llama.cpp 120 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488
  1. // Defines fileno on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #include <cstddef>
  5. #include <cstdint>
  6. #include <cstdio>
  7. #endif
  8. #include "llama-util.h"
  9. #include "llama.h"
  10. #include "ggml.h"
  11. #ifdef GGML_USE_CUBLAS
  12. #include "ggml-cuda.h"
  13. #elif defined(GGML_USE_CLBLAST)
  14. #include "ggml-opencl.h"
  15. #endif
  16. #ifdef GGML_USE_METAL
  17. #include "ggml-metal.h"
  18. #endif
  19. #include <array>
  20. #include <ctime>
  21. #include <cinttypes>
  22. #include <fstream>
  23. #include <random>
  24. #include <map>
  25. #include <unordered_map>
  26. #include <queue>
  27. #include <cassert>
  28. #include <cstring>
  29. #include <climits>
  30. #include <memory>
  31. #include <algorithm>
  32. #include <initializer_list>
  33. #include <thread>
  34. #include <atomic>
  35. #include <mutex>
  36. #include <sstream>
  37. #include <numeric>
  38. #if defined(_MSC_VER)
  39. #pragma warning(disable: 4244 4267) // possible loss of data
  40. #endif
  41. #define LLAMA_USE_SCRATCH
  42. #define LLAMA_MAX_SCRATCH_BUFFERS 16
  43. // available llama models
  44. enum e_model {
  45. MODEL_UNKNOWN,
  46. MODEL_3B,
  47. MODEL_7B,
  48. MODEL_13B,
  49. MODEL_30B,
  50. MODEL_65B,
  51. };
  52. static const size_t MB = 1024*1024;
  53. // computed for n_ctx == 2048
  54. // TODO: dynamically determine these sizes
  55. // needs modifications in ggml
  56. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  57. void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  58. (void) tensor;
  59. }
  60. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
  61. {
  62. static std::map<e_model, size_t> k_sizes = {
  63. { MODEL_3B, 256ull * MB },
  64. { MODEL_7B, 512ull * MB },
  65. { MODEL_13B, 512ull * MB },
  66. { MODEL_30B, 512ull * MB },
  67. { MODEL_65B, 1024ull * MB },
  68. };
  69. return k_sizes;
  70. }
  71. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
  72. {
  73. static std::map<e_model, size_t> k_sizes = {
  74. { MODEL_3B, 256ull * MB },
  75. { MODEL_7B, 512ull * MB },
  76. { MODEL_13B, 512ull * MB },
  77. { MODEL_30B, 512ull * MB },
  78. { MODEL_65B, 1024ull * MB },
  79. };
  80. return k_sizes;
  81. }
  82. // 2*n_embd*n_ctx*n_layer*sizeof(float16)
  83. static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
  84. {
  85. static std::map<e_model, size_t> k_sizes = {
  86. { MODEL_3B, 682ull * MB },
  87. { MODEL_7B, 1026ull * MB },
  88. { MODEL_13B, 1608ull * MB },
  89. { MODEL_30B, 3124ull * MB },
  90. { MODEL_65B, 5120ull * MB },
  91. };
  92. return k_sizes;
  93. }
  94. // this is mostly needed for temporary mul_mat buffers to dequantize the data
  95. // not actually needed if BLAS is disabled
  96. static const std::map<e_model, size_t> & MEM_REQ_EVAL()
  97. {
  98. static std::map<e_model, size_t> k_sizes = {
  99. { MODEL_3B, 512ull * MB },
  100. { MODEL_7B, 768ull * MB },
  101. { MODEL_13B, 1024ull * MB },
  102. { MODEL_30B, 1280ull * MB },
  103. { MODEL_65B, 1536ull * MB },
  104. };
  105. return k_sizes;
  106. }
  107. // default hparams (LLaMA 7B)
  108. struct llama_hparams {
  109. uint32_t n_vocab = 32000;
  110. uint32_t n_ctx = 512; // this is provided as user input?
  111. uint32_t n_embd = 4096;
  112. uint32_t n_mult = 256;
  113. uint32_t n_head = 32;
  114. uint32_t n_layer = 32;
  115. uint32_t n_rot = 64;
  116. enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
  117. bool operator!=(const llama_hparams & other) const {
  118. return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
  119. }
  120. };
  121. struct llama_layer {
  122. // normalization
  123. struct ggml_tensor * attention_norm;
  124. // attention
  125. struct ggml_tensor * wq;
  126. struct ggml_tensor * wk;
  127. struct ggml_tensor * wv;
  128. struct ggml_tensor * wo;
  129. // normalization
  130. struct ggml_tensor * ffn_norm;
  131. // ff
  132. struct ggml_tensor * w1;
  133. struct ggml_tensor * w2;
  134. struct ggml_tensor * w3;
  135. };
  136. struct llama_kv_cache {
  137. struct ggml_tensor * k;
  138. struct ggml_tensor * v;
  139. struct ggml_context * ctx = NULL;
  140. llama_ctx_buffer buf;
  141. int n; // number of tokens currently in the cache
  142. ~llama_kv_cache() {
  143. if (ctx) {
  144. ggml_free(ctx);
  145. }
  146. #ifdef GGML_USE_CUBLAS
  147. ggml_cuda_free_data(k);
  148. ggml_cuda_free_data(v);
  149. #endif // GGML_USE_CUBLAS
  150. }
  151. };
  152. struct llama_model {
  153. e_model type = MODEL_UNKNOWN;
  154. llama_hparams hparams;
  155. struct ggml_tensor * tok_embeddings;
  156. struct ggml_tensor * norm;
  157. struct ggml_tensor * output;
  158. std::vector<llama_layer> layers;
  159. int n_gpu_layers;
  160. // context
  161. struct ggml_context * ctx = NULL;
  162. // key + value cache for the self attention
  163. // TODO: move to llama_state
  164. struct llama_kv_cache kv_self;
  165. // the model memory buffer
  166. llama_ctx_buffer buf;
  167. // model memory mapped file
  168. std::unique_ptr<llama_mmap> mapping;
  169. // objects representing data potentially being locked in memory
  170. llama_mlock mlock_buf;
  171. llama_mlock mlock_mmap;
  172. // for quantize-stats only
  173. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  174. ~llama_model() {
  175. if (ctx) {
  176. ggml_free(ctx);
  177. }
  178. #ifdef GGML_USE_CUBLAS
  179. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  180. ggml_cuda_free_data(tensors_by_name[i].second);
  181. }
  182. ggml_cuda_free_scratch();
  183. #elif defined(GGML_USE_CLBLAST)
  184. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  185. ggml_cl_free_data(tensors_by_name[i].second);
  186. }
  187. #endif
  188. }
  189. };
  190. struct llama_vocab {
  191. using id = int32_t;
  192. using token = std::string;
  193. struct token_score {
  194. token tok;
  195. float score;
  196. };
  197. std::unordered_map<token, id> token_to_id;
  198. std::vector<token_score> id_to_token;
  199. };
  200. struct llama_context {
  201. std::mt19937 rng;
  202. int64_t t_load_us = 0;
  203. int64_t t_start_us = 0;
  204. bool has_evaluated_once = false;
  205. int64_t t_sample_us = 0;
  206. int64_t t_eval_us = 0;
  207. int64_t t_p_eval_us = 0;
  208. int32_t n_sample = 0; // number of tokens sampled
  209. int32_t n_eval = 0; // number of eval calls
  210. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  211. llama_model model;
  212. llama_vocab vocab;
  213. size_t mem_per_token = 0;
  214. // decode output (2-dimensional array: [n_tokens][n_vocab])
  215. std::vector<float> logits;
  216. bool logits_all = false;
  217. // input embedding (1-dimensional array: [n_embd])
  218. std::vector<float> embedding;
  219. // memory buffers used to evaluate the model
  220. // TODO: move in llama_state
  221. llama_ctx_buffer buf_compute;
  222. llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
  223. #ifdef GGML_USE_METAL
  224. ggml_metal_context * ctx_metal = NULL;
  225. #endif
  226. int buf_last = 0;
  227. size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
  228. void use_buf(struct ggml_context * ctx, int i) {
  229. #if defined(LLAMA_USE_SCRATCH)
  230. size_t last_size = 0;
  231. if (i == -1) {
  232. last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
  233. } else {
  234. auto & buf = buf_scratch[i];
  235. last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
  236. }
  237. if (buf_last >= 0) {
  238. buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
  239. }
  240. buf_last = i;
  241. #else
  242. (void) i;
  243. (void) ctx;
  244. #endif
  245. }
  246. size_t get_buf_max_mem(int i) const {
  247. #if defined(LLAMA_USE_SCRATCH)
  248. return buf_max_size[i];
  249. #else
  250. (void) i;
  251. return 0;
  252. #endif
  253. }
  254. };
  255. template <typename T>
  256. static T checked_mul(T a, T b) {
  257. T ret = a * b;
  258. if (a != 0 && ret / a != b) {
  259. throw std::runtime_error(format("overflow multiplying %llu * %llu",
  260. (unsigned long long) a, (unsigned long long) b));
  261. }
  262. return ret;
  263. }
  264. static size_t checked_div(size_t a, size_t b) {
  265. if (b == 0 || a % b != 0) {
  266. throw std::runtime_error(format("error dividing %zu / %zu", a, b));
  267. }
  268. return a / b;
  269. }
  270. static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
  271. char buf[256];
  272. snprintf(buf, sizeof(buf), "%5u", ne.at(0));
  273. for (size_t i = 1; i < ne.size(); i++) {
  274. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
  275. }
  276. return buf;
  277. }
  278. static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
  279. size_t size = ggml_type_size(type);
  280. for (uint32_t dim : ne) {
  281. size = checked_mul<size_t>(size, dim);
  282. }
  283. return size / ggml_blck_size(type);
  284. }
  285. struct llama_load_tensor_shard {
  286. std::vector<uint32_t> ne;
  287. size_t size;
  288. enum ggml_type type;
  289. size_t file_idx;
  290. size_t file_off;
  291. void calc_size() {
  292. size = llama_calc_tensor_size(ne, type);
  293. }
  294. };
  295. enum llama_split_type {
  296. SPLIT_NONE,
  297. SPLIT_BY_COLUMNS,
  298. SPLIT_BY_ROWS
  299. };
  300. struct llama_load_tensor {
  301. std::vector<llama_load_tensor_shard> shards;
  302. std::string name;
  303. enum ggml_type type = GGML_TYPE_F32;
  304. llama_split_type split_type = SPLIT_NONE;
  305. std::vector<uint32_t> ne;
  306. size_t size;
  307. struct ggml_tensor * ggml_tensor = NULL;
  308. uint8_t * data;
  309. llama_load_tensor(const std::string & name) : name(name) {}
  310. void calc_all() {
  311. calc_type();
  312. calc_split_type();
  313. calc_ne();
  314. calc_size();
  315. }
  316. void calc_type() {
  317. const auto & first_shard = shards.at(0);
  318. for (const auto & shard : shards) {
  319. if (shard.type != first_shard.type) {
  320. throw std::runtime_error(format("inconsistent tensor shard type in '%s'", name.c_str()));
  321. }
  322. }
  323. type = first_shard.type;
  324. }
  325. void calc_split_type() {
  326. if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
  327. shards.size() == 1) { // only one file?
