForCausalLM")
  2400. class Qwen3MoeModel(Qwen2MoeModel):
  2401. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2402. @ModelBase.register("GPT2LMHeadModel")
  2403. class GPT2Model(TextModel):
  2404. model_arch = gguf.MODEL_ARCH.GPT2
  2405. def set_gguf_parameters(self):
  2406. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2407. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2408. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2409. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2410. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2411. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2412. self.gguf_writer.add_file_type(self.ftype)
  2413. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2414. del bid # unused
  2415. tensors: list[tuple[str, Tensor]] = []
  2416. # we don't need these
  2417. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2418. return tensors
  2419. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2420. data_torch = data_torch.transpose(1, 0)
  2421. new_name = self.map_tensor_name(name)
  2422. tensors.append((new_name, data_torch))
  2423. return tensors
  2424. @ModelBase.register("PhiForCausalLM")
  2425. class Phi2Model(TextModel):
  2426. model_arch = gguf.MODEL_ARCH.PHI2
  2427. def set_gguf_parameters(self):
  2428. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2429. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2430. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2431. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2432. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2433. self.gguf_writer.add_embedding_length(n_embd)
  2434. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2435. self.gguf_writer.add_block_count(block_count)
  2436. self.gguf_writer.add_head_count(n_head)
  2437. self.gguf_writer.add_head_count_kv(n_head)
  2438. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2439. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2440. self.gguf_writer.add_file_type(self.ftype)
  2441. self.gguf_writer.add_add_bos_token(False)
  2442. @ModelBase.register("Phi3ForCausalLM")
  2443. class Phi3MiniModel(TextModel):
  2444. model_arch = gguf.MODEL_ARCH.PHI3
  2445. def set_vocab(self):
  2446. # Phi-4 model uses GPT2Tokenizer
  2447. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2448. if tokenizer_config_file.is_file():
  2449. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2450. tokenizer_config_json = json.load(f)
  2451. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2452. if tokenizer_class == 'GPT2Tokenizer':
  2453. return self._set_vocab_gpt2()
  2454. from sentencepiece import SentencePieceProcessor
  2455. tokenizer_path = self.dir_model / 'tokenizer.model'
  2456. if not tokenizer_path.is_file():
  2457. raise ValueError(f'Error: Missing {tokenizer_path}')
  2458. tokenizer = SentencePieceProcessor()
  2459. tokenizer.LoadFromFile(str(tokenizer_path))
  2460. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2461. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2462. scores: list[float] = [-10000.0] * vocab_size
  2463. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2464. for token_id in range(tokenizer.vocab_size()):
  2465. piece = tokenizer.IdToPiece(token_id)
  2466. text = piece.encode("utf-8")
  2467. score = tokenizer.GetScore(token_id)
  2468. toktype = SentencePieceTokenTypes.NORMAL
  2469. if tokenizer.IsUnknown(token_id):
  2470. toktype = SentencePieceTokenTypes.UNKNOWN
  2471. elif tokenizer.IsControl(token_id):
  2472. toktype = SentencePieceTokenTypes.CONTROL
  2473. elif tokenizer.IsUnused(token_id):
  2474. toktype = SentencePieceTokenTypes.UNUSED
  2475. elif tokenizer.IsByte(token_id):
  2476. toktype = SentencePieceTokenTypes.BYTE
  2477. tokens[token_id] = text
  2478. scores[token_id] = score
  2479. toktypes[token_id] = toktype
  2480. added_tokens_file = self.dir_model / 'added_tokens.json'
  2481. if added_tokens_file.is_file():
  2482. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2483. added_tokens_json = json.load(f)
  2484. for key in added_tokens_json:
  2485. token_id = added_tokens_json[key]
  2486. if token_id >= vocab_size:
  2487. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2488. continue
  2489. tokens[token_id] = key.encode("utf-8")
  2490. scores[token_id] = -1000.0
  2491. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2492. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2493. if tokenizer_config_file.is_file():
  2494. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2495. tokenizer_config_json = json.load(f)
  2496. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2497. for token_id, foken_data in added_tokens_decoder.items():
  2498. token_id = int(token_id)
  2499. token = foken_data["content"].encode("utf-8")
  2500. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2501. if tokens[token_id] != token:
  2502. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2503. tokens[token_id] = token
  2504. scores[token_id] = -1000.0
  2505. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2506. if foken_data.get("special"):
  2507. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2508. tokenizer_file = self.dir_model / 'tokenizer.json'
  2509. if tokenizer_file.is_file():
  2510. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2511. tokenizer_json = json.load(f)
  2512. added_tokens = tokenizer_json.get("added_tokens", [])
  2513. for foken_data in added_tokens:
  2514. token_id = int(foken_data["id"])
  2515. token = foken_data["content"].encode("utf-8")
  2516. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2517. if tokens[token_id] != token:
  2518. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2519. tokens[token_id] = token
  2520. scores[token_id] = -1000.0
  2521. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2522. if foken_data.get("special"):
  2523. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2524. self.gguf_writer.add_tokenizer_model("llama")
  2525. self.gguf_writer.add_tokenizer_pre("default")
  2526. self.gguf_writer.add_token_list(tokens)
  2527. self.gguf_writer.add_token_scores(scores)
  2528. self.gguf_writer.add_token_types(toktypes)
  2529. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2530. special_vocab.add_to_gguf(self.gguf_writer)
  2531. def set_gguf_parameters(self):
  2532. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2533. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2534. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2535. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2536. rms_eps = self.find_hparam(["rms_norm_eps"])
  2537. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2538. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2539. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2540. rope_dims = int(rot_pct * n_embd) // n_head
  2541. self.gguf_writer.add_context_length(max_pos_embds)
  2542. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2543. self.gguf_writer.add_embedding_length(n_embd)
  2544. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2545. self.gguf_writer.add_block_count(block_count)
  2546. self.gguf_writer.add_head_count(n_head)
  2547. self.gguf_writer.add_head_count_kv(n_head_kv)
  2548. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2549. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2550. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2551. self.gguf_writer.add_file_type(self.ftype)
  2552. sliding_window = self.hparams.get("sliding_window")
  2553. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2554. if sliding_window is None:
  2555. sliding_window = 0
  2556. self.gguf_writer.add_sliding_window(sliding_window)
  2557. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2558. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2559. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2560. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2561. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2562. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2563. rope_dims = int(rot_pct * n_embd) // n_head
  2564. # write rope scaling for long context (128k) model
  2565. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2566. if rope_scaling is None:
  2567. return
  2568. scale = max_pos_embds / orig_max_pos_embds
  2569. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2570. if len(rope_scaling_type) == 0:
  2571. raise KeyError('Missing the required key rope_scaling.type')
  2572. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2573. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2574. elif rope_scaling_type == 'yarn':
  2575. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2576. else:
  2577. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2578. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2579. long_factors = rope_scaling.get('long_factor', None)
  2580. short_factors = rope_scaling.get('short_factor', None)
  2581. if long_factors is None or short_factors is None:
  2582. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2583. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2584. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2585. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2586. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2587. @ModelBase.register("PhiMoEForCausalLM")
  2588. class PhiMoeModel(Phi3MiniModel):
  2589. model_arch = gguf.MODEL_ARCH.PHIMOE
  2590. _experts: list[dict[str, Tensor]] | None = None
  2591. def set_gguf_parameters(self):
  2592. super().set_gguf_parameters()
  2593. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2594. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2595. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2596. # process the experts separately
  2597. if name.find("block_sparse_moe.experts") != -1:
  2598. n_experts = self.hparams["num_local_experts"]
  2599. assert bid is not None
  2600. if self._experts is None:
  2601. self._experts = [{} for _ in range(self.block_count)]
  2602. self._experts[bid][name] = data_torch
  2603. if len(self._experts[bid]) >= n_experts * 3:
  2604. tensors: list[tuple[str, Tensor]] = []
  2605. # merge the experts into a single 3d tensor
  2606. for w_name in ["w1", "w2", "w3"]:
  2607. datas: list[Tensor] = []
  2608. for xid in range(n_experts):
  2609. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2610. datas.append(self._experts[bid][ename])
  2611. del self._experts[bid][ename]
  2612. data_torch = torch.stack(datas, dim=0)
  2613. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2614. new_name = self.map_tensor_name(merged_name)
  2615. tensors.append((new_name, data_torch))
  2616. return tensors
  2617. else:
  2618. return []
  2619. return [(self.map_tensor_name(name), data_torch)]
  2620. def prepare_tensors(self):
  2621. super().prepare_tensors()
  2622. if self._experts is not None:
  2623. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2624. experts = [k for d in self._experts for k in d.keys()]
  2625. if len(experts) > 0:
  2626. raise ValueError(f"Unprocessed experts: {experts}")
  2627. @ModelBase.register("PlamoForCausalLM")
  2628. class PlamoModel(TextModel):
  2629. model_arch = gguf.MODEL_ARCH.PLAMO
  2630. def set_vocab(self):
  2631. self._set_vocab_sentencepiece()
  2632. def set_gguf_parameters(self):
  2633. hparams = self.hparams
  2634. block_count = hparams["num_hidden_layers"]
  2635. self.gguf_writer.add_context_length(4096) # not in config.json
  2636. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2637. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2638. self.gguf_writer.add_block_count(block_count)
  2639. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2640. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2641. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2642. self.gguf_writer.add_file_type(self.ftype)
  2643. def shuffle_attn_q_weight(self, data_torch):
  2644. assert data_torch.size() == (5120, 5120)
  2645. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2646. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2647. data_torch = torch.reshape(data_torch, (5120, 5120))
  2648. return data_torch
  2649. def shuffle_attn_output_weight(self, data_torch):
  2650. assert data_torch.size() == (5120, 5120)
  2651. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2652. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2653. data_torch = torch.reshape(data_torch, (5120, 5120))
  2654. return data_torch
  2655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2656. del bid # unused
  2657. new_name = self.map_tensor_name(name)
  2658. # shuffle for broadcasting of gqa in ggml_mul_mat
  2659. if new_name.endswith("attn_q.weight"):
  2660. data_torch = self.shuffle_attn_q_weight(data_torch)
  2661. elif new_name.endswith("attn_output.weight"):
  2662. data_torch = self.shuffle_attn_output_weight(data_torch)
  2663. return [(new_name, data_torch)]
  2664. @ModelBase.register("CodeShellForCausalLM")
  2665. class CodeShellModel(TextModel):
  2666. model_arch = gguf.MODEL_ARCH.CODESHELL
  2667. def set_gguf_parameters(self):
  2668. block_count = self.hparams["n_layer"]
  2669. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2670. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2671. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2672. self.gguf_writer.add_block_count(block_count)
  2673. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2674. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2675. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2676. self.gguf_writer.add_file_type(self.ftype)
  2677. self.gguf_writer.add_rope_freq_base(10000.0)
  2678. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2679. self.gguf_writer.add_rope_scaling_factor(1.0)
  2680. _has_tok_embd = False
  2681. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2682. del bid # unused
  2683. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2684. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2685. new_name = self.map_tensor_name(name)
  2686. # assuming token_embd.weight is seen before output.weight
  2687. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2688. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2689. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2690. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2691. self.tensor_names.remove("transformer.wte.weight")
  2692. elif new_name == tok_embd_name:
  2693. self._has_tok_embd = True
  2694. return [(new_name, data_torch)]
  2695. @ModelBase.register("InternLM2ForCausalLM")
  2696. class InternLM2Model(TextModel):
  2697. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2698. def set_vocab(self):
  2699. # (TODO): Is there a better way?
  2700. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2701. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2702. # recognized as an empty string in C++.
  2703. from sentencepiece import SentencePieceProcessor
  2704. from sentencepiece import sentencepiece_model_pb2 as model
  2705. tokenizer_path = self.dir_model / 'tokenizer.model'
  2706. tokens: list[bytes] = []
  2707. scores: list[float] = []
  2708. toktypes: list[int] = []
  2709. if not tokenizer_path.is_file():
  2710. logger.error(f'Error: Missing {tokenizer_path}')
  2711. sys.exit(1)
  2712. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2713. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2714. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2715. tokenizer = SentencePieceProcessor()
  2716. tokenizer.LoadFromFile(str(tokenizer_path))
  2717. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2718. for token_id in range(vocab_size):
  2719. piece = tokenizer.IdToPiece(token_id)
  2720. text = piece.encode("utf-8")
  2721. score = tokenizer.GetScore(token_id)
  2722. if text == b"\x00":
  2723. # (TODO): fixme
  2724. # Hack here and replace the \x00 characters.