  328. split_type = SPLIT_NONE;
  329. } else if (name.find("tok_embeddings.") == 0 ||
  330. name.find(".attention.wo.weight") != std::string::npos ||
  331. name.find(".feed_forward.w2.weight") != std::string::npos) {
  332. split_type = SPLIT_BY_COLUMNS;
  333. } else {
  334. split_type = SPLIT_BY_ROWS;
  335. }
  336. }
  337. void calc_ne() {
  338. const auto & first_shard = shards.at(0);
  339. for (const auto & shard : shards) {
  340. if (shard.ne != first_shard.ne) {
  341. throw std::runtime_error(format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
  342. name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str()));
  343. }
  344. }
  345. ne = first_shard.ne;
  346. LLAMA_ASSERT(shards.size() <= UINT32_MAX);
  347. uint32_t n_shards = (uint32_t) shards.size();
  348. switch (split_type) {
  349. case SPLIT_NONE:
  350. ne = first_shard.ne;
  351. break;
  352. case SPLIT_BY_COLUMNS:
  353. ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
  354. first_shard.ne[1]};
  355. break;
  356. case SPLIT_BY_ROWS:
  357. ne = {first_shard.ne[0],
  358. checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
  359. break;
  360. }
  361. }
  362. void calc_size() {
  363. size = llama_calc_tensor_size(ne, type);
  364. }
  365. };
  366. struct llama_load_tensors_map {
  367. // tensors is kept in a separate vector to preserve file order
  368. std::vector<llama_load_tensor> tensors;
  369. std::unordered_map<std::string, size_t> name_to_idx;
  370. };
  371. enum llama_file_version {
  372. LLAMA_FILE_VERSION_GGML,
  373. LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
  374. LLAMA_FILE_VERSION_GGJT_V1, // added padding
  375. LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
  376. LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
  377. };
  378. struct llama_file_loader {
  379. llama_file file;
  380. llama_file_version file_version;
  381. llama_hparams hparams;
  382. llama_vocab vocab;
  383. llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
  384. : file(fname, "rb") {
  385. fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
  386. read_magic();
  387. read_hparams();
  388. read_vocab();
  389. read_tensor_metadata(file_idx, tensors_map);
  390. }
  391. void read_magic() {
  392. uint32_t magic = file.read_u32();
  393. if (magic == LLAMA_FILE_MAGIC_GGML) {
  394. file_version = LLAMA_FILE_VERSION_GGML;
  395. return;
  396. }
  397. uint32_t version = file.read_u32();
  398. switch (magic) {
  399. case LLAMA_FILE_MAGIC_GGMF:
  400. switch (version) {
  401. case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
  402. }
  403. break;
  404. case LLAMA_FILE_MAGIC_GGJT:
  405. switch (version) {
  406. case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
  407. case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
  408. case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
  409. }
  410. }
  411. throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
  412. magic, version));
  413. }
  414. void read_hparams() {
  415. hparams.n_vocab = file.read_u32();
  416. hparams.n_embd = file.read_u32();
  417. hparams.n_mult = file.read_u32();
  418. hparams.n_head = file.read_u32();
  419. hparams.n_layer = file.read_u32();
  420. hparams.n_rot = file.read_u32();
  421. hparams.ftype = (enum llama_ftype) file.read_u32();
  422. }
  423. void read_vocab() {
  424. vocab.id_to_token.resize(hparams.n_vocab);
  425. for (uint32_t i = 0; i < hparams.n_vocab; i++) {
  426. uint32_t len = file.read_u32();
  427. std::string word = file.read_string(len);
  428. float score = 0.0f;
  429. if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
  430. file.read_raw(&score, sizeof(score));
  431. }
  432. vocab.token_to_id[word] = i;
  433. auto & tok_score = vocab.id_to_token[i];
  434. tok_score.tok = std::move(word);
  435. tok_score.score = score;
  436. }
  437. }
  438. void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
  439. while (file.tell() < file.size) {
  440. llama_load_tensor_shard shard;
  441. uint32_t n_dims = file.read_u32();
  442. uint32_t name_len = file.read_u32();
  443. shard.type = (enum ggml_type) file.read_u32();
  444. shard.ne.resize(n_dims);
  445. file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
  446. std::string name = file.read_string(name_len);
  447. if (n_dims < 1 || n_dims > 2) {
  448. throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims));
  449. }
  450. switch (shard.type) {
  451. case GGML_TYPE_F32:
  452. case GGML_TYPE_F16:
  453. case GGML_TYPE_Q4_0:
  454. case GGML_TYPE_Q4_1:
  455. case GGML_TYPE_Q5_0:
  456. case GGML_TYPE_Q5_1:
  457. case GGML_TYPE_Q8_0:
  458. case GGML_TYPE_Q2_K:
  459. case GGML_TYPE_Q3_K:
  460. case GGML_TYPE_Q4_K:
  461. case GGML_TYPE_Q5_K:
  462. case GGML_TYPE_Q6_K:
  463. break;
  464. default: {
  465. throw std::runtime_error(format("unrecognized tensor type %u\n", shard.type));
  466. }
  467. }
  468. if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
  469. // skip to the next multiple of 32 bytes
  470. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  471. }
  472. shard.file_idx = file_idx;
  473. shard.file_off = file.tell();
  474. shard.calc_size();
  475. file.seek(shard.size, SEEK_CUR);
  476. auto it = tensors_map.name_to_idx.find(name);
  477. size_t idx;
  478. if (it != tensors_map.name_to_idx.end()) {
  479. idx = it->second;
  480. } else {
  481. tensors_map.tensors.emplace_back(name);
  482. idx = tensors_map.tensors.size() - 1;
  483. tensors_map.name_to_idx.emplace(name, idx);
  484. }
  485. tensors_map.tensors.at(idx).shards.push_back(shard);
  486. }
  487. }
  488. };
  489. struct llama_file_saver {
  490. llama_file file;
  491. llama_file_loader * any_file_loader;
  492. llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
  493. : file(fname, "wb"), any_file_loader(any_file_loader) {
  494. fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
  495. write_magic();
  496. write_hparams(new_ftype);
  497. write_vocab();
  498. }
  499. void write_magic() {
  500. file.write_u32(LLAMA_FILE_MAGIC); // magic
  501. file.write_u32(LLAMA_FILE_VERSION); // version
  502. }
  503. void write_hparams(enum llama_ftype new_ftype) {
  504. const llama_hparams & hparams = any_file_loader->hparams;
  505. file.write_u32(hparams.n_vocab);
  506. file.write_u32(hparams.n_embd);
  507. file.write_u32(hparams.n_mult);
  508. file.write_u32(hparams.n_head);
  509. file.write_u32(hparams.n_layer);
  510. file.write_u32(hparams.n_rot);
  511. file.write_u32(new_ftype);
  512. }
  513. void write_vocab() {
  514. if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
  515. fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
  516. }
  517. uint32_t n_vocab = any_file_loader->hparams.n_vocab;
  518. for (uint32_t i = 0; i < n_vocab; i++) {
  519. const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
  520. file.write_u32((uint32_t) token_score.tok.size());
  521. file.write_raw(token_score.tok.data(), token_score.tok.size());
  522. file.write_raw(&token_score.score, sizeof(token_score.score));
  523. }
  524. }
  525. void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
  526. switch (new_type) {
  527. case GGML_TYPE_F32:
  528. case GGML_TYPE_F16:
  529. case GGML_TYPE_Q4_0:
  530. case GGML_TYPE_Q4_1:
  531. case GGML_TYPE_Q5_0:
  532. case GGML_TYPE_Q5_1:
  533. case GGML_TYPE_Q8_0:
  534. case GGML_TYPE_Q2_K:
  535. case GGML_TYPE_Q3_K:
  536. case GGML_TYPE_Q4_K:
  537. case GGML_TYPE_Q5_K:
  538. case GGML_TYPE_Q6_K:
  539. break;
  540. default: LLAMA_ASSERT(false);
  541. }
  542. file.write_u32((uint32_t) tensor.ne.size());
  543. file.write_u32((uint32_t) tensor.name.size());
  544. file.write_u32(new_type);
  545. file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
  546. file.write_raw(tensor.name.data(), tensor.name.size());
  547. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  548. LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
  549. file.write_raw(new_data, new_size);
  550. }
  551. };
  552. struct llama_model_loader {
  553. std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
  554. llama_load_tensors_map tensors_map;
  555. bool use_mmap;
  556. size_t num_ggml_tensors_created = 0;
  557. struct ggml_context * ggml_ctx = NULL;
  558. std::unique_ptr<llama_mmap> mapping;
  559. llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
  560. auto * first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
  561. file_loaders.emplace_back(first_file);
  562. uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
  563. for (uint32_t i = 1; i < n_parts; i++) {
  564. std::string fname = fname_base + "." + std::to_string(i);
  565. auto * ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
  566. file_loaders.emplace_back(ith_file);
  567. if (ith_file->hparams != first_file->hparams) {
  568. throw std::runtime_error(format("llama.cpp: hparams inconsistent between files"));
  569. }
  570. }
  571. if (!llama_mmap::SUPPORTED) {
  572. use_mmap = false;
  573. }
  574. if (use_mmap && alignment_prevents_mmap()) {
  575. fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
  576. use_mmap = false;
  577. }
  578. this->use_mmap = use_mmap;
  579. for (llama_load_tensor & lt : tensors_map.tensors) {
  580. lt.calc_all();
  581. }
  582. }
  583. bool alignment_prevents_mmap() {
  584. for (const llama_load_tensor & lt : tensors_map.tensors) {
  585. for (const llama_load_tensor_shard & shard : lt.shards) {
  586. if (shard.file_off & 3) {
  587. return true;
  588. }
  589. }
  590. }
  591. return false;
  592. }
  593. uint32_t guess_n_parts() const {
  594. auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
  595. if (it == tensors_map.name_to_idx.end()) {
  596. throw std::runtime_error(std::string("missing tok_embeddings.weight"));
  597. }
  598. const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  599. return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
  600. }
  601. void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
  602. *ctx_size_p = *mmapped_size_p = 0;
  603. for (const llama_load_tensor & lt : tensors_map.tensors) {
  604. *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  605. *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
  606. }
  607. }
  608. struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
  609. auto it = tensors_map.name_to_idx.find(name);
  610. if (it == tensors_map.name_to_idx.end()) {
  611. throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str())));
  612. }
  613. llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  614. if (lt.ne != ne) {
  615. throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
  616. name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()));
  617. }
  618. return get_tensor_for(lt, backend);
  619. }
  620. struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
  621. struct ggml_tensor * tensor;
  622. if (backend != GGML_BACKEND_CPU) {
  623. ggml_set_no_alloc(ggml_ctx, true);
  624. }
  625. if (lt.ne.size() == 2) {
  626. tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
  627. } else {
  628. LLAMA_ASSERT(lt.ne.size() == 1);
  629. tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
  630. }
  631. ggml_set_name(tensor, lt.name.c_str());
  632. LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
  633. if (backend != GGML_BACKEND_CPU) {
  634. ggml_set_no_alloc(ggml_ctx, use_mmap);
  635. }
  636. tensor->backend = backend;
  637. lt.ggml_tensor = tensor;
  638. num_ggml_tensors_created++;
  639. return tensor;
  640. }
  641. void done_getting_tensors() const {
  642. if (num_ggml_tensors_created != tensors_map.tensors.size()) {
  643. throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected"));
  644. }
  645. }
  646. void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  647. size_t data_size = 0;
  648. size_t prefetch_size = 0;
  649. size_t lock_size = 0;
  650. for (const llama_load_tensor & lt : tensors_map.tensors) {
  651. data_size += lt.size;
  652. if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
  653. prefetch_size += lt.size;
  654. }
  655. }
  656. if (use_mmap) {
  657. mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
  658. if (lmlock) {
  659. lmlock->init(mapping->addr);
  660. }
  661. }
  662. size_t done_size = 0;
  663. for (llama_load_tensor & lt : tensors_map.tensors) {
  664. if (progress_callback) {
  665. progress_callback((float) done_size / data_size, progress_callback_user_data);
  666. }
  667. LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
  668. lt.data = (uint8_t *) lt.ggml_tensor->data;
  669. // allocate temp buffer if not using mmap
  670. if (!use_mmap && lt.data == NULL) {
  671. GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
  672. lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
  673. }
  674. load_data_for(lt);
  675. switch(lt.ggml_tensor->backend) {
  676. case GGML_BACKEND_CPU:
  677. lt.ggml_tensor->data = lt.data;
  678. if (use_mmap && lmlock) {
  679. lock_size += lt.size;
  680. lmlock->grow_to(lock_size);
  681. }
  682. break;
  683. #if defined(GGML_USE_CUBLAS)
  684. case GGML_BACKEND_GPU:
  685. case GGML_BACKEND_GPU_SPLIT:
  686. ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  687. if (!use_mmap) {
  688. free(lt.data);
  689. }
  690. break;
  691. #elif defined(GGML_USE_CLBLAST)
  692. case GGML_BACKEND_GPU:
  693. ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
  694. if (!use_mmap) {
  695. free(lt.data);
  696. }
  697. break;
  698. #endif
  699. default:
  700. continue;
  701. }
  702. done_size += lt.size;
  703. }
  704. }
  705. void load_data_for(llama_load_tensor & lt) {
  706. if (use_mmap) {
  707. LLAMA_ASSERT(lt.shards.size() == 1);
  708. lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
  709. } else if (lt.split_type == SPLIT_NONE) {
  710. llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
  711. file.seek(lt.shards.at(0).file_off, SEEK_SET);
  712. file.read_raw(lt.data, lt.size);
  713. } else if (lt.split_type == SPLIT_BY_ROWS) {
  714. size_t offset = 0;
  715. for (llama_load_tensor_shard & shard : lt.shards) {
  716. llama_file & file = file_loaders.at(shard.file_idx)->file;
  717. file.seek(shard.file_off, SEEK_SET);
  718. file.read_raw(lt.data + offset, shard.size);
  719. offset += shard.size;
  720. }
  721. LLAMA_ASSERT(offset == lt.size);
  722. } else if (lt.split_type == SPLIT_BY_COLUMNS) {
  723. // Let's load the data into temporary buffers to ensure the OS performs large loads.
  724. std::vector<llama_buffer> tmp_bufs(lt.shards.size());
  725. for (size_t i = 0; i < lt.shards.size(); i++) {
  726. llama_load_tensor_shard & shard = lt.shards.at(i);
  727. llama_file & file = file_loaders.at(shard.file_idx)->file;
  728. file.seek(shard.file_off, SEEK_SET);
  729. tmp_bufs.at(i).resize(shard.size);
  730. file.read_raw(tmp_bufs.at(i).addr, shard.size);
  731. }
  732. // Then reshape.
  733. size_t num_rows = lt.ne.at(1);
  734. size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
  735. size_t out_offset = 0;
  736. for (size_t row = 0; row < num_rows; row++) {
  737. for (llama_buffer & tmp_buf : tmp_bufs) {
  738. memcpy(lt.data + out_offset,
  739. tmp_buf.addr + row * per_shard_row_size,
  740. per_shard_row_size);
  741. out_offset += per_shard_row_size;
  742. }
  743. }
  744. LLAMA_ASSERT(out_offset == lt.size);
  745. }
  746. if (0) {
  747. print_checksum(lt);
  748. }
  749. }
  750. static void print_checksum(llama_load_tensor & lt) {
  751. uint32_t sum = 0;
  752. for (size_t i = 0; i < lt.size; i++) {
  753. uint8_t byte = lt.data[i];
  754. sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
  755. }
  756. fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
  757. llama_format_tensor_shape(lt.ne).c_str(), lt.size);
  758. }
  759. };
  760. //
  761. // kv cache
  762. //
  763. static bool kv_cache_init(
  764. const struct llama_hparams & hparams,
  765. struct llama_kv_cache & cache,
  766. ggml_type wtype,
  767. int n_ctx,
  768. int n_gpu_layers) {
  769. const int n_embd = hparams.n_embd;
  770. const int n_layer = hparams.n_layer;
  771. const int64_t n_mem = n_layer*n_ctx;
  772. const int64_t n_elements = n_embd*n_mem;
  773. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  774. struct ggml_init_params params;
  775. params.mem_size = cache.buf.size;
  776. params.mem_buffer = cache.buf.addr;
  777. params.no_alloc = false;
  778. cache.ctx = ggml_init(params);
  779. if (!cache.ctx) {
  780. fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
  781. return false;
  782. }
  783. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  784. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  785. ggml_set_name(cache.k, "cache_k");
  786. ggml_set_name(cache.v, "cache_v");
  787. #ifdef GGML_USE_CUBLAS
  788. if (n_gpu_layers > n_layer + 1) {
  789. ggml_cuda_assign_buffers_no_scratch(cache.v);
  790. }
  791. if (n_gpu_layers > n_layer + 2) {
  792. ggml_cuda_assign_buffers_no_scratch(cache.k);
  793. }
  794. #endif // GGML_USE_CUBLAS
  795. return true;
  796. }
  797. struct llama_context_params llama_context_default_params() {
  798. struct llama_context_params result = {
  799. /*.n_ctx =*/ 512,
  800. /*.n_batch =*/ 512,
  801. /*.gpu_layers =*/ 0,
  802. /*.main_gpu =*/ 0,
  803. /*.tensor_split =*/ {0},
  804. /*.low_vram =*/ false,
  805. /*.seed =*/ -1,
  806. /*.f16_kv =*/ true,
  807. /*.logits_all =*/ false,
  808. /*.vocab_only =*/ false,
  809. /*.use_mmap =*/ true,
  810. /*.use_mlock =*/ false,
  811. /*.embedding =*/ false,
  812. /*.progress_callback =*/ nullptr,
  813. /*.progress_callback_user_data =*/ nullptr,
  814. };
  815. return result;
  816. }
  817. struct llama_model_quantize_params llama_model_quantize_default_params() {
  818. struct llama_model_quantize_params result = {
  819. /*.nthread =*/ 0,
  820. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  821. /*.allow_requantize =*/ false,
  822. /*.quantize_output_tensor =*/ true,
  823. };
  824. return result;
  825. }
  826. bool llama_mmap_supported() {
  827. return llama_mmap::SUPPORTED;
  828. }
  829. bool llama_mlock_supported() {
  830. return llama_mlock::SUPPORTED;
  831. }
  832. void llama_init_backend() {
  833. ggml_time_init();
  834. // needed to initialize f16 tables
  835. {
  836. struct ggml_init_params params = { 0, NULL, false };
  837. struct ggml_context * ctx = ggml_init(params);
  838. ggml_free(ctx);
  839. }
  840. }
  841. int64_t llama_time_us() {
  842. return ggml_time_us();
  843. }
  844. //
  845. // model loading
  846. //
  847. static const char *llama_file_version_name(llama_file_version version) {
  848. switch (version) {
  849. case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
  850. case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
  851. case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
  852. case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
  853. case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
  854. }
  855. return "unknown";
  856. }
  857. static const char *llama_ftype_name(enum llama_ftype ftype) {
  858. switch (ftype) {
  859. case LLAMA_FTYPE_ALL_F32: return "all F32";
  860. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  861. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  862. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  863. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  864. return "mostly Q4_1, some F16";
  865. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  866. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  867. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  868. // K-quants
  869. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  870. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  871. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  872. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  873. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  874. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  875. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  876. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  877. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  878. default: return "unknown, may not work";
  879. }
  880. }
  881. static const char *llama_model_type_name(e_model type) {
  882. switch (type) {
  883. case MODEL_3B: return "3B";
  884. case MODEL_7B: return "7B";
  885. case MODEL_13B: return "13B";
  886. case MODEL_30B: return "30B";
  887. case MODEL_65B: return "65B";
  888. default: LLAMA_ASSERT(false);
  889. }
  890. }
  891. static void llama_model_load_internal(
  892. const std::string & fname,
  893. llama_context & lctx,
  894. int n_ctx,
  895. int n_batch,
  896. int n_gpu_layers,
  897. int main_gpu,
  898. const float * tensor_split,
  899. bool low_vram,
  900. ggml_type memory_type,
  901. bool use_mmap,
  902. bool use_mlock,
  903. bool vocab_only,
  904. llama_progress_callback progress_callback,
  905. void * progress_callback_user_data) {
  906. lctx.t_start_us = ggml_time_us();
  907. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
  908. lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
  909. auto & model = lctx.model;
  910. model.hparams = ml->file_loaders.at(0)->hparams;
  911. model.n_gpu_layers = n_gpu_layers;
  912. llama_file_version file_version = ml->file_loaders.at(0)->file_version;
  913. auto & hparams = model.hparams;
  914. {
  915. switch (hparams.n_layer) {
  916. case 26: model.type = e_model::MODEL_3B; break;
  917. case 32: model.type = e_model::MODEL_7B; break;
  918. case 40: model.type = e_model::MODEL_13B; break;
  919. case 60: model.type = e_model::MODEL_30B; break;
  920. case 80: model.type = e_model::MODEL_65B; break;
  921. default:
  922. {
  923. if (hparams.n_layer < 32) {
  924. model.type = e_model::MODEL_7B;
  925. }
  926. } break;
  927. }
  928. hparams.n_ctx = n_ctx;
  929. }
  930. const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
  931. {
  932. fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
  933. fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  934. fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
  935. fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
  936. fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
  937. fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
  938. fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
  939. fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
  940. fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
  941. fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
  942. fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
  943. fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
  944. }
  945. if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
  946. if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
  947. hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
  948. hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
  949. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"));
  950. }
  951. }
  952. if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
  953. if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  954. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
  955. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
  956. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"));
  957. }
  958. }
  959. if (vocab_only) {
  960. return;
  961. }
  962. auto & ctx = model.ctx;
  963. size_t ctx_size;
  964. size_t mmapped_size;
  965. ml->calc_sizes(&ctx_size, &mmapped_size);
  966. fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  967. // create the ggml context
  968. {
  969. lctx.model.buf.resize(ctx_size);
  970. if (use_mlock) {
  971. lctx.model.mlock_buf.init(lctx.model.buf.addr);
  972. lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
  973. }
  974. struct ggml_init_params params = {
  975. /*.mem_size =*/ lctx.model.buf.size,
  976. /*.mem_buffer =*/ lctx.model.buf.addr,
  977. /*.no_alloc =*/ ml->use_mmap,
  978. };
  979. model.ctx = ggml_init(params);
  980. if (!model.ctx) {
  981. throw std::runtime_error(format("ggml_init() failed"));
  982. }
  983. }
  984. (void) main_gpu;
  985. #if defined(GGML_USE_CUBLAS)
  986. fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
  987. ggml_cuda_set_main_device(main_gpu);
  988. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  989. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  990. #elif defined(GGML_USE_CLBLAST)
  991. fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
  992. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  993. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  994. #else
  995. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  996. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  997. #endif
  998. // prepare memory for the weights
  999. size_t vram_weights = 0;
  1000. size_t vram_scratch = 0;
  1001. {
  1002. const uint32_t n_embd = hparams.n_embd;
  1003. const uint32_t n_layer = hparams.n_layer;
  1004. const uint32_t n_vocab = hparams.n_vocab;
  1005. ml->ggml_ctx = ctx;
  1006. model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
  1007. // "output" tensor
  1008. {
  1009. ggml_backend backend_norm;
  1010. ggml_backend backend_output;
  1011. if (n_gpu_layers > int(n_layer)) { // NOLINT
  1012. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  1013. // on Windows however this is detrimental unless everything is on the GPU
  1014. #ifndef _WIN32
  1015. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1016. #else
  1017. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1018. #endif // _WIN32
  1019. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  1020. } else {
  1021. backend_norm = GGML_BACKEND_CPU;
  1022. backend_output = GGML_BACKEND_CPU;
  1023. }
  1024. model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm);
  1025. model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
  1026. if (backend_norm == GGML_BACKEND_GPU) {
  1027. vram_weights += ggml_nbytes(model.norm);
  1028. }
  1029. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  1030. vram_weights += ggml_nbytes(model.output);
  1031. }
  1032. }
  1033. const int i_gpu_start = n_layer - n_gpu_layers;
  1034. model.layers.resize(n_layer);
  1035. for (uint32_t i = 0; i < n_layer; ++i) {
  1036. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  1037. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  1038. auto & layer = model.layers[i];
  1039. std::string layers_i = "layers." + std::to_string(i);
  1040. layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
  1041. layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split);
  1042. layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split);
  1043. layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split);
  1044. layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split);
  1045. layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
  1046. layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split);
  1047. layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split);
  1048. layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split);
  1049. if (backend == GGML_BACKEND_GPU) {
  1050. vram_weights +=
  1051. ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  1052. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  1053. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  1054. }
  1055. }
  1056. }
  1057. ml->done_getting_tensors();
  1058. // print memory requirements
  1059. {
  1060. const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
  1061. // this is the total memory required to run the inference
  1062. const size_t mem_required =
  1063. ctx_size +
  1064. mmapped_size - vram_weights + // weights in VRAM not in memory
  1065. MEM_REQ_SCRATCH0().at(model.type) +
  1066. MEM_REQ_SCRATCH1().at(model.type) +
  1067. MEM_REQ_EVAL().at (model.type);
  1068. // this is the memory required by one llama_state
  1069. const size_t mem_required_state =
  1070. scale*MEM_REQ_KV_SELF().at(model.type);
  1071. fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
  1072. mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
  1073. (void) vram_scratch;
  1074. (void) n_batch;
  1075. #ifdef GGML_USE_CUBLAS
  1076. if (low_vram) {
  1077. fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