  2725. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2726. text = "🐉".encode("utf-8")
  2727. toktype = SentencePieceTokenTypes.NORMAL
  2728. if tokenizer.IsUnknown(token_id):
  2729. toktype = SentencePieceTokenTypes.UNKNOWN
  2730. elif tokenizer.IsControl(token_id):
  2731. toktype = SentencePieceTokenTypes.CONTROL
  2732. elif tokenizer.IsUnused(token_id):
  2733. toktype = SentencePieceTokenTypes.UNUSED
  2734. elif tokenizer.IsByte(token_id):
  2735. toktype = SentencePieceTokenTypes.BYTE
  2736. # take care of ununsed raw token
  2737. if piece.startswith('[UNUSED'):
  2738. toktype = SentencePieceTokenTypes.UNUSED
  2739. tokens.append(text)
  2740. scores.append(score)
  2741. toktypes.append(toktype)
  2742. added_tokens_file = self.dir_model / 'added_tokens.json'
  2743. if added_tokens_file.is_file():
  2744. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2745. added_tokens_json = json.load(f)
  2746. for key in added_tokens_json:
  2747. tokens.append(key.encode("utf-8"))
  2748. scores.append(-1000.0)
  2749. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2750. chat_eos_token = '<|im_end|>'
  2751. chat_eos_token_id = None
  2752. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2753. if tokenizer_config_file.is_file():
  2754. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2755. tokenizer_config_json = json.load(f)
  2756. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2757. for token_id, foken_data in added_tokens_decoder.items():
  2758. token_id = int(token_id)
  2759. token = foken_data["content"]
  2760. if token == chat_eos_token:
  2761. chat_eos_token_id = token_id
  2762. token = token.encode("utf-8")
  2763. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2764. if tokens[token_id] != token:
  2765. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2766. tokens[token_id] = token
  2767. scores[token_id] = -1000.0
  2768. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2769. if foken_data.get("special"):
  2770. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2771. tokenizer_file = self.dir_model / 'tokenizer.json'
  2772. if tokenizer_file.is_file():
  2773. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2774. tokenizer_json = json.load(f)
  2775. added_tokens = tokenizer_json.get("added_tokens", [])
  2776. for foken_data in added_tokens:
  2777. token_id = int(foken_data["id"])
  2778. token = foken_data["content"]
  2779. if token == chat_eos_token:
  2780. chat_eos_token_id = token_id
  2781. token = token.encode("utf-8")
  2782. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2783. if tokens[token_id] != token:
  2784. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2785. tokens[token_id] = token
  2786. scores[token_id] = -1000.0
  2787. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2788. if foken_data.get("special"):
  2789. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2790. self.gguf_writer.add_tokenizer_model("llama")
  2791. self.gguf_writer.add_tokenizer_pre("default")
  2792. self.gguf_writer.add_token_list(tokens)
  2793. self.gguf_writer.add_token_scores(scores)
  2794. self.gguf_writer.add_token_types(toktypes)
  2795. self.gguf_writer.add_add_space_prefix(add_prefix)
  2796. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2797. old_eos = special_vocab.special_token_ids["eos"]
  2798. if chat_eos_token_id is not None:
  2799. # For the chat model, we replace the eos with '<|im_end|>'.
  2800. # TODO: this is a hack, should be fixed
  2801. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2802. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2803. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2804. " in chat mode so that the conversation can end normally.")
  2805. special_vocab.add_to_gguf(self.gguf_writer)
  2806. def set_gguf_parameters(self):
  2807. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2808. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2809. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2810. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2811. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2812. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2813. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2814. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2815. self.gguf_writer.add_file_type(self.ftype)
  2816. rope_scaling = self.hparams.get("rope_scaling") or {}
  2817. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2818. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2819. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2821. num_heads = self.hparams["num_attention_heads"]
  2822. num_kv_heads = self.hparams["num_key_value_heads"]
  2823. n_embd = self.hparams["hidden_size"]
  2824. q_per_kv = num_heads // num_kv_heads
  2825. head_dim = n_embd // num_heads
  2826. num_groups = num_heads // q_per_kv
  2827. name = name.replace("language_model.", "") # InternVL
  2828. if name.startswith("mlp") or name.startswith("vision_model"):
  2829. # skip visual tensors
  2830. return []
  2831. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2832. qkv = data_torch
  2833. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2834. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2835. # The model weights of q and k equire additional reshape.
  2836. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2837. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2838. v = v.reshape((-1, v.shape[-1]))
  2839. return [
  2840. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2841. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2842. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2843. ]
  2844. else:
  2845. return [(self.map_tensor_name(name), data_torch)]
  2846. @ModelBase.register("InternLM3ForCausalLM")
  2847. class InternLM3Model(TextModel):
  2848. model_arch = gguf.MODEL_ARCH.LLAMA
  2849. def set_vocab(self):
  2850. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2851. self.gguf_writer.add_tokenizer_model("llama")
  2852. self.gguf_writer.add_tokenizer_pre("default")
  2853. self.gguf_writer.add_token_list(tokens)
  2854. self.gguf_writer.add_token_scores(scores)
  2855. self.gguf_writer.add_token_types(toktypes)
  2856. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2857. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2858. if tokenizer_config_file.is_file():
  2859. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2860. tokenizer_config_json = json.load(f)
  2861. if "add_prefix_space" in tokenizer_config_json:
  2862. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2863. if "added_tokens_decoder" in tokenizer_config_json:
  2864. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2865. if token_data.get("special"):
  2866. token_id = int(token_id)
  2867. token = token_data["content"]
  2868. special_vocab._set_special_token(token, token_id)
  2869. # update eos token
  2870. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2871. special_vocab.special_token_ids["eos"] = token_id
  2872. special_vocab.add_to_gguf(self.gguf_writer)
  2873. def set_gguf_parameters(self):
  2874. super().set_gguf_parameters()
  2875. hparams = self.hparams
  2876. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2877. if "head_dim" in hparams:
  2878. rope_dim = hparams["head_dim"]
  2879. else:
  2880. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2881. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2882. rope_scaling = self.hparams.get("rope_scaling") or {}
  2883. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2884. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2885. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2886. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2887. n_head = self.hparams["num_attention_heads"]
  2888. n_kv_head = self.hparams.get("num_key_value_heads")
  2889. name = name.replace("language_model.", "") # InternVL
  2890. if name.startswith("mlp") or name.startswith("vision_model"):
  2891. # skip visual tensors
  2892. return []
  2893. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2894. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2895. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2896. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2897. return [(self.map_tensor_name(name), data_torch)]
  2898. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2899. class BertModel(TextModel):
  2900. model_arch = gguf.MODEL_ARCH.BERT
  2901. def __init__(self, *args, **kwargs):
  2902. super().__init__(*args, **kwargs)
  2903. self.vocab_size = None
  2904. def set_gguf_parameters(self):
  2905. super().set_gguf_parameters()
  2906. self.gguf_writer.add_causal_attention(False)
  2907. self._try_set_pooling_type()
  2908. def set_vocab(self):
  2909. tokens, toktypes, tokpre = self.get_vocab_base()
  2910. self.vocab_size = len(tokens)
  2911. # we need this to validate the size of the token_type embeddings
  2912. # though currently we are passing all zeros to the token_type embeddings
  2913. # "Sequence A" or "Sequence B"
  2914. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2915. # convert to phantom space vocab
  2916. def phantom(tok):
  2917. if tok.startswith("[") and tok.endswith("]"):
  2918. return tok
  2919. if tok.startswith("##"):
  2920. return tok[2:]
  2921. return "\u2581" + tok
  2922. tokens = list(map(phantom, tokens))
  2923. # add vocab to gguf
  2924. self.gguf_writer.add_tokenizer_model("bert")
  2925. self.gguf_writer.add_tokenizer_pre(tokpre)
  2926. self.gguf_writer.add_token_list(tokens)
  2927. self.gguf_writer.add_token_types(toktypes)
  2928. # handle special tokens
  2929. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2930. special_vocab.add_to_gguf(self.gguf_writer)
  2931. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2932. del bid # unused
  2933. if name.startswith("bert."):
  2934. name = name[5:]
  2935. if name.endswith(".gamma"):
  2936. name = name[:-6] + ".weight"
  2937. if name.endswith(".beta"):
  2938. name = name[:-5] + ".bias"
  2939. # we are only using BERT for embeddings so we don't need the pooling layer
  2940. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2941. return [] # we don't need these
  2942. if name.startswith("cls.predictions"):
  2943. return []
  2944. if name.startswith("cls.seq_relationship"):
  2945. return []
  2946. return [(self.map_tensor_name(name), data_torch)]
  2947. def _xlmroberta_tokenizer_init(self) -> None:
  2948. # we need the pad_token_id to know how to chop down position_embd matrix
  2949. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2950. self._position_offset = 1 + pad_token_id
  2951. if "max_position_embeddings" in self.hparams:
  2952. self.hparams["max_position_embeddings"] -= self._position_offset
  2953. else:
  2954. self._position_offset = None
  2955. def _xlmroberta_set_vocab(self) -> None:
  2956. # to avoid TypeError: Descriptors cannot be created directly
  2957. # exception when importing sentencepiece_model_pb2
  2958. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2959. from sentencepiece import SentencePieceProcessor
  2960. from sentencepiece import sentencepiece_model_pb2 as model
  2961. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2962. if not tokenizer_path.is_file():
  2963. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2964. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2965. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2966. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2967. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2968. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2969. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2970. tokenizer = SentencePieceProcessor()
  2971. tokenizer.LoadFromFile(str(tokenizer_path))
  2972. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2973. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2974. scores: list[float] = [-10000.0] * vocab_size
  2975. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2976. for token_id in range(tokenizer.vocab_size()):
  2977. piece = tokenizer.IdToPiece(token_id)
  2978. text = piece.encode("utf-8")
  2979. score = tokenizer.GetScore(token_id)
  2980. toktype = SentencePieceTokenTypes.NORMAL
  2981. if tokenizer.IsUnknown(token_id):
  2982. toktype = SentencePieceTokenTypes.UNKNOWN
  2983. elif tokenizer.IsControl(token_id):
  2984. toktype = SentencePieceTokenTypes.CONTROL
  2985. elif tokenizer.IsUnused(token_id):
  2986. toktype = SentencePieceTokenTypes.UNUSED
  2987. elif tokenizer.IsByte(token_id):
  2988. toktype = SentencePieceTokenTypes.BYTE
  2989. tokens[token_id] = text
  2990. scores[token_id] = score
  2991. toktypes[token_id] = toktype
  2992. if vocab_size > len(tokens):
  2993. pad_count = vocab_size - len(tokens)
  2994. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2995. for i in range(1, pad_count + 1):
  2996. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2997. scores.append(-1000.0)
  2998. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2999. # realign tokens (see HF tokenizer code)
  3000. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3001. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3002. toktypes = [
  3003. SentencePieceTokenTypes.CONTROL,
  3004. SentencePieceTokenTypes.CONTROL,
  3005. SentencePieceTokenTypes.CONTROL,
  3006. SentencePieceTokenTypes.UNKNOWN,
  3007. ] + toktypes[3:-1]
  3008. self.gguf_writer.add_tokenizer_model("t5")
  3009. self.gguf_writer.add_tokenizer_pre("default")
  3010. self.gguf_writer.add_token_list(tokens)
  3011. self.gguf_writer.add_token_scores(scores)
  3012. self.gguf_writer.add_token_types(toktypes)
  3013. self.gguf_writer.add_add_space_prefix(add_prefix)
  3014. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3015. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3016. if precompiled_charsmap:
  3017. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3018. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3019. special_vocab.add_to_gguf(self.gguf_writer)
  3020. self.gguf_writer.add_add_bos_token(True)
  3021. self.gguf_writer.add_add_eos_token(True)
  3022. @ModelBase.register("RobertaModel")
  3023. class RobertaModel(BertModel):
  3024. model_arch = gguf.MODEL_ARCH.BERT
  3025. def __init__(self, *args, **kwargs):
  3026. super().__init__(*args, **kwargs)
  3027. # we need the pad_token_id to know how to chop down position_embd matrix
  3028. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3029. self._position_offset = 1 + pad_token_id
  3030. if "max_position_embeddings" in self.hparams:
  3031. self.hparams["max_position_embeddings"] -= self._position_offset
  3032. else:
  3033. self._position_offset = None
  3034. def set_vocab(self):
  3035. """Support BPE tokenizers for roberta models"""
  3036. bpe_tok_path = self.dir_model / "tokenizer.json"
  3037. if bpe_tok_path.exists():
  3038. self._set_vocab_gpt2()
  3039. self.gguf_writer.add_add_bos_token(True)
  3040. self.gguf_writer.add_add_eos_token(True)
  3041. # we need this to validate the size of the token_type embeddings
  3042. # though currently we are passing all zeros to the token_type embeddings
  3043. # "Sequence A" or "Sequence B"
  3044. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3045. else:
  3046. return super().set_vocab()
  3047. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3048. # if name starts with "roberta.", remove the prefix
  3049. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3050. if name.startswith("roberta."):
  3051. name = name[8:]
  3052. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3053. if name == "embeddings.position_embeddings.weight":
  3054. if self._position_offset is not None:
  3055. data_torch = data_torch[self._position_offset:,:]
  3056. return super().modify_tensors(data_torch, name, bid)
  3057. @ModelBase.register("NomicBertModel")
  3058. class NomicBertModel(BertModel):
  3059. model_arch = gguf.MODEL_ARCH.BERT
  3060. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3061. hparams = kwargs.pop("hparams", None)
  3062. if hparams is None:
  3063. hparams = ModelBase.load_hparams(dir_model)
  3064. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3065. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3066. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3067. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3068. if self._tokenizer_is_xlmroberta:
  3069. self._xlmroberta_tokenizer_init()
  3070. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3071. if npos == 8192 and mtp == 2048:
  3072. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3073. elif npos == 2048 and mtp == 2048:
  3074. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3075. else:
  3076. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3077. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3078. # this doesn't do anything in the HF version
  3079. assert self.hparams["causal"] is False
  3080. # no bias tensors unless MoE
  3081. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3082. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3083. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3084. # norm at end of layer
  3085. assert self.hparams["prenorm"] is False
  3086. # standard RoPE
  3087. assert self.hparams["rotary_emb_fraction"] == 1.0
  3088. assert self.hparams["rotary_emb_interleaved"] is False
  3089. assert self.hparams["rotary_emb_scale_base"] is None
  3090. def set_vocab(self) -> None:
  3091. if self._tokenizer_is_xlmroberta:
  3092. return self._xlmroberta_set_vocab()
  3093. return super().set_vocab()
  3094. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3095. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3096. if "mlp.experts.bias" in name:
  3097. return [] # Explicitly return an empty list.