  1078. ggml_cuda_set_scratch_size(0); // disable scratch
  1079. } else {
  1080. vram_scratch = n_batch * MB;
  1081. ggml_cuda_set_scratch_size(vram_scratch);
  1082. if (n_gpu_layers > 0) {
  1083. fprintf(stderr, "%s: allocating batch_size x 1 MB = %ld MB VRAM for the scratch buffer\n",
  1084. __func__, vram_scratch / MB);
  1085. }
  1086. }
  1087. #endif // GGML_USE_CUBLAS
  1088. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  1089. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  1090. fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  1091. if (n_gpu_layers > (int) hparams.n_layer) {
  1092. fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__);
  1093. }
  1094. size_t vram_kv_cache = 0;
  1095. if (n_gpu_layers > (int) hparams.n_layer + 1) {
  1096. if (low_vram) {
  1097. fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
  1098. } else {
  1099. fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
  1100. vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
  1101. }
  1102. }
  1103. if (n_gpu_layers > (int) hparams.n_layer + 2) {
  1104. if (low_vram) {
  1105. fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
  1106. } else {
  1107. fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
  1108. vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
  1109. }
  1110. }
  1111. const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
  1112. fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n",
  1113. __func__, std::min(n_gpu_layers, max_offloadable_layers), hparams.n_layer + 3);
  1114. fprintf(stderr, "%s: total VRAM used: %zu MB\n",
  1115. __func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
  1116. #else
  1117. (void) n_gpu_layers;
  1118. #endif
  1119. }
  1120. // populate `tensors_by_name`
  1121. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  1122. model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
  1123. }
  1124. (void) tensor_split;
  1125. #if defined(GGML_USE_CUBLAS)
  1126. {
  1127. ggml_cuda_set_tensor_split(tensor_split);
  1128. }
  1129. #endif
  1130. ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
  1131. if (progress_callback) {
  1132. progress_callback(1.0f, progress_callback_user_data);
  1133. }
  1134. model.mapping = std::move(ml->mapping);
  1135. // loading time will be recalculate after the first eval, so
  1136. // we take page faults deferred by mmap() into consideration
  1137. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  1138. }
  1139. static bool llama_model_load(
  1140. const std::string & fname,
  1141. llama_context & lctx,
  1142. int n_ctx,
  1143. int n_batch,
  1144. int n_gpu_layers,
  1145. int main_gpu,
  1146. float * tensor_split,
  1147. bool low_vram,
  1148. ggml_type memory_type,
  1149. bool use_mmap,
  1150. bool use_mlock,
  1151. bool vocab_only,
  1152. llama_progress_callback progress_callback,
  1153. void *progress_callback_user_data) {
  1154. try {
  1155. llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
  1156. use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
  1157. return true;
  1158. } catch (const std::exception & err) {
  1159. fprintf(stderr, "error loading model: %s\n", err.what());
  1160. return false;
  1161. }
  1162. }
  1163. // evaluate the transformer
  1164. //
  1165. // - lctx: llama context
  1166. // - tokens: new batch of tokens to process
  1167. // - n_past: the context size so far
  1168. // - n_threads: number of threads to use
  1169. // - cgraph_fname: filename of the exported computation graph
  1170. //
  1171. static bool llama_eval_internal(
  1172. llama_context & lctx,
  1173. const llama_token * tokens,
  1174. const int n_tokens,
  1175. const int n_past,
  1176. const int n_threads,
  1177. const char * cgraph_fname) {
  1178. // enforce that the first token is BOS
  1179. if (n_past == 0 && tokens[0] != llama_token_bos()) {
  1180. fprintf(stderr, "%s: first token must be BOS\n", __func__);
  1181. return false;
  1182. }
  1183. const int64_t t_start_us = ggml_time_us();
  1184. const int N = n_tokens;
  1185. const auto & model = lctx.model;
  1186. const auto & hparams = model.hparams;
  1187. const auto & kv_self = model.kv_self;
  1188. LLAMA_ASSERT(!!kv_self.ctx);
  1189. const int n_embd = hparams.n_embd;
  1190. const int n_layer = hparams.n_layer;
  1191. const int n_ctx = hparams.n_ctx;
  1192. const int n_head = hparams.n_head;
  1193. const int n_vocab = hparams.n_vocab;
  1194. const int n_rot = hparams.n_embd/hparams.n_head;
  1195. const int n_gpu_layers = model.n_gpu_layers;
  1196. auto & mem_per_token = lctx.mem_per_token;
  1197. auto & buf_compute = lctx.buf_compute;
  1198. struct ggml_init_params params = {
  1199. /*.mem_size =*/ buf_compute.size,
  1200. /*.mem_buffer =*/ buf_compute.addr,
  1201. /*.no_alloc =*/ false,
  1202. };
  1203. struct ggml_context * ctx0 = ggml_init(params);
  1204. // for big prompts, if BLAS is enabled, it is better to use only one thread
  1205. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  1206. ggml_cgraph gf = {};
  1207. gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
  1208. struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  1209. ggml_set_name(embd, "embd");
  1210. memcpy(embd->data, tokens, N*ggml_element_size(embd));
  1211. struct ggml_tensor * cur;
  1212. struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
  1213. const int i_gpu_start = n_layer - n_gpu_layers;
  1214. (void) i_gpu_start;
  1215. // offload functions set the tensor output backend to GPU
  1216. // tensors are GPU-accelerated if any input or the output has been offloaded
  1217. //
  1218. // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
  1219. // in that case ggml_cuda_assign_buffers has no effect
  1220. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  1221. offload_func_t offload_func_kq = llama_nop;
  1222. offload_func_t offload_func_v = llama_nop;
  1223. #ifdef GGML_USE_CUBLAS
  1224. if (n_gpu_layers > n_layer) {
  1225. offload_func_nr = ggml_cuda_assign_buffers;
  1226. }
  1227. if (n_gpu_layers > n_layer + 1) {
  1228. offload_func_v = ggml_cuda_assign_buffers;
  1229. }
  1230. if (n_gpu_layers > n_layer + 2) {
  1231. offload_func_kq = ggml_cuda_assign_buffers;
  1232. }
  1233. #endif // GGML_USE_CUBLAS
  1234. for (int il = 0; il < n_layer; ++il) {
  1235. offload_func_t offload_func = llama_nop;
  1236. #ifdef GGML_USE_CUBLAS
  1237. if (il >= i_gpu_start) {
  1238. offload_func = ggml_cuda_assign_buffers;
  1239. }
  1240. #endif // GGML_USE_CUBLAS
  1241. struct ggml_tensor * inpSA = inpL;
  1242. lctx.use_buf(ctx0, 0);
  1243. // norm
  1244. {
  1245. cur = ggml_rms_norm(ctx0, inpL);
  1246. offload_func(cur);
  1247. ggml_set_name(cur, "rms_norm_0");
  1248. // cur = cur*attention_norm(broadcasted)
  1249. cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
  1250. offload_func(cur);
  1251. ggml_set_name(cur, "attention_norm_0");
  1252. }
  1253. // self-attention
  1254. {
  1255. // compute Q and K and RoPE them
  1256. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  1257. offload_func_kq(tmpk);
  1258. ggml_set_name(tmpk, "tmpk");
  1259. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  1260. offload_func_kq(tmpq);
  1261. ggml_set_name(tmpq, "tmpq");
  1262. struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0);
  1263. offload_func_kq(Kcur);
  1264. ggml_set_name(Kcur, "Kcur");
  1265. struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0);
  1266. offload_func_kq(Qcur);
  1267. ggml_set_name(Qcur, "Qcur");
  1268. // store key and value to memory
  1269. {
  1270. // compute the transposed [N, n_embd] V matrix
  1271. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  1272. offload_func_v(tmpv);
  1273. ggml_set_name(tmpv, "tmpv");
  1274. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N));
  1275. offload_func_v(Vcur);
  1276. ggml_set_name(Vcur, "Vcur");
  1277. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
  1278. offload_func_kq(k);
  1279. ggml_set_name(k, "k");
  1280. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
  1281. ( n_ctx)*ggml_element_size(kv_self.v),
  1282. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
  1283. offload_func_v(v);
  1284. ggml_set_name(v, "v");
  1285. // important: storing RoPE-ed version of K in the KV cache!
  1286. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  1287. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  1288. }
  1289. struct ggml_tensor * Q =
  1290. ggml_permute(ctx0,
  1291. Qcur,
  1292. 0, 2, 1, 3);
  1293. offload_func_kq(Q);
  1294. ggml_set_name(Q, "Q");
  1295. struct ggml_tensor * K =
  1296. ggml_permute(ctx0,
  1297. ggml_reshape_3d(ctx0,
  1298. ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
  1299. n_embd/n_head, n_head, n_past + N),
  1300. 0, 2, 1, 3);
  1301. offload_func_kq(K);
  1302. ggml_set_name(K, "K");
  1303. // K * Q
  1304. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  1305. offload_func_kq(KQ);
  1306. ggml_set_name(KQ, "KQ");
  1307. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  1308. struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
  1309. ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
  1310. // KQ_scaled shape [n_past + N, N, n_head, 1]
  1311. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  1312. offload_func_kq(KQ_scaled);
  1313. ggml_set_name(KQ_scaled, "KQ_scaled");
  1314. // KQ_masked = mask_past(KQ_scaled)
  1315. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  1316. offload_func_kq(KQ_masked);
  1317. ggml_set_name(KQ_masked, "KQ_masked");
  1318. // KQ = soft_max(KQ_masked)
  1319. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  1320. offload_func_v(KQ_soft_max);
  1321. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  1322. // split cached V into n_head heads
  1323. struct ggml_tensor * V =
  1324. ggml_view_3d(ctx0, kv_self.v,
  1325. n_past + N, n_embd/n_head, n_head,
  1326. n_ctx*ggml_element_size(kv_self.v),
  1327. n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
  1328. il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
  1329. offload_func_v(V);
  1330. ggml_set_name(V, "V");
  1331. #if 1
  1332. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  1333. offload_func_v(KQV);
  1334. ggml_set_name(KQV, "KQV");
  1335. #else
  1336. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  1337. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  1338. // is there a better way?
  1339. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
  1340. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  1341. #endif
  1342. // KQV_merged = KQV.permute(0, 2, 1, 3)
  1343. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  1344. offload_func_v(KQV_merged);
  1345. ggml_set_name(KQV_merged, "KQV_merged");
  1346. // cur = KQV_merged.contiguous().view(n_embd, N)
  1347. cur = ggml_cpy(ctx0,
  1348. KQV_merged,
  1349. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  1350. offload_func_v(cur);
  1351. ggml_set_name(cur, "KQV_merged_contiguous");
  1352. // projection (no bias)
  1353. cur = ggml_mul_mat(ctx0,
  1354. model.layers[il].wo,
  1355. cur);
  1356. offload_func(cur);
  1357. ggml_set_name(cur, "result_wo");
  1358. }
  1359. lctx.use_buf(ctx0, 1);
  1360. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  1361. offload_func(inpFF);
  1362. ggml_set_name(inpFF, "inpFF");
  1363. // feed-forward network
  1364. {
  1365. // norm
  1366. {
  1367. cur = ggml_rms_norm(ctx0, inpFF);
  1368. offload_func(cur);
  1369. ggml_set_name(cur, "rms_norm_1");
  1370. // cur = cur*ffn_norm(broadcasted)
  1371. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  1372. offload_func(cur);
  1373. ggml_set_name(cur, "ffn_norm");
  1374. }
  1375. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  1376. model.layers[il].w3,
  1377. cur);
  1378. offload_func(tmp);
  1379. ggml_set_name(tmp, "result_w3");
  1380. cur = ggml_mul_mat(ctx0,
  1381. model.layers[il].w1,
  1382. cur);
  1383. offload_func(cur);
  1384. ggml_set_name(cur, "result_w2");
  1385. // SILU activation
  1386. cur = ggml_silu(ctx0, cur);
  1387. offload_func(cur);
  1388. ggml_set_name(cur, "silu");
  1389. cur = ggml_mul(ctx0, cur, tmp);
  1390. offload_func(cur);
  1391. ggml_set_name(cur, "silu_x_result_w3");
  1392. cur = ggml_mul_mat(ctx0,
  1393. model.layers[il].w2,
  1394. cur);
  1395. offload_func(cur);
  1396. ggml_set_name(cur, "result_w2");
  1397. }
  1398. cur = ggml_add(ctx0, cur, inpFF);
  1399. offload_func(cur);
  1400. ggml_set_name(cur, "inpFF_+_result_w2");
  1401. // input for next layer
  1402. inpL = cur;
  1403. }
  1404. lctx.use_buf(ctx0, 0);
  1405. // used at the end to optionally extract the embeddings
  1406. struct ggml_tensor * embeddings = NULL;
  1407. // norm
  1408. {
  1409. cur = ggml_rms_norm(ctx0, inpL);
  1410. offload_func_nr(cur);
  1411. ggml_set_name(cur, "rms_norm_inpL");
  1412. cur = ggml_rms_norm(ctx0, cur);
  1413. offload_func_nr(cur);
  1414. ggml_set_name(cur, "rms_norm_after");
  1415. // cur = cur*norm(broadcasted)
  1416. cur = ggml_mul(ctx0, cur, model.norm);
  1417. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  1418. ggml_set_name(cur, "result_norm");
  1419. embeddings = cur;
  1420. }
  1421. // lm_head
  1422. cur = ggml_mul_mat(ctx0, model.output, cur);
  1423. ggml_set_name(cur, "result_output");
  1424. lctx.use_buf(ctx0, -1);
  1425. // logits -> probs
  1426. //cur = ggml_soft_max_inplace(ctx0, cur);
  1427. // run the computation
  1428. ggml_build_forward_expand(&gf, cur);
  1429. #ifdef GGML_USE_METAL
  1430. if (lctx.ctx_metal && N == 1) {
  1431. ggml_metal_graph_compute(lctx.ctx_metal, &gf);
  1432. ggml_metal_get_tensor (lctx.ctx_metal, cur);
  1433. } else {
  1434. // IMPORTANT:
  1435. // Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
  1436. // ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
  1437. // coprocessor.
  1438. //
  1439. // When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
  1440. // But for now, we have focused only on Matrix x Vector Metal multiplication.
  1441. //
  1442. // TODO: avoid these syncs via shared memory (ref #1696)
  1443. //
  1444. if (lctx.ctx_metal) {
  1445. // We need to sync the GPU KV cache with the CPU KV cache
  1446. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
  1447. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
  1448. }
  1449. ggml_graph_compute(ctx0, &gf);
  1450. }
  1451. #else
  1452. ggml_graph_compute(ctx0, &gf);
  1453. #endif
  1454. if (cgraph_fname) {
  1455. ggml_graph_export(&gf, cgraph_fname);
  1456. }
  1457. #ifdef GGML_PERF
  1458. // print timing information per ggml operation (for debugging purposes)
  1459. // requires GGML_PERF to be defined
  1460. ggml_graph_print(&gf);
  1461. #endif
  1462. // plot the computation graph in dot format (for debugging purposes)
  1463. //if (n_past%100 == 0) {
  1464. // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
  1465. //}
  1466. //embd_w.resize(n_vocab*N);
  1467. //memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N);
  1468. // update kv token count
  1469. lctx.model.kv_self.n = n_past + N;
  1470. // extract logits
  1471. {
  1472. auto & logits_out = lctx.logits;
  1473. if (lctx.logits_all) {
  1474. logits_out.resize(n_vocab * N);
  1475. memcpy(logits_out.data(), (float *) ggml_get_data(cur), sizeof(float)*n_vocab*N);
  1476. } else {
  1477. // return result for just the last token
  1478. logits_out.resize(n_vocab);
  1479. memcpy(logits_out.data(), (float *) ggml_get_data(cur) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  1480. }
  1481. }
  1482. // extract embeddings
  1483. if (!lctx.embedding.empty()) {
  1484. auto & embedding_out = lctx.embedding;
  1485. embedding_out.resize(n_embd);
  1486. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
  1487. }
  1488. if (mem_per_token == 0) {
  1489. mem_per_token = ggml_used_mem(ctx0)/N;
  1490. }
  1491. #if 0
  1492. printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
  1493. ggml_used_mem(ctx0)/1024.0/1024.0,
  1494. lctx.get_buf_max_mem(0)/1024.0/1024.0,
  1495. lctx.get_buf_max_mem(1)/1024.0/1024.0);
  1496. #endif
  1497. ggml_free(ctx0);
  1498. // measure the performance only for the single-token evals
  1499. if (N == 1) {
  1500. lctx.t_eval_us += ggml_time_us() - t_start_us;
  1501. lctx.n_eval++;
  1502. }
  1503. else if (N > 1) {
  1504. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  1505. lctx.n_p_eval += N;
  1506. }
  1507. return true;
  1508. }
  1509. //
  1510. // tokenizer
  1511. //
  1512. static size_t utf8_len(char src) {
  1513. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  1514. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  1515. return lookup[highbits];
  1516. }
  1517. struct llama_sp_symbol {
  1518. using index = int;
  1519. index prev;
  1520. index next;
  1521. const char * text;
  1522. size_t n;
  1523. };
  1524. static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable");
  1525. struct llama_sp_bigram {
  1526. struct comparator {
  1527. bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
  1528. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  1529. }
  1530. };
  1531. using queue_storage = std::vector<llama_sp_bigram>;
  1532. using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
  1533. llama_sp_symbol::index left;
  1534. llama_sp_symbol::index right;
  1535. float score;
  1536. size_t size;
  1537. };
  1538. // original implementation:
  1539. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  1540. struct llama_tokenizer {
  1541. llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
  1542. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  1543. // split string into utf8 chars
  1544. int index = 0;
  1545. size_t offs = 0;
  1546. while (offs < text.size()) {
  1547. llama_sp_symbol sym;
  1548. size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
  1549. sym.text = text.c_str() + offs;
  1550. sym.n = char_len;
  1551. offs += char_len;
  1552. sym.prev = index - 1;
  1553. sym.next = offs == text.size() ? -1 : index + 1;
  1554. index++;
  1555. symbols_.emplace_back(sym);
  1556. }
  1557. // seed the work queue with all possible 2-character tokens.
  1558. for (size_t i = 1; i < symbols_.size(); ++i) {
  1559. try_add_bigram(i - 1, i);
  1560. }
  1561. // keep substituting the highest frequency pairs for as long as we can.
  1562. while (!work_queue_.empty()) {
  1563. auto bigram = work_queue_.top();
  1564. work_queue_.pop();
  1565. auto & left_sym = symbols_[bigram.left];
  1566. auto & right_sym = symbols_[bigram.right];
  1567. // if one of the symbols already got merged, skip it.
  1568. if (left_sym.n == 0 || right_sym.n == 0 ||
  1569. left_sym.n + right_sym.n != bigram.size) {
  1570. continue;
  1571. }
  1572. // merge the right sym into the left one
  1573. left_sym.n += right_sym.n;
  1574. right_sym.n = 0;
  1575. //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  1576. // remove the right sym from the chain
  1577. left_sym.next = right_sym.next;
  1578. if (right_sym.next >= 0) {
  1579. symbols_[right_sym.next].prev = bigram.left;
  1580. }
  1581. // find more substitutions
  1582. try_add_bigram(left_sym.prev, bigram.left);
  1583. try_add_bigram(bigram.left, left_sym.next);
  1584. }
  1585. for (int i = 0; i != -1; i = symbols_[i].next) {
  1586. auto & symbol = symbols_[i];
  1587. auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
  1588. if (token == vocab_.token_to_id.end()) {
  1589. // output any symbols that did not form tokens as bytes.
  1590. for (int j = 0; j < (int) symbol.n; ++j) {
  1591. llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
  1592. output.push_back(token_id);
  1593. }
  1594. } else {
  1595. output.push_back((*token).second);
  1596. }
  1597. }
  1598. }
  1599. private:
  1600. void try_add_bigram(int left, int right) {
  1601. if (left == -1 || right == -1) {
  1602. return;
  1603. }
  1604. const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
  1605. auto token = vocab_.token_to_id.find(text);
  1606. if (token == vocab_.token_to_id.end()) {
  1607. return;
  1608. }
  1609. if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
  1610. return;
  1611. }
  1612. const auto &tok_score = vocab_.id_to_token[(*token).second];
  1613. llama_sp_bigram bigram;
  1614. bigram.left = left;
  1615. bigram.right = right;
  1616. bigram.score = tok_score.score;
  1617. bigram.size = text.size();
  1618. work_queue_.push(bigram);
  1619. }
  1620. const llama_vocab & vocab_;
  1621. std::vector<llama_sp_symbol> symbols_;
  1622. llama_sp_bigram::queue work_queue_;
  1623. };
  1624. static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
  1625. llama_tokenizer tokenizer(vocab);
  1626. std::vector<llama_vocab::id> output;
  1627. if (text.empty()) {
  1628. return output;
  1629. }
  1630. if (bos) {
  1631. output.push_back(llama_token_bos());
  1632. }
  1633. tokenizer.tokenize(text, output);
  1634. return output;
  1635. }
  1636. //
  1637. // sampling
  1638. //
  1639. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  1640. assert(candidates->size > 0);
  1641. const int64_t t_start_sample_us = ggml_time_us();
  1642. // Sort the logits in descending order
  1643. if (!candidates->sorted) {
  1644. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1645. return a.logit > b.logit;
  1646. });
  1647. candidates->sorted = true;
  1648. }
  1649. float max_l = candidates->data[0].logit;
  1650. float cum_sum = 0.0f;
  1651. for (size_t i = 0; i < candidates->size; ++i) {
  1652. float p = expf(candidates->data[i].logit - max_l);
  1653. candidates->data[i].p = p;
  1654. cum_sum += p;
  1655. }
  1656. for (size_t i = 0; i < candidates->size; ++i) {
  1657. candidates->data[i].p /= cum_sum;
  1658. }
  1659. if (ctx) {
  1660. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1661. }
  1662. }
  1663. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  1664. const int64_t t_start_sample_us = ggml_time_us();
  1665. k = std::max(k, (int) min_keep);
  1666. k = std::min(k, (int) candidates->size);
  1667. // Sort scores in descending order
  1668. if (!candidates->sorted) {
  1669. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  1670. return a.logit > b.logit;
  1671. };
  1672. if (k == (int) candidates->size) {
  1673. std::sort(candidates->data, candidates->data + candidates->size, comp);
  1674. } else {
  1675. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  1676. }
  1677. candidates->sorted = true;
  1678. }
  1679. candidates->size = k;
  1680. if (ctx) {
  1681. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1682. }
  1683. }
  1684. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1685. if (p >= 1.0f) {
  1686. return;
  1687. }
  1688. const int64_t t_start_sample_us = ggml_time_us();
  1689. llama_sample_softmax(ctx, candidates);
  1690. // Compute the cumulative probabilities
  1691. float cum_sum = 0.0f;
  1692. size_t last_idx = candidates->size;
  1693. for (size_t i = 0; i < candidates->size; ++i) {
  1694. cum_sum += candidates->data[i].p;
  1695. // Check if the running sum is greater than p or if we have kept at least min_keep tokens
  1696. if (cum_sum > p && i >= min_keep) {
  1697. last_idx = i;
  1698. break;
  1699. }
  1700. }
  1701. // Resize the output vector to keep only the top-p tokens
  1702. candidates->size = last_idx;
  1703. if (ctx) {
  1704. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1705. }
  1706. }
  1707. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  1708. if (z >= 1.0f || candidates->size <= 2) {
  1709. return;
  1710. }
  1711. const int64_t t_start_sample_us = ggml_time_us();
  1712. llama_sample_softmax(nullptr, candidates);
  1713. // Compute the first and second derivatives
  1714. std::vector<float> first_derivatives(candidates->size - 1);
  1715. std::vector<float> second_derivatives(candidates->size - 2);
  1716. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  1717. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  1718. }
  1719. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1720. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  1721. }
  1722. // Calculate absolute value of second derivatives
  1723. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1724. second_derivatives[i] = abs(second_derivatives[i]);
  1725. }
  1726. // Normalize the second derivatives
  1727. float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  1728. for (float & value : second_derivatives) {
  1729. value /= second_derivatives_sum;
  1730. }
  1731. float cum_sum = 0.0f;
  1732. size_t last_idx = candidates->size;
  1733. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1734. cum_sum += second_derivatives[i];
  1735. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  1736. if (cum_sum > z && i >= min_keep) {
  1737. last_idx = i;
  1738. break;
  1739. }
  1740. }
  1741. // Resize the output vector to keep only the tokens above the tail location
  1742. candidates->size = last_idx;
  1743. if (ctx) {
  1744. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1745. }
  1746. }
  1747. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1748. // Reference implementation:
  1749. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  1750. if (p >= 1.0f) {
  1751. return;
  1752. }
  1753. const int64_t t_start_sample_us = ggml_time_us();
  1754. // Compute the softmax of logits and calculate entropy
  1755. llama_sample_softmax(nullptr, candidates);
  1756. float entropy = 0.0f;
  1757. for (size_t i = 0; i < candidates->size; ++i) {
  1758. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  1759. }
  1760. // Compute the absolute difference between negative log probability and entropy for each candidate
  1761. std::vector<float> shifted_scores;
  1762. for (size_t i = 0; i < candidates->size; ++i) {
  1763. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  1764. shifted_scores.push_back(shifted_score);
  1765. }
  1766. // Sort tokens based on the shifted_scores and their corresponding indices
  1767. std::vector<size_t> indices(candidates->size);
  1768. std::iota(indices.begin(), indices.end(), 0);