  3098. if "mlp.experts.mlp.w1" in name:
  3099. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3100. name += ".weight"
  3101. if "mlp.experts.mlp.w2" in name:
  3102. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3103. data_torch = data_torch.transpose(1, 2)
  3104. name += ".weight"
  3105. return [(self.map_tensor_name(name), data_torch)]
  3106. def set_gguf_parameters(self):
  3107. super().set_gguf_parameters()
  3108. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3109. if self.is_moe:
  3110. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3111. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3112. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3113. def _is_tokenizer_xlmroberta(self) -> bool:
  3114. with open(self.dir_model / "tokenizer.json") as f:
  3115. tokenizer_json = json.load(f)
  3116. toktyp = tokenizer_json["model"]["type"]
  3117. if toktyp == "Unigram":
  3118. return True
  3119. if toktyp == "WordPiece":
  3120. return False
  3121. raise ValueError(f"unknown tokenizer: {toktyp}")
  3122. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3123. class XLMRobertaModel(BertModel):
  3124. model_arch = gguf.MODEL_ARCH.BERT
  3125. def __init__(self, *args, **kwargs):
  3126. super().__init__(*args, **kwargs)
  3127. self._xlmroberta_tokenizer_init()
  3128. def set_vocab(self):
  3129. self._xlmroberta_set_vocab()
  3130. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3131. # if name starts with "roberta.", remove the prefix
  3132. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3133. if name.startswith("roberta."):
  3134. name = name[8:]
  3135. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3136. if name == "embeddings.position_embeddings.weight":
  3137. if self._position_offset is not None:
  3138. data_torch = data_torch[self._position_offset:,:]
  3139. return super().modify_tensors(data_torch, name, bid)
  3140. @ModelBase.register("GemmaForCausalLM")
  3141. class GemmaModel(TextModel):
  3142. model_arch = gguf.MODEL_ARCH.GEMMA
  3143. def set_vocab(self):
  3144. self._set_vocab_sentencepiece()
  3145. # TODO: these special tokens should be exported only for the CodeGemma family
  3146. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3147. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3148. special_vocab._set_special_token("prefix", 67)
  3149. special_vocab._set_special_token("suffix", 69)
  3150. special_vocab._set_special_token("middle", 68)
  3151. special_vocab._set_special_token("fsep", 70)
  3152. special_vocab._set_special_token("eot", 107)
  3153. special_vocab.chat_template = None # do not add it twice
  3154. special_vocab.add_to_gguf(self.gguf_writer)
  3155. self.gguf_writer.add_add_space_prefix(False)
  3156. def set_gguf_parameters(self):
  3157. hparams = self.hparams
  3158. block_count = hparams["num_hidden_layers"]
  3159. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3160. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3161. self.gguf_writer.add_block_count(block_count)
  3162. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3163. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3164. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3165. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3166. self.gguf_writer.add_key_length(hparams["head_dim"])
  3167. self.gguf_writer.add_value_length(hparams["head_dim"])
  3168. self.gguf_writer.add_file_type(self.ftype)
  3169. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3170. del bid # unused
  3171. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3172. # To prevent errors, skip loading lm_head.weight.
  3173. if name == "lm_head.weight":
  3174. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3175. return []
  3176. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3177. if name.endswith("norm.weight"):
  3178. data_torch = data_torch + 1
  3179. return [(self.map_tensor_name(name), data_torch)]
  3180. @ModelBase.register("Gemma2ForCausalLM")
  3181. class Gemma2Model(TextModel):
  3182. model_arch = gguf.MODEL_ARCH.GEMMA2
  3183. def set_vocab(self):
  3184. self._set_vocab_sentencepiece()
  3185. self.gguf_writer.add_add_space_prefix(False)
  3186. def set_gguf_parameters(self):
  3187. hparams = self.hparams
  3188. block_count = hparams["num_hidden_layers"]
  3189. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3190. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3191. self.gguf_writer.add_block_count(block_count)
  3192. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3193. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3194. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3195. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3196. self.gguf_writer.add_key_length(hparams["head_dim"])
  3197. self.gguf_writer.add_value_length(hparams["head_dim"])
  3198. self.gguf_writer.add_file_type(self.ftype)
  3199. self.gguf_writer.add_attn_logit_softcapping(
  3200. self.hparams["attn_logit_softcapping"]
  3201. )
  3202. self.gguf_writer.add_final_logit_softcapping(
  3203. self.hparams["final_logit_softcapping"]
  3204. )
  3205. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3206. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3207. del bid # unused
  3208. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3209. # To prevent errors, skip loading lm_head.weight.
  3210. if name == "lm_head.weight":
  3211. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3212. return []
  3213. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3214. if name.endswith("norm.weight"):
  3215. data_torch = data_torch + 1
  3216. return [(self.map_tensor_name(name), data_torch)]
  3217. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3218. class Gemma3Model(TextModel):
  3219. model_arch = gguf.MODEL_ARCH.GEMMA3
  3220. def set_vocab(self):
  3221. self._set_vocab_sentencepiece()
  3222. self.gguf_writer.add_add_space_prefix(False)
  3223. def set_gguf_parameters(self):
  3224. hparams = self.hparams
  3225. block_count = hparams["num_hidden_layers"]
  3226. # some default values are not specified in the hparams
  3227. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3228. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3229. self.gguf_writer.add_block_count(block_count)
  3230. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3231. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3232. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3233. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3234. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3235. self.gguf_writer.add_file_type(self.ftype)
  3236. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3237. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3238. assert hparams.get("attn_logit_softcapping") is None
  3239. assert hparams.get("final_logit_softcapping") is None
  3240. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3241. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3242. if hparams.get("rope_scaling") is not None:
  3243. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3244. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3245. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3246. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3247. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3248. del bid # unused
  3249. if name.startswith("language_model."):
  3250. name = name.replace("language_model.", "")
  3251. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3252. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3253. return [] # skip vision tensors
  3254. # remove OOV (out-of-vocabulary) rows in token_embd
  3255. if "embed_tokens.weight" in name:
  3256. vocab = self._create_vocab_sentencepiece()
  3257. tokens = vocab[0]
  3258. data_torch = data_torch[:len(tokens)]
  3259. # ref code in Gemma3RMSNorm
  3260. # output = output * (1.0 + self.weight.float())
  3261. if name.endswith("norm.weight"):
  3262. data_torch = data_torch + 1
  3263. return [(self.map_tensor_name(name), data_torch)]
  3264. @ModelBase.register("Gemma3ForConditionalGeneration")
  3265. class Gemma3VisionModel(VisionModel):
  3266. def set_gguf_parameters(self):
  3267. super().set_gguf_parameters()
  3268. hparams = self.hparams
  3269. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
  3270. # default values below are taken from HF tranformers code
  3271. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3272. self.gguf_writer.add_vision_use_gelu(True)
  3273. # calculate proj_scale_factor (used by tinygemma3 test model)
  3274. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3275. n_per_side = int(image_seq_length ** 0.5)
  3276. image_size = self.hparams["image_size"]
  3277. patch_size = self.hparams["patch_size"]
  3278. proj_scale_factor = (image_size // patch_size) // n_per_side
  3279. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3280. # we only need to write this if it's not the default value
  3281. # in this case, we are converting a test model
  3282. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3283. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3284. del bid, new_name, n_dims # unused
  3285. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3286. if "input_projection" in name:
  3287. return gguf.GGMLQuantizationType.F16
  3288. if ".embeddings." in name:
  3289. return gguf.GGMLQuantizationType.F32
  3290. return False
  3291. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3292. del bid # unused
  3293. if "vision_model.head." in name:
  3294. return [] # skip redundant tensors for tinygemma3
  3295. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3296. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3297. # process vision tensors
  3298. name = name.replace("_weight", ".weight")
  3299. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3300. # the other norm values are part of SigLIP model, and they are already correct
  3301. # ref code: Gemma3RMSNorm
  3302. if "soft_emb_norm.weight" in name:
  3303. logger.info(f"Correcting norm value for '{name}'")
  3304. data_torch = data_torch + 1
  3305. return [(self.map_tensor_name(name), data_torch)]
  3306. return [] # skip other tensors
  3307. @ModelBase.register("Starcoder2ForCausalLM")
  3308. class StarCoder2Model(TextModel):
  3309. model_arch = gguf.MODEL_ARCH.STARCODER2
  3310. @ModelBase.register("Rwkv6ForCausalLM")
  3311. class Rwkv6Model(TextModel):
  3312. model_arch = gguf.MODEL_ARCH.RWKV6
  3313. def set_vocab(self):
  3314. self._set_vocab_rwkv_world()
  3315. def set_gguf_parameters(self):
  3316. block_count = self.hparams["num_hidden_layers"]
  3317. head_size = self.hparams["head_size"]
  3318. hidden_size = self.hparams["hidden_size"]
  3319. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3320. rescale_every_n_layers = self.hparams["rescale_every"]
  3321. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3322. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3323. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3324. # RWKV isn't context limited
  3325. self.gguf_writer.add_context_length(1048576)
  3326. self.gguf_writer.add_embedding_length(hidden_size)
  3327. self.gguf_writer.add_block_count(block_count)
  3328. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3329. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3330. self.gguf_writer.add_wkv_head_size(head_size)
  3331. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3332. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3333. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3334. self.gguf_writer.add_file_type(self.ftype)
  3335. # required by llama.cpp, unused
  3336. self.gguf_writer.add_head_count(0)
  3337. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3338. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3339. new_name = self.map_tensor_name(name)
  3340. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3341. new_name += ".weight"
  3342. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3343. data_torch = data_torch.transpose(0, 1)
  3344. if new_name.endswith("time_mix_w2.weight"):
  3345. data_torch = data_torch.permute(0, 2, 1)
  3346. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3347. data_torch = data_torch.squeeze()
  3348. try:
  3349. rescale_every_n_layers = self.hparams["rescale_every"]
  3350. if rescale_every_n_layers > 0:
  3351. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3352. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3353. except KeyError:
  3354. pass
  3355. # concat time_mix_lerp weights to reduce some cpu overhead
  3356. # also reduces the number of tensors in the model
  3357. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3358. try:
  3359. self.lerp_weights[bid][new_name] = data_torch
  3360. except KeyError:
  3361. self.lerp_weights[bid] = {new_name: data_torch}
  3362. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3363. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3364. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3365. yield (new_name, data)
  3366. return
  3367. yield (new_name, data_torch)
  3368. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3369. class RWKV6Qwen2Model(Rwkv6Model):
  3370. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3371. def set_vocab(self):
  3372. try:
  3373. self._set_vocab_sentencepiece()
  3374. except FileNotFoundError:
  3375. self._set_vocab_gpt2()
  3376. def set_gguf_parameters(self):
  3377. block_count = self.hparams["num_hidden_layers"]
  3378. num_attention_heads = self.hparams["num_attention_heads"]
  3379. num_key_value_heads = self.hparams["num_key_value_heads"]
  3380. hidden_size = self.hparams["hidden_size"]
  3381. head_size = hidden_size // num_attention_heads
  3382. rms_norm_eps = self.hparams["rms_norm_eps"]
  3383. intermediate_size = self.hparams["intermediate_size"]
  3384. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3385. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3386. # RWKV isn't context limited
  3387. self.gguf_writer.add_context_length(1048576)
  3388. self.gguf_writer.add_embedding_length(hidden_size)
  3389. self.gguf_writer.add_block_count(block_count)
  3390. self.gguf_writer.add_wkv_head_size(head_size)
  3391. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3392. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3393. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3394. self.gguf_writer.add_file_type(self.ftype)
  3395. # special parameters for time_mixing in RWKV6QWEN2
  3396. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3397. self.gguf_writer.add_token_shift_count(1)
  3398. # RWKV6QWEN2 use grouped key/value like GQA
  3399. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3400. # required by llama.cpp, unused
  3401. self.gguf_writer.add_head_count(0)
  3402. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3403. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3404. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3405. data = data.view(5, -1, data.shape[-1])
  3406. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3407. # permute them here to avoid code changes
  3408. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3409. if "w2" in new_name:
  3410. data = data.view(5, -1, data.shape[-1])
  3411. yield (new_name, data)
  3412. continue
  3413. yield (new_name, data)
  3414. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3415. class Rwkv7Model(TextModel):
  3416. model_arch = gguf.MODEL_ARCH.RWKV7
  3417. def set_vocab(self):
  3418. self._set_vocab_rwkv_world()
  3419. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3420. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3421. def set_gguf_parameters(self):