  1769. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  1770. return shifted_scores[a] < shifted_scores[b];
  1771. });
  1772. // Compute the cumulative probabilities
  1773. float cum_sum = 0.0f;
  1774. size_t last_idx = indices.size();
  1775. for (size_t i = 0; i < indices.size(); ++i) {
  1776. size_t idx = indices[i];
  1777. cum_sum += candidates->data[idx].p;
  1778. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  1779. if (cum_sum > p && i >= min_keep - 1) {
  1780. last_idx = i + 1;
  1781. break;
  1782. }
  1783. }
  1784. // Resize the output vector to keep only the locally typical tokens
  1785. std::vector<llama_token_data> new_candidates;
  1786. for (size_t i = 0; i < last_idx; ++i) {
  1787. size_t idx = indices[i];
  1788. new_candidates.push_back(candidates->data[idx]);
  1789. }
  1790. // Replace the data in candidates with the new_candidates data
  1791. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  1792. candidates->size = new_candidates.size();
  1793. if (ctx) {
  1794. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1795. }
  1796. }
  1797. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  1798. const int64_t t_start_sample_us = ggml_time_us();
  1799. for (size_t i = 0; i < candidates_p->size; ++i) {
  1800. candidates_p->data[i].logit /= temp;
  1801. }
  1802. if (ctx) {
  1803. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1804. }
  1805. }
  1806. void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
  1807. if (last_tokens_size == 0 || penalty == 1.0f) {
  1808. return;
  1809. }
  1810. const int64_t t_start_sample_us = ggml_time_us();
  1811. for (size_t i = 0; i < candidates->size; ++i) {
  1812. const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
  1813. if (token_iter == last_tokens + last_tokens_size) {
  1814. continue;
  1815. }
  1816. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  1817. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  1818. if (candidates->data[i].logit <= 0) {
  1819. candidates->data[i].logit *= penalty;
  1820. } else {
  1821. candidates->data[i].logit /= penalty;
  1822. }
  1823. }
  1824. candidates->sorted = false;
  1825. if (ctx) {
  1826. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1827. }
  1828. }
  1829. void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
  1830. if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
  1831. return;
  1832. }
  1833. const int64_t t_start_sample_us = ggml_time_us();
  1834. // Create a frequency map to count occurrences of each token in last_tokens
  1835. std::unordered_map<llama_token, int> token_count;
  1836. for (size_t i = 0; i < last_tokens_size; ++i) {
  1837. token_count[last_tokens_p[i]]++;
  1838. }
  1839. // Apply frequency and presence penalties to the candidates
  1840. for (size_t i = 0; i < candidates->size; ++i) {
  1841. auto token_iter = token_count.find(candidates->data[i].id);
  1842. if (token_iter == token_count.end()) {
  1843. continue;
  1844. }
  1845. int count = token_iter->second;
  1846. candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
  1847. }
  1848. candidates->sorted = false;
  1849. if (ctx) {
  1850. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1851. }
  1852. }
  1853. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  1854. assert(ctx);
  1855. auto N = float(llama_n_vocab(ctx));
  1856. int64_t t_start_sample_us;
  1857. t_start_sample_us = ggml_time_us();
  1858. llama_sample_softmax(nullptr, candidates);
  1859. // Estimate s_hat using the most probable m tokens
  1860. float s_hat = 0.0;
  1861. float sum_ti_bi = 0.0;
  1862. float sum_ti_sq = 0.0;
  1863. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  1864. float t_i = logf(float(i + 2) / float(i + 1));
  1865. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  1866. sum_ti_bi += t_i * b_i;
  1867. sum_ti_sq += t_i * t_i;
  1868. }
  1869. s_hat = sum_ti_bi / sum_ti_sq;
  1870. // Compute k from the estimated s_hat and target surprise value
  1871. float epsilon_hat = s_hat - 1;
  1872. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  1873. // Sample the next word X using top-k sampling
  1874. llama_sample_top_k(nullptr, candidates, int(k), 1);
  1875. if (ctx) {
  1876. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1877. }
  1878. llama_token X = llama_sample_token(ctx, candidates);
  1879. t_start_sample_us = ggml_time_us();
  1880. // Compute error as the difference between observed surprise and target surprise value
  1881. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1882. return candidate.id == X;
  1883. }));
  1884. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1885. float e = observed_surprise - tau;
  1886. // Update mu using the learning rate and error
  1887. *mu = *mu - eta * e;
  1888. if (ctx) {
  1889. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1890. ctx->n_sample++;
  1891. }
  1892. return X;
  1893. }
  1894. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  1895. assert(ctx);
  1896. int64_t t_start_sample_us;
  1897. t_start_sample_us = ggml_time_us();
  1898. llama_sample_softmax(ctx, candidates);
  1899. // Truncate the words with surprise values greater than mu
  1900. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1901. return -log2f(candidate.p) > *mu;
  1902. }));
  1903. if (candidates->size == 0) {
  1904. candidates->size = 1;
  1905. }
  1906. // Normalize the probabilities of the remaining words
  1907. llama_sample_softmax(ctx, candidates);
  1908. // Sample the next word X from the remaining words
  1909. if (ctx) {
  1910. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1911. }
  1912. llama_token X = llama_sample_token(ctx, candidates);
  1913. t_start_sample_us = ggml_time_us();
  1914. // Compute error as the difference between observed surprise and target surprise value
  1915. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1916. return candidate.id == X;
  1917. }));
  1918. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1919. float e = observed_surprise - tau;
  1920. // Update mu using the learning rate and error
  1921. *mu = *mu - eta * e;
  1922. if (ctx) {
  1923. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1924. }
  1925. return X;
  1926. }
  1927. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  1928. const int64_t t_start_sample_us = ggml_time_us();
  1929. // Find max element
  1930. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1931. return a.logit < b.logit;
  1932. });
  1933. llama_token result = max_iter->id;
  1934. if (ctx) {
  1935. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1936. ctx->n_sample++;
  1937. }
  1938. return result;
  1939. }
  1940. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  1941. assert(ctx);
  1942. const int64_t t_start_sample_us = ggml_time_us();
  1943. llama_sample_softmax(nullptr, candidates);
  1944. std::vector<float> probs;
  1945. probs.reserve(candidates->size);
  1946. for (size_t i = 0; i < candidates->size; ++i) {
  1947. probs.push_back(candidates->data[i].p);
  1948. }
  1949. std::discrete_distribution<> dist(probs.begin(), probs.end());
  1950. auto & rng = ctx->rng;
  1951. int idx = dist(rng);
  1952. llama_token result = candidates->data[idx].id;
  1953. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1954. ctx->n_sample++;
  1955. return result;
  1956. }
  1957. //
  1958. // quantization
  1959. //
  1960. static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llama_buffer & output, const int nelements, const int nthread) {
  1961. if (output.size < nelements * sizeof(float)) {
  1962. output.resize(nelements * sizeof(float));
  1963. }
  1964. float * f32_output = (float *) output.addr;
  1965. quantize_fns_t qtype;
  1966. if (ggml_is_quantized(tensor.type)) {
  1967. qtype = ggml_internal_get_quantize_fn(tensor.type);
  1968. if (qtype.dequantize_row_q == NULL) {
  1969. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type)));
  1970. }
  1971. } else if (tensor.type != GGML_TYPE_F16) {
  1972. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type)));
  1973. }
  1974. if (nthread < 2) {
  1975. if (tensor.type == GGML_TYPE_F16) {
  1976. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements);
  1977. } else if (ggml_is_quantized(tensor.type)) {
  1978. qtype.dequantize_row_q(tensor.data, f32_output, nelements);
  1979. } else {
  1980. LLAMA_ASSERT(false); // unreachable
  1981. }
  1982. return;
  1983. }
  1984. auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type);
  1985. auto block_size_bytes = ggml_type_size(tensor.type);
  1986. LLAMA_ASSERT(nelements % block_size == 0);
  1987. auto nblocks = nelements / block_size;
  1988. auto blocks_per_thread = nblocks / nthread;
  1989. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  1990. std::vector<std::thread> workers;
  1991. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  1992. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  1993. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  1994. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  1995. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  1996. if (typ == GGML_TYPE_F16) {
  1997. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  1998. } else {
  1999. qtype.dequantize_row_q(inbuf, outbuf, nels);
  2000. }
  2001. };
  2002. workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
  2003. in_buff_offs += thr_block_bytes;
  2004. out_buff_offs += thr_elems;
  2005. }
  2006. for (auto & worker : workers) {
  2007. worker.join();
  2008. }
  2009. }
  2010. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  2011. ggml_type quantized_type;
  2012. llama_ftype ftype = params->ftype;
  2013. int nthread = params->nthread;
  2014. switch (params->ftype) {
  2015. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  2016. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  2017. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  2018. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  2019. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  2020. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  2021. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  2022. #ifdef GGML_USE_K_QUANTS
  2023. // K-quants
  2024. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  2025. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  2026. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  2027. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  2028. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  2029. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  2030. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  2031. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  2032. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  2033. #endif
  2034. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  2035. }
  2036. if (nthread <= 0) {
  2037. nthread = std::thread::hardware_concurrency();
  2038. }
  2039. std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false,
  2040. /*vocab_only*/ false));
  2041. llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype);
  2042. #ifdef GGML_USE_K_QUANTS
  2043. int n_attention_wv = 0;
  2044. int n_feed_forward_w2 = 0;
  2045. for (auto& tensor : model_loader->tensors_map.tensors) {
  2046. if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  2047. ++n_attention_wv;
  2048. }
  2049. else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  2050. ++n_feed_forward_w2;
  2051. }
  2052. }
  2053. int i_attention_wv = 0;
  2054. int i_feed_forward_w2 = 0;
  2055. #endif
  2056. size_t total_size_org = 0;
  2057. size_t total_size_new = 0;
  2058. std::vector<int64_t> hist_all(1 << 4, 0);
  2059. std::vector<std::thread> workers;
  2060. std::mutex mutex;
  2061. size_t idx = 0;
  2062. for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
  2063. llama_buffer read_data;
  2064. read_data.resize(tensor.size);
  2065. tensor.data = read_data.addr;
  2066. model_loader->load_data_for(tensor);
  2067. printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
  2068. ++idx, model_loader->tensors_map.tensors.size(),
  2069. tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
  2070. ggml_type_name(tensor.type));
  2071. // This used to be a regex, but <regex> has an extreme cost to compile times.