  3422. block_count = self.hparams["num_hidden_layers"]
  3423. try:
  3424. head_size = self.hparams["head_size"]
  3425. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3426. except KeyError:
  3427. head_size = self.hparams["head_dim"]
  3428. layer_norm_eps = self.hparams["norm_eps"]
  3429. hidden_size = self.hparams["hidden_size"]
  3430. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3431. # ICLR: In-Context-Learning-Rate
  3432. try:
  3433. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3434. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3435. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3436. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3437. except KeyError:
  3438. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3439. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3440. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3441. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3442. # RWKV isn't context limited
  3443. self.gguf_writer.add_context_length(1048576)
  3444. self.gguf_writer.add_embedding_length(hidden_size)
  3445. self.gguf_writer.add_block_count(block_count)
  3446. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3447. self.gguf_writer.add_wkv_head_size(head_size)
  3448. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3449. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3450. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3451. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3452. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3453. self.gguf_writer.add_file_type(self.ftype)
  3454. # required by llama.cpp, unused
  3455. self.gguf_writer.add_head_count(0)
  3456. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3457. lora_needs_transpose: bool = True
  3458. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3459. # unify tensor names here to make life easier
  3460. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3461. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3462. name = name.replace("time_mixer.", "")
  3463. # lora layer names in fla-hub's impl
  3464. if "_lora.lora" in name:
  3465. self.lora_needs_transpose = False
  3466. name = name.replace("_lora.lora.0.weight", "1.weight")
  3467. name = name.replace("_lora.lora.2.weight", "2.weight")
  3468. name = name.replace("_lora.lora.2.bias", "0.weight")
  3469. name = name.replace("feed_forward_norm", "ln2")
  3470. name = name.replace("g_norm", "ln_x")
  3471. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3472. # some models have dummy v0/v1/v2 on first layer while others don't
  3473. # ignore them all since they are not used
  3474. return
  3475. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3476. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3477. if bid is not None and "attention.x_" in name:
  3478. if "attention.x_x" in name:
  3479. # already concatenated
  3480. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3481. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3482. yield (new_name, data)
  3483. else:
  3484. try:
  3485. self.lerp_weights[bid][name] = data_torch
  3486. except KeyError:
  3487. self.lerp_weights[bid] = {name: data_torch}
  3488. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3489. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3490. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3491. yield (new_name, data)
  3492. return
  3493. else:
  3494. data_torch = data_torch.squeeze()
  3495. new_name = self.map_tensor_name(name)
  3496. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3497. new_name += ".weight"
  3498. if self.lora_needs_transpose and any(
  3499. new_name.endswith(t) for t in [
  3500. "time_mix_w1.weight", "time_mix_w2.weight",
  3501. "time_mix_a1.weight", "time_mix_a2.weight",
  3502. "time_mix_v1.weight", "time_mix_v2.weight",
  3503. "time_mix_g1.weight", "time_mix_g2.weight",
  3504. ]
  3505. ):
  3506. data_torch = data_torch.transpose(0, 1)
  3507. if 'r_k' in new_name:
  3508. data_torch = data_torch.flatten()
  3509. if bid == 0 and "time_mix_a" in new_name:
  3510. # dummy v0/v1/v2 on first layer
  3511. # easist way to make llama happy
  3512. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3513. yield (new_name, data_torch)
  3514. @ModelBase.register("RwkvHybridForCausalLM")
  3515. class ARwkv7Model(Rwkv7Model):
  3516. model_arch = gguf.MODEL_ARCH.ARWKV7
  3517. def set_vocab(self):
  3518. try:
  3519. self._set_vocab_sentencepiece()
  3520. except FileNotFoundError:
  3521. self._set_vocab_gpt2()
  3522. def set_gguf_parameters(self):
  3523. block_count = self.hparams["num_hidden_layers"]
  3524. hidden_size = self.hparams["hidden_size"]
  3525. head_size = self.hparams["head_size"]
  3526. rms_norm_eps = self.hparams["rms_norm_eps"]
  3527. intermediate_size = self.hparams["intermediate_size"]
  3528. wkv_has_gate = self.hparams["wkv_has_gate"]
  3529. assert self.hparams["wkv_version"] == 7
  3530. # ICLR: In-Context-Learning-Rate
  3531. lora_rank_decay = 64
  3532. lora_rank_iclr = 64
  3533. lora_rank_value_residual_mix = 32
  3534. lora_rank_gate = 128 if wkv_has_gate else 0
  3535. # RWKV isn't context limited
  3536. self.gguf_writer.add_context_length(1048576)
  3537. self.gguf_writer.add_embedding_length(hidden_size)
  3538. self.gguf_writer.add_block_count(block_count)
  3539. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3540. self.gguf_writer.add_wkv_head_size(head_size)
  3541. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3542. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3543. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3544. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3545. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3546. self.gguf_writer.add_file_type(self.ftype)
  3547. self.gguf_writer.add_token_shift_count(1)
  3548. # required by llama.cpp, unused
  3549. self.gguf_writer.add_head_count(0)
  3550. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3551. class MambaModel(TextModel):
  3552. model_arch = gguf.MODEL_ARCH.MAMBA
  3553. def set_vocab(self):
  3554. vocab_size = self.hparams["vocab_size"]
  3555. # Round vocab size to next multiple of 8
  3556. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3557. # pad using ceiling division
  3558. # ref: https://stackoverflow.com/a/17511341/22827863
  3559. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3560. self.hparams["vocab_size"] = vocab_size
  3561. if (self.dir_model / "tokenizer.json").is_file():
  3562. self._set_vocab_gpt2()
  3563. elif (self.dir_model / "tokenizer.model").is_file():
  3564. self._set_vocab_sentencepiece()
  3565. else:
  3566. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3567. self._set_vocab_builtin("gpt-neox", vocab_size)
  3568. def set_gguf_parameters(self):
  3569. d_model = self.find_hparam(["hidden_size", "d_model"])
  3570. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3571. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3572. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3573. # ceiling division
  3574. # ref: https://stackoverflow.com/a/17511341/22827863
  3575. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3576. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3577. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3578. use_dt_b_c_norm = False
  3579. # For falconmamba we do apply RMS norm on B / DT and C layers
  3580. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3581. use_dt_b_c_norm = True
  3582. # Fail early for models which don't have a block expansion factor of 2
  3583. assert d_inner == 2 * d_model
  3584. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3585. self.gguf_writer.add_embedding_length(d_model)
  3586. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3587. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3588. self.gguf_writer.add_block_count(self.block_count)
  3589. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3590. self.gguf_writer.add_ssm_inner_size(d_inner)
  3591. self.gguf_writer.add_ssm_state_size(d_state)
  3592. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3593. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3594. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3595. self.gguf_writer.add_file_type(self.ftype)
  3596. _tok_embd = None
  3597. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3598. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3599. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3600. new_name = self.map_tensor_name(name)
  3601. if name.endswith(".A_log"):
  3602. logger.debug("A_log --> A ==> " + new_name)
  3603. data_torch = -torch.exp(data_torch)
  3604. # [4 1 8192 1] -> [4 8192 1 1]
  3605. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3606. data_torch = data_torch.squeeze()
  3607. # assuming token_embd.weight is seen before output.weight
  3608. if self._tok_embd is not None and new_name == output_name:
  3609. if torch.equal(self._tok_embd, data_torch):
  3610. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3611. return []
  3612. elif new_name == tok_embd_name:
  3613. self._tok_embd = data_torch
  3614. return [(new_name, data_torch)]
  3615. @ModelBase.register("CohereForCausalLM")
  3616. class CommandR2Model(TextModel):
  3617. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3618. def __init__(self, *args, **kwargs):
  3619. super().__init__(*args, **kwargs)
  3620. # max_position_embeddings = 8192 in config.json but model was actually
  3621. # trained on 128k context length
  3622. # aya-23 models don't have model_max_length specified
  3623. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3624. def set_gguf_parameters(self):
  3625. super().set_gguf_parameters()
  3626. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3627. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3628. @ModelBase.register("Cohere2ForCausalLM")
  3629. class Cohere2Model(TextModel):
  3630. model_arch = gguf.MODEL_ARCH.COHERE2
  3631. def set_gguf_parameters(self):
  3632. super().set_gguf_parameters()
  3633. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3634. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3635. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3636. rotary_pct = self.hparams["rotary_pct"]
  3637. hidden_size = self.hparams["hidden_size"]
  3638. num_attention_heads = self.hparams["num_attention_heads"]
  3639. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3640. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3641. @ModelBase.register("OlmoForCausalLM")
  3642. @ModelBase.register("OLMoForCausalLM")
  3643. class OlmoModel(TextModel):
  3644. model_arch = gguf.MODEL_ARCH.OLMO
  3645. def set_gguf_parameters(self):
  3646. super().set_gguf_parameters()
  3647. self.gguf_writer.add_layer_norm_eps(1e-5)
  3648. clip_qkv = self.hparams.get("clip_qkv")
  3649. if clip_qkv is not None:
  3650. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3651. # Same as super class, but permuting q_proj, k_proj
  3652. # Copied from: LlamaModel
  3653. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3654. del bid # unused
  3655. n_head = self.hparams["num_attention_heads"]
  3656. n_kv_head = self.hparams.get("num_key_value_heads")
  3657. if name.endswith("q_proj.weight"):
  3658. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3659. if name.endswith("k_proj.weight"):
  3660. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3661. return [(self.map_tensor_name(name), data_torch)]
  3662. @ModelBase.register("Olmo2ForCausalLM")
  3663. class Olmo2Model(TextModel):
  3664. model_arch = gguf.MODEL_ARCH.OLMO2
  3665. @ModelBase.register("OlmoeForCausalLM")
  3666. class OlmoeModel(TextModel):
  3667. model_arch = gguf.MODEL_ARCH.OLMOE
  3668. def set_gguf_parameters(self):
  3669. super().set_gguf_parameters()
  3670. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3671. if (n_experts := self.hparams.get("num_experts")) is not None:
  3672. self.gguf_writer.add_expert_count(n_experts)
  3673. _experts: list[dict[str, Tensor]] | None = None
  3674. # Copied from: Qwen2MoeModel
  3675. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3676. # process the experts separately
  3677. if name.find("experts") != -1:
  3678. n_experts = self.hparams["num_experts"]
  3679. assert bid is not None
  3680. if self._experts is None:
  3681. self._experts = [{} for _ in range(self.block_count)]
  3682. self._experts[bid][name] = data_torch
  3683. if len(self._experts[bid]) >= n_experts * 3:
  3684. tensors: list[tuple[str, Tensor]] = []
  3685. # merge the experts into a single 3d tensor
  3686. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3687. datas: list[Tensor] = []
  3688. for xid in range(n_experts):
  3689. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3690. datas.append(self._experts[bid][ename])
  3691. del self._experts[bid][ename]
  3692. data_torch = torch.stack(datas, dim=0)
  3693. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3694. new_name = self.map_tensor_name(merged_name)
  3695. tensors.append((new_name, data_torch))
  3696. return tensors
  3697. else:
  3698. return []
  3699. return [(self.map_tensor_name(name), data_torch)]
  3700. # Copied from: Qwen2MoeModel
  3701. def prepare_tensors(self):
  3702. super().prepare_tensors()
  3703. if self._experts is not None:
  3704. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3705. experts = [k for d in self._experts for k in d.keys()]
  3706. if len(experts) > 0:
  3707. raise ValueError(f"Unprocessed experts: {experts}")
  3708. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3709. class JinaBertV2Model(BertModel):
  3710. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3711. def __init__(self, *args, **kwargs):
  3712. super().__init__(*args, **kwargs)
  3713. self.intermediate_size = self.hparams["intermediate_size"]
  3714. def get_tensors(self):
  3715. for name, data in super().get_tensors():
  3716. if 'gated_layer' in name:
  3717. d1 = data[:self.intermediate_size, :]
  3718. name1 = name.replace('gated_layers', 'gated_layers_w')
  3719. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3720. d2 = data[self.intermediate_size:, :]
  3721. name2 = name.replace('gated_layers', 'gated_layers_v')
  3722. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3723. yield name1, d1
  3724. yield name2, d2
  3725. continue
  3726. yield name, data
  3727. def set_vocab(self):
  3728. tokenizer_class = 'BertTokenizer'
  3729. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3730. tokenizer_class = json.load(f)['tokenizer_class']
  3731. if tokenizer_class == 'BertTokenizer':
  3732. super().set_vocab()
  3733. elif tokenizer_class == 'RobertaTokenizer':
  3734. self._set_vocab_gpt2()
  3735. self.gguf_writer.add_token_type_count(2)
  3736. else:
  3737. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3738. self.gguf_writer.add_add_bos_token(True)
  3739. self.gguf_writer.add_add_eos_token(True)
  3740. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3741. # if name starts with "bert.", remove the prefix
  3742. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3743. if name.startswith("bert."):
  3744. name = name[5:]
  3745. return super().modify_tensors(data_torch, name, bid)
  3746. @ModelBase.register("OpenELMForCausalLM")
  3747. class OpenELMModel(TextModel):
  3748. model_arch = gguf.MODEL_ARCH.OPENELM
  3749. @staticmethod
  3750. def _make_divisible(v: float | int, divisor: int) -> int:
  3751. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3752. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3753. # Make sure that round down does not go down by more than 10%.
  3754. if new_v < 0.9 * v:
  3755. new_v += divisor
  3756. return new_v
  3757. def __init__(self, *args, **kwargs):
  3758. super().__init__(*args, **kwargs)
  3759. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3760. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3761. self._n_embd: int = self.hparams["model_dim"]
  3762. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3763. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3764. self._ffn_dims: list[int] = [
  3765. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3766. for multiplier in ffn_multipliers
  3767. ]
  3768. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3769. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3770. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3771. def set_vocab(self):
  3772. try:
  3773. self._set_vocab_sentencepiece()
  3774. except FileNotFoundError:
  3775. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3776. def set_gguf_parameters(self):
  3777. n_embd = self._n_embd
  3778. head_dim = self.hparams["head_dim"]
  3779. rot_pct = 1.0
  3780. assert self.block_count == len(self._num_kv_heads)
  3781. assert self.block_count == len(self._num_query_heads)
  3782. assert self.block_count == len(self._ffn_dims)
  3783. self.gguf_writer.add_block_count(self.block_count)
  3784. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3785. self.gguf_writer.add_embedding_length(n_embd)
  3786. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3787. self.gguf_writer.add_head_count(self._num_query_heads)
  3788. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3789. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3790. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3791. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3792. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3793. self.gguf_writer.add_key_length(head_dim)
  3794. self.gguf_writer.add_value_length(head_dim)
  3795. self.gguf_writer.add_file_type(self.ftype)
  3796. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3797. if "n_layers" in keys:
  3798. return self.hparams["num_transformer_layers"]
  3799. return super().find_hparam(keys, optional)
  3800. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3801. # split ff
  3802. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3803. ff_dim = self._ffn_dims[bid]
  3804. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3805. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3806. return
  3807. yield (self.map_tensor_name(name), data_torch)
  3808. @ModelBase.register("ArcticForCausalLM")
  3809. class ArcticModel(TextModel):
  3810. model_arch = gguf.MODEL_ARCH.ARCTIC
  3811. def set_vocab(self):
  3812. # The reason for using a custom implementation here is that the
  3813. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3814. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3815. from sentencepiece import SentencePieceProcessor
  3816. tokenizer_path = self.dir_model / 'tokenizer.model'
  3817. if not tokenizer_path.is_file():
  3818. logger.error(f'Error: Missing {tokenizer_path}')
  3819. sys.exit(1)
  3820. # Read the whole vocabulary from the tokenizer.model file
  3821. tokenizer = SentencePieceProcessor()
  3822. tokenizer.LoadFromFile(str(tokenizer_path))
  3823. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3824. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3825. scores: list[float] = [-10000.0] * vocab_size
  3826. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3827. for token_id in range(tokenizer.vocab_size()):
  3828. piece = tokenizer.IdToPiece(token_id)
  3829. text = piece.encode("utf-8")
  3830. score = tokenizer.GetScore(token_id)
  3831. toktype = SentencePieceTokenTypes.NORMAL
  3832. if tokenizer.IsUnknown(token_id):
  3833. toktype = SentencePieceTokenTypes.UNKNOWN
  3834. elif tokenizer.IsControl(token_id):
  3835. toktype = SentencePieceTokenTypes.CONTROL
  3836. elif tokenizer.IsUnused(token_id):
  3837. toktype = SentencePieceTokenTypes.UNUSED
  3838. elif tokenizer.IsByte(token_id):
  3839. toktype = SentencePieceTokenTypes.BYTE
  3840. tokens[token_id] = text
  3841. scores[token_id] = score
  3842. toktypes[token_id] = toktype
  3843. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3844. # of information about added/redefined tokens and modify them accordingly.
  3845. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3846. if tokenizer_config_file.is_file():
  3847. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3848. tokenizer_config_json = json.load(f)
  3849. if "added_tokens_decoder" in tokenizer_config_json:
  3850. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3851. for token_id, token_json in added_tokens_decoder.items():
  3852. token_id = int(token_id)
  3853. if token_id >= vocab_size:
  3854. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3855. continue
  3856. token_content = token_json["content"]
  3857. token_type = SentencePieceTokenTypes.USER_DEFINED
  3858. token_score = -10000.0
  3859. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3860. # Set the score to 0.0 as in the original tokenizer.model
  3861. if ("special" in token_json) and token_json["special"]:
  3862. if token_content == tokenizer_config_json["unk_token"]:
  3863. token_type = SentencePieceTokenTypes.UNKNOWN
  3864. else:
  3865. token_type = SentencePieceTokenTypes.CONTROL
  3866. token_score = 0.0
  3867. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3868. tokens[token_id] = token_content.encode("utf-8")
  3869. toktypes[token_id] = token_type
  3870. scores[token_id] = token_score
  3871. self.gguf_writer.add_tokenizer_model("llama")
  3872. self.gguf_writer.add_tokenizer_pre("default")
  3873. self.gguf_writer.add_token_list(tokens)
  3874. self.gguf_writer.add_token_scores(scores)
  3875. self.gguf_writer.add_token_types(toktypes)
  3876. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3877. special_vocab.add_to_gguf(self.gguf_writer)
  3878. def set_gguf_parameters(self):
  3879. super().set_gguf_parameters()
  3880. hparams = self.hparams
  3881. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3882. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3883. _experts: list[dict[str, Tensor]] | None = None
  3884. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3885. n_head = self.hparams["num_attention_heads"]
  3886. n_kv_head = self.hparams.get("num_key_value_heads")
  3887. if name.endswith("q_proj.weight"):
  3888. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3889. if name.endswith("k_proj.weight"):
  3890. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3891. # process the experts separately
  3892. if name.find("block_sparse_moe.experts") != -1:
  3893. n_experts = self.hparams["num_local_experts"]
  3894. assert bid is not None
  3895. if self._experts is None:
  3896. self._experts = [{} for _ in range(self.block_count)]
  3897. self._experts[bid][name] = data_torch
  3898. if len(self._experts[bid]) >= n_experts * 3:
  3899. tensors: list[tuple[str, Tensor]] = []
  3900. # merge the experts into a single 3d tensor
  3901. for wid in ["w1", "w2", "w3"]:
  3902. datas: list[Tensor] = []
  3903. for xid in range(n_experts):
  3904. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3905. datas.append(self._experts[bid][ename])
  3906. del self._experts[bid][ename]
  3907. data_torch = torch.stack(datas, dim=0)
  3908. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3909. new_name = self.map_tensor_name(merged_name)
  3910. tensors.append((new_name, data_torch))
  3911. return tensors
  3912. else:
  3913. return []
  3914. return [(self.map_tensor_name(name), data_torch)]
  3915. def prepare_tensors(self):
  3916. super().prepare_tensors()
  3917. if self._experts is not None:
  3918. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3919. experts = [k for d in self._experts for k in d.keys()]
  3920. if len(experts) > 0:
  3921. raise ValueError(f"Unprocessed experts: {experts}")
  3922. @ModelBase.register("DeepseekForCausalLM")
  3923. class DeepseekModel(TextModel):
  3924. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3925. def set_vocab(self):
  3926. try:
  3927. self._set_vocab_sentencepiece()
  3928. except FileNotFoundError:
  3929. self._set_vocab_gpt2()
  3930. def set_gguf_parameters(self):
  3931. super().set_gguf_parameters()
  3932. hparams = self.hparams
  3933. if "head_dim" in hparams:
  3934. rope_dim = hparams["head_dim"]
  3935. else:
  3936. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3937. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3938. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3939. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3940. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3941. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3942. self.gguf_writer.add_expert_weights_scale(1.0)
  3943. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3944. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3945. _experts: list[dict[str, Tensor]] | None = None
  3946. @staticmethod
  3947. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3948. if n_head_kv is not None and n_head != n_head_kv:
  3949. n_head = n_head_kv
  3950. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3951. .swapaxes(1, 2)
  3952. .reshape(weights.shape))
  3953. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3954. n_head = self.hparams["num_attention_heads"]
  3955. n_kv_head = self.hparams.get("num_key_value_heads")
  3956. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3957. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3958. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3959. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3960. # process the experts separately
  3961. if name.find("mlp.experts") != -1:
  3962. n_experts = self.hparams["n_routed_experts"]
  3963. assert bid is not None
  3964. if self._experts is None:
  3965. self._experts = [{} for _ in range(self.block_count)]
  3966. self._experts[bid][name] = data_torch
  3967. if len(self._experts[bid]) >= n_experts * 3:
  3968. tensors: list[tuple[str, Tensor]] = []
  3969. # merge the experts into a single 3d tensor
  3970. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3971. datas: list[Tensor] = []
  3972. for xid in range(n_experts):
  3973. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3974. datas.append(self._experts[bid][ename])
  3975. del self._experts[bid][ename]
  3976. data_torch = torch.stack(datas, dim=0)
  3977. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3978. new_name = self.map_tensor_name(merged_name)
  3979. tensors.append((new_name, data_torch))
  3980. return tensors
  3981. else:
  3982. return []
  3983. return [(self.map_tensor_name(name), data_torch)]
  3984. def prepare_tensors(self):
  3985. super().prepare_tensors()
  3986. if self._experts is not None:
  3987. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3988. experts = [k for d in self._experts for k in d.keys()]
  3989. if len(experts) > 0:
  3990. raise ValueError(f"Unprocessed experts: {experts}")
  3991. @ModelBase.register("DeepseekV2ForCausalLM")
  3992. @ModelBase.register("DeepseekV3ForCausalLM")
  3993. class DeepseekV2Model(TextModel):
  3994. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3995. def set_vocab(self):
  3996. self._set_vocab_gpt2()
  3997. def set_gguf_parameters(self):
  3998. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  3999. self.hparams["num_key_value_heads"] = 1
  4000. super().set_gguf_parameters()
  4001. hparams = self.hparams
  4002. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4003. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4004. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4005. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4006. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4007. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4008. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4009. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4010. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4011. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4012. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4013. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4014. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4015. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4016. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4017. if hparams["scoring_func"] == "sigmoid":
  4018. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4019. elif hparams["scoring_func"] == "softmax":
  4020. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4021. else:
  4022. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4023. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4024. rope_scaling = self.hparams.get("rope_scaling") or {}
  4025. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4026. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4027. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4028. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4029. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4030. _experts: list[dict[str, Tensor]] | None = None
  4031. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4032. # rename e_score_correction_bias tensors
  4033. if name.endswith("e_score_correction_bias"):
  4034. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4035. # skip Multi-Token Prediction (MTP) layers
  4036. block_count = self.hparams["num_hidden_layers"]
  4037. match = re.match(r"model.layers.(\d+)", name)
  4038. if match and int(match.group(1)) >= block_count:
  4039. return []
  4040. # process the experts separately
  4041. if name.find("mlp.experts") != -1:
  4042. n_experts = self.hparams["n_routed_experts"]