  2072. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
  2073. // quantize only 2D tensors
  2074. quantize &= (tensor.ne.size() == 2);
  2075. quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
  2076. quantize &= quantized_type != tensor.type;
  2077. enum ggml_type new_type;
  2078. void * new_data;
  2079. size_t new_size;
  2080. llama_buffer work;
  2081. if (!quantize) {
  2082. new_type = tensor.type;
  2083. new_data = tensor.data;
  2084. new_size = tensor.size;
  2085. printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
  2086. } else {
  2087. new_type = quantized_type;
  2088. #ifdef GGML_USE_K_QUANTS
  2089. if (tensor.name == "output.weight") {
  2090. new_type = GGML_TYPE_Q6_K;
  2091. } else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  2092. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2093. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2094. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  2095. (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 ||
  2096. (i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
  2097. ++i_attention_wv;
  2098. } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  2099. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2100. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2101. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  2102. (i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 ||
  2103. (i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
  2104. ++i_feed_forward_w2;
  2105. } else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
  2106. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2107. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2108. }
  2109. #endif
  2110. float * f32_data;
  2111. size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
  2112. llama_buffer f32_conv_buf;
  2113. if (tensor.type == GGML_TYPE_F32) {
  2114. f32_data = (float *) tensor.data;
  2115. } else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) {
  2116. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type)));
  2117. } else {
  2118. llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
  2119. f32_data = (float *) f32_conv_buf.addr;
  2120. }
  2121. printf("quantizing .. ");
  2122. fflush(stdout);
  2123. work.resize(nelements * 4); // upper bound on size
  2124. new_data = work.addr;
  2125. std::vector<int64_t> hist_cur(1 << 4, 0);
  2126. int chunk_size = 32 * 512;
  2127. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  2128. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  2129. if (nthread_use < 2) {
  2130. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  2131. } else {
  2132. size_t counter = 0;
  2133. new_size = 0;
  2134. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
  2135. std::vector<int64_t> local_hist;
  2136. size_t local_size = 0;
  2137. while (true) {
  2138. std::unique_lock<std::mutex> lock(mutex);
  2139. size_t first = counter; counter += chunk_size;
  2140. if (first >= nelements) {
  2141. if (!local_hist.empty()) {
  2142. for (int j=0; j<int(local_hist.size()); ++j) {
  2143. hist_cur[j] += local_hist[j];
  2144. }
  2145. new_size += local_size;
  2146. }
  2147. break;
  2148. }
  2149. lock.unlock();
  2150. size_t last = std::min(nelements, first + chunk_size);
  2151. if (local_hist.empty()) {
  2152. local_hist.resize(hist_cur.size(), 0);
  2153. }
  2154. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  2155. }
  2156. };
  2157. if ((int) workers.size() < nthread_use - 1) {
  2158. workers.resize(nthread_use - 1);
  2159. }
  2160. for (int it = 0; it < nthread_use - 1; ++it) {
  2161. workers[it] = std::thread(compute);
  2162. }
  2163. compute();
  2164. for (int it = 0; it < nthread_use - 1; ++it) {
  2165. workers[it].join();
  2166. }
  2167. }
  2168. printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
  2169. int64_t tot_count = 0;
  2170. for (size_t i = 0; i < hist_cur.size(); i++) {
  2171. hist_all[i] += hist_cur[i];
  2172. tot_count += hist_cur[i];
  2173. }
  2174. if (tot_count > 0) {
  2175. for (size_t i = 0; i < hist_cur.size(); i++) {
  2176. printf("%5.3f ", hist_cur[i] / float(nelements));
  2177. }
  2178. }
  2179. printf("\n");
  2180. }
  2181. total_size_org += tensor.size;
  2182. total_size_new += new_size;
  2183. file_saver.write_tensor(tensor, new_type, new_data, new_size);
  2184. }
  2185. printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  2186. printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  2187. {
  2188. int64_t sum_all = 0;
  2189. for (size_t i = 0; i < hist_all.size(); i++) {
  2190. sum_all += hist_all[i];
  2191. }
  2192. if (sum_all > 0) {
  2193. printf("%s: hist: ", __func__);
  2194. for (size_t i = 0; i < hist_all.size(); i++) {
  2195. printf("%5.3f ", hist_all[i] / float(sum_all));
  2196. }
  2197. printf("\n");
  2198. }
  2199. }
  2200. }
  2201. //
  2202. // interface implementation
  2203. //
  2204. struct llama_context * llama_init_from_file(
  2205. const char * path_model,
  2206. struct llama_context_params params) {
  2207. ggml_time_init();
  2208. llama_context * ctx = new llama_context;
  2209. if (params.seed < 0) {
  2210. params.seed = time(NULL);
  2211. }
  2212. unsigned cur_percentage = 0;
  2213. if (params.progress_callback == NULL) {
  2214. params.progress_callback_user_data = &cur_percentage;
  2215. params.progress_callback = [](float progress, void * ctx) {
  2216. unsigned * cur_percentage_p = (unsigned *) ctx;
  2217. unsigned percentage = (unsigned) (100 * progress);
  2218. while (percentage > *cur_percentage_p) {
  2219. *cur_percentage_p = percentage;
  2220. fprintf(stderr, ".");
  2221. fflush(stderr);
  2222. if (percentage >= 100) {
  2223. fprintf(stderr, "\n");
  2224. }
  2225. }
  2226. };
  2227. }
  2228. ctx->rng = std::mt19937(params.seed);
  2229. ctx->logits_all = params.logits_all;
  2230. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  2231. if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers, params.main_gpu,
  2232. params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
  2233. params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
  2234. fprintf(stderr, "%s: failed to load model\n", __func__);
  2235. llama_free(ctx);
  2236. return nullptr;
  2237. }
  2238. // reserve memory for context buffers
  2239. if (!params.vocab_only) {
  2240. if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
  2241. fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
  2242. llama_free(ctx);
  2243. return nullptr;
  2244. }
  2245. {
  2246. const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
  2247. fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  2248. }
  2249. const auto & hparams = ctx->model.hparams;
  2250. // resized during inference
  2251. if (params.logits_all) {
  2252. ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
  2253. } else {
  2254. ctx->logits.reserve(hparams.n_vocab);
  2255. }
  2256. if (params.embedding){
  2257. ctx->embedding.resize(hparams.n_embd);
  2258. }
  2259. ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
  2260. ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
  2261. ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
  2262. }
  2263. #ifdef GGML_USE_METAL
  2264. if (params.n_gpu_layers > 0) {
  2265. // this allocates all Metal resources and memory buffers
  2266. ctx->ctx_metal = ggml_metal_init();
  2267. void *data_ptr = NULL;
  2268. size_t data_size = 0;
  2269. if (params.use_mmap) {
  2270. data_ptr = ctx->model.mapping->addr;
  2271. data_size= ctx->model.mapping->size;
  2272. } else {
  2273. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  2274. data_size= ggml_get_mem_size(ctx->model.ctx);
  2275. }
  2276. #define LLAMA_METAL_CHECK_BUF(result) \
  2277. if (!(result)) { \
  2278. fprintf(stderr, "%s: failed to add buffer\n", __func__); \
  2279. llama_free(ctx); \
  2280. return NULL; \
  2281. }
  2282. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size));
  2283. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size));
  2284. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size));
  2285. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size));
  2286. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size));
  2287. #undef LLAMA_METAL_CHECK_BUF
  2288. }
  2289. #endif
  2290. return ctx;
  2291. }
  2292. void llama_free(struct llama_context * ctx) {
  2293. delete ctx;
  2294. }
  2295. int llama_model_quantize(
  2296. const char * fname_inp,
  2297. const char * fname_out,
  2298. const llama_model_quantize_params *params) {
  2299. try {
  2300. llama_model_quantize_internal(fname_inp, fname_out, params);
  2301. return 0;
  2302. } catch (const std::exception & err) {
  2303. fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what());
  2304. return 1;
  2305. }
  2306. }
  2307. int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  2308. fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  2309. auto & model = ctx->model;
  2310. const int64_t t_start_lora_us = ggml_time_us();
  2311. auto fin = std::ifstream(path_lora, std::ios::binary);
  2312. if (!fin) {
  2313. fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
  2314. return 1;
  2315. }
  2316. // verify magic and version
  2317. {
  2318. uint32_t magic;
  2319. fin.read((char *) &magic, sizeof(magic));
  2320. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  2321. fprintf(stderr, "%s: bad file magic\n", __func__);
  2322. return 1;
  2323. }
  2324. uint32_t format_version;
  2325. fin.read((char *) &format_version, sizeof(format_version));
  2326. if (format_version != 1) {
  2327. fprintf(stderr, "%s: unsupported file version\n", __func__ );
  2328. return 1;
  2329. }
  2330. }
  2331. int32_t lora_r;
  2332. int32_t lora_alpha;
  2333. fin.read((char *) &lora_r, sizeof(lora_r));
  2334. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  2335. float scaling = (float)lora_alpha / (float)lora_r;
  2336. fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  2337. // create a temporary ggml context to store the lora tensors
  2338. // todo: calculate size from biggest possible tensor
  2339. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  2340. struct ggml_init_params params;
  2341. params.mem_size = lora_buf.size();
  2342. params.mem_buffer = lora_buf.data();
  2343. params.no_alloc = false;
  2344. ggml_context * lora_ctx = ggml_init(params);
  2345. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  2346. // create a name -> tensor map of the model to accelerate lookups
  2347. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  2348. for (auto & kv: model.tensors_by_name) {
  2349. model_tensors.insert(kv);
  2350. }
  2351. // load base model
  2352. std::unique_ptr<llama_model_loader> model_loader;
  2353. ggml_context * base_ctx = NULL;
  2354. llama_buffer base_buf;
  2355. if (path_base_model) {
  2356. fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
  2357. model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
  2358. size_t ctx_size;
  2359. size_t mmapped_size;
  2360. model_loader->calc_sizes(&ctx_size, &mmapped_size);
  2361. base_buf.resize(ctx_size);
  2362. ggml_init_params base_params;
  2363. base_params.mem_size = base_buf.size;
  2364. base_params.mem_buffer = base_buf.addr;
  2365. base_params.no_alloc = model_loader->use_mmap;
  2366. base_ctx = ggml_init(base_params);
  2367. model_loader->ggml_ctx = base_ctx;
  2368. // maybe this should in llama_model_loader
  2369. if (model_loader->use_mmap) {
  2370. model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0));
  2371. }
  2372. }
  2373. // read tensors and apply
  2374. bool warned = false;
  2375. int n_tensors = 0;
  2376. while (true) {
  2377. int32_t n_dims;
  2378. int32_t length;
  2379. int32_t ftype;
  2380. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  2381. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  2382. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  2383. if (fin.eof()) {
  2384. break;
  2385. }
  2386. int32_t ne[2] = { 1, 1 };
  2387. for (int i = 0; i < n_dims; ++i) {
  2388. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  2389. }
  2390. std::string name;
  2391. {
  2392. char buf[1024];
  2393. fin.read(buf, length);
  2394. name = std::string(buf, length);
  2395. }
  2396. // check for lora suffix and get the type of tensor
  2397. const std::string lora_suffix = ".lora";
  2398. size_t pos = name.rfind(lora_suffix);
  2399. if (pos == std::string::npos) {
  2400. fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  2401. return 1;
  2402. }
  2403. std::string lora_type = name.substr(pos + lora_suffix.length());
  2404. std::string base_name = name;
  2405. base_name.erase(pos);
  2406. // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  2407. if (model_tensors.find(base_name) == model_tensors.end()) {
  2408. fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  2409. return 1;
  2410. }
  2411. // create ggml tensor
  2412. ggml_type wtype;
  2413. switch (ftype) {
  2414. case 0: wtype = GGML_TYPE_F32; break;
  2415. case 1: wtype = GGML_TYPE_F16; break;
  2416. default:
  2417. {
  2418. fprintf(stderr, "%s: invalid tensor data type '%d'\n",
  2419. __func__, ftype);
  2420. return false;
  2421. }
  2422. }
  2423. ggml_tensor* lora_tensor;
  2424. if (n_dims == 2) {
  2425. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  2426. }
  2427. else {
  2428. fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
  2429. return 1;
  2430. }
  2431. // load tensor data
  2432. size_t offset = fin.tellg();
  2433. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  2434. offset = (offset + 31) & -32;
  2435. fin.seekg(offset);
  2436. fin.read((char*)lora_tensor->data, tensor_data_size);
  2437. lora_tensors[name] = lora_tensor;
  2438. // check if we have both A and B tensors and apply
  2439. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  2440. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  2441. ggml_tensor * dest_t = model_tensors[base_name];
  2442. ggml_tensor * base_t;
  2443. if (model_loader) {
  2444. // load from base model
  2445. if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
  2446. fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  2447. return 1;
  2448. }
  2449. size_t idx = model_loader->tensors_map.name_to_idx[base_name];
  2450. llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
  2451. base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  2452. lt.data = (uint8_t *) lt.ggml_tensor->data;
  2453. model_loader->load_data_for(lt);
  2454. lt.ggml_tensor->data = lt.data;
  2455. }
  2456. else {
  2457. base_t = dest_t;
  2458. }
  2459. if (ggml_is_quantized(base_t->type)) {
  2460. if (!warned) {
  2461. fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  2462. "use a f16 or f32 base model with --lora-base\n", __func__);
  2463. warned = true;
  2464. }
  2465. }
  2466. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  2467. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  2468. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  2469. fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  2470. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  2471. return 1;
  2472. }
  2473. // w = w + BA*s
  2474. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  2475. if (scaling != 1.0f) {
  2476. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  2477. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  2478. }
  2479. ggml_tensor * r;
  2480. if (base_t == dest_t) {
  2481. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  2482. }
  2483. else {
  2484. r = ggml_add(lora_ctx, base_t, BA);
  2485. r = ggml_cpy(lora_ctx, r, dest_t);
  2486. }
  2487. struct ggml_cgraph gf = ggml_build_forward(r);
  2488. gf.n_threads = n_threads;
  2489. ggml_graph_compute(lora_ctx, &gf);
  2490. // we won't need these tensors again, reset the context to save memory
  2491. ggml_free(lora_ctx);
  2492. lora_ctx = ggml_init(params);
  2493. lora_tensors.clear();
  2494. n_tensors++;
  2495. if (n_tensors % 4 == 0) {
  2496. fprintf(stderr, ".");
  2497. }
  2498. }
  2499. }
  2500. // TODO: this should be in a destructor, it will leak on failure
  2501. ggml_free(lora_ctx);
  2502. if (base_ctx) {
  2503. ggml_free(base_ctx);
  2504. }
  2505. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  2506. fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
  2507. return 0;
  2508. }
  2509. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  2510. try {
  2511. return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
  2512. } catch (const std::exception & err) {
  2513. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
  2514. return 1;
  2515. }
  2516. }
  2517. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  2518. return ctx->model.kv_self.n;
  2519. }
  2520. #define LLAMA_MAX_RNG_STATE (64*1024)
  2521. void llama_set_rng_seed(struct llama_context * ctx, int seed) {
  2522. if (seed < 0) {
  2523. seed = time(NULL);
  2524. }
  2525. ctx->rng.seed(seed);
  2526. }
  2527. // Returns the *maximum* size of the state
  2528. size_t llama_get_state_size(const struct llama_context * ctx) {
  2529. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  2530. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  2531. const size_t s_rng_size = sizeof(size_t);
  2532. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  2533. const size_t s_logits_capacity = sizeof(size_t);
  2534. const size_t s_logits_size = sizeof(size_t);
  2535. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  2536. const size_t s_embedding_size = sizeof(size_t);
  2537. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  2538. const size_t s_kv_size = sizeof(size_t);
  2539. const size_t s_kv_ntok = sizeof(int);
  2540. const size_t s_kv = ctx->model.kv_self.buf.size;
  2541. const size_t s_total = (
  2542. + s_rng_size
  2543. + s_rng
  2544. + s_logits_capacity
  2545. + s_logits_size
  2546. + s_logits
  2547. + s_embedding_size
  2548. + s_embedding
  2549. + s_kv_size
  2550. + s_kv_ntok
  2551. + s_kv
  2552. );
  2553. return s_total;
  2554. }
  2555. // Copies the state to the specified destination address
  2556. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  2557. uint8_t * out = dst;
  2558. // copy rng
  2559. {
  2560. std::stringstream rng_ss;
  2561. rng_ss << ctx->rng;
  2562. const size_t rng_size = rng_ss.str().size();
  2563. char rng_buf[LLAMA_MAX_RNG_STATE];
  2564. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  2565. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  2566. memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
  2567. memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
  2568. }
  2569. // copy logits
  2570. {
  2571. const size_t logits_cap = ctx->logits.capacity();
  2572. const size_t logits_size = ctx->logits.size();
  2573. memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
  2574. memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
  2575. if (logits_size) {
  2576. memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
  2577. }
  2578. out += logits_cap * sizeof(float);
  2579. }
  2580. // copy embeddings
  2581. {
  2582. const size_t embedding_size = ctx->embedding.size();
  2583. memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
  2584. if (embedding_size) {
  2585. memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
  2586. out += embedding_size * sizeof(float);
  2587. }
  2588. }
  2589. // copy kv cache
  2590. {
  2591. const auto & kv_self = ctx->model.kv_self;
  2592. const auto & hparams = ctx->model.hparams;
  2593. const int n_layer = hparams.n_layer;
  2594. const int n_embd = hparams.n_embd;
  2595. const int n_ctx = hparams.n_ctx;
  2596. const size_t kv_size = kv_self.buf.size;
  2597. const int kv_ntok = llama_get_kv_cache_token_count(ctx);
  2598. memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
  2599. memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
  2600. if (kv_size) {
  2601. const size_t elt_size = ggml_element_size(kv_self.k);
  2602. char buffer[4096];
  2603. ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
  2604. ggml_cgraph gf{};
  2605. gf.n_threads = 1;
  2606. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2607. kout3d->data = out;
  2608. out += ggml_nbytes(kout3d);
  2609. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2610. vout3d->data = out;
  2611. out += ggml_nbytes(vout3d);
  2612. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2613. n_embd, kv_ntok, n_layer,
  2614. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2615. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2616. kv_ntok, n_embd, n_layer,
  2617. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2618. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  2619. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  2620. ggml_graph_compute(cpy_ctx, &gf);
  2621. ggml_free(cpy_ctx);
  2622. }
  2623. }
  2624. const size_t written = out - dst;
  2625. const size_t max_size = llama_get_state_size(ctx);
  2626. LLAMA_ASSERT(written <= max_size);
  2627. return written;
  2628. }
  2629. // Sets the state reading from the specified source address
  2630. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  2631. uint8_t * inp = src;
  2632. // set rng
  2633. {
  2634. size_t rng_size;
  2635. char rng_buf[LLAMA_MAX_RNG_STATE];
  2636. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  2637. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  2638. std::stringstream rng_ss;
  2639. rng_ss.str(std::string(&rng_buf[0], rng_size));
  2640. rng_ss >> ctx->rng;
  2641. LLAMA_ASSERT(rng_ss.fail() == false);
  2642. }
  2643. // set logits
  2644. {
  2645. size_t logits_cap;
  2646. size_t logits_size;
  2647. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  2648. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  2649. LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
  2650. if (logits_size) {
  2651. ctx->logits.resize(logits_size);
  2652. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  2653. }
  2654. inp += logits_cap * sizeof(float);
  2655. }
  2656. // set embeddings
  2657. {
  2658. size_t embedding_size;
  2659. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  2660. LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
  2661. if (embedding_size) {
  2662. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  2663. inp += embedding_size * sizeof(float);
  2664. }
  2665. }
  2666. // set kv cache
  2667. {
  2668. const auto & kv_self = ctx->model.kv_self;
  2669. const auto & hparams = ctx->model.hparams;
  2670. const int n_layer = hparams.n_layer;
  2671. const int n_embd = hparams.n_embd;
  2672. const int n_ctx = hparams.n_ctx;
  2673. size_t kv_size;
  2674. int kv_ntok;
  2675. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  2676. memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
  2677. if (kv_size) {
  2678. LLAMA_ASSERT(kv_self.buf.size == kv_size);
  2679. const size_t elt_size = ggml_element_size(kv_self.k);
  2680. char buffer[4096];
  2681. ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
  2682. ggml_cgraph gf{};
  2683. gf.n_threads = 1;
  2684. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2685. kin3d->data = (void *) inp;
  2686. inp += ggml_nbytes(kin3d);
  2687. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2688. vin3d->data = (void *) inp;
  2689. inp += ggml_nbytes(vin3d);
  2690. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2691. n_embd, kv_ntok, n_layer,
  2692. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2693. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2694. kv_ntok, n_embd, n_layer,
  2695. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2696. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  2697. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  2698. ggml_graph_compute(cpy_ctx, &gf);
  2699. ggml_free(cpy_ctx);
  2700. }
  2701. ctx->model.kv_self.n = kv_ntok;
  2702. }
  2703. const size_t nread = inp - src;
  2704. const size_t max_size = llama_get_state_size(ctx);
  2705. LLAMA_ASSERT(nread <= max_size);
  2706. return nread;
  2707. }
  2708. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  2709. llama_file file(path_session, "rb");
  2710. // sanity checks
  2711. {
  2712. const uint32_t magic = file.read_u32();
  2713. const uint32_t version = file.read_u32();
  2714. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  2715. fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  2716. return false;
  2717. }
  2718. llama_hparams session_hparams;
  2719. file.read_raw(&session_hparams, sizeof(llama_hparams));
  2720. if (session_hparams != ctx->model.hparams) {
  2721. fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
  2722. return false;
  2723. }
  2724. }
  2725. // load the prompt
  2726. {
  2727. const uint32_t n_token_count = file.read_u32();
  2728. if (n_token_count > n_token_capacity) {
  2729. fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  2730. return false;
  2731. }
  2732. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  2733. *n_token_count_out = n_token_count;
  2734. }
  2735. // restore the context state
  2736. {
  2737. const size_t n_state_size_cur = file.size - file.tell();
  2738. const size_t n_state_size_max = llama_get_state_size(ctx);
  2739. if (n_state_size_cur > n_state_size_max) {
  2740. fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  2741. return false;
  2742. }
  2743. std::vector<uint8_t> state_data(n_state_size_max);
  2744. file.read_raw(state_data.data(), n_state_size_cur);
  2745. llama_set_state_data(ctx, state_data.data());
  2746. }
  2747. return true;
  2748. }
  2749. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  2750. llama_file file(path_session, "wb");
  2751. file.write_u32(LLAMA_SESSION_MAGIC);
  2752. file.write_u32(LLAMA_SESSION_VERSION);
  2753. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  2754. // save the prompt
  2755. file.write_u32((uint32_t) n_token_count);
  2756. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  2757. // save the context state
  2758. {
  2759. const size_t n_state_size_max = llama_get_state_size(ctx);
  2760. std::vector<uint8_t> state_data(n_state_size_max);
  2761. const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
  2762. file.write_raw(state_data.data(), n_state_size_cur);
  2763. }
  2764. return true;
  2765. }
  2766. int llama_eval(
  2767. struct llama_context * ctx,
  2768. const llama_token * tokens,
  2769. int n_tokens,
  2770. int n_past,
  2771. int n_threads) {
  2772. if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads, nullptr)) {
  2773. fprintf(stderr, "%s: failed to eval\n", __func__);
  2774. return 1;
  2775. }
  2776. // get a more accurate load time, upon first eval
  2777. // TODO: fix this
  2778. if (!ctx->has_evaluated_once) {
  2779. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  2780. ctx->has_evaluated_once = true;
  2781. }
  2782. return 0;
  2783. }
  2784. int llama_eval_export(struct llama_context * ctx, const char * fname) {
  2785. const int n_batch = 1;
  2786. const int n_ctx = 512 - n_batch;
  2787. const std::vector<llama_token> tmp(n_batch, llama_token_bos());
  2788. if (!llama_eval_internal(*ctx, tmp.data(), tmp.size(), n_ctx, 1, fname)) {
  2789. fprintf(stderr, "%s: failed to eval\n", __func__);
  2790. return 1;
  2791. }
  2792. return 0;
  2793. }
  2794. int llama_tokenize(
  2795. struct llama_context * ctx,
  2796. const char * text,
  2797. llama_token * tokens,
  2798. int n_max_tokens,
  2799. bool add_bos) {
  2800. auto res = llama_tokenize(ctx->vocab, text, add_bos);
  2801. if (n_max_tokens < (int) res.size()) {
  2802. fprintf(stderr, "%s: too many tokens\n", __func__);
  2803. return -((int) res.size());
  2804. }
  2805. for (size_t i = 0; i < res.size(); i++) {
  2806. tokens[i] = res[i];
  2807. }
  2808. return res.size();
  2809. }
  2810. int llama_n_vocab(const struct llama_context * ctx) {
  2811. return ctx->vocab.id_to_token.size();
  2812. }
  2813. int llama_n_ctx(const struct llama_context * ctx) {
  2814. return ctx->model.hparams.n_ctx;
  2815. }
  2816. int llama_n_embd(const struct llama_context * ctx) {
  2817. return ctx->model.hparams.n_embd;
  2818. }
  2819. int llama_get_vocab(
  2820. const struct llama_context * ctx,
  2821. const char * * strings,
  2822. float * scores,
  2823. int capacity) {
  2824. int n = std::min(capacity, (int) ctx->vocab.id_to_token.size());
  2825. for (int i = 0; i<n; ++i) {
  2826. strings[i] = ctx->vocab.id_to_token[i].tok.c_str();
  2827. scores[i] = ctx->vocab.id_to_token[i].score;
  2828. }
  2829. return n;
  2830. }
  2831. float * llama_get_logits(struct llama_context * ctx) {
  2832. return ctx->logits.data();
  2833. }
  2834. float * llama_get_embeddings(struct llama_context * ctx) {
  2835. return ctx->embedding.data();
  2836. }
  2837. const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  2838. if (token >= llama_n_vocab(ctx)) {
  2839. return nullptr;
  2840. }
  2841. return ctx->vocab.id_to_token[token].tok.c_str();
  2842. }
  2843. llama_token llama_token_bos() {
  2844. return 1;
  2845. }
  2846. llama_token llama_token_eos() {
  2847. return 2;
  2848. }
  2849. llama_token llama_token_nl() {
  2850. return 13;
  2851. }
  2852. void llama_print_timings(struct llama_context * ctx) {
  2853. const int64_t t_end_us = ggml_time_us();
  2854. const int32_t n_sample = std::max(1, ctx->n_sample);
  2855. const int32_t n_eval = std::max(1, ctx->n_eval);
  2856. const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
  2857. fprintf(stderr, "\n");
  2858. fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
  2859. fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
  2860. fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
  2861. fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
  2862. fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
  2863. }
  2864. void llama_reset_timings(struct llama_context * ctx) {
  2865. ctx->t_start_us = ggml_time_us();
  2866. ctx->t_sample_us = ctx->n_sample = 0;
  2867. ctx->t_eval_us = ctx->n_eval = 0;
  2868. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  2869. }
  2870. const char * llama_print_system_info(void) {
  2871. static std::string s;
  2872. s = "";
  2873. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  2874. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  2875. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  2876. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  2877. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  2878. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  2879. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  2880. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  2881. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  2882. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  2883. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  2884. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  2885. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  2886. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  2887. return s.c_str();
  2888. }
  2889. // For internal test use
  2890. std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
  2891. return ctx->model.tensors_by_name;
  2892. }