  4043. assert bid is not None
  4044. if self._experts is None:
  4045. self._experts = [{} for _ in range(self.block_count)]
  4046. self._experts[bid][name] = data_torch
  4047. if len(self._experts[bid]) >= n_experts * 3:
  4048. tensors: list[tuple[str, Tensor]] = []
  4049. # merge the experts into a single 3d tensor
  4050. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4051. datas: list[Tensor] = []
  4052. for xid in range(n_experts):
  4053. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4054. datas.append(self._experts[bid][ename])
  4055. del self._experts[bid][ename]
  4056. data_torch = torch.stack(datas, dim=0)
  4057. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4058. new_name = self.map_tensor_name(merged_name)
  4059. tensors.append((new_name, data_torch))
  4060. return tensors
  4061. else:
  4062. return []
  4063. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4064. if name.endswith("kv_b_proj.weight"):
  4065. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4066. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4067. n_head_kv = self.hparams["num_key_value_heads"]
  4068. v_head_dim = self.hparams["v_head_dim"]
  4069. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4070. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4071. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4072. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4073. k_b = k_b.transpose(1, 2)
  4074. return [
  4075. (self.map_tensor_name(name_kb), k_b),
  4076. (self.map_tensor_name(name_vb), v_b)
  4077. ]
  4078. return [(self.map_tensor_name(name), data_torch)]
  4079. def prepare_tensors(self):
  4080. super().prepare_tensors()
  4081. if self._experts is not None:
  4082. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4083. experts = [k for d in self._experts for k in d.keys()]
  4084. if len(experts) > 0:
  4085. raise ValueError(f"Unprocessed experts: {experts}")
  4086. @ModelBase.register("PLMForCausalLM")
  4087. class PLMModel(TextModel):
  4088. model_arch = gguf.MODEL_ARCH.PLM
  4089. def set_vocab(self):
  4090. self._set_vocab_gpt2()
  4091. def set_gguf_parameters(self):
  4092. super().set_gguf_parameters()
  4093. hparams = self.hparams
  4094. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4095. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4096. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4097. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4098. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4099. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4100. return [(self.map_tensor_name(name), data_torch)]
  4101. def prepare_tensors(self):
  4102. super().prepare_tensors()
  4103. @ModelBase.register("T5WithLMHeadModel")
  4104. @ModelBase.register("T5ForConditionalGeneration")
  4105. @ModelBase.register("MT5ForConditionalGeneration")
  4106. @ModelBase.register("UMT5ForConditionalGeneration")
  4107. class T5Model(TextModel):
  4108. model_arch = gguf.MODEL_ARCH.T5
  4109. def __init__(self, *args, **kwargs):
  4110. super().__init__(*args, **kwargs)
  4111. self.shared_token_embeddings_found = False
  4112. def set_vocab(self):
  4113. # to avoid TypeError: Descriptors cannot be created directly
  4114. # exception when importing sentencepiece_model_pb2
  4115. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4116. from sentencepiece import SentencePieceProcessor
  4117. from sentencepiece import sentencepiece_model_pb2 as model
  4118. tokenizer_path = self.dir_model / 'tokenizer.model'
  4119. # many older models use spiece.model tokenizer model filename
  4120. if not tokenizer_path.is_file():
  4121. tokenizer_path = self.dir_model / 'spiece.model'
  4122. if not tokenizer_path.is_file():
  4123. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4124. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4125. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4126. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4127. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4128. # assure the tokenizer model file name is correct
  4129. assert tokenizer_path.name == 'tokenizer.model'
  4130. return self._set_vocab_sentencepiece()
  4131. else:
  4132. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4133. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4134. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4135. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4136. tokenizer = SentencePieceProcessor()
  4137. tokenizer.LoadFromFile(str(tokenizer_path))
  4138. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4139. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4140. scores: list[float] = [-10000.0] * vocab_size
  4141. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4142. for token_id in range(tokenizer.vocab_size()):
  4143. piece = tokenizer.IdToPiece(token_id)
  4144. text = piece.encode("utf-8")
  4145. score = tokenizer.GetScore(token_id)
  4146. toktype = SentencePieceTokenTypes.NORMAL
  4147. if tokenizer.IsUnknown(token_id):
  4148. toktype = SentencePieceTokenTypes.UNKNOWN
  4149. elif tokenizer.IsControl(token_id):
  4150. toktype = SentencePieceTokenTypes.CONTROL
  4151. elif tokenizer.IsUnused(token_id):
  4152. toktype = SentencePieceTokenTypes.UNUSED
  4153. elif tokenizer.IsByte(token_id):
  4154. toktype = SentencePieceTokenTypes.BYTE
  4155. tokens[token_id] = text
  4156. scores[token_id] = score
  4157. toktypes[token_id] = toktype
  4158. added_tokens_file = self.dir_model / 'added_tokens.json'
  4159. if added_tokens_file.is_file():
  4160. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4161. added_tokens_json = json.load(f)
  4162. for key in added_tokens_json:
  4163. token_id = added_tokens_json[key]
  4164. if token_id >= vocab_size:
  4165. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4166. continue
  4167. tokens[token_id] = key.encode("utf-8")
  4168. scores[token_id] = -1000.0
  4169. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4170. if vocab_size > len(tokens):
  4171. pad_count = vocab_size - len(tokens)
  4172. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4173. for i in range(1, pad_count + 1):
  4174. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4175. scores.append(-1000.0)
  4176. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4177. self.gguf_writer.add_tokenizer_model("t5")
  4178. self.gguf_writer.add_tokenizer_pre("default")
  4179. self.gguf_writer.add_token_list(tokens)
  4180. self.gguf_writer.add_token_scores(scores)
  4181. self.gguf_writer.add_token_types(toktypes)
  4182. self.gguf_writer.add_add_space_prefix(add_prefix)
  4183. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4184. if precompiled_charsmap:
  4185. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4186. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4187. special_vocab.add_to_gguf(self.gguf_writer)
  4188. self.gguf_writer.add_add_bos_token(False)
  4189. self.gguf_writer.add_add_eos_token(True)
  4190. def set_gguf_parameters(self):
  4191. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4192. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4193. n_ctx = 512
  4194. self.gguf_writer.add_context_length(n_ctx)
  4195. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4196. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4197. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4198. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4199. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4200. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4201. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4202. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4203. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4204. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4205. self.gguf_writer.add_file_type(self.ftype)
  4206. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4207. del bid # unused
  4208. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4209. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4210. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4211. # and decoder and ignore the remaining ones.
  4212. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4213. if not self.shared_token_embeddings_found:
  4214. name = "shared.weight"
  4215. self.shared_token_embeddings_found = True
  4216. else:
  4217. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4218. return []
  4219. return [(self.map_tensor_name(name), data_torch)]
  4220. @ModelBase.register("T5EncoderModel")
  4221. class T5EncoderModel(TextModel):
  4222. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4223. def __init__(self, *args, **kwargs):
  4224. super().__init__(*args, **kwargs)
  4225. self.shared_token_embeddings_found = False
  4226. def set_vocab(self):
  4227. # to avoid TypeError: Descriptors cannot be created directly
  4228. # exception when importing sentencepiece_model_pb2
  4229. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4230. from sentencepiece import SentencePieceProcessor
  4231. from sentencepiece import sentencepiece_model_pb2 as model
  4232. tokenizer_path = self.dir_model / 'tokenizer.model'
  4233. # many older models use spiece.model tokenizer model filename
  4234. if not tokenizer_path.is_file():
  4235. tokenizer_path = self.dir_model / 'spiece.model'
  4236. if not tokenizer_path.is_file():
  4237. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4238. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4239. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4240. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4241. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4242. # assure the tokenizer model file name is correct
  4243. assert tokenizer_path.name == 'tokenizer.model'
  4244. return self._set_vocab_sentencepiece()
  4245. else:
  4246. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4247. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4248. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4249. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4250. tokenizer = SentencePieceProcessor()
  4251. tokenizer.LoadFromFile(str(tokenizer_path))
  4252. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4253. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4254. scores: list[float] = [-10000.0] * vocab_size
  4255. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4256. for token_id in range(tokenizer.vocab_size()):
  4257. piece = tokenizer.IdToPiece(token_id)
  4258. text = piece.encode("utf-8")
  4259. score = tokenizer.GetScore(token_id)
  4260. toktype = SentencePieceTokenTypes.NORMAL
  4261. if tokenizer.IsUnknown(token_id):
  4262. toktype = SentencePieceTokenTypes.UNKNOWN
  4263. elif tokenizer.IsControl(token_id):
  4264. toktype = SentencePieceTokenTypes.CONTROL
  4265. elif tokenizer.IsUnused(token_id):
  4266. toktype = SentencePieceTokenTypes.UNUSED
  4267. elif tokenizer.IsByte(token_id):
  4268. toktype = SentencePieceTokenTypes.BYTE
  4269. tokens[token_id] = text
  4270. scores[token_id] = score
  4271. toktypes[token_id] = toktype
  4272. added_tokens_file = self.dir_model / 'added_tokens.json'
  4273. if added_tokens_file.is_file():
  4274. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4275. added_tokens_json = json.load(f)
  4276. for key in added_tokens_json:
  4277. token_id = added_tokens_json[key]
  4278. if token_id >= vocab_size:
  4279. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4280. continue
  4281. tokens[token_id] = key.encode("utf-8")
  4282. scores[token_id] = -1000.0
  4283. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4284. if vocab_size > len(tokens):
  4285. pad_count = vocab_size - len(tokens)
  4286. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4287. for i in range(1, pad_count + 1):
  4288. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4289. scores.append(-1000.0)
  4290. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4291. self.gguf_writer.add_tokenizer_model("t5")
  4292. self.gguf_writer.add_tokenizer_pre("default")
  4293. self.gguf_writer.add_token_list(tokens)
  4294. self.gguf_writer.add_token_scores(scores)
  4295. self.gguf_writer.add_token_types(toktypes)
  4296. self.gguf_writer.add_add_space_prefix(add_prefix)
  4297. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4298. if precompiled_charsmap:
  4299. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4300. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4301. special_vocab.add_to_gguf(self.gguf_writer)
  4302. self.gguf_writer.add_add_bos_token(False)
  4303. self.gguf_writer.add_add_eos_token(True)
  4304. def set_gguf_parameters(self):
  4305. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4306. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4307. n_ctx = 512
  4308. self.gguf_writer.add_context_length(n_ctx)
  4309. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4310. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4311. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4312. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4313. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4314. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4315. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4316. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4317. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4318. self.gguf_writer.add_file_type(self.ftype)
  4319. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4320. del bid # unused
  4321. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4322. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4323. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4324. # and decoder and ignore the remaining ones.
  4325. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4326. if not self.shared_token_embeddings_found:
  4327. name = "shared.weight"
  4328. self.shared_token_embeddings_found = True
  4329. else:
  4330. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4331. return []
  4332. return [(self.map_tensor_name(name), data_torch)]
  4333. @ModelBase.register("JAISLMHeadModel")
  4334. class JaisModel(TextModel):
  4335. model_arch = gguf.MODEL_ARCH.JAIS
  4336. def __init__(self, *args, **kwargs):
  4337. super().__init__(*args, **kwargs)
  4338. # SwigLU activation
  4339. assert self.hparams["activation_function"] == "swiglu"
  4340. # ALiBi position embedding
  4341. assert self.hparams["position_embedding_type"] == "alibi"
  4342. # Embeddings scale
  4343. self.embeddings_scale = 1.0
  4344. if 'mup_embeddings_scale' in self.hparams:
  4345. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4346. elif 'embeddings_scale' in self.hparams:
  4347. self.embeddings_scale = self.hparams['embeddings_scale']
  4348. else:
  4349. assert False
  4350. self.width_scale = 1.0
  4351. if 'mup_output_alpha' in self.hparams:
  4352. assert 'mup_width_scale' in self.hparams
  4353. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4354. elif 'width_scale' in self.hparams:
  4355. self.width_scale = self.hparams['width_scale']
  4356. else:
  4357. assert False
  4358. self.max_alibi_bias = 8.0
  4359. def set_vocab(self):
  4360. self._set_vocab_gpt2()
  4361. def set_gguf_parameters(self):
  4362. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4363. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4364. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4365. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4366. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4367. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4368. self.gguf_writer.add_file_type(self.ftype)
  4369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4370. del bid # unused
  4371. tensors: list[tuple[str, Tensor]] = []
  4372. # we don't need these
  4373. if name.endswith((".attn.bias")):
  4374. return tensors
  4375. if name.endswith(("relative_pe.slopes")):
  4376. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4377. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4378. # but Jais's PyTorch model simply precalculates the slope values and places them
  4379. # in relative_pes.slopes
  4380. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4381. first_val = float(data_torch[0].item())
  4382. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4383. return tensors
  4384. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4385. data_torch = data_torch.transpose(1, 0)
  4386. new_name = self.map_tensor_name(name)
  4387. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4388. tensors.append((new_name, data_torch * self.embeddings_scale))
  4389. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4390. tensors.append((new_name, data_torch * self.width_scale))
  4391. else:
  4392. tensors.append((new_name, data_torch))
  4393. return tensors
  4394. def prepare_tensors(self):
  4395. super().prepare_tensors()
  4396. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4397. @ModelBase.register("Glm4ForCausalLM")
  4398. class Glm4Model(TextModel):
  4399. model_arch = gguf.MODEL_ARCH.GLM4
  4400. def set_vocab(self):
  4401. from transformers import AutoTokenizer
  4402. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4403. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4404. tokens, toktypes, tokpre = self.get_vocab_base()
  4405. self.gguf_writer.add_tokenizer_model("gpt2")
  4406. self.gguf_writer.add_tokenizer_pre(tokpre)
  4407. self.gguf_writer.add_token_list(tokens)
  4408. self.gguf_writer.add_token_types(toktypes)
  4409. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4410. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4411. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4412. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4413. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4414. special_vocab.add_to_gguf(self.gguf_writer)
  4415. def set_gguf_parameters(self):
  4416. super().set_gguf_parameters()
  4417. rope_dim = self.hparams["head_dim"]
  4418. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4419. rope_scaling = self.hparams.get("rope_scaling") or {}
  4420. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4421. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4422. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4423. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4424. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4425. class ChatGLMModel(TextModel):
  4426. model_arch = gguf.MODEL_ARCH.CHATGLM
  4427. def set_vocab_chatglm3(self):
  4428. dir_model = self.dir_model
  4429. hparams = self.hparams
  4430. tokens: list[bytes] = []
  4431. toktypes: list[int] = []
  4432. scores: list[float] = []
  4433. from transformers import AutoTokenizer
  4434. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4435. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4436. assert max(tokenizer.get_vocab().values()) < vocab_size
  4437. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4438. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4439. for token_id in range(vocab_size):
  4440. piece = tokenizer._convert_id_to_token(token_id)
  4441. if token_id == 0:
  4442. piece = "<unk>"
  4443. elif token_id == 1:
  4444. piece = "<bos>"
  4445. elif token_id == 2:
  4446. piece = "<eos>"
  4447. text = piece.encode("utf-8")
  4448. score = 0.0
  4449. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4450. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4451. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4452. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4453. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4454. if piece in special_tokens:
  4455. toktype = SentencePieceTokenTypes.CONTROL
  4456. elif len(piece) == 0:
  4457. text = f"[PAD{token_id}]".encode("utf-8")
  4458. toktype = SentencePieceTokenTypes.UNUSED
  4459. else:
  4460. toktype = SentencePieceTokenTypes.USER_DEFINED
  4461. tokens.append(text)
  4462. scores.append(score)
  4463. toktypes.append(toktype)
  4464. continue
  4465. toktype = SentencePieceTokenTypes.NORMAL
  4466. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4467. toktype = SentencePieceTokenTypes.UNKNOWN
  4468. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4469. toktype = SentencePieceTokenTypes.CONTROL
  4470. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4471. toktype = SentencePieceTokenTypes.UNUSED
  4472. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4473. toktype = SentencePieceTokenTypes.BYTE
  4474. tokens.append(text)
  4475. scores.append(score)
  4476. toktypes.append(toktype)
  4477. self.gguf_writer.add_tokenizer_model("llama")
  4478. # glm3 needs prefix and suffix formatted as:
  4479. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4480. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4481. self.gguf_writer.add_token_list(tokens)
  4482. self.gguf_writer.add_token_scores(scores)
  4483. self.gguf_writer.add_token_types(toktypes)
  4484. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4485. special_vocab.add_to_gguf(self.gguf_writer)
  4486. @staticmethod
  4487. def token_bytes_to_string(b):
  4488. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4489. byte_encoder = bytes_to_unicode()
  4490. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4491. @staticmethod
  4492. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4493. parts = [bytes([b]) for b in token]
  4494. while True:
  4495. min_idx = None
  4496. min_rank = None
  4497. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4498. rank = mergeable_ranks.get(pair[0] + pair[1])
  4499. if rank is not None and (min_rank is None or rank < min_rank):
  4500. min_idx = i
  4501. min_rank = rank
  4502. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4503. break
  4504. assert min_idx is not None
  4505. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4506. return parts
  4507. def set_vocab(self):
  4508. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4509. self.set_vocab_chatglm3()
  4510. return
  4511. dir_model = self.dir_model
  4512. hparams = self.hparams
  4513. tokens: list[str] = []
  4514. toktypes: list[int] = []
  4515. from transformers import AutoTokenizer
  4516. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4517. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4518. assert max(tokenizer.get_vocab().values()) < vocab_size
  4519. tokens, toktypes, tokpre = self.get_vocab_base()
  4520. self.gguf_writer.add_tokenizer_model("gpt2")
  4521. self.gguf_writer.add_tokenizer_pre(tokpre)
  4522. self.gguf_writer.add_token_list(tokens)
  4523. self.gguf_writer.add_token_types(toktypes)
  4524. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4525. # only add special tokens when they were not already loaded from config.json
  4526. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4527. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4528. # this one is usually not in config.json anyway
  4529. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4530. special_vocab.add_to_gguf(self.gguf_writer)
  4531. def set_gguf_parameters(self):
  4532. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4533. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4534. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4535. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4536. self.gguf_writer.add_embedding_length(n_embed)
  4537. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4538. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4539. self.gguf_writer.add_head_count(n_head)
  4540. self.gguf_writer.add_head_count_kv(n_head_kv)
  4541. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4542. self.gguf_writer.add_file_type(self.ftype)
  4543. if "attention_dim" in self.hparams:
  4544. rope_dim = self.hparams["attention_dim"]
  4545. else:
  4546. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4547. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4548. self.gguf_writer.add_add_bos_token(False)
  4549. rope_freq = 10000
  4550. if "rope_ratio" in self.hparams:
  4551. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4552. self.gguf_writer.add_rope_freq_base(rope_freq)
  4553. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4554. del bid # unused
  4555. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4556. return []
  4557. name = name.removeprefix("transformer.")
  4558. return [(self.map_tensor_name(name), data_torch)]
  4559. @ModelBase.register("NemotronForCausalLM")
  4560. class NemotronModel(TextModel):
  4561. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4562. def set_vocab(self):
  4563. self._set_vocab_sentencepiece()
  4564. self.gguf_writer.add_pad_token_id(0)
  4565. self.gguf_writer.add_unk_token_id(1)
  4566. def set_gguf_parameters(self):
  4567. super().set_gguf_parameters()
  4568. hparams = self.hparams
  4569. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4570. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4571. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4572. # * Partial RoPE
  4573. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4574. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4575. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4576. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4577. # * RopeScaling for Nemotron
  4578. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4579. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4580. else:
  4581. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4582. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4583. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4584. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4585. # model.layers.{l}.input_layernorm.weight
  4586. # model.layers.{l}.post_attention_layernorm.weight
  4587. # model.norm.weight
  4588. if name.endswith("norm.weight"):
  4589. data_torch = data_torch + 1
  4590. return [(self.map_tensor_name(name), data_torch)]
  4591. @ModelBase.register("ExaoneForCausalLM")
  4592. class ExaoneModel(TextModel):
  4593. model_arch = gguf.MODEL_ARCH.EXAONE
  4594. def set_gguf_parameters(self):
  4595. hparams = self.hparams
  4596. assert (hparams["activation_function"] == "silu")
  4597. max_position_embeddings = hparams["max_position_embeddings"]
  4598. embed_dim = hparams["hidden_size"]
  4599. num_heads = hparams["num_attention_heads"]
  4600. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4601. layer_norm_eps = hparams["layer_norm_epsilon"]
  4602. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4603. num_layers = hparams["num_layers"]
  4604. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4605. # attention_dropout_rate = hparams["attention_dropout"]
  4606. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4607. # embed_dropout_rate = hparams["embed_dropout"]
  4608. self.gguf_writer.add_embedding_length(embed_dim)
  4609. self.gguf_writer.add_head_count(num_heads)
  4610. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4611. self.gguf_writer.add_context_length(max_position_embeddings)
  4612. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4613. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4614. self.gguf_writer.add_block_count(num_layers)
  4615. self.gguf_writer.add_file_type(self.ftype)
  4616. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4617. self.gguf_writer.add_rope_freq_base(rope_theta)
  4618. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4619. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4620. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4621. rope_scaling = self.hparams.get("rope_scaling") or {}
  4622. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4623. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4624. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4625. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4626. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4627. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4628. base = self.hparams.get("rope_theta", 10000.0)
  4629. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4630. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4631. factor = rope_scaling.get("factor", 8.0)
  4632. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4633. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4634. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4635. low_freq_wavelen = old_context_len / low_freq_factor
  4636. high_freq_wavelen = old_context_len / high_freq_factor
  4637. assert low_freq_wavelen != high_freq_wavelen
  4638. rope_factors = []
  4639. for freq in freqs:
  4640. wavelen = 2 * math.pi / freq
  4641. if wavelen < high_freq_wavelen:
  4642. rope_factors.append(1)
  4643. elif wavelen > low_freq_wavelen:
  4644. rope_factors.append(factor)
  4645. else:
  4646. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4647. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4648. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4649. @ModelBase.register("GraniteForCausalLM")
  4650. class GraniteModel(LlamaModel):
  4651. """Conversion for IBM's GraniteForCausalLM"""
  4652. model_arch = gguf.MODEL_ARCH.GRANITE
  4653. def set_gguf_parameters(self):
  4654. """Granite uses standard llama parameters with the following differences:
  4655. - No head_dim support
  4656. - New multiplier params:
  4657. - attention_scale
  4658. - embedding_scale
  4659. - residual_scale
  4660. - logits_scaling
  4661. """
  4662. if head_dim := self.hparams.pop("head_dim", None):
  4663. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4664. super().set_gguf_parameters()
  4665. # NOTE: Convert _multiplier params to _scale params for naming
  4666. # consistency
  4667. if attention_scale := self.hparams.get("attention_multiplier"):
  4668. self.gguf_writer.add_attention_scale(attention_scale)
  4669. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4670. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4671. self.gguf_writer.add_embedding_scale(embedding_scale)
  4672. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4673. if residual_scale := self.hparams.get("residual_multiplier"):
  4674. self.gguf_writer.add_residual_scale(residual_scale)
  4675. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4676. if logits_scale := self.hparams.get("logits_scaling"):
  4677. self.gguf_writer.add_logit_scale(logits_scale)
  4678. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4679. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  4680. class GraniteMoeModel(GraniteModel):
  4681. """Conversion for IBM's GraniteMoeForCausalLM"""
  4682. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4683. def set_gguf_parameters(self):
  4684. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  4685. - shared_intermediate_size
  4686. """
  4687. super().set_gguf_parameters()
  4688. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  4689. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  4690. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  4691. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4692. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4693. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4694. the hidden size that is then split during forward. To keep compatibility
  4695. with existing mixtral support, we pull them apart here.
  4696. """
  4697. if name.endswith("block_sparse_moe.input_linear.weight"):
  4698. ffn_dim = self.hparams["intermediate_size"]
  4699. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4700. gate, up = data_torch.split(ffn_dim, dim=-2)
  4701. return [
  4702. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4703. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4704. ]
  4705. if name.endswith("shared_mlp.input_linear.weight"):
  4706. ffn_dim = self.hparams["shared_intermediate_size"]
  4707. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  4708. gate, up = data_torch.split(ffn_dim, dim=-2)
  4709. return [
  4710. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  4711. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  4712. ]
  4713. return super().modify_tensors(data_torch, name, bid)
  4714. @ModelBase.register("BailingMoeForCausalLM")
  4715. class BailingMoeModel(TextModel):
  4716. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4717. def set_vocab(self):
  4718. self._set_vocab_gpt2()
  4719. def set_gguf_parameters(self):
  4720. super().set_gguf_parameters()
  4721. hparams = self.hparams
  4722. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4723. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4724. rope_scaling = self.hparams.get("rope_scaling") or {}
  4725. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4726. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4727. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4728. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4729. else:
  4730. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4731. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4732. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4733. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4734. self.gguf_writer.add_expert_weights_scale(1.0)
  4735. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4736. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4737. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4738. _experts: list[dict[str, Tensor]] | None = None
  4739. @staticmethod
  4740. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4741. if n_head_kv is not None and n_head != n_head_kv:
  4742. n_head = n_head_kv
  4743. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4744. .swapaxes(1, 2)
  4745. .reshape(weights.shape))
  4746. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4747. n_head = self.hparams["num_attention_heads"]
  4748. n_kv_head = self.hparams.get("num_key_value_heads")
  4749. n_embd = self.hparams["hidden_size"]
  4750. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4751. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4752. if name.endswith("attention.dense.weight"):
  4753. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4754. elif name.endswith("query_key_value.weight"):
  4755. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4756. return [
  4757. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4758. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4759. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4760. ]
  4761. elif name.find("mlp.experts") != -1:
  4762. n_experts = self.hparams["num_experts"]
  4763. assert bid is not None
  4764. tensors: list[tuple[str, Tensor]] = []
  4765. if self._experts is None:
  4766. self._experts = [{} for _ in range(self.block_count)]
  4767. self._experts[bid][name] = data_torch
  4768. if len(self._experts[bid]) >= n_experts * 3:
  4769. # merge the experts into a single 3d tensor
  4770. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4771. datas: list[Tensor] = []
  4772. for xid in range(n_experts):
  4773. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4774. datas.append(self._experts[bid][ename])
  4775. del self._experts[bid][ename]
  4776. data_torch = torch.stack(datas, dim=0)
  4777. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4778. new_name = self.map_tensor_name(merged_name)
  4779. tensors.append((new_name, data_torch))
  4780. return tensors
  4781. new_name = self.map_tensor_name(name)
  4782. if new_name == output_name and self.hparams.get("norm_head"):
  4783. data_torch = data_torch.float()
  4784. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4785. return [(new_name, data_torch)]
  4786. def prepare_tensors(self):
  4787. super().prepare_tensors()
  4788. if self._experts is not None:
  4789. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4790. experts = [k for d in self._experts for k in d.keys()]
  4791. if len(experts) > 0:
  4792. raise ValueError(f"Unprocessed experts: {experts}")
  4793. @ModelBase.register("ChameleonForConditionalGeneration")
  4794. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4795. class ChameleonModel(TextModel):
  4796. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4797. def set_gguf_parameters(self):
  4798. super().set_gguf_parameters()
  4799. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4800. def set_vocab(self):
  4801. self._set_vocab_gpt2()
  4802. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4803. # ignore image tokenizer for now
  4804. # TODO: remove this once image support is implemented for Chameleon
  4805. if name.startswith("model.vqmodel"):
  4806. return []
  4807. n_head = self.hparams["num_attention_heads"]
  4808. n_kv_head = self.hparams.get("num_key_value_heads")
  4809. hidden_dim = self.hparams.get("hidden_size")
  4810. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4811. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4812. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4813. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4814. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4815. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4816. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4817. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4818. return [(self.map_tensor_name(name), data_torch)]
  4819. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4820. @staticmethod
  4821. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4822. head_dim = hidden_dim // n_heads
  4823. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4824. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4825. return data_torch
  4826. ###### CONVERSION LOGIC ######
  4827. # tree of lazy tensors
  4828. class LazyTorchTensor(gguf.LazyBase):
  4829. _tensor_type = torch.Tensor
  4830. # to keep the type-checker happy
  4831. dtype: torch.dtype
  4832. shape: torch.Size
  4833. # only used when converting a torch.Tensor to a np.ndarray
  4834. _dtype_map: dict[torch.dtype, type] = {
  4835. torch.float16: np.float16,
  4836. torch.float32: np.float32,
  4837. }
  4838. # used for safetensors slices
  4839. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4840. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4841. _dtype_str_map: dict[str, torch.dtype] = {
  4842. "F64": torch.float64,
  4843. "F32": torch.float32,
  4844. "BF16": torch.bfloat16,
  4845. "F16": torch.float16,
  4846. # "U64": torch.uint64,
  4847. "I64": torch.int64,
  4848. # "U32": torch.uint32,
  4849. "I32": torch.int32,
  4850. # "U16": torch.uint16,
  4851. "I16": torch.int16,
  4852. "U8": torch.uint8,
  4853. "I8": torch.int8,
  4854. "BOOL": torch.bool,
  4855. "F8_E4M3": torch.float8_e4m3fn,
  4856. "F8_E5M2": torch.float8_e5m2,
  4857. }
  4858. def numpy(self) -> gguf.LazyNumpyTensor:
  4859. dtype = self._dtype_map[self.dtype]
  4860. return gguf.LazyNumpyTensor(
  4861. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4862. args=(self,),
  4863. func=(lambda s: s.numpy())
  4864. )
  4865. @classmethod
  4866. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4867. return torch.empty(size=shape, dtype=dtype, device="meta")
  4868. @classmethod
  4869. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4870. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4871. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4872. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4873. return cast(torch.Tensor, lazy)
  4874. @classmethod
  4875. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4876. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4877. shape = remote_tensor.shape
  4878. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4879. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4880. return cast(torch.Tensor, lazy)
  4881. @classmethod
  4882. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4883. del types # unused
  4884. if kwargs is None:
  4885. kwargs = {}
  4886. if func is torch.Tensor.numpy:
  4887. return args[0].numpy()
  4888. return cls._wrap_fn(func)(*args, **kwargs)
  4889. def parse_args() -> argparse.Namespace:
  4890. parser = argparse.ArgumentParser(
  4891. description="Convert a huggingface model to a GGML compatible file")
  4892. parser.add_argument(
  4893. "--vocab-only", action="store_true",
  4894. help="extract only the vocab",
  4895. )
  4896. parser.add_argument(
  4897. "--outfile", type=Path,
  4898. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4899. )
  4900. parser.add_argument(
  4901. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4902. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4903. )
  4904. parser.add_argument(
  4905. "--bigendian", action="store_true",
  4906. help="model is executed on big endian machine",
  4907. )
  4908. parser.add_argument(
  4909. "model", type=Path,
  4910. help="directory containing model file",
  4911. nargs="?",
  4912. )
  4913. parser.add_argument(
  4914. "--use-temp-file", action="store_true",
  4915. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4916. )
  4917. parser.add_argument(
  4918. "--no-lazy", action="store_true",
  4919. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4920. )
  4921. parser.add_argument(
  4922. "--model-name", type=str, default=None,
  4923. help="name of the model",
  4924. )
  4925. parser.add_argument(
  4926. "--verbose", action="store_true",
  4927. help="increase output verbosity",
  4928. )
  4929. parser.add_argument(
  4930. "--split-max-tensors", type=int, default=0,
  4931. help="max tensors in each split",
  4932. )
  4933. parser.add_argument(
  4934. "--split-max-size", type=str, default="0",
  4935. help="max size per split N(M|G)",
  4936. )
  4937. parser.add_argument(
  4938. "--dry-run", action="store_true",
  4939. help="only print out a split plan and exit, without writing any new files",
  4940. )
  4941. parser.add_argument(
  4942. "--no-tensor-first-split", action="store_true",
  4943. help="do not add tensors to the first split (disabled by default)"
  4944. )
  4945. parser.add_argument(
  4946. "--metadata", type=Path,
  4947. help="Specify the path for an authorship metadata override file"
  4948. )
  4949. parser.add_argument(
  4950. "--print-supported-models", action="store_true",
  4951. help="Print the supported models"
  4952. )
  4953. parser.add_argument(
  4954. "--remote", action="store_true",
  4955. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  4956. )
  4957. parser.add_argument(
  4958. "--mmproj", action="store_true",
  4959. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  4960. )
  4961. args = parser.parse_args()
  4962. if not args.print_supported_models and args.model is None:
  4963. parser.error("the following arguments are required: model")
  4964. return args
  4965. def split_str_to_n_bytes(split_str: str) -> int:
  4966. if split_str.endswith("K"):
  4967. n = int(split_str[:-1]) * 1000
  4968. elif split_str.endswith("M"):
  4969. n = int(split_str[:-1]) * 1000 * 1000
  4970. elif split_str.endswith("G"):
  4971. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4972. elif split_str.isnumeric():
  4973. n = int(split_str)
  4974. else:
  4975. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4976. if n < 0:
  4977. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4978. return n
  4979. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  4980. text_config = hparams.get("text_config", {})
  4981. vision_config = hparams.get("vision_config", {})
  4982. arch = hparams["architectures"][0]
  4983. # if "architectures" is found in the sub-config, use that instead
  4984. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  4985. arch = text_config["architectures"][0]
  4986. elif model_type == ModelType.VISION and vision_config.get("architectures") is not None:
  4987. arch = vision_config["architectures"][0]
  4988. return arch
  4989. def main() -> None:
  4990. args = parse_args()
  4991. if args.print_supported_models:
  4992. logger.error("Supported models:")
  4993. ModelBase.print_registered_models()
  4994. sys.exit(0)
  4995. if args.verbose:
  4996. logging.basicConfig(level=logging.DEBUG)
  4997. else:
  4998. logging.basicConfig(level=logging.INFO)
  4999. dir_model = args.model
  5000. if args.remote:
  5001. from huggingface_hub import snapshot_download
  5002. local_dir = snapshot_download(
  5003. repo_id=str(dir_model),
  5004. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  5005. dir_model = Path(local_dir)
  5006. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  5007. if not dir_model.is_dir():
  5008. logger.error(f'Error: {args.model} is not a directory')
  5009. sys.exit(1)
  5010. ftype_map: dict[str, gguf.LlamaFileType] = {
  5011. "f32": gguf.LlamaFileType.ALL_F32,
  5012. "f16": gguf.LlamaFileType.MOSTLY_F16,
  5013. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  5014. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  5015. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  5016. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  5017. "auto": gguf.LlamaFileType.GUESSED,
  5018. }
  5019. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  5020. if args.use_temp_file and is_split:
  5021. logger.error("Error: Cannot use temp file when splitting")
  5022. sys.exit(1)
  5023. if args.outfile is not None:
  5024. fname_out = args.outfile
  5025. elif args.remote:
  5026. # if remote, use the model ID as the output file name
  5027. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  5028. else:
  5029. fname_out = dir_model
  5030. logger.info(f"Loading model: {dir_model.name}")
  5031. if args.mmproj:
  5032. if "mmproj" not in fname_out.name:
  5033. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  5034. with torch.inference_mode():
  5035. output_type = ftype_map[args.outtype]
  5036. model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
  5037. hparams = ModelBase.load_hparams(dir_model)
  5038. model_architecture = get_model_architecture(hparams, model_type)
  5039. logger.info(f"Model architecture: {model_architecture}")
  5040. try:
  5041. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  5042. except NotImplementedError:
  5043. logger.error(f"Model {model_architecture} is not supported")
  5044. sys.exit(1)
  5045. model_instance = model_class(dir_model, output_type, fname_out,
  5046. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  5047. eager=args.no_lazy,
  5048. metadata_override=args.metadata, model_name=args.model_name,
  5049. split_max_tensors=args.split_max_tensors,
  5050. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  5051. small_first_shard=args.no_tensor_first_split,
  5052. remote_hf_model_id=str(args.model) if args.remote else None)
  5053. if args.vocab_only:
  5054. logger.info("Exporting model vocab...")
  5055. model_instance.write_vocab()
  5056. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  5057. else:
  5058. logger.info("Exporting model...")
  5059. model_instance.write()
  5060. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  5061. logger.info(f"Model successfully exported to {out_path}")
  5062. if __name__ == '__main__':
  5063. main